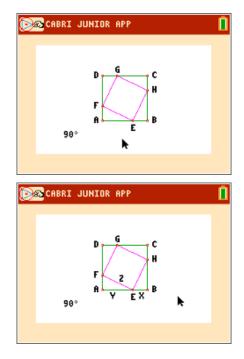

The Pythagorean Theorem Student Activity

Name	
Class	

Problem 1 – Squares on Sides Proof

1. Why is the constructed quadrilateral a square?


2. Record three sets of area measurements you made by dragging points A, B, and/or C.

Square on BC	Square on \overline{AC}	Sum of squares	Square on \overline{AB}

3. What conjecture can you make about the areas of the three squares? Does this relationship always hold when a vertex of $\triangle ABC$ is dragged to a different location?

Problem 2 – Inside a Square Proof

4. Prove that constructed quadrilateral *EFGH* is a square.

5. *ABCD* is a square with all sides of length (x + y). The area of the square *ABCD* is $(x + y)^2 = x^2 + 2xy + y^2$ Each of the triangles, $\triangle EFA$, $\triangle FGD$, $\triangle GHC$ and $\triangle HEB$, is a right triangle with height *x* and base *y*. So, the area of each triangle is $\frac{1}{2}xy$.

Name	
Class	

EFGH is a square with sides of length *z*. So the area of *EFGH* is z^2 .

Looking at the areas in the diagram we can conclude that:

$ABCD = \triangle EFA + \triangle FGD + \triangle GHC + \triangle HEB + EFGH$

Substitute the area expressions (with variables x, y, and z) into the equation above and simplify.

6. Record three sets of numeric values for $\triangle HEB$.

BE	BE ²	HB	ΗB ²	$BE^2 + HB^2$	EH	EH ²

- 7. Does $BE^2 + HB^2 = EH^2$ when *E* is dragged to a different location?
- **8.** Does $BE^2 + HB^2 = EH^2$ when A or B is dragged to a different location?