1 Preface

1.1 Brief product description

This manual contains utility routines for controlling and monitoring the BS2000 operating
system.

The following routines are described:

Name of utility routine Privilege required Description starts on page
CONDMPPD yes 29
DPAGE for certain statements 41
INIT yes 57
JMU yes 105
LMSCONV yes 141
PAMCONV no 277
PASSWORD no 363
PDPOOLS yes 377
PVSREN yes 401
RFUPD yes 417
SODA yes 443
SPCCNTRL for certain statements 481
TPCOMP2 no 511
VOLIN yes 523
SYSUPD no 557

U4303-J-2125-4-7600

Brief product description Preface

The utility routines handle two areas:
o volume processing
« file processing

The utility routines can be assigned either of these two areas as follows:

Utility routines for processing volumes

Processing of magnetic tapes/floppy disks

INIT Initialization of tapes and floppy disks

TPCOMP2 Comparison of data on tapes

Processing of disks

CONDMPPD Protection of private disks against write access
DPAGE Output and modification of data in PAM pages
PDPOOLS Generation and management of private disk pools
PVSREN Conversion of pubsets

SPCCNTRL Checking and management of disk space allocation
VOLIN Initialization of disk storage units

Utility routines for processing files

JMU Generation and maintenance of the file for stream and job class defini-
tions

LMSCONV Generation and management of libraries

PAMCONV Conversion of file formats

PASSWORD Encryption of passwords

RFUPD Editing of REP files in BS2000 and generation of REP files on magnetic
tape/disk

SODA Evaluation of dump files generated by the dump generators SLED and
SNAP

SYSUPD Reading in of files stored on tape to public or private disk

2 U4303-J-Z2125-4-7600

Preface

Target group

1.2

1.3

1.4

Target group

This manual is intended both for privileged and nonprivileged BS2000 users.

README file

Information on any functional changes and additions to the current product version
described in this manual can be found in the product-specific README file. You will find the
README file on your BS2000 computer under the file name SYSRME.BS2CP.112.E. The
user ID under which the README file is cataloged can be obtained from your system
administrator. You can view the README file using the /SHOW-FILE command or an editor,
and print it out on a standard printer using the following command:

/PRINT-DOCUMENT FROM—-FILE=SYSRME.BS2CP.112.E,LINE-SPACING=*BY-EBCDIC—-CONTROL

Changes since the last version

Structural change

The manuals "Computer Center Utility Routines (BS2000/0SD-BC V1.0A)" and "Utility
Routines (BS2000/0SD-BC V1.0A)" have been merged to make a single manual with the
name "Utility Routines (BS2000/0OSD-BC V2.0)". This contains utility routines intended for
both privileged and nonprivileged users. The routines are arranged in alphabetical order.
The utility routines MSGMAKER, MSGEDIT and MSGLIB as well as the chapter entitled
"Message editing" are described in the manual "MSGMAKER" [18] starting with
BS2000/0SD-BC V2.0. MSGEDIT and MSGLIB will be supported in BS2000/0SD-BC V2.0
for the last time.

Changes in the utility routines

DPAGE utility routine

As of BS2000/0SD-BC V2.0, the DPAGE utility routine is started by means of the
system command START-DPAGE.

U4303-J-2125-4-7600

Changes since the last version Preface

INIT utility routine

As of BS2000/0SD-BC V2.0, the INIT routine is started by means of the system command
START-INIT.

The FORMAT operand in the INIT statement for magnetic tapes can be used to format a
volume before writing new labels. This is possible only if permitted by the volume type.

JMU utility routine

Vector processors are no longer supported in BS2000/0SD-BC V2.0. The VECTOR-
SPACE-LIMIT operand no longer exists. This affects the JIMU statements DEFINE-JOB-
CLASS, MODIFY-JOB-CLASS and SHOW-JOB-CLASS, in which this operand was used to
specify, modify or output the vector page allocation.

The operand is no longer available in guided dialog. However, it is still accepted in
procedure and batch mode to ensure that existing procedures remain executable.
Existing SIMSFILES also continue to be supported.

PAMCONV utility routine

As of BS2000/0SD-BC V2.0, the PAMCONYV routine is started by means of the system
command START-PAMCONV.

The description contains specifications for the required diagnostics documents if problems
occur during a PAMCONYV run.
PASSWORD utility routine

As of BS2000/0SD-BC V2.0, it will be possible to define LOGON passwords with up to 32
characters. In order to process such paswords with the PASSWORD routine, they must be
shortened to 8 characters on the system level. The chargeable product SDF-P V2.0

provides the predefined function HASH-STRING(), which can be used for this conversion.

PDPOOLS utility routine

As of BS2000/0SD-BC V2.0, the PDPOOLS routine is started by means of the system
command START-PDPOOLS.

SODA utility routine

SODA no longer evaluates the system files REPLOG (REP backup file) and VM2LOG (log
file for the VM2000 program system).

The statement BASE ALL=Y is no longer used to output the DMS tables. With regard to
SYS=Y, moreover, the address translation tables of the system/task and the PU-CRIA
(concise rep information area of the program unit) are no longer extracted for diagnosis.

4 U4303-J-2125-4-7600

Preface

Changes since the last version

SPCCNTRL utility routine

As of BS2000/0SD-BC V2.0, the SPCCNTRL routine is started by means of the system
command START-SPCCNTRL.

VOLIN utility routine

Support for new disk storage units and the statement OPTION=NO-WR-HA were already
documented in the README file supplied with BS2000/0SD-BC V1.0.

VOLIN V11.2A supports the following functions:

Repair function

The tracks of a fully initialized and formatted CKD disk batch are checked and repaired.
One or more tracks are selected by means of the DEFECTS statement and repaired
with REPAIR=YES.

The repair function supported by VOLIN V11.2A can only be used under the BS2000
operating system.

DUALCOPY

VOLIN V11.2A supports DUALCOPY [19]. This enables tracks to be repaired on one
disk of the DUALCOPY disk pair while the other disk continues to be operated normally
without interruption.

D3492 disks
VOLIN V11.2A supports D3492 disks with RAID5 architecture.

SYSUPD tility routine

As of BS2000/0SD-BC V2.0, the SYSUPD routine is started by means of the system
command START-SYSUPD.

U4303-J-2125-4-7600

Metasyntax Preface

1.5 Metasyntax

1.5.1 SDF format

Statement format in the utility routines JIMU, PAMCONV and PVSREN.

As of BS2000 V10.0A, the SDF command language replaces the ISP command language.
ISP commands are still supported and remain compatible with the functions in BS2000
V10.0 but will not be further developed as functions. Only commands and statements with
SDF syntax, however, can use all of the SDF functions. ISP commands are only checked
for correct input of the command name.

Structure of the SDF command language

The syntax description of SDF commands and statements is contained in the syntax files:

— Commands begin with a slash; in interactive mode this is set by the system. SDF
expects command input from the logical system file SYSCMD.

— SDF statements, i.e. statements intended for routines with an SDF interface, begin with
two slashes (set by the system in interactive mode). SDF expects statement input from
the logical system file SYSSTMT, which has the same assignment as the system file
SYSDTA.

Input data, i.e. data, parameters and statements read in by routines without the SDF
interface, are not analyzed by SDF. Such routines expect input data from the logical system
file SYSDTA.

Commands/statements consist of the following elements:
command/statement name

operand names

possible operand values

additional help texts explaining the command/statement and its operands

Command/statement names, operand names are contained as keywords in the syntax
description. Keywords are specified as such. Variable operand values are described by
means of data types (see Table 2 on page 15ff). The data type defines from which character
set and according to which rules an operand value is formed. SDF checks whether the
specification for a variable operand value lies within the range of permissible values as
defined by the data type.

6 U4303-J-Z2125-4-7600

Preface SDF command language

Keywords usually consist of a number of partial names connected by hyphens. As a rule,
the names are taken from the ordinary English language environment and are chosen with
a view to ensuring that analogous facts are described by means of identical keywords
throughout the command set. Commands always start with a verb; this is followed by the
object to which the activity is to be applied (e.g. MODIFY-FILE-ATTRIBUTES is used to
modify the attributes of a file).

There are also pairs of opposite activities, e.g. CREATE-XY and DELETE-XY for the
creation and deletion of an object XY.

Commands are assigned to different application areas, depending on their respective uses.
A command may occur in more than one application area.

Every operand has a name and at least one possible value. Operands may be hierarchically
subordinate to an operand value, in which case this operand value initiates a structure
which contains all the lower-ranking operands. The operands of a structure are enclosed in
parentheses. Further structures may be initiated within a structure; this feature is known as
structure nesting.

Example of a structure:

SHOW-FILE-ATTRIBUTES SELECT=*BY-ATTRIBUTES(FILE-STRUCTURE=*ISAM)

The FILE-STRUCTURE operand defines a particular file attribute and is subordinate to the
*BY-ATTRIBUTES operand value.

Concurrent specification of two or more operand values in the form of a list may be
permitted. Operand values permitted as list elements are enumerated following "list-
poss(n):” (see SDF syntax representation, page 13), where “n” indicates the maximum
number of list elements allowed.

Example of a list:

Format:

FILE-STRUCTURE = *ANY / list-poss(5): *PAM / *SAM / *ISAM / *BTAM / *NONE
Input:

SHOW-FILE-ATTRIBUTES SELECT=*BY-ATTRIBUTES(FILE-STRUCTURE=
(*SAM,*ISAM))

The FILE-STRUCTURE operand defines the file attributes SAM and ISAM.

Most operands are preset with a default value. This operand value is used if no explicit
specification is made.

U4303-J-Z2125-4-7600 7

SDF command language Preface

Conventions for input

The following points should be borne in mind when entering commands and statements:

SDF interprets inputs in accordance with the standard code table EBCDIC.DF.03 (e.g.
uppercase/lowercase conversion).

If XHCS? is available, it is possible to use extended character sets (CCS?). The coding
of the dollar sign ($), number sign (#), commercial at (@),exclamation mark (!) and
guotation mark (") in an extended character set must comply with the coding in the
standard code table.

SDF interprets additional characters of an extended character set only within the data
types <c-string> and <text>, i.e. for uppercase/lowercase conversion a code table
supplied by XHCS is used for that extended character set.

SDF rejects all additional characters used within any of the other data types and reports
a syntax error.

The following distinctions are made when using an extended character set:
— Input at the data display terminal:

The CCS from the user entry is used for command input, provided 8-bit mode has
been activated by means of the MODIFY-TERMINAL-OPTIONS command.

For statement input, the CCS specified in the relevant macro call (RDSTMT,
TRSTMT or CORSTMT) is used. If no CCS has been specified, the same applies
as for command input.

— Input from a file or a PLAM library member:

For command input, the CCS of the input file is used. Alternatively, if SYSDTA was
assigned by means of the ASSIGN-SYSDTA command, the CCS of the PLAM
library member is used.

For statement input, the CCS specified in the relevant macro call must be identical
with the CCS for SYSDTA inputs. The statement will be rejected if the two coded
character sets are not identical.

During a procedure interrupt, the CCS selected for input at the data display terminal
is used.

— Input from an S variable:

If SYSDTA is assigned to a compound S variable, the CCS selected for input at the
data display termianl is used in interactive mode, while the CCS EDFO3IRV is used
in batch mode.

— The CMD and TRCMD macros do not support extended character sets.

1 The subsystem XHCS (eXtended Host Code Support) enables 8-bit code processing.
2 Coded Character Set

U4303-J-2125-4-7600

Preface

SDF command language

The first character of a command input is the slash (/); a statement is preceded by two
slashes (/).

In the event of input at the data display terminal, the slash or slashes appear automat-
ically as a system prompt. In the event of input from a procedure file, the slash or
slashes must be included in the input records.

A label may be placed between slash and command name to identify the command line
as a branch destination within procedures. At least one blank must separate the label
from the command name. Labels have different formats for S and non-S procedures:

— In Sprocedures the label consists of a name with up to 255 characters (corre-
sponding to <structured-name 1..255>), followed by a colon. Labels in S format do
not belong to the command. They are analyzed by SDF-P only.

— In non-Sprocedures the label consists of a leading period and a name with up to 8
characters (corresponding to <name 1..8>).

The command/statement name must be separated from the following operand(s) by at
least one blank.

Operands must be comma-separated.

Operand values within a list must be comma-separated. If two or more list elements are
specified, the enumeration must be enclosed in parentheses.

Operands may be entered either as keyword operands or as positional operands. In
keyword operands, an equals sign links operand name and operand value. In positional
operands, only the operand value is specified, the assignment being determined via the
relative position of the operand within the input stream.

Further blanks between keywords, variable operand values, commas and equals signs
are possible for documentation purposes and are ignored.

Strings enclosed in quotes are interpreted as comments and ignored. Comments can
be used in the same way as further blanks, but they are not permitted in front of labels.

End-of-line comments:

In S procedures the character string &* introduces an end-of-line comment, i.e. all
subsequent characters up to the end of the line are ignored. Of particular importance
in this respect is the fact that continuation characters, semicolons and & expressions
lose their special meaning.

Continuation lines:

A hyphen as the last character of an input record (with any number of trailing blanks) is
interpreted as a continuation character. The following input line thus becomes the
continuation line of the preceding command or statement.

If input is from the display terminal, the system issues “/” or “//” as a prompt requesting
continuation of input. If commands/statements are entered from procedure or ENTER
files, the continuation line must begin with “/” or “//”.

U4303-J-2125-4-7600

SDF command language Preface

The continuation character must be written within the range of columns from 2 through
72 if CONTINUATION=*NEW-MODE has been set (see SHOW-SDF-OPTIONS or
MODIFY-SDF-OPTIONS). If CONTINUATION=*OLD-MODE applies, the continuation
character can only be in column 72.

Any characters following column 72 are ignored.

The total length of a command (including any continuation lines) can be up to 16364
bytes, inclcuding blanks and comments. For ISP commands which are still supported,
the total length can be up to 4096 bytes.

Input records for a statement may be longer than 72 characters and may have a contin-
uation character in any column as of column 2. The maximum length of a statement is
16364 bytes.

In interactive mode (terminal input), the input record length and the position of any
continuation character depends on the size of the input buffer of the display terminal;
the maximum possible length is 16364 bytes.

In S procedures, the operand INPUT-FORMAT=*FREE-RECORD-LENGTH of the SET-
PROCEDURE-OPTIONS command can be used to define a freely selectable length for
an input record, provided this value does not exceed the maximum length of 16364
bytes. The continuation character may be input as of column 2.

In the case of input from non-S procedure files or ENTER files, keywords must be
written in uppercase form. This also applies to values of procedure parameters, S
variables and job variables if they are to replace parts of commands or statements.

Using a semicolon between two commands enables the input of two or more
commands within the same input record (including continuation lines). This input option
is only available in interactive mode and within Sprocedures.

10

U4303-J-2125-4-7600

Preface SDF command language

SDF syntax representation

Figure 1 gives an example of the representation of the syntax of a command in a manual.
The command format consists of a field with the command name. All operands with their

legal values are then listed. Operand values which introduce structures and the operands
dependent on these operands are listed separately.

HELP-SDF Abbreviation: HPSDF

GUIDANCE-MODE = *NO / *YES

,SDF-COMMANDS = *NO / *YES

,LABBREVIATION-RULES = *NO / *YES

,GUIDED-DIALOG = *YES (...
YES(..)

[] SCREEN-STEPS =*NO/*YES

[] ,SPECIAL-FUNCTIONS = *NO / *YES

[,FUNCTION-KEYS =*NO / *YES

[,NEXT-FIELD = *NO / *YES
,UNGUIDED-DIALOG = *YES (...)/ *NO

*YES(...)

[1 SPECIAL-FUNCTIONS = *NO / *YES
,FUNCTION-KEYS = *NO / *YES

Figure 1: Representation of the syntax of the user command HELP-SDF

This syntax description is valid for SDF V4.0A.The syntax of the SDF command/statement
language is explained in the following three tables.

Table 1: Notational conventions

The meanings of the special characters and the notation used to describe command and
statement formats are explained in this table.

Table 2: Data types

Variable operand values are represented in SDF by data types. Each data type represents
a specific set of values. The number of data types is limited to those described in this table.

The description of the data types is valid for the entire set of commands/statements.
Therefore only deviations (if any) from the attributes described here are explained in the
relevant operand descriptions.

U4303-J-Z2125-4-7600 11

SDF command language

Preface

Table 3: Suffixes for data types

Data type suffixes define additional rules for data type input. They can be used to extend or
limit the set of values. The following short forms are used in this manual for data type

suffixes:

cat-id
completion
construction
correction-state
generation
lower-case
manual-release
odd-possible
path-completion
separators
underscore
user-id

version
wildcards

cat
compl
constr
corr
gen
low
man
odd
path-compl
sep
under
user
vers
wild

The description of the ‘integer’ data type in this table contains a number of items in italics;
the italics are not part of the syntax and are only used to make the table easier to read.

The description of the data type suffixes is valid for the entire set of commands/statements.
Therefore only deviations (if any) from the attributes described here are explained in the
relevant operand descriptions.

12

U4303-J-2125-4-7600

Preface

SDF command language

Metasyntax

Representation Meaning Examples

UPPERCASE Uppercase letters denote keywords | HELP-SDF

LETTERS (command, statement, operand
names, key word values) and SCREEN-STEPS = *NO
constant operand values. The
keywords begin with *

UPPERCASE Uppercase letters printed in GUIDANCE-MODE = *YES

LETTERS boldface denote guaranteed or

in boldface suggested abbreviations of
keywords.

= The equals sign connects an GUIDANCE-MODE = *NO
operand name with the associated
operand values.

<> Angle brackets denote variables SYNTAX-FILE = <full-filename 1..54>
whose range of values is described
by data types and suffixes (see
Tables 2 and 3).

Underscoring Underscoring denotes the default | GUIDANCE-MODE = *NO
value of an operand.

/ A slash serves to separate NEXT-FIELD = *NO/*YES
alternative operand values.

() Parentheses denote operand ,UNGUIDED-DIALOG =*YES (...)/*NO
values that initiate a structure.

[] Square brackets denote operand | SELECT = [*BY-ATTRIBUTES](...)
values which introduce a structure
and are optional. The subsequent
structure can be specified without
the initiating operand value.

Indentation Indentation indicates that the ,GUIDED-DIALOG = *YES (...)
operand is dependent on a higher- *YES(...)
ranking operand. 0 SCREEN-STEPS = *NQ/

U *YES

Table 1: Metasyntax (Section 1 of 2)

U4303-J-2125-4-7600

13

SDF command language

Preface

Representation Meaning Examples

A vertical bar identifies related SUPPORT = *TAPE(...)

u operands within a structure. Its *TAPE(...)

0 length marks the beginning and [VOLUME = *ANY(..)
end of a structure. A structure may
contain further structures. The ZANY(...)
number of vertical bars preceding 0 .
an operand corresponds to the O O
depth of the structure..

: A comma precedes further GUIDANCE-MODE = *NO / *YES
operands at the same structure ,SDF-COMMANDS = *NO / *YES
level.

list-poss(n): The entry “list-poss” signifies that a | list-poss: *SAM / *ISAM
list of operand values can be given
at this point_ If (n) is present, it list-poss(40): <structured-name 1..30>
means that the list must not have
more than n elements. A list of list-poss(256): *OMF / *SYSLST(...) /
more than one element must be <full-filename 1..54>
enclosed in parentheses.

Abbreviation: The name that follows represents a | HELP-SDF Abbreviation: HPSDF
guaranteed alias for the command
or statement name.

Table 1: Metasyntax (Section 2 of 2)

14

U4303-J-2125-4-7600

Preface

SDF command language

Data types
Data type Character set Special rules
alphanum-name |A...Z
0...9
$.# @
cat-id A..Z Not more than 4 characters;
0...9 must not begin with the string PUB
command-rest |freely selectable
composed-name |A...Z Alphanumeric string that can be split into
0...9 multiple substrings by means of a period or
$ # @ hyphen.
hyphen If a file name can also be specified, the string
period may begin with a catalog ID in the form :cat: (see
catalog ID data type full-filename).
c-string EBCDIC character Must be enclosed within single quotes;
the letter C may be prefixed; any single quotes
occurring within the string must be entered
twice.
date 0...9 Input format: yyyy-mm-dd
Structure identifier:
hyphen yyyy: year; optionally 2 or 4 digits
mm: month
dd: day
device A..Z Character string, max. 8 characters in length,
0...9 corresponding to a device available in the
hyphen system. In interactive prompting, SDF displays
the valid operand values. For notes on possible
devices, see the relevant operand description.
fixed +, - Input format: [sign][digits].[digits]
0...9
period [sign]: +or -
[digits]: 0..9

must contain at least one digit, but may
contain up to 10 characters (0...9, period) apart
from the sign.

Table 2: Data types (Section 1 of 6)

U4303-J-2125-4-7600

15

SDF command language

Preface

Data type Character set Special rules
full-filename A..Z Input format:
0...9 file
$.# @ file(no)
hyphen group
period [:cat:][$user.] -

(*abs)
group{(ﬂel)
(-rel)

‘cat:

optional entry of the catalog identifier;
character set limited to A...Z and 0...9;
maximum of 4 characters; must be enclosed
in colons; default value is the catalog
identifier assigned to the user ID, as
specified in the user catalog.

$user.

file

optional entry of the user ID;

character setis A...Z,0...9, $, #, @;
maximum of 8 characters; first character
cannot be a digit; $ and period are
mandatory;

default value is the user' s own ID.

(special case)
system default ID

file or job variable name;

may be split into a number of partial names
using a period as a delimiter:
name[.name,[...]]

name; does not contain a period and must
not begin or end with a hyphen;

file can have a max. length of 41 characters;
it must not begin with a $ and must include
at least one character from the range A...Z.

Table 2: Data types (Section 2 of 6)

16

U4303-J-2125-4-7600

Preface

SDF command language

Data type Character set

Special rules

full-filename
(continued)

#file (special case)

@file (special case)
or @ used as the first character indicates
temporary files or job variables, depending
on system generation.

file(no)
tape file name
no: version number;
character setis A...Z,0...9, $, #, @.
Parentheses must be specified.

group
name of a file generation group
(character set: as for “file”)

(*abs)
group< (+rel)
(-rel)
(*abs)
absolute generation number (1-9999);
* and parentheses must be specified.
(+rel)

(-rel)
relative generation number (0-99);
sign and parentheses must be specified.

integer 0...9, +, - + or -, if specified, must be the first character.
name A..Z Must not begin with 0...9.

0...9

$! #1 @

Table 2: Data types (Section 3 of 6)

U4303-J-2125-4-7600

17

SDF command language

Preface

Data type Character set

Special rules

special characters

partial-filename |A...Z Input format: [:cat:][$user.][partname.]
0...9
$.# @ :cat: see full-flename
hyphen $user. see full-filename
period
partname
optional entry of the initial part of a name
common to a number of files or file
generation groups in the form:
namej.[name,.[...]]
name; (see full-filename).
The final character of “partname” must be a
period.
At least one of the parts :cat:, $user. or
partname must be specified.
posix-filename |A...Z String with a length of up to 255 characters;
0..9 consists of either one or two periods or of alpha-

numeric characters and special characters.
The special characters must be escaped with a
preceding \ (backslash); the / is not allowed.
Must be enclosed within single quotes if alter-
native data types are permitted, separators are
used, or the first character is a ? or !

A distinction is made between uppercase and
lowercase.

posix-pathname |A...Z
0...9
special characters

slash

structure identifier:

Input format: [/]part,/.../part,

where part; is a posix-filename;

max. 1024 characters;

must be enclosed within single quotes if alter-
native data types are permitted, separators are
used, or the first characteris a ? or !

Table 2: Data types (Section 4 of 6)

18

U4303-J-2125-4-7600

Preface

SDF command language

Data type Character set Special rules
roduct-version |A...Z .
P 0.9 Input format: [[C]l][V][n]n.nann[']
period
single quote correction status
release status
where n is a digit and a is a letter.
The release and correction status must be
specified if product-version does not include a
suffix (see suffix without-corr and without-man
in Table 3).
product-version may be enclosed within single
guotes (possibly with a preceding C).
The specification of the version may begin with
the letter V.
structured-name |A...Z Alphanumeric string which may comprise a
0...9 number of substrings separated by a hyphen.
$# @ First character: A..Zor $, #, @
hyphen
text freely selectable For the input format, see the relevant operand
descriptions.
time 0...9 Time-of-day entry:
structure identifier: hh:mm:ss
colon Input format: { hh:mm }
hh
hh:) hqurs } Leading zeros may be
mm: minutes .
. omitted
Ss: seconds
vsn a) A..Z a) Input format: pvsid.sequence-no
0...9 max. 6 characters
pvsid: 2-4 characters; PUB
must not be entered
sequence-no: 1-3 characters
b) A..Z b) Max. 6 characters;
0...9 PUB may be prefixed, but must not be
$.# @ followed by $, # or @.

Table 2: Data types (Section 5 of 6)

U4303-J-2125-4-7600

19

SDF command language

Preface

Data type Character set Special rules
x-string Hexadecimal: Must be enclosed in single quotes; must be
00...FF prefixed by the letter X. There may be an odd
number of characters.
x-text Hexadecimal: Must not be enclosed in single quotes;
00...FF the letter X may not be prefixed.

There may be an odd number of characters.

Table 2: Data types (Section 6 of 6)

20

U4303-J-2125-4-7600

Preface SDF command language

Suffixes for data types

Suffix Meaning
X..y unit a) with data type integer: interval specification
X minimum value permitted for “integer”.
x is an (optionally signed) integer.
y maximum value permitted for “integer”.

y is an (optionally signed) integer.

unit with “integer” only: additional units.
The following units may be specified:

days byte

hours 2Kbyte
minutes 4Kbyte
seconds Mbyte

b) with the other data types: length specification
X minimum length for the operand value; x is an integer.
y maximum length for the operand value; y is an integer.
x=y the length of the operand value must be precisely x.

with Extends the specification options for a data type.

-compl | When specifying the data type “date”, SDF expands two-digit
year specifications in the form yy-mm-dd to:

20yy-mm-dd if yy < 60
19yy-mm-dd if yy 2 60
-low Uppercase and lowercase letters are differentiated.

-under | Permits underscores

for the data type “name”.

Table 3: Data type suffixes (Section 1 of 6)

U4303-J-2125-4-7600 21

SDF command language

Preface

Suffix Meaning
with (contd.)
-wild(n) | Parts of names may be replaced by the following wildcards.

n denotes the maximum input length when using wildcards.

Due to the introduction of the data types posix-filename and posix-
pathname, wildcards from the UNIX world (referred to below as POSIX
wildcards) are now accepted in addition to the usual BS2000 wildcards.
However, only POSIX wildcards or only BS2000 wildcards should be used
within a search pattern. Only POSIX wildcards are allowed for the data types
posix-filename and posix-pathname. If a pattern can be matched more than
once in a string, the first match is used.

BS2000
wildcards

Meaning

*

Termina-
ting period

/
<s,:S,>

<Sl,...>

Replaces an arbitrary (even empty) character string. If the
string concerned starts with *, then the * must be entered twice
in succession if it is followed by other characters and if the
character string entered does not contain at least one other
wildcard.

Partially-qualified entry of a name.
Corresponds implicitly to the string “.*”, i.e. at least one other
character follows the period.

Replaces any single character.

Replaces a string that meets the following conditions:

— Itis atleast as long as the shortest string (s, or sy)

— Itis not longer than the longest string (s, or s,)

— Itles between s, and s, in the alphabetic collating
sequence; numbers are sorted after letters (A...Z0...9)

— sy can also be an empty string (which is in the first position
in the alphabetic collating sequence)

— sycanalso be an empty string, which in this position stands
for the string with the highest possible code (contains only
the characters X'FF")

Replaces all strings that match any of the character combina-
tions specified by s. s may also be an empty string. Any such
string may also be a range specification “s,:s,” (see above).

Table 3: Data type suffixes (Section 2 of 6)

22

U4303-J-2125-4-7600

Preface

SDF command language

Suffix Meaning
with-wild(n)
(continued) |-s Replaces all strings that do not match the specified string s.

Wildcards are not permitted in generation and version specifications for file
names. Only the system administration may use wildcards in user IDs.
Wildcards cannot be used to replace the delimiters in name components cat
(colon) and user ($ and period).

POSIX
wildcards

The minus sign may only appear at the beginning of string s.
Within the data types full-filename or partial-flename the
negated string -s can be used exactly once, i.e. -s can replace
one of the three name components: cat, user or file.

Meaning

*

['cy-cyl

['s]

Replaces any single string (including an empty string). An *
appearing at the first position must be duplicated if it is followed
by other characters and if the entered string does not include
at least one further wildcard.

Replaces any single character; not permitted as the first
character outside single quotes.

Replaces any single character from the range defined by c,
and c,, including the limits of the range. ¢, and ¢, must be
normal characters.

Replaces exactly one character from string s.

The expressions [c,-cy] and [s] can be combined into
[s1C1-C2S7]

Replaces exactly one character not in the range defined by c,
and cy, including the limits of the range_c, and c, must be
normal characters.

The expressions [!cy-cy] and [!s] can be combined into
['s1C1-C2So]

Replaces exactly one character not contained in string s. The
expressions [!s] and [!c,-cy] can be combined into [!s;C1-C5S)]

Table 3: Data type suffixes (Section 3 of 6)

U4303-J-2125-4-7600

23

SDF command language

Preface

Suffix Meaning
with (contd.)
-constr | Specification of a constructor (string) that defines how new names are to be

constructed from a previously specified selector (i.e. a selection string with
wildcards). See also with-wild.

The constructor may consist of constant strings and patterns. A pattern
(character) is replaced by the string that was selected by the corresponding
pattern in the selector.

The following wildcards may be used in constructors:

Wildcard Meaning

* Corresponds to the string selected by the wildcard * in the
selector.

Termina- | Corresponds to the partially-qualified specification of a name in
ting period |the selector;
corresponds to the string selected by the terminating period in
the selector.

[or? Corresponds to the character selected by the / or ? wildcard in
the selector.

<n> Corresponds to the string selected by the n-th wildcard in the
selector, where n is an integer.

Allocation of wildcards to corresponding wildcards in the selector:

All wildcards in the selector are numbered from left to right in ascending
order (global index).

Identical wildcards in the selector are additionally numbered from left to right
in ascending order (wildcard-specific index).

Wildcards can be specified in the constructor by one of two mutually
exclusive methods:

1. Wildcards can be specified via the global index: <n>

2. The same wildcard may be specified as in the selector; substitution
occurs on the basis of the wildcard-specific index. For example:
the second “/” corresponds to the string selected by the second “/” in the
selector

Table 3: Data type suffixes (Section 4 of 6)

24

U4303-J-2125-4-7600

Preface

SDF command language

Suffix

Meaning

with-constr
(continued)

The following rules must be observed when specifying a constructor:

The constructor must include at least one wildcard of the selector.

If the number of identical wildcards exceeds those in the selector, the
index notation must be used.

If the string selected by the wildcard <...> or [...] is to be used in the
constructor, the index notation must be selected.

The index notation must be selected if the string identified by the
wildcard “*” is to be duplicated. For example:
“<n><n>" must be specified instead of “**”,

The wildcard * can also be an empty string. Note that if multiple asterisks
appear in sequence (even with further wildcards), only the last asterisk
can be a non-empty string, e.g. for “****" gr “*/[*",

Valid names must be produced by the constructor. This must be taken
into account when specifying both the constructor and the selector.

Depending on the constructor, identical names may be constructed from
different names selected by the selector. For example:

“Al*” selects the names “A1” and “A2”; the constructor “B*” generates
the same new name “B” in both cases.

To prevent this from occurring, all wildcards of the selector should be
used at least once in the constructor.

If the selector ends with a period, the constructor must also end with a
period (and vice versa).

Table 3: Data type suffixes (Section 5 of 6)

U4303-J-2125-4-7600

25

SDF command language

Preface

Suffix Meaning
with-constr | Examples:
(contd.) -
Selector Selection | Constructor New name
All* AB1 D<3><2> D1
AB2 D2
A.B.C D.CB
C.<A.C>/<D,F> |C.AAD G.<1>.<3>.XY<2> G.A.D.XYA
C.ABD G.A.D.XYB
C.BAF G.B.FXYA
C.BBF G.B.FXYB
C.<A:C>/<D,F> |C.AAD G.<1>.<2>.XY<2> G.A.AXYA
C.ABD G.A.B.XYB
C.BAF G.B.A.XYA
C.BBF G.B.B.XYB
A/IB ACDB G/XY/ GCXYD
ACEB GCXYE
AC.B cexy. b
A.CB G.XYC
1) The period at the end of the name may violate naming conventions (e.g. for fully-qualified
file names).
without Restricts the specification options for a data type.

-cat Specification of a catalog ID is not permitted.

-corr Input format: [[C]'][V][n]n.na[']

Specifications for the data type product-version must not include the
correction status.

-gen Specification of a file generation or file generation group is not permitted.

-man Input format: [[C]][V][InIn.n[']

Specifications for the data type product-version must not include either
release or correction status.

-odd The data type x-text permits only an even number of characters.

-sep With the data type “text”, specification of the following separators is not
permitted: ; = () <> ? (i.e. semicolon, equals sign, left and right paren-
theses, greater than, less than, and blank).

-user Specification of a user ID is not permitted.

-vers Specification of the version (see “file(no)”) is not permitted for tape files.

Table 3: Data type suffixes (Section 6 of 6)

26

U4303-J-2125-4-7600

Preface

ISP command language

1.5.2

ISP format

Statement format in the utility routines CONDMPPD, DPAGE, INIT, LMSCONYV,
PASSWORD, PDPOOLS, RFUPD, SODA, SPCCNTRL, TPCOMP2,VOLIN and SYSUPD.

Metacharacters are used in the representation of the statement formats and declarations
made which are described briefly below.

WRPASS Uppercase characters denote constants which must be input exactly as
shown.

programname Lowercase characters denote variables which are replaced with
current values on input.

YES An underscored word means that this is a default value which is

NO automatically used if no specification is made.

Braces are used to indicate alternatives, i.e. a specification must be
YES . .
NO selected from the values shown in the brackets. The alternatives are
written one below another.

{YES|NO} A vertical line between two adjacent specifications in braces also
means that these are alternatives from which the user must select one
value.

[1 Square brackets indicate optional specifications that can be omitted, in
which case the entire specification in the brackets must be omitted

() Parentheses are part of operands and must be input with them.

u Means a space (blank).

D2,ALL Commas separating operands must also be entered.

(filenamel),... 3 periods mean that the unit in front of the comma can be repeated

(vsnl, vsn2, ...) (possibly only up to a specified maximum value).

Table 4: ISP metasyntax

Format representation

Operation Operands

INCLUDE module

means that at least one space must be entered between the constants listed under
"Operation" and the specifications listed under "Operands". Where this is not the case,
another representation format is used which shows clearly that there are no spaces.

U4303-J-2125-4-7600

27

28

U4303-J-2125-4-7600

2 CONDMPPD
Protecting private disks against write access

Version: CONDMPPD V11.2A

In BS2000 it is not possible to protect a private disk against write access by setting a
hardware write-protect lock. For example, even straightforwvard OPEN INPUT processing
involves write operations, because statistical information is written into the F1 label every
time an open operation is performed.

PPD (Protected Private Disk) is a function that enables individual private disks to be
protected against write access in BS2000 and make them available only for read access.
This is implemented by means of a VSN list maintained in virtual memory: whenever a user
wishes to write to a private disk, this list is referenced in order to ascertain whether write
authorization is available for this disk. If not, attempts to write to the disk are rejected with
an error message, while system F1 label operations are simply suppressed. In the latter
case, this means that statistical information is not updated and is therefore only of limited
use.

The list can be dynamically updated in interactive mode from either the terminal or the
console; at present it can accommodate up to 576 entries. Write locks can be set or
canceled for each disk individually. In contrast to previous versions, it is no longer possible
to dispense entirely with a check of the VSN list.

The PPD function is activated by means of the CONDMPPD utility routine (CONnect Data
Management system Protected Private Disk).

U4303-J-2125-4-7600 29

Range of functions CONDMPPD

Range of functions

PPD is loaded into class 4 memory as a selectable unit; the connections to the BS2000
system modules affected by PPD are set up automatically.

