\qquad
\qquad

Problem 1 - Graphing $y=\frac{1}{x-a}$ for various values of a.
In this activity, you will explore the properties of functions of the form $y=\frac{1}{x-a}$ and identify vertical and horizontal asymptotes. The program RATIONAL allows you to look at graphs for different values of a. Select the program RATIONAL from the Program menu. Press ENTER to execute the program.

The program shows the graph of $y=\frac{1}{x-a}$. The value of a is shown by a dot on the x-axis at ($a, 0$). The starting value of a is 3 . Press the \square and \square arrows to adjust the value of a. Notice that as the value of a changes, the equation and graph are updated. You can exit the program by pressing 9 .

1. For what value of x is $y=\frac{1}{x-2}$ undefined?
2. For what value of x is $y=\frac{1}{x+1}$ undefined?
3. For what value of x is $y=\frac{1}{x-a}$ undefined?
4. As you move point a along the x-axis, the place where the graph of $y=\frac{1}{x-a}$ has a "break" follows along. Explain why this happens.
5. At what value of x does the graph of $y=\frac{1}{x-a}$ have a vertical asymptote?

Rational Functions

Problem 2 - Behavior Near the Vertical Asymptote

Graph the function $y=\frac{1}{x-3}$.

Press TRACE to place a point P on the graph.

Type 4 and press ENTER. The program moves the cursor to the point on the graph where $x=4$ and displays the coordinates.
6. For each value of x, what is the y-coordinate of point P ? Use the Trace feature to complete the table.
7. Enter 3.01 for x. Where did the point go? Adjust the window settings to bring point P into view. Record your settings here.

xval	yval
4	
3.5	
3.2	
2.8	
2.5	
2	

xmin: \qquad
xmax: \qquad
ymin: \qquad
ymax: \qquad

Rational Functions

8. Now enter 2.99 for the x-coordinate of P. What is the value of y ?
9. Could you make the y-coordinate of P be 1,000 ? If so, how?
10. Could you make the y-coordinate of point P be $-1,000$? If so, how?
11. Could you make the y-coordinate of point P as big as anyone asked? How?

Problem 3 - Horizontal Asymptote

Adjust the window settings as shown.

Press TRACE to place a point P on the graph.

12. For each value of x, what is the y-coordinate of point P ? Use the Trace feature to complete the table.

xval	yval
103	
13	
5	
1	
-7	
-97	

Rational Functions

13. Enter 503 for x. Where did the point go? Adjust the window settings until the point is visible. Record your window settings here.

$$
x \min :
$$

xmax: \qquad
ymin: \qquad
ymax: \qquad
14. Now enter -497 for the x-coordinate of point P.

What is the value of y ? Adjust the window settings until you can see P. Record your window settings here.
xmin: \qquad
xmax: \qquad
ymin: \qquad ymax: \qquad
15. Could you make the y-coordinate of point P be 0.001 ? If so, how?
16. Could you make the y-coordinate of point P be -0.001 ? If so, how?
17. Could you make the y-coordinate of point P as small as anyone asked? How?
18. At what value does the graph of $y=\frac{1}{x-a}$ have a horizontal asymptote?

