Introduction to Absolute Value

Name	
Class	

Problem 1 – Defining and Plotting Absolute Value

The absolute value function can be defined as $|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$.

Explore this definition by using the absolute value function on the graphing calculator.

Press math. Move to the NUM menu and select abs(.

NORMAL FLOAT	AUTO	REAL	. RADIAN	I MP	
MATH <u>NUM</u> 18abs(CMP	LX	PROB	FRAC	
2:round(
3:iPart(
4:fPart(
5:int(
5:min(7:max(
8:1cm(
949cd(

1. Use the **abs** command on the Home screen to complete the following.

a. 10.5 =	b. –15 =	c. –3.14 =
d. –12 =	e. 8 =	f. 2.71 =

2. What happens to the absolute value of numbers that are negative (to the left of zero on a number line)? How does this relate to the definition stated above?

To view a plot of the absolute value function, enter 10 random numbers (positive and negative) into L1 using the stat editor.

To access the editor press stat enter.

Note: If there is data already in L1, clear it by moving the cursor to the top of L1 and pressing <u>clear[enter]</u>.)

NORMAL FLOAT AUTO REAL RADIAN MP					
L1	L2	Lз	L4	L5	1
L1 2 -5.5 -3 6.28 -12.4 7					
L1(7)=					

Name _____ Class _____

Now, move the cursor on top of L2, press enter and let the
values of L2 be equal to abs(L1) to compute the absolute
values of the data you entered. To enter L_1 , press 2nd 1.

The screen to the right just shows a sampling of six L1 values you may use.

To graph the scatter plot of the data, press 2nd y= [stat plot][STAT PLOT] and select **Plot1**. Match the screen to the right.

Press zoom and select ZoomStat.

NORMAL	FLOAT A	UTO REAL	RADIAN	MP	
L1	L2	Lэ	L4	Ls	2
2 -5.5					
-3					
6.28					
-12.4 7					
L2= L1	L				
NORMAL	FLOAT A	UTO REAL	RADIAN	MP	
					ш
Ploti Pi	lot2 Plo	t3			
On Of	f				
		ሌ ው	- 10 - 17-	-	
Type:⊠ ା∕ ≞ ഈ ഈ ା∕′ Xlist:L1					
Ylist					
Mark					
Color	_	UE	1		
00101	D				

3. L1 represents the *x*-values and L2 represents the *y*-values. What trend do you notice about the *y*-values for the negative *x*-values? Describe the shape of the graph to the left of x = 0.

4. Describe the shape of the graph of y = |x|. Enter new numbers into the list, press zoom, and select **ZoomStat** to check the shape you described.

Problem 2 – Exploring Functions with Absolute Value

Now you will explore how changing parts of an absolute value function affects its graph using the transformation graphing application.

Before you begin, turn off **Plot 1** by pressing 2nd y= [stat plot][STAT PLOT] selecting **Plot1** and choosing the **Off** Option.

Start the transformational graphing application by pressing apps and selecting Transfrm.

Introduction to Absolute Value

Student Activity

Name Class

Press $\forall =$ and enter **A*abs(X+D)+C** next to **Y1**. Then press zoom and select **Zstandard**.

To enter the letter **A**, press apple math. The letters **D** and **C** are entered in a similar manner by using apple followed by the corresponding button to your desired letter.

To change the window setting shown at the right, press window (up arrow).

To change the values of the constants, use the and arrow keys to select the desired variable and then use the and and arrow keys to change the value.

NORMAL FLOAT AUTO REAL RADIAN MP
Plot1 Plot2 Plot3 QUIT-APP
■>====================================
■HIY2=
■>11¥4 = ■>11¥5 =
■ / 1 / 5 = MIY 6 =
■H Y7=
■ MIY 8 =
■ MIY 9 =
NORMAL FLOAT AUTO REAL RADIAN MP
TRANSFORMATION GRAPHING APP
WINDOW SETTINGS
D=1 C=1
Step=1
NORMAL FLOAT AUTO REAL RADIAN MP
TRANSFORMATION GRAPHING APP
■ ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
••••••••••••••••••••••••••••••••••••••

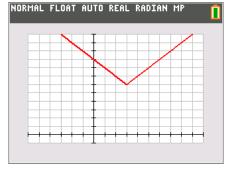
D**E**-2

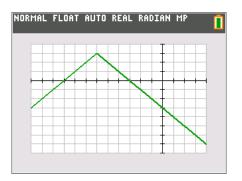
A=3 C=1

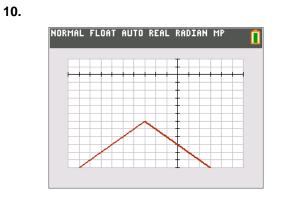
- 5. What happens to the graph when *a* is negative? When *a* is positive?
- 6. In general, what effect does a have on the graph?

Name	
Class	

- 7. **a.** What happens to the graph when *d* is positive? When *d* is negative?
 - **b.** What happens to the graph when *c* is positive? When *c* is negative?
 - **c.** For this general function y = |x + d| + c, what are the coordinates of the vertex?

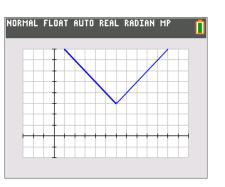

Problem 3 – Matching Equations to Graphs


Choose the correct equation from the options below for each graph shown.


a. y = |x - 6| + 3 **b.** y = -|x + 3| - 6

c. y = |x-3| + 6 **d.** y = -|x+6| + 3

8.



11.

9.

Name	
Class	

Extension – General Absolute Value Function

- **12.** Using the Transformation Graphing App, explore the graph of **Y1=A*abs(BX+D)+C**. What does the graph look like when *a* is zero? What about when *b* is zero? Explain why.
- **13.** List any other observations. For example, how is the slope related to *a* and *b*? Is the vertex always (-d, c)?