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Peu de sujets ont suscité dans les années récentes autant d’intérêt dans le débat public et 

dans les sciences sociales que celui des big data. La numérisation d’un nombre toujours plus 

grand d’activités sociales produit régulièrement de nouvelles données et alimente aussi une 

réflexion intense sur le fonctionnement des sociétés contemporaines ainsi que sur les 

modalités de la production du savoir à leur propos. De ce fait, une grande part de la littérature 

consacrée aux big data dans les sciences sociales oscille entre deux approches. La première 

vise à caractériser de manière instrumentale ces données dites massives par opposition aux 

données d’enquête, traditionnellement utilisées par les chercheurs. Elle questionne l’usage 

qui en est fait (Kitchin, 2014) comme celui qui pourrait en être fait (Beer et Burrows, 2007 ; 

Boullier, 2015 ; Varian, 2014). La seconde approche oppose à l’enthousiasme suscité par les 

big data, principalement dans le domaine des activités marchandes, une analyse des risques 

induits par le recours à ce type de données : la crainte d’obsolescence de la méthode 

scientifique d’analyse des données, appelée à être remplacée par des méthodes 

algorithmiques sans lien fort avec les théories sociales (Anderson, 2008) mais aussi, et 

surtout, l’apparition d’une nouvelle forme de société « dirigée par les données » (Pentland, 

2012), bouleversant nos façons de vivre, de travailler et de penser (Mayer-Schönberger et 

Cukier, 2013), soulevant des questions éthiques inédites (Boyd et Crawford 2012) et 

annonçant l’avènement d’une nouvelle « gouvernementalité » du social (Rouvroy et Berns, 

2013). 

 

Les sociologues des techniques de l’information et de la communication ont été parmi les 

premiers à s’investir dans l’exploration de ces nouveaux matériaux, mais ils n’ont pas été les 

seuls. Ce changement spectaculaire du paysage des données qui touche la société entière a 

suscité la mobilisation de chercheurs dans tous les domaines des sciences humaines et 

sociales. Témoignent de cet engagement de la communauté académique la création de centres 

de recherche comme le Data & Society Research Institute à New York (2014), celle de 

nouvelles revues savantes comme Big Data & Society (2013), et de nombreux numéros 

spéciaux de revues généralistes. On peut citer entre autres ceux de l’International Journal of 

Sociology (2016), de Sociological Methodology (2015), des ANNALS of the American Academy 

of Political and Social Science (2015), du Journal of Communication (2014), de 

l’International Journal of Communication (2014), du Journal of Economic Perspectives 

(2014) et, dans l’espace francophone, d’Économie et statistique (à venir), de Sociologie et 

sociétés (à venir), de Statistique et société (2014). 

 

À la suite de ce foisonnement d’initiatives, il a paru utile à la Revue française de 

sociologie de proposer à la communauté académique dans cette discipline de dresser un 

premier bilan des effets des big data sur ses pratiques, ses objets et ses résultats. Quels 

avantages concrets les sociologues qui ont commencé à travailler avec ces données ont-ils pu 

en tirer pour leurs recherches ? Quels écueils ont-ils rencontrés en chemin ? Plus 

généralement, qu’a-t-on appris sur les big data tout au long de ces premières années 

d’expérimentation ? L’ambition de ce numéro spécial est d’apporter quelques éléments de 

réponse à ces questions afin d’évaluer la portée et l’ampleur des changements qui se sont 

 



produits d’ores et déjà dans le monde académique et d’anticiper, autant que faire se peut, des 

scénarios possibles pour l’avenir. 

 

À cette fin, nous avons mobilisé la communauté des sociologues autour de deux grandes 

questions qui ne nous paraissaient pas devoir être séparées : comment les big data 

transforment-elles la société ? Comment ces données affectent-elles la pratique de la 

sociologie (et plus généralement, des sciences sociales) ? Cette double approche ‒ que nous 

avons tenu à conserver dans la préparation de ce numéro ‒ manifeste le fait que la sociologie 

est aujourd’hui confrontée à une véritable mutation des processus de datafication des sociétés 

qui la touche aussi directement. En somme, ce numéro aspire à réitérer à propos des big data 

le questionnement qu’Alain Desrosières avait appliqué aux statistiques et à la quantification 

du social, considérant sans jamais les séparer « leurs apports de connaissance et les circuits 

sociaux de leur mise en forme et de leurs usages » (2005, p. 6). 

 

Parce qu’elles sont étroitement entrelacées, ces deux dimensions du phénomène des big 

data posent des défis inédits à la sociologie. Si l’on adopte le point de vue réflexif de Savage 

et Burrows (2007) dans leur fameux article sur la « coming crisis » de la recherche empirique 

dans cette discipline, la sociologie serait en train de perdre sa « juridiction » sur tout un pan 

de la connaissance de la société. L’entretien et l’enquête par questionnaire qui lui ont 

longtemps assuré cette juridiction seraient en effet dépassés par de nouveaux modes de 

représentation de la société, sans lien évident avec les connaissances sociologiques acquises. 

C’est à la fois parce que ces représentations sont issues de transformations sociales dont 

l’origine se situe généralement en dehors de toute démarche de recherche (comme la mise en 

chiffre de toute action, opinion ou comportement par des plateformes numériques qui visent 

avant tout à commodifier et à monétiser ces informations), et parce que les propriétés de ces 

modes de représentation de la société s’écartent des critères chers à l’analyse sociologique 

traditionnelle (en termes de représentativité des échantillons par exemple), qu’elles posent 

avec force la question de la légitimité de toute une discipline et, par conséquent, celle des 

chercheurs qui s’en revendiquent. 

 

Dans cet esprit, nous avons sollicité des contributions portant autant sur les problèmes 

publics qui ont émergé dans le sillage des big data (comme la surveillance, la propriété privée 

des données, le digital labor, les formes de discrimination algorithmique, mais aussi les 

formes de réappropriation des données dans le cadre de mouvements comme celui du civic 

tech ou de l’open data), que sur les enjeux méthodologiques propres aux sciences sociales 

(par exemple les éléments de continuité et rupture par rapport aux méthodes traditionnelles de 

la recherche en sciences sociales, le besoin de mise à niveau des compétences, le renouveau 

du dialogue interdisciplinaire). Nous avons aussi étendu le périmètre de l’appel à soumission 

d’articles jusqu’aux questions épistémologiques qui se posent aujourd’hui, comme par 

exemple celle de savoir dans quelle mesure les big data bouleversent l’espace de l’enquête et 

les modalités du « raisonnement sociologique » (Passeron, 1991). Le débat sur le 

remplacement de l’analyse causale par la combinaison de corrélations efficaces en termes de 

prédiction mais très peu en termes d’explication, l’émergence dans le domaine des big data 

de notions comme celle de « trace » (Merzeau, 2009) qui fait écho à des préoccupations 

anciennes de la sociologie sur la nature des matériaux qu’elle utilise ou encore le 

développement de modèles d’enquête inspirés de la police scientifique dans la « forensic 

social science » (Goldberg, 2015) illustrent quelques-unes des préoccupations qui nous 

animaient. La Revue française de sociologie, qui s’attache à publier aussi bien des 

contributions à la connaissance du monde social que des articles de réflexion théorique et 

méthodologique sur la sociologie, était le lieu idéal pour lancer un tel chantier. 



Les big data, quelle définition ? 
 

 Avant de présenter le contenu de ce numéro et la façon dont nous avons travaillé avec les 

auteurs des articles, il est nécessaire de définir plus précisément le périmètre scientifique que 

nous délimitions dans l’appel à contributions. Qu’entend-on par big data aujourd’hui ? 

