Name	
Class	

Problem 1 – Negative Angle Identities

Graph sin(x) and sin(-x) together. Estimate the horizontal "difference" between the two curves by noting the *x*-values of their peaks.

- sin(-x) has a peak at x =____.
- sin(*x*) has a peak at *x* = _____.

Translate sin(x) to the left or right until it aligns with sin(-x). What is the new equation?

• sin(-*x*) = _____

Complete the geometric proof of this negative angle identity.

Proving the Negative Angle Identities

In Cabri Jr. open the file named **NEGANGLE**.

- 1. Reflect segment *R* over the *x*-axis. Label the point where the reflected segment intersect the circle **P**". Find the coordinates of point *P*" and *P*.
- **2.** Use the coordinates of point *P*' to write an expression for sin(-T). The angle formed by the *x*-axis and the reflected segment is -T.
- **3.** Substitute $sin(T) = \frac{y}{r}$ in the expression to get sin(-T) = -sin(T), the negative angle identity you found in the graph! (If you replace *T* with x).
- Repeat these steps to find expressions for cos(-x) in terms of cos(x) and tan(-x) in terms of tan(x).

$$\cos(-x) = \tan(-x) =$$

Verify the negative angle identities by graphing.

Problem 2 – Cofunction Identities

- Enter sin(X) in Y1 and cos(X) in Y2. How do the graphs relate?
- How are the graphs of sin(*x*) and cos(*x*) the same? How are they different? How can you translate the graph of Y₂ to make it line up with Y₁?
- Estimate the horizontal "difference" between the two curves by noting the x-values of their peaks.
- sin(*x*) has a peak at *x* = _____.
- cos(*x*) has a peak at *x* = _____.

Use what you know about translating graphs to change the equation of cos(x) to shift it to the left or right until it aligns with the graph of sin(x).

• sin(x) = cos (_____)

Complete the geometric proof of this cofunction identity. Open the file **COFUNCT** in Cabri Jr.

• Measure angles *S* and *T*. How are the two acute angles in a right triangle related? Use your answer to write an expression for *S* in terms of *T*. *S* = _____

Proof Of Identity

Proving the Cofunction Angle Identities

- 1. Use the definition of sine as opposite/hypotenuse to write an expression for the sin(S). Substitute 90 – *T* for *S* and cos(*T*) for $\frac{A}{C}$ to get sin(*T*) = cos (90 – *T*).
- **2.** Substitute *x* for *T* and change degrees to radians to get $sin(x) = cos\left(\frac{\pi}{2} x\right)$.
- **3.** Use the negative angle identity to rewrite $\cos\left(\frac{\pi}{2} x\right)$ as $\cos\left(-\left(\frac{\pi}{2} x\right)\right) = \cos\left(x \frac{\pi}{2}\right)$.
- **4.** Repeat steps 1 and 2 above to write expressions for cos(x) and tan(x).
 - $\cos(x) = \tan(x) =$

Verify the cofunction identities by graphing.

Problem 3 – A closer look at amplitude, period, and frequency

Enter $(sin(X))^2$ in Y1 and $(cos(X))^2$ in Y2. Use what you know about translating graphs to change the equation in $cos^2(x)$ to flip it and then shift it vertically to make it align with the graph of $sin^2(x)$.

• sin²(x) = _____

Proving the Pythagorean Angle Identities

Use the diagram and follow these steps to prove the Pythagorean identities.

- **1.** Write the Pythagorean Formula: $a^2 + b^2 = c^2$.
- **2.** Divide both sides of the Pythagorean Formula by c^2 : $\frac{a^2}{c^2} + \frac{b^2}{c^2} = \frac{c^2}{c^2}$
- **3.** Simplify the result. Substitute $\sin \theta$ for $\frac{b}{c}$ and $\cos \theta$ for $\frac{a}{c}$ to yield $\sin^2(x) + \cos^2(x) = 1$.
- **4.** Repeat steps 1 through 3, dividing by a^2 and b^2 to yield additional identities.
 - $\sin^2(x) + \cos^2(x) = 1$ $1 + ___ = ___$ $\tan^2(x) = ___ 1$

Verify the Pythagorean identities by graphing.