The following files are required to load PPD:

CONDMPPD Loadable program phase that establishes the connection to PPD.
SYSLNK.PPD.112 Module library containing the PPD modules to be loaded.
SYSREP.PPD.112 REP file containing corrections carried out after the release of PPD.
SYSSSD.PPD.112 Subsystem declarations

SYSMSV.PPD.112 Message file

Key
112=version number

The CONDMPPD utility routine is called as follows:
/START-PROGRAM FROM-FILE=CONDMPPD

The operands CPU-LIMIT, TEST-OPTIONS, MONJV, RESIDENT-PAGES and VIRTUAL-PAGES of the
START-PROGRAM command are available for calling the routine, e.g. to monitor the program
run. For descriptions of these operands, see the START-PROGRAM command in the
"Commands, Volume 3" [3] manual.

The PPD function responds to the first program call with the message:

% BLSO500 PROGRAM ’*CONDMPPD’, VERSION *V11.2A° OF *1994-11-17" LOADED

% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991. ALL
RIGHTS RESERVED

% PPD0O002 PPD VERSION 11.2A00 LOADED

% PPDO003 ENTER ‘HELP’ FOR INFORMATION

% PPD0O004 °DMPPD’ INPUT EXPECTED. RESPONSE (<STATEMENT>=INPUT)

*

After each subsequent call it responds with the message:
PPD0002 PPD VERSION 11.2A00 ALREADY CONNECTED WITH SYSTEM

The statements described below are then available for use. In addition, all the BS2000
commands permitted for MCLP, with the exception of CALL-PROCEDURE, LOAD-
PROGRAM, START-PROGRAM, RESTART-PROGRAM and HELP-SDF, can be executed
in interactive mode.

30

U4303-J-2125-4-7600

CONDMPPD

Statements

2.1 Statements

2.1.1 Overview of all CONDMPPD statements

Statement Meaning

ADD Add a volume serial number to the VSN list

CONSOLE Modify the routing code and switch the dialog to the console

DELETE Delete a volume serial number from the VSN list

END Terminate the program

HELP Output all statements with brief explanatory notes

LIST Output an overview of the whole VSN list or the status of a single VSN
OPTION Modify the status of a VSN

SYNOPSIS Output the number of accesses made to the VSN list

The BS2000/0SD-BC V2.0 version of PPD (=PPD V11.2A) can be loaded only under
Version 11.2A of CONDMPPD or later. Conversely, CONDMPPD V11.2A can run only
under BS2000/0SD-BC V2.0.

U4303-J-2125-4-7600

31

ADD statement CONDMPPD

2.1.2 Description of the statements

ADD
Add volume serial number to VSN list

The ADD statement enables a VSN to be added to the VSN list. If the VSN already appears
in the VSN list and is in use (by NDM) (i.e. the $AQUIR macro has been executed or the
system’s catalog ID is in the SVL, e.g. following the command /SET-DISK-PARAMETER
ASSIGN-TIME=*OPERATOR or /ADD-FILE-LINK LINK-NAME=linkname, FILE-NAME=file
on the disk, or the macro OPEN file) and the privilege is to be switched from YES to NO,
the following query appears:

PPDO017 VOLUME WITH VSN '(&00)' ALLOCATED WITH WRITE PRIVILEGE. CHANGE
OF PRIVILEGE? REPLY (Y=YES; N=NO)

A response of Y causes ADD to be executed. If there are still write accesses to the disk, or
to a file with an extent on the disk, these accesses are rejected. If a file with an extent on
the disk is still open, it will no longer be possibly to close it normally. In order to restore the
file, the command REPAIR-DISK-FILES FILE-STATUS=*ANY (FILE-NAME=file) must be
given from a system in which writing is permitted. The catalog entry can then be imported
into the system without write permission.

For files where BLKCTRL=NO applies, the last-page pointer (LPP) cannot be restored,
however.

In batch mode, the ADD statement is rejected under the above conditions.

Operation Operands

A Y[ES]
vsn[,PRV=]
ADD N[O]

vsn The specified volume serial number is entered in the VSN list.
Already existing entries are overwritten, i.e. the identifier "S" (cf. the
LIST statement) can be deleted.

PRV Specifies the required VSN status:
YES: write access permitted (status display W)
NO: write access prohibited (status display R)
The default value is NO.

32

U4303-J-2125-4-7600

CONDMPPD CONSOLE statement

CONSOLE
Switch dialog to console

The CONSOLE statement serves to modify the routing code and to switch the dialog to the
console. However, the latter function is possible only if CONDMPPD was called in batch

mode.
Operation Operands
on |
CON [rc]
CONSOLEJ
rc Specifies the routing code to be modified. If "rc" is not specified,

input/output is switched back to the console.

The main console is assigned the default routing code '*'.

DELETE
Delete volume serial number from VSN list

The DELETE statement enables volume serial numbers which do not have the status speci-
fication "S" (cf. the LIST and ADD statements) to be deleted from the VSN list. The DELETE
statement can only be issued for individual VSNs. The statement may be rejected if the disk
is currently being used (cf. "Rejecting statements" on page 38). In this case it must be
reissued later.

Operation Operands
D
DEL vsn
DELETE
vsn The specified volume serial number is deleted from the VSN list

unless it includes the status specification "S".

U4303-J-2125-4-7600 33

END statement

CONDMPPD

END
Terminate program

The END statement terminates CONDMPPD, i.e. the connection to PPD is cleared down.
However, PPD itself remains active.

Operation Operands

ool

HELP
Output all statements with brief explanations

The HELP statement serves to output brief explanations to any given program statement.

Operation Operands
H
HLP
HELP

LIST
Output overview of whole VSN list or status of one single VSN

The LIST statement outputs an overview of the entire VSN list or displays the status of an
individual volume serial number.

Operation Operands
L
LST [vsn]
LIST
vsn The status of the volume serial number specified by "vsn" is to be

output. The following outputs are possible:
W: write access permitted (WRITE)
R: write access prohibited (READ)

34

U4303-J-2125-4-7600

CONDMPPD

OPTION statement

If the VSN status is accompanied by the specification "S", this indicates that the entry was
made by the system itself and not by system administration (see "Access from several
processors in BS2000" below). A VSN entry with "S" cannot be removed by means of a
DELETE statement. If no volume serial number is specified, the entire VSN list is output.

OPTION

Modify VSN status

The OPTION statement enables the status of a volume serial number to be modified

(unless "S" is also specified). Any attempt to change the status of a VSN from "privileged"
to N while the disk is in use causes the CONDMPPD caller to be asked to confirm that the
privilege is really to be changed (see the ADD statement).

Operation

Operands

(0]
OPT
OPTION

Y[ES]
vsn,PRV=< N[O]
R

PRV=R[ESET]

vsn

PRV

The specification of a VSN is mandatory with PRV=Y/N. The status
modification refers to the specified VSN. If a VSN is specified
together with PRV=R, the latter entry is disabled (as if PRV=N had

been specified).

Describes the desired status modification as follows:

YES NO RESET
VSN specified Write access Write access Write access
permitted prohibited prohibited

VSN not
specified

Not permitted

Not permitted

Reset error flag

U4303-J-2125-4-7600

35

SYNOPSIS statement CONDMPPD

SYNOPSIS
Display number of VSN list accesses

In order to facilitate performance analysis, the number of VSN list accesses is counted. The
counters are 4 bytes in size and can be output by means of the SYNOPSIS statement. In
the event of a counter overflow, a message to this effect is displayed; the overflow can be
reset manually.

Operation Operands

s
{SYN } [RIESET]]
SYNOPSIS

RESET This operand specifies that all counter overflows are to be reset. If
no entry is made, the current status of all counters is displayed.

36 U4303-J-Z2125-4-7600

CONDMPPD Access from several processors in BS2000

2.2 Access from several processors in BS2000

Access to a common disk pool from a number of BS2000 processors is supported by the
SPD function (Shareable Private Disk). However, this type of access is also possible by
means of PPD, provided PPD is loaded on all of the processors in question. Unlike SPD,
however, PPD can be used solely to prevent the same disk being written to by several
processors at the same time. PPD does not synchronize access to the same file. For
example, if an ISAM file is updated by processor A and the same file is simultaneously
opened for reading by processor B, the processing job on processor B may be terminated
with errors as the index structures saved in this task no longer correspond to the existing,
updated structures.

If PPD is used for accessing the same disk pool from different processors, the VSN list on
each of these processors must be managed with extreme care. If write access is permitted
for a given VSN on one processor, it must be prohibited for this VSN on the other
processors. Otherwise "double allocations" may occur, i.e. several files may occupy the
same space on the disk, or catalog entries and files on the disk may be destroyed.

This increases the system administration overhead for managing the VSN lists on the
various processors. To reduce this workload PPD checks disks currently mounted on a
shareable device the first time they are accessed, so as to ascertain whether the VSN in
guestion has been entered in the VSN list. If not, the system enters this VSN in the VSN list
with the identifier "RS" (= read-only access) (automatic volume transfer).

A VSN marked as "RS" is automatically removed from the VSN list after it has been
released by the last user.

The volume serial numbers entered explicitly by means of the ADD statement are not
affected by this process.

If *"is specified in the DVC statement at system generation, it indicates that in addition to
the connection defined for a particular device, there is also a link from the device to a
second CPU (multiple connection). It is possible to define a device as an SPD device by
specifying "**' in the DVC statement. This means that any private disk mounted on the
device is to be "system-shareable" by default. The disk can be reserved by up to four
systems at the same time (see also the manuals "System Installation” [15] and "Introductory
Guide to Systems Support" [14]). PPD excludes such SPD devices from automatic volume
transfer. However, as the VSN list is checked without restrictions, it is possible to declare
write protection for private disks on SPD devices also.

As OPEN=INOUT is the default value for many programs, PPD permits this open mode.
Whenever a given file is processed it checks every action macro for write authorization; if it
encounters "write access prohibited", the macro is rejected.

U4303-J-2125-4-7600 37

Rejecting statements CONDMPPD

2.3

2.4

Rejecting statements

OPTION, ADD and DELETE statements should not be issued for a VSN if the disk is being
used, as they will be rejected if:

— the disk in question is being used by a user and execution of the statement would lead
to another USAGE mode or access protection (enter the NDM command SHOW-DISK-
STATUS in order to display the output fields "ACCESS" and "SVL-ALLOC")

— the disk is occupied for OPTION, ADD in a procedure in batch mode and execution of
the statement would lead to the withdrawal of an explicitly granted PPD write privilege.

This means that write protection can be defined only before opening a file on the appro-
priate private disk or before the preceding ADD-FILE-LINK command.

Files on two or more disks

PPD also supports files with extents on two or more disks.

However, there exists a restriction with regard to commands used to generate file catalog
entries or modify file attributes; namely that volume serial numbers specified in the second
or a later position in these commands cannot be assigned to (possibly shareable) disk
drives, with the result that a subsequent write protection may no longer be effective.

Volume serial numbers explicitly protected by means of ADD PRV=N are checked without
exception. Consequently it is advisable to dispense with the dynamic volume transfer and
always to specify the disks to be protected explicitly with ADD PRV=Y. For disks protected
in this way it is irrelevant whether the drive in use was generated in the DVC statement by
entering one (*) or two (**) asterisks.

If a file has extents on two or more private disks, then either all these disks should have PPD
write protection, or none of them.

/MODIFY-FILE-ATTRIBUTES SUPPORT=*PRIVATE-DISK(SPACE=
*RELATIVE(PRIMARY=ALLOCATION=< >))...,
OPEN QUTPUT, PAM, GETK etc.

are rejected even if only a single file extent (and even if it is empty) resides on a protected
disk. The sole exception is the /IDELETE-FILE statement, where empty extents are not
checked. If the catalog entry contains an empty extent on a write-protected volume, the file
must be copied before it can be made available for write access.

38

U4303-J-2125-4-7600

CONDMPPD Private disks with the same VSN

2.5

2.6

Private disks with the same VSN

PPD does not support the simultaneous operation of a number of private disks with the
same VSN, since system behavior would be unpredictable. If explicit write protection is
requested for one VSN, it will apply to all private disks with this VSN.

Messages

The messages of the CONDMPPD utility routine belong to message class PPD. You will find
the messages in "System Messages, Volume 2" [17].

PPD

PPD generates DMS error codes whenever attempts are made to write to protected disks.
Before the job is aborted with the appropriate error code, the user always receives the
message:

DMS0881 VSN vvvvvv PROTECTED BY PPD

The individual error codes supported by PPD are as follows:

ISAM: 0AA3
PAM: 0995

SAM: 0BB6
CMS: 033A
ALLOCATOR: 0443

OPEN: 0DBB
CATALOG: 0558

DELETE-FILE 0558

MOD-FILE-ATTR 0558

MOD-FILE-ATTR SUP=ANY-DISK(SPACE-=...) 0543

Explanation

MODIFY-FILE-ATTRIBUTES usually returns '0558'’, but its return code is ‘0543’ if
SPACE is modified.

U4303-J-2125-4-7600 39

Suppressing volume transfer CONDMPPD

If a VSN cannot be automatically transferred to the VSN list because there is a catalog
overflow, the following message is displayed:

PPD0882 DMPPD: VSN LIST OVERFLOW. PRIVATE DISK WITH VSN vvvvvv IS NOT
PROTECTED

This message appears only at the console and serves to inform the operator that the
disk "vvvvwv" currently mounted on a shareable device is not protected at present, and
that manual intervention is necessary.

2.7 Suppressing volume transfer

Automatic volume transfer to the VSN list by the system can be suppressed by means of an
optional REP record. Disks on shareable devices are then handled in the same way as
when the PPD function is not activated.

40 U4303-J-2125-4-7600

3 DPAGE
Output and modification of disk files

Version: DPAGE V11.2A

The DPAGE (display page) utility routine enables the user, as well as the system adminis-
tration staff and the systems programmer, to perform the following functions:

e Output files in PAM format to the SYSOUT file (i.e. the terminal in an interactive task,
and the printer in a batch task).

o Write files in PAM format to the SYSLST file (for high-volume printing).
« Modify data contained in a PAM page (2048 bytes) or in the PAM key (16 bytes).

e Only system administration is permitted to process volumes.

3.1 Support for multiple public volume sets (MPVS)

In a system with several pubsets, each pubset has its own TSOSCAT file catalog. Each of
these catalogs is uniquely identified by its catalog ID (catid), which is part of the file name.

A file name has the following format:
:catid:$userid.filename

catid Catalog identifier. This has a length of 1-4 characters and must be
enclosed in colons.

userid User identification under which the file is cataloged. It must be
preceded by a $ sign, has a maximum length of 8 characters and
must be concluded with a period.

filename Name of the file as entered in TSOSCAT. The file name component
(including all periods designating partial qualification) must not
exceed 40 characters.

U4303-J-2125-4-7600 41

Starting the program run DPAGE

A fully qualified file name, consisting of catalog ID, user ID and file name, may have a total
length of up to 54 characters:

1-4 characters Catalog ID

2 characters Colons as delimiters before and after the catalog ID

1 characters $ signifying the beginning of the user ID

8 characters User ID

1 characters Delimiter between user ID and file name

38-40 characters (Depending on the length of the catalog ID:) file name including all
periods for partial qualification

3.2 Starting the program run

The DPAGE routine can be started in two ways:

/START-DPAGE

START-DPAGE

VERSION = *STD / <product-version 6..10> / <product-version 4..8 without-corr> /
<product-version without-man>

,MONJV =_*NONE / <full-filename without-gen-vers>
,CPU-LIMIT = *JOB-REST / <integer 1..32767>

The VERSION, MONJV and CPU-LIMIT operands of the START-PROGRAM command are available
for calling the routine, e.g. to monitor the program run. For descriptions of these operands,
see the START-PROGRAM command in "Commands, Volume 3" [3].

/START-PROGRAM FROM—-FILE=$DPAGE

The CPU-LIMIT, TEST-OPTIONS, MONJV, RESIDENT-PAGES and VIRTUAL-PAGES operands of the
START-PROGRAM command are available for calling the routine, e.g. to monitor the program
run. For descriptions of these operands, see the START-PROGRAM command in "Commands,
Volume 3" [3].

42

U4303-J-2125-4-7600

DPAGE

DPAGE statements

3.3 Statements

3.3.1 Overview of the DPAGE statements

Operation Operands Meaning
/lbs-cmd] gl;ezr(r)la%t DPAGE g enter a
BKPT comman
Output a specific portion of
DISPLAY page one or more PAM pages to
pagel-page2 byte SYSOUT
D [< bytel-byte2 »]
page-$ K
*
EDT Call the file editor EDT as a
subroutine
@
HALT Terminate the DPAGE
routine
H
END
E
) Change the contents of a
MODIEY X'hex-string page (or the key) in an
nnX‘hex-string’ internal work area
M bytel ‘character-string’
[11~ _ 7l
Knl nn‘character-string’
C‘character-string’
nnC‘character-string’
byte2
[]
Kn2

U4303-J-2125-4-7600

43

DPAGE statements

DPAGE

.

INOUT
filename],]
J INPUT

. S[HAREABLE]
vsn',deviypel grycrusive] [

Open afile

Open a volume

vl

page

pagel-page2 byte
[< bytel-byte2]

page-$ K

A

Output a specific portion of
one or more PAM pages to
SYSLST

o]

page

Read a page into an
internal work area

e

Write the page currently in
the internal work area back
to the file

Formats

The following terms are used in the description of the statements:

page
byte,bytel,byte2

Kn

Decimal number of up to 7 digits

Decimal number of up to 4 digits in the range 1-2048

Exception

After opening 4K-formatted volumes, a decimal number in the

range 1-4096.

The letter K followed by an integer in the range 1-16

After opening a volume, the meaning of the page number to be specified in the statement
varies depending on the type of formatting:

— For files and 2K-formatted volumes, the page number refers to the physical half-page
number (PHP=2048 bytes).

— For 4K-formatted volumes, the page number refers to the logical 4K block (contains 2
physical half-pages, i.e. 4096 bytes).

44

U4303-J-2125-4-7600

DPAGE BKPT / DISPLAY statement

3.3.2 Description of the statements

BKPT or system statement

The BKPT statement, or alternatively a slash, can be used to interrupt DPAGE (i.e. to set a
breakpoint). Control is returned to DPAGE via the BS2000 command RESUME-
PROGRAM.

"/" may be followed by any BS2000 command.

Operation Operands
/[bs-cmd]
BKPT
bs-cmd BS2000 command.

DISPLAY statement

The DISPLAY statement outputs one or more pages, or parts thereof, to the SYSOUT file.

Operation Operands

DISPLAY
page
{D } pagel-page2 byte
[< bytel-byte2 »]
page-$ K

Page range:
page Specifies the page of the file (or the volume) to be displayed.
pagel-page?2 Specifies the range of pages which are to be displayed.

Note
pagel < page2

U4303-J-2125-4-7600 45

DISPLAY statement

DPAGE

page-$

Byte range:
byte
bytel-byte2

K

Example

DISPLAY 1,1-224

*0OPEN TEST
OPEN COMPLETED
*DISPLAY 1,1-224

Specifies that all pages, starting at "page" and continuing through to
the end of the file (or volume), are to be displayed.

Specifies that the page currently in the internal work area is to be
displayed.

Specifies the byte to be displayed.

Specifies the byte range to be displayed.

Note

bytel < byte2

Up to 3048 bytes can be used for byte2. For 4K-formatted volumes
up to 4096 bytes.

Only the PAM key is to be displayed.

PAGE:0000001 PAMKEY: 57739BDE 01000001 00000138 00010006
001 ——> (0001) 7CD7C602 02F8F5C1 D7C1DAC5 C4C9E340 @PF 9O0ATEST

011 —— (0017) 000057E8 000057E8 F8F7F0F2 F2F50001 Y Y870225
021 -—> (0033) 00000000 00000006 00000001 00000000

031 ——> (0049) 00010000 00000000 00000000 00000000

041 —— (0065) 00D4010D 00000000 000OOOOC 027CD7C6 M @PF
051 ——> (0081) ELFI9F04B C1FOF040 40400000 00000000 V90.A00

061 ——> (0097) 00000000 00000000 D7C1DAC5 C4C9E340 TEST
=071 ——> (0113) 40404040 40404040 40404040 40404040

091 -—> (0145) 40000000 00000000 00000000 00000000

0A1 ——> (01el) 00000000 00000000 40404040 40404040

0Bl ——> (0177) 40404040 FI1F9F8F7 00000000 00000000 1987

0C1 ——> (0193) 00000000 00000000 00000000 E5F2F100 V2l
0D1 ——> (0209) 00000000 00000000 6CD9D6DE E3404040 %ROOT

46

U4303-J-2125-4-7600

DPAGE EDT / END / HALT statements

EDT statement

The EDT statement calls the file editor EDT in full-screen mode. Control is returned to
DPAGE via H[ALT] or by hitting the K1 key. If @E was used to switch to line mode, return to
DPAGE is alternatively possible via @RETURN or @HALT. The data in the virtual memory

of EDT is released in this process.

EDT can take into account pages that, for example, were modified by means of the MODIFY
statement or written to a SYSLST file by means of the PRINT statement.

Operation Operands
EDT
@

END/HALT statement

This statement terminates DPAGE and closes the open file.

Operation Operands

HALT

H
END

U4303-J-2125-4-7600 47

MODIFY statement

DPAGE

MODIFY statement

This statement modifies the contents of the page currently in the internal work area (see
READ). The page in the file (volume) is not affected (see WRITE).

Operation Operands
MODIFY X'hex-string’
nnX‘hex-string*
M bytel ‘character-string’ byte2
[}] [< _ gl }]
Knl nn‘character-string’ Kn2
C'character-string’
nnC‘character-string’
First operand:
bytel Specifies the location in the PAM page (1-2048) where the text
specified in the second operand is to replace the original text. All
bytes before byte 1 remain unchanged.
Knl Specifies the position in the PAM key (1-16) where the text specified

Second operand:

X'hex-string*
nnX‘char.-string*
‘char.-string*

nn‘char.-string’
C‘char.-string*
nnC‘char.-string*

in the second operand is to replace the original text. All bytes before
Knl remain unchanged.

The default value is 1. The text specified in the second operand
changes the original contents of the page, starting with byte 1.

Specifies the text that is to replace the original text.

If byte 2 is not specified, the new text replaces the old text for the
length of the new text, starting with byte 1. "nn" is an integer which
specifies a repetition factor for the specified string.

The default value is 0, i.e. no text is changed.

The text must not extend beyond the PAM page or PAM key.

U4303-J-2125-4-7600

DPAGE MODIFY statement

Third operand:

byte2 Specifies the location in the original PAM page where the text which
is to be added to the new text begins, regardless of whether the new
text is shorter, longer or equally long.

Kn2 Specifies the location in the original PAM key where the text which
is to be added to the new text begins.

If the first operand is within the page (1-2048), the second operand must also be within the
page.
Modifications in the first 8 bytes of the PAM key will not be transcribed back to the file.

Example
The original page is assumed to contain:
'ABCCATDOGXX. ..
and the original key is assumed to contain:
"1234DEFGO. . ."

Example a
MODIFY 5, 'OW', 7
changes the entire page to:
"ABCCOWDOGXX....'

Example b
MODIFY 5, 'OW'

changes the page, as in example 1, to:
"ABCCOWDOGXX. .."

Example ¢
MODIFY , 3X'C8Cl1', 10
changes the page to:
"HAHAHAXX . . .

The page will be padded at the end with 3 bytes of hexadecimal zeros (X'’000000’).

U4303-J-2125-4-7600 49

OPEN statement DPAGE

Example d
M K16, X'00'
followed by
M ,,K16
sets the key to hexadecimal zero. This is equivalent to:
M K1, 16X'00'

The second method is faster.

OPEN statement

The OPEN statement permits an open file or volume to be closed and another one to be
opened.
Only system administration is authorized to open a volume.

Operation Operands

OPEN
INOUT

(o) filename,]
INPUT

o S[HAREABLE]
vsn',devtypel, E[XCLUSIVE]]

Opening afile

filename Fully qualified file name or name of a file generation group. The file
protection offered by DMS takes effect when the file is opened (e.g.
password, external access, read/write access).

INOUT The file is opened for reading and writing.

INPUT The file is opened for reading only. WRITE statements lead to a PAM

write error.

50

U4303-J-2125-4-7600

DPAGE

PRINT statement

Opening a volume

vsn'

devicetype

S[HAREABLE]
E[XCLUSIVE]

PRINT statement

The volume serial number, up to six characters long, of a volume
(either public or private) is enclosed in single quotes.

Defines the volume device type. See the appendix for possible
specifications.

The volume is opened as a public volume.
The volume is opened exclusively for one task.
Example

OPEN ‘ABCDEF‘,D3455
volume ‘ABCDEF" is opened if it is available and can be moun-
ted on a 3455 Disk Storage Unit.

This statement prints portions of a page or whole pages via the SYSLST file.

Operation Operands

pagel-page2

PRINT page
P

byte
[< bytel-byte2]
page-$ K

This statement is identical with the DISPLAY statement except for the fact that output is to
SYSLST. The meanings of the operands are given under the DISPLAY statement.

U4303-J-2125-4-7600

51

READ statement DPAGE

READ statement

This statement reads a page into the internal work area. The data read in thus exists twice:
once in the original PAM page and once in the internal work area. The MODIFY statement
can be used to modify the contents of the PAM page stored in the internal work area. With
the WRITE statement, the data from the internal work area may be written back to the
original area. The internal work area is cleared by means of the HALT statement.

Operation Operands
READ page
R
page Specifies the logical page number to be read. If no page is specified, the

next page is read.

Example

READ 7
READ 8
READ 3

This sequence of statements will cause the DPAGE routine to read pages 7, 8 and 3
consecutively. It should be noted that only one internal work area is provided.

52 U4303-J-Z2125-4-7600

DPAGE WRITE statement

WRITE statement

This statement writes the page currently in the internal work area back to the file (or
volume). The page may have been modified by a MODIFY statement.

Operation Operands
WRITE
w

Example

READ 1
MODIFY 10,X°FF°
WRITE

Page 1 is read to memory.
X‘FF* is assigned to the tenth byte.
After modification, page 1 is written back to the file.

Note on programming

DPAGE requires each volume opened to have PAM format, otherwise the results are unpre-
dictable. It should be noted that public volumes with BBS/BPBS format contain IPL (Initial
Program Load) and SVL (Standard Volume Label) records in physical pages 1, 2 and 3.

U4303-J-2125-4-7600 53

Messages DPAGE

3.4 DPAGE messages

CLOSE ERROR, ERROR-CODE: xxxx

Meaning
Error on closing a file or disk. xxxx is the DMS error code.

Response
For an analysis of the error code xxxx consult the manual "DMS Macros" or issue the
BS2000 HELP command XxxX.

ERROR IN EDT-CALL

Meaning
Program error in the EDT call. EDT could not be started properly.

INVALID BS2000-COMMAND

Meaning
The specified BS2000 command is invalid, or an error occurred in the CMD macro call.

INVALID COMMAND

Meaning
Invalid command, no action.

INVALID OPERAND, COMMAND REJECTED

Meaning
Invalid operand specification, command ignored.

NO PAMKEY AVATILABLE

Meaning
The file/disk has no PAM key.

OPEN COMMAND MUST BE GIVEN FIRST, COMMAND REJECTED

Meaning
Wrong statement sequence.

Response
Enter OPEN first.

OPEN ERROR, ERROR-CODE: xxxx

Meaning
Error on opening a file or disk. xxxx is the DMS error code.

Response
For an analysis of the error code xxxx, consult the manual "DMS Macros" or issue the
BS2000 HELP command Xxxx.

54 U4303-J-Z2125-4-7600

DPAGE Messages

OPEN VOLUME RESTRICTED TO SYSTEM ADMINISTRATOR

Meaning
Only the system administration is allowed to open a disk.

PAM-READ ERROR, ERROR-CODE: xxxx

Meaning
Error on reading a PAM page. xxxx is the DMS error code.

Response
For an analysis of the error code xxxx, consult the manual "DMS Macros" or issue the
BS2000 HELP command XxxX.

PAM-WRITE ERROR, ERROR-CODE: xxxx

Meaning
Error on writing a PAM page. xxxx is the DMS error code.

Response
For an analysis of the error code xxxx, consult the manual "DMS Macros" or issue the
BS2000 HELP command XxxX.

READ COMMAND MUST BE GIVEN FIRST. PAGE NOT DISPLAYED.

Meaning
DISPLAY was entered, but no page had been read in.

Response
Enter READ first.

READ COMMAND MUST BE GIVEN FIRST. PAGE NOT MODIFIED.

Meaning
MODIFY was entered, but no page had been read in.

Response
Enter READ first.

READ COMMAND MUST BE GIVEN FIRST. PAGE NOT PRINTED.

Meaning
PRINT was entered, but no page had been read in.

Response
Enter READ first, or enter PRINT with page specification.

READ COMMAND MUST BE GIVEN FIRST. PAGE NOT WRITTEN

Meaning
WRITE was entered, but no page had been read in.

Response
Enter READ first.

U4303-J-2125-4-7600

55

Messages DPAGE

REQUEST MEMORY ERROR

Meaning
Error on requesting memory via the REQM macro.

SEARCHED STRING NOT FOUND

Meaning
The desired string could not be found.

VOLUME NOT FOUND

Meaning
DPAGE could not find the specified volume.

Response
Enter correct volume serial number or contact system administration.

56 U4303-J-Z2125-4-7600

4 INIT
Initialization of magnetic tapes and floppy
disks

Version: INIT V11.2A

The INIT utility routine initializes magnetic tapes and 8" floppy disks.

As used in this section, the term 'magnetic tape’ means all types of magnetic tapes and
magnetic tape cartridges supported by BS2000.

For magnetic tapes, initialization means writing a volume label (VOL1) and, in some cases,
two file labels (HDR1 and HDR2 of a dummy file) at the start of the tape. For magnetic tape
cartridges, the labels are never compressed when written, even if write access with
compression was specified (volume type TAPE-C2 or TAPE-C4).

Initializing a floppy disk means formatting the volume and then writing a volume label
(VOL1) and a file label (HDR1 of a dummy file) on a particular track.

As of BS2000 V10.0, initializing floppy disks is a function of the SPOOL subsystem and
therefore requires SPOOL to be loaded. The INIT utility routine calls SPOOL when a floppy
disk is to be initialized.

Up to 16 volumes can be initialized with one statement.
A specific tape device or disk drive may be selected for any INIT or LIST function.

In order to prevent data being overwritten by mistake, each volume is checked for existing
labels before new labels are created. The contents of existing labels are output to SYSOUT
for scrutiny by the user. This means that the user has an opportunity to abort initialization.

Magnetic tapes are always checked for existing labels, unless the BS2000 tape monitor has
already recognized the volume as an empty tape and the INIT operand NEW has been
specified.

U4303-J-2125-4-7600 57

General description INIT

If a magnetic tape is checked and a VOL1, HDR1 or HDR3 label is found to contain an
access restriction (access pointer, release date, read or write password, read-only’ flag), a
message to this effect is output.

The functions 'read labels’ (LIST statement) and 'write new labels or tape marks’ (INIT
statement) are not executed unless the following conditions are satisfied:

— ifthe volume is a magnetic tape, the user must possess the "TAPE-ADMINISTRATION’
privilege

— if the volume is a floppy disk, the INIT utility must be running under the TSOS user ID.

The functions supported by the INIT utility routine are as follows:
1. For magnetic tapes:

— Write the volume header label VOL1 and the file header labels HDR1 and HDR2
(followed by two tape marks).

Contents of tape: VOL1-HDR1-HDR2-TM-TM

— Write only the volume header label VOL1 (followed by two tape marks).
Contents of tape: VOL1-TM-TM

— Write two tape marks at the start of the tape. No labels are written.
Contents of tape: TM-TM

— Dump the contents of VOL1, HDR1, HDR2 and HDR3 labels, if any, to SYSOUT or
console. New labels are not written.

— Format the magnetic tape, if allowed by the volume.
2. For floppy disks:
— Reformat and write the volume label VOL1 plus the file header label HDR1.

— Dump the contents of the VOL1 and HDRL1 labels, if any, to SYSOUT or console.
New labels are not written.

3. General:

— Activate or deactivate special functions. The setting remains valid for all INIT and
LIST statements for the duration of the program session or until reset.

— Output an outline description of statements and operands.

— Switch input/output to console after the program is started with an ENTER task.

58

U4303-J-2125-4-7600

INIT

General description

4. Security functions:

Specify a check volume serial number. A magnetic tape is not processed unless the
VSN in its VOL1 label tallies with the check VSN.

Erase the entire contents of the tape before writing new labels (DSE = data security
erase).

Note

In this context, erasure means that the magnetic tape is overwritten with a
device-dependent deletion pattern.

It may nevertheless still be possible to recover the information of earlier records
using special devices and technically complex procedures.

The only way to be absolutely certain than no unauthorized user reads any
residual information left on the magnetic tape is to physically destroy the
volume.

Abort initialization if a read-before-write check finds an access restriction.

Exclude special characters (characters not defined in DIN 66003) from use in
labels.

U4303-J-2125-4-7600

59

Operating modes INIT

4.1

41.1

Operating modes

The functions of the INIT utility routine can be executed in two operating modes.

Normal mode

This is the default operating mode when the INIT utility is started with the system command
/START-INIT.

START-INIT

VERSION = *STD / <product-version 6..10> / <product-version 4..8 without-corr> /
<product-version without-man>

,MONJV =_*NONE / <full-filename without-gen-vers>
,CPU-LIMIT = *JOB-REST / <integer 1..32767>

The VERSION, MONJV and CPU-LIMIT operands of the START-PROGRAM command are available
for calling the routine, e.g. to monitor the program run. For descriptions of these operands,
see the START-PROGRAM command in "Commands, Volume 3" [3].

To guarantee compatibility with earlier versions, the command
START-PROGRAM FROM-FILE=$INIT
is still supported.

Once the program is started, messages are output via SYSOUT and the system awaits
inputs from SYSDTA. The program runs as described in section 4.2, “Program run”, on page
63ff. Statements to the INIT routine can be

— entered at the terminal in interactive mode
— contained within a command procedure (reassignment from SYSDTA to SYSCMD)

— contained in an ENTER procedure (SYSDTA reassigned by default to SYSCMD).

60

U4303-J-2125-4-7600

INIT Operating modes

Examples

Command procedure:

/BEGIN-PROCEDURE
/ASSIGN-SYSDTA TO-FILE=*SYSCMD
/START-INIT

(INIT statements)
END

/ASSIGN-SYSDTA TO-FILE=*PRIMARY
/END-PROCEDURE

ENTER procedure:

/LOGON
/START-PROGRAM FROM—FILE=$INIT

(INIT statements)

END
/LOGOFF

U4303-J-2125-4-7600 61

Operating modes INIT

4.1.2 Console mode

In this operating mode, the INIT utility is controlled by means of a dialog which takes place
on the console. Before INIT statements can be entered via the console in interactive mode,
an ENTER job must be sent from the console to start the INIT program and OPTION CONS
used to direct outputs to the console.

/LOGON
/START-INIT
*0OPTION CONS
/LOGOFF

When the job is started, all messages and inputs are handled via the console, with the task
sequence number (TSN) being specified for each operation. The program runs as
described in section 4.2, “Program run”, on page 63.

The OPTION CONS statement is valid only within a ENTER job; it is always rejected in
interactive mode.

Examples

<tsn>.INIT TAPE-C2,VSN=MBKOO1
<tsn>.LIST T6250

<tsn> is the task sequence number.

62

U4303-J-2125-4-7600

INIT Program run
4.2 Program run
Typical logs are used below as examples to demonstrate how a magnetic tape and a floppy
disk are initialized.
Messages marked (OUT) are output to SYSOUT in normal mode, while those preceded by
(MSG) are always output to the console.
4.2.1 Program start

Example 1

(IN) /start—init (D)

(0UT) % BLS0523 ELEMENT *INIT-PRG’, VERSION ’V11.2R10” FROM LIBRARY
>:1SBZ:$TSOS.SYSLNK.INIT.112> IN PROCESSING

(OUT) % BLS0524 LLM ’INIT-PRG’, VERSION ’V11.2’ OF ’1995-04-10:10:19:12°
LOADED

(OUT) % BLS0551 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1994.
ALL RIGHTS RESERVED

(OUT) % NVIOOOO INIT VERSION V11.2 READY

(OUT) % NVIOOO1l ENTER COMMAND. (END = TERMINATE INIT) (2)
Example 2
(IN) /start-program $init (1)

(0UT) % BLS0500 PROGRAM *INIT®, VERSION ’V11.2* OF’1995-04-10" LOADED

(0UT) % BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1993.
ALL RIGHTS RESERVED

(0UT) % NVIOOOO INIT VERSION V11.2 READY

(OUT) % NVIOO01 ENTER COMMAND. (END = TERMINATE INIT) (2)

Explanation:
(1) The INIT routine is started.

(2) INIT reports ready and awaits statements.