L’expression anglaise est de loin la plus utilisée, y compris en France1. Nous l’avons donc 

adoptée malgré l’existence d’une traduction française recommandée par le Journal officiel, 

celle de « mega-données »2 et d’une alternative non officielle et moins employée, 

l’expression « données massives ». Dans la communauté académique l’origine de 

l’expression a été identifiée dans un article de l’économiste américain Francis Diebold 

intitulé « “Big Data” Dynamic Factor Models for Macroeconomic Measurement and 

Forecasting » (2003). F. Diebold lui-même a précisé ultérieurement ce que le terme devait à 

des débats dans d’autres milieux comme ceux des ingénieurs de l’entreprise informatique 

Silicon Graphics, Inc. Il a aussi expliqué avoir cherché un terme évocateur, susceptible de 

résumer la révolution en cours dans les pratiques de modélisation économétrique d’une part 

et dans le volume des données disponibles pour cette modélisation d’autre part. La 

connotation orwellienne du terme Big Data, alors employé avec des majuscules, lui avait 

semblé donner encore plus de poids à l’expression (Diebold, 2012). 

 

 Des nombreuses définitions qui ont depuis été proposées des big data, aucune n’est 

réellement consensuelle. Des différences d’usage persistent, qu’elles soient liées au contexte 

(entreprises commerciales vs. recherche publique) et à la discipline (informatique vs. autres 

sciences). Selon une première caractérisation assez basique, sont qualifiées de « big » les 

données dont le traitement et le stockage dépassent les capacités des outils informatiques 

classiques de gestion de bases de données ou de l’information. Ces données nécessitent 

l’usage d’instruments informatiques sophistiqués comme ceux qui permettent le calcul 

parallèle à haute performance, par exemple avec un ensemble d’ordinateurs dédiés, reliés par 

un réseau local rapide, ou un réseau de cartes graphiques (GPU) détournées pour du calcul 

scientifique. Mais à elle seule, cette caractérisation parait faible. Beatrice Cherrier (2017) a 

montré que l’insuffisance des capacités de traitement et stockage n’est pas un problème 

fondamentalement nouveau. Cette insuffisance caractérise en effet de manière cyclique les 

phases postérieures à chaque innovation technologique dans le domaine de la gestion de 

l’information. Aux États-Unis, par exemple, elle était déjà apparue après le recensement de 

1890 que les anciens instruments ne permirent pas de tabuler en dix ans (d’où l’introduction 

de cartes perforées), ou dans les années 1940 quand les systèmes existants de classification 

s’avérèrent incapables de suivre l’expansion rapide des bibliothèques et durent donc être 

révisés. 

 

Une définition couramment utilisée des big data est celle dite des « 3 V » proposée très tôt 

par Doug Laney (2001) et systématisée par la suite (De Mauro et al., 2016). Au delà du seul 

volume (le premier V), elle souligne l’importance du critère de variété (les données sont 

hétérogènes et peuvent correspondre aussi bien à des valeurs chiffrées ou codées, comme 

dans les statistiques traditionnelles, qu’à des textes, des images, des vidéos, etc.) et celui de 

                                                      
1 L’usage le plus courant est celui des minuscules, quoique d’aucuns mettent les initiales en majuscules (« Big 

Data ») comme s’il s’agissait d’un nom propre ou d’une entité unique reconnaissable (comme « Big Oil »). 

Nous avons décidé d’utiliser, dans tout le numéro, big data sans guillemets mais en italique pour signaler la 

locution étrangère. 
2 Voir le Journal officiel du 22 août 2014 : 

https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000029388087&dateTexte=&categorieLie

n=id). 



vélocité de captation (celle-ci est en effet le plus souvent continue et immédiate comme dans 

l’enregistrement automatique des logs d’activité d’un service en ligne, celui des données de 

capteurs connectés au web, des vidéos des caméras de surveillance ou des messages postés 

sur les médias sociaux). Ces caractéristiques des big data expliquent le foisonnement de 

travaux informatiques de conception et exploitation de bases de données « not only SQL » 

(NoSQL), permettant de stocker et d’interroger des données complexes3. Bien qu’elle permette 

de prendre en compte ces aspects importants des big data, cette définition reste contestée. 

Certains auteurs lui ont par exemple ajouté un quatrième V (la véracité des données), voire un 

cinquième (leur valeur) et d’autres caractéristiques ne pouvant être associées à la lettre V 

comme l’exhaustivité, la résolution ou le caractère relationnel des données (Kitchin, 2014). 

Certains considèrent finalement que ces grandes caractéristiques relèvent plus des effets des 

données massives que de leur nature. 

 

 Les définitions les plus récentes associent les données aux algorithmes capables de les 

traiter. Le mot algorithme, pourtant ancien, a d’ailleurs connu un regain de popularité après 

les premiers engouements pour les big data. En effet, l’utilité et la valeur des données ne 

peuvent être séparées des opérations algorithmiques appliquées à ces données (Cardon, 

2015). Au plus simple, un algorithme est défini comme une séquence d’instructions pour 

résoudre un problème (Abiteboul et Dowek, 2017), qu’il s’agisse de la collecte ou du 

traitement des données, ou bien encore de la restitution des résultats. 

 

 De fait, le débat sur les big data n’est pas séparable de l’intérêt croissant pour les 

algorithmes relevant du « machine learning » ou, en français, « apprentissage automatique », 

dans les sciences sociales4. Au croisement de l’informatique et des statistiques, le machine 

learning est un ensemble de méthodes faisant évoluer une machine par entrainement, de sorte 

qu’elle trouve seule des solutions à partir des données fournies, sans que chaque étape ne 

doive être explicitement programmée. L’entrainement exige de grandes quantités de données 

pour que la solution puisse s’ajuster et aboutir à un réglage toujours plus fin. Ainsi, le 

machine learning bénéficie du volume des big data et dépasse la performance des techniques 

statistiques classiques, souvent mises à mal par la variété de ces données. Resté longtemps 

dans l’ombre, il s’est récemment imposé à la suite de réussites importantes, notamment dans 

la reconnaissance d’images numérisées (2012), puis dans les jeux comme Go (2016). À leur 

tour, ces succès ont insufflé une nouvelle vie à l’intelligence artificielle, un domaine qui a pu 

puiser dans d’autres approches scientifiques et techniques au cours de son histoire, mais dont 

les avancées actuelles reposent surtout sur le machine learning et les big data. Cette 

intelligence artificielle dont le champ d’application s’étend désormais du diagnostic médical 

à la voiture autonome et à la distribution d’énergie, pour ne citer que quelques exemples, est 

aujourd’hui au cœur de préoccupations industrielles et politiques majeures (Villani, 2018). 

 

 Il nous a paru important de prendre en compte ces aspects dans leur complémentarité. Les 

succès autant scientifiques que techniques et commerciaux des big data ne peuvent se 

comprendre sans rappeler l’essor parallèle du machine learning. De même, les inquiétudes 

formulées sur les big data sont reliées aux questions de société soulevées par l’intelligence 

artificielle. Méthodologiquement et épistémologiquement, il nous a donc paru important de 

                                                      
3 Le langage SQL (Structured Query Language) a très longtemps été utilisé pour interroger les bases de données 

relationnelles classiques mais il est de plus en plus remplacé par des langages non structurés permettant une plus 

grande souplesse dans l’analyse des données. 
4 À partir de mai 2017, l’expression « machine learning » est systématiquement plus recherchée que « big 

data » dans Google, tous pays confondus (Source : Google Trends, consulté le 10 mai 2018). Voir aussi : 

https://www.kdnuggets.com/2017/05/machine-learning-overtaking-big-data.html  

https://www.kdnuggets.com/2017/05/machine-learning-overtaking-big-data.html


faire de la place à une discussion de ces nouvelles techniques, quelles que soient d’ailleurs les 

données auxquelles elles s’appliquent : qu’est-ce que le machine learning peut apporter à la 

recherche en sciences sociales ? Va-t-il mettre à mal les méthodes quantitatives classiques ? 

