STUDENT WORKSHEET

Talladega Chase Activity

STEM Lesson for TI-Nspire ${ }^{\text {TM }}$ Technology

Objective: Students will create scatter plots given data in a table. Students will then do regressions to analyze and interpret the data.

About the Lesson: Talladega Superspeedway is strictly aero, all aero, all the time. A standing joke in the engineering circles is that you can put anything (springs, shocks and chassis geometry) under a car for Talladega and it doesn't matter. It's all aero and all luck. Many teams don't even bother to run shaker rig tests on their Talladega cars. The current configuration of a NASCAR Sprint Cup car combined with restrictor plates which limit the power output of an engine results in two car tandems with the second car literally pushing the lead car of the duo. Cars paired up in this manner can run as much as 15 mph faster than a single car and 8 mph faster than a long line of cars with tiny spaces between the cars. You could call it the Talladega Pas de Deux.

Materials: Student Worksheets

Ten80 Student Racing Challenge: NASCAR STEM Initiative

Analysis:

Using TI-Nspire Technology

1. Open the file named Talladega_Chase_Activity.tns.
2. Move to page 1.2.
3. Input speeds ranging from $140-210 \mathrm{mph}$ in increments of 10 mph in the first column. The other columns show the power associated with each speed for a single car and a two car tandem.

4. Move to page 1.3 to create scatter plots of single power vs. speed and duo powervs. speed.
5. What is the independent variable?
6. What is the dependent variable?
7. Press (ara) and choose your independent variable. Press $\boldsymbol{\nabla}$ then (vart and select your dependent variable. Press enter.
8. Press (menu) then Window/Zoom > Zoom Data.
9. Press (tab) and repeat steps $\mathbf{7}$ and 8 for the second plot.

10. When the power is the same between single and duo, what is the difference in speed?
11. Move back to page $\mathbf{1 . 2}$ and move to column D.
12. Press (menu) then choose Statistics > Stat Calc > Quadratic Regression.
13. Click on the arrow to the right of X List and choose speeds and click the arrow to the right of Y List and choose single.
14. Scroll to the very bottom and make sure the $1^{\text {st }}$ Result Column is e[] and click OK.
15. Move to column G and repeat steps $\mathbf{1 2 - 1 4}$ for duo.

16. Move to page 1.3.
17. Press (menu > Graph Type > Function. The function bar will appear at the bottom of the screen. Press Δ to see $f 1(x)$ and press enter. Your curve for single power should appear.
18. Press (tab) then $\boldsymbol{\Delta}$ to see $f 2(x)$ and press enter to see your curve for duo power.
19. Grab and drag any text to make the graph more visible. You can also adjust the window settings to investigate the graphs.

20. Press (menu) $>$ Graph $>$ Graph Trace to trace the graphs. Press $\Delta \boldsymbol{\nabla}$ to switch graphs.
21. Predict the power single and duo powers at the following speeds:
a. 165 mph
b. 185 mph
c. 100 mph
22. Make a conjecture about single car laps and the two-car tandem.

Analysis:

Using spreadsheet software

1. Create 3 columns in your spreadsheet software. Title them Speeds, Single Car Power, and Duo Car Power.
2. Input speeds ranging from $140-210 \mathrm{mph}$ in increments of 10 mph in the first column.
3. In the second column input the equation $=500^{*}(\mathbf{A} 2 / \mathbf{A} 6)^{\wedge} 3$ where $\mathbf{A} 2$ is your $1^{\text {st }}$ speed and A6 is the average speed of 180 mph . Copy the equation down for all speeds. Adjust each equation so the numerator changes cells for each one and the denominator stays A6.
4. In the third column input the equation $=500^{*} 0.733^{*}(\mathbf{A} 2 / \mathbf{A} 6)^{\wedge} 3$ where $\mathbf{A} 2$ is your $1^{\text {st }}$ speed and $\mathbf{A 6}$ is the average speed of 180 mph . Copy the equation down for all speeds. Adjust each equation so the numerator changes cells for each one and the denominator stays A6.
5. Use the chart wizard to create a scatter plot of single power vs. speed and duo powervs. speed. Chart type will be XY(Scatter) and choose the one with the data points connected by smoothed lines. Click Next.
6. What is the independent variable?
7. What is the dependent variable?
8. You will have to click on the Series tab to make sure the correct data is on the correct axis. If the wrong data is there, click in the box for the x values then highlight the data for the independent variable.
9. Repeat step 8 for the y values. Click Next.
10. Create titles for the chart and each axis. You can also click the other tabs to change the appearance of your graph. You might want to adjust the domain and range. Click Next.
11. Decide if you want the graph to appear in the same window as your table or in a new window. Click Next and your graph should appear.

12. When the power is the same between single and duo, what is the difference in speed?
13. What kind of regression do you think would be?
14. Predict the power single and duo powers at the following speeds:
a. 165 mph
b. 185 mph
15. Make a conjecture about single car laps and the two-car tandem.

Ten80 Student Racing Challenge: NASCAR STEM Initiative