U4303-J-2125-4-7600 63

Program run

INIT

4.2.2

Initializing a magnetic tape (example)

(OUT) % NVIOOO1 ENTER COMMAND. (END = TERMINATE INIT)

(IN) INIT TAPE-C1,VSN=BANDI,ERASE

(3)

(MSG) % NKVTO13 MOUNT TAPE '*SCRAT' ON DEVICE'T9'MONTIEREN;
(USE='SPECIAL',WR="UNDEF',TYPE='TAPE-C1',
INIT T-C1,VSN=BAND1).
(ETX = YES; MN; N = NO)'?

(IN) OABC.T7

(4)

(OUT) % NVIOO03 LABELS ON TAPE(ISO7):

(OUT) % NVIOO004 VOL1 LABEL:
"VOLITAPEOL '
| 1 !
(OUT) % NVIOO04 HDR1 LABEL:
"HDR1BEISPIEL.DATEI TAPE010001000100010
"0 92104 92104 000000BS2000
(OUT) % NVIOO04 HDR2 LABEL:
"HDR2V8000102044 0 p '
‘ .C..04 '
(OUT) % NVIOO004 HDR3 LABEL:
"HDR3TS0S BEISPIEL.DATEI '
o 00 '

(5)

(OUT) % NVIOO07 OVERWRITE TAPE?
REPLY (YES=YES N=NO)
(IN) YES

(6)

(OUT) % NVI0208 DATA SECURITY ERASE STARTET
(OUT) % NVIO209 DATENSICHERHEITSLOESCHEN COMPLETED
(OUT) % NVIO210 INITIALIZATION OF TAPE'BANDL'

(7)

ON DEVICE 'T7' COMPLETED

(8)

(0UT) % NVIOO01 ENTER COMMAND. (END = TERMINATE INIT)

Explanation :

(9)

3) To initialize a magnetic tape, enter INIT with a magnetic tape volume type (in this

case, with data security erase).

(4) Message output via console requests the operator to mount the volume. Once the
volume is mounted (on device T9 in this case), the operator confirms by specifying
the task sequence number (TSN). If the volume is mounted on the device specified
in the MOUNT request, the mnemonic device name can be omitted.

(5) The volume is read and the labels, if any, are output.

If the labels are written in ISO7 code, the output includes a message to this effect.
In this example, the contents of the labels are spread over a number of lines and
are delimited by quotation marks. In normal use, the contents of the labels are

64

U4303-J-2125-4-7600

INIT

Program run

(6)

()

(8)

9)

output as a single string; blanks at the end of the string are not included.
If the data volume has no volume label (VOL1) or the label is invalid, explanatory
messages are issued instead of the labels.

Empty tape :
(OUT) % NVIO102 NO LABELS ON TAPE. TAPE EMPTY

Tape marks at beginning of tape :
(OUT) % NVIO103 NO LABELS ON TAPE. TAPE MARKS READ

Error when reading VOL1 label :
(OUT) % NVIO104 I/O-ERROR WHILE READING LABELS

This is followed by the question whether or not to overwrite the volume. This is the
last opportunity to prevent the volume being overwritten. If the answer is affirmative,
the word YES must be typed in full. For safety’s sake, abbreviations are rejected. All
other entries are interpreted as negatives.

If data security erase was requested, the data on the tape is erased. This procedure
can take several minutes, depending on the device and the volume; messages are
output to indicate the start and end of the process.

After deletion, the new labels are written to tape and a message is output indicating
that initialization is completed.

If initialization is unsuccessful, a message is output indicating the source of the
problem and initialization is aborted.

(OUT) % NVIO309 TAPE WITH VSN * * CANNOT BE USED.
INITIALIZATION ABORTED

The system prompts for the next statement.

U4303-J-2125-4-7600

65

Program run

INIT

4.2.3

Initializing a floppy disk

OUT) % NVIOOOl ENTER STATEMENT. (END = TERMINATE INIT)

(IN) INIT FD,VSN=DISKO1 (10)

(OUT) UNIT FOR FLOPPY DISK INIT: MN=D1 (1)

(OUT) IF READY: CONTINUE WITH (YES/NO)

(IN) YES

(OUT) LABELS ON FLOPPY DISK: (12)

(0UT) VOLIVSNOO1 OWN

(0UT) ERNAM 1 03 2

(OUT) HDR1 DATA 080 01001 74026

(oum) 01001

(OUT) OVERWRITE? (YES/NO) (13)

(IN) YES

(MSG) % SPS0433 INITIALIZATION OF VOLUME 'DISKO1'

STARTET (14)

(MSG) % SPS0431 INITIALIZATION OF VOLUME 'DISKO1'

COMPLETED

(OUT) LABEL-UPDATE STARTED (15)

(OUT) VOL1: DISKO1 WRITTEN ON MN=D1 (16)

(OUT) % NVIO001 ENTER STATEMENT. (END = TERMINATE INIT)

Explanation :

(10) The INIT statement is specified with 'FDISK’ as the volume type.

(11) If the user does not explicitly define a device (no entry for UNIT=), the operating
system suggests a free floppy disk drive. Once the user has inserted the floppy disk
to be initialized, he or she must confirm by entering 'YES'.

(12) The index track is read and the labels read are output. The labels are output in the
form shown above.

(13) Before initialization commences, the INIT routine asks whether or not to overwrite
the volume.

This is the last opportunity to prevent the data on the volume being overwritten.
If the answer is affirmative, the word YES must be typed in full. For safety’s sake,
abbreviations are rejected. All other entries are interpreted as negatives.

(14) A message informing the operator that the new labels are being written appears on
the console.

(15) Message informing the user that the labels are being updated.

66

U4303-J-2125-4-7600

INIT

Program run

4.2.4

4.2.5

(16) Message indicating that initialization has been successfully completed.
If initialization was not successful, a message indicating the source of the problem
is output (for example, if the device does not support double density and DEN=2
was specified), followed by a second message indicating that initialization is
aborted:

(OUT) WARNING (PRESENT DEN/SID)
(0UT) PROBLEMS (UNSUITABLE FD)

A message indicating unsuccessful initialization is output on the console:

(oum % SPS0432 VOLUME 'DISKO1' CANNOT BE USED DUE TO ERRORC(S).
INITIALIZATION TERMINATED ABNORMALLY

Program termination

(OUT) % NVIOO01 ENTER STATEMENT. (END = TERMINATE INIT)

(IN) END (17)
(OUT) % NVIOO1l PROGRAM INIT TERMINATED NORMALLY (18)
Explanation:

(17) The END statement is entered.

(18) The INIT routine is terminated and a message indicating correct termination is
output.

Problems in volume initialization

If an error occurs in the read-before-write check that precedes label updating, when data is
erased or when labels are updated, the device error handling system may output messages
to the console. These messages contain useful information indicating the source of the
error.

If a message requires an answer, the possible answers are shown in the message text. The
response must be entered via the console and must include the task sequence number. For
example, if the answer required is 'NO’, the following entry is required:

<tsn>.NO

<tsn> is the current task sequence number.

U4303-J-2125-4-7600 67

Entering statements INIT

4.3 Entering statements

INIT reads statements from the system file SYSDTA (by default, from the terminal in inter-
active mode) or from the console (in CONSOLE mode).

An INIT statement consists of the operation name (INIT, LIST, etc.) plus operands with
operand values, as applicable. If a statement requires more than one operand, the
operands are separated by commas. Blanks are not permissible between the operand and
the operand value or values.

An input line cannot consist of more than 72 characters. Excess characters are truncated
without warning. Leading blanks are ignored.

If necessary, an INIT statement can be continued on a continuation line or lines. A continu-
ation character (hyphen: ’-’) must be set at some point in the statement to indicate the
presence of continuation lines.

INIT then prompts for continuation of statement input:

(OUT) % NVIOO002 ENTER ADDITIONAL OPERANDS

All characters coming after a blank following the continuation character are ignored (line
comment). If characters other than blanks come immediately after a hyphen, the hyphen is
not recognized as the continuation character.

Leading blanks in a continuation line are ignored. The operands specified in a continuation
line are appended to the preceding line at the point at which the continuation character
occurs.

Even if it extends over a number of continuation lines, an INIT statement cannot consist of
more than 240 characters (including permissible blanks, excluding leading blanks and
character after a continuation character).

Example
Statement parts Comment
(IN) INIT 3 T6250,- INITIALIZE 3 TAPES
(IN) VSN= (VSNO1,- 1. VSN
(IN) VSNO2, - 2. VSN
(IN) VSNO3) , - 3. VSN
(IN) UNIT=A1 ON DEVICE Al

This is equivalent to the following input line:
INIT 3 T6250,VSN=(VSNO1,VSNO2,VSNO3),UNIT=A1

68 U4303-J-Z2125-4-7600

INIT

Outline description of statements

If an asterisk (*) appears in the first column of an input line, the contents of the line in
guestion are not evaluated. By this means, comments can be added to procedures in which
the INIT utility routine is called or to a tracer listing.

4.4 Outline description of INIT statements

INIT

Magnetic tapes :
Write the volume header label VOL1 and the file header labels HDR1 and HDR2
or write two tape marks. Optional formatting of the volume before writing new
labels is possible if the volume type permits it.

Floppy disks :
Reformat and write the volume label VOL1 and the file header label HDR1.

LIST

Output the contents of existing VOL1 and HDR1 labels, plus the contents of HDR2
and HDR3 labels if the case of magnetic tapes.

OPTION

Activate and deactivate special functions; the setting remains valid for all INIT and
LIST statements throughout the program session or until reset.

HELP

Output an outline description of statements and operands.

END

Terminate the routine.

U4303-J-2125-4-7600

69

Overview of all INIT functions INIT

45 Overview of all INIT functions

Magnetic tape functions

Operation Operands Meaning Page
INIT [nr] voltyp,VSN=vsnvalue Write new labels on a magnetic 72
tape

[LUNIT=mn] [ISO7]

[{Eﬁ‘,ﬁv} rown={ 1" 4

CHECK=vsn
[.ZERO][,FORMAT]
INIT [nr] voltyp,WTM Write two tape marks at the 72
beginning of tape
[LUNIT=mn]

REW CHECK=vsn
L RUN It NEW]

[LERASE][,FORMAT]

LIST [nr] voltyp Read and output labels on the 80
magnetic tape

[,VSN=vsnvalue]

[LUNIT=mn]

REW
L{RUN }]

70 U4303-J-Z2125-4-7600

INIT

Overview of all INIT functions

Floppy disk functions
Operation Operands Meaning Page
INIT [nr] FD[ISK],VSN=vsnvalue Reformat and write new labels on | 83
floppy disks
[LUNIT=mn] [,FEED]
[,OWN:{i‘ame 1[1SO7]
[, SEQ=sequence]
_ J seclength
[’LEN_{(recIength)
[, DEN=density][,SID=format]
LIST [nr] FD[ISK] Read and output labels on the 89
[LUNIT=mn] [,FEED] floppy disk
Program control
Operation Operands Meaning Page
OPTION Activate and deactivate optional 90
CONS functions
PROT
DIN
NOHDR
NONE
E[ND] Terminate the routine 94
Special functions
Operation Operands Meaning Page
HE[LP] Output an outline description of 94

permitted statements

U4303-J-2125-4-7600

71

Description of the individual functions INIT

4.6

4.6.1

Description of the individual functions

Statements for magnetic tapes

All the functions of the INIT utility routine that relate to magnetic tapes are described in this
section.

INIT - Initialize magnetic tape

The INIT statement in the form described below is used to define at least

— either the volume type (recording density and type) and the VSN (volume sequence
number)
— or the initialization mode 'write only tape marks’.

The user can also choose to define

— the number of volumes to be initialized

— a specific volume

— a specific device

— the code for the labels (ISO7 or EBCDIC)

— the way in which the volume is handled after initialization.

Before writing new labels, the INIT routine checks for existing labels. If labels can be read,
they are output so that they can be checked.

If OPTIONS CONS is selected, the labels are output to the console; if this option is not
selected, they are output to SYSOUT.

72

U4303-J-2125-4-7600

INIT

INIT statement for magnetic tape

Operation Operands
INIT
vsn
_J(vsnl,vsn2,...,vsn16) _[name
[no] voltyp, | (nitval) [LOWN=1 , IL.ZERO][ISO7]
WTM
[LUNIT=mn]
CHECK=vsn REW
[4 NEW 14 run (]

[, ERASE] [FORMAT]

Description of the operands

no

voltyp

Number of volumes to be initialized with this statement.

Permissible values: 1, 2, ..., 16.

Note

The operands 'no’ and 'voltyp’ must be separated by at least one

blank.

Defines the volume type, and thus also the recording mode.

Permissible values:

Volume type Volume type | Meaning
code
T1600 B2 9-track tape device, PE, 1600 bpi
TOP
T6250 B4 9-track tape device GCR, 6250 bpi
T9G
TAPE-C1 B5 18-track magnetic tape cartridge device
T-C1
TAPE-C2 B6 18-track magnetic tape cartridge device, large
T-C2 block, compressed
TAPE-C3 BB 36-track magnetic-tape cartridge device, large
T-C3 block

U4303-J-2125-4-7600

73

INIT statement for magnetic tape INIT

VSN

=vsn

Volume type Volume type | Meaning

code
TAPE-C4 BC 36-track magnetic tape cartridge device, large
T-C4 block, compressed
TAPE-C5 Device reserved
TAPE-CS1 BA Magnetic tape cartridge, 155 Mbytes streamer,
T-CS1 only for mainframe with bus peripherals
TAPE-V1 B9 Video tape, only for mainframe with bus periph-
T-V1 erals

There is no default value for this operand; the value must always be
specified by the user.

Volume serial number which is to be entered in the VOL1 label (no default).
If two or more volumes are to be initialized with a single statement, the user
must specify either a corresponding number of VSNs or an initial value.

Single volume serial number.

A single volume is to be initialized. Consequently, the “no” operand must be
either 1 or not specified.

Permissible values:
Max. 6 characters (A..Z, 0..9, #,$,@).

The special characters #,$,@ are permitted by INIT but must not be used in
labels conforming to DIN 66029, DIN 66003. If OPTION DIN is active, these
special characters are rejected.

= (vsnl,vsn2,...,vsn16)

= (initval)

Two or more volumes are to be initialized with the specified VSNs.
The number of VSNs must tally with the value specified for the “no” operand.

Permissible values: each value must be a valid VSN (see above).

Two or more volumes, beginning with the VSN initval, are to be initialized.
After every successful initialization, the VSN is automatically incremented
by 1.

The number of volumes must be specified in the “no” operand.

Permissible values:

initval must be a valid VSN and must contain at least one decimal digit. The
number specified as the initial VSN is read from left to right. The initial value
of the VSN to be generated is the first sequence of decimal digits found. If
initval contains more than one sequence of digits separated by other
characters (e.g. letters), only the string of digits furthest left is used as the

74

U4303-J-2125-4-7600

INIT

INIT statement for magnetic tape

WTM

UNIT = mn
CHECK=vsn
NEW

initial value. The number of digits in the initial value identified in this way
must also be able to accept the highest VSN; if it cannot, the statement is
rejected.

Examples

The statement INIT 5 T9G,VSN=(A12B12) initializes volumes with
the VSNs A12B12, A13B12, A14B12, A15B12 and A16B12.

The statement INIT 16 T9G,VSN=(A1B) is rejected, because only
single-digit decimal numbers can be formed.

The existing VSN is to be used.
If the volume does not have a readable VOL1 label with a valid VSN, a
message to this effect is output and no new labels are written.

Write two tape marks at the beginning of tape.
No labels are written.

Mnemonic device name for seizure of a particular device. A volume is to be
mounted on the specified device.

Unsuitable devices, i.e. devices that cannot process volumes of the
specified type, are rejected.

Specifies a check volume serial number.

A volume is not processed unless the VSN in the VOL1 label tallies with the
specified VSN. This mechanism prevents the wrong tape from being
overwritten by mistake.

If the CHECK operand is specified and the requested volume is already
mounted on the correct device, no MOUNT request is sent to the operator
and the volume is initialized immediately.

Permissible values:
Max. 6 characters (A..Z, 0..9, #,$,@).

The special characters #,$,@ are permitted by INIT but must not be used in
labels conforming to DIN 66029, DIN 66003. If OPTION DIN is active, these
special characters are rejected.

Restrictions

CHECK can be specified only if not more than one volume is to be
initialized with this statement (operand no=1 or not specified).

The effect of this operand depends on whether the tape already contains
data or if it has been recognized as empty by the tape monitor of the
operating system. If the tape is empty , both the read-before-write check of
the labels and the OVERWRITE query are suppressed.

If a tape already contains data, the read-before-write check of the labels is
implemented without error handling.

U4303-J-2125-4-7600

75

INIT statement for magnetic tape INIT

REW

RUN

ERASE

FORMAT

If the NEW operand is not specified, INIT always attempts to read existing
labels. This incorporates full error handling if the tape monitor of BS2000
has not already recognized the tape as empty during mounting. For safety’s
sake, INIT attempts to read without error handling in this event.

Specifies that the magnetic tape is to be rewound after initialization but not
unloaded.
If a single volume is initialized, REW is the default.

Specifies that the magnetic tape is to be rewound and unloaded after initial-
ization.

If two or more volumes are to be initialized with a single statement (operand
no=2..16), RUN is the default value.

All the data on the magnetic tape is to be erased before the labels are
updated.

Note

Depending on the device and the volume, this procedure may take
several minutes.

If this operand is not specified, only the new labels are written at the
beginning of the tape and the logical end of tape is marked by means of two
tape marks. The original contents of the tape behind these marks, however,
is retained, and under certain circumstances it may still be readable (see
note under "Security functions" on page 59).

If INIT can read a valid VOL1 label, this label is retained after erasure. If not,
everything from the beginning of tape onward is erased.

The volume is formatted, if the volume type and the device permit this. If not,
an explanatory message is displayed, the operand is ignored and the initial-
ization procedure continues.

Note

It may take several minutes to format a volume.

The following operands are valid only if labels are to be written, i.e. if the WTM operand is

not specified.
OWN

= name

Valid only if WTM is not specified. Name of the owner to be entered in the
VOL1 label.

Name to be entered in the VOL1 label.

Permissible values:
Max. 8 characters (A...Z,0...9, #, $, @, ., -)

76

U4303-J-2125-4-7600

INIT

INIT statement for magnetic tape

ZERO

ISO7

Default value:
Blanks are entered if nothing is specified.

If an owner’s name already exists in the VOL1 label, it is to be transferred to
the new VOL1 label. If the volume does not have a legible VOL1 label with
a valid owner’s name (blanks are also a valid name), a message to this
effect is output and no new labels are written.

In the VOLL1 label (byte 11), the printable character 0 is entered as the
access flag. If this operand is not specified, a blank is entered as the access
flag.

The labels are to be written in ISO 7-bit code.

Examples for writing labels

Example 1

Initializing a magnetic tape (specifying minimum parameters):

INIT T9G,VSN=VSNOO1

Example 2

Initializing

three magnetic tapes

with one statement

with explicitly specified VSNs

with special characters in the VSNs:

INIT 3 T6250,VSN=(VSN#00,VSN$00, VSN@OO)

Example 3

Initializing

8 magnetic tape cartridges
with one statement
with consecutive VSNSs:

INIT 8 T-C3,VSN=(VSNOO1)
The VSNs assigned to the volumes are VSNO001, VSNO002, ...,VSNO008.

U4303-J-2125-4-7600

77

INIT statement for magnetic tape INIT

Example 4
Initializing
— avirgin magnetic tape cartridge
— on a specified device (with mnemonic name M1):

INIT TAPE-C2,VSN=MBKO1,UNIT=MI1,NEW

Example 5
Initializing
— a particular magnetic tape (with volume serial number VSN001)
— on a particular device (with mnemonic name T1)
— InISO 7-bit code
— unloading it after initialization
— with entry of an owner identifier

— with data security erase
— with entry of '0’ as access code:

INIT T1600,VSN=TAPEO1,CHECK=VSNOO1,UNIT=T1,IS07,RUN,—-
OWN=RZ#A0001, ERASE, ZERO

Example 6
Initializing
— A magnetic tape cartridge of type TAPE-C5
— A preceding format operation
INIT TAPE-C5,VSN=MBKOO7, FORMAT

78 U4303-J-Z2125-4-7600

INIT

INIT statement for magnetic tape

Examples for writing two tape marks

Example 1

Writing two tape marks at the beginning of tape, specifying minimum parameters:

INIT T9G,WTM

Example 2

Writing two tape marks at beginning of tape

on three virgin magnetic tapes

with one statement:

INIT 3 T6250,WTM,NEW

Example 3

Writing two tape marks at the beginning of tape

on a magnetic tape cartridge
on a particular device (with mnemonic name M1)
and with data security erase:

INIT T-C2,WTM,UNIT=M1, ERASE

Example 4

Writing two tape marks at the start of tape

of a particular magnetic tape cartridge (with volume serial number VSN0O1)
on a particular device (with mnemonic name M1)

with data security erase

and unloading it after initialization:

INIT T-C2,WTM,UNIT=M1,CHECK=VSNOO1,RUN

U4303-J-2125-4-7600

79

LIST statement for magnetic tape INIT

LIST - Read and output magnetic tape labels

The LIST statement is used in the form described below to read and output volume labels.
The user can choose

— the number of volumes to be listed

— a particular volume

— and a particular device.

If OPTION CONS is set, the list is output to the console. If this option is not set, the list is
output to SYSOUT.

Operation

Operands

LIST

[no] voltyp

vsn
[VSN=< (vsnl,vsn2,...,vsn16) \]

(initval)

[LUNIT=mn]

REW
['{ RUN }]

Description of the operands

no
voltyp
VSN

For a description of this operand, see the INIT statement on page 72.
For a description of this operand, see the INIT statement on page 72.

The labels of the magnetic tape with the specified volume serial number are
to be output. To list two or more volumes with a single statement, the appro-
priate number of volume serial numbers or an initial value must be specified.

Default value:

If the VSN is not specified, a magnetic tape having any volume serial
number is requested.

In this way, it is possible to read the labels of an unknown magnetic tape.

Permissible values:

Max. 6 characters (A..Z, 0..9, #,$,@).

The special characters #,$,@ are permitted by INIT but must not be used in
labels conforming to DIN 66029, DIN 66003. If OPTION DIN is active, these
special characters are rejected.

80

U4303-J-2125-4-7600

INIT

LIST statement for magnetic tape

=vsn

Single volume serial number.

The labels of a single volume are to be output. If a single volume serial
number is specified, the value of the “no” operand must be 1 or “no” must
not be specified.

= (vsnl,vsn2,...,vsn16)

= (initval)

UNIT = mn

REW

RUN

The labels of the magnetic tapes with the specified volume serial numbers
are to be output. The corresponding volumes are requested in consecutive
order. The number of volumes must tally with the number specified for the
no operand.

The labels of multiple magnetic tapes beginning with the tape with the
volume serial number initval are to be output. Every time the labels of a
volume are read successfully, the volume serial number is automatically
incremented by 1. The number of volumes must be specified in the no
operand.

Mnemonic device name for seizure of a particular device. A volume is to be
mounted on the specified device.

Unsuitable devices, i.e. devices that cannot process volumes of the
specified type, are rejected.

Specifies that the magnetic tape is to be rewound after listing but not
unloaded.
If a single volume is listed, REW is the default.

Specifies that the magnetic tape is to be rewound and unloaded after listing.
If two or more volumes are to be listed with a single statement (operand
no=2..16), RUN is the default value.

U4303-J-2125-4-7600

81

LIST statement for magnetic tape INIT

Examples

Example 1

Outputting the labels of a single magnetic tape with any volume serial number (speci-
fying minimum parameters):

LIST T6250

Example 2

Outputting labels of three particular magnetic tapes with a single statement:

LIST 3 T1600,VSN=(TAPEO1,TAPEOZ,TAPEQ3)

Example 3

Outputting the records of 8 particular magnetic tape cartridges with a single statement:
LIST 8 T-C3,VSN=(VSN0OO1)

The volumes with the volume serial numbers VSN001, VSN002,...,VSNO0OS8 are
requested one after the other.

Example 4

Outputting the labels

— of a particular magnetic tape cartridge (with the volume serial number VSNO001),
— on a particular device (with the mnemonic name M1),
— and remove after initialization:

LIST T-C2,VSN=VSNOO1,UNIT=M1,RUN

82 U4303-J-Z2125-4-7600

INIT Statements for floppy disks

4.6.2 Statements for floppy disks

All the statements referring to floppy disks are described below.

INIT FD - Initialize floppy disk

The INIT statement is used in the form described below to format a floppy disk and write
new labels.

The user can choose to specify

— the number of volumes to be initialized

— a particular device

— the way in which the volume is to be handled after initialization
— the code for the labels (ISO7 or EBCDIC)

— the density, number of sides and sector length for formatting.

Before writing new labels, the INIT routine checks for existing labels. If labels can be read,
they are output so that they can be checked.

If OPTION CONS is selected, the labels are output to the console; if this option is not
selected, they are output to SYSOUT.

Operation Operands
INIT

vsn
(vsnl,vsn2,...,vsnl16)

= (initval)

[no] FD[ISK], VSN

[LUNIT=mn] [FEED]

[,OWN={fame 1 [ISO7]

[SEQ=sequence] [,LEN=J Seclength
(reclength)

[, DEN=density] [,SID=format]

U4303-J-2125-4-7600 83

INIT statement for floppy disks INIT

Description of the operands

no

FD[ISK]
VSN

=vsn

Number of volumes to be initialized with this statement.
Permissible values: 1, 2, ..., 16.
Specifies that a floppy disk is to be initialized.

Volume serial number which is to be entered in the VOL1 label (no default).
If two or more volumes are to be initialized with a single statement, the user
must specify either a corresponding number of VSNs or an initial value.

Single volume serial number.

A single volume is to be initialized. Consequently, the “no” operand must be
either 1 or not specified.

Permissible values:
Max. 6 characters (A..Z, 0..9, #,$,@).

The special characters #,$,@ are permitted by INIT but must not be used in
labels conforming to DIN 66029, DIN 66003. If OPTION DIN is active, these
special characters are rejected.

= (vsnl,vsn2,...,vsn16)

= (initval)

Multiple volumes are to be initialized with the specified VSNSs.
The number of VSNs must tally with the value specified for the no operand.
Permissible values: Each value must be a valid VSN.

Multiple volumes, beginning with the VSN initval, are to be initialized. After
every successful initialization, the VSN is automatically incremented by 1.
The number of volumes must be specified in the “no” operand.

Permissible values:

initval must be a valid VSN and must contain at least one decimal digit. The
number specified as the initial VSN is read from left to right. The initial value
of the VSN to be generated is the first sequence of decimal digits found. If
initval contains more than one sequence of digits separated by other
characters (e.g. letters), only the string of digits furthest left is used as the
initial value. The number of digits in the initial value identified in this way
must also be able to accept the highest VSN; if it cannot, the statement is
rejected.

The existing VSN is to be used.
If the volume does not have a legible VOL1 label with a valid VSN, a
message to this effect is output and no new labels are written.

84

U4303-J-2125-4-7600

INIT

INIT statement for floppy disks

UNIT = mn
FEED
OWN
= name
= *
ISO7

Two-character mnemonic device name for seizure of a particular device. A
volume is to be mounted on the specified device.

Unsuitable devices, i.e. devices that cannot process volumes of the
specified type, are rejected.

Once the floppy disk has been initialized, it is to be removed and the next
floppy disk loaded from the stack.

Restriction

Applicable only to devices connected via channels of type 2.
Name of the owner to be entered in the VOL1 label.
Name to be entered in the VOL1 label.

Permissible values:
Max. 8 characters (A...Z,0...9, #, $, @, ., -)

Default value:
Blanks are entered by default.

If an owner’s name already exists in the VOL1 label, it is to be transferred to
the new VOL1 label. If the volume does not have a legible VOL1 label with
a valid owner’s name (blanks are also a valid name), a message to this
effect is output and no new labels are written.

The labels are to be written in ISO 7-bit code.
Restriction
Possible only with FD3171.

SEQ=sequence

Specifies the sector sequence.

Permissible values:
Decimals 00 to 13

Default value:
If the SEQ operand is not specified, the default values are as follows:

Drive Default value
FD3171 03

andere 07
Restrictions

— The SEQ operand can be specified only if the default is used for the
operand LEN=seclength.
— 01 must be specified for volume interchange with non-SNI DP systems.

U4303-J-2125-4-7600

85

INIT statement for floppy disks INIT

LEN=seclength

Physical sector length to be selected when a floppy disk is formatted.

Permissible values:

Drive seclength (in bytes) Default value
Channel type 1:
FD3171 128 256 512 1024 128
256 512 1024 2048 with DEN=2 256
Channel type 2:
FD75407-2 128 256 512
256 512 1024 with DEN=2
Others 128 256 512 1024 128
Note

The sector length must be 128 bytes for data interchange with non-
SNI DP systems.

= (reclength)

DEN=density

Logical record length to be selected. This value specifies the maximum
usable number of characters per sector. The logical record length has no
influence on floppy disk formatting. The specified value is merely entered
right-justified in the HDR1 label (positions 23-27). Blanks are used as fillers
where characters are missing.

Example
LEN=(012) Entry : 012
Permissible values:

Minimum values: 1/01/001/0001/00001
Maximum values: 128/0128/00128

Default value:

If no sector length or LEN=128 is specified for single-density floppy disks,
the disks are formatted with a physical sector length of 128 bytes.

The default value ' 080’ is entered as the logical record length in the
HDRL1 label.

Desired density when a floppy disk is formatted.
Permissible values:

— 1 or S:single density (SINGLE)
— 2 or D: double density (DOUBLE)

86

U4303-J-2125-4-7600

INIT

INIT statement for floppy disks

SID=format

Examples

Example 1

Default value
If the DEN operand is not specified, single density is the default (DEN=1).

Restriction
Possible only for FD3171 and 75407-2 drives.

Specifies whether floppy disks are to be formatted as single-sided or
double-sided disks.

Permissible values:

— 1 orS:single-sided
— 2 or D: double-sided

Default value:
If the SID operand is not specified, the default value is

— single-sided formatting (SID=1) for DEN=1
— double-sided formatting (SID=2) for DEN=2.

Restrictions

Possible only for FD3171 and 75407-2 drives. The combination of
single-sided formatting (SID=1) and double density (DEN=2) is not
permitted.

Initializing a floppy disk (specifying minimum parameters):

INIT FD,VSN=VSNOO1

Example 2

Initializing

— three floppy disks

— with one statement

— with explicitly specified volume serial numbers

— with special characters in the volume serial numbers:

INIT 3 FDISK,VSN=(VSN#00,VSN$00,VSN@OO)

U4303-J-2125-4-7600

87

INIT statement for floppy disks INIT

Example 3
Initializing
— 8 floppy disks

— with one statement
— with consecutive archive numbers:

INIT 8 FD,VSN=(VSNOO1)
The volume serial numbers VSN001,VSNO002,...,VSNO0O08 are assigned to the volumes.

Example 4
Initializing
— one floppy disk
— on a particular device (with mnemonic name F1)
— InISO 7-bit code
— with a physical sector length of 512 bytes

— with double density
— double-sided:

INIT FD,VSN=DISKO1,UNIT=F1,IS07,LEN=512,DEN=2,SID=2

Example 5
Initializing
— one floppy disk
— with a logical record length of 64 bytes
— with a sector sequence of 5

— with entry of an owner’s name
— with automatic feed of another floppy disk:

INIT FDISK,VSN=DISK02,LEN=(0064),SEQ=05,0WN=RZ#A0001,FEED

88 U4303-J-Z2125-4-7600

INIT

LIST statement for floppy disks

LIST FD - Read and output floppy disk labels

The LIST statement in the form described below is used to read and output the labels of a
floppy disk.
The operator can choose to specify

— the number of volumes to be listed
— a particular device and
— the way in which the volume is to be handled after processing.

If OPTION CONS is set, the information is output to the console. If this option is not set, the
information is output to SYSOUT.

Operation Operands
LIST [no] FD[ISK]

[LUNIT=mn] [,FEED]

Description of the operands

no Number of volumes to be processed with this statement.
Permissible values: 1, 2, ..., 16.
FD[ISK] Specifies that the labels of a floppy disk are to be read and output.

UNIT = mn Mnemonic device name for seizure of a particular device. A volume is to be
mounted on the specified device.
Unsuitable devices, i.e. devices that cannot process volumes of the
specified type, are rejected.

FEED Once the floppy disk has been processed, it is to be removed and the next
floppy disk loaded from the stack.

Restriction

Applicable only to devices connected via channels of type 2.
Examples

Example 1

Outputting the labels of a single floppy disk (specifying minimum parameters):
LIST FD

U4303-J-2125-4-7600 89

control statement OPTION INIT

Example 2

Outputting the labels

of 8 floppy disks

with one statement

on a particular device (with mnemonic name F1)
with automatic feed of a new floppy disk:

LIST 8 FDISK,UNIT=F1,FEED

4.6.3 Control statements

OPTION - Activate and deactivate optional functions

The OPTION statement is used to activate and deactivate optional functions; the setting
remains valid for all subsequent INIT or LIST operations. The options are enforced until the
program is ended or until reset.

Operation Operands

OPTION

CONS
PROT
DIN
NOHDR
NONE

Description of the operands

CONS

PROT

Diverts inputs/outputs to the console once the program has been started
from the console by means of the ENTER job.

Restrictions

CONS is valid only within an ENTER job and is rejected in inter-
active mode.

Aborts initialization of a magnetic tape if the read-before-write check
discovers an access restriction.

Each of the following criteria is a valid access restriction:

90

U4303-J-2125-4-7600

INIT

control statement OPTION

DIN

NOHDR

NONE

— The access flag in the VOL1 volume label permits access to the volume
only by the owner (byte 11 in the VOL1 label contains neither '0’ nor '’
(space)).

— The access flag in the file label of the first file permits access to the file
only by the user (byte 54 in the HDR1 label contains neither '0’ nor '.’
(space)).

— The expiration date of the first file is not yet reached (bytes 48-53 in the
HDRL1 label).

— Theffirstfile is protected by a read and/or write password (bytes 57-64
in the HDR3 label).

— The first file is write-protected (byte 69 in the HDR3 label contains
a’'l).

In all the cases listed above, the labels are read and output, followed by a

message defining the situation and a prompt calling for another statement.

If the user wants to initialize the tape despite the access restriction, the

OPTION NONE statement must be used to revoke the restriction.

Excludes special characters that do not conform to DIN 66003 from being
used in labels. If the user wants to employ special characters (#, $, @) in
labels nevertheless, OPTION NONE must be used to revoke the restriction.

Initializes a magnetic tape with the VOL1 volume label only.

Once this option is activated, all subsequent initializations are implemented
without HDR labels until the option is reset. In order to resume initialization
with the HDR1 and HDR2 labels, OPTION NONE must be used to revoke
the NOHDR setting.

Resets all options.
Note
Option CONS cannot be reset.

U4303-J-2125-4-7600

91

control statement OPTION

INIT

Examples
Example 1
OPTION PROT
(OUT) % NVIOOO1l ENTER COMMAND (END = TERMINATE INIT)
(IN) OPTION PROT
(OUT) % NVIOO01 ENTER COMMAND (END = TERMINATE INIT)
(IN) INIT T-C4,VSN=TESTO1
(OUT) % NVIO003 LABELS ON TAPE
(OUT) % NVIOOO04 VOL1 LABEL:
'VOL1DAR15K '
I 11
(OUT) % NVIOO004 HDR1 LABEL:
"HDR1V11.TEST-R.TXT. TEDAR15K0001000100010'
"0 92104 92107 000000BS2000
(OUT) % NVIO101 EXPIRATION DATE OF FIRST FILE NOT YET REACHED
(OUT) % NVIOO04 HDR2 LABEL:
"HDR2V8000102044 0 p '
' .C..04 '
(OUT) % NVIO004 HDR3 LABEL:
"HDR3TSOS V11.TEST-R.TXT.TESTDATEI.T- C'
4 00
(OUT) % NVI0201 TAPE PROTECTED.
INITIALIZATION REQUEST REJECTED
(OUT) % NVIO001 ENTER COMMAND (END = TERMINATE INIT)
Explanation:
(@D)] OPTION PROT is set.
(2) A magnetic tape cartridge is to be initialized.
3 The labels of the volume are output. The expiration date of the first file on the
volume has not yet been reached (bytes 48-53 of the HDR1 label).
(4) A message to this effect is output.
(5) No new labels are written. Initialization is aborted.

