Image: Name ______Name ______Student ActivityImage: Name ______Open the TI-Nspire document Transformations_of_Functions_2.Name ______How does the graph of y = 2 f(x) compare to the graph of y = f(x)?Image: Transformations of Functions 2How does the graph of the transformations that you will see as you explore
how the graph of the function $y = a \cdot f(x)$ is altered as the value of
a is changed.Image: Name ______

Move to page 1.2.

- 1. What happens to the graph of $y_2 = a \times f(x)$ as you change the value of **a**?
- 2. Use the slider to change the value of **a**. Describe how the graph of $y_2 = a \times f(x)$ is different from the graph of $y_1 = f(x)$ as the value of **a** changes. Complete the table below.

а	Difference between $y_2 = a \cdot f(x)$ and $y_1 = f(x)$
2	
2.5	
0.5	
0.25	
-1	
-2	
-0.25	
1	

- 3. Based on your observations in question 2:
 - a. How do you think the graph of $y_2 = a \times f(x)$ would compare with $y_1 = f(x)$ for a = 5? Explain.

- b. How do you think the graph of $y_2 = a \times f(x)$ would compare with $y_1 = f(x)$ for a = 0.1? Explain.
- c. How do you think the graph of $y_2 = a \times f(x)$ would compare with $y_1 = f(x)$ for a = -5? Explain.
- 4. Move the slider so that a = 0. What happens to the graph of $y_2 = a \times f(x)$? Why does this happen?

Move to page 2.1.

- 5. Find a value for **a** that will satisfy the given conditions:
 - a. The graph of $y_2 = a \times f(x)$ is stretched vertically compared to the graph of $y_1 = a \times f(x)$ and opens in the same direction as $y_1 = f(x)$.
 - b. The graph of $y_2 = a \times f(x)$ is vertically *compressed* compared to the graph of $y_1 = a \times f(x)$ and opens in the *opposite* direction from $y_1 = f(x)$.
- 6. a. If the graph of $y_1 = f(x)$ includes the point (1, 3), what corresponding point would be found on the graph of $y_2 = 2 \cdot f(x)$?
 - b. If the graph of $y_1 = f(x)$ includes the point (x, y), what corresponding point would be found on the graph of $y_2 = 2 \cdot f(x)$?

Name	
Class _	

- c. If the graph of $y_1 = f(x)$ includes the point (2, 4), what corresponding point would be found on the graph of $y_2 = -3 \cdot f(x)$?
- d. If the graph of $y_1 = f(x)$ includes the point (x, y), what corresponding point would be found on the graph of $y_2 = -3 \cdot f(x)$?