Name _____ Class _____

Open the TI-Nspire document What_is_a_Solution_to_a_System.tns.

An ordered pair (x, y) can be thought of in two ways. The two numbers represented by x and y could be substituted into an equation involving x and y. Those same two numbers can be thought of as the coordinates (x, y) of a point in the plane. This activity relates those two ideas to each other to give you a visual way of thinking of the solution to a system of two equations.

1.1	1.2	What_is_a_S…tem マ	() ×
What	is a S	olution to a System?	^
the ch		across the plane and observe in the values of the	
	-	nd a point that satisfies the Ctrl decimal to plot the point.	>

Move to page 1.2.

Press ctrl) and ctrl (to navigate through the lesson.

- 1. Move point *P*. Describe how the coordinates relate to the *Current* equation shown in the lower-right corner of the screen.
- 2. a. In the Goal equation, x + y = 10, if x = -3, what value of y is needed to make the equation true?

b. Move point *P* so that the *x*-coordinate is -3 and the *Current* equation matches the *Goal* equation. Press [tr] • to mark this point.

- 3. Move point *P* to a new location where the *Current* equation again matches the *Goal* equation. Press
 ctrl . to mark this point. Mark at least four more points that make the equations match.
 What do you observe about the pattern of the points you have marked?
- 4. A solution to an equation in two variables is an ordered pair (x, y) that makes the statement true. Each point you have marked is one solution to the *Goal* equation x + y = 10. How many solutions does this equation have? How do you know?

Name	
Class	

Click the slider (Δ) to change the problem.

- 5. Move point *P* to a location where the *Current* equation matches the *Goal* equation. Mark at least two more solutions to the equation.
 - a. Describe a pattern you could use to determine two more solutions without randomly moving point *P*.
 - b. Use your pattern to explain how many solutions you can find for this equation.

Click the slider (Δ) to change the problem.

- 6. Move point *P*. Identify a point that satisfies each condition.
 - a. *Rule 1* is true and *Rule 2* is false.
 - b. Both rules are false.
 - c. *Rule 1* is false and *Rule 2* is true.
 - d. Both rules are true.
- 7. A solution to a system of equations is any ordered pair (x, y) that makes both equations true simultaneously.

a. How many solutions are there for the system
$$\begin{cases} x + y = 10 \\ 2x - 3y = -10 \end{cases}$$
? Explain your reasoning.

Ų.	What is a Solution to a System?
	Student Activity

Name	
Class	

- b. What is the solution to the system?
- 8. How can you verify your solution in question 7b?
- 9. Candice says that (3, 5) is the only solution to the system $\begin{cases} x + y = 8 \\ x 2y = -7 \end{cases}$

Do you agree? Why or why not?