(1)

(2)
(3)

(4)

(5)

92

U4303-J-2125-4-7600

INIT control statement OPTION

Example 2

OPTION DIN

(OUT) % NVIOO01 ENTER COMMAND (END = TERMINATE INIT)

(IN) OPTION DIN (D)
(OUT) % NVIOO01 ENTER COMMAND (END = TERMINATE INIT)

(IN) LIST T9G,VSN=T#3@ (2)
(OUT) % NVIO405 INVALID OPERAND VALUE ',VSN=T#'

(OUT) % NVIO001 ENTER COMMAND (WND = TERMINATE INIT)

(IN) INIT T9G,VSN=DAR10A,OWN=TEST#$@ (3)
(OUT) % NVIO405 INVALID VALUE ',OWN=TEST#'

(0UT) % NVIOOO1 ENTER COMMAND (END = TERMINATE INIT)

Explanation:
(1) OPTION DIN is set.

(2) The labels of a tape with a volume serial number containing special characters are
to be output. This statement is rejected.

3) A tape is to be initialized and the owner’s nhame entered in the VOL1 label. The
name in question includes special characters. This statement is rejected.

Example 3:

OPTION NOHDR

(OUT) % NVIO001 ENTER COMMAND (END

TERMINATE INIT)

(IN) OPTION NOHDR (1)
(OUT) % NVIOO01 ENTER COMMAND (END = TERMINATE INIT)

(IN) INIT T9G,VSN=TAPEOI1,CHECK=TAPEO1 (2)
(OUT) % NVIOO03 LABELS ON TAPE (3)

(0UT) % NVIOO004 VOL1 LABEL: 'VOLITAPEOI...

(0UT) % NVIOO04 HDR1 LABEL: 'HDRI1 ..

(OUT) % NVIOO004 HDR2 LABEL: 'HDR2UOOOOI...

(OUT) % NVIOO007 OVERWRITE TAPE ? (4)
REPLY (YES=YES N=NO)

(IN) YES

(0UT) % NVIOO10 INITIALIZATION OF TAPE 'TAPEOL'
ON DEVICE 'TA' COMPLETED

(OUT) % NVIO001 ENTER COMMAND (END = TERMINATE INIT)

(IN) LIST T9G,VSN=TAPEO1 (5)

(OUT) % NVIOO03 LABELS ON TAPE : (6)

(0UT) % NVIOO004 VOL1 LABEL: 'VOLITAPEOI...

(OUT) % NVIOOO1 ENTER COMMAND (END = TERMINATE INIT)

U4303-J-2125-4-7600 93

control statement END / Special functions INIT

4.6.4

Explanation:

(1) OPTION NOHDR is set.

(2 A tape is to be initialized.

3) The VOL1, HDR1 and HDR2 labels on the tape are output.
4) The tape is reinitialized.

(5) The labels are to be output.

(6) The tape is initialized with a VOL1 label and no others.

END - Terminate the INIT session

The END statement terminates the INIT utility routine. The INIT subsystem is released for
unloading.

In command procedures, the INIT routine is ended even without an END statement as soon
as a BS2000 command is read (beginning with /) or the end of the file is reached.

Operation Operands
E[ND]

Special functions

HELP - Outline description of INIT statements

The HELP statement calls up outline information on all operations and operands in the INIT
utility routine.

If OPTION CONS is set, the information is output to the console. If this option is not set, the
information is output to SYSOUT.

Operation Operands
HE[LP]

94

U4303-J-2125-4-7600

INIT Structure of the labels

4.7 Structure of the labels

The general format of the labels complies with the provisions of the standards DIN 66029
(magnetic tapes) and DIN 66239 (floppy disks).

Magnetic tape labels are 80 characters long. Floppy disk labels are 128 characters long.

Only the structure and contents of those magnetic tape and floppy disk labels read or
written by INIT are described below.

The column headed 'Field contents’ contains the information that INIT writes into the field
in question (or the possible contents in the case of the HDR3 label).

Key to symbols

X: Current value
Blank

The other fields contain fixed defaults.

U4303-J-2125-4-7600 95

Volume label VOL1 for magnetic tapes INIT
4.7.1 Volume label VOL1 for magnetic tapes
Byte no. |Field name Length | Field contents
1-3 Label name 3 VOL
4 Label number 1 1
5-10 Volume serial number <vsn> 6 XXXXXX
11 Access flag <flg> 1 _or0
12-37 |-reserved - 26 e
38-51 |Ownerlabel <owner> 14 _XOXKXXXXX_
52-79 |-reserved - 28 e
80 Standard flag 1 1
\% @) ‘ 1 ‘ ‘ vsn ‘ zer ‘ _ _ _ _
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
_ _ _ _ _ _ _ _ _ owner
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
_ _ _ _ _ _ . _ o _ o _ oy
65 66 67 68 69 70 71 72 Y3 74 75 76 77 78 79 80

96

U4303-J-2125-4-7600

INIT

File label HDR1 for magnetic tapes

4.7.2 File label HDR1 for magnetic tapes

Byte no. |Field name Length | Contents
1-3 Label name 3 HDR
4 Label number 1 1
5-21 File name 17 e
22 - 27 | Volume serial number <vsn> 6 XXXXXX
28 - 31 | File section number 4 0001
32 -35 |File sequence number 4 0001
36 -39 |Generation number 4 0001
40 - 41 | Version number 2 00
42 - 47 | Creation date <credat> 6 XXXXXX
48 - 53 | Expiration date <reldat> 6 XXXXXX
54 Access flag 1 _
55-60 |Block counter 6 000000
61-73 |System code 13 e
74 -80 |-reserved - 7 e

Format of the creation date and expiration date : cyyjjj

c

yy
Ji

Examples

Code for century: blank=20th century, O = 21st century.

Year

Julian date (number of the day in the year).

July 3, 1992: 92185
January 10, 2002: 002010

U4303-J-2125-4-7600

97

File label HDR1 for magnetic tapes INIT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
_ _ _ _ _ vsn 0 0 0 1 0
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0 0 1 0 0 0 1 0 0 credat
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
reldat _ 0 0 0 0 0 0 _ _ _ _
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

98

U4303-J-2125-4-7600

INIT

File label HDR2 for magnetic tapes

4.7.3 File label HDR2 for magnetic tapes

Byte no. |Field name Length | Contents

1-3 Label name 3 HDR

4 Label number 1 2

5 Record format 1 U

6-10 Block length 5 00001

11-15 Record length 5 00001

16 - 50 - reserved - 35 e

51-52 Buffer displacement 2 00

53-80 |- reserved- 28 e

[2 | u | 0 o 1]0 o o o 1] _

1 2 3 4 5 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
_ _ 0 0 _ _ _ _ _ _ _ _ _ _ _ _
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

U4303-J-2125-4-7600

99

File label HDR3 for magnetic tapes INIT

4.7.4 File label HDR3 for magnetic tapes

The HDR3 label is never written as part of initialization. If it exists, however, it is output when
the labels are read.

Byte no. |Field name Length | Contents
1-3 Label name 3 HDR
4 Label number 1 3
5-12 Owner ID <uid> 8 XXXXCCCC
13-56 File name <fnam> 44 ccc...ccc
57 - 60 Read password <rpass> 4 cccce or
X' 00000000
61 - 64 Write password <wpass> 4 ccece or
X' 00000000
65 - 68 Expiration password <epass> 4 ccce or
X' 00000000
69 Access type <acc> 1 0 =read + write
1 =read only
70 - 80 -reserved - 11 e
IER uid
1 2 3 5 6 7 8 9 10 11 12 13 14 15 16
fnam

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

rpass wpass
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

epass ‘ acc ‘ _
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

100 U4303-J-Z2125-4-7600

INIT Volume label VOL1 for floppy disks

4.7.5 Volume label VOL1 for floppy disks

Byte no. |Field name Length |Field contents
1-3 Label name 3 VOL
4 Label number 1 1
5-10 Volume serial number <vsn> 6 XXXXXX
11 Access flag 1 _
12 - 37 - reserved - 26 e
38-51 Owner label <owner> 14 XXXXXXXX_
52-71 - reserved - 20 e
72 Side indicator <sid> 1 X
73-75 - reserved - 3 o
76 Length indicator <slid> 1 X
for sectors
77-78 Sequence indicator <seq> 2 XX
for sectors
79 - reserved - 1 _
80 Vendor label <vid> 1 X
indicator
81-128 - reserved - 48 e
Notes
(sid) = 1 : Default

3171 and 75407-2 Floppy Disk Units:
2: Double-sided, single density
M: Double-sided, double density

(slid) = _ or decimal number (depending on the LEN operand)
(vid) = W . Default
2 : 3171 Floppy Disk Unit: both sides of the floppy disk
are usable

U4303-J-2125-4-7600 101

Volume label VOL1 for floppy disks INIT
Vv (@] vsn _ ‘ _ _ _ _ _
1 2 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
_ _ _ _ _ owner _ _ _
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
_ _ _ _ _ _ _ ‘ sid ‘ _ _ _ ‘ slid ‘ seq _ | Id ‘
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 128

102

U4303-J-2125-4-7600

INIT

File label HDR1 for floppy disks

4.7.6 File label HDR1 for floppy disks

Byte no. |Field name Length | Contents
1-3 Label name 3 HDR
4 Label number 1 1
5 - reserved - 1 -
6-13 File name 8 DATA
14 -22 - reserved - [
23-27 Block length <len> 5 XXXXX
28 - reserved - 1 _
29 -33 Start of file 5 01001
34 - reserved - 1 _
35-39 End of area <end> 5 XXXXX
40 Record format 1 _
41 Swap indicator 1 _
42 Access flag 1 _
43 Write protect 1 _
44 Swap stage 1 _
45 File sequence marker 1 _
46 - 47 File section number 2 L
48 - 53 Creation date 6 |______
54 -57 Record length 4 o
58 -62 Pointer to first free record 5 |_____
63 Blocking indicator 1 _
64 File organization 1 _
65 - 66 - reserved - 2 L
67 -72 Release date 6 |______
73 File status indicator 1 _
74 - reserved - 1 _
75-79 End of file 5 01001
80-128 |-reserved - 49 e
Notes
len = Range between 00001 and 00128 or 1 and 128, entered right-justified

end =

with blanks as fillers. Default value: _ 080
Normally : 73026
for 7.540 mainframe: 74026

Blanks are entered for the creation and release dates. This means that these specifications
are of no significance. If values are entered here by someone else, the format is as follows:
yymmdd yy=year (00-99), mm=month (00-12), dd=day (00-31).

U4303-J-2125-4-7600

103

File label HDR1 for floppy disks INIT

len ‘
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

L] _ | end [T [-T-[- _[.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 5 57 58 59 60 61 62 63 64

65 66 67 68 69 Y0 71 72 73 74 75 76 77 78 79 80

104 U4303-J-Z2125-4-7600

5 JMU
Creating and maintaining the SIMSFILE
system file

Version: JMU V11.2A

The JMU (job management utility) utility routine allows you to create and manage the
SIMSFILE system file. The SIMSFILE contains the stream and job class definitions, which
are stored in this file in an internal table format. The utility can run in batch or interactive
mode.

At system initialization (BS2000 startup), the utility reads the file SIMSFILE and copies the
job class and stream definitions to the system.

In addition, JMU can be used to modify specific JIMS data while the system is running. It is
possible:

— to modify access rights with immediate effect
— to assign suitable job classes to new users
— to modify, delete and create job classes.

5.1 Job management

The function of job management is to manage jobs until they are started.

The job scheduling system, based on job classes, allows an administrative strategy to be
defined for the computer center in order to classify users and the system load.

Jobs that share certain characteristics are assigned to the same job class. This applies to
jobs in both batch and interactive mode. The relevant characteristics are specified by
system administration on defining the classes and determining which user IDs are to be
served by a given class.

It is also possible to define default classes, intended for users who have not explicitly
specified a class.

U4303-J-2125-4-7600 105

Job management

JMU

By setting a limit for each class and defining class priorities, the computer center can
improve control over access to the system and can achieve an optimum mix of jobs, e.g.

short-running vs long-running jobs, at any time of day.

By means of job classes it is possible to classify jobs, for example on the basis of CPU time
required, so as to favor short-running jobs over long-running ones. It is also possible for
system administration to assign privileges to certain users, such as the right to start

scheduled or repeat jobs.

A job management utility (JMU) is available for creating and maintaining the file for stream
and job class definitions. For a description of job streams, see the manuals

"Commands, Volumes 1 - 3" [1], [2], [3].

*
Control statements SYSOUT
ISYSFILE SYSDTA=JCGENFILE

SYSDTA Messages

JMU

Task File Table

>

routine

Create

Update
SIMSFILE

SIMSFILE b—

Link name
SIMSFILE

$TSOS.

File name
$TSOS.SIMSFILE +—

'S

SIMSFILE

$TSOS.
SIMSFILE

Figure 2: Creating and updating the SIMSFILE

106

U4303-J-2125-4-7600

JMU Execution of IMU

5.2 Execution of JIMU

JMU creates the ISAM file SIMSFILE. The file name is ascertained from the task file table
(link name is SIMSFILE) and can be defined with the command /ADD-FILE-LINK LINK-
NAME=SJMSFILE,FILE-NAME=filename. If the file already exists, IMU updates it.

The file need not necessarily exist before the ADD-FILE-LINK command is executed, or it
can exist and be empty. In these cases it is created by JMU.

The ADD-FILE-LINK command is not mandatory. If the link name SIMSFILE has not been
assigned, JMU processes the file with the file name SIMSFILE as before and automatically
assigns the link name SIMSFILE to it.

The user must not assign the link name SIMSFILE to a file which is not to be processed by
JMU.

The routine is called using the following command:
/START-PROGRAM FROM-FILE=$TSOS.JMU

The CPU-LIMIT, TEST-OPTIONS, MONJV, RESIDENT-PAGES and VIRTUAL-PAGES operands of the
START-PROGRAM routine are also available for calling the routine, e.g. to monitor the program
run. For descriptions of these operands, see the START-PROGRAM command in the
"Commands, Volume 3" manual [3].

JMU is controlled by means of control statements read from SYSDTA.
The file $TSOS.JCGENFILE can be used as the input file.

Since JMU reads its statements from SYSDTA, SYSDTA must first be assigned to
JCGENFILE. This is done with the command

/ASSIGN-SYSDTA TO-FILE=$TSOS.JCGENFILE
In batch mode SYSDTA is the spoolin file, in interactive mode the data terminal.

The SIMSFILE file is updated in the same session in which the control statements were
given. However, the updates do not have any effect until the next session.

The desired changes should be entered in a copy of the SIMSFILE, and the updated file
used in a session only when the changes have been verified as correct.

It is advisable to maintain a copy of the SIMSFILE, or a procedure for reconstructing it.
Note

There is a risk that it will not be possible to process the SIMSFILE file using the job
management systems of operating system versions later than the one used to create
the file. It is therefore recommended that a copy of the JMU control statements be
preserved for reconstructing the file in a new version of the operating system.

U4303-J-2125-4-7600 107

Execution of JIMU JMU

Conversion of the dialog interface to SDF

JMU uses the dialog interface SDF (see the manuals "Commands, Volumes 1 - 3" [1], [2],
[3] and "Introductory Guide to the SDF Dialog Interface"” [13]).

Syntax errors in interactive mode cause a correction dialog to be initiated with the user. This
is one of the major advantages of SDF. A correction dialog is not possible in batch and
procedure mode, but SDF does not allow the statement to be simply ignored. All the state-
ments following an incorrect statement are skipped until the system encounters a "//STEP"
or "//END" statement. Processing then continues with the statement (or command)
following the "//STEP" or "//END" statement. Message CMD0230 is output to inform the
user that statements have been omitted.

Constraints imposed by the SDF syntax file

When the SDF dialog interface is used, the JMU syntax definitions must be specified in a
syntax file (see "Introductory Guide to the SDF Dialog Interface" [13]). The statements
allowed for JIMU are identified in this syntax file by the program name "JMU" assigned to
them. If a user has defined statements under the name "JMU" for a particular program,
effective IMU syntax analysis is no longer possible.

Use of link names by JMU

JMU evaluates the link names SIMSFILE and SIMUPROC. If the SIMSFILE link name is
already defined in the task file table, the corresponding file is processed by JMU as the
SJIMSFILE. Otherwise, SIMSFILE is used as the file name.

When the CREATE-PROCEDURE-FILE statement is processed, the link name
SIMUPROC is evaluated and assigned to a file where necessary. This link name should
therefore only be used in the cases described under the CREATE-PROCEDURE-FILE
statement. Please refer to the section dealing with this statement.

Compatibility

The JMU version supplied with BS2000/0SD-BC V2.0 can process SIMSFILEs generated
by JMU versions from BS2000 V8.0 onward (i.e. from the first IMU version). Inconsis-
tencies may occur when a SIMSFILE is processed by a JMU from a version of BS2000
earlier than that under which the SISMFILE was created. The SIMSFILE link name is not
evaluated in JMU versions prior to 250 (old version grid).

108

U4303-J-2125-4-7600

JMU

Statements

5.3 Statements

A statement can extend over more than one line. A continuation character (hyphen) must
be entered to indicate that a continuation line follows. Only blanks may occur between the
hyphen and the end of the line.

5.3.1 Overview of all IMU statements

Statement

Meaning

CREATE-PROCEDURE-FILE

Create a SAM file containing a BS2000 procedure.

DEFINE-JOB-STREAM

Write a new stream definition into the SIMSFILE.

MODIFY-JOB-STREAM

Modify an existing stream definition.

DELETE-JOB-STREAM

Delete an existing stream definition.

DEFINE-JOB-CLASS

Write a new job class definition.

MODIFY-JOB-CLASS

Modify an existing job class definition.

DELETE-JOB-CLASS

Delete an existing job class definition.

GRANT-JOB-CLASS-
ACCESS

Grant or prohibit access to a job class for one or more users.

SET-JOB-CLASS-DEFAULT

Define default classes for users.

SET-MODIFICATION-MODE

Change the modification mode.

SHOW-JOB-STREAM

List the contents of stream definitions.

SHOW-JOB-CLASS

List the contents of job class definitions.

REMOVE-USER

Prohibit access to private job classes.

END

Terminate the routine.

U4303-J-2125-4-7600

109

CREATE-PROCEDURE-FILE statement JMU

5.3.2 Description of the statements

CREATE-PROCEDURE-FILE
Create SAM file containing BS2000 procedure

This statement can be used to create a SAM file containing a BS2000 procedure.

The procedure contains a /[START-PROGRAM $.JMU. When JMU is called by START-
PROGRAM during execution of the procedure, a new SIMSFILE system file is written. This
replaces and corresponds to the SIMSFILE being processed before the procedure started.

This statement can be used to save the status of an open SIMSFILE during processing by
means of BS2000 procedures.

The CREATE-PROCEDURE-FILE statement can be used to update the format of an
SIMSFILE. If an existing SIMSFILE is processed with a different version of JIMU, its format
does not change. An SIMSFILE is only formatted according to the JMU version used when
it is created as a new file.

However, as a result of the functional enhancements to JMU, a conversion of the SIMSFILE
format is only supported if the same JMU version is used to execute both the CREATE-
PROCEDURE-FILE statement and the BS2000 procedure.

For this reason the JMU version used to create the procedure is recorded for documentation
purposes in a/REMARK command. If a different kind of conversion is to be made, the IMU
statements in the procedure created may have to be altered in line with the operating
instructions for the JMU version to be called.

CREATE-PROCEDURE-FILE

FILE-NAME = *STD-FILE-LINK / <full-filename 1..54 without-gen-vers>
,OVERWRITE =*NO / *YES

FILE-NAME =
Name of the procedure file to be created. Write access to the file must be permitted.

FILE-NAME = *STD-FILE-LINK

The file name is to be read from the task file table (TFT). The link name, which must not be
changed by the user, is SIMUPROC. The user can thus define the file name before calling
JMU using the BS2000 command

/ADD=FILE-LINK LINK-NAME=SJIMUPROC, FILE-NAME=filename

If SIMUPROC is not defined as the link name, IMU uses the name SIMUPROC as the file
name.

110

U4303-J-2125-4-7600

JMU

CREATE-PROCEDURE-FILE statement

FILE-NAME = <full-filename 1..54 without-gen-vers>
A fully qualified file name. A file generation or file generation group must not be specified,
and the file name must not be given in the form "file(no)" (where no = version number).

OVERWRITE =
Allows or prevents an existing file from being overwritten. The file name is specified via the
FILE-NAME= operand.

OVERWRITE = *NO
Prevents an existing file from being overwritten. The original file remains unchanged. The
user receives the message

JMUO114 FILE ALREADY EXISTING. OVERWRITE PROHIBITED BY USER.
The procedure file is not created.

OVERWRITE = *YES
If a file of the same name already exists, it is to be overwritten and a procedure file created.

Structure of the created BS2000 procedure

The file name of the SIMSFILE to be created and the IMU load module to be called can be
specified as operands for the procedure. The top line (header) of the procedure is
structured as follows:

/PROC N, (&SIMSFILE=SJMSFILE, &JIMU=$TSOS.JMU)

Meaning of the operands:

&SJIMSFILE stands for the file name of the SIMSFILE to be created. The file named
&SJIMSFILE is deleted within the procedure so that JMU can create a new
one.

The &SJIMSFILE operand should not be modified in IMU versions prior to
250 (old version grid).
The default value is SIMSFILE.

&JIMU stands for the JIMU load module called in the procedure.
The default value is $TSOS.JMU

U4303-J-2125-4-7600 111

CREATE-PROCEDURE-FILE statement JMU

BS2000 commands within the procedure

The BS2000 commands used in the procedure can be divided into two groups:

1. Immediately after the procedure header there are a number of /REMARK commands
which contain information about the SIMSFILE to be created: the SIMSFILE file name
defined by the CREATE-PROCEDURE-FILE statement, the date and time this
statement was executed, the JMU version used and various characteristics of the
SIJMSFILE.

2. The commands needed to execute the procedure are:

/DELETE-FILE &SJIMSFILE

/SET-JOB-STEP "SJMSFILE MAY NOT EXIST"

/ADD—FILE-LINK LINK-NAME=SJIMSFILE, FILE-NAME=&SJIMSFILE
/ASSIGN-SYSDTA SYSCMD

/START-PROGRAM &JMU

(JMU statements)

/END—-PROCEDURE

JMU statements within the procedure

The JMU statements DEFINE-JOB-STREAM, DEFINE-JOB-CLASS, GRANT-JOB-
CLASS-ACCESS, SET-JOB-CLASS-DEFAULT and END are used to create the SIMSFILE.
The statements must be specified in a particular sequence within the procedure. First of all,
the stream definitions should be specified in alphabetical order. A DEFINE-JOB-STREAM
statement is required for each of these. Next, all job classes are defined, also in alphabetical
order. Here, the statements GRANT-JOB-CLASS-ACCESS and SET-JOB-CLASS-
DEFAULT may be required in addition to the DEFINE-JOB-CLASS statement to define the
user’s access rights for these classes. The JMU run is terminated by the END statement.

112 U4303-J-Z2125-4-7600

JMU DEFINE-JOB-STREAM statement

DEFINE-JOB-STREAM
Write stream definitions to SIMSFILE

This statement causes a new stream definition to be written to the SIMSFILE.

DEFINE-JOB-STREAM

NAME = <name 1..8>
,FILE = <full-filename 1..54> / *LIBRARY-ELEMENT(...)
*LIBRARY-ELEMENT(...)
[l LIBRARY = <full-filename 1..41>
,ELEMENT = <name 1..8>
,RUN-PRIORITY = 65 / <integer 30..255>
,DEFAULT = *NO / *YES
,START = *AT-LOAD / *BY-OPERATOR / *AT(...)
*AT(...)
0 TIME = <time 1..8>
,STOP = *AT-SHUTDOWN / *BY-OPERATOR / *AT(...) | *AFTER(...)
*AT(...)
O TIME = 00:00/ <time 1..8>
*AFTER(...)
[0 HOURS =00/ <integer 0..23>
,MINUTES = 00/ <integer 0..59>
,STREAM-PARAMETER = *NO / <c-string 1..127>

NAME = <name 1..8>

Name of the stream definition to be written to SIMSFILE.

A string of between 1 and 8 alphanumeric characters may be specified, starting with the
character A-Z, @ or #.

FILE = <full-filename 1..54>

Name of the ENTER file containing the job that is initiated during the stream start and that
activates the job scheduler.

The job scheduler can only process batch jobs.

FILE = *LIBRARY-ELEMENT(...)

LIBRARY = <full-filename 1..41>
File name of the library.

U4303-J-2125-4-7600 113

DEFINE-JOB-STREAM statement JMU

ELEMENT = <name 1..8>
The library element containing the ENTER file named above.

RUN-PRIORITY = 65 / <integer 30..255>
Specifies the starting priority to be assigned to the stream task under which the job
scheduler runs. A priority between 30 and 255 may be specified. The default value is 65.

DEFAULT = *NO / *YES

Specifies whether the stream involved is to be the default stream for the system. The default
value is NO. YES means the stream is to be the default stream for those job classes that
have specified that they wish to use the default stream.

START =
Specifies when the stream is to be started.

START = *AT-LOAD
The stream is to be started automatically when the system is loaded. AT-LOAD is the default
value.

START = *BY-OPERATOR
The stream must be started by the operator or system administration using the START-JOB-
STREAM command.

START = *AT(...)

The stream is to be started automatically during each session at the specified time. If a
session is started after the specified time, the stream can be started only within the next 30
minutes after the time specified. A start at a later point within the current session is not
possible.

TIME =00:00 / <time 1..8>
Time of day in the format hh:mm; i.e. hours and minutes only, seconds are ignored.

STOP =
Specifies when the stream is to be stopped.

STOP = *AT-SHUTDOWN
The stream is to be stopped when the system is shut down.

STOP =*BY-OPERATOR
The stream must be stopped by the operator or system administration by means of the
STOP-JOB-STREAM command.

STOP =*AT(...)
The stream is to be stopped automatically at the specified time (hh:mm see START=*AT...).

TIME =00:00/ <time 1..8>
Time of day in the format hh:mm; i.e. hours and minutes only, seconds are ignored.

STOP =*AFTER(...)
The stream is to be stopped after the specified time has elapsed.

114

U4303-J-2125-4-7600

JMU

DEFINE-JOB-STREAM statement

HOURS =00/ <integer 0..23>
HOURS= between 0 and 23 hours may be specified.

MINUTES = 00 / <integer 0..59>
MINUTES= between 0 and 59 minutes may be specified.

Note

If for any reason the system is shut down during the time between system start and
the time specified for stopping the stream, and the system is then restarted before
the time the stream was to be stopped, the stream is also restarted automatically.

STREAM-PARAMETER =

This operand can be used to define special scheduling parameters for the job scheduler in
free syntax.

The contents of this operand are not evaluated by the system.

However, the job scheduler involved must understand both the syntax and the meaning of
STREAM-PARAMETER = in order to be able to accept the scheduling parameters defined
there.

The job scheduler gets this information via the job scheduler interface. The job scheduler
interface provides, via a P1 interface, functions required by the job scheduler to carry out
its tasks (for further details, see "Introductory Guide to Systems Support" [14])).

STREAM-PARAMETER = <c-string 1..127>

Sequence of special parameters for the job scheduler. When the system is started up the
information contained in the parameters is transferred to internal tables, where it can be
accessed by the job scheduler.

The following parameters are defined for the default job scheduler:

. _[YEs _/NO _/NO
S-PAR= JOB-PRIORITY—{NO } , CPU-TIME—{YES } ,WAIT-TIME—{YES } ,

YES

1 -
JOB-QUOTA—{ } , LOGGING—{ NO

0<256 } , CATID-LIST=(catid1,...),

CAT-TIME=min'

U4303-J-2125-4-7600 115

MODIFY-JOB-STREAM statement JMU

STREAM-PARAMETER = *NO
Means that no special parameters are defined for the job scheduler. *NO is the default
value.

Notes

— This statement is rejected if a stream with the specified name is already contained
in the SIMSFILE.

— Only one default stream may exist in the system. An attempt to define more than
one default stream will be rejected.

— No more than 16 streams may be defined.

MODIFY-JOB-STREAM
Modify stream definitions

This statement enables an existing stream definition to be modified.

MODIFY-JOB-STREAM

NAME = <name 1..8>
,FILE = *UNCHANGED / <full-filename 1..54> / *LIBRARY-ELEMENT(...)
*LIBRARY-ELEMENT(...)
[l LIBRARY = <full-filename 1..41>
,ELEMENT = <name 1..8>
,RUN-PRIORITY = *UNCHANGED / <integer 30..255>
,DEFAULT = *UNCHANGED / *NO / *YES
,START = *UNCHANGED / *AT-LOAD / *BY-OPERATOR / *AT(...)
*AT(...)
[0 TIME = 00:00/ <time 1..8>
,STOP = *UNCHANGED / *AT-SHUTDOWN / *BY-OPERATOR / *AT(...) / *AFTER(...)
*AT(...)
O TIME = 00:00/ <time 1..8>
*AFTER(...)
[0 HOURS =00/ <integer 0..23>
,MINUTES = 00/ <integer 0..59>
,STREAM-PARAMETER = *UNCHANGED / *NO / <c-string 1..127>

116 U4303-J-Z2125-4-7600

JMU DELETE-JOB-STREAM statement

When changing the DEFAULT= operand you should bear in mind that there must never be
more than one default stream in the system. Any attempt to define more than one will be
rejected.

For the meanings of the operands, see the description of the DEFINE-JOB-STREAM
statement.

If the operand STOP=*AFTER(...) is modified such that just HOURS or just MINUTES is
specified, then a default value of 0 is used for the omitted MINUTES or HOURS operand.

DELETE-JOB-STREAM
Delete stream definitions

This statement enables a stream definition to be deleted from the SJIMSFILE.

DELETE-JOB-STREAM

NAME = <name 1..8>

NAME = <name 1..8>
Name of the job stream to be deleted.

Note

If job classes are assigned to the stream, the delete request is rejected.

U4303-J-2125-4-7600 117

DEFINE-JOB-CLASS statement

JMU

DEFINE-JOB-CLASS

Write job class definitions to SIMSFILE

This statement is used to write a new job class definition to the SIMSFILE or JMS database

and define its characteristics.

DEFINE-JOB-CLASS

NAME = <name 1..8>
,STREAM = *DEFAULT-STREAM / <name 1..8>
,CLASS-LIMIT = <integer 0..4095>
,CLASS-WEIGHT = <integer 1..9>
,CLASS-OPTIMUM = 0/ <integer 0..4095>
,JOB-PRIORITY =*NO / *PARAMETERS(...)
*PARAMETERS(...)
[0 DEFAULT = <integer 1..9>
,MAXIMUM =*NO / <integer 1..9>
,JOB-TYPE = *BATCH / *DIALOG
,TP-ALLOWED =*NO / *YES(...)
*YES(...)
[l CATEGORY =*IP/<name 1..7>
,DIALOG-ALLOWED = *NO / *YES(...)
*YES(...)
[0 CATEGORY =*DIALOG / <name 1..7>
,BATCH-ALLOWED = *NOQ / *YES(...)
*YES(...)

O CATEGORY = *BATCH / <name 1..7>
,START-ATTRIBUTE = *BATCH / *DIALOG / *TP
,RUN-PRIORITY = *PARAMETERS(...)

*PARAMETERS(...)

[0 DEFAULT = <integer 30..255>
,MAXIMUM = *NO / <integer 30..255>
,NO-CPU-LIMIT = *NO / *YES

continued O

118

U4303-J-2125-4-7600

JMU

DEFINE-JOB-CLASS statement

,CPU-LIMIT = *PARAMETERS(...)
*PARAMETERS(...)
[l DEFAULT = <integer 1..32767>
,MAXIMUM = *NO / <integer 1..32767>
,SYSLST-LIMIT = *PARAMETERS(...)
*PARAMETERS(...)
[0 DEFAULT =*NO-LIMIT/ <integer 0..999999>
,MAXIMUM = *NO / *NO-LIMIT / <integer 0..999999>
,SYSOPT-LIMIT = *PARAMETERS(...)
*PARAMETERS(...)
0 DEFAULT =*NO-LIMIT/ <integer 0..999999>
H ,MAXIMUM = *NQ / *NO-LIMIT / <integer 0..999999>
,START = *NO / *PARAMETERS(...)
*PARAMETERS(...)
[l DEFAULT =*SOON / *WITHIN(...)
*WITHIN(...)
[0 HOURS =0/ <integer 0..23>
H ,MINUTES = 00/ <integer 0..59>

H LALLOWED = list-poss(7): *AT-STREAM-STARTUP / *AT / *EARLIEST / *SOON /
O *LATEST / *WITHIN / *IMMEDIATELY

,REPEAT-JOB = *NO / *PARAMETERS(...)
*PARAMETERS(...)

[l DEFAULT =*NO / *AT-STREAM-STARTUP / *WEEKLY / *DAILY / *PERIOD(...)
*PERIOD(...)
0 HOURS =0/ <integer 0..23>
H H ,MINUTES = 00/ <integer 0..59>

H ,ALLOWED = list-poss(5): *NO / *AT-STREAM-STARTUP / *DAILY / *WEEKLY /
0 *PERIOD

,JOB-PARAMETER = *NO / <c-string 0..127>

U4303-J-2125-4-7600 119

DEFINE-JOB-CLASS statement JMU

NAME = <name 1..8>

Name of the new job class definition to be written to the SIMSFILE.

The name may consist of between 1 and 8 alphanumeric characters. The first character
must be a letter from the set A through Z or the character @ or #.

Note
The statement is rejected if a job class with the same name already exists.

STREAM = *DEFAULT-STREAM
The default stream defined in the DEFINE-JOB-STREAM statement.

Note

The default stream in the SHMSFILE must not be identical with that of the system.

STREAM = <name 1..8>

Name of the stream under which the job scheduler to which the job class is assigned runs.
The name must not be $SYSJS. The name of the stream must already have been defined
using the DEFINE-JOB-STREAM statement.

CLASS-LIMIT = <integer 0..4095>
Maximum number of jobs that may be started in the class.
"n" is a value between 0 and 4095.

Note

It is not advisable to specify a value of 0 except in order to prevent jobs from being
started following system startup. Otherwise, the job scheduler’'s performance could be
impaired. The specified value is an absolute limit, but it may be exceeded by express
jobs.

CLASS-WEIGHT = <integer 1..9>

Determines the start priority of the class relative to other classes whose jobs are waiting to
be started.

"n" is a value between 1 and 9, where 1 is the lowest and 9 the highest weight.

CLASS-OPTIMUM =

Specifies the optimum number of jobs that should run in the job class in order to achieve a
balanced job distribution within the system.

CLASS-OPTIMUM influences the sequence in which the class scheduler selects the job
classes in order to start the jobs.

CLASS-OPTIMUM = 0/ <integer 0..4095>

The number of jobs. Values from 0 up to the value specified in the CLASS-LIMIT operand
can be specified: 0 < n < CLASS-LIMIT.

The maximum number permitted is 4095 jobs.

120

U4303-J-2125-4-7600

JMU

DEFINE-JOB-CLASS statement

JOB-PRIORITY =
Specifies the job scheduling priority for batch jobs; this determines the priority of a job
relative to other jobs of the same class.

JOB-PRIORITY =*NO
This specification is required by the statement format; it has no significance, but must be
given if JOB-TYPE=DIALOG was specified.

JOB-PRIORITY = *PARAMETERS(...)

DEFAULT = <integer 1..9>

Default priority for the job class. 1 is the highest and 9 the lowest priority.

If the user has not specified a priority for a job, DEFAULT = <integer...> is used. If the
user has specified a priority no higher than MAXIMUM = <integer...>, the priority
specified by the user in the ENTER-JOB command applies.

The DEFAULT operand in the DEFINE-JOB-CLASS statement must not specify a
priority higher than that given in MAXIMUM, otherwise the statement is rejected with a
syntax error.

MAXIMUM = NO / <integer 1..9>

Maximum permitted priority for the job class.

If MAXIMUM=NO is specified, the job is given the priority specified for DEFAULT,
irrespective of the priority given by the user in the ENTER-JOB command.

JOB-TYPE =
Defines the type of job class.

JOB-TYPE = *BATCH
Specifies that the job class is to be a batch job class. This means that a job belonging to
this class must not be initiated by a LOGON command in interactive mode.

JOB-TYPE =*DIALOG
Specifies that the job class is to be an interactive job class. A job belonging to this class
must not be initiated by an ENTER-JOB command.

TP-ALLOWED =*NO / *YES(...)
Specifies whether the task attribute TP is permitted in a job class.

