# **Taylor Polynomial Examples Student Activity**

| Name  |  |
|-------|--|
| Class |  |

## Open the TI-Nspire document Taylor\_Polynomial\_Examples.tns.

The nth degree Taylor polynomial associated with a function f at a point a, denoted T, is given by

$$T_n(x) = \sum_{i=0}^n \frac{\mathbf{f}^{(i)}(a)}{i!} (x-a)^i$$
  
=  $\mathbf{f}(a) + \frac{\mathbf{f}'(a)}{1!} (x-a) + \frac{\mathbf{f}''(a)}{2!} (x-a)^2 + \dots + \frac{\mathbf{f}^{(n)}(a)}{n!} (x-a)^n$ 

Taylor polynomials are often used to approximate the value of a function f close to, or in a neighborhood of, a. Some calculators may even use Taylor polynomials to evaluate functions such as  $\sin x$  or  $e^x$ . In this activity, taylorf represents the Taylor polynomial.

| 1.1 2.1 2.2 Taylor_Polynles 🗢 🕻 🗶                                  |  |  |
|--------------------------------------------------------------------|--|--|
| Taylor Polynomial Examples                                         |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
| $f(x) = e^x$ , $ln(x)$ , $sin(x)$ , $cos(x)$ , and $\frac{1}{1-x}$ |  |  |
| Note: <b>No CAS</b> (Computer Algebra System)                      |  |  |
| is required for any of these examples                              |  |  |
|                                                                    |  |  |

## Move to page 2.2.

Press ctrl ▶ and ctrl ◀ to navigate through the lesson.

- 1. In the first example, the graph of  $y = e^x$  is dotted and the graph of the Taylor polynomial of degree n at a is solid. Use the slider arrows to change the degree, n, or the value of a.
  - a. With a = 0, set n = 1. Graph the first degree Taylor polynomial,  $T_1$ , at 0. Describe the graph of  $y = T_1(x)$ .
  - b. Use the graph of  $y = T_1(x)$  and the Trace All feature to describe the accuracy of the Taylor polynomial approximation as x moves farther from a = 0.
  - c. Set n = 2. Describe the graph of  $y = T_2(x)$ , the second degree polynomial at 0.
  - d. Set n = 3. Describe the graph of  $y = T_3(x)$ , the third degree polynomial at 0.
  - e. Consider the graph of other Taylor polynomials for  $n \ge 4$ . Describe the accuracy of the Taylor polynomial approximation as n increases.

| Name  |  |
|-------|--|
| Class |  |

## Move to page 2.3.

On the *Lists & Spreadsheets* page, you may enter values for x in column A. The following values will be computed automatically: f(x), taylorf(x), and |f(x) - taylorf(x)|, columns B, C, and D respectively.

These resulting values are dependent upon the current values of *n* and *a*.

- 2. Adjust the values of *n* and *a* on page 2.2 as necessary and use the *Lists* & *Spreadsheets* page to answer the following questions.
  - a. For a fixed value of *n*, describe the accuracy of the Taylor polynomial approximation as the values of *x* are farther away from *a*.
  - b. For fixed values of *a* and *x*, describe the accuracy of the Taylor polynomial approximation as *n* increases.

## Move to page 2.4.

The *Lists & Spreadsheets* page contains the derivative of the function *f* at *a*, the derivative of the Taylor polynomial at *a*, and the order of the derivative, in columns A, B, and C, respectively.

3. For different values of *n*, set on page 2.2, observe the value of the derivatives of *f* and *taylorf* at *a*. Describe the pattern.

#### Move to page 3.2.

- 4. In this example, the graph of  $y = \ln(x)$  is dotted and the graph of the Taylor polynomial of degree n at a is solid. Use the slider arrows to change the degree, n, or the value of a. Adjust the values of n and a as necessary to answer the following questions.
  - a. For a = 2, describe the accuracy of the Taylor polynomial approximation as n increases.



# **Taylor Polynomial Examples Student Activity**

| Name  |  |
|-------|--|
| Class |  |

- b. Describe the behavior of each Taylor polynomial as  $x \to -\infty$  and as  $x \to +\infty$ . What happens to the graph of the Taylor polynomial, as  $x \to +\infty$ , as n increases by 1, for example, from n = 6 to n = 7? Explain why this behavior alternates as n increases.
- c. For a = 0.3, consider various Taylor polynomials of degree n. Explain why the Taylor polynomial appears to be a very good approximation to the left of a = 0.3. but diverges rapidly to the right of a = 0.3.

### Move to page 4.2.

- 5. In this example, the graph of  $y = \sin x$  is dotted and the graph of the Taylor polynomial of degree n at a is solid. Use the slider arrows to change the degree, n, or the value of a.
  - a. For a = 0 and n = 1, describe the graph of the Taylor polynomial. Find the Taylor polynomial and describe the approximation for sin x for x close to 0.
  - b. For a = 0, consider the graph of the Taylor polynomials as n increases. Explain why the graph of the Taylor polynomials for n = 1 and for n = 2 are identical, and for n = 3 and n = 4, etc.
  - c. For each value of a and n, describe the accuracy of the Taylor approximation about the point x = a.

| Name  |  |
|-------|--|
| Class |  |

## Move to page 5.2.

- 6. In this example, the graph of  $y = \cos x$  is dotted and the graph of the Taylor polynomial of degree n at a is solid. Use the slider arrows to change the degree, n, or the value of a.
  - a. For a = 0 and n = 1, describe the graph of the Taylor polynomial. Find the Taylor polynomial and explain why the slope of this linear approximation is 0.
  - b. For a = 0, consider the graph of the Taylor polynomials as n increases. Explain why the graph of the Taylor polynomials for n = 0 and for n = 1 are identical, and for n = 2 and n = 3, etc.

### Move to page 6.2.

- 7. In this example, the graph of  $y = \frac{1}{1-x}$  is dotted and the graph of the Taylor polynomial of degree n at a is solid. Use the slider arrows to change the degree, n, or the value of a.
  - a. For a = 0, consider various Taylor polynomials of degree n. Explain why there is no graph of the Taylor polynomial to the right of x = 1.
  - b. Consider the graph of the Taylor polynomial for a = 0 and n = 7. Explain the accuracy of this Taylor polynomial. Why does the Taylor polynomial appear to be a much better approximation to the right of a = 0 than to the left?

c. Explain how to obtain the graph of a Taylor polynomial that can be used to approximate the portion of the graph of y = f1(x) to the right of x = 1.