\qquad

Problem 1 - Experimental Probability

Table 1: Roll a die five times. Use the tally table to record if each result is a success (rolling a 6) or a failure (rolling a $1,2,3,4$, or 5). Repeat nine more times.

Successes	Failures

Table 2: Use the tallies in Table 1 to record the number of trials and the percent of trials in which each number of successes occurred.

	0	1	2	3	4	5
Number of Trials						
Percent of Trials						

Table 3: Complete the table below by simulating 10 experiments using the randBin command.

	0	1	2	3	4	5
Number of Trials						
Percent of Trials						

Problem 2 - Theoretical Probability

Table 4: Find binomPdf($5,1 / 6$) and complete the table.

	0	1	2	3	4	5
Percent						

1. Compare the experimental probabilities to the theoretical probabilities.
2. Find binomPdf($2,1 / 6$) and $\operatorname{binomPdf}(8,1 / 6)$.
3. Explain how and why the probability distribution changes. Which gives a greater probability of exactly 2 successes? Why?
\qquad
4. Find binomPdf(1,1/6,2). Explain why you get this result.
5. Use binomCdf($(\mathbf{1} / \mathbf{6}, 2)$ to find the probability of two or fewer successes.
6. Then find the probability of at least three successes.

Problem 3 - Using the Formula

7. Below, list all the arrangements of two successes and three failures in five trials. One arrangement is done for you.

SSFFF

8. How many arrangements are there?
9. What is the probability of each arrangement? Why?
10. What is the total probability of two successes in five trials?

Binomial Probabilities

Student Activity
\qquad
11. What is the formula for finding a binomial probability?
12. The probability of randomly guessing any correct answer on a multiple-choice test is 0.25 . The test has 15 questions. Find the probability of guessing:
a. Exactly 10 answers correctly
b. At least 10 answers correctly