Ces questions sont d’autant plus pertinentes que ces techniques se font déjà une place dans 

des disciplines voisines de la sociologie comme l’économie5. 

 

 

Données massives et données personnelles 
 

 Couplées aux algorithmes de machine learning, ces nouvelles données ouvrent la voie à 

des analyses ciblées, qui ne se contentent plus de résultats agrégés, fondés sur des moyennes. 

Se référant à la recherche clinique, Tim O’Reilly et ses co-auteurs (2012) proposent 

l’exemple d’un médicament dont il était auparavant connu que, chez un patient moyen, il était 

efficace à environ 80 %. Maintenant, nous savons qu’il est efficace à 100 % chez 70 % à 

80 % des patients, et inefficace chez les autres. Ce ne sont pas des jeux de mots, car nous 

pouvons dire très précisément si le médicament est susceptible d’être efficace pour un patient 

spécifique. Ce simple exemple révèle une autre facette des big data qui, au-delà de leur 

volume, permettent de pénétrer le niveau micro, la personne dans sa singularité. Ce n’est 

alors pas une coïncidence si les enjeux de la protection des données personnelles 

interviennent transversalement dans tous les débats que nous venons d’évoquer ‒ car 

l’intrusion dans la vie de l’individu, qui peut parfois sauver des vies, a aussi un côté sinistre. 

L’essor des big data dès 2011-2012 a pu en effet être associé aux préoccupations qui se font 

jour dans la société en matière de protection de la vie personnelle et de clarification des 

frontières entre sphère publique et sphère privée sur le web. 

 

Dans ce domaine, les réactions les plus fortes sont surtout le fait de groupes d’usagers 

engagés, comme le montre la tentative de recours collectif d’Europe v Facebook (2014). 

Mais les scandales fortement médiatisés autour de la NSA (2013) et plus récemment de 

Cambridge Analytica (2018) ont mis les questions des données personnelles et de la 

protection de la vie privée sur le devant de la scène (Tubaro et al., 2014). Après avoir attiré 

l’attention du grand public, le débat s’est progressivement institutionnalisé et a conduit les 

autorités à légiférer, notamment en Europe avec le Règlement général sur la protection des 

données (RGPD) récemment entré en vigueur. 

 

 Si l’on doit saluer ces actions qui visent à protéger davantage les usagers des services 

numériques, on peut aussi s’interroger, en tant que sociologues, sur leurs implications en 

termes d’accès aux données pour la recherche. Actuellement, les lois sur la protection des 

données personnelles de la plupart des pays reconnaissent la finalité de recherche et 

autorisent l’accès ou la manipulation de données personnelles à cette fin, généralement sous 

des conditions strictes de publicité, de rétractabilité et d’anonymisation. Pour des données 

individuelles très détaillées, des structures d’accès hautement sécurisé ont aussi été mises en 

place comme le Centre d’accès sécurisé aux données (CASD) en France. Les chercheurs se 

plaignent parfois des contraintes imposées par ces services (interdiction de copier les 

données, export de résultats seulement après validation, etc.). Cependant, ceux-ci ont établi 

une procédure transparente et égalitaire d’accès aux données et élargi le champ des données 

publiques accessibles pour la recherche. 

 
                                                      
5 À titre d’exemple, la base de données EconLit maintenue par l’American Economic Association recense plus 

de 300 articles, 20 thèses et 60 documents de travail en économie portant la mention machine learning, tous 

datant de 2005 à aujourd’hui (consulté le 11 mai 2018). 



 Le problème est que les données numériques et « massives » ne rentrent pas 

nécessairement dans le périmètre de ce qui est géré par ces structures. Si les principes 

fondamentaux de la protection des données personnelles s’appliquent toujours en théorie dans 

le domaine des big data, leur opérationnalisation peut être plus complexe et conduire le 

chercheur dans une zone grise du point de vue du droit. Les informations qu’un usager publie 

volontairement sur son profil LinkedIn ou Facebook constituent-elles des données 

personnelles au même titre que ses réponses à un enquêteur de l’Insee ? Il est difficile de 

trancher sur ce type de question, où le point de vue du chercheur, celui de l’usager, celui de la 

plateforme et celui du régulateur divergent souvent (Bastin et Francony, 2016). La décision 

sur le statut des données se complique encore davantage si l’on tient compte de la structure en 

réseau des profils (les « retweets » que suscitent mes propres tweets sont-ils mes données 

personnelles, ou celles des usagers qui m’ont retweeté ?) et de la dynamique temporelle des 

identités sur le web (les données collectées sur un réseau social à un temps t doivent-elles être 

supprimées ex post si à t + n l’utilisateur décide de transformer son compte public en compte 

privé ?). 

 

 Ces difficultés de définition risquent aujourd’hui d’être exacerbées par l’attention 

croissante que reçoit la question de la protection des données personnelles. La réaction contre 

les abus avérés, commis le plus souvent par les plateformes elles-mêmes ou par des 

entreprises vendant des services fondés sur l’exploitation de données à des fins économiques 

ou politiques peut se retourner contre le chercheur, si l’intérêt public de son activité 

n’apparait pas clairement et n’est pas explicitement défendu. Le chercheur se trouve en effet 

dans une position délicate puisqu’il contribue d’une part à l’analyse des problèmes de 

surveillance et de violation de la vie privée comme enjeux sociétaux majeurs liés aux big 

data et que, d’autre part, il doit pour cela ‒ ainsi que dans un but purement descriptif ‒ 

s’assurer un accès à ces données. 

 

 Ces questions fondamentales seront sans aucun doute à l’avenir au centre des nombreux 

débats que devra susciter la communauté académique si elle ambitionne de continuer à 

utiliser les big data. Mais elles ne sont pas les seules. La question de la collecte matérielle des 

données ouvre un autre champ immense de réflexion (mais aussi d’inquiétudes) pour les 

sociologues. Comment négocier avec les plateformes de réseaux sociaux un accès à leurs 

données qui ne soit pas biaisé par les caractéristiques d’une API (application programming 

interface) créées par leurs soins et impossible à contrôler ? Comment éviter le risque 

juridique auquel expose le fait de récolter des données sur des plateformes qui limitent de 

façon drastique les possibilités de le faire de façon automatisée (par scraping) dans leurs 

conditions générales d’utilisation ? Comment, enfin, développer des compétences 

informatiques qui garantissent au chercheur de pouvoir mener ce travail en dépit des barrières 

posées dans le code lui-même pour empêcher son activité ? 

 

 

La construction du numéro 
 

 Tous ces questionnements sont à l’origine du projet de ce numéro spécial dont l’appel à 

contributions a été diffusé, en langues française et anglaise, en novembre 2016. La réponse de 

la communauté académique a de loin dépassé nos attentes les plus optimistes : à l’échéance 

(février 2017), nous avons reçu 41 soumissions, couvrant un éventail très large d’aspects, de 

problèmes et de nuances. Le choix a donc été difficile. Dans notre travail de présélection, 

nous avons été guidés par notre objectif de mettre en avant des travaux qui interrogent les 

effets sociaux et les implications scientifiques des big data à partir d’une expérience concrète 



de recherche dans ce domaine, plutôt que des textes programmatiques. Les auteurs des 

15 pré-propositions retenues ont été invités à présenter leurs projets d’articles à un atelier que 

nous avons organisé à Grenoble en juin 20176. Hormis un désistement, tous les auteurs ont 

joué le jeu, et nous avons été ravis d’observer un bel esprit d’entraide et de coopération, 

visant à faire progresser les articles de tous les participants à l’atelier. Cette stratégie a été 

productive car 14 textes complets ont été soumis en septembre 2017. La sélection finale est le 

résultat de la procédure de lecture habituelle de la revue, qui a eu lieu entre l’automne 2017 et 

le printemps 2018. 

