

Name	
Class	

Problem 1 – Side Splitter Theorem

In *SIDESP1.8xv*, you are given $\triangle CAR$. You are also given \overline{DS} which is parallel to side *CR*.

1. Move point *D* to 2 different positions and point *A* to 2 different positions and collect the data in the table below. Calculate the ratios of *AD* to *DC* and *AS* to *SR* for each position and record the calculation in the table below.

Position	AD	DC	AS	SR	$\frac{AD}{DC}$	$\frac{AS}{SR}$
1						
2						
3						
4						

- **2.** Make some observations about the ratios of the sides in the triangle. What relationships do you notice?
- 3. Use the table to complete the following conjecture about the relationship between $\frac{AD}{DC}$ and

 $\frac{AS}{SR}$. If side *DS* is parallel to side *CR*, then _____.

- **4.** In *SIDESP2.8xv*, drag point *A*. Make some observations about the relationship of the ratios $\frac{AD}{DC}$ and $\frac{AS}{SR}$?
- 5. In *SIDESP2.8xv*, drag point *D*. Make some observations about the relationship of the ratios $\frac{AD}{DC}$ and $\frac{AS}{SR}$?
- 6. Why are the results different when moving point A versus moving point D?

Problem 2 – Application of the Side-Splitter Theorem

7. Find the value of x.
8. Find the value of x.

Problem 3 – Extension of the Side-Splitter Theorem

For this problem, we will look at a corollary of the side-splitter theorem.

9. In *SIDESP3.8xv*, move point *U* to 2 different positions and point *N* to 2 different positions and collect the data in the table on the accompanying worksheet.

Position	RN	NO	EA	AS	RN NO	EA AS	
1							
2							
3							
4							
RN FA							

10. What do you notice about the ratios $\frac{RN}{NO}$ and $\frac{EA}{AS}$?

11. Use the table to complete the following conjecture about the relationship between $\frac{RN}{NO}$ and

 $\frac{EA}{AS}$. If lines RE, NA, and OS are parallel and cut by two transversals, then