Example 4: While blood type frequencies in the U.S. are in the ratios of 9:8:2:1 for types O, A, B, and $A B$, respectively, local differences are often found depending upon a variety of demographic characteristics. A researcher is assigned to determine if patients at a particular large city general hospital exhibit blood types supporting the above model. The table below gives the data results from a random sample of 500 patient lab results.

	O	A	B	$A B$
Researcher	253	194	38	15

Do the data reported by the researcher support the 9:8:2:1 model for blood types of patients at the particular hospital? Justify your answer.

Help from the TI-Nspire:
Select "(enem" \rightarrow "Add Lists \& Spreadsheet"
Name the column "researcher" and enter the data.
Name the second column "ratios" and enter the data.

Name the third column "predicted", in the gray region put the formula:
predicted:= (ratios/sum(ratios))Asum(researcher)

"enter" now results in:

	${ }^{\text {A }}$ researcher	Bratios	${ }^{\text {C }}$ predicted	D
-			= ratios/(sum	
1	253	9	225	
2	194	8	200	
3	38	2	50	
4	15	1	25	
5				
6				\checkmark
	C1 1 =225			

Select "(meny" \rightarrow "Statistics" \rightarrow "Stat Tests" \rightarrow "X2GOF"
For "Observed List" choose "researcher"
For "Expected List" choose "predicted"
For "df" choose " 3 "
Then "ok" results in:

	ratios	${ }^{\text {C predicted }}$	D	E
-		= ratios/(sum		$=\chi^{2} \mathrm{GOF}(\mathrm{r} r$
1	9	225	Title	X^{2} GOF
2	8	200	X^{2}	10.5444
3	2	50	PVal	0.014462
4	1	25	df	3.
5			CompLis...	〔3.48444...
6				\square
E1 1 = " χ^{2} GOF"				

From this TI-Nspire screen we can answer the question.
There are four elements to this solution.
State the hypotheses
H_{0} : the distribution of blood types among patients at this hospital are in the ratios of 9:8:2:1 for types $\mathrm{O}, \mathrm{A}, \mathrm{B}$, and $A B$, respectively.
H_{a} : the distribution of blood types among patients at this hospital are not in the ratios of 9:8:2:1 for types $\mathrm{O}, \mathrm{A}, \mathrm{B}$, and $A B$, respectively.

Identify the test by name or formula and check the assumptions
Chi-square goodness-of-fit test

$$
\chi^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}
$$

Check assumptions

1. The researcher claims that the data are from a random sample of patient records.
2. From the Nspire, the ratios 9:8:2:1 give expected cell frequencies of $225,200,50$, and 25 each of which is at least 5 .

Correct mechanics:
From the Nspire we have $X^{2}=10.5444, \mathrm{df}=3$, and $P=.014462$
Conclusion in context with linkage to the P-value:
With this small a P-value (for example, less than $a=.05$), there is evidence that the distribution of blood types among patients at this hospital are not in the ratios of 9:8:2:1 for types O, A, B, and $A B$, respectively.