 

 En soi, et avant même de pouvoir nous exprimer sur les articles qui ont franchi toutes les 

étapes de la relecture par les pairs, ce processus a été très instructif. Le nombre de pré-

propositions qui nous ont été adressées témoigne du grand intérêt que cette thématique 

suscite au sein de notre discipline. Si l’on considère le nombre élevé de jeunes chercheurs qui 

ont participé à notre atelier grenoblois, cet intérêt ne pourra que grandir davantage dans le 

temps. Certaines des propositions n’étaient sans doute pas encore assez mûres pour une 

publication dans ce numéro (s’agissant, dans certains cas, de doctorants au début de leur 

thèse), mais nous avons apprécié les fortes potentialités des recherches en cours sur lesquelles 

elles étaient fondées, et nous nous attendons à une vague de travaux de très bonne qualité sur 

ces thèmes d’ici quelques années. L’émergence de ces nouveaux travaux est aussi attestée par 

la production éditoriale dans ce domaine. La revue s’en est d’ailleurs aussi fait l’écho dans ce 

numéro avec un effort spécial mené par les responsables de la rubrique Livres pour solliciter 

des compte rendus d’ouvrages qui complètent utilement le panorama de la recherche 

sociologique actuelle liée aux big data. 

 

 Au total, en plus des comptes rendus, ce numéro consiste en quatre articles et deux notes 

critiques. Le premier article est une contribution de Marie Bergström à la sociologie de la 

formation des couples dans laquelle sont utilisées et confrontées deux sources de données : 

des données classiques d’enquête sociologique et des données tirées du réseau social Meetic. 

L’article est intitulé « De quoi l’écart d’âge est-il le nombre ? L’apport des big data à l’étude 

de la différence d’âge au sein des couples ». Il traite avec un regard neuf une question 

classique de la sociologie, à savoir celle de l’écart d’âge qu’on observe dans les couples 

hétérosexuels entre l’homme (statistiquement plus âgé) et la femme. M. Bergström utilise les 

différentes formes d’enregistrement des préférences des hommes et des femmes en matière 

d’âge de leur conjoint : d’un côté des préférences déclarées face au sociologue dans l’enquête 

classique portant sur 7 800 individus ; de l’autre des préférences exprimées par plus de 

400 000 membres de Meetic afin de paramétrer les offres de rencontres qui seront proposées 

et les 25 millions de messages échangés entre ces individus en 2014. L’écart entre ces deux 

séries de données permet à M. Bergström une contribution forte à l’étude de la mise en 

couple et des préférences sexuelles : l’écart d’âge n’est en effet pas seulement la résultante 

d’une domination masculine intériorisée par les femmes mais aussi de stratégies masculines 

explicites. Il conduit aussi à une réflexion intéressante sur la prudence avec laquelle certaines 

déclarations faites lors d’enquêtes sociologiques classiques doivent être considérées, par 

exemple pour ce qui est de la tolérance des hommes à un écart d’âge en leur défaveur dans le 

couple. Celle-ci est exprimée très majoritairement dans l’enquête sociologique mais elle est 

démentie par les pratiques de contact sur Meetic et ce d’autant plus que les hommes 

vieillissent. 

 

 
                                                      
6 Cet atelier a bénéficié du soutien du Data Institute de l’université Grenoble Alpes financé par l’ANR dans le 

cadre du programme « Investissements d’avenir » (ANR-15-IDEX-02). 



 Dans le deuxième article, intitulé « Plateforme, big data et recomposition du 

gouvernement urbain. Les effets de Waze sur les politiques de régulation du trafic », Antoine 

Courmont s’intéresse au dispositif de guidage automobile Waze qui propose à ses usagers 

une optimisation en temps réel de leur temps de parcours grâce aux informations sur l’état de 

la circulation que les mêmes personnes communiquent à la plateforme par leur 

géolocalisation. A. Courmont analyse finement les perturbations que Waze introduit dans le 

système de gestion publique de la circulation automobile. Du fait que cette plateforme 

cherche avant tout à optimiser les temps de parcours, elle oriente en effet ses usagers vers des 

itinéraires qui ne respectent pas les principes usuels de la régulation du trafic, notamment en 

termes de hiérarchie des voies empruntées. Deux « réalités » concurrentes d’un même 

« monde » se font face pour A. Courmont : d’un côté celle des élus, des techniciens et des 

opérateurs de la gouvernance urbaine traditionnelle, qui cherchent à concentrer le trafic sur 

les voies les plus importantes, de l’autre celle de l’algorithme qui dévie les automobilistes sur 

le réseau secondaire dès lors que cette déviation leur fait gagner du temps. Mais l’enquête de 

terrain révèle surtout que ces acteurs et l’algorithme, bien loin de représenter deux formes 

totalement antagonistes de gouvernance par les données, savent aussi « faire réalité 

commune » en échangeant des informations et en collaborant. 

 

 Le troisième article s’intitule « Le tout plutôt que la partie. Big data et pluralité des 

mesures de l’opinion sur le web ». Baptiste Kotras exploite les résultats d’une enquête par 

entretiens menée dans le monde des intermédiaires des données d’opinion en ligne, un secteur 

d’activité florissant souvent identifié sous l’appellation social media analysis. Alors que de 

plus en plus d’individus partagent sur le web des opinions très diverses dans leurs billets de 

blog, leurs posts sur les réseaux sociaux, leurs statuts ou les commentaires laissés sur des 

sites, de nombreuses entreprises ont développé des algorithmes permettant de synthétiser ces 

opinions, de les mesurer et de les représenter. Les promesses des études d’opinion en ligne 

sont en effet considérables, tant en termes d’instantanéité que de spontanéité, et semblent 

parfois faire vaciller l’ancien monde des sondages d’opinion. B. Kotras observe dans le cas 

français la lutte entre deux modalités de la mesure d’opinion en ligne : la première obéit à un 

principe d’échantillonnage et procède par sélection de sources fiables et influentes ; la 

seconde repose en principe sur une aspiration exhaustive du web, sur l’indexation et la 

typification du plus grand nombre possible de traces laissées par ses utilisateurs. Ce conflit 

semble aujourd’hui tranché en faveur de la seconde approche. B. Kotras en retrace finement 

les enjeux sur un plan technique, économique mais aussi épistémologique dans la mesure où, 

dans ce conflit, ce sont deux représentations de l’espace public numérique qui sont aussi 

mobilisées. 