TP-ALLOWED =*NO

Means that the task attribute TP is not allowed in a job class. Jobs in this class must not be
started under this task attribute; switching to this task attribute by means of the TINF macro
or the MODIFY-TASK-CATEGORIES command is forbidden, unless it is permitted by the
JOIN entry.

U4303-J-2125-4-7600 121

DEFINE-JOB-CLASS statement JMU

TP-ALLOWED = *YES(...)

CATEGORY =*TP / <name 1..7>

A category name may be assigned to the task attribute TP. It may be the default
category name (TP) or a name freely defined by the user. In defining a name, the user
must observe the BS2000 naming conventions. The name must not consist of more
than 7 characters.

The standard category name SYS is not allowed.

The number of names defined by the user must not exceed 12.

If the database is updated, the corresponding default category name is used if the
specified category is unknown to the system.

DIALOG-ALLOWED =*NO / *YES(...)
Specifies whether the task attribute DIALOG is permitted in a job class.

DIALOG-ALLOWED = *NO

Means that the task attribute DIALOG is not permitted in a job class. Jobs in this class must
not be started under this task attribute; switching to this task attribute by means of the TINF
macro or the MODIFY-TASK-CATEGORIES command is forbidden, unless it is permitted by
the JOIN entry.

DIALOG-ALLOWED = *YES(...)

CATEGORY =*DIALOG / <name 1..7>

A category name may be assigned to the task attribute DIALOG. It may be the default
category name (DIALOG) or a name freely defined by the user. In defining a name, the
user must observe the BS2000 naming conventions. The name must not consist of
more than 7 characters. The standard category name SYS is not allowed.

The number of names defined by the user must not exceed 12.

If the database is updated, the corresponding default category name is used if the
specified category is unknown to the system.

BATCH-ALLOWED = *NO / *YES(...)
Specifies whether the task attribute BATCH is permitted in a job class.

BATCH-ALLOWED = *NO

Means that the task attribute BATCH is not permitted in a job class. Jobs in this class must
not be started under this task attribute; switching to this task attribute by means of the TINF
macro or the MODIFY-TASK-CATEGORIES command is forbidden, unless it is permitted by
the JOIN entry.

BATCH-ALLOWED = *YES(...)

CATEGORY =*BATCH / <name 1..7>

A category name may be assigned to the task attribute BATCH. It may be the default
category name (BATCH) or a name freely defined by the user. When defining a name,
the user must observe the BS2000 naming conventions. The name must not consist of
more than 7 characters. The standard category name SYS is not allowed.

122

U4303-J-2125-4-7600

JMU

DEFINE-JOB-CLASS statement

The number of names defined by the user must not exceed 12.
If the database is updated, the corresponding default category name is used if the
specified category is unknown to the system.

Note

At least one of the three operands must be specified; which one depends on the
value specified for the START-ATTR operand, and at least one of these must be
entered with YES.

If the START-ATTR operand is not specified, BATCH is assumed as the default
value. In that case, BATCH-ALLOWED=*YES must also be specified.

A category name must not have two different task attributes assigned. For example
BATCH-ALLOWED=*YES(CATEGORY=HUGO) and
DIALOG-ALLOWED=*YES(CATEGORY=HUGO) is ambiguous and therefore not
permitted.

START-ATTRIBUTE = *BATCH / *DIALOG / *TP

Defines the task attribute for the job. At the same time the value '=*YES’ must be specified
for the corresponding task attribute in the TP-ALLOWED, DIALOG-ALLOWED or BATCH-
ALLOWED operand, e.g. START-ATTRIBUTE = TP and TP-ALLOWED = *YES(...). If the
operand is omitted, BATCH is taken as the default.

RUN-PRIORITY =
Specifies the run priority with which a job is started.

RUN-PRIORITY = *PARAMETERS(...)

DEFAULT = <integer 30..255>

Default value for the job class.

Means that a job is given the priority specified by the user, providing it does not exceed
the maximum permitted priority.

If, however, the user’s JOIN entry indicates that a higher priority is permitted than that
specified in the MAXIMUM operand, the job may exceed the value of MAXIMUM.

The value may be between 30 and 255. DEFAULT must not give a priority higher than
MAXIMUM, otherwise the statement is rejected with a syntax error.

MAXIMUM = *NO / <integer 30..255>

Specifies the maximum permitted priority for the job class.

If MAXIMUM = *NO, this means that no maximum task priority is defined. A job is given
the priority assigned by the user providing it does not exceed the value in the user’s
JOIN entry. The default value is MAX=*NO.

NO-CPU-LIMIT = *NO / *YES

Specifies whether jobs in this class may run without a time limit (NTL).

NO means that jobs in this class must not run without a time limit (see the LOGON
command). NO is the default. If NTL=YES is specified in the JOIN entry for a user, that user
can run jobs without a time limit even when NO-CPU-LIMIT=*NO applies to the job class.

U4303-J-2125-4-7600 123

DEFINE-JOB-CLASS statement JMU

CPU-LIMIT =
CPU time that a job in this class may utilize.

CPU-LIMIT = *PARAMETERS(...)

DEFAULT = <integer 1..32767>
Default value for the job class.

MAXIMUM = <integer 1..32767>

Maximum permissible CPU time for the job class.

If a number is specified, this means that a job may utilize the CPU time requested by
the user providing it does not exceed the value specified for MAXIMUM.

The maximum CPU time that may be utilized for an account number depends on the
CPU entry in the JOIN file.

The value specified for DEFAULT must not exceed that specified for MAXIMUM,
otherwise the statement is rejected with a syntax error.

MAXIMUM = *NO
The job may utilize the CPU time specified in DEFAULT, irrespective of the CPU time
the user requested.

SYSLST-LIMIT =
Defines the number of lines for a job when output takes place via SYSLST.

SYSLST-LIMIT = *PARAMETERS(...)

DEFAULT = *NO-LIMIT / <integer 0..999999>

Default number of lines for the job class. *NO-LIMIT means that the number of lines is
not limited. The value specified for DEFAULT must not exceed that specified for
MAXIMUM, otherwise the DEFINE-JOB-CLASS statement is rejected with a syntax
error.

MAXIMUM =
Maximum number of lines permitted for the job class.

MAXIMUM = *NO
The job is assigned the permitted number of lines specified in DEFAULT, irrespective of
the number actually requested by the user.

MAXIMUM = *NO-LIMIT
There is no limit on the number of lines for a job in this class. The number specified by
the user always applies.

MAXIMUM = <integer 0..999999>
Means that the job is assigned the number of lines specified by the user, providing it
does not exceed the value specified for MAXIMUM.

SYSOPT-LIMIT =
Defines the number of lines (cards) for a job when output takes place via SYSOPT.

124

U4303-J-2125-4-7600

JMU DEFINE-JOB-CLASS statement

SYSOPT-LIMIT = *PARAMETERS(...)

DEFAULT = *NO-LIMIT / <integer 0..999999>
Default number of lines for the job class.

MAXIMUM =
Maximum number of lines (cards) a job is permitted to output to SYSOPT.

MAXIMUM = *NO
The job is assigned the permitted number of lines (cards) specified in DEFAULT,
irrespective of the number actually requested by the user.

MAXIMUM = *NO-LIMIT
There is no limit on the number of lines (cards) for a job in this class. The number
specified by the user always applies.

MAXIMUM = <integer 0..999999>
Means that the job is assigned the number of cards specified by the user, providing it
does not exceed the value specified for MAXIMUM.

START =
Assigns appropriate start options to job start requests.
START = *NO

This is a formal entry with no significance, except that it is required if the operand JOB-
TYPE = DIALOG is specified.

START = *PARAMETERS(...)

DEFAULT =

This is the default value assumed if a user has not requested a specific start type in the
ENTER-JOB command. The value defined for DEFAULT need not be listed under
ALLOWED (see below).

DEFAULT = *SOON
The job should be started as soon as possible. If several jobs have requested SOON,
the job priority determines which starts first.

DEFAULT = *WITHIN(...)
The job must be started within the time specified in hours and minutes.

HOURS =0/ <integer 0..23>
Is a value between 0 and 23 hours.
The default value is 0 hours.

MINUTES = 00/ <integer 0..59>
Is a value between 0 and 59 minutes.
The default value is 0 minutes.

U4303-J-2125-4-7600 125

DEFINE-JOB-CLASS statement JMU

ALLOWED =
Defines those values which the user may specify for the job class concerned in the
START operand of the ENTER-JOB command.

ALLOWED = *IMMEDIATELY
A job in this job class may be started immediately, even if it delays other jobs having
higher priority that were supposed to be started at this time.

ALLOWED =*SOON
Same meaning as DEFAULT = *SOON, see above.

ALLOWED = *AT
The job may be started on the specified date and precisely at the specified time (hour,
minutes) if possible.

ALLOWED =*LATEST
A job may be started at the latest by the specified date and time.

ALLOWED = *EARLIEST
A job may be started at the earliest at the specified date and time.

ALLOWED =*WITHIN
A job may be started within the specified time.

ALLOWED =*AT-STREAM-STARTUP / list poss(7)
A job may be started at the time the job scheduler is started.

Note

If an option is not specified under ALLOWED, it is not allowed unless the entry
concerned is *SOON or *WITHIN, defined under DEFAULT as the default value.
A further exception is ALLOWED=*IMMEDIATELY:

If the user has specified PRIORITY=([p], EXPRESS) or START=*IMMEDIATELY in
the LOGON, ENTER-JOB or MODIFY-JOB command, and EXPRESS is specified
in his JOIN entry, the job will be started immediately, even if ALLOWED=
*IMMEDIATELY is not specified in the user’s job class.

REPEAT-JOB =
Controls the frequency of repeat jobs at specific time intervals. This is ignored if JOB-TYPE
=*DIALOG is specified.

REPEAT-JOB = *NO
This is a formal entry with no significance, except that it is required if the operand
JOB-TYPE = *DIALOG is specified.

126

U4303-J-2125-4-7600

JMU

DEFINE-JOB-CLASS statement

REPEAT-JOB = *PARAMETERS(...)

DEFAULT =

This is the default value assumed if the user has made no entry for the frequency of job
repetition in the ENTER-JOB or LOGON command, i.e. has omitted the REPEAT-JOB
or REPEAT operand, or has specified REPEAT-JOB = STD or REPEAT = STD.

DEFAULT = *NO
Means that the job is not repeated.

DEFAULT = *AT-STREAM-STARTUP
Jobs belonging to this class are run again following each start of the job scheduler,
provided the user has requested this in the LOGON or ENTER-JOB command.

DEFAULT = *WEEKLY

Jobs in this class are started weekly.

The exact starting time depends on the START operand value in the ENTER-JOB
command.

DEFAULT = *DAILY

Jobs in this class are started daily.

The exact starting time depends on the START operand value in the ENTER-JOB
command.

DEFAULT = *PERIOD(...)
Jobs are repeated each time the specified time interval has elapsed.

HOURS =0/ <integer 0..23>
The time interval in hours may have a value between 0 and 23.

MINUTES = 00/ <integer 0..59>

A value between 0 and 59 minutes may be given.

The total time interval must be greater than 0. The exact start time depends on the
START operand value in the ENTER-JOB command.

ALLOWED =
Specifies the values the user may give in the REPEAT-JOB or REPEAT operand of the
ENTER-JOB or LOGON command.

ALLOWED =*NO
Repetition of jobs in this class is not possible, unless a value other than NO has been
specified for DEFAULT.

ALLOWED = *AT-STREAM-STARTUP
Jobs may be repeated if required each time the job scheduler is started.

ALLOWED = *DAILY

Jobs in this class may be repeated daily.

The exact starting time depends on the START operand value in the ENTER-JOB
command.

U4303-J-2125-4-7600 127

DEFINE-JOB-CLASS statement JMU

ALLOWED = *WEEKLY

Jobs in this class may be repeated weekly.

The exact starting time depends on the START operand value in the ENTER-JOB
command.

ALLOWED = *PERIOD
Jobs can be repeated each time the specified time interval has elapsed.

JOB-PARAMETER =
Additional class attributes, evaluated by system exit 32.

JOB-PARAMETER = *NO
No additional class attributes are defined.

JOB-PARAMETER = <c-string 1..127>

This operand enables additional class attributes to be specified in 'string’ in free syntax.
Between 0 and 127 characters may be specified. Here, information specific to the computer
system can be stored in each job class definition. System administration must create an exit
routine to compare what the user specifies in the JOB-PARAMETER operand of the
LOGON, ENTER-JOB or MODIFY-JOB command with what was specified in 'string’ and to
confirm its validity. The exit routine is called during the processing of these commands
entered by the user.

The JOB-PARAMETER operand is not evaluated by the system.

Notes

— The CLASS-LIMIT and CLASS-WEIGHT operands are evaluated by the operating
system’s class scheduler, which is independent of the job schedulers, in order to control
the job-related portion of the system load (see "Commands, Volumes 1 - 3" [1], [2], [3]).

— The significance of the JOB-PRIORITY, START and JOB-PARAMETER operands
depends on the job scheduling algorithm used by the stream, as defined in the
STREAM operand (see “Commands, Volumes 1 - 3" [1], [2], [3]).

— The number of job classes is unlimited.

128 U4303-J-Z2125-4-7600

JMU

MODIFY-JOB-CLASS statement

MODIFY-JOB-CLASS
Modify job class definitions

This statement is used to modify an existing job class definition in the SIMSFILE or the IMS
database.

MODIFY-JOB-CLASS

NAME = <name 1..8>
,STREAM = *UNCHANGED / *DEFAULT-STREAM / <name 1..8>
,CLASS-LIMIT = *UNCHANGED / <integer 0..4095>
,CLASS-WEIGHT = *UNCHANGED / <integer 1..9>
,CLASS-OPTIMUM = *UNCHANGED / <integer 0..4095>
,JOB-PRIORITY = *UNCHANGED / *PARAMETERS(...)

*PARAMETERS(...)

[0 DEFAULT = <integer 1..9>
,MAXIMUM = *UNCHANGED / *NO / <integer 1..9>

,JOB-TYPE = *UNCHANGED / *BATCH / *DIALOG
,TP-ALLOWED = *UNCHANGED / *NO / *YES(...)

*YES(...)

[l CATEGORY =*TP/<name 1..7>
,DIALOG-ALLOWED = *UNCHANGED / *NO / *YES(...)

*YES(...)

[0 CATEGORY =*DIALOG / <name 1..7>

,BATCH-ALLOWED = *UNCHANGED / *NO / *YES(...)
*YES(...)

[l CATEGORY = *BATCH / <name 1..7>
,START-ATTRIBUTE = *UNCHANGED / *BATCH / *DIALOG / *TP
,RUN-PRIORITY = *UNCHANGED / *PARAMETERS(...)

*PARAMETERS(...)
[0 DEFAULT = <integer 30..255>
,MAXIMUM = *UNCHANGED / *NO / <integer 30..255>
,NO-CPU-LIMIT = *UNCHANGED / *NO / *YES

continued O

U4303-J-2125-4-7600 129

MODIFY-JOB-CLASS statement JMU

,CPU-LIMIT = *UNCHANGED / *PARAMETERS(...)
*PARAMETERS(...)
[] DEFAULT = <integer 1..32767>
,MAXIMUM = *UNCHANGED / *NO / <integer 1..32767>
,SYSLST-LIMIT = *UNCHANGED / *PARAMETERS(...)
*PARAMETERS(...)
[l DEFAULT = *NO-LIMIT / <integer 0..999999>
,MAXIMUM = *UNCHANGED / *NO / *NO-LIMIT / <integer 0..999999>
,SYSOPT-LIMIT = *UNCHANGED / *PARAMETERS(...)
*PARAMETERS(...)
[l DEFAULT =*NO-LIMIT/ <integer 0..999999>
,MAXIMUM = *UNCHANGED / *NO / *NO-LIMIT / <integer 0..999999>
,START = *UNCHANGED / *PARAMETERS(...)
*PARAMETERS(...)
[l DEFAULT =*SOON / *WITHIN(...)
*WITHIN(...)
0 HOURS =0/ <integer 0..23>
H H ,MINUTES =00/ <integer 0..59>

H ,ALLOWED = list-poss(7): *IMMEDIATELY / *AT / *EARLIEST / *LATEST /
| *AT-STREAM-STARTUP / *WITHIN / *SOON

,REPEAT-JOB = *UNCHANGED / *PARAMETERS(...)
*PARAMETERS(...)
[0 DEFAULT = *NO / *AT-STREAM-STARTUP / *WEEKLY / *DAILY / *PERIOD(...)
*PERIOD(...)
[l HOURS =0/ <integer 0..23>
H H ,MINUTES = 00/ <integer 0..59>

H ,ALLOWED = list-poss(5): *NO / *AT-STREAM-STARTUP / *DAILY / *WEEKLY /
O *PERIOD

,JOB-PARAMETER = *UNCHANGED / *NO / <c-string 0..127>

130

U4303-J-2125-4-7600

JMU

DELETE-JOB-CLASS statement

For a description of the operands see the DEFINE-JOB-CLASS statement.
Note
Database updates are ignored for the following operands:

— STREAM
— JOB-TYPE
— START-ATTRIBUTE.

DELETE-JOB-CLASS
Delete class definitions

This statement can be used to delete an existing class definition from the SIMSFILE or the
JMS database.

If the definition in the file is deleted, any jobs of the class in question that are in the job pool
when the next system session starts are lost. If the definition is to be deleted in the system,
its status is flagged as 'IN-DELETE'. The class definition is not removed from the database
until no remaining jobs are assigned to the class. No new jobs are accepted for job classes
flagged as 'IN-DELETE’.

Deletion of a default class is not permitted. If a default class is to be deleted, all access
rights to it must first be rescinded.

DELETE-JOB-CLASS

NAME = <name 1..8>

NAME = <name 1..8>
Name, consisting of from 1 to 8 characters, of an existing class definition that is to be
deleted.

U4303-J-2125-4-7600 131

GRANT-JOB-CLASS-ACCESS statement JMU

GRANT-JOB-CLASS-ACCESS
Control access by user IDs to job class

This statement is used to control access by user IDs to a job class. If a job class is defined
as the default class for a user (by means of the SET-JOB-CLASS-DEFAULT statement), it
is not necessary to define access once again using the GRANT-JOB-CLASS-ACCESS
statement.

If a new user ID is entered in the JOIN file during a session, it immediately receives access
to all public classes.

GRANT-JOB-CLASS-ACCESS

NAME = <name 1..8>
,ACTION = *ADD / *REMOVE
,USER = *ALL / list-poss(255): <name 1..8>

NAME = <name 1..8>
Name of a job class to which a user ID is to receive or be denied access.

ACTION =
Permits or denies access to a job class.

ACTION =*ADD
The user ID specified under USER= may access the job class.

ACTION = *REMOVE
The user ID specified under USER= is denied access to the job class specified for NAME =.

USER =
Controls access to a job class.
USER =*ALL

Access to the job class specified in NAME = is to be defined for all user IDs.

USER = list-poss(255)
Access is granted for the user IDs given in this list.

USER = <name 1..8>

Access is granted to this one user ID. The name consists of from 1 to 8 characters.

No check is run to ascertain whether the specified user ID is entered in the JOIN file unless
a modification is made in the current session. All IDs are entered in the SIMSFILE.

132

U4303-J-2125-4-7600

JMU

SET-JOB-CLASS-DEFAULT statement

SET-JOB-CLASS-DEFAULT
Specifies default classes for users

This statement is used to specify default classes for users. At the same time, the users are
granted access.

If no public default class has been specified for a job type, $SYSJC is the system default
class, which allows all privileges.
Since only privileged users have access to $SYSJC, JMU issues a warning message.

When a new user is entered in the JOIN file during a session, he or she receives immediate
access to all system default classes.

SET-JOB-CLASS-DEFAULT

NAME = <name 1..8>
,ACTION = *ADD / *REMOVE
,USER = *ALL / list-poss(255): <name 1..8>

For the meaning of the operands see the GRANT-JOB-CLASS-ACCESS statement.
Note

Changing the default class always consists of the two statements:
SET-JOB-CLASS-DEFAULT default-job-class.old, *REMOVE,*ALL
SET-JOB-CLASS-DEFAULT default-job-class.new,*ADD,*ALL.

It is not advisable to change the default class during the current session, because
$SYSJIC is entered as the default class between the two statements.

U4303-J-2125-4-7600 133

SET-MODIFICATION-MODE statement JMU

SET-MODIFICATION-MODE
Sets modification mode

This statement can be used to set a modification mode in the JMU utility routine that permits
the following modifications to be made to JMS files in the current session:

— modify rights of access to job classes
— assign default job classes to new users
— create, delete and modify job class definitions

If desired, these modifications can be implemented with immediate effect.

Note
The SET-MODIFICATION-MODE statement is permitted only when called from the
JMU and the caller possesses the TSOS privilege.

SET-MODIFICATION-MODE

SCOPE = *EILE / *SYSTEM / *ALL

SCOPE =
Specifies whether the modifications are to be implemented in the file, the database or both.

SCOPE =*FILE
The modifications are to be implemented in the file only, i.e. they will be effective only as of
the next startup.

SCOPE=*SYSTEM
The modifications are to be implemented in the database only, i.e. they are effective only for
the current session (for test purposes).

SCOPE=*ALL
The modifications are to be implemented in the file and in the database.

Notes

— If SCOPE =*SYSTEM / *ALL is specified, the STREAM, JOB-TYPE and START-
ATTRIBUTE operands of the MODIFY-JOB-CLASS statement are ignored.

— Only the category names already defined can be used for assigning categories.

— If job classes are deleted in the current system, a class containing jobs that are still
active is flagged JOB-CLASS-IN-DELETE. Jobs already accepted can be completed,
but no new jobs are accepted.

— SHOW-JOB-CLASS as a JMU statement outputs only the contents of SIMSFILE. If
SCOPE = *SYSTEM, the SHOW-JOB-CLASS statement is not executed.

— If SCOPE = *ALL is specified, a modification is made only if it is possible both in the
SJIJMSFILE and in the database.

134

U4303-J-2125-4-7600

JMU

SHOW-JOB-STREAM statement

SHOW-JOB-STREAM
List contents of stream definitions or names of streams

This statement is used to list the contents of stream definitions or the stream names
themselves.

SHOW-JOB-STREAM

NAME = *ALL / *ALL-NAMES / list-poss(255): <name 1..8>
,OUTPUT = *SYSOUT / *SYSLST

NAME =
Name of the job stream to be listed.
NAME =*ALL

All stream definitions are to be listed.

NAME = *ALL-NAMES
All stream names are to be listed.

NAME = <list-poss(255): <name 1..8>
All stream definitions whose names are specified in this list are to be listed. A maximum of
255 names may be given.

OUTPUT =
Defines the output destination.

OUTPUT = *SYSOUT
The stream definition(s) or stream names are to be output to SYSOUT.

OUTPUT = *SYSLST
Output is to be via SYSLST.

U4303-J-2125-4-7600 135

SHOW-JOB-STREAM statement JMU

Example

REQUESTED DETAILS OF JOB STREAM: JSSTD
NAME..........:JSSTD
FILE..........:SYSENT.JOBSCHED.112

RUN PRIORITY..:125

DEFAULT.......:NO
START.........:AT-LOAD
STOP..........:AT-SHUTDOWN

STREAMPARAM. . . :JOB-PRIORITY=Y,CPU-TIME=Y ,WAIT-TIME=Y,JOB-QUOTA=50, LOGGING=NO

REQUESTED DETAILS OF JOB STREAM: JSSTD1

NAME..........:JSSTDI
FILE..........:SYSENT.JOBSCHED.112
RUN PRIORITY..:130
DEFAULT.......:YES
START.........:AT-LOAD
STOP..........:AT-SHUTDOWN

STREAMPARAM. . . :JOB-PRIORITY=Y,CPU-TIME=Y ,WAIT-TIME=Y,JOB-QUOTA=30, LOGGING=NO
REQUESTED DETAILS OF JOB STREAM: JSSTD2

NAME..........:JSSTD2
FILE..........:SYSENT.JOBSCHED.112
RUN PRIORITY..:150
DEFAULT.......:NO
START.........:AT-LOAD
STOP..........:AT=SHUTDOWN

STREAMPARAM. . . : JOB-PRIO=Y,CPU-TIME=Y ,WAIT-TIME=N,JOB-QUOTA=20, LOGGING=NO
REQUESTED DETAILS OF JOB STREAM: JSTSOS

NAME..........:JSTSOS
FILE..........:SYSENT.JOBSCHED.112
RUN PRIORITY..:120
DEFAULT.......:NO
START.........:AT-LOAD
STOP..........:AT-SHUTDOWN

STREAMPARAM. .. :JOB-PRIORITY=Y,CPU-TIME=Y ,WAIT-TIME=Y,JOB-QUOTA=50, LOGGING=NO

136

U4303-J-2125-4-7600

JMU

SHOW-JOB-CLASS statement

SHOW-JOB-CLASS
List contents of class definitions or names of classes

This statement enables the contents of class definitions or the names of classes to be listed.
The listing of a class definition includes the names of all users having access to that class.

SHOW-JOB-CLASS

NAME = *ALL / *ALL-NAMES / list-poss(255): <name 1..8>
,OUTPUT = *SYSOUT / *SYSLST

NAME =
Name of the class to be listed.
NAME = *ALL

All class definitions are to be listed.

NAME = *ALL-NAMES
All names of classes are to be listed (without the contents of the class definitions).

NAME = list-poss(255): <name 1..8>
All class definitions whose names are specified in this list are to be listed. A maximum of
255 names may be given.

OUTPUT =
Defines the output destination.

OUTPUT = *SYSOUT
Output is to be via SYSOUT.

OUTPUT = *SYSLST
Output is to be via SYSLST.

U4303-J-2125-4-7600 137

SHOW-JOB-CLASS statement

JMU

Example

REQUESTED DETAILS OF JOB CLASS: JCBATCHF

NAME.:

CLASS LIMIT...
CLASS OPTIMUM. :

JOB PRIORITY..:
JOB ATTRIBUTES:
TP ALLOWED....:
DIALOG ALLOWED:
BATCH ALLOWED.:
RUN PRIORITY..
NO CPU LIMIT..
CPU LIMIT.....:
SYSLST LIMIT..
SYSOPT LIMIT..

JOB PARAMETER. :

DEFAULT=3
JOBTYPE=BATCH

NO
BATCH

:DEFAULT=180
:YES

DEFAULT=32767

:DEFAULT=NO-LIMIT
:DEFAULT=NO-LIMIT
:DEFAULT=SOON
:DEFAULT=NO

UNDEFINED

JCBATCHF IS AVAILABLE TO:

ALL USERS

JCBATCHF IS A DEFAULT FOR:

NO USERS

MAXIMUM= 1
ST-ATTR= BATCH

MAXIMUM= 30

MAXIMUM= 32767
MAXIMUM= NO-LIMIT
MAXIMUM= NO-LIMIT

ALLOWED= SOON EARLY AT LATE IN IMM STUP

ALLOWED= NO STUP DAILY WEEKLY PERIOD

REQUESTED DETAILS OF JOB CLASS: JCBSTD

NAME..........:

CLASS LIMIT...:
CLASS OPTIMUM. :

JOB PRIORITY..:
JOB ATTRIBUTES:
TP ALLOWED....:
DIALOG ALLOWED:
BATCH ALLOWED. :
RUN PRIORITY..
NO CPU LIMIT..
CPU LIMIT.....:
SYSLST LIMIT..
SYSOPT LIMIT..

JOB PARAMETER. :

oo
(e}

DEFAULT=9
JOBTYPE=BATCH

NO
BATCH

:DEFAULT=220
:YES

DEFAULT=32000

:DEFAULT=NO-LIMIT
:DEFAULT=NO-LIMIT
:DEFAULT=SOON
:DEFAULT=NO

UNDEFINED

JCBSTD IS AVAILABLE TO:

ALL USERS

JCBSTD IS A SYSTEM DEFAULT

MAXIMUM= 1
ST-ATTR= BATCH

MAXIMUM= 180

MAXIMUM= 32767
MAXIMUM= NO-LIMIT
MAXIMUM= NO-LIMIT

ALLOWED= SOON EARLY AT LATE IN IMM
ALLOWED= NO STUP DAILY WEEKLY PERIOD

138

U4303-J-2125-4-7600

JMU

REMOVE-USER statement

REMOVE-USER
Prohibit access to private job classes

The REMOVE-USER statement is used to deny specified user IDs access to all private job
classes. The statement is an extension of the system command of the same name which is
used to delete user entries in the JOIN file.

However, the statement cannot be used to prevent special users accessing public job
classes or system default classes.

REMOVE-USER

USER-IDENTIFICATION = *ALL / list-poss(8): <name 1..8>

USER-IDENTIFICATION =
Specifies the user IDs to be removed.

USER-IDENTIFICATION = *ALL
This causes all access lists to be deleted, thus locking all private job classes. Any ID-
specific default job classes are reset to the system default settings.

USER-IDENTIFICATION = list-poss(8): <name 1..8>
The specified user ID(s) is (are) to be prevented from accessing all private job classes. Any
default job classes specific to these IDs are reset. Up to 8 user IDs can be specified.

END
Terminate statement input

The END statement terminates input of statements to the JMU routine.

END

The program is to be terminated.

U4303-J-2125-4-7600 139

140 U4303-J-Z2125-4-7600

6 LMSCONV
Creating and administering libraries

Version: LMSCONV V1.0B

LMSCONYV (Library Maintenance System Converter) is a routine for converting old library
formats (MLU and LMR) to the new format (PLAM), and from K-ISAM to NK-ISAM format.
It is also used for creating and maintaining libraries and for processing the library elements
(also known as "members"). LMSCONYV helps the user make the transition from MLU, LMR
and COBLUR to LMS (on LMS see the "LMS" manual [11]).

LMSCONYV performs the following functions:

— create libraries

— add elements to a library

— output library elements to files

— copy elements to other libraries

— list elements

— delete elements

— update elements

— rename elements

— output a library’s table of contents.

U4303-J-2125-4-7600 141

General description LMSCONV

LMSCONYV handles the following library formats:

— program libraries for storing macros, object and load modules, lists, etc. These
libraries are processed by the PLAM access method.

— source program libraries for storing source programs

— object module libraries for storing object modules

— macro libraries for storing macros.

The following diagram illustrates the input/output facilities of LMSCONV:

SYSDTA
system file

SYSOUT
system file

LMSCONV

Figure 3: LMSCONYV access facilities

The types of library elements accepted by LMSCONYV include files, object modules from the
EAM area, and elements from other libraries. Object and load modules and macros are
separated by element type. The elements are referenced individually in the library by means
of their element identifiers.

142 U4303-J-Z2125-4-7600

LMSCONV

General description

Example of an LMSCONYV run

/START-PROGRAM FROM-FILE=$LMSCONV

% BLS0500 PROGRAM 'LMSCONV', VERSION 'VO1.0B' OF '1992-07-20' LOADED.

% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991.
ALL RIGHTS RESERVED.

% LMCO310 LMSCONV VERSION V01.0B43 STARTED

CTL=(CMD) PRT=(OUT) ——— (1)

$LIB FILE=UEB.BIBL,BOTH,NEW (2)

$ADDM A.QUELL.A (3)

$PAR LOG=MED (4)

$ADDM A.BEISPIEL>BSP (5)

INPUT FILE

QUTPUT LIBRARY= :X:$RUES.UEB.BIBL,DEV=DISK

ADD A.BEISPIEL AS (M)BSP/@(0001)/1990-11-19 (6)

$TOC* * (7)

INPUT LIBRARY= :X:$RUES.UEB.BIBL,DEV=DIS

TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE

(M) A.QUELL.A @ (0001) 1990-11-19 BSP . . . @ (0001) 1990-11-19 2

(M)—ELEMENT(S) IN THIS TABLE OF CONTENTS (8)

$END

% LMS0311 LMS V01.0B43 TERMINATED NORMALLY (9

Q) LMSCONV is called.

(2 LMSCONV creates a new program library called UEB.BIBL, and assigns it as an
input/output library.

3) File A.QUELL.A is added to the library as a type M element with the element name
A.QUELL.A.

4) The processing operand LOG=MED means that LMSCONYV outputs positive
acknowledgments in addition to error messages.

(5) File A.BEISPIEL is added to the library as a type M element with the element name
BSP.

(6) Positive acknowledgment: as the LOG=MED processing operand is set, LMSCONV
confirms that file A.BEISPIEL has been included in the library as element BSP.

@) The table of contents of program library UEB.BIBL is to be listed.

(8) TOC entry for program library UEB.BIBL.

9) LMSCONV is terminated.

U4303-J-2125-4-7600

143

General description LMSCONV

LMSCONYV in interactive and batch mode

The LMSCONYV utility is started with the command
START-PROGRAM FROM-FILE=$LMSCONV

The CPU-LIMIT, TEST-OPTIONS, MONJV, RESIDENT-PAGES and VIRTUAL-PAGES operands of the
START-PROGRAM command are also available for calling the routine, e.g. to monitor the
program run. For descriptions of these operands, see the START-PROGRAM command in
"Commands, Volume 3" [3].

The END statement terminates the LMSCONYV routine.

LMSCONYV runs in both interactive and batch modes. In interactive mode, LMSCONYV reads
input statements by default from the terminal.

Before execution of LMSCONYV, switch 1 (MODIFY-JOB-SWITCHES ON=1) must be set if
LMSCONYV has been called in a procedure and the LMSCONYV statements are also to be

read from the procedure. Otherwise, LMSCONYV will still be called, but will expect the state-
ments from the terminal.

In batch mode, LMSCONV reads the statements from the system file SYSDTA.

If a library is still closed, LMSCONYV outputs the following message during batch operation:
FILE (ELEMENT or TYPE) IS LOCKED.NEXT ATTEMPT AFTER 6 SECONDS!

It then automatically goes on to the next statement.

The LMSCONV log is output to system file SYSOUT (i.e. the terminal, in interactive mode)
or to the medium defined as PRT (system file SYSLST or library element). If LMSCONV is
to output positive acknowledgments in addition to error messages, the processing operand
PAR LOG=MED must be set.

144

U4303-J-2125-4-7600

LMSCONV

Libraries

6.1

Libraries

Alibrary is a file with a particular substructure. It contains elements ("members") and a table
of contents (TOC).

An element is a logically coherent set of data such as a file, an object module etc. Each
element in the library can be referenced individually.

Storing files as elements in a library saves space in the system catalog, as only the library
entry will appear in the system catalog. Space is also saved because there is just one
default space allocation per library, and the elements are stored in the library in compressed
form.

Storing object modules from the EAM area in a library eliminates the need to recompile the
source programs every time.

Processing program libraries with LMSCONYV offers a number of advantages over a source
program, macro or object module library:

— Program libraries contain different types of elements, i.e. a program library allows a
variety of elements for a particular application, such as object and load modules, to be
concentrated in one place.

— Program libraries identify elements not only by their element names, but by the version
identifier and type of element.

— A number of users can have simultaneous write access to program libraries.

U4303-J-2125-4-7600 145

Libraries LMSCONV

Libraries

eleml elem2 elem3 elem4 Table of contents
eleml
elem?2

> Elements
elem3
elem4

Figure 4: Structure of a library

Every library has an entry in the system catalog. As with any other BS2000 file, the user
can define the name and other file attributes, such as the retention period and protection
attributes.

LMSCONYV opens an output library for reading and writing. An input library can be opened
for writing with the DEL and NAM statements only (see section “Statements” on page 184).
In all other cases it is read-only.

Types of libraries

LMSCONYV processes various types of libraries:

— program libraries

— source program libraries
— macro libraries

— object module libraries
— sequential libraries

146 U4303-J-Z2125-4-7600

LMSCONV Libraries

6.1.1 Program libraries (PLSs)

Program libraries are PAM files processed by the PLAM library access method. For this
reason, they are also called PLAM libraries.

These have some significant advantages over other library formats, including the following:
— synonymous elements can exist, differentiated by their type or version identifier
— several users can have simultaneous write access to the library.

There are two PLAM library formats. In addition to the existing NK2 format (NK2 PLAM file)
this latest version supports NK2 disks with a minimum allocation unit of 8 or 64 Kbytes
(abbreviated form: NK2(8K,64K)).

LMSCONYV supports both library formats.

The user specifies the desired format by means of the command ADD-FILE-LINK
....BUFFER-LENGTH=*STD(n). n can be either 1 or 2. The COPYLIB statement enables
the user to convert from one format to the other; the ADD and SEL statements are available
for both formats (see page 158f).

Multiple element types in one library

Program libraries may contain any element type supported by LMSCONV.

