Math Objectives

- Students will use a pre-made .tns file to study the composition of isometric transformations.
- Students will reflect a translated figure to create a glide reflection.
- Students will use appropriate tools strategically (CCSS Mathematical Practice).

Vocabulary

- glide
- reflection
- translation
- isometry

About the Lesson

- The estimated time for this activity is 30 to 45 minutes.
- Send the file Glide_Reflections.tns to student handheld devices. If you are planning for students to create the file, take time to follow the directions prior to facilitating the process with students.
- This activity is designed to be student-centered, with the teacher acting as a facilitator while students work cooperatively. The student worksheet is intended to guide students through the activity and provide a place to record their answers.

TI-Nspire™ Navigator™ System

- Use Screen Capture to observe students' work as they proceed through the activity.
- Use Live Presenter to have a student illustrate how he/she used a certain tool.

TI-Nspire™ Technology Skills:

- Download a TI-Nspire document
- Open a document
- Move between pages
- Grab and drag a point

Tech Tips:

- Make sure the font size on your TI-Nspire handheld is set to Medium.
- Once a function has been graphed, the entry line can be graphed by pressing ctrl G.
 The entry line can also be expanded or collapsed by clicking the chevron.

Lesson Materials:

Create Instructions
Glide_Reflections_Create.pdf

Student Activity
Glide_Reflections_Student.pdf
Glide_Reflections_Student.doc
TI-Nspire document
Glide_Reflections.tns

Visit www.mathnspired.com for lesson updates and tech tip videos.

Discussion Points and Possible Answers

Tech Tip: If students experience difficulty dragging a point, check to make sure that they have moved the arrow until it becomes a hand (2). Press ctrl to grab the point and close the hand (2).

Move to page 1.2.

Part 1 - Exploring a translated triangle

On page 1.2, ΔPQR maps onto $\Delta PQ'R'$ using a translation as determined by the vector at the top of the screen.

A **translation** is an example of an *isometry* since a translation produces an image that is congruent to the pre-image.

2. Grab and drag point A to change the magnitude and direction of the vector. Describe the changes that occur in image $\Delta PQ'R'$ as you change the vector.

<u>Answer:</u> The position of $\Delta P'Q'R'$ changes, but there are no changes in the size, shape, or orientation of the image.

Next, you will make a line parallel to the vector through a point somewhere in the plane.

- **Step 1:** Press **Menu > Construction > Parallel**.
- Step 2: Move to a location below the triangles and press (2) to mark a point.
- Step 4: Press esc to exit the Parallel tool.

To reflect $\Delta P'Q'R'$ over the line, do the following:

Step 1: Press **Menu > Transformation > Reflection**.

Step 2: Move toward the translated triangle P'Q'R'. Press to select this triangle.

Step 3: Move the cursor to the line and press .

Step 4: Press esc to exit the Reflection tool.

3. Is the new image congruent to $\Delta PQ'R'$? How do you know?

<u>Answer:</u> Yes. The lengths of the sides of the pre-image are congruent to the lengths of the sides of the image.

4. Is the reflected image congruent to the original triangle, ΔPQR? How do you know?

Answer: Yes. The new reflected image is congruent to $\Delta PQ'R'$ and $\Delta PQ'R' @ \Delta PQR$; therefore, the new reflected image is congruent to the original triangle.

5. Using *P*", Q", and *R*", write the label for each vertex of the reflected triangle in the figure at the right.

Answer: See the figure at the right.

6. An isometry is a transformation that produces an image that is congruent to the pre-image. What two isometric transformations were used in this activity?

Answer: translation and reflection

- When two or more transformations are performed in sequence to produce a single transformation, the result is called a *composition* of the transformations.
- One example of a composite transformation is a **glide reflection**. A **glide reflection** is a transformation in which every point *P* is mapped onto a point *P'* by the following steps:
 - 1. A translation maps *P* onto *P*'.
 - 2. A reflection over a line parallel to the direction of the translation maps *P* onto *P*".

7. Is a glide reflection an isometry? How do you know?

<u>Answer:</u> Yes, a glide reflection is an isometry because the image is always congruent to the pre-image.

Teacher Tip: This is a special case of the Composition of Isometries Theorem which states: The composition of two (or more) isometries is an isometry.

Wrap Up

Upon completion of the discussion, the teacher should ensure that students understand:

- What a composition of isometric transformations is.
- How to reflect a translated figure to create a glide reflection.