 

 L’article d’Étienne Ollion et Julien Boelaert intitulé « The Great Regression: Machine 

Learning, Econometrics, and the Future of Quantitative Social Sciences » présente de 

manière convaincante et pédagogique les méthodes de machine learning et les compare avec 

les méthodes classiques de la statistique « paramétrique », notamment la régression. Il se 

centre non pas sur toutes les techniques de machine learning mais sur l’utilisation de celles-ci 

à des finalités d’exploration scientifique pour la prédiction et l’explication. Il montre 

comment cette approche peut être efficacement mobilisée pour l’exploration de la complexité 

des relations entre variables dans un jeu de données. Au-delà de l’exercice méthodologique, 

l’article revient sur les enthousiasmes et les craintes qui entourent le machine learning et 

défend une thèse provocatrice : le machine learning n’est ni une illusion, ni une révolution, et 

surtout ne produira pas de changement de paradigme dans l’immédiat. Il a plutôt le mérite de 

faire avancer une réflexion méthodologique poussée, tenant compte des limites avérées des 

méthodes quantitatives couramment utilisées en sociologie. Les auteurs prévoient une 



concurrence accrue entre différentes formes de quantification du monde social qui, dans leur 

esprit, ne peut que renforcer la recherche sociologique en imposant des exigences plus strictes 

de rigueur. 

 

 Enfin, nous publions dans ce numéro deux notes critiques qui nous ont paru offrir un point 

de vue intéressant sur deux domaines particulièrement actifs de la recherche fondée sur les 

big data : l’exploitation des données tirées du réseau social Twitter d’une part, qui a focalisé 

l’attention de tout un pan des études d’opinion depuis une dizaine d’années, et le renouveau 

de la statistique lexicale permis par l’application de techniques nouvelles aux corpus 

conséquents numérisés depuis les années 2000. Pour ce qui est de Twitter, Marta Severo et 

Robin Lamarche-Perrin proposent dans leur article intitulé « L’analyse des opinions 

politiques sur Twitter : défis et opportunités d’une approche multi-échelle » une relecture des 

travaux menés dans les sciences sociales dans la décennie 2010. Ils exposent les différentes 

façons de conceptualiser les données du réseau de micro-blogging et les rattachent à des 

conceptions de l’opinion. Ils rappellent les résultats de ces recherches et proposent un cadre 

analytique pour une appréhension complexe de ces données permettant d’en explorer aussi 

bien les contenus que les structures relationnelles révélées par le phénomène des retweets et 

des réponses suscités par un message. Les différentes méthodes, plus ou moins supervisées, 

d’analyse de ces données sont aussi présentées. 

 

 Dans le domaine de la statistique lexicale, Jean-Philippe Cointet et Sylvain Parasie 

proposent dans leur article intitulé « Ce que le big data fait à l’analyse sociologique des 

textes : un panorama critique des recherches contemporaines » de faire le point sur la façon 

dont les sociologues – ou d’autres spécialistes des sciences sociales – traitent aujourd’hui les 

matériaux textuels. Le volume de ces documents a beaucoup augmenté avec la numérisation 

de pans considérables du patrimoine culturel et des médias d’une part, avec la collecte de 

données plus hétérogènes liées à l’activité́ des usagers du web d’autre part. Ce champ de 

recherche, qui avait donné lieu dès les années 1970 au développement de méthodes originales 

et de solutions informatiques, en France notamment, a été profondément bouleversé ces 

dernières années. L’irruption des études fondées sur l’analyse d’occurrences dans de gros 

corpus numérisés (culturomics), des humanités numériques ou de l’étude de sentiments 

illustrent assez bien ce changement du paysage académique. J.-P. Cointet et S. Parasie 

synthétisent l’ensemble des nouvelles méthodes employées depuis une dizaine d’années et 

proposent d’illustrer les grandes tendances observables à partir d’exemples qui permettront à 

tous les sociologues de se faire une idée à la fois précise et évocatrice des potentialités 

ouvertes en matière d’enquête sociologique par des méthodes comme la modélisation 

thématique (topic modeling) ou les plongements de mots (word embedding) en matière 

d’enquête sociologique. 

 

 

Des données numériques mais pas nécessairement massives 
 

 Les profils et les messages des usagers d’un site de rencontres (M. Bergström), les 

interactions sur Twitter (M. Severo et R. Lamarche-Perrin), les corpus textuels indexés par 

Google ou les grandes bibliothèques du monde (J.-P. Cointet et S. Parasie) sont de très bons 

exemples des données nouvelles que les sociologues peuvent s’approprier aujourd’hui pour 

éclairer de manière originale des phénomènes sociaux jusqu’ici mal compris. Ces données 

mettent les sociologues face à des défis importants bien identifiés dans les articles regroupés 

dans ce numéro, comme le manque de représentativité de ces données qui doit inviter à la 

prudence avant toute généralisation des résultats à des populations dont des couches parfois 



importantes restent encore aujourd’hui peu numérisées. Pour cette raison, de nouvelles 

méthodes d’analyse, principalement issues de l’informatique, doivent être mobilisées. 

 

Malgré leur originalité et ces changements méthodologiques majeurs en matière d’analyse, 

les données utilisées par nos auteurs ne sont pas toujours massives au sens strict du terme. La 

taille des données numériques utilisées dans notre discipline ne dépasse pas encore de façon 

significative celle des grandes bases de données de la statistique publique classique, comme 

le recensement ou l’enquête emploi, et le temps ne semble pas encore arrivé où les 

sociologues devront recourir à des outils nouveaux en matière de traitement des données 

comme le calcul parallèle qui occupe une partie des collègues qui se reconnaissent dans 

d’autres disciplines comme des praticiens des big data. Le cas des données administratives 

utilisées par É. Ollion et J. Boelaert illustre ce principe de continuité : le recours à des 

registres administratifs arrivant parfois à achever une couverture exhaustive de la population 

au lieu d’enquêtes sur échantillons est une pratique bien enracinée dans la tradition de la 

statistique publique des pays de l’Europe du Nord. Ces données ne sont pas nouvelles et ne 

remplissent pas tous les critères des « V » des big data. Elles sont notamment assez 

homogènes et bien structurées. La disponibilité de ce type de données est destinée à 

augmenter à l’avenir, y compris dans les pays qui n’y avaient pas recours, du fait de la 

diminution des ressources que les États consacrent à la statistique publique, et de la recherche 

de moyens de connaissance de la société supposant un moindre effort de la part des enquêtés. 

Les sociologues trouveront sans doute avantage à exploiter ces données qui supposent 

cependant de leur part un plus grand investissement en termes de méthodes mais aussi 

d’accès7. De même les données textuelles dont J.-P. Cointet et J. Parasie analysent l’usage 

dans les sciences sociales ‒ qu’elles soient issues de l’enregistrement de conversations en 

ligne (par exemple, sur un forum) ou de la numérisation de documents divers (livres, 

journaux, archives, registres comptables, actes juridiques, etc.) ‒ ne sont pas complètement 

inédites et ont donné lieu à des innovations méthodologiques dès les années 1970 avec le 

développement de l’informatique personnelle et son accessibilité pour les chercheurs en 

sciences humaines et sociales. Elles connaissent cependant un renouveau aujourd’hui grâce à 

la disponibilité d’outils novateurs issus de la recherche informatique dans le domaine du 

traitement automatique de la langue, et à l’augmentation du volume de textes numérisés. 

 

 Le volume ne peut donc pas servir à caractériser ce que les sociologues appellent big data. 

