\qquad

Problem 1 - Squares on Sides Proof

1. Why is the constructed quadrilateral a square?

2. Record three sets of area measurements you made by dragging points A, B, and/or C.

Square on $\overline{\mathbf{B C}}$	Square on $\overline{\mathbf{A C}}$	Sum of squares	Square on $\overline{\boldsymbol{A B}}$

3. What conjecture can you make about the areas of the three squares? Does this relationship always hold when a vertex of $\triangle A B C$ is dragged to a different location?

Problem 2 - Inside a Square Proof

4. Prove that constructed quadrilateral $E F G H$ is a square.
5. $A B C D$ is a square with all sides of length $(x+y)$.

The area of the square $A B C D$ is $(x+y)^{2}=x^{2}+2 x y+y^{2}$
Each of the triangles, $\triangle E F A, \triangle F G D, \triangle G H C$ and $\triangle H E B$, is a right triangle with height x and base y. So, the area of each triangle is $\frac{1}{2} x y$.
2. 8 cabri JUNIOR app

\qquad
$E F G H$ is a square with sides of length z. So the area of $E F G H$ is z^{2}.
Looking at the areas in the diagram we can conclude that:

$$
A B C D=\triangle E F A+\triangle F G D+\triangle G H C+\triangle H E B+E F G H
$$

Substitute the area expressions (with variables x, y, and z) into the equation above and simplify.
6. Record three sets of numeric values for $\triangle H E B$.

$B E$	$B E^{2}$	$H B$	$H B^{2}$	$B E^{2}+H B^{2}$	$E H$	$E H^{2}$

7. Does $B E^{2}+H B^{2}=E H^{2}$ when E is dragged to a different location?
8. Does $B E^{2}+H B^{2}=E H^{2}$ when A or B is dragged to a different location?
