Proportionality in Tables, Graphs, and Equations	Name
Student Activity	Class
Open the TI-Nspire document Tables_Graphs_Equations.tns	 ▲ 1.1 1.2 ▶ Proportionons RAD ▲ Proportionality in Tables, Graphs, and Equations
In this activity, you will explore the relationship between two	
variables presented by a table, equation, and a graph of a line.	Move to Page 1.2 and grab and drag points P and Q to move the line. Observe changes in
You will have the opportunity to change the relationship and test i	

the relationship between the two variables.

Move to page 1.2.

for proportionality.

- 1. Grab and drag point Q. Notice the table of values for the coordinates of the points that lie on a line.
 - a. What stays the same, and what changes as the line moves?
- 2. Grab and drag point Q until you see the equation y = 5x.
 - a. Select three points (excluding the origin) from the table, and find the ratio of the *y*-coordinate to the *x*-coordinate for each point.
 - b. In the table below, record your chosen points and their ratios.

x	у	$\frac{y}{x}$

- 3. What do you notice about the values in the $\frac{y}{x}$ column?
- 4. Compare the values of the ratios with the equation of a line. What do you notice?
- 5. Why was it necessary to exclude the origin when calculating the ratio?
- 6. Grab and drag point Q to plot a line with a different equation. Record the equation of this line below.

Į,	Proportionality in Tables, Graphs, and		
•	Equations		
	Student Activity		

Ν	an	ne	

Class

- -

7. Select three points from the table of values, and find the ratio of the *y*-coordinate to the *x*-coordinate for each point. Record your results in the table below:

Equation of the line:

x	у	$\frac{y}{x}$

- 8. What do you notice about the values in the $\frac{y}{x}$ column?
- 9. Compare the values of the ratios with the equation of the line. What do you notice?
- 10. Based on your observations and computations, what stays the same for each line?
- 11. Drag point P away from the origin along the y-axis, and select a new location for it. Record the equation of this line below.
- 12. Select three points on this new line, and find the ratio of the *y*-coordinate to the *x*-coordinate for each point.

Equation of the line:

x	у	$\frac{y}{x}$

13. What do you notice about the values in the $\frac{y}{x}$ column?

ų,	Proportionality in Tables, Graphs, and	Name
•	Equations	
	Student Activity	Class

14. What stays the same for each given line when P is not at the origin?

- 15. Is *y* proportional to *x*? Justify your answer.
- 16. Compare the $\frac{y}{x}$ ratios on the lines running through the origin and the $\frac{y}{x}$ ratios on the line that does not run through the origin.
 - a. In which case are the $\frac{y}{x}$ coordinates proportional to each other?
 - b. Why?