The element type dictates how the content of the element s to be interpreted by LMSCONY,
and the type of storage unit to which it belongs:

Content of element

Source programs 1)
Macros

Oject modules

Load modules
Compiler result information 2)
Procedures

Print data

Text data

Data in any format

LLM 2)

IFG format masks 2)
IFG-USER-PROFILE 2)

cCnmrXogvuv«erToxnson|d
e)
[0}

1) PRT elements are stored as type S in source program libraries.
2) Cannot be generated by LMSCONV.

U4303-J-2125-4-7600 147

Libraries

LMSCONV

Multiple versions for each element type and name

An elementin a program library is uniquely identified by its type, name and version identifier.

If the user fails to specify a version identifier, LMSCONV automatically takes the following
actions:

When reading
LMSCONYV looks for the element of that name having the highest version identifier. The
date is not taken into consideration.

When writing
The way the version is handled depends on the statement:

ADD, PRT
The element is created or overwritten with the highest possible version number X'FF'.
LMSCONYV represents this version with an @.

DUP, NAM, UPD
The output element is given the version identifier of the input element.

If this causes an element of the same name to be overwritten, the internal variant
number is incremented by 1. It acts as a write access count.

Note

A target version cannot be assigned.

148

U4303-J-2125-4-7600

LMSCONV

Libraries

Multiple access to program libraries

A library can be opened for read and write access by one or more users.

An element can be read simultaneously by several users, but can only be written by one.
While an element is open for writing, the element cannot be accessed by any other user,
even for reading, but any other element in the library can be accessed.

Library

member 1

member 2

member 3

member 4

V'S

V'S

Access

write access
(single)

read accesses
(multiple)

write access
(single)

read accesses
(multiple)

Figure 5: Multiple access to elements

Multiple access to a library means that an element may exist when the table of contents of
the library are listed, but has ceased to exist when next accessed because another user has

deleted it in the meantime.

Thus a table of contents list (see TOC) only gives a snapshot of the current state of the input

library.

Restricting multiple access

LMSCONYV always opens a program library with SHARED-UPDATE=*YES. An ADD-FILE-
LINK command with SHARED-UPDATE=*NO issued for this library has no effect. The user
can, however, restrict multiple access by means of the following commands:

/SECURE-RESOURCE—-ALLOCATION

No other user can access the library for the duration of the task in which the command is

issued.
/MODIFY-FILE-ATTRIBUTES

U4303-J-2125-4-7600

149

Libraries

LMSCONV

6.1.2

This command restricts multiple access as required by allocating write and read passwords
(WRITE-PASSWORD, READ-PASSWORD), or by specifying the operand
...,PROTECTION=*PAR(USER-ACCESS=*OWNER-ONLY) or
...,PROTECTION=*PAR(ACCESS=*READ).

For a description of these commands see "Commands, Volumes 1 - 3" [1], [2], [3].

Single-type libraries

The following libraries can only hold one element type:

— source program libraries
— macro libraries
— object module libraries

Unlike program libraries, these types of library cannot hold multiple elements with the same
name.

LMSCONYV stores no file protection attributes for libraries or elements. If a retention period
is specified in the ADD-FILE-LINK command when a library is created, LMSCONYV places
it in the catalog entry for the library.

Parallel access to source program, macro and object module libraries is permitted. They
can be read simultaneously by different tasks.

LMSCONYV opens a library for reading and writing (OPEN=INOUT) if it was assigned as a
default output library for the LMSCONV run (LIB ...,USAGE=0UT) or was specified in DEL,
NAM or PRT. The other statements open libraries for reading only (OPEN=INPUT).

Source program libraries/macro libraries (OSMs)

Source program libraries are ISAM files (KEY-POS=5,KEY-LEN=8) and recognize element
type S only. Source programs and listings are stored as type S elements in source program
libraries.

Macro libraries are ISAM files (KEY-POS=5,KEY-LEN=8) and recognize element type M
only.

Object module libraries (OMLS)

Object module libraries (OMLSs) are files in PAM format. They hold the object modules
generated by language processors (compilers, assemblers) from the EAM area as type R
elements.

OMLs can hold up to 3380 modules. The number of CSECTS/ENTRYsS/COMMONSs is
limited (between 380 and 800 depending on the use of the library).
The size of an object module library cannot exceed 32500 PAM pages.

150

U4303-J-2125-4-7600

LMSCONV

Libraries

6.1.3

Sequential libraries (archive libraries)

Sequential libraries are held on magnetic tape. These libraries are tape files with standard
labels and a block size of 2048 bytes.

LMSCONYV processes sequential libraries by means of the BTAM access method.

A sequential library may contain phases (load modules), object modules, macros and
source programs (also procedures and other text). Elements of the same type are
combined in one library section. The order of sections is mandatory:

phases, object modules, macros, source programs.

The maximum record length for object modules, macros and source programs is 80 bytes.

The table of contents for sequential libraries is different from that of other libraries:
each element is preceded by a block containing the element identifier.

A sequential library can contain several elements of the same type and the same name. If
the version number and/or the date are different, LMSCONV can read them individually.

The following restrictions apply to sequential libraries:

— They cannot be processed by DEL and NAM (see section 6.5, "Statements").

— List elements cannot be held in tape libraries because they have a record length > 80
characters.
Records longer than 80 bytes are truncated.

— BS2000 does not support continuation tapes.

LMSCONYV does not enter any file protection attributes for libraries or elements. If a
retention period is specified in the ADD-FILE-LINK command, LMSCONV places it in the
file header label (HDR1) when a library is created.

Rules for element names in sequential libraries

elementname Maximum 8 characters
Character set:
Letters A-Z
Special characters :$, #, @, & %, -, _
Digits :0-9

The first character must be a letter or one of the special characters
$, #Hor @.

U4303-J-2125-4-7600 151

Libraries LMSCONV

version Three-character version identifier
Character set:
Letters A-Z
Special characters
Digits :0-9

Letters may be used only as the first character.

Specifying the date in the element identifier

The user date maintained for each element can also be used to select the element. The
user date is optional.

If the user date is not specified in a statement, LMSCONYV inserts the current date by default
(or the date of the source element when an element is copied or renamed). If DATE is
specified, the current date is inserted instead of the user date.

Rules for specifying the date for sequential libraries:

YYMMDD Meaning:
YY :Year
MM: : Month
DD : Day

LMSCONYV adds a reference year to make the four-digit century:

YY < 60: LMSCONYV fills to 20YY.
YY = 60: LMSCONV fills to 19YY.

Use of versions

The update function UPD increments the variant number of the updated element by 1.

152 U4303-J-Z2125-4-7600

LMSCONV

Contents of a program library

6.2 Elements

6.2.1 Contents of a program library

LMSCONV handles the following element types in program libraries:

Element content

Source programs
Macros

Object modules
IFG format masks
IFG user profile
Load modules
Compiler result information
Procedures

Print data

Text data

Data in any format
LLM

I_XU'UL-IOCTIEZ(/)‘?
3

Using an asterisk (*) as the element type in DUP and TOC allows all element types stored
in the library to be referenced. To list all the elements in a program library, either TOC or

TOC* */* must be specified.
Description of the element types

Element type S - source programs

Source programs in libraries are used as input to compilers and to the assembler in compi-

lation and assembly runs.

Element type M - macros

The assembler takes the macro elements referenced in the program from the library that

has been assigned.

Element type R - object modules

Object modules generated by compilers and by the assembler are normally placed in the
temporary EAM area. LMSCONYV can store these object modules as type R elements in a
program library. Object modules generated by compilers and by the assembler can also be

stored directly in a program library.

U4303-J-2125-4-7600

153

Contents of a program library LMSCONV

Element type F - IFG format masks

In future, elements of this type will be generated by IFG and stored in program libraries. This
element type cannot be generated by LMSCONYV, however.

Element type U - IFG user profile

In future, elements of this type will be generated by IFG and stored in program libraries. This
element type cannot be generated by LMSCONYV, however.

Element type C - load modules

A load module created by the linkage editor TSOSLNK is normally stored in a file. This file
can be stored by LMSCONYV in a program library as a type C element. Load modules
created by the linkage editor can optionally also be stored directly in a program library.

Element type H - compiler result information

Elements of this type are created by compilers and by the assembler, and stored in program
libraries. You will be able to find more details in the relevant user manuals. This type of
element cannot, however, be created by LMSCONV.

Element type J - procedures

This type of element is used for BS2000 procedures and LMSCONYV statements.
Note

Task switch 1 must be set when LMSCONYV is called in a DO or CALL procedure and
the statements are to be read from SYSDTA.

Element type P - list elements

Data edited for printing is known as list elements. The first character of the record must be
a valid feed character for print control.

Elements of this type can be created with ADDP, DUPP and PRT (see section “Statements”
on page 184).

List elements are printed via LST, utilizing the print control character when PRT (LST) was
previously specified.
Element type D - text data

Any type of text can be written to elements of type D. The same functions are possible as
for element type S. This type of element cannot, however, be created by LMSCONV.

154

U4303-J-2125-4-7600

LMSCONV

Contents of a program library

Element type X - data in any format

Data of any format can be written to type X elements.

Element type L - LLMs

The linkage editor BINDER stores the link and load modules it creates in type L elements.
LMSCONYV cannot create elements of this type.

Element identifier

Elements in program libraries are referenced by means of their element type and element
identifier.

The element identifier consists of the name, version and date, and is specified in the
following form:

elementnamel/versionl[/datel]
or
elementnamel//datel]

Specification of version and date is optional on input, but on output, the version must not
be specified. If no version is specified in a statement, the element with the highest version
is selected by default. If no date is specified in a statement, by default today’s date is
assumed.

The element identifier is specified as an operand:

operation x elem

operation Statement name.

X Element type.

elem Element identifier, consisting of elementname and optionally

version and date.

U4303-J-2125-4-7600 155

Contents of a program library

LMSCONV

Rules for element identifiers in program libraries

elementname

version

Up to 64 characters.

Character set:

Letters A-Z

Special characters : $, #, @, . (period), - (hyphen),
_ (underscore).

Digits :0-9

The hyphen, underscore and period characters must not be used as
the first or last character, nor may two of these special characters
appear consecutively.

The hyphen must not appear immediately to the right of a $, @, #,
underscore or period. The element name must contain at least one
letter or special character @, # or $.

Maximum 24 characters
Character set:

Letters CA-Z
Special characters : . (period), - (hyphen), @ (comercial at)
Digits :0-9

The special characters period and hyphen must not be used as the
first or last character. The same special character must not appear
in consecutive positions.

The hyphen must not appear to the immediate right of a period.

If the @ character is specified explicitly, no other character may be
specified in the version identifier.

On output (write access) no version may be specified.

The target element contains either:

— version number X’FF’ if the source is a file or *EAM and the
output library is a PLAM library (version number X'FF’ is the
highest possible version and is represented as "@"), or

— the version number of the source element.

156

U4303-J-2125-4-7600

LMSCONV Contents of a program library

Specifying the date in the element identifier

The user date maintained for each element can be used for selecting elements. The user
date is optional.

When an element is copied or renamed, the date of the original element is transferred if a
new date is not explicitly specified.

If DATE is specified, the current date is inserted instead of the user date.

When an element is created, LMSCONYV inserts the current date by default if no other date
is specified explicitly.

Rules for specifying date for program libraries:

YYMMDD Meaning:
YYYY : Year
MM : Month
DD : Day

Use of the version and variant number

With source program, macro and object module libraries, the version is incremented
automatically when update and numbering functions are performed. This is not the case
with program libraries.

Instead, a variant number (max. 4 numeric characters) is maintained that fulfils the function
of a write access count.

Thus with program libraries, no version incrementation takes place, but a variant for the
elementis incremented by 1 for each write access to the element. This means that for ADD,
NAM and UPD the variant is incremented whenever an element of the same type, name
and version is overwritten.

Listing the element identifier
Element identifiers are listed as follows:
(typelelementname/versionl(variantnumber)]

The variant number is only maintained for elements in program libraries. It is set to (0001)
by default and incremented by 1 by the ADD, NAM and UPD statements.

With TOC, the date is also output:

(type)elementname/versionl(variantnumber)]/date.

U4303-J-2125-4-7600 157

Contents of a program library LMSCONV

Assigning a character set to a PLAM library element
(XHCS: eXtended Host Code Support)

A character set can be assigned to each element in a PLAM library by allocating a CCSN
(Coded Character Set Name).

This character set is passed to interfaces and taken into account for outputs. If XCHS is not
supported at a given interface, the 'no code’ default is always used.

LMSCONYV itself does not require a particular character set, nor does it evaluate the default
of the user ID.

A character set can be explicitly assigned or an existing assignment modified by means of
SDF statements in the LMS utility routine.

LMSCONYV offers implicit support:

A character set is implicitly assigned to an element when a file is added to the library by
means of the ADD statement, by appending the catalog attribute CCS (coded character
set). In order to avoid inconsistencies, the coded character set name (CCSN) is not saved
in the attribute record (record type 164). When a module from the * file is added to the
library, its attribute is 'no code’.

When a library element is output to a file, the corresponding coded character set name
(CCSN) of the element is assigned to the file. (When an element is copied, the CCSN of the
source element is assigned to the target element.) The coded character set (CCS) assigned
to the element in question is used when records from a library element are output to
SYSOUT (even in edited form).

If SYSOUT is assigned to a file, the user must also assign the desired coded character set
to the file by means of the MODIFY-FILE-ATTRIBUTES command.

No CCSN is evaluated for output to SYSLST. If SYSLST is assigned to a file, the user can
impose the desired character set on the output by assigning the CCS in question to the file
by means of the MODIFY-FILE-ATTRIBUTES command.

If output was redirected to a library element by means of the LMSCONV command PRT,
this element contains the value 'no code’ for CCSN.

'no code’is always assumed as the value for CCSN when tables of contents and other items
of element information created by LMSCONV are output.

If PAR OVERWRITE = EXTEND is specified, LMSCONV checks the CCSNs of source and
target. If the two CCSNSs do not tally, the job is rejected and an error message issued.

158

U4303-J-2125-4-7600

LMSCONV Contents of a program library

NK4 disks

There are two formats for PLAM libraries:

— the original NK2 format (NK2 PLAM file)
— the new NK2 format with a minimum allocation unit of 8 or 64 Kbytes (NK4 PLAM file).

LMSCONYV supports both library formats.

The COPYLIB statement provides the means of conversion from one format to the other.
The user specifies the desired format by means of the command ADD-FILE-LINK
....BUFFER-LENGTH=*STD(1) or ...,BUFFER-LENGTH=*STD(2).

NK4 disks are also supported by the ADD and SEL statements.

Adding files with ADD
ADD can be used to add files of any BUFFER-LENGTH to a PLAM library.

File output with SEL
A distinction must be drawn between the following cases:

1) The element contains an attribute record with the original BUFFER-LENGTH speci-
fication (i.e. after ADD with PAR KEY=YES or for original UPAM files or PLAM
library files)

1.1) BUFFER-LENGTH is explicitly specified for the target file (either by ADD-FILE-LINK
in the TFT or directly in the catalog):
The default (BUFFER-LENGTH) is always used, which means that the following
problems may occur:

— SAM/ISAM files:
If the element records are too long for the specified BUFFER-LENGTH, a DMS
error results.

— UPAM files:
When UPAM files are created, LMSCONV packs a logical block (other than the
last block) with 2K units and outputs this block only with UPAM.
If BLK-CONTR=DATA is specified, each logical block (BUFFER-LENGTH)
starts with a 12-byte check field (CF). If the specified BUFFER-LENGTH does
not tally with that stored, data from DMS may be overwritten with the check field,
thus rendering the file unusable.
If BLK-CONTR=NO is specified, unusable files may be generated if the
BUFFER-LENGTH is changed (e.g. PLAM files).
On account of these possibilities for error, LMSCONYV always issues a warning
if there is any discrepancy in the BUFFER-LENGTHSs (between user specifi-
cation and stored value).
The system always attempts to create the file nevertheless.

U4303-J-2125-4-7600 159

Contents of a program library LMSCONV

1.2)

2)
2.1)

2.2)

3)

No explicit BUFFER-LENGTH is specified or known for the target file. In this case,
the value from the attribute record is used.

If nin STD(n) is odd, LMS increments to n+1.
The element does not contain an attribute record (e.g. for phase elements).

BUFFER-LENGTH is specified explicitly for the target file: — same procedure as in
1.1. above.

When phases are generated, BUFFER-LENGTH specifications # STD(1) or STD(2)
produce errors.

BUFFER-LENGTH for the target file not explicitly specified or unknown.

— Phases:
BUFFER-LENGTH is derived from the current environment, i.e on NK2 disks:
BUFFER-LENGTH = STD(1)
on NK4 disks: BUFFER-LENGTH = STD(2).
As regards content, there is no difference between the phases.

— In all other instances, BUFFER-LENGTH is calculated on the basis of the
maximum record length.

In brief, it is advisable to proceed as follows when taking files from an NK2 disk to
an NK4 disk via a library:

— Extract all "critical" elements in the library as files. "Critical" elements are PAM
elements under type X which as files:

— have BUFFER-LENGTH = STD(n) and n odd
— are phases with PAM keys
— are NK2-oriented PLAM files.

— Convert all files with BUFFER-LENGTH odd (except PLAM files) to NK4 format
with PAMCONV.

— Convert all phases with PAM keys into NK phases with PAMCONV.

— Convert NK2 PLAM files into NK4 PLAM files by means of the LMSCONV
statement COPYLIB.

— After conversion, use ADD to add the NK4 files to an NK4 PLAM file and transfer
this file to the NK4 disk.

160

U4303-J-2125-4-7600

LMSCONV

Contents of single-type libraries

6.2.2

Contents of single-type libraries

Single-type libraries contain just one element type.

Type Content of elements Library

S Listings, procedures, source programs Source program library
and text data

M Macros Macro library

R Object modules Object module library

Description of element types

Element type S

This element type contains listings, procedures, source programs and text data.

If a listing is to be output by LST using print control characters, PRT (LST) and the
processing operand PAR FORMAT=P must first be specified.

Element type M

The assembler extracts the macro elements referenced in the program from the assigned
macro library.

Element type R

The object modules generated by the compilers are stored in the object module library, and
are used as input to the linkage editors TSOSLNK and BINDER and to the dynamic binder
loader DBL.

U4303-J-2125-4-7600 161

Contents of single-type libraries LMSCONV

Element identifier

The element identifier enables each element in a library to be individually addressed.
The element identifier consists of the name, version and date, and is specified in the
following form:

elementnamel/versionl[/datel]
or
elementnamel//datel]

Specification of the version and date is optional. If no version is specified in a statement,
the element with the highest version is selected by default. If no date is specified, today’s
date is used by default.

The element identifier is specified as an operand:

operation x elem

operation Statement name.

X Element type.

elem Element identifier consisting of elementname and optionally version
and date.

Rules for element identifiers in source program, macro and object module libraries

elementname Up to 8 characters
Character set:
Letters A-Z
Special characters :$, #, @, - (hyphen), _ (underscore)
Digits :0-9

The first character must be a letter, $, # or @.

version Three-character version identifier
Character set:
Letters A-Z
Special characters :none
Digits :0-9

Letters may be used only as the first character.

162

U4303-J-2125-4-7600

LMSCONV

Contents of single-type libraries

On output (write access), however, no version specification may be
made.
The target element contains either:

— version number X'001’ if the source is a file or *EAM and the
output library is a macro, source program or object module
library, or

— the version identifier of the source element.

Specifying the date in the element identifier

The user date maintained for each element can be used for selecting elements. The user
date is optional.

When an element is created or renamed, the user can specify the date. LMSCONYV inserts
the current date by default.

If DATE is specified, the current date is inserted instead of the user date.
Rules for specifying the date in source program, macro and object module libraries:
YYMMDD Meaning:

YYYY :Year
MM : Month
DD : Day

LMSCONYV adds a reference year to make the four-digit century:
YY < 60: LMSCONYV fills to 20YY.
YY = 60: LMSCONV fills to 19YY.

Use of the version

Object module libraries:

The update function UPD increments the version number of the corrected element by 1.

U4303-J-2125-4-7600 163

Contents of single-type libraries

LMSCONV

Selectors for element identifiers

An element identifier refers to just one element. It can however be structured as a variable,
enabling several elements to be selected for processing.
This type of element identifier is known as a selector.

LMSCONYV provides a number of symbols for variable element referencing. These symbols
have the following meanings in selectors.

Symbol Meaning in selectors
‘ Any character permitted in the element name, version and date.
(single All elements are selected that have any character in the corresponding position in the
quote) element identifier.
A single quote represents just one character.
A space can also be used instead of the final quote, i.e. the selected names can also
be shorter than the selector.
* The asterisk as an element type:
(asterisk)
The statement refers to all element types in the assigned input library.
The asterisk in the element identifier:
-in the element name
The asterisk can be used alone or in combination with other characters. When used
in combination with other characters, it must be the last character in the name. From
this position in the character string, the name may be of any length and content. If *
is used alone, the element name may be of any length and have any contents.
- as the version
The statement refers to all versions of the specified element name.
If a single * is specified for the complete element identifier, the statement refers to the
current highest version of all the elements.
< (smaller | These symbols allow limit values to be used for version and date in element selection.
> (greater) | These characters always appear between the slash and the version or between the
= (equal slash and the date. In conjunction with the specified values for version and date, these

(not equal)

limit the selection of the elements to be processed.

-elem

This represents a ' minus element’, i.e. it excludes an element that would have been
selected by the preceding selector.

elem can also be a selector, but it must indicate that it refers to an element or group
of elements within the previous selector.

There must be a comma between selector and -elem.

164

U4303-J-2125-4-7600

LMSCONV Contents of single-type libraries

Examples of selectors
o Selectors

AB'C*/* All elements whose name begins with AB, have any character in
position 3, and C in position 4 are selected. From position 5
onwards, the element name can have any contents.

”[B* All elements with a name length of a maximum of 3 characters and
which have a B in the first position of the version number are
selected.

**/>1983* All elements entered since 1.1.84 are selected.

B//* The highest version of all elements named AB and with any date is
selected.

e Selectors with limit values

*/>402 All elements whose version number is greater than 402 are
selected.
A*/[<1982* The highest version of all elements whose name begins with A and

which have a date earlier than 1.1.1982 is selected.

A*/#B* All elements whose name begins with A and whose version number
does not begin with B are selected.

AB'/=107 All elements whose name begins with AB, which are a maximum of
3 characters long and which have version number 107 (equivalent
to specifying AB’/107) are selected.

o Selectors excluding elements

AB*-ABC,C* The highest version of all elements whose name begins with AB or
C, except for element ABC, is selected.

L"/*,-"/001 All elements whose name begins with L and are a maximum of 4
characters long, except for those with a version number of 001, are
selected.

U4303-J-2125-4-7600 165

Contents of single-type libraries LMSCONV

Constructors for element identifiers

Some LMSCONV statements, in addition to the identifier of the element (elem) to be
processed, also use a further element identifier elemu specified after a separator (,>=) in
the statement. In the statements

ADD, DUP, NAM

elemu represents the element identifier of the new element (>elemu).

These element identifiers can be formulated as variables by using constructors.

The variable positions in the constructors are derived from the element being processed
(elem). LMSCONYV uses the same format for these constructors as for the selectors.

The symbols used for the element identifier elemu in these constructors have the following

meanings:

Symbol Meaning in constructors

‘ The position indicated by a single quote in the constructor is replaced by the character

(singel in the corresponding position in the element identifier elem.

quote) A single quote defines a position in the element identifier. If the quote is in the last
position in the constructor, no more characters are taken from the element identifier
elem.

* The asterisk can only be used as the last character in the constructor. It means that

(asterisk) from this position onwards, all characters in the element identifier elem are used. If *

is specified on its own, the complete element identifier elem is used.

All other positions remain unchanged.

Examples of constructors

A library contains 3 elements called

1. ABC/001

2. ABCD/234
3. ABCDE/101

166

U4303-J-2125-4-7600

LMSCONV Contents of single-type libraries
Statement to be executed Name constructed by LMSCONV
NAMn ABC>“X 1. ABX/001

2.is not renamed

3.is not renamed
NAMn AB*>XY* 1. XYC/001

2. XYCD/234

3. XYCDE/101
DUPNn AB“>'X'Y 1. AXCY/001

2. AXCY/234

3.is not duplicated
Notes

The following points should be noted when using selectors and constructors:

— Different input identifiers may be mapped onto the same output identifier. Different
data is overwritten depending on the value of the processing operand OVERWRITE

(example: NAMx A*>B).

— Ifa constructor causes a lexicographically higher element identifier to be generated
that also satisfies the selector, LMSCONYV will find this element again when it
processes the table of contents sequentially.

— If an element/selector occurs more than once (even beyond the limits of sublists),
only the last selector is processed, for example:

NAMn A>B,A>C

Only A>C is processed.

U4303-J-2125-4-7600

167

Functions of LMSCONV LMSCONV

6.3

6.3.1

Functions of LMSCONV

This section summarizes the functions of LMSCONV. The functions are activated by means
of statements.

Processing operands are used to control and modify not only the statements, but also
LMSCONYV execution. Task switches, set when LMSCONYV is called, also influence
LMSCONYV execution. For LMSCONYV statement information, see section 6.5.4,
"Description of the individual statements", and for processing operands see section 6.5.5,
"Processing operands".

After LMSCONV has been called, all processing operands are set to default values. If
different values are required for processing operands in individual statements, the
processing operand must be set.

If, in addition to error messages, all LMSCONYV statements are to be logged when success-
fully executed (positive acknowledgments), the value of the LOG operand must be set to
LOG=MED or LOG=MAX.

Before a library can be accessed, it must first be assigned. Assigned libraries may already
exist or be newly created. Elements cannot be added and/or processed until the library has
been successfully assigned.

Assigning libraries
All LMSCONV functions require an input or an output library, or both. LMSCONYV reads
elements from an input library and outputs elements to an output library.

LIB assigns a library as an input, output or input/output library. The assignment remains in
force until the next LIB or the end of LMSCONYV execution.

The library ID can be used to assign a different input library temporarily for a statement. This
assignment applies to this statement only, after which the LIB assignment reapplies.

168

U4303-J-2125-4-7600

LMSCONV Functions of LMSCONV

Assigning libraries with LIB
LIB defines

— which library is to be assigned or closed

— whether the library is assigned as an input, output or input/output library

— whether the library is a program, source program, macro or object module library
— whether the library already exists or is to be created.

LIB references libraries by the file name of the library, the file link name or the library ID.

If the file link name or library ID is used, there must have been a previous ADD-FILE-LINK
command establishing the link to the file name of the library.

/ADD—FILE-LINK LINK-NAME=filelinkname,FILE-NAME=Tibraryname
The library ID is defined in an ADD-FILE-LINK command using the file link name LIBlib:

— lib must be the three digits which represent the library ID in LMSCONYV statements.
— Leading zeros may be omitted in statements, but not in the ADD-FILE-LINK command.
— lib must be enclosed in parentheses in statements.

Example

/ADD-FILE-LINK LINK-NAME=BETA,FILE-NAME=A.BIB
/ADD—-FILE-LINK LINK-NAME=LIBOO1,FILE-NAME=B.BIB
/START-PROGRAM FROM—-FILE=$LMSCONV

$LIB BETA,IN

$LIB (1),0UT

Library A.BIB is given the file link name BETA, is referenced during the LMSCONYV run by
the file link name, and is opened as an input library.

Library B.BIB is given library ID (1), is referenced during the LMSCONYV run by the library
ID and is opened as an output library.

The user may only use one file link name for each library.

U4303-J-2125-4-7600 169

Functions of LMSCONV LMSCONV

Sequential libraries

Sequential libraries must be assigned by an ADD-FILE-LINK command containing the
operand ACCESS-METHOD=*BTAM. If the tape library has no catalog entry and is to be
read, the IMPORT-FILE command must be specified. The following commands must be
specified:

a) File does not yet exist

/CREATE-FILE FILE-NAME=filename, SUPPORT=*TAPE(VOLUME=vsn,
DEVICE-TYPE=device)

/ADD=FILE-LINK LINK-NAME=LIBTib,FILE-NAME=filename,ACCESS-METHOD=*BTAM
b) File available on tape, but not yet cataloged

/IMPORT-FILE SUPPORT=*TAPE(VOLUME=vsn,DEVICE-TYPE=device,
FILE-NAME=filename)

/ADD=FILE-LINK LINK-NAME=LIBTib,FILE-NAME=filename, ACCESS-METHOD=*BTAM
c) File exists and is cataloged
/ADD-FILE-LINK LINK-NAME=LIB1ib,FILE-NAME=filename, ACCESS-METHOD=*BTAM

Sequential libraries cannot be created by LIB. They must be assigned using LIBOUT and
the library ID.

Temporary library assignment using the library ID

Libraries assigned by LIB remain assigned as input or output libraries until LIB assigns new
libraries. If no new assignments are made, the assignments apply until the end of the
LMSCONV run.

LMSCONYV also offers the option of opening another input library for just one statement. In
this case, the library ID is specified as an operand in the statement. This library is available
for the duration of this statement only.

The input library assigned by LIB also applies in the next statement which contains no
library ID as an operand.

The library ID is declared using the file link name LIBlib in an ADD-FILE-LINK command
(see "Assigning libraries with LIB" above).

170 U4303-J-Z2125-4-7600

LMSCONV

Functions of LMSCONV

Example

/ADD=FILE-LINK LINK-NAME=LIBOO1l,FILE-NAME=EIN.BIB
/ADD-FILE-LINK LINK-NAME=LIBOOZ2,FILE-NAME=AUS.BIB
/ADD-FILE-LINK LINK-NAME=LIBOO3,FILE-NAME=PLA1.BIB

/ADD-FILE-LINK LINK-NAME=LIB004,FILE-NAME=PLA2.BIB (D
/START-PROGRAM FROM—-FILE=$LMSCONV (2)
$LIB(1),IN

$LIB (2),0UT (3)

$DUPS ELEMI>ELEMO1 (4)

$LSTS ELEMENT1(3)

$TOCS (4) (5)

$LSTS ELEMI (6)

$END (7)

(2) The input and output libraries are assigned using the ADD-FILE-LINK command, as
they are referenced by means of library IDs in the LMSCONV run.

2 LMSCONV is called.

3) The default libraries for all statements are assigned using LIB.

(4) The element ELEML1 is duplicated and is available as element ELEMOL1 in the corre-
sponding output library.

(5) The libraries assigned using LIB apply to this statement as it contains no library IDs.
This lists specified elements and table of contents of the library.

(6) Element ELEMENTL in library PLA1.BIB, for which library ID (3) was defined in the
ADD-FILE-LINK command, is listed; the table of contents for type S elements in
library PLA2.BIB is output.

(7) LMSCONV is terminated.

For a description of the statements used see section “Statements” on page 184.

U4303-J-2125-4-7600

171

Functions of LMSCONV LMSCONV

6.3.2 Processing elements

The following section summarizes the different ways in which LMSCONV processes
elements.

LMSCONYV can

— add elements to libraries

— output elements to files

— output elements to other libraries (duplicate)
— list elements

— delete elements

— rename elements

— update elements

— output the table of contents for a library.

Adding elements to a library

The following statements output elements to the assigned output library: ADD, DUP, PRT,
UPD.

The processing operand OVERWRITE determines whether or not an existing element with
the same name in the output library is overwritten.

ADD takes files and modules from the EAM area and adds them as elements to the
assigned output library.

When a SAM/ISAM file is added, the processing operand KEY determines whether the file
attributes and the ISAM key are also added.

Setting the KEY processing operand means that files with RECORD-FORMAT = FIXED can
also be added.

Only files with RECORD-FORMAT = VARIABLE can be added to source program and
macro libraries.

172 U4303-J-Z2125-4-7600

LMSCONV Functions of LMSCONV

N~

ADD Program library M, X
Macro library M
Sequential library M

S

ADD Program library R
Object module library R
Sequential library R

S

BS2000 ADD Program library c

ﬁlrg gram Sequential library C

v

SAM or
ISAM file

v

v

Figure 6: Adding elements with ADD

U4303-J-2125-4-7600 173

Functions of LMSCONV LMSCONV

PRT can store the LMSCONYV log in a list element.

Library Element type

Program library P

Source program library S

PRT

v

LMSCONV
log

Figure 7: Adding elements with PRT

DUP copies elements from the input library to the output library, storing them under a
different element identifier if required.

Library Element type

DUP Program library S,M,R,C,X
LMS » Source program library S
library Object module library R
Macro library M
Sequential library SM,R,C

Figure 8: Adding elements with DUP

174 U4303-J-Z2125-4-7600

LMSCONV

Functions of LMSCONV

Outputting elements

Elements in an input library are output

— tofiles using SEL or
— to the output library using DUP.

Y
~

SEL

LMS library

S

DUP

LMS

library

Figure 9: Outputting elements

Listing elements

Elements can be listed using the LST and PRT statements. LST defines the elements and

the library from which the elements are to be listed.

PRT defines the output medium.

The format and scope of the output are defined by processing operands.

Deleting elements

DEL deletes one, several or all elements in the input library (program, source program,

macro or object module library).

Data in program libraries can be deleted in two ways: with or without destroying the data:

— Deletion without destroying the data

The entries in the table of contents are deleted and the space occupied by the corre-

sponding element is released.

— Deletion with destruction of data

In addition to the above, the space occupied by the corresponding element is

overwritten with binary zeros.

U4303-J-2125-4-7600

175

Functions of LMSCONV LMSCONV

With elements in program libraries, the data is only overwritten if the processing operand
DESTROY=YES is set or if the element contains a data destruction indicator.

Updating elements

LMSCONYV provides the update statement UPD for modifying elements. UPD enables
object and load modules (element types R and C) and link and load modules (element type
L) to be updated (corrected).

UPD updates the specified element in the assigned input library. The updated element is
then written to the assigned output library with a new element identifier if required.

UPD has various substatements for updating object and load modules and LLMs. The
substatements are read from the statement stream immediately following UPD, up to the
*END statement.

The functions of substatements for object modules are:

— updating text records

— reversing text updates

— converting updates, i.e. converting REP records to text updates or vice versa
— inserting REP records

— inserting INCLUDE records

— modifying control section attributes

— excluding record types from the input element
— renaming symbols

— defining check numbers

— defining identifications

— defining the base address.

The functions of substatements for load modules are:

— updating text records

— reversing text updates

— deleting update journal records
— defining check numbers

— defining identifications

— defining segments

— defining the base address.

The functions of the substatement for LLMs are:

— updating text records

reversing text updates

deleting update journal records
— defining identifications.

176

U4303-J-2125-4-7600

LMSCONV

Functions of LMSCONV

Renaming elements

NAM renames the specified elements in the assigned input library. This statement also
allows the renaming of elements whose identifiers do not conform to LMSCONV conven-
tions.

Outputting alibrary’s table of contents
TOC lists the table of contents (TOC) entries for the specified elements or for the complete
input library.

The SORT processing operand defines whether the table of contents list is to be output
unsorted or sorted by name, version number, date or reference names. By default, the
element identifiers are output sorted by name, version humber and date.

Table of contents lists for program libraries are always output sorted alphabetically by
element type and name. Use the LMSCONYV statement TOC or TOC* */* to output the
complete table of contents of a program library.

Storing and calling procedures

LMS enables the user to store BS2000 procedures and ENTER procedures as elements in
libraries (element type J).

Existing procedure files can be added to libraries as elements with the aid of the ADD-
ELEMENT statement.

Space can be saved in memory by storing procedures, particularly if the command files are
small. The number of catalog entries is reduced.

Note, however, that if ISAM keys are stored as part of elements, these keys are removed
before the procedure is called.

A library element can also be assigned as a system input file (SYSDTA) by means of the
BS2000 command ASSIGN-SYSDTA (see the "Commands" manual [1]).

The call for procedures stored as library elements is as follows:

CALL-PROCEDURE
ENTER-JOB

} libname(element)

U4303-J-2125-4-7600 177

Controlling LMSCONYV execution LMSCONV

6.4

6.4.1

Controlling LMSCONV execution

LMSCONYV execution is controlled by processing operands and job switches.

Control via processing operands

Processing operands influence not only execution of LMSCONYV, but also individual
functions. They are set by means of PAR.
The following table shows which processing operands operate on which statements.

LMSCONYV statements ADD [DEL |DUP |LST |NAM |PRT |SEL |TOC |UPD |RST
Processing operands

CSIECT] * *
DEC[OMPRESSED] * *

DES[TROY] * * * * * *
FO[RMAT] *

I[NFO] *

KIEY] *

O[VERWRITE] * * * * * *
PA[TH] * *
PH[ASE] *
RE[FERENCE] * * * *
SL[ICE] * *
SO[RT] *
STRIP * *

The processing operands LOG and TERMINATE remain in effect throughout LMSCONV
execution. They have no special effect on any individual statements.