D’une part, des sources classiques de données sociales sont déjà volumineuses, d’autre part, 

les études fondées sur des données nativement numériques ne reposent pas toujours sur de 

grands volumes dans notre discipline. Il y a là un mystère persistant dans la mesure où la 

société vit, pour sa part, dans ce que la littérature de vulgarisation tend à qualifier de « régime 

de l’abondance » en matière de données (Shadbolt et Verdier 2015). On rappelle souvent par 

exemple que près de 500 millions de tweets sont envoyés chaque jour dans le monde, que 600 

ventes sont réalisées en moyenne chaque seconde sur Amazon, que 250 millions de comptes 

LinkedIn sont utilisés au moins une fois par mois et que plus de 5 milliards de personnes 

produisent aujourd’hui des données quotidiennement en appelant ou envoyant des textos 

depuis leurs téléphones mobiles. Les articles publiés dans ce numéro témoignent d’ailleurs de 

la taille des bases de données dont disposent les grandes entreprises du numérique, à l’image 

de Waze qui géolocalise et oriente quotidiennement 100 millions d’usagers (A. Courmont), 

Linkfluence, qui aspire à fournir un accès « exhaustif » aux expressions d’opinion sur le web 

(B. Kotras), Meetic, qui offre à un très grand nombre d’individus des possibilités nouvelles 

                                                      
7 Les conditions d’accès à ces données peuvent être très strictes. L’accès aux données suédoises utilisées par É. 

Ollion et J. Boelaert ne se fait par exemple que sur le territoire du pays, et même une correction mineure au 

modèle nécessite de s’y rendre. 



d’entamer une relation amoureuse (M. Bergström) ou évidemment Twitter, qui héberge un 

volume considérable de conversations politiques utilisées par de nombreux acteurs pour 

prédire des résultats électoraux (M. Severo et R. Lamarche-Robin). 

 

 Le problème auquel les sociologues sont aujourd’hui confrontés est celui de l’accès à ces 

données hébergées par des entreprises de plus en plus réticentes à les partager avec les 

acteurs de la recherche publique. Ce qui change en effet fondamentalement entre le monde de 

la statistique publique et des enquêtes sociales qui ont accompagné le développement des 

sciences sociales au XX
e siècle, d’une part, et celui des big data d’autre part, se trouve 

davantage là que dans la taille des bases de données : les données nouvelles sont le plus 

souvent l’apanage d’acteurs du secteur privé pour lesquels elles constituent des ressources 

compétitives cruciales. Elles servent notamment à se protéger de la concurrence (actuelle ou 

potentielle), à attirer des clients et à convaincre les investisseurs. Les plateformes du web sont 

de ce fait prises dans des logiques contradictoires : d’un côté assurer la visibilité publique des 

données (qui est la raison pour laquelle les utilisateurs les déposent en règle générale) et de 

l’autre limiter cet accès pour mieux le monétiser auprès du public et entraver toute mise à 

disposition massive qui pourrait conduire à une perte de l’avantage compétitif si des 

concurrents pouvaient les exploiter. Les articles d’A. Courmont et B. Kotras, dans ce numéro, 

mettent bien en avant cette tension et les jeux qui en découlent avec les pouvoir publics et les 

concurrents moins bien équipés. Les conséquences de cette situation ne peuvent être que 

néfastes pour la recherche (surtout la recherche publique). Celle-ci ne dispose pas à ce jour 

d’un statut privilégié lui permettant de réclamer une forme d’accès à ces données. Dans ce 

domaine, la différence par rapport aux données « classiques » de la statistique publique est 

donc frappante. 

 

 La question de l’accès aux données peut aussi se comprendre comme un problème 

technique. Les entreprises qui gèrent ces bases de données géantes contrôlent l’accès de trois 

manières principales. Certains sites web et plateformes mettent à disposition du public ou des 

développeurs des interfaces de programmation (API, voir ci-dessus) grâce auxquelles un 

usager extérieur peut accéder à certains contenus, généralement dans des formats assez 

structurés et aisément réutilisables. L’API de Twitter permet par exemple d’envoyer des 

requêtes à la base de données en fonction des tweets à collecter sur la base de mots-clés 

(hashtag), d’identifiants d’utilisateurs ou d’autres variables comme la localisation 

géographique. Cette collecte est en revanche limitée en volume et toujours susceptible d’être 

bridée par Twitter. Lorsqu’aucune API n’est mise à disposition par l’entreprise qui contrôle les 

données, il est possible de programmer des logiciels de web scraping et/ou web crawling qui 

parcourent et aspirent les éléments constituants d’une ou plusieurs pages web. Ces sources 

étant généralement peu (ou non) structurées, la difficulté technique est de les transformer en 

un corpus cohérent et susceptible d’être traité analytiquement. Une troisième méthode (celle 

utilisée par exemple par M. Bergström) consiste à négocier avec l’entreprise une extraction 

de sa propre base de données, par définition plus complète et plus structurée que tout ce à 

quoi une API ou du web scraping peuvent donner accès. 

 

 Les contraintes qui pèsent sur ces trois méthodes principales tendent à s’accentuer dans le 

temps. Depuis la mi-2012, Twitter a par exemple progressivement limité l’accès à son API 

publique. On ne peut aujourd’hui accéder par cet intermédiaire qu’à un nombre réduit de 

tweets très récents (ceux de la semaine écoulée). Des jeux de tweets historiques et 

volumineux ont parfois été mis à disposition de la recherche par ceux qui les ont collectés, 

mais ce sont des cas rares car Twitter restreint fortement le droit à partager des données 

collectées via l’API. Par ailleurs, ces jeux de données collectés dans des contextes très 



variables et avec des objectifs différents de ceux des chercheurs qui envisagent de les 

analyser, se prêtent moins bien à la réutilisation en sociologie qu’en informatique. 

L’alternative existe d’acheter les données auprès de Twitter ou d’un vendeur agréé mais à un 

coût souvent prohibitif pour la recherche publique.8 D’autres entreprises proposent de vendre 

des données, comme Google Maps qui, au moment où nous écrivons ces lignes, a annoncé 

une hausse importante des tarifs pour l’accès à son API 
9. Des obstacles juridiques peuvent 

aussi empêcher l’utilisation de certaines données comme celles de la plateforme TripAdvisor 

qui met son API à disposition des établissements de tourisme mais exclut expressément son 

utilisation à des finalités de recherche scientifique10. 

 

 La pratique du web scraping ne va pas non plus de soi. Les conditions générales d’usage 

de certains sites et plateformes interdisent explicitement cette pratique (LinkedIn, Yelp, La 

Fourchette, etc.). Quant à la négociation d’un accès privilégié aux données, son résultat est 

évidemment très variable. Elle aboutit parfois à un accord (comme dans le cas de Meetic 

analysé par M. Bergström) et parfois non (comme dans le cas de Waze dans l’article d’A. 

Courmont). Même lorsque le résultat final d’une négociation de ce type est positif, celle-ci 

prend beaucoup de temps au chercheur, suppose une contractualisation complexe et 

s’accompagne souvent de restrictions en termes d’usage et de compensations financières. 

 

La protection de données personnelles est quelquefois mise en avant pour justifier toutes 

les limites mises à l’accès aux données du web. Les scandales récurrents relatifs à des fuites 

de ces données – dont celui impliquant Cambridge Analytica est le plus récent au moment où 

nous écrivons ces lignes – conduisent à douter du bien-fondé de ces explications. Les 

entreprises du web peuvent être plus ou moins vigilantes en matière de protection des 

données personnelles, mais elles cherchent évidemment aussi à préserver leur avantage 

compétitif et à monétiser leurs données. 

 

 Nombreuses sont les voix qui s’élèvent aujourd’hui en faveur d’une législation qui, tout en 

respectant le nouveau Règlement général sur la protection des données, favorise le partage de 

ces informations (Verdier, 2018). La solution envisagée est liée à la réforme en cours du 

cadre juridique relatif au droit d’auteur : il s’agirait d’autoriser une exception aux droits 

d’auteur et des producteurs de bases de données pour permettre le web scraping (ou d’autres 

formes de fouille de données et de textes), sans qu’une négociation explicite avec leur 

détenteur ne soit nécessaire. Le débat sur cette proposition, lancé en France au moment des 

discussions autour de la loi pour une République numérique de 2016, n’a pas encore abouti et 

s’est aujourd’hui déplacé au niveau européen. Il n’est pas encore clair de savoir si cette 

exception potentielle se limiterait aux seules finalités de recherche ou s’étendrait à un 

éventail plus large de situations. Le « déluge de données » (Hey et Trefethen, 2003) existe 

sans doute. Mais il ne touche pas toutes les zones de l’espace social de la même façon et 

profite aujourd’hui plus aux entreprises commerciales qu’à la recherche publique. 

