Name	
Class	

Problem 1 - Similar Triangles

In the CabriTM Jr. file *FIG1*, you are given $\triangle ABC$ that is similar to $\triangle XYZ$. You are also given the perimeters of $\triangle ABC$ and $\triangle XYZ$.

1. Move point A to four different positions and collect the data in the table below. Calculate the ratios of the perimeter of $\triangle XYZ$ to the perimeter of $\triangle ABC$ for each position. Record the calculation in the table below. Round your answer for each ratio to the nearest hundredth.

Position	AB	XY	Perimeter of XYZ	Perimeter of ABC	Ratio of Perimeters
1					
2					
3					
4					

2. What is the similarity ratio of the two triangles written in the form *a:b*?

3. What is the ratio of the perimeters of the two triangles in the form *a:b*?

4. How are the similarity ratio and the ratio of the perimeters related?

In *FIG2*, you are given $\triangle ABC$ that is similar to $\triangle XYZ$. You are also given the areas of $\triangle ABC$ and $\triangle XYZ$.

5. Move point *A* to four different positions and collect the data in the table below. Calculate the ratios of the area of $\triangle XYZ$ to the area of $\triangle ABC$ for each position. Record the calculation in the table below. Round your answer for each ratio to the nearest hundredth.

Position	AB	XY	Area of XYZ	Area of <i>ABC</i>	Ratio of Areas
1					
2					
3					
4					

Name	
Class	

0. What is the fatio of the areas of the two thandles in the follow	6.	atio of the areas of the two triangle	es in the form	a:b?
--	----	---------------------------------------	----------------	------

Problem 2 – Similar Figures

In *FIG3*, you are given quadrilateral *ABCD* that is similar to quadrilateral *XYZT*. You are also given the perimeters of *ABCD* and *XYZT*.

8. Move point *A* to four different positions and collect the data in the table below. Calculate the ratios of the perimeter of quadrilateral *XYZT* to the perimeter of quadrilateral *ABCD* for each position. Record the calculation in the table below. Round your answer for each ratio to the nearest hundredth.

Position	AB	XY	Perimeter of XYZT	Perimeter of ABCD	Ratio of Perimeters
1					
2					
3					
4					

9. What is the similarity ratio of the two quadrilaterals written in the form *a:b*?

10. What is the ratio of the perimeters of the two quadrilaterals in the form *a:b*?

11. How are the similarity ratio and the ratio of the perimeters related?

In *FIG4*, you are given quadrilateral *ABCD* that is similar to quadrilateral *XYZT*. You are also given the areas of *ABCD* and *XYZT*.

12. Move point *A* to four different positions and collect the data in the table below. Calculate the ratios of the area of quadrilateral *XYZT* to the area of quadrilateral *ABCD* for each position. Record the calculation in the table below. Round your answer for each ratio to the nearest hundredth.

Position	AB	XY	Area of XYZT	Area of ABCD	Ratio of Areas
1					
2					
3					
4					

13. What is the ratio of the areas of the two triangles in the fo	m <i>a:b</i> ?
---	----------------

- 14. How are the similarity ratio and the ratio of the areas related?
- **15.** If the similarity ratio of two similar figures is *a*:*b*, then the ratio of the perimeters is what?
- **16.** If the similarity ratio of two similar figures is *a*:*b*, then the ratio of the areas is ______.