\qquad

Problem 1 - Exploring Right Triangle Trigonometry

We will begin this activity by looking at the definitions of the sine, cosine, and tangent of a right triangle. Start the Learning Check application by pressing APPS and selecting LearnChk. Open the file Trig. You are given the definition for the sine, cosine, and tangent of a right triangle. Copy the definitions onto your worksheet.

1. What is the definition of $\sin A$ for right $\triangle A B C$?
2. What is the definition of $\cos A$ for right $\triangle A B C$?
3. What is the definition of tan A for right $\triangle A B C$?

Answer the following questions about sine, cosine, and tangent for $\triangle A B C$.
4. What is $\sin A$?
5. What is $\cos A$?
6. What is $\tan A$?
7. What is $\sin B$?

8. What is $\cos B$?
9. What is $\tan B$?
\qquad

Problem 2 - Exploring the Sine Ratio of a Right Triangle

For this problem, we will investigate the sine ratio. Start the Cabri ${ }^{\text {TM }} \mathrm{J}$. application by pressing APPS and selecting Cabri ${ }^{\text {TM }}$ Jr. Open the file TRIG by pressing $Y=$, selecting Open..., and selecting the file. You are given right triangle $A B C$.
10. Grab and drag point B. Record the data you collected in the table below. Leave the last column blank for now.

Position	$B C$	$A B$	$\frac{B C}{A B}$	$\sin ^{-1} \frac{B C}{A B}$
1				
2				
3				
4				

11. What do you notice about the ratio of $B C$ to $A B$?
12. Did $\angle A$ change when you moved point B in $\triangle A B C$?

Because the ratio remains the same and $\angle A$ remains fixed, we can use the ratio of $B C$ to $A B$ to find the measurement of $\angle A$. To do this, we will use the definition of sine and the inverse of sine. By definition, $\sin A=\frac{B C}{A B}$. To find the measurement of $\angle A$, we use the inverse of sine to get the formula $A=\sin ^{-1} \frac{B C}{A B}$. Exit Cabr ${ }^{T M} J r$. and go to the Home screen to find the inverse sine of $\frac{B C}{A B}$. Record this into the last column of the table above.
13. What is the measurement of $\angle A$?
14. What is the measurement of $\angle B$?
\qquad

Problem 3 - Exploring the Cosine Ratio of a Right Triangle

For this problem, we will investigate the sine ratio. Start the Cabri ${ }^{T M} \mathrm{~J}$. application and open the file $T R I G$. You are given right triangle $A B C$.
15. Collect data for four positions of point B as in Problem 2.

Position	$A C$	$A B$	$\frac{A C}{A B}$	$\cos ^{-1} \frac{A C}{A B}$
1				
2				
3				
4				

Because the ratio remains the same, and $\angle A$ remains fixed, we can use the ratio of $A C$ to $A B$ to find the measurement of $\angle A$. To do this, we will use the definition of cosine and the inverse of cosine. By definition, $\cos A=\frac{A C}{A B}$. To find the measurement of $\angle A$, we use the inverse of cosine to get the formula $A=\cos ^{-1} \frac{A C}{A B}$. Exit Cabri ${ }^{\top M} \mathrm{~J}$. and go to the home screen to find the inverse cosine of $\frac{A C}{A B}$. Record this into the last column of the table above.
16. What is the measurement of $\angle A$?
17. What is the measurement of $\angle B$?
18. How would you solve an equation of the form $\tan A=\frac{B C}{A C}$ to find the measure of $\angle A$?
\qquad

Problem 4 - Applying the Sine, Cosine, and Tangent Ratios of a Right Triangle

Find and label the measure of each angle given two sides of the right triangle.
19.

21.

23.

25.

20.

22.

24.

26.