 

 

Méthodes qualitatives, méthodes quantitatives ? 

                                                      
8 Voir Justin Littman, « Where to Get Twitter Data for Academic Research », Social Feed Manager Blog, 

George Washington University, September 14, 2017 : https://gwu-libraries.github.io/sfm-ui/posts/2017-09-14-

twitter-data (consulté le 12 mai 2018). 
9 Google Maps Platform Team, « Introducing Google Maps Platform », Googleblog, 

https://mapsplatform.googleblog.com/2018/05/introducing-google-maps-platform.html (consulté le 2 mai 2018). 
10 TripAdvisor, Content API FAQS : https://developer-tripadvisor.com/content-api/FAQ/ (consulté le 12 mai 

2018). 



 

 Les articles parus dans ce numéro utilisent ou évoquent des données très hétérogènes 

(données administratives, échanges de messages sur des plateformes numériques, données 

textuelles) mais aussi des méthodes diverses (méthodes qualitatives, quantitatives, revue de 

littérature). Cette variété peut paraitre surprenante à la lumière de certains des premiers 

travaux sur les big data qui, il y a déjà plus de dix ans, prophétisaient la disparition des outils 

classiques du sociologue comme l’entretien et l’enquête par questionnaire. Il n’en est rien 

manifestement. La recherche sociologique s’enrichit de nouvelles données et de nouvelles 

méthodes, sans pour autant renoncer aux anciennes. C’est la complexité de la situation 

actuelle qui invite à tirer parti du bagage méthodologique hérité du passé. Puisque l’accès aux 

données numériques contrôlées par des entreprises privées est limité, il faut en effet 

s’appuyer sur ce que l’on a pour pouvoir encore faire entendre la voix des sciences sociales. 

A. Courmont n’aurait pas pu faire apparaitre les enjeux de pouvoir, économiques et 

politiques, liés à l’usage de Waze sans des entretiens de recherche « classiques ». De même, 

B. Kotras n’aurait pas pu conclure sur les tensions internes au marché de l’opinion en ligne 

sans les outils de la recherche sociologique traditionnelle. 

 

 D’une certaine manière, on pourrait même conclure que les méthodes qualitatives sont peu 

mises en cause dans le paysage des big data. Elles constituent la seule manière d’accéder à 

des coins de la réalité sociale peu numérisés, ou dont les traces numériques sont privatisées 

par de grandes entreprises commerciales réticentes à les partager. Les méthodes qualitatives 

conservent également un grand intérêt en complément de travaux utilisant, eux, des données 

numériques : elles constituent une fenêtre dans le ressenti des individus (Kennedy, 2018), 

dans leur vécu et leur interprétation des pratiques dont les données numériques sont la trace, 

et qu’il est souvent difficile de comprendre autrement. Aussi, les méthodes qualitatives 

peuvent nous aider à trancher sur la généralité des résultats obtenus d’une analyse de données 

numériques qui, on le sait, ne répondent que rarement aux critères classiques de 

représentativité statistique. Les méthodes qualitatives et mixtes ont donc encore des beaux 

jours devant elles. 

 

 Le socle des méthodes quantitatives utilisées dans les sciences sociales est plus fortement 

impacté par le développement des big data. Ce ne sont pas tellement les « masses » de 

données en tant que telles qui mettent en cause l’inférence statistique traditionnelle et 

l’économétrie ; c’est surtout l’entrée sur la scène du machine learning comme instrument 

d’analyse, se prêtant bien au traitement non seulement des données numériques (par exemple 

celles issues de Twitter, comme en témoigne la note critique de M. Severo et R. Lamarche-

Robin) mais aussi de données d’origine administrative (article d’É. Ollion et J. Boelaert dans 

ce numéro) et même de données d’enquête, pourvu que la taille de l’échantillon soit assez 

grande (quelques milliers d’observations au moins). Le machine learning attire d’autant plus 

l’attention que les modèles de régression bien connus font l’objet de critiques majeures, 

surtout en raison des conditions qu’elles imposent pour la validité de l’inférence 

(l’indépendance des observations par exemple). Comme le disent É. Ollion et J. Boelaert, 

cette remise en cause n’implique pas nécessairement la disparition des anciennes façons de 

faire, mais oblige les chercheurs à s’interroger plus en profondeur, à faire des choix 

méthodologiques moins conventionnels et plus réfléchis. Une piste de recherche prometteuse 

consiste à explorer les intersections possibles entre machine learning et autres méthodes, 

comme ont commencé à le faire les économistes (Mullainathan et Spiess, 2017), pour 

systématiser, par exemple, le processus de sélection des variables et de spécification des 

modèles (Belloni et al., 2014 ; Varian, 2014). 



 Le machine learning est d’ailleurs en pleine évolution, et certains de ses développements 

récents peuvent particulièrement bénéficier aux sciences sociales. On a pu lui reprocher son 

insistance sur la prévision plutôt que l’explication, comme le rappellent bien M. Severo et R. 

Lamarche-Perrin. En effet, ses critères de validation reposent non pas sur des tests statistiques 

(les p-values), mais essentiellement sur sa capacité à prédire le résultat d’un modèle, construit 

sur des données dites d’entrainement, avec des données nouvelles, dites de test. Toutefois, 

des solutions hybrides se développent aujourd’hui qui intègrent le machine learning à 

l’économétrie pour identifier des effets causaux (Athey, 2017, 2018), voire des modèles qui 

« apprennent » la causalité (Guyon, 2014 ; Lopez-Paz et al., 2015 ; Mooij et al., 2016 ; 

Goudet et al., 2017). La crainte de voir les objectifs des sciences (sociales et autres) 

détournés par les big data et le machine learning est donc à relativiser. Ce n’est sans doute 

pas à la fin de la juridiction du sociologue que nous assistons, contrairement à ce que 

d’aucuns avaient pu prédire, mais à sa profonde transformation dans le champ quantitatif, par 

hybridation d’approches et de méthodes différentes. La recherche ne peut que bénéficier de 

ces croisements, qui pourraient conduire à dépasser certaines des limites du passé, et peut-

être même à accélérer le rapprochement du qualitatif et du quantitatif par les méthodes 

mixtes. 

 

 

Concurrence entre disciplines, ou entre public et privé ? 
 

 Les deux notes critiques publiées dans ce numéro font bien apparaitre un autre aspect 

important de la révolution des big data : l’importance de fertilisations croisées entre 

disciplines. J.-P. Cointet et S. Parasie montrent par exemple comment l’analyse textuelle, 

déjà bien connue en sociologie, s’est récemment enrichie au contact de l’informatique. M. 

Severo et R. Lamarche-Perrin mettent quant à eux au jour l’apport des disciplines relevant de 

l’informatique (surtout dans le champ de la sentiment analysis, mais aussi de l’analyse des 

réseaux) dans la compréhension des mouvements d’opinion sur Twitter. De manière plus 

générale, les sociologues se trouvent aujourd’hui de plus en plus conduits à partager leurs 

objets de recherche avec des collègues informaticiens, statisticiens, physiciens. Il est donc 

légitime de se demander dans quelles conditions ces échanges prennent la forme d’une 

véritable collaboration (ou a minima de la « coopétition ») plutôt que de la concurrence entre 

eux. 

