\qquad

Open the TI-Nspire document

What_is_a_Solution_to_a_System.tns.

An ordered pair (x, y) can be thought of in two ways. The two numbers represented by x and y could be substituted into an equation involving x and y. Those same two numbers can be thought of as the coordinates (x, y) of a point in the plane. This activity relates those two ideas to each other to give you a visual way of thinking of the solution to a system of two
1.1 What is a Solution to a System?
Drag point P across the plane and observe
the changes in the values of the
coordinates.
When you find a point that satisfies the
goal, press Ctrl decimal to plot the point. equations.

Move to page 1.2.

Press ctril and ctrl \backslash to navigate through the lesson.

1. Move point P. Describe how the coordinates relate to the Current equation shown in the lower-right corner of the screen.
2. a. In the Goal equation, $x+y=10$, if $x=-3$, what value of y is needed to make the equation true?
b. Move point P so that the x-coordinate is -3 and the Current equation matches the Goal equation. Press atril to mark this point.
3. Move point P to a new location where the Current equation again matches the Goal equation. Press ctrl to mark this point. Mark at least four more points that make the equations match.

What do you observe about the pattern of the points you have marked?
4. A solution to an equation in two variables is an ordered pair (x, y) that makes the statement true. Each point you have marked is one solution to the Goal equation $x+y=10$. How many solutions does this equation have? How do you know?
\qquad

Click the slider (Δ) to change the problem.
5. Move point P to a location where the Current equation matches the Goal equation. Mark at least two more solutions to the equation.
a. Describe a pattern you could use to determine two more solutions without randomly moving point P.
b. Use your pattern to explain how many solutions you can find for this equation.

Click the slider (Δ) to change the problem.
6. Move point P. Identify a point that satisfies each condition.
a. Rule 1 is true and Rule 2 is false.
b. Both rules are false.
c. Rule 1 is false and Rule 2 is true.
d. Both rules are true.
7. A solution to a system of equations is any ordered pair (x, y) that makes both equations true simultaneously.
a. How many solutions are there for the system $\left\{\begin{array}{c}x+y=10 \\ 2 x-3 y=-10\end{array}\right.$? Explain your reasoning.
b. What is the solution to the system?
8. How can you verify your solution in question 7 b ?
9. Candice says that $(3,5)$ is the only solution to the system $\left\{\begin{array}{l}x+y=8 \\ x-2 y=-7\end{array}\right.$.

Do you agree? Why or why not?