The processing operands determine

— whether the data is destroyed when elements are deleted (DESTROY)

— whether elements are overwritten (OVERWRITE)

— the scope and format of output for listings and logs (FORMAT, INFO, LOG, PATH,
SLICE, CSECT)

— for elements of type R or C, which record types are not moved from the input to the
output element (STRIP)

— whether the table of contents of a library is to be output unsorted or sorted by name,
version number, date or reference name (SORT)

178

U4303-J-2125-4-7600

LMSCONV Controlling LMSCONYV execution

— what response is to be made in the event of an error (TERMINATE)

— whether only elements that satisfy a reference condition are to be processed
(REFERENCE)

— the load module format to be created (PHASE).

Controlling log output
The log of the LMSCONYV run may include:

— input statements

— execution or termination of the statement
— assigned input and output libraries

— generated listings.

The log is written to the system file SYSOUT, SYSLST or to a library element. The output
medium is defined by PRT.

If the log is written to an element, LMSCONV creates a type P element for program libraries
and a type S element for source program libraries. If the library to which the element is to
be written is a source program library, it cannot be the default input or output library for this
LMSCONYV run.

The scope and format of the log are governed by processing operands and job switches.

If job switch 4 was set when LMSCONYV was called, LMSCONV's start and end messages
are suppressed. The LMSCONYV log is also restricted to a minimum (equivalent to setting
processing operand PAR LOG = MIN).

If job switch 8 was set when LMSCONV was called, the access routine messages (AMCB,
DMS) are not logged.

The following table gives an overview of the effect of processing operands on the

LMSCONV log:

Processing operand Function

LOG Defines whether all statements, statements in error or messages only
are to be logged.

FORMAT Defines the record format when an element is listed.

INFO Defines the scope of the output when an element is listed.

SORT Defines sort criteria for table of contents listings.

U4303-J-2125-4-7600 179

Interrupting LMSCONYV execution LMSCONV

Positive and negative acknowledgments

If the value of the LOG processing operand is LOG=MAX or LOG=MED, the execution of
every LMSCONYV statement affecting an element is logged. If the statement is successfully
executed, LMSCONYV outputs a positive acknowledgment.

If the statement cannot be executed, it is logged by LMSCONYV together with a negative
acknowledgment and any corresponding LMSCONYV error message.

Interrupting LMSCONYV execution by the user

The user can interrupt LMSCONV execution by pressing a program interrupt key (e.g. K2).

LMSCONYV can be continued by means of the SEND-MSG command, with or without input
text. This input text is then interpreted by LMSCONV'’s interrupt handling. The function
currently executing is informed of the type of termination.

The following actions are carried out on an interrupt:

— LMSCONV is interrupted by BREAK/ESCAPE (K2 or similar).
If LMSCONV is running interactively, the appropriate STXIT routine is activated.

— LMSCONYV executes a BKPT macro (only in interactive mode).

— Input of an SEND-MSG command causes the BREAK-STXIT routine to be exited and
the INTR-STXIT routine to be activated.

— LMSCONV analyzes the text entered with the SEND-MSG command, and informs the
current function of the type of termination required.

— The INTR-STXIT routine is exited via the EXIT macro.

— The interrupted function is terminated in the required manner.

180

U4303-J-2125-4-7600

LMSCONV

Interrupting LMSCONYV execution

SEND-MSG command

The SEND-MSG command is used to control the way in which the execution of functions is
terminated. A text entry can be specified in the command. This text is passed to the inter-
rupted function by the interrupt handler. The following texts are permitted:

SEND-MSG ‘NI’ The next input buffer is processed (NEXT INPUT). All outstanding
LMSCONYV statements are ignored. This means that statements
currently being processed are terminated and any statements
remaining in the input buffer are ignored.

All outstanding activities are ignored.

SEND-MSG ‘NS’ Execute next statement (NEXT STATEMENT). The current
statement and any statements brought forward to this point are
ignored; the next statement from the statement buffer is executed.
NS is also the default if no operands are specified for the SEND-
MSG command.

SEND-MSG ‘NE’ Stop processing this element (NEXT ELEMENT). Processing
continues with the next element that satisfies the current selector.

Termination of LMSCONYV execution due to error

Error handling is also performed by the STXIT routine.
Program termination is caused by

— Program error ("P error", SVC error).

— Abnormal end due to START-PROGRAM, LOAD-PROGRAM, CANCEL-JOB, EXIT-
JOB or a connection failure.

— timeout (program or task timeout).

In all these cases, precautions are taken to ensure that libraries remain consistent.
LMSCONYV primarily ensures that all libraries are correctly closed.

The following statements are true of all program terminations:

— All STXIT routines in LMSCONYV are deactivated to avoid irregular processing by
SEND-MSG.
— LMSCONYV simulates an END. This causes all open libraries to be closed.

If any libraries are still open at program termination, they are closed.

U4303-J-2125-4-7600 181

Interrupting LMSCONYV execution LMSCONV

Program error

Before END is simulated, the following message is output to SYSOUT:
PROGRAM ERROR AT Toc (IW=iw)

loc specifies the interrupt address and iw the interrupt weight.
LMSCONYV terminates with a dump.

Program error handling always ensures the following:

— Diagnostic documentation is always produced.
— No continuation of LMSCONV is possible using RESUME-PROGRAM after a program
error (this also applies to other types of interrupt) as this would be pointless.

Diagnostic tools

Setting job switch 31 causes a test condition to be set in LMSCONV. If a program error
occurs when LMSCONV is running in batch mode, it is aborted with a dump. The registers
have the same contents as at the time of the interrupt. If job switch 31 is set in interactive
mode, the query:

DO YOU WISH A BKPT (Y/N)?

is output. If the answer is yes, the registers are loaded as they were at the time of the
interrupt, and a BKPT macro is issued. The INTR-STXIT interrupt routine is deactivated to
prevent LMSCONYV being continued by SEND-MSG.

In all cases a dump is initiated before a simulated END is executed and LMSCONYV is termi-
nated.

There is no point in issuing a BKPT macro other than in interactive mode. It is requested by
setting job switch 31.

182 U4303-J-Z2125-4-7600

LMSCONV Using job switches
6.4.2 Using job switches

BS2000 job switches enable the user to influence the LMSCONYV session. They must be

set before LMSCONYV is loaded, using the system command MODIFY-JOB-SWITCHES ON

=(no,...).

The following job switches can be used to influence execution of LMSCONV:

Job switch 1:
In interactive mode, the LMSCONYV statements are read by default from the terminal
using the WRTRD macro. If job switch 1 is set, the statements are read from the logical
system file SYSDTA using the RDATA macro.
When LMSCONYV is called in BS2000 procedures, job switch 1 must be set if the
LMSCONYV statements are to be read from the procedure file.

Job switch 4:
When job switch 4 is set, LMSCONV'’s start and end messages are suppressed. At the
same time, LMSCONV'’s execution log is restricted to minimum scope (cf. LOG=MIN).

Job switch 8:
Setting job switch 8 causes the messages from the access routines (AMCB, DMS) to
be suppressed.

Job switch 9:
Setting job switch 9 enables the user to request more space. This enables the TOC
function to sort/merge comprehensive table of contents lists.

Job switch 31:
Job switch 31 enables a test condition to be set, which can be used for diagnostic
purposes.

The job switches are only interrogated at start time. Setting or resetting them subsequently

has no effect on LMSCONV.

6.4.3 PAM key elimination

For detailed information on PAM key elimination, see the section of the "LMS" manual [11]
immediately preceding the description of the statements.

U4303-J-2125-4-7600 183

Statements LMSCONV
6.5 Statements
6.5.1 Statement syntax

The following metacharacters are used to represent the format of the statements and
processing operands:

lowercase letters

Lowercase letters denote variables that must
be replaced with actual values by the user.

Notational Explanation Example

conventions

UPPERCASE Uppercase letters and special characters NAMx elem(lib)> elemu
LETTERS denote constants which must be entered by | Enter:

and special the user exactly as shown. NAMR MODLA(1)> AMOD
characters

{}

Braces enclose alternatives, i.e. one of the
options must be selected.

(LST)
(SYSOUT)

PRT< (BOTH)
elem[(lib)]
2

Enter:

PRT (LST) or
PRT (SYSOUT) or
PRT (BOTH) or
PRT PROT(1) or
PRT ?

[]

Square brackets denote optional entries.

LSTx elem[(lib)]
Enter:

LSTM MACRO or
LSTM MACRO(3)

Ellipses denote repetition; the preceding unit
can be repeated several times in succession.

elem(lib),...

Enter:

A(1) or

A(1),B(2) or
A(1),B(2),C(3) etc.

184

U4303-J-2125-4-7600

LMSCONV Statement format
Notational Explanation Example
conventions
_ The underscore highlights the default value. YES

This is the value that is used if no other value | PAR DEC=

is specified by the user. If nothing is under- NO

scored, either there are different default

values in batch and interactive modes, or Enter:

there is no default assignment. PAR DEC=YES or
PAR DEC=NO or
PAR DEC-=, which
corresponds to
PAR DECO=NO.

6.5.2 Statement format

LMSCONYV statements consist of three parts:

— operation
— operands
— comments

General format:

[$]operation_operands_comments

A dollar sign ($) sigh may appear as the first character of the statement, but this is not
essential.

Operation

The operation must appear at the beginning of the statement. It consists of the statement
name and, if the statement is to process elements, the element type.

Example

ADDx Statement syntax.

ADD Statement name.

X x should be replaced by the element type, e.g. ADDS for source programs

The element types supported by each statement are listed in the statement description.

U4303-J-2125-4-7600 185

Statement format LMSCONV

Operands

The operation is followed by the operands, separated from it by at least one space.
Operands are separated by commas. In many statements, the separators "=" and ">" are
also used to separate operands. The ">" character is the symbol for an arrow indicating the
direction of processing.

There must be no separator before the first or after the last operand of the statement as a
whole. No spaces may appear within operands, or between operands and separators.
Statements may be a maximum of 2028 bytes long.
Example

ADDM SRCE.DAT>SRCE.ELEM

The file SRCE.DAT is stored in the library as element SRCE.ELEM.

Comments

Comments may follow the operands, separated from them by at least one space.
No comments may be included in statements without operands.

If the comment is to extend over a complete line (comments lines) these lines must be
flagged by an asterisk (*) in column 1 and a space in column 2.

The characters ! and X'15’ (NEW-LINE) must not occur in comments, as they are inter-
preted as statement separators.

Continuation lines

A statement can consist of more than one line. The operation section must be at the
beginning of the first line. The operand section can extend over several lines. Substate-
ments such as *COR must not be separated.

To indicate a continuation, a continuation character or a space must immediately follow one
of the separators. The continuation character must be within the column range 1 to 72.

The statement can be continued at any position in the continuation line.

Continuation characters

The continuation character can be represented by a hyphen (=) or by the plus (+)
character.

Separators

The separators are "," or ">" or "=",

186

U4303-J-2125-4-7600

LMSCONV Statement format

Entering blocked statements

Statements can also be entered in blocks.

In interactive mode, this means that each statement does not have to be sent individually;
instead, data transmission can be initiated for a group of statements together.

Thus several statements in one line, separated by the exclamation mark (!), and statements
extending over more than one line, separated by logical end-of-line, can be sent off collec-
tively.

Logical end-of-line is the NEW-LINE character (NL) applicable for the relevant terminal type.
Depending on the terminal, it is normally represented by the character \ or <.

U4303-J-2125-4-7600 187

Statement overview

LMSCONV

6.5.3 Overview of all LMSCONYV statements

Statement | Operands Usage
filename.... Stora datain a
LINK=filelinkname library

ADDx [prefix.Jnamel[.suffix] [>elemu]

[prefix.]J(name,...)[.suffix]

ADDR *OMF[(modulel,...)][>elemu] Store modules from

the EAM area

COPYLIB (lib1)>(lib2) Copy a library

DELXx eIem[(Iib)]\ Delete elements
Gipy fbl

DUPx . Duplicate (copy)
Z:E;“"“[("b)]}[>e|emu][,{...}[>...]] elements

END Terminate

LMSCONV
execution

LIB FILE=libraryname Assign libraries

e IN
LINK=filelinkname —JouT
[LIBRARY=Jname [LUSAGE=] ol]
[LID=](lib)

PL I OILD]
[[FORMAT=K OML J][,[STATE=K N[EW] »]
OSM j A[NY]
LIB FILE=libraryname Close libraries
LINK=filelinkname
CILOSEIl [LiIBRARY=]name
[LID=](lib)

LIB ? Display assigned

libraries

188

U4303-J-2125-4-7600

LMSCONV

Statement overview

Statement | Operands Usage
LIBOUT Assign a sequential
(vsn) output library
(lib)[,< NEWLIB]
NEWLIB(vsn)
libname
LINK=linkname
LSTx elem(lib)] List elements
NAMx . Rename elements
elem,...[(lib)]
(iib) >elemu[{...}>...]
PAR Set processing
pz;\rnf;tme:[{garval }] operands
: A}
?
PRT (LST) Control log output
([SYSIOUT)
(CON)
(BOTH)
elem[(lib)]
?

RST [STOP] Restart after error
SELx [prefix.](name)[.suffix] Output elements to
elem[>< filename files

LINK=filelinkname
SYS ‘systemcommand’ Initiate S)éstem
[systemcommand] commands or
switch to system
mode
TOCx elem(lib)] List table of _
[< yee] contents of a library
(lib)
UPDx elem[(lib)][>elemu] Update object and
load modules

U4303-J-2125-4-7600

189

Statement overview

LMSCONV

Table of permissible element types for each statement

The following table summarizes which element types are permissible in each of the state-

ments:

Element type

Statement

M

ADD

DEL

DUP

LST

+ |+ |+ |+

+ |+ |+ |+

+ |+ |+ |+

+ |+ |+ |+

+ |+ |+ |+

NAM

|+ |+ |+
+
+

SEL

+

+

+

+

+

TOC

+ |+ [+ |+ |+ |+]+

+
+
+

UPD

|+ |+ |+ |+]+]+

|+ |+ |+ |+]+]+

+:

empty box :

Table of required libraries

Element type permitted for statement

Element type not permitted for statement

The following table shows which libraries are required by the individual LMSCONYV state-

ments:
LMSCONYV requires

Function Input library Output library
ADD no yes
DEL 1) yes no
DUP yes yes
LST yes no
NAM 1) yes no
PRT no yes
TOC yes no
SEL yes no
UPD yes yes

1) The input library is opened for writing.

190

U4303-J-2125-4-7600

LMSCONV

ADD statement (format 1)

6.5.4

Description of the statements

ADD
Add files to library

ADD stores the following as library elements:

— files
— modules from the EAM area

ADD has two different formats corresponding to these different functions:

ADD (Format 1): Adding files

This ADD format takes files and stores them as elements in the open output library. Files of
any buffer length can be added to a PLAM library.

The output library must previously have been assigned using LIB. File generation groups
can only be stored using LINK= and an element identifier supported by LMSCONV. When
the ADD statement is used, LMSCONV uses the CCS catalog attribute (CCS = coded
character set) of the file as the element attribute.

Operation Operands
ADDX filename,...
LINK=filelinkname
[prefix.Jname[.suffix] [>elemu]
[prefix.](name,...)[.suffix]
ADDx Statement name including code for element type (x).
The following element types are permitted:
M,R,C, X, S,J,PD
filename Fully qualified file name or selector.

“pathname” can be specified instead of “filename”.

If temporary files are being stored, selectors are not permitted.
Multiple file names are only meaningful where * or a constructor is
specified for elemu.

U4303-J-2125-4-7600 191

ADD statement (format 1) LMSCONV

LINK=filelinkname File link name pointing to the file.

[prefix.Jname].suffix]

[prefix.](name,...)[.suff
This entry enables one or more files to be selected for storing in the
library.

prefix
Specifies the common prefix of the files to be selected. 'prefix’ must
end with a period.

suffix
Specifies the common suffix of the files to be selected. 'suffix’ must
start with a period.

name
Specifies the partial file name(s) which, with prefix and/or suffix,
become(s) one or more fully qualified file names.

The elements created are stored in the library with these partial
names even if elemu is not specified. A selector is also permitted for
‘name’.

Partially qualified file names can also be specified in the form
prefix.(*).suffix.

elemu Name of the element to be generated.
Where [prefix.](name,...)[.suffix] or a selector is specified for
filename, constructors are also permitted. elemu can be omitted, in
which case the element generated is given the name of the input
file.

The element identifiers of the elements to be generated are subject
to the various syntax rules for program libraries (see section
"Contents of a program library") and other library types (see section
"Contents of single-type libraries").

Processing operands

DESTROY Defines whether the output element contains a flag indicating data
destruction on deletion. (Only possible for program libraries.)

KEY Defines whether file attributes and any existing ISAM keys are to be
stored.

OVERWRITE Defines whether an existing element of the same name in the output

library is to be overwritten.

192

U4303-J-2125-4-7600

LMSCONV

ADD statement (format 1)

DECOMPRESSED Defines whether data in macro/source program libraries is
compressed.

Example 1

Given these files:

A.B.CA A.B.C.B A.B.C.C B.B.C.A C.B.CA

the statement

ADDx A.B.(*) selects A.B.C.A -~ element name C.A
(only possible for files A.B.C.B - element name C.B
program libraries A.B.C.C - element name C.C
ADDx (A,C).B.C.A selects A.B.C.A -~ element name A

files C.B.C.A -~ element name C
Example 2

/START-PROGRAM FROM—-FILE=$LMSCONV
$LIB TESTLIB,OUT

$ADDM M.MAC>MMAC

$END

The macro with file name M.MAC is stored in program library TESTLIB as a type M element
with the name MMAC.

Example 3

/ADD—FILE-LINK LINK-NAME=PROG, FILE-NAME=PROG.DAT
/ADD—FILE-LINK LINK-NAME=TEST,FILE-NAME=TEST.COB
/START-PROGRAM FROM—-FILE=$LMSCONV

$LIB TESTLIB,OUT

$ADDM LINK=PROG>DDAT

$ADDM LINK=TEST>TCOB

$END

The files PROG.DAT and TEST.COB are stored in program library TESTLIB as elements
DDAT and TCOB. In ADD they are referenced by their file link names.

U4303-J-2125-4-7600 193

ADD statement (format 2) LMSCONV

ADD (Format 2): Adding modules from the EAM area

This ADD format takes modules from the EAM area of the current task and stores them as
type R elements in the assigned output library. Output libraries here can be program or
module libraries or sequential libraries.

When the ADD statement is used, LMSCONV uses the CCS catalog attribute (CCS =
coded character set) of the file as the element attribute. If *OMF is read, 'no code’ is the
CCS value assigned to the elements.

Operation Operands

ADDR *OMF[(modulel,...)][>elemu]
ADDR Statement name with element type R.
module Name (up to 8 characters in length) of a module in the EAM area.

If there are several modules of the same name in the EAM area,
LMSCONYV adds the most recently compiled module to the library.
If the module entry is omitted, LMSCONYV adds all the modules in
the EAM area.

A selector is permitted.

elemu Element identifier of the element to be created.
A constructor is permitted.

elemu can be omitted, in which case modules will be given the name
they had in the EAM area.

Note

If an element identifier is specified for elemu, the name of the module to be added must
be specified for 'module’ if there are several modules in the EAM area.

Otherwise, all modules from the EAM area will be stored as 'elemu’, with each new
module overwriting the one just added.

Example

/START-PROGRAM FROM—-FILE=$LMSCONV
$LIB TESTLIB,OUT
$ADDR *OMF(MOD1,M0D2)>ELM*

$END
Object modules MOD1 and MOD2 from the EAM area are added to output library TESTLIB
as elements ELM1 and ELM2.

194

U4303-J-2125-4-7600

LMSCONV

COPYLIB statement

COPYLIB
Copy library

COPYLIB copies the specified library in its entirety, i.e. complete with all data, library, type
and element attributes.

The target library may not exist or must have FILE-STRUC=NONE (only a catalog entry
exists for the library, it was not opened beforehand). The target library is assigned a library
format in accordance with its buffer length.

If an error occurs while the COPYLIB statement is being processed, the target library will
be incomplete.

Operation Operands
COPYLIB | (libl)>(lib2)

libl Abbreviation for the library to be copied (zzz in the file link name
LIBzzz, which was assigned beforehand by means of an ADD-FILE-
LINK command).

lib2 Abbreviation for the target library (zzz in the file link name LIBzzz
which was assigned beforehand by means of an ADD-FILE-LINK
command).

To be successful, the COPYLIB statement must be called by a user having the following
access rights:

« Read permission for the source library.
In addition, one of the following conditions must be satisfied:

— the user is the owner of the source library

— orthe source library is not protected against TP-UPAM access (i.e. the library file is
not protected by ACL, BACL, etc.)

— or no protection attributes exist on the library, type and element levels.

o Write permission for the target library.

U4303-J-2125-4-7600 195

DEL statement LMSCONV

Example
An NK2 PLAM file is converted into an NK4 PLAM file:

/ADD-FILE-LINK FILE-NAME=source, LINK=1ib000

/ADD—-FILE-LINK FILE-NAME=target, LINK-NAME=1ib999

/ADD—FILE-LINK FILE-NAME=4ktarget, LINK-NAME=1ib004,BUFFER-LENGTH=STD(2)
/START-PROGRAM FROM-FILE=$LMSCONV

$COPYLIB (000)>(004) (D)
$LIB (999) ,NEW

$DUP* */*(000) (2)
$

$END

(1) The library is copied in its entirety (including the attributes).

(2) The elements for which the user has read permissions are copied.

DEL
Delete elements

DEL deletes the specified elements in the assigned input library. The TOC entries are also
deleted and the storage space is released.

In program libraries, the data contained in the elements is also destroyed, i.e. overwritten
with binary zeros, if

— the element contains a data destruction indicator;
— the processing operand DESTROY=YES is set.

Operation Operands
DELx elem[(lib)]\.
Gipy bl
DELX Name of the statement including element type:
SSM\R,C,J,PD, X,H, L FU
elem Element identifier or selector.
lib Library ID of the input library.If no element is specified, the function

applies to all the elements in the highest version of the named
library, i.e. the whole library is deleted unless it contains elements
with the same name but different versions.

196

U4303-J-2125-4-7600

LMSCONV DEL statement

Processing operands

DESTROY Specifies whether data is also to be destroyed on deletion.
(Only possible for program libraries.)

REFERENCE Specifies the reference names that the elements to be deleted must
contain. If the reference condition is not satisfied, the element is not
deleted. REFERENCE is only permitted for type R elements. If a
REFERENCE is given, DEL must specify element type R.

Example

/START-PROGRAM FROM-FILE=$LMSCONV
$LIB LS.LIB,BOTH

$DELM DATA

$DEL* TPROG

$END

The type M element DATA in library LS.LIB is deleted.

U4303-J-2125-4-7600 197

DUP statement

LMSCONV

DUP

Duplicate elements

DUP duplicates the specified elements in the assigned input library, or a complete library,
placing the copy in the open output library. The duplicated elements can be given new

identifiers.

An output library must have previously been assigned by means of LIB.

Elements can be selected for duplication by means of their reference names, i.e. if a
reference condition is specified using the REFERENCE processing operand, only the
elements fulfilling this condition are duplicated.

Operation Operands
DUPx .
elem,...[(lib
e I)]}[>e|emu][,{...}[>...]]
DUPXx Name of the statement including the element type.
The following element types are permitted:
SM,R,C, L, X, J,P, D, H, F, U*can be used to indicate all element
types (only allowed for program libraries).
elem Element identifier of the element to be duplicated, or selector.
Names that do not satisfy LMSCONV conventions can be specified
for elem in order to allow such elements to be processed.
lib Library ID of the input library.
elemu Element identifier of the output element or constructor.

DUPx */* duplicates all elements of a type, retaining the original element identifiers.

Processing operands

DECOMPRESSED

DESTROY

OVERWRITE

Specifies whether the data in macro/source program libraries is
compressed.

Specifies whether the output elements contain a data destruction
indicator.
(Only possible for program libraries.)

Governs the overwriting of elements with the same name in the
output library.

198

U4303-J-2125-4-7600

LMSCONV DUP statement

REFERENCE Determines which reference names the elements to be duplicated
must contain. If the reference condition is not fulfilled, the element
is not duplicated. REFERENCE is only permitted for type R
elements. If a REFERENCE is given, DEL must specify element
type R.

STRIP Only for type R and C elements.

Determines which record types are to be excluded from duplication.

Example

/ADD—-FILE-LINK LINK-NAME=LIBOOZ2,FILE-NAME=DUP.LIB
/START-PROGRAM FROM—-FILE=$LMSCONV

$LIB OLD.LIB,IN

$LIB (2),NEW,0UT

$DUPM OLDI>DUP1,0LD2>DUP?2

$END

Elements in library OLD.LIB are duplicated into a new program library called DUP.LIB. The
file link name LIBO02 is assigned to the new output library DUP.LIB. The input library is
explicitly assigned by LIB. Element OLDL1 is duplicated as DUP1, and OLD2 as DUP2 with
unchanged version and date.

U4303-J-2125-4-7600 199

END statement LMSCONV

END
End LMSCONYV run

END terminates the LMSCONYV routine. Any libraries that are still open are closed.

In interactive mode, LMSCONYV always terminates normally. In batch mode and proce-
dures, the type of termination depends on the termination flag (see the TERMINATE
processing operand). If an internal LMSCONYV termination flag is set, the flag is output with
the LMSCONYV termination message (LMSCONV-TERM-MSG:).

Operation Operands
END

The termination code indicates the most serious error that has occurred. This is stored in
the monitoring job variable specified in the call

/START-PROGRAM FROM-FILE=$LMSCONV,MONJV=<name>

Termination code Meaning
0 No error has occurred
1 Warning messages have been issued
2 Error has occurred with termination flag
(see the TERMINATE processing operand)
3 Internal LMSCONV error (with dump)

Following LMSCONYV termination, the first byte of the status indicator of the monitoring job
variable contains the termination code (see above) and the fourth byte contains the internal
termination flag (see PAR TERM).

200

U4303-J-2125-4-7600

LMSCONV

LIB statement

LIB
Assign and close libraries

LIB enables input and output libraries to be created, opened and closed. LMSCONYV reads
elements from input libraries and writes elements to output libraries.

Exceptions to this rule are DEL and NAM, which operate on the assigned input library.

There are 3 formats of the LIB statement, as described on the following pages.

LIB (Format 1): Assigning libraries

LIB assigns libraries. It can be used to specify the following:
— It defines the library as an input or output library or both.

— It defines the library type
(program, source program, macro or object module library).

— It defines whether the library is to be created, whether it must already exist or whether
it is to be created if required.

When LIB assigns a new input library, it closes any input library previously assigned by a
LIB statement. The same applies to output libraries.

The newly assigned library is opened.

Operation Operands
LIB FILE=libraryname IN
LINK=filelinkname —JouT
[LIBRARY=Jname ([[USAGE=] SOTH]
[LID=](lib)
PL I O[LD]
[,[FORMAT=K OML][,[STATE=K N[EW]]
OSM j A[NY]
LIB Statement name.

FILE=libraryname Fully qualified file name of the library.
libraryname can also be pathname (see the manual
"Commands, Volume 1" [1]).

LINK=filelinkname Specifies the file link name with which the library was assigned in an
ADD-FILE-LINK command.

U4303-J-2125-4-7600 201

LIB statement (Format 1)

LMSCONV

LIBRARY=name

LID=(lib)

USAGE

=IN

=0uUT

=BOTH
FORMAT

=0OSM
STATE

=OI[LD]
=N[EW]

=A[NY]

LMSCONV first tries to interpret "name" as a file link name. If no
such file link name was previously assigned using an ADD-FILE-
LINK command, "name" is interpreted as libraryname.

The keyword 'LIBRARY="may be omitted. In this case the library
name must not be 'CLOSE’, otherwise LIB format 2 will be
assumed.

Specifies the library ID, consisting of a maximum of 3 digits.
The library ID must previously have been defined with the file link
name LIBIlib in an ADD-FILE-LINK command.

This operand specifies whether the library is to be used for input,
output or both.

LMSCONYV processes a library as an input and/or output library. The
input library is used by LMSCONYV as an input medium; it outputs
elements to the output library.

In this LMSCONV run, the library is the input library.
Default value with STATE=OLD.

In this LMSCONYV run, the library is the output library.
Default value with STATE=NEW or STATE=ANY.

In this LMSCONV run, the library is both input and output library.

This operand defines the type of library to be assigned.

The operand is needed only where a library is to be created and the
default value PL is not appropriate. LMSCONV knows the library
type of existing libraries.

Program library.
Object module library.
Source program or macro libraries (Old source/macro library).

Defines whether the library is to be created, whether it must already
exist or whether it is to be created if necessary.

The library must already exist.

The library must be newly created.
If the library already exists, the statement is rejected with an error
message.

The library is newly created if it does not already exist.

202

U4303-J-2125-4-7600

LMSCONV LIB statement (Format 1)

With DEL, NAM, UPD, DUP, LST and TOC, the library ID can be used to assign a library
other than the default input library. This input library only applies while this statement is
being executed; thereafter the default input library is assigned again.

Example

/ADD-FILE=LINK LINK-NAME=BEILINK, FILE-NAME=LMSCONV.BEI
/ADD—FILE-LINK LINK-NAME=LIBOO1,FILE-NAME=LMSCONV.EINB
/START-PROGRAM FROM—-FILE=$LMSCONV

$LIB FILE=LMSCONV.AUS,OUT,NEW

$LIB LINK=BEILINK,IN

$LIB LID=(001),USAGE=IN

$END

The library LMSCONV.BEI is assigned in an ADD-FILE-LINK command and linked as an
input library with LMSCONYV by means of LIB, using the file link name BEILINK and the
operand value IN.

Output library LMSCONV.AUS is to be created (OUT,NEW). Its file name is specified in the
LIB statement.

The third LIB statement, which assigns library LMSCONV.EINB as an input library using its
library ID, closes library LMSCONV.BEI.
Assigning sequential libraries

Sequential libraries can only be assigned by LIB as input libraries. To create sequential
libraries, it is necessary to use LIBOUT (lib), NEWLIB.

Existing sequential output libraries are assigned using LIBOUT (lib).

U4303-J-2125-4-7600 203

LIB statement (Format 2) LMSCONV

LIB (Format 2): Closing libraries

This format of LIB is used to close libraries. The input and output library assignments are

lost.
Operation Operands
LIB FILE=libraryname

LINK=filelinkname

CILOSEI[[LIBRARY=]name

[LID=](lib)
LIB Statement name.
C[LOSE] requests the closing of libraries.
FILE=libraryname specifies the fully qualified file name of the library to be closed.

pathname can also be used instead of libraryname (see the
"Commands, Volume 1" manual [1]).

LINK=filelinkname specifies the file link name of the library to be closed. The library
must have been assigned in an ADD-FILE-LINK command and
must be known to LMSCONV.

LIBRARY=name LMSCONYV first tries to interpret "name" as the assigned file link
name of the library to be closed.
If it can find no such file link name, "name” is interpreted as
libraryname. The file link name or library name must be known to
LMSCONV.

LID=(lib) specifies the library ID of the library to be closed.
The library must have been assigned in an ADD-FILE-LINK
command with the file link name LIBlib and must be known to
LMSCONV.

Example

/START-PROGRAM FROM-FILE=$LMSCONV
$LIB LMSCONV.TEST,BOTH

$LIB C,LMSCONV.TEST
$END

The library LMSCONV.TEST is assigned as an input/output library in the first LIB statement,
and closed in the second.

204 U4303-J-Z2125-4-7600

LMSCONV LIB statement (Format 3)

LIB (Format 3): Displaying assigned libraries

This format of LIB provides information about the libraries used in the LMSCONYV run.

The following information is output:

— library usage (input or output or both)
— library status (open or closed)

— library format

— any library ID assigned to it

— any file link name assigned to it

— file name of the libraries

Operation Operands
LIB ?

U4303-J-2125-4-7600 205

LIBOUT statement LMSCONV

LIBOUT
Assign sequential output library

The LIBOUT statement closes the current output library and assigns a new one.

Operation Operands
LIBOUT
(vsn)
(lib)[,< NEWLIB]
[NEWLIB(vsn)]

libname

LINK=linkname
LIBOUT Statement name.
lib Library ID of the output library.
vsn Volume serial number (6 characters).
NEWLIB Creates a new library.
libname Fully qualified file name of the output library.
linkname File link name referring to the output library.

The LIBOUT statement

— closes the current output library
— cancels the assignment of the implicit output library
— defines the library specified as libname, lib or linkname as an output library.

This implicitly defined output library remains in force until the next LIBOUT. At the start of
the LMSCONYV run, and following a LIBOUT with no operands, the implicit output library
remains undefined.

After an error, the implicit output library becomes undefined and must be reassigned.

The (vsn) suffix allows a volume serial number to be specified. It must be the same as the
VSN of the assigned volume.

If a library ID (lib) or a file link name (LINK=...) is used in LIBOUT, an ADD-FILE-LINK
command must be specified (see LIB).

A sequential library cannot be both input and output library at the same time. LIBOUT
(without operands) causes the current output library to be closed. The same library can then
be assigned as an input library.

If a tape is assigned for lib, a new library tape is always opened, i.e. new file header labels
are written for the library.

For sequential libraries, NEWLIB must always be specified for LIBOUT.

206

U4303-J-2125-4-7600

LMSCONV

LST statement

The NEWLIB option is only permitted for files to be created from scratch. It causes the
output library to be created as an empty library. The following attributes must be specified
for the file in the ADD-FILE-LINK command:

Library type ACCESS-METHOD= KEY-POSITION= KEY-LENGTH=
Source library ISAM 5 8

Macro library ISAM 5 8

Modul library PAM

Sequential library BTAM

The first time an ISAM file is used as an output library, its type is defined as a macro or
source program library.

LST
List elements

LST lists the specified elements of the assigned input library.

Depending on the value of PRT, the output medium is either

— the terminal and/or
— the system file SYSLST or
— alibrary element.

The scope and format of the listing are determined by the processing operands CSECT,
FORMAT, INFO, PATH, REFERENCE and SLICE.

Operation Operands
LISTX elem[(lib)]
(lib) L]
LSTx Name of the statement, including the element type:
SSMR,C,J,P,D, X,H, L FU
elem Element identifier of the element to be listed, or selector.
lib ID of the input library.

As list elements (type P in program libraries and type S in source program libraries) can only
be output to the system file SYSLST, PRT (LST) must also be specified.

U4303-J-2125-4-7600 207

LST statement

LMSCONV

Processing operands

CSECT
FORMAT

INFO

PATH
REFERENCE

SLICE

Example

For type L, determines which control section is to be listed.

Defines whether the records are to be output in character,
hexadecimal or mixed format.

Defines whether all records, specific record types, specific areas, or
just the most significant element data are to be output.

For type L, defines the sub-LLM to be listed.

Defines the reference names which the elements to be listed must
contain. If the reference condition is not satisfied, the element is not
listed. REFERENCE is only permitted with element type R. If
REFERENCE is defined, R must be specified in LST.

For type L, defines which slice of the element is to be listed.

/ADD=FILE-LINK LINK-NAME=LIBOO3,FILE-NAME=TEST.LIB
/START-PROGRAM FROM-FILE=$LMSCONV

$PAR INFO=SUMMARY

$LSTS (3)
$END

The most significant data concerning all elements of library TEST.LIB is listed.

208

U4303-J-2125-4-7600

LMSCONV

NAM statement

NAM
Rename el

ements

NAM renames the specified elements in the assigned input library. The name is only

changed in th

e table of contents of the input library.

The NAM statement cannot be used for sequential libraries.

Operation Operands
NAMx .
elem,...[(lib)]
(lib) >elemu[{...}>...]
NAMXx Name of the statement, including the element type:
M,R,C, L
elem Identifier of the element to be changed, or selector.
elem can also be a name that does not satisfy the LMSCONV
conventions, in order to enable such elements to be processed.
elemu New element identifier; a constructor is also permitted.
lib ID of the input library.

Processing operands

DESTROY

OVERWRITE

Example

Defines whether a data destruction indicator is set in the renamed
elements.
(Only permitted for program libraries.)

Governs the overwriting of elements of the same name.

/START-PROGRAM FROM—-FILE=$LMSCONV
$LIB PROD.LIB,BOTH
$NAMM MAXOUT>MACOUT

$END

The MAXOUT macro is renamed MACOUT.

