$\qquad$
$\qquad$

## Open the TI-Nspire document Transformations_of_Functions_2.

Transformations of Functions 2

Move to page 1.2.

1. What happens to the graph of $y_{2}=a \times f(x)$ as you change the value of $\mathbf{a}$ ?
2. Use the slider to change the value of a. Describe how the graph of $y_{2}=a \times f(x)$ is different from the graph of $y_{1}=f(x)$ as the value of a changes. Complete the table below.

| $\mathbf{a}$ | Difference between $y_{2}=a \cdot f(x)$ and $y_{1}=f(x)$ |
| :---: | :---: |
| 2 |  |
| 2.5 |  |
| 0.5 |  |
| 0.25 |  |
| -1 |  |
| -2 |  |
| -0.25 |  |
| 1 |  |

3. Based on your observations in question 2:
a. How do you think the graph of $y_{2}=a \times f(x)$ would compare with $y_{1}=f(x)$ for $\mathbf{a}=5$ ? Explain.
$\qquad$
$\qquad$
b. How do you think the graph of $y_{2}=a \backslash f(x)$ would compare with $y_{1}=f(x)$ for $\mathbf{a}=0.1$ ? Explain.
c. How do you think the graph of $y_{2}=a \vee f(x)$ would compare with $y_{1}=f(x)$ for $\mathbf{a}=-5$ ? Explain.
4. Move the slider so that $a=0$. What happens to the graph of $y_{2}=a \triangleleft f(x)$ ? Why does this happen?

## Move to page 2.1

5. Find a value for a that will satisfy the given conditions:
a. The graph of $y_{2}=a \rtimes^{f}(x)$ is stretched vertically compared to the graph of $y_{1}=a \rtimes^{f}(x)$ and opens in the same direction as $y_{1}=f(x)$.
b. The graph of $y_{2}=a \times f(x)$ is vertically compressed compared to the graph of $y_{1}=a \times f(x)$ and opens in the opposite direction from $y_{1}=f(x)$.
6. a. If the graph of $y_{1}=f(x)$ includes the point (1,3), what corresponding point would be found on the graph of $y_{2}=2 \cdot f(x)$ ?
b. If the graph of $y_{1}=f(x)$ includes the point $(x, y)$, what corresponding point would be found on the graph of $y_{2}=2 \cdot f(x)$ ?

Name $\qquad$ Class $\qquad$
c. If the graph of $y_{1}=f(x)$ includes the point $(2,4)$, what corresponding point would be found on the graph of $y_{2}=-3 \cdot f(x)$ ?
d. If the graph of $y_{1}=f(x)$ includes the point ( $x, y$ ), what corresponding point would be found on the graph of $y_{2}=-3 \cdot f(x)$ ?

