Open the TI-Nspire document Completing_the_Square.tns.

This activity lets you build perfect square quadratics with lead coefficient 1 using algebra tiles. This geometric model will be used to verify the algebraic expression.

Move to page 1.2.

$$
\begin{aligned}
& \text { Press ctrl }>\text { and } \operatorname{ctrl} \backslash \text { to } \\
& \text { navigate through the lesson. }
\end{aligned}
$$

1. Build perfect square quadratics with lead coefficient 1 by dragging the algebra tiles to the middle window. Record the perfect squares found. Click (R)eset to start over to find a new perfect square.

Side of Square	Perfect Square Quadratic	Coefficient of \boldsymbol{x}-term	Constant Term

2. What patterns do you notice for all perfect squares?
a. What relationship exists between the side of the square and the coefficient of the x-term?
b. What relationship exists between the side of the square and the constant term?
c. What relationship exists between the coefficient of the x-term and the constant term?
d. Why is this called "completing the square"?
3. Expand the following:
a. $(x)(x)$
b. $(x+1)(x+1)$
c. $(x+2)(x+2)$
d. $(x+3)(x+3)$
e. $(x+n)(x+n)$
4. Use either method to find $(x+5)^{2}$.
5. State whether the following are perfect square quadratics. Explain why or why not.
a. $x^{2}+3 x+9$
b. $x^{2}+14 x+49$
c. $x^{2}+24 x+144$
d. $x^{2}+6 x+36$
6. Fill in the missing terms to make the following perfect square quadratics.
a. $x^{2}+16 x+$ \qquad
b. $x^{2}+$ \qquad $+81$
c. $x^{2}+22 x+$ \qquad
d. $x^{2}+$ \qquad $+100$
e. $x^{2}+3 x+$ \qquad
7. In your own words, explain how to "complete the square" algebraically.
8. Expand the following:
a. $(x)(x)$
b. $(x-1)(x-1)$
c. $(x-2)(x-2)$
d. $(x-3)(x-3)$
\qquad
e. $(x-n)(x-n)$
9. Do the negative values in question 8 change the pattern of perfect square quadratics? Explain.
10. Fill in the missing terms to make the following perfect square quadratics.
a. $x^{2}-$ \qquad $+289$
b. $x^{2}-26 x+$ \qquad
c. $x^{2}-36 x+$ \qquad
d. $x^{2}-$ $+225$
e. $x^{2}-5 x+$ \qquad
