Running Circles Around Quads
Student Activity
\qquad

Problem 1 - Properties of Cyclic Quadrilaterals

A cyclic quadrilateral is a quadrilateral inscribed in a circle. Open the Cabri ${ }^{T M} \mathrm{Jr}$. application by pressing apps and selecting Cabri Jr. Open the file CYCLIC1 by pressing 区=, selecting Open..., and selecting the file. The file CYCLIC1 shows a cyclic quadrilateral QUAD and the measures of angles Q, U, A, and D.

1. Drag point Q to four different positions and collect data in the table below.

Position	$\angle Q$	$\angle \boldsymbol{U}$	$\angle \boldsymbol{A}$	$\angle D$
1				
2				
3				
4				

2. What do you notice about the opposite angles of a cyclic quadrilateral?
3. Open the file CYCLIC2. This file shows quadrilateral $Q U A D$ and the measures of angles Q, U, A, and D. Drag point Q to two points inside and two points outside the circle and collect data in the table below.

Position	$\angle Q$	$\angle U$	$\angle A$	$\angle D$
$\mathbf{1}$				
2				
3				
4				

4. What do you notice about the opposite angles of a quadrilateral that is not necessarily cyclic?

Answer the following questions with always, sometimes, or never. Use what you know about the opposite angles of special quadrilaterals (parallelogram, rectangle, kite, trapezoid, etc.) and what you know about the opposite angles of cyclic quadrilaterals.
5. A kite is \qquad a cyclic quadrilateral.
\qquad
6. A trapezoid is \qquad a cyclic quadrilateral.
7. An isosceles trapezoid is \qquad a cyclic quadrilateral.
8. A parallelogram is \qquad a cyclic quadrilateral.
9. A rectangle is \qquad a cyclic quadrilateral.
10. A square is \qquad a cyclic quadrilateral.
11. A rhombus is \qquad a cyclic quadrilateral.

Problem 2 - Properties of Angles

For this problem, we will look at the angle properties created by the diagonals of cyclic quadrilaterals.
12. Open the file CYCLIC3. This file shows the measures of angles $Q, U, A, D, D Q A$, and $D U A$. Move point D between Q and A to four different points and collect data in the table below.

Position	$\angle Q$	$\angle U$	$\angle A$	$\angle D$	$\angle D Q A$	$\angle D U A$
$\mathbf{1}$						
$\mathbf{2}$						
3						
4						

13. What do you notice about the measure of angles $D Q A$ and $D U A$?
