## Activity Overview

In this activity, students will explore the ratios of right triangles. Students will discover that they can find the measure of the angles of a right triangle given the length of any two sides.

## Topic: Right Triangles \& Trigonometric Ratios

- Sine
- Cosine
- Tangent


## Teacher Preparation and Notes

- This activity was written to be explored on the TI-84 with the Cabri ${ }^{\text {TM }}$ Jr. and Learning Check applications.
- Before beginning this activity, make sure that all students have the Cabri ${ }^{\text {TM }}$ Jr. and Learning Check applications, as well as the Cabri ${ }^{\text {TM }}$ Jr. file TRIG. $8 x v$ and the Learning Check file Trig.edc loaded on their TI-84 calculators. In order to send the Learning Check file, you will need to use TI-Navigator. If TI-Navigator is not available, then give the trigonometric definitions to students.
- To download the Cabri ${ }^{\text {TM }}$ Jr. file, Learning Check file, and the student worksheet, go to education.ti.com/exchange and enter "11576" in the keyword search box.


## Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the keyword search box.

- Ratios in Right Triangles (TI-84 Plus family) - 4054
- Introduction to Trigonometric Ratios (TI-Nspire technology) 9350
- Sin, Cos, and Tan of Right Triangles (TI-84 Plus family) 4625


This activity includes screen captures taken from the TI-84 Plus Silver Edition. It is also appropriate for use with the TI-83 Plus and TI-84 Plus but slight variances may be found within the directions.

## Compatible Devices:

- TI-84 Plus Family


## Software Application:

- Cabri ${ }^{\text {TM }} \mathrm{Jr}$.
- TI-Navigator (optional)


## Associated Materials:

- RatiosOfRightTriangles_Student. pdf
- RatiosOfRightTriangles_Student. doc
- TRIG.8xv
- Trig.edc

Click HERE for Graphing Calculator Tutorials.

## Problem 1 - Exploring Right Triangle Trigonometry

In Trig.edc, students are given the definitions for the sine, cosine, and tangent of a right triangle. Students should copy the definitions onto their accompanying worksheet. If TI-Navigator is not available to send the Trig.edc file, then give the definitions to students, or allow students to use a textbook (or other resource) to find the definitions of sine, cosine, and tangent.

Students are asked to answer questions about sine, cosine, and

| For risht triansle AEC the sine of an angle is the ratio of the length of the op Fosite side to the lenisth of the hopotenuse. |  |
| :---: | :---: |
| HETIU | CIEXT | tangent ratios on their accompanying worksheet.

## Problem 2 - Exploring the Sine Ratio of a Right Triangle

For this problem, students will investigate the sine ratio of two sides of a triangle. Students should start the Cabri ${ }^{\top M} J r$. application and open the file TRIG.8xv.

Students will collect data on their worksheets by moving point $B$. They will do this for four different positions of the point.


Students will discover that the ratio of $B C$ to $A B$ remains constant, no matter how large the triangle. Therefore, students will be able to use the inverse of sine to find the measure of the angles in $\triangle A B C$.

Students will need to answer several questions on their accompanying worksheets.

## Problem 3 - Exploring the Cosine Ratio of a Right Triangle

Students will repeat the exploration in Problem 2, but with the cosine ratio.


## Problem 4 - Applying the Sine, Cosine, and Tangent Ratios of a Right Triangle

In Problem 4, students are asked to apply what they have learned about how to find the measure of an angle of a right triangle given two sides of the triangle.

Note: Students need to make sure the calculator is set in Degree mode. To do this, press MODE and press ENTER on DEG.


# Ratios of Right Triangles 

## Solutions to Student Worksheet

1. For right triangle $A B C$, the sine of an angle is the ratio of the length of the opposite side to the length of the hypotenuse.
2. For right triangle $A B C$, the cosine of an angle is the ratio of the length of the adjacent side to the length of the hypotenuse.
3. For right triangle $A B C$, the tangent of an angle is the ratio of the length of the opposite side to the length of the adjacent side.
4. $\frac{3}{5}$
5. $\frac{4}{5}$
6. $\frac{3}{4}$
7. $\frac{4}{5}$
8. $\frac{3}{5}$
9. $\frac{4}{3}$
10. Sample answers:

| Position | $B C$ | $A B$ | $\frac{B C}{A B}$ | $\sin ^{-1} \frac{B C}{A B}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2.76 | 6.88 | 0.40 | $23.58^{\circ}$ |
| 2 | 2.45 | 6.11 | 0.40 | $23.58^{\circ}$ |
| 3 | 1.88 | 4.69 | 0.40 | $23.58^{\circ}$ |
| 4 | 1.27 | 3.17 | 0.40 | $23.58^{\circ}$ |

11. The ratio does not change.
12. No, the angle does not change.
13. $23.58^{\circ}$
14. $66.42^{\circ}$
15. Sample answers:

| Position | $A C$ | $A B$ | $\frac{A C}{A B}$ | $\cos ^{-1} \frac{A C}{A B}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2.70 | 2.95 | 0.92 | $23.07^{\circ}$ |
| 2 | 3.60 | 3.93 | 0.92 | $23.07^{\circ}$ |
| 3 | 4.30 | 4.69 | 0.92 | $23.07^{\circ}$ |
| 4 | 5.30 | 5.79 | 0.92 | $23.07^{\circ}$ |

16. $23.07^{\circ}$
17. $66.93^{\circ}$
18. $A=\tan ^{-1} \frac{B C}{A C}$
19. $A=23.58^{\circ}, B=66.42^{\circ}$
20. $A=21.8^{\circ}, B=68.2^{\circ}$
21. $A=23.96^{\circ}, B=66.04^{\circ}$
22. $A=53.13^{\circ}, B=36.87^{\circ}$
23. $A=15.07^{\circ}, B=74.93^{\circ}$
24. $A=42.83^{\circ}, B=47.17^{\circ}$
25. $A=45^{\circ}, B=45^{\circ}$
26. $A=29.05^{\circ}, B=60.95^{\circ}$
