\qquad
\qquad

Problem 1 - Negative Angle Identities

Graph $\sin (x)$ and $\sin (-x)$ together. Estimate the horizontal "difference" between the two curves by noting the x-values of their peaks.

- $\sin (-x)$ has a peak at $x=$ \qquad .
- $\sin (x)$ has a peak at $x=$ \qquad .

Translate $\sin (x)$ to the left or right until it aligns with $\sin (-x)$. What is the new equation?

- $\sin (-x)=$ \qquad
Complete the geometric proof of this negative angle identity.

Proving the Negative Angle Identities

In Cabri Jr. open the file named NEGANGLE.

1. Reflect segment R over the x-axis. Label the point where the reflected segment intersect the circle \mathbf{P} ". Find the coordinates of point P " and P.
2. Use the coordinates of point $P^{\prime \prime}$ to write an expression for $\sin (-T)$. The angle formed by the x-axis and the reflected segment is $-T$.
3. Substitute $\sin (T)=\frac{y}{r}$ in the expression to get $\sin (-T)=-\sin (T)$, the negative angle identity you found in the graph! (If you replace T with x).
4. Repeat these steps to find expressions for $\cos (-x)$ in terms of $\cos (x)$ and $\tan (-x)$ in terms of $\tan (x)$.

$$
\cos (-x)=\quad \tan (-x)=
$$

Verify the negative angle identities by graphing.

Problem 2 - Cofunction Identities

- Enter $\boldsymbol{\operatorname { s i n }}(\mathrm{X})$ in Y 1 and $\boldsymbol{\operatorname { c o s }}(\mathrm{X})$ in Y2. How do the graphs relate?
- How are the graphs of $\sin (x)$ and $\cos (x)$ the same? How are they different? How can you translate the graph of Y 2 to make it line up with Y ?
- Estimate the horizontal "difference" between the two curves by noting the x-values of their peaks.
- $\sin (x)$ has a peak at $x=$ \qquad .
- $\cos (x)$ has a peak at $x=$ \qquad .

Use what you know about translating graphs to change the equation of $\cos (x)$ to shift it to the left or right until it aligns with the graph of $\sin (x)$.

- $\sin (x)=\cos$ \qquad)

Complete the geometric proof of this cofunction identity. Open the file COFUNCT in Cabri Jr.

- Measure angles S and T. How are the two acute angles in a right triangle related? Use your answer to write an expression for S in terms of $T . \quad S=$ \qquad

Proof Of Identity

Proving the Cofunction Angle Identities

1. Use the definition of sine as opposite/hypotenuse to write an expression for the $\sin (\mathrm{S})$.

Substitute $90-T$ for S and $\cos (T)$ for $\frac{A}{C}$ to get $\sin (T)=\cos (90-T)$.
2. Substitute x for T and change degrees to radians to get $\sin (x)=\cos \left(\frac{\pi}{2}-x\right)$.
3. Use the negative angle identity to rewrite $\cos \left(\frac{\pi}{2}-x\right)$ as $\cos \left(-\left(\frac{\pi}{2}-x\right)\right)=\cos \left(x-\frac{\pi}{2}\right)$.
4. Repeat steps 1 and 2 above to write expressions for $\cos (x)$ and $\tan (x)$.

- $\cos (x)=\quad \tan (x)=$

Verify the cofunction identities by graphing.

Problem 3 - A closer look at amplitude, period, and frequency

Enter $(\sin (X))^{\mathbf{2}}$ in Y_{1} and $(\boldsymbol{\operatorname { c o s } (X)})^{\mathbf{2}}$ in Y 2. Use what you know about translating graphs to change the equation in $\cos ^{2}(x)$ to flip it and then shift it vertically to make it align with the graph of $\sin ^{2}(x)$.

- $\sin ^{2}(x)=$ \qquad

Proving the Pythagorean Angle Identities

Use the diagram and follow these steps to prove the Pythagorean identities.

a

1. Write the Pythagorean Formula: $a^{2}+b^{2}=c^{2}$.
2. Divide both sides of the Pythagorean Formula by $c^{2}: \frac{a^{2}}{c^{2}}+\frac{b^{2}}{c^{2}}=\frac{c^{2}}{c^{2}}$
3. Simplify the result. Substitute $\sin \theta$ for $\frac{b}{c}$ and $\cos \theta$ for $\frac{a}{c}$ to yield $\sin ^{2}(x)+\cos ^{2}(x)=1$.
4. Repeat steps 1 through 3 , dividing by a^{2} and b^{2} to yield additional identities.

- $\sin ^{2}(x)+\cos ^{2}(x)=1$
- 1 + \qquad
\qquad
- $\tan ^{2}(x)=$ \qquad - 1

Verify the Pythagorean identities by graphing.

