Class _____

Problem 1 - Introduction to the Unit Circle

To the right, you will see a special circle known as the unit circle. It is centered at the origin and has a radius of one unit.

This circle is very important to the field of trigonometry. It is essential to develop an understanding of relationships between the angle theta, θ , and the coordinates of point P, a corresponding point on the circle.

Note that the angle θ is measured from the positive x-axis.

Right triangle trigonometry and knowledge of special right triangles can be applied to understanding the relationship between θ and P. (Note that the hypotenuse of this triangle is 1 unit, corresponding to the radius of 1 unit on the unit circle.)

1. Using the right triangle diagram, write an equation for x in terms of θ .

Using the answers to Exercises 1 and 2, the unit circle can be relabeled as shown to the right. Note that the x-value is $\cos(x)$ and the y-value is $\sin(x)$.

3. What is the value of *a* when the hypotenuse is 1 unit?

Įį,

Round and Round She Goes...

4. What is the value of *b* when the hypotenuse is 1 unit? Don't forget to rationalize the denominator!

5. Apply your knowledge of 30-60-90 right triangles and identify the coordinates of point *P*.

- **6.** Again, using your knowledge of 30-60-90 right triangles, identify the coordinates of point Q.
- **7.** The cosine of 30° is _____.
- **8.** The sine of 30° is _____.

- **9.** The cosine of 60° is _____.
- **10.** The sine of 60° is _____.

Check your results to Exercises 7–8 using your graphing calculator as shown to the right.

Note the $^{\circ}$ symbol can be found by pressing 2nd + [ANGLE] and then press ENTER.

Round and Round She Goes...

11. Using your knowledge of 45-45-90 right triangles, identify the coordinates of point R. _____

- **12.** The cosine of 45° is _____.
- **13.** The sine of 45° is _____.

Check your results to Exercises 11-13 using your graphing calculator.

Problem 2 - Extending the Pattern

Identify the coordinates of the following points in terms of a and b.

14. *T*

Identify the measure of the following angles.