$\qquad$

Open the TI-Nspire document Natural_Logarithm.tns.

The purpose of this activity is to introduce one definition of the natural logarithm function, that is, $\ln x=\int_{1}^{x} \frac{1}{t} d t$. This activity allows you to visualize this definition and to discover some of the properties of the natural logarithm function and its graph.
 Natural Logarithm (defined by a definite integral)

Drag point on $x$-axis or use the arrows
to change the value of $x$.

One way to define the natural logarithm function and to develop properties of this function involves the area under the graph of $y=\frac{1}{x}$.
To begin this activity, let the natural logarithm function, denoted $\ln$, be defined by $\ln x=\int_{1}^{x} \frac{1}{t} d t$, for $0<x<\infty$. (We'll see why there are some restrictions on the domain.) An interpretation of this definite integral is the area under the graph of $y=\frac{1}{x}$, above the $x$-axis, and between the vertical lines at 1 and $x$. Using this geometric interpretation of the definite integral, you will learn some of the characteristics of the graph of $y=\ln x$ and properties of the natural logarithm function.

## Move to page 1.2.

1. As you grab and drag point $x$ to the right along the horizontal axis or use the up and down arrows the top-right portion of the page, the computed area of the shaded region is equivalent to $\ln x$, the value of the natural logarithm function

Tech Tip: To easily change the value of $x$, select the up and down in the top-right portion of the page. Also you can select the value and type in the number.

Tech Tip: With the iPad, touch your finger to the point and then drag it along the $x$-axis.
a. Complete the following table.

| $x$ | 1 | 1.5 | 2 | 4 | 6 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\ln x$ |  |  |  |  |  |  |

b. Explain what happens to the value of $\ln x$ as $x$ increases.
c. Explain your answer in part b geometrically.
2. Drag point $x$ to the left of 1 (but greater than 0 ), or use the up and down arrows to change the value of $x$.
a. Complete the following table.

| $x$ | 1 | 0.9 | 0.7 | 0.5 | 0.2 | 0.1 | 0.05 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\ln x$ |  |  |  |  |  |  |  |

b. Explain what happens to the value of $\ln x$ as $x$ decreases (gets closer to 0 ).
c. Explain your answer in part b geometrically.

## Move to page 1.3.

3. A part of the graph of $y=\ln x$ is displayed. Grab point $x$ or use the up and down arrows to change the value and move it along the horizontal axis to the right to construct the remaining part of the graph of $y=\ln x$. The values of the natural logarithm function are displayed on the right screen.
a. Explain what happens to the graph of $y=\ln x$ as $x$ increases without bound (as $x \rightarrow \infty$ ).
b. Explain what happens to the graph of $y=\ln x$ as $x$ approaches 0 from the right (as $x \rightarrow 0^{+}$).
c. Explain why $x=0$ is not in the domain of the function $y=\ln x$.
d. The function $f(x)=\frac{1}{x}$ is defined for $x<0$. For example, $f(-2)=-\frac{1}{2}$. Explain why the definition of the natural logarithm function cannot be extended to include negative numbers.
e. Use the Fundamental Theorem of Calculus to find the derivative of $f(x)=\ln x$. Determine the intervals on which the graph of $y=\mathbf{f}(x)$ is increasing and the intervals on which it is decreasing. Find the absolute extreme values for f . Determine the intervals on which the graph of $y=\ln x$ is concave up and the intervals on which it is concave down.
