

AP* Statistics Practice Questions Using TI-Nspire™ Technology

Example 3: A new process for producing synthetic gems yielded a random sample of six stones weighing 0.43, 0.52, 0.46, 0.49, 0.60, and 0.55, respectively.

- (a) Find a 95% confidence interval for the mean carat weight from this process.
- (b) Test the claim that the mean weight is 0.55 carats against the counter claim that 0.55 is an overestimate.

Help from the TI-Nspire:

Select "ctrl a"" \rightarrow "Page Layout" \rightarrow "Select Layout" \rightarrow "Layout 8" Select "e" \rightarrow "Add Lists & Spreadsheet" Name the column "carats" and enter the data.

Move to upper right quadrant. Select "Add Data & Statistics". "Click to add variable" \rightarrow choose "carats" Select "\(\text{Select} \)" \rightarrow "Plot Type" \rightarrow "Normal Probability Plot"

Move to lower left quadrant. Select "Add Calculator". Select " \bigcirc " \rightarrow "Statistics" \rightarrow "Confidence Intervals" \rightarrow "t interval" \rightarrow Choose "Data" \rightarrow "OK" \rightarrow pick "carats" in List: \rightarrow "OK"

From this TI-Nspire screen we can answer question (a):

Name the procedure: This is a one-sample *t*-interval for the mean.

Check the conditions: We are given that this is a random sample, and the Nspire gives a normal probability plot which makes the nearly normal condition reasonable.

Mechanics: The Nspire gives $\bar{x} = 0.51$, s = 0.063246, df = 5, and a confidence interval of (0.444, 0.576).

Conclusion in context: We are 95 percent confident that the mean carat weight is between 0.444 and 0.576.

Move to lower right quadrant. Select "Add Calculator". Select " \Longrightarrow " \rightarrow "Statistics" \rightarrow "Stat Tests" \rightarrow "t test" \rightarrow Choose "Data" \rightarrow "OK" \rightarrow put .55 in μ 0 \rightarrow pick "carats" in List: \rightarrow Pick the Alternate Hyp to be "Ha: μ < μ 0" \rightarrow "OK"

From this Nspire screen we can answer question (b):

Identify the test and check the conditions: This is a one-sample *t*-test. We are given that we have a random sample, and the Nspire gives a normal probability plot which makes the nearly normal condition reasonable.

State the hypotheses: H_0 : $\mu = 0.55$, H_a : $\mu < 0.55$

Mechanics: The Nspire gives t = -1.549 and a *P*-value of 0.091.

Conclusion in context with linkage to the P-value: With P = 0.091 < 0.10, there is evidence at the 10% significance level that the mean carat is below 0.55. However, with P = 0.091 > 0.05, there is no evidence at the 5% significance level to dispute the 0.55 carat claim.

^{*}AP is a registered trademark of the College Entrance Examination Board, which was not involved in the production or development of this document.

©2010 Barron's Educational Series. Inc.