The chi-square distribution is a distribution of sample variances (s^2). It has two critical values which are used when constructing confidence intervals to estimate the population variance (σ^2). The number of degrees of freedom is one less than the sample size. The Chi-Square distribution requires that samples be taken from a normally distributed population.

Problem 1 - Characteristics of the Chi-Square Distribution

Graph the standard normal distribution:

 $Y_1 = normalpdf(X, 0, 1).$

Then graph the chi-square distribution for n = 6: Y2 = χ^2 pdf(X, 5). The format is (x, degrees of freedom).

The **normalpdf** and χ^2 **pdf** commands are accessed by pressing [2nd] [DISTR].

Press WINDOW. Set the values equal to the following.

```
NORMAL FLOAT AUTO REAL RADIAN MP

Plot1 Plot2 Plot3

\[ Y1 \] normalpdf(X,0,1)

\[ Y2 \] X^2 \pdf(X,5)

\[ Y3 \]

\[ Y4 \]

\[ Y5 \]

\[ Y5 \]

\[ Y6 \]

\[ Y7 \]

\[ Y8 \]

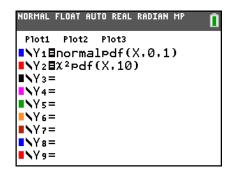
\[ Y9 \]
```

Xmin = -4, Xmax = 16, Xscl = 1, Ymin = 0, Ymax = 0.4, Yscl = 0

1. How does the chi-square distribution for n = 6 (d.f. = 5) compare to the normal distribution?

Press Y= and change Y2 to a chi-square distribution where n=11 (degrees of freedom = 10). Press GRAPH. Repeat for n=26 and n=51. Adjust the viewing window as needed.

2. What happens as *n* gets larger?



Problem 2 - Critical Values for a Chi-Square Distribution

To construct a confidence interval for population variances, or standard deviations, you must find two critical values: χ^2_L and χ^2_R . The subscripts represent the left and right values. Use a chart, given from your teacher or located in your Statistics book, to find these values.

3. For a 95% confidence interval, find χ^2_L and χ^2_R , for a sample size of 11 (d.f. = 10).

Name _____

To check your values, go to the home screen and find the area between the two critical values you listed in Question 3 by entering $\chi^2 \operatorname{\mathbf{cdf}}$ (from the <code>[DISTR]</code> menu) and then typing the lower bound, upper bound, and degrees of freedom, all separated by commas.

4. What is the area between these two values?

NORMAL FLOAT AUTO	REAL	RADIAN	MP	Ĺ
DISTR DRAW				
1:normalpdf(
2:normalcdf(
3:invNorm(
4:invT(
5:tpdf(
6:tcdf(
7: χ²pdf(
8: X2cdf (
9√Fedf(

To check that 2.5% is in the lower tail, use –1E99 for the lower bound and χ^2_L for the upper bound. (Type E by pressing 2nd [EE].)

5. How can you check that 2.5% is in the right tail?

Answer the following without looking at a table of values.

- **6.** For the same value of *n*, how will the critical values at the 90% level compare to those at the 80% level? Why?
- 7. Use a table of values to find χ^2_L and χ^2_R for n = 12 at both the 80% and 90% levels.

Problem 3 - Constructing a Confidence Interval

Confidence Interval for Population Variance

$$\frac{(n-1)s^2}{\chi^2_{R}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{L}}$$

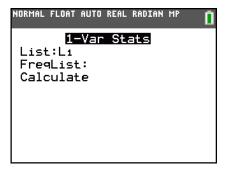
Confidence Interval for Population Standard Deviation

$$\sqrt{\frac{(n-1)s^2}{\chi^2_{R}}} < \sigma < \sqrt{\frac{(n-1)s^2}{\chi^2_{L}}}$$

The weights of certain cereal boxes should have a mean of 482 grams with a standard deviation less than or equal to 6 grams. The weights of 15 randomly selected samples are listed below.

Press STAT, choose **Edit** and list the weights in **L**1. Then press STAT again, arrow to the CALC menu and choose **1-Var Stats**. Enter **L**1 and press ENTER.

8. What is the sample standard deviation?



Assume the distribution of weights is normal.

- 9. Construct a 95% confidence interval of the population standard deviation.
- 10. Are the differences in the weights of the samples at an acceptable level? Explain.
- **11.** Suppose the standard deviation had to be less than or equal to 5 grams. Would the differences in the weights be considered acceptable? Explain.

Problem 4 - Practice

- **12.** Forty students at a high school are randomly selected and asked how much time they spend each week on homework. The sample mean and standard deviation were 5.6 hours and 2.4 hours respectively. Construct a 99% confidence interval for the standard deviation of time spent on homework by all the students at the school.
- **13.** Twenty-eight scores are randomly selected from a group of tests. The sample had a standard deviation of 28 points. Construct an 80% and 90% confidence interval for the standard deviation of all the test scores.