 

 Les cas observés par J.-P. Cointet et S. Parasie nous amènent à croire que l’arrivée des 

informaticiens dans le champ de l’analyse textuelle ne visait pas délibérément à concurrencer 

ou à délégitimer les sciences sociales. Dans une certaine mesure, l’intérêt des informaticiens 

tient en effet aux opportunités de gain économique pouvant dériver d’une exploitation 

commerciale de données textuelles (et, plus généralement, numériques) et du développement 

de services payants sur le marché. Les grandes entreprises du web ont fortement investi dans 

le développement et l’application de ces techniques, et les chercheurs en informatique, même 

dans le secteur public, sont aujourd’hui ouvertement incités à valoriser leurs résultats. 

 

Cette présence ne nuit pas à la sociologie, et peut même l’enrichir : les deux notes 

critiques que nous publions montrent bien que des collaborations ont pu avoir lieu, 

débouchant sur des publications parfois de très grande qualité. Par ailleurs, les sciences 

sociales pourraient avoir davantage besoin, à l’avenir, de systèmes de calcul parallèles pour 

traiter des volumes réellement « massifs » de données que des institutions de recherche 

publique interdisciplinaires permettront de mettre en place alors que seuls les grands acteurs 

privés en disposent aujourd’hui (Villani, 2018, p. 88-89). La co-écriture peut aussi aider le 



sociologue à se positionner rapidement dans le champ, sans nécessairement attendre de se 

former aux techniques du machine learning. Quoique anecdotiques, nos expériences 

respectives – de sociologues impliqués dans des instituts interdisciplinaires de data science, 

voire dans des laboratoires d’informatique – témoignent aussi de l’ouverture de ces autres 

disciplines vers la nôtre, malgré les différences de repères, de langage et de pratiques qui 

nous séparent. 

 

 La menace pour la sociologie, s’il y en a une, est plutôt un effet des disparités de pouvoir 

entre entreprises privées et recherche publique. Les entreprises du numérique se disputent 

aujourd’hui les meilleurs chercheurs en machine learning et en intelligence artificielle, au 

point de faire redouter une pénurie dans l’enseignement supérieur et la recherche publique 

(Villani, 2018), alors que peu d’entre elles s’entourent de spécialistes des sciences sociales11. 

C’est dans ce contexte que les craintes de délégitimation de la discipline se concrétisent, par 

exemple devant la demande de brevet déposée par Facebook et récemment dévoilée d’un 

« classifieur » (un outil servant à regrouper des données en des catégories homogènes) qui 

assignerait chacun des usagers de cette plateforme à une classe sociale en croisant un 

ensemble de données le concernant, mais sans mobiliser les connaissances et théories des 

sociologues à ce sujet12. Le risque est double : que les résultats de ces opérations 

algorithmiques occultent ceux de la recherche sociologique et qu’ils exercent à terme des 

effets performatifs aux conséquences imprévues et imprédictibles. Tout changement du 

fonctionnement des algorithmes de Facebook est en effet susceptible d’affecter l’activité et 

les comportements de ses millions d’usagers, enclenchant des mécanismes sociaux que même 

l’analyse data-driven des traces du passé peinerait à mettre au jour, le contexte de l’action 

étant inédit. Aux acteurs de la recherche publique reste alors un devoir de veille et d’alerte, 

dans la mesure où leur voix peut encore se faire entendre. 

 

 

Data as labor 
 

 Ces évolutions récentes nous interrogent non seulement sur la pertinence de l’adjectif 

« big » mais aussi sur le substantif « data ». Littéralement, le mot fait référence à ce qui nous 

aurait été donné, et ne devrait qu’être saisi et utilisé. La réalité est autre, car loin de se trouver 

(pour ainsi dire) dans la nature, la donnée est produite. Une enquête statistique est par 

exemple issue du travail de ses concepteurs, enquêteurs et codeurs, soutenu par des 

investissements parfois conséquents. Il en va de même pour les données numériques, qui 

n’existeraient pas sans une importante activité productive humaine. La note critique de M. 

Severo et R. Lamarche-Robin mentionne des « annotateurs », chargés d’étiqueter 

manuellement des données d’entrainement pour que la machine puisse s’en servir pour 

« apprendre » à catégoriser ensuite seule le corpus (en l’occurrence, en assignant chacun des 

tweets d’un corpus à l’une parmi plusieurs catégories de sentiments). Ce n’est qu’après cette 

phase fortement labor-intensive que l’opération de catégorisation devient automatisable (la 

machine devenant alors capable d’appliquer les mêmes principes de catégorisation à d’autres 

jeux de données). Les annotateurs ne sont pas toujours des assistants recrutés par les 

analystes : il existe des plateformes digitales qui proposent ces activités à des foules 

d’usagers sous la forme de micro-tâches rémunérées à la pièce, comme par exemple Amazon 

                                                      
11 Avec des exceptions notables, par exemple celle de Microsoft Research à Cambridge (États-Unis). 
12 Demande de brevet US 20180032883 A1, publiée le 1er février 2018. 



Mechanical Turk (Gray et Suri, 2017) ou FouleFactory en France. Il est donc nécessaire de 

considérer aussi la donnée comme un travail (Arrieta-Ibarra et. al., 2018)13. 

 

Ce travail de production des données n’est pas toujours rémunéré, ni même reconnu 

formellement comme tel. À l’apport des annotateurs payés s’ajoute en effet celui de 

bénévoles comme les usagers de Waze (article d’A. Courmont) qui nourrissent 

volontairement les bases de données de la plateforme. Cet apport des usagers n’est pas non 

plus toujours conscient. Google possède par exemple de grandes masses de données tirées des 

requêtes effectuées sur son moteur de recherche, des clics sur certaines annonces 

publicitaires, des alternatives suggérées à son service de traduction ou encore de la 

reconnaissance de caractères dans reCaptcha (von Ahn et al., 2008). L’idée selon laquelle 

cette activité des utilisateurs de plateformes du web est un véritable travail (c’est-à-dire une 

activité productrice de valeur) gagne aujourd’hui du terrain dans les sciences sociales 

(Cardon et Casilli, 2015 ; Scholz, 2012 ; Terranova, 2000)14. 

 

 Au constat que nous faisions plus haut d’une flagrante inégalité dans la distribution des 

données il faut donc ajouter que la production de ces données est le résultat d’un système 

complexe de rapports socio-économiques fortement asymétriques. Cette prise de conscience 

ne peut qu’interpeller le sociologue dans son rôle d’observateur des transformations du 

monde du travail, comme en témoigne la littérature en plein essor sur le digital labor 

(Dujarier, 2014 ; Graham et al., 2017 ; Neff, 2012 ; Scholz, 2012 ; Vendramin et Valenduc, 

2018). Elle l’interpelle aussi en tant que producteur et usager de données. Se constituer une 

base de données numériques adaptée pour la recherche exige en effet du temps, des 

compétences (notamment en programmation), et un certain bagage de soft skills comme la 

patience et la créativité requises pour imaginer des moyens d’arpenter ce nouveau terrain 

qu’est le code, la capacité de négociation ou de collaboration avec des informaticiens et avec 

les propriétaires des plateformes. La lecture et la discussion des travaux des sciences 

connexes de la sociologie qui manipulent au moyen d’outils nouveaux des données de grand 

intérêt pour notre discipline en requièrent tout autant. Aucun des auteurs de ce numéro 

spécial n’a échappé à cette loi nouvelle des sciences sociales dans leur moment big data. 
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