U4303-J-2125-4-7600

209

PAR statement LMSCONV

PAR
Set processing operands

PAR sets the processing operands. A processing operand can define both a processing
mode and also the values required for processing.

Operation Operands
PAR
[parname:[{,Igarval }] |
, ,
PAR Statement name.
parname Name of the processing operand (see section 6.5.5, "Processing
operands")
parval Values of the processing operand (see section 6.5.5, "Processing
operands")
? The current values of all processing operands, or of the processing

operand specified as parname, are listed.

Default values are defined for all processing operands. At the start of an LMSCONYV run, all
operands are set to these default values. (The defaults are specified in the description of
each operand under the heading "Processing operands".) If no value is specified for an
operand in the PAR statement, or if the value is incorrect, the corresponding default value
is used. The processing operands can be specified in any order. If any operand is repeated,
the last value specified is always used. The values specified remain in force until a new
value is specified explicitly or until the defaults are reset by specifying a PAR without
operands. The descriptions of the individual functions specify which processing operands
affect the function.

You can find a summary of the processing operands under "Table of all processing
operands".

210

U4303-J-2125-4-7600

LMSCONV

PRT statement

PRT
Control log output

PRT defines the output medium for LMSCONV logs.
The output media are:

— the terminal
— the system file SYSLST
— alibrary element

If the log is output to an element in a program library, LMSCONYV creates a type P element;
if the element is in a source program library, LMSCONV creates a type S element.

If the library to which the element is written is a source program library, it must not be the
default input or output library for the current LMSCONYV run.

Operation Operands
PRT (LST)
(ISYS]JOUT)
(CON)
(BOTH)
elem[(lib)]
?
PRT Statement name.
LST Outputs the log to the system file SYSLST.
géSNOUT} Outputs the log to the system file SYSOUT (i.e. to the terminal in
interactive mode).
BOTH Outputs the log both to the terminal and to the system file SYSLST.
elem Outputs the log to the library element elem.
lib ID of the library to which the element is to be written.
? The current value is listed.

Processing operands

LOG Controls the scope of the log; to obtain a log, you must set PAR
LOG=MED or PAR LOG=MAX (default LOG=MIN).
OVERWRITE Governs the overwriting of elements with the same name in the

output library.

U4303-J-2125-4-7600 211

RST statement LMSCONV

DESTROY Defines whether a data destruction indicator is to be set in the list
element.
(Only possible for program libraries.)

Example

/ADD—FILE-LINK LINK-NAME=LIBOOZ2,FILE-NAME=PROT.LIB
/START-PROGRAM FROM—-FILE=$LMSCONV

$PRT PROELEM(2)

$LIB EINAUS.LIB,BOTH

$END
The log for this LMSCONV run is written to element PROELEM in library PROT.LIB.

RST
Exit TEST mode

RST switches back to RUN mode after TEST mode has been operating due to an error. The
current input and output libraries are closed. They become "undefined" and must be
reassigned.

Operation Operands

RST [STOP]
RST Statement name.
STOP RUN mode is resumed.

The internal LMSCONV termination flag is not deleted.

If the termination bit is set when LMSCONYV terminates, LMSCONV
ends with TERMJ instead of TERM.

If this operand is omitted and the termination flag has been set, the
flag will be deleted.

212 U4303-J-Z2125-4-7600

LMSCONV

SEL statement

SEL
Output elements to files

SEL outputs library elements to files.
LMSCONYV creates

— files in accordance with the stored file attributes (PAR KEY=YES)

— files in accordance with the entry in the task file table (TFT) if file link names are being
used

— files in accordance with the catalog entry.

If the ISAM keys for a file were included in the element (PAR KEY=YES), the ISAM keys are
also output by SEL.

Elements of type C and PAM files stored as type X are selected into PAM files, while other
elements are normally output to ISAM files with KEY-POS=5 and KEY-LEN=8.

The file created receives the CCSN of the source element as its CCS (coded character set)
catalog attribute.

Operation Operands
SELX
[prefix.](name).[suffix]
elem[> filename]
LINK=filelinkname
SELX Name of the statement, including the element type:
M,R,C, X, S, J, P D.
C applies only to BS2000 load modules.
elem Element identifier of the element to be output.
A selector is permitted if
“filename” is not specified
— in the expression [prefix.](name)[.suffix], a constructor is
specified for "name”.
filename Fully qualified file name of the file to be created.

Constructors are not permitted.
pathname can also be specified for filename.

LINK=filelinkname File link name referencing a file assigned in an ADD-FILE-LINK
command.

U4303-J-2125-4-7600 213

SEL statement LMSCONV

[prefix.](name)[.suffix] If a selector was specified for the element identifier, the expression
may select several elements from different files. In this case, "name"
must be a constructor.

prefix. Specifies the common prefix of the files to be created.
"prefix" must finish with a period.

.Ssuffix Specifies the common suffix of the files to be created.
"suffix" must start with a period.

name Specifies the partial name which combines with "prefix" and/or
"suffix" to specify one or more fully qualified file names.
If a constructor is specified for "name", this part of the file names is
made up of the element names.

Note

Permissible element names are not always permissible file names.

Processing operands

OVERWRITE Defines whether a file of the same name is overwritten, not
overwritten, or extended by the records from the input element.

PHASE Defines whether an NK or PK phase (load module) is created.

Creating ISAM files

If elements are output to ISAM files and no ISAM keys exist yet, LMSCONYV generates the
ISAM keys as follows:

LMSCONYV generates the ISAM keys with an initial value of 1000 and an increment of 1000.
The generated values are stored right-justified in the ISAM key.

Notes

— Elements of type R are output up to the END record.
Any subsequent records are ignored.

— Update journal records (TXTP) are not output with type C elements.

— The record length is only specified for fixed-length records. For variable-length records
it has a value of 0.

— Where SEL and PAR OVERWRITE=YES are specified, and a file already exists with the
same name as the file to be created, the existing cataloged file must have the same file
attributes as the file to be created.

214

U4303-J-2125-4-7600

LMSCONV

SEL statement

Example 1

/ADD—-FILE-LINK LINK-NAME=AUSD, FILE-NAME=AUSDAT, ACCESS—-METHOD=*SAM,
RECORD-FORMAT=*VARIABLE

/START-PROGRAM FROM—-FILE=$LMSCONV

$LIB EIN.BIB,IN

$SELS ELEMI>LINK=AUSD

$END

SEL causes element ELEML1 to be output to file AUSDAT.

Example 2

If all elements in a library are to be output with their names, the following statement must
be specified:

$SELIx] *>(*)

Possible errors

There are two PLAM library formats, one being the original NK2 format and the other being
the new NK2 format with a minimum allocation unit of 8 or 64 Kbytes. In this context, the
following possible errors must be borne in mind with regard to the use of the SEL statement
for file output:

1a) If the library element contains an attribute record with the original BUFFER-LENGTH
specification (e.g. following an ADD with PAR KEY=YES or for original UPAM files such
as PLAM library files) and if BUFFER-LENGTH was explicitly specified for the target
library in the TFT by means of ADD-FILE-LINK or directly in the catalog - i.e this speci-
fication is always evaluated - the following problems may occur:

SAM/ISAM file
If the element records are too long for the specified buffer length, a DMS error results.
UPAM file

When UPAM files are created, LMSCONYV packs a logical block (other than the last
block) with 2-Kbyte units and outputs this block only with UPAM.

If BLK-CONTR=DATA is specified, each logical block (BUFFER-LENGTH) starts with a
12-byte check field (CF). If the specified buffer length does not tally with that stored,
data from DMS may be overwritten with the check field, thus rendering the file unusable.

If BLK-CONTR=NO is specified, unusable files may be generated if the buffer length is
changed (e.g. PLAM files).

LMSCONYV always issues a warning if there is any discrepancy in the buffer lengths
(between user specification and stored value).
The system always attempts to create the file nevertheless.

U4303-J-2125-4-7600 215

SYS statement

LMSCONV

1b)If the library element includes an attribute record with the original BUFFER-LENGTH
specification (e.g. following an ADD with PAR KEY=YES or for original UPAM files such
as PLAM library files), and if no buffer length is explicitly specified for the target file or
the value is unknown, i.e. the buffer length from the attribute record is used, the
following must be borne in mind:

If nin STD(n) is odd, LMSCONYV increments to n+1.

2a) The element does not contain an attribute record (e.g. for phase elements) and
BUFFER-LENGTH is explicitly specified for the target file, the same applies as
described in 1a above.
When phases are generated, BUFFER-LENGTH specifications # STD(1) or STD(2)

produce errors.

2b) If the element does not include an attribute record (e.g. for phase elements) and no
buffer length is explicitly specified for the target file or the value is unknown, the following

applies:

— For phases, BUFFER-LENGTH is derived from the current environment, i.e.
BUFFER-LENGTH = STD(1) on NK2 disks and BUFFER-LENGTH = STD(2) on
NK4 disks. As regards contents, there is no difference between the phases.

— For all other types of element, BUFFER-LENGTH is calculated on the basis of the
maximum record length.

SYS

Issue system commands

SYS allows system commands to be issued that are subsequently processed by the CMD
macro. The program status is not exited. If no operand is specified, SYS operates as a
HOLD-PROGRAM command. Program mode is re-entered by means of the RESUME-
PROGRAM command.

Operation Operands
SYS . .
systemcommand
[{systemcommand }]
SYS Statement name.
systemcommand Name of a command with the mandatory or desired operands. The

system command is passed unchanged to the command processor.

216

U4303-J-2125-4-7600

LMSCONV TOC statement

TOC
List table of contents of library

TOC outputs the table of contents entries for the specified elements or for the complete
library. The processing operand REFERENCE enables the table of contents listing to be
restricted to those elements containing a particular reference name.

Operation Operands

TOCx .
elem[(lib)]
Sh e

TOCx Name of the statement, including the element type:
SSM\R,C,RJ,D, X, H L FU

* Indicates all element types (not permitted for tape libraries).

elem Element identifier or selector.

lib ID of the input library.

Processing operands

REFERENCE Specifies the reference names that the elements to be output must
contain. If the reference condition is not satisfied, the element is not
output. REFERENCE is only permitted for type R elements. R must
be specified with TOC if REFERENCE is specified.

SORT Defines the sort criteria for the table of contents list.

Default value: The table of contents list is output sorted by
name, version number and date.

Tables of contents that are too large to be sorted can be sorted as a whole by setting job
switch 9.

U4303-J-2125-4-7600 217

UPD statement LMSCONV

Example

/ADD-FILE-LINK LINK-NAME=LIBOOI1,FILE-NAME=A.LIB
/START-PROGRAM FROM—-FILE=$LMSCONV

$LIB EINAUS.LIB,BOTH

$TOC* *

$PAR SORT=V

$TOCS (1)

$END

The ADD-FILE-LINK command assigns the source program library A.LIB. The program
library EINAUS.LIB is assigned as the default input/output library. Since it is a program
library, TOC can specify * as the element type. With other types of library, TOC must specify
one particular element type. All type S elements in library A.LIB are listed sorted by version.
Note

To output the complete contents of a library (all elements and all versions) either TOC
or TOC* */* must be specified. This works for all types of library for which the type '*'is
permitted.

UPD
Update object/load modules and LLMs

UPD updates the specified element in the assigned input library. The updated element is
then written to the assigned output library. It can be given a new element identifier.

UPD has various substatements for updating object modules, load modules and link and
load modules. The substatements are read from the statement stream immediately
following the UPD statement up to the *END statement.

The input and output libraries may be identical.

Three formats are available for UPD:
— UPDR (Format 1)
— UPDC (Format 2)
— UPDL (Format 3)

218

U4303-J-2125-4-7600

LMSCONV UPD statement (Format 1: UPDR)

Format 1

Updating object modules

Operation Operands

UPDR elem[(lib)][>elemu]

UPDR Name of the statement, including element type R.

elem Full element identifier of the element to be updated, or a selector.
lib ID of the input library.

elemu Element identifier of the output element or constructor.

Processing operands

OVERWRITE Specifies whether elements with the same name in the output
library are to be overwritten.
However, this processing operand is not evaluated if:

0 input library=output library and elem=elemu.
In this case the input element is overwritten.

DESTROY Specifies whether a data destruction indicator is set in the output
element.
(Only permitted for program libraries.)

STRIP Specifies which record types are to be excluded during updating.

LMSCONYV first collects the UPD substatements, at the same time checking their syntax.

After the *END statement, LMSCONYV checks that the substatements can be executed and
then executes them.

U4303-J-2125-4-7600 219

UPD statement (Format 1: UPDR)

LMSCONV

Overview of the update statements for UPDR

Sub- Operands Meaning
statement
*BAS baseaddr Defines a base
address
*CON checkno Defines the cross-
check number
*COR [csectname,][baseaddr+]address, Corrects text
records
Cc Cc
[K X r l'checktext'=[:=]][§ X ~]‘corrtext
B B
[,ID="ident'][, CONTROL=number]
*DEL Deletes parts of
rectype object modules
(rectype,...)
TXTP[,ID="ident]
*END Terminates update
entries
*ID ‘ident Defines the identifi-
cation
*INS INCLUDE (module,...)[,library] Enters an
INCLUDE record
*INV REP Converts updates
COR[,ID=‘ident]
*NAM CSECT: Renames symbols
ENTRY:
EXTERN: nameold,nemenew
COMMON:
*REM [ID=‘ident] Undoes updates

220

U4303-J-2125-4-7600

LMSCONV

UPD statement (Format 1: UPDR)

Sub-
statement

Operands

Meaning

*REP

[csectname,][baseaddr+]address,

C C
[[§ X r]'checktext'=[:=]][§ X ~]‘corrtext’
B B

[,CONTROL=number]

Inserts a REP
record

*SET

csectname Y Y
{* } [,PRIV={N }][,PUBLIC={N }]

[,V|S|BLE:{L }][,READONLY:{L }][,PAGE:{L }]

24
[,RESIDENT:{E }][,RMODE:{i‘,‘\IY }][,AMODE: 31 /]
ANY

Modifies control
section attributes

U4303-J-2125-4-7600

221

Update statements *BAS/*CON (UPDR) LMSCONV

Description of the update statements for UPDR

*BAS
Define base address

*BAS defines a base address. This base address is then added to the address in a following
*COR unless an explicit base address is specified.

Operation Operands

*BAS baseaddr

baseaddr Defines the base address (hexadecimal).
0 < baseaddr < 7FFFFFFF

*CON

Define cross-check number

*CON defines the cross-check number for the complete update run. If more than one *CON
is specified, the last value always applies.

Operation Operands

*CON checkno

checkno Defines the cross-check number (hexadecimal).
0 < checkno < 7FFFFFFF

Note

Check numbers provide extra security when performing or transferring updates. During
the update run, LMSCONYV calculates a check number from the characters in each
update statement, and from this calculates the cross-check number. These values are
also calculated in TEST mode. The check numbers are output as each update
statement is logged, and the cross-check number is output at the end of the update log.
When the update is transferred or actually executed in RUN mode, the check numbers
and cross-check number should also be transferred. When updates are to be executed,
LMSCONYV compares the numbers specified with those calculated. If they do not match,
no updates are performed.

222

U4303-J-2125-4-7600

LMSCONV

Update statement *COR (UPDR)

*COR

Correct text records

*COR corrects text records within an object module and generates an update journal record
(TXTP record) containing the original contents of the text area.

Operation

Operands

*COR

[csectname,][baseaddr+]address,

(] C
[[{x }]‘checktext‘:[::]][{x }]‘corrtext
B B

[,ID="ident'][, CONTROL=number]

csecthame

baseaddr

address

C'checktext’

X'checktext’

B’checktext’

Specifies the name of a CSECT.

If a csectname is specified, corrections are only made within that
CSECT. With prelinked modules in the new format (with full ESD),
corrections must always be made using a specific CSECT name.

Specifies the base address (hexadecimal). This base address only
applies to this *COR. If no base address is specified, the value
specified for *BAS is used.

0 < baseaddr < 7FFFFFFF

Specifies the relative address.
baseaddr + address specifies the absolute address in the object
module, or the CSECT-relative address if csectname is specified.

0 < baseaddr+address < 7FFFFFFF

Specifies the check text in character format. Any quotes in the text
must be written twice.
checktext must not be more than 50 characters.

Specifies the check text in hexadecimal form.
checktext must not be more than 50 bytes long.

Specifies the check text in binary form.
checktext must not be more than 50 characters long.

The original text for comparison with the check text is taken from the
existing TXT records for this area. If there is more than one text for
the same address, the last one applies.

Check text and correction text must be the same length.

U4303-J-2125-4-7600

223

Update statement *COR (UPDR)

LMSCONV

C’corrtext

X'corrtext’

B’corrtext’

ID="ident’

CONTROL=number

Check text and correction text may be different lengths.

Specifies the correction text in character format. Any quotes in the
text must be written twice.
corrtext must not be more than 50 characters long.

Specifies the correction text in hexadecimal form.
corrtext must not be more than 50 bytes long.

Specifies the correction text in binary form.
corrtext must not be more than 50 characters long.

Specifies an identification in character format.
ident must not be more than 8 characters long.

This identification only applies to this *COR. If this operand is
omitted, the specification made in the *ID substatement is used.

Defines a local check number (hexadecimal).
0 < number < FFFF

If no TXT record exists, or if it exists only for part of the correction, LMSCONV generates a
TXT record and inserts it in the module.

Several text records may exist for one address (e.g. through ORG statements). In such
cases, more than one text record may have to be modified.

No *REP statement may be specified within the set of correction statements, otherwise the
text corrections may be overwritten later during linkage.

224

U4303-J-2125-4-7600

LMSCONV Update statement *DEL (UPDR)

*DEL
Delete sections of object modules

*DEL excludes the following record types from the input element:

— ISD records

— LSD records

— REP records

— INCLUDE records
— TXTP records

— DSDD records

Operation Operands

*DEL
rectype
(rectype,...)
TXTP[,ID="ident]

rectype Specifies the record type to be excluded from transfer from the input
element to the output element.
The permitted record types are:

- ISD

— LSD

- REP

— INCLUDE
- TXTP

— DSDD

ID="ident’ Specifies an identification in character format. This identification
only applies to this *DEL.
ident must not be more than 8 characters long.

If this operand is omitted, the specification made in the *ID
substatement is used.

Note

REP, INCLUDE and TXTP records should not be deleted without thorough consider-
ation of the consequences.

U4303-J-2125-4-7600 225

Update statements *END/*ID/*INS (UPDR) LMSCONV

*END
Terminate update input

*END terminates the sequence of update statements. LMSCONYV then checks that all state-
ments are executable, and executes the set of statements.

Operation Operands
*END

*ID
Define identification

*ID defines a global identification. It applies to all statements in which no local identification
is specified.

Operation Operands

*ID [‘ident]
'ident’ Specifies the global identification.

ident must not be more than 8 characters long.

If this operand is not specified, 8 spaces are used as the default.
*INS

Insert INCLUDE record

*INS inserts an INCLUDE record in an object module. The INCLUDE record is evaluated by
the dynamic binder loader (DBL).

Operation Operands
*INS INCLUDE (module,...)[,library]

module Name of the object module to be included. If only one object module
is specified, the parentheses can be omitted. module must not be
more than 8 characters long.

library Name of the program or object module library containing the
specified object module(s). If this operand is omitted, DBL assumes
the TASKLIB.

226

U4303-J-2125-4-7600

LMSCONV

Update statement *INV (UPDR)

Notes
— The complete "(module,...)[,library]" specification must not be more than 71
characters long.
— LMSCONV checks neither the existence of the specified object modules nor the
library specification.
*INV

Convert updates

*INV converts either REP records to text corrections or text corrections to REP records.

INV (Format 1): Converting REP records to text corrections

All REP records in the object module are converted to text corrections. This means that
REP records need not be processed during linking and loading. The converted REP
records are removed from the object module. LMSCONYV creates update journal records for
corrected text records. If specified for prelinked modules in the new format, this statement
is rejected with an error message.

Operation Operands
*INV REP

Note
With OML libraries, only 409 TXTP records can be created by *INV REP.

INV (Format 2): Converting text corrections to REP records

All text corrections, or text corrections with a particular identification in an object module, for
which an update journal record exists, are converted into REP records (for possible
problems in prelinked modules see *REP). The update journal records are then deleted. If
specified for prelinked modules in the new format, this statement is rejected with an error
message.

Operation Operands
*INV CORL,ID=‘ident]

ID="ident’ Specifies an identification. ident must not be more than 8 characters
long. If this operand is not specified, the specification made in the
*ID substatement is used. If nothing was specified for *ID either, all
text corrections are converted.

U4303-J-2125-4-7600 227

Update statements *NAM/*REM (UPDR) LMSCONV

*NAM
Rename symbols

*NAM modifies the name of a CSECT, ENTRY, EXTRN or COMMON. Every time renaming
takes place, ESD records are modified. LMSCONV checks the uniqueness of the names
within all ESD records and, unlike LMR, rejects the rename attempt if the new name already
exists.

Operation Operands
"NAM CSECT:
ENTRY:
EXTERN: nameold,namenew
COMMON:
nameold Old name of the symbol. The name must be specified in full.
namenew New name of the symbol. The name must be specified in full.
namenew must not be more than 8 characters long.
Note

Masked CSECT names can also be renamed.

*REM
Undo updates

*REM undoes (reverses) all updates or text corrections of a given identification for which an
update journal record exists. Once an update has been undone, the corresponding journal
record is deleted.

Operation Operands
*REM [ID="ident]

ID="ident’ Specifies the local identification character by character. ident must
not be more than 8 characters in length.

If this operand is not specified, the *ID specification is valid.

228

U4303-J-2125-4-7600

LMSCONV Update statement *REP (UPDR)

*REP
Insert REP record

*REP inserts REP records into the object module. These REP records are evaluated by the
dynamic binder loader (DBL).

Operation Operands

*REP [csectname,][baseaddr+]address,

(] C
[[{x }]‘checktext‘:[::]][{x }]‘corrtext
B B

[,CONTROL=number]

csectname Specifies the name of a CSECT.
This entry is not valid for prelinked modules in the new format. They
can only be updated via absolute addresses.

baseaddr Specifies the base address (hexadecimal). This base address
applies to this *REP only. If baseaddr is not specified, the value
specified for *BAS is used. If the baseaddr operand is used, the
value specified for *BAS is ignored.

0 < baseaddr < FFFFF

address Specifies the relative address.
baseaddr + address specifies the absolute address in the object
module.

0 < baseaddr + address < FFFFF
The address must lie within the module’s text area.

C’checktext’ Specifies the check text in character format. A quote in the text must
be written twice.
checktext must not be more than 50 characters long.

X'checktext’ Specifies the check text in hexadecimal form.
checktext must not be more than 50 bytes long.

B’checktext’ Specifies the check text in binary form.
checktext must not be more than 50 bytes long.

The original text for comparison with the check text is formed from
the TXT records that exist for these areas. If there are several texts
for the same address, the last of the texts applies.

U4303-J-2125-4-7600 229

Update statement *REP (UPDR)

LMSCONV

C’corrtext’

X'corrtext’

B’corrtext’

CONTROL=number

Note

checktext and corrtext must be the same length.
checktext and corrtext may be of different lengths.

Specifies the correction text in character format. A quote in the text
must be written twice.
corrtext must not be more than 50 characters long.

Specifies the correction text in hexadecimal form.
corrtext must not be more than 50 bytes long.

Specifies the correction text in binary form.
corrtext must not be more than 50 characters long.

Specifies the local check number (hexadecimal).
0 < number < FFFF

The REP record is only inserted if the check number calculated by
LMSCONV is equal to the check number specified here.

Unlike with *COR, LMSCONYV does not check whether REP records already exist for
the update area. A prelinked module should always be corrected without a CSECT and
check text being specified, i.e. it should be corrected by means of relative addresses
within the prelinked module. The full functionality can only be used for object modules
resulting from a compiler or assembler run.

230

U4303-J-2125-4-7600

LMSCONV

Update statement *SET (UPDR)

*SET

Modify control section attributes

*SET modifies control section attributes.

Operation

Operands

*SET

{Ssectname} [VPR'V:{L }][,PUBLICZ{L }]

[,VISIBLE:{:‘ }][,READONLY:{; }][,PAGE:{L }]

24
[,RESIDENT={L }][,RMODE={§?\IY }][,AMODE={31 } 1
ANY

csectname

VISIBLE

Name of the control section whose attributes are to be modified.

Specifies that the attributes are to be modified in all control sections.

Specifies that only privileged system routines may access the
specified control sections.

No access restrictions.

The specified control sections are shareable.

The specified control sections are not shareable.

The specified control sections are not masked. A secondary name
record is created for these sections, and the names are entered in
the secondary name directory.

Note

For an explanation of masking, and primary and secondary
names, see the "BINDER" manual [3].

U4303-J-2125-4-7600

231

Update statement *SET (UPDR)

LMSCONV

READONLY

RESIDENT

RMODE

=ANY

The specified control sections are masked. In this case, no
secondary name record is created, nor are the names placed in the
secondary name directory. Any existing secondary name record is
deleted.

If all the control sections of an object module are masked, a library
element without a secondary name entry is created. This object
module can only be retrieved via primary hames. LMSCONV
outputs a warning.

The module name can, however, be derived from the first control
section name by means of all the ESD records, as masked control
sections are also used here.

Note

Object modules only having masked control sections cannot be
processed by the linkage editor (e.g. exclusion of an object
module in the autolink function).

Specifies that the specified control sections can only be read at
program execution time.

Allows the specified control sections to be written to during program
execution.

Specifies that the specified control sections are to be aligned on a
page boundary, i.e. the load address must be a multiple of decimal
4096 or hexadecimal 1000.

Ignores page boundaries. The control sections start at the next
double word address available at link time.

Specifies that the specified control sections are to be loaded into
class 3 memory and remain resident there.

Specifies that the specified control sections are not to be loaded into
class 3 memory.

Specifies that the specified control sections are to be loaded into the
address space below the 16-Mb boundary.

No restriction applies.

232

U4303-J-2125-4-7600

LMSCONV Update statement *SET (UPDR)

AMODE
=24 Specifies that the specified control sections are to be executable in
24-bit mode.
=31 Specifies that the specified control sections are to be executable in
31-bit mode.
=ANY Any mode.
Note

At least one attribute must be specified, otherwise an error message is issued.

Other format of UPDR

Operation Operands
UPDR elem](lib)][;number]

For a description of UPDR, elem and lib see format 1 of the UPD statement.

number Specifies the cross-check number in hexadecimal form.
0 £ number < FFFFFF

For the operation of the processing operands see the new format of UPDR.

Update journal

LMSCONYV writes an update journal record (TXTP record) for every existing record that is
changed. This update journal record contains the original text of the updated record.

U4303-J-2125-4-7600 233

Description of the update statement in the old format LMSCONV

Description of the update statement in the old format

L(address)[bitnumber][,[[v]‘text1‘=[:=]][v]‘text2‘][,number]

or the short form:

L(address)bitnumber[.number]

If just one bit is to be set to 1, the short form can be used. Update statements consisting
only of an address are not permitted.

Address type: Module address.

address Hexadecimal address, max. 8 characters.
This address can be taken from the compiler listing or module listing
without recalculation. Leading zeros can be omitted.

bitnumber Decimal number, max. 3 positions.
This specifies the number of a bit in the field defined by "address".
The bits are numbered from the left, starting at 1.

v X: the text is in hexadecimal form.
B: the text is in binary form.

v entry omitted: the text is alphanumeric or consists of special
characters.

textl Check text, max. 50 characters.
A quote in alphanumeric text must be written twice. If the text is
hexadecimal, there must be an even number of characters. The
check text is always compared with the original text in the object
module.

== Check text and correction text must be the same length.

= Check text and correction text may be of different lengths.

text2 Correction text, as textl.
number Check number, 4 hexadecimal characters.
Note

If the module to be updated by this update statement is a prelinked module in the new
format, the statement is rejected with an error message.

If a bit number is specified, v=B must be set and vice versa.

234

U4303-J-2125-4-7600

LMSCONV

UPD statement (Format 2:UPDC)

The check/co
text specified

rrection text area is formed from the specified address and the length of the
in the update statement. If a check text is specified, it is compared with the

check text area in the element; if it matches, the update is executed and, depending on the
STRIP operand, an update journal record may be written. If an address appears more than

once in the el

ement, the last text addressed is used for checking; if it matches, all text

positions in the element that fall in the update text area are modified.

UPDC (Format 2): Updating load modules (BS2000 phases)

Operation Operands

UPDC elem[(lib)][>elemu]

UPDC Name of the statement with element type C.

elem Full element identifier of the element to be updated. A selector is not
permitted.

lib ID of the input library.

elemu Element identifier of the output element or constructor.

Processing operands

OVERWRITE

DESTROY

STRIP

Specifies whether elements with the same name in the output
library are to be overwritten.
However, this processing operand is not evaluated if

0 input library=output library and elem=elemu.
In this case the input element is overwritten.

Specifies whether a data destruction indicator is set in the output
element.
(Only permitted for program libraries.)

Specifies which record types are to be excluded during updating.

U4303-J-2125-4-7600

235

UPD statement (Format 2:UPDC) LMSCONV
Overview of update statements for UPDC
Sub- Operands Meaning
statements
*BAS baseaddr Defines a base
address
*CON checkno Defines the cross-
check number
*COR [segment,][baseaddr+]address, Corrects text
records
Cl. wr—mi € Ly .
[[{X }] checktext —[.—]][{X }] corrtext
[,ID="ident'][, CONTROL=number]
*DEL TXTPLID="ident Deletes update
journal records
*END Terminates update
input
*ID ‘ident Defines identifi-
cation
*REM [ID=‘ident] Undoes updates
*SEG Defines a segment
segment
{%ROOT }

236

U4303-J-2125-4-7600

LMSCONV

Update statements *BAS/*CON (UPDC)

Description of the update statements

*BAS
Define base address

*BAS defines a base address. This base address is then added, with the address in a
following *COR, to the absolute address in the load module unless an explicit base address
is specified in *COR.

Operation Operands
*BAS baseaddr

baseaddr Defines the base address (hexadecimal).
0 < baseaddr < 7FFFFFFF

*CON
Define cross-check number

*CON defines the cross-check number for the complete update run. If more than one *CON
is specified, the last value always applies.

Operation Operands
*CON checkno

checkno Defines the cross-check number (hexadecimal).

The cross-check number is calculated by LMSCONYV and logged at
the end of the UPD run.

0 < checkno < 7FFFFFFF

U4303-J-2125-4-7600 237

Update statement *COR (UPDC)

LMSCONV

*COR

Correct text records

*COR corrects text records within a segment and generates an update journal record
containing the original contents of the text area.

Operation Operands
*COR [segment,][baseaddr+]address,
Cl. ro_id € L1 .
[[{X }] checktext _['_]][{X }] corrtext
[,ID="ident'][, CONTROL=number]

segment Specifies the name of the segment to be updated. Updates can then
only be made within the segment, and not outside segment bound-
aries. segment must not be more than 8 characters long.
The segment name specified here has precedence over the name
defined in *SEG. %ROOT selects the root segment.
If this operand is not specified, the specification made in the *SEG
substatement is used.

baseaddr Specifies the base address (hexadecimal). This base address only
applies to this *COR. If no base address is specified, the value
specified for *BAS is used.
0 < baseaddr < 7FFFFFFF

address Specifies the relative address.
baseaddr + address specifies the absolute address in the load
module.
0 £ baseaddr+address < 7FFFFFFF

C’checktext’ Specifies the check text in character format. Any quotes in the text
must be written twice.
checktext must not be more than 50 characters.

X'checktext’ Specifies the check text in hexadecimal form.

checktext must be more than 50 bytes long.
Check text and correction text must be the same length.

Check text and correction text may be different lengths.

238

U4303-J-2125-4-7600

LMSCONV

Update statement *COR (UPDC)

C’corrtext

X'corrtext’

ID="ident’

CONTROL=number

Specifies the correction text in character format. Any quotes in the
text must be written twice.
corrtext must not be more than 50 characters long.

Specifies the correction text in hexadecimal.
corrtext must not be more than 50 bytes long.

Specifies an identification in character format.
ident must not be more than 8 characters long.

This identification only applies to this *COR. If this operand is
omitted, the specification made in the *ID substatement is used.

Defines a local check number (hexadecimal).
The check number is calculated by LMS for every *COR statement.
0 < number < FFFF

U4303-J-2125-4-7600

239

Update statements *DEL/*END/*ID (UPDC) LMSCONV

*DEL
Delete update journal records

*DEL excludes the update journal records (TXTP) from the input element.

Operation Operands
*DEL TXTP[,ID=\ident]

ID="ident’ Specifies an identification in character format.
ident must not be more than 8 characters long.

This identification only applies to this *DEL. If this operand is
omitted, the specification made in the *ID substatement is used.

*END
End update input

*END terminates the sequence of update statements. LMSCONYV then checks that all state-
ments are executable, and executes the set of statements.

Operation Operands
*END

*ID
Define identification

*ID defines a global identification. It applies to all statements in which no local identification
is specified.

Operation Operands
*ID [‘ident]

'ident’ Specifies the global identification.
ident must not be more than 8 characters long.

If this operand is not specified, 8 spaces are used as the default.

240 U4303-J-Z2125-4-7600

LMSCONV

Update statements *REM/*SEG (UPDC)

*REM
Undo corrections

*REM undoes (reverses) all text corrections, or all text corrections for a particular identifi-
cation, for which an update journal record exists. The update journal records are then
deleted.

Operation Operands
*REM [ID=‘ident]

ID="ident’ Specifies a local identification in character format.
ident must not be more than 8 characters long.

If this operand is omitted, the specification made in the *ID
substatement is used.

*SEG
Define segment

*SEG defines a segment of a load module that is to be updated by a subsequent *COR.

Operation Operands
*SEG
segment
{%ROOT }
segment Specifies the name of the segment to be corrected.

segment must not be more than 8 characters long.

%ROOT Specifies that the root segment is to be corrected.

U4303-J-2125-4-7600 241

UPD statement (Format 3: UPDL) LMSCONV

UPDL (Format 3): Updating link and load modules

Operation Operands

UPDL elem[(lib)]>[elemu]

UPDL Name of the statement, including element type L.

elem Full element identifier of the element to be updated, or selector.
lib ID of the input library.

elemu Element identifier of the output element or constructor.

Processing operands
CSECT Defines the base for the displacement in the *COR substatement.

OVERWRITE Specifies whether elements of the same name in the output library
are to be overwritten.
However, this processing operand is not evaluated if

0 input library=output library and elem=elemu.

In this case the input element is overwritten.

PATH Defines the base for the displacement in the *COR substatement.
SLICE Defines the base for the displacement in the *COR substatement.
STRIP Defines which record types are to be excluded during the update.
LMSCONV Collects the UPD substatements, checking

— the syntax of the substatements
— that there are no conflicts in the updates (overlapping)
— the uniqueness of the symbols when renaming.

After the *END statement, LMSCONYV checks that the substatements entered are
executable, and then executes them.

242 U4303-J-Z2125-4-7600

LMSCONV

Update statement *COR (UPDL)

Overview of update statements for UPDL

Sub- Operands Meaning
statements
*COR [csect,]displ, Corrects text
records
[} C
[[§ X r]'checktext'=[:=]][§ X ~]‘corrtext
B B
[,ID=ident'][, CONTROL=number]
*DEL TXTPR,[ID="ident’] Deletes update
journal records
*END Terminates update
input
*ID [ident’] Defines identifi-
cation
*REM [ID="ident] Undoes updates
*COR

Correct text records

*COR corrects text records in a link and load module.

Operation Operands
*COR [csect,]displ,
C C
[X ¢ I'checktext'=[:=]][Kx X ~]'corrtext’
B B
[,ID=‘ident'][,CONTROL=numberl]
csect 32-character CSECT name.

If csect is specified, all CSECTs with the specified name are

corrected.

The priority for evaluating the names is as follows:

1. csectwas specified in *COR: the CSECT processing operand is

ignored.

U4303-J-2125-4-7600

243

Update statement *COR (UPDL) LMSCONV

2. PAR CSECT=xxx: only the PATH or SLICE processing operand
may be set.

3. PAR PATH=xxx: the SLICE processing operand must not be set.
4. PAR SLICE=xxx:the PATH processing operand must not be set.

displ Defines the relative address. displ specifies the absolute address in
the LLM or, if csect is specified, the CSECT-relative address.

0 < displ < 7FFFFFFF

C’checktext’ Specifies the check text in character format. Any quotes in the text
must be written twice.
checktext must not be more than 50 characters.

X'checktext’ Specifies the check text in hexadecimal form.
checktext must not be more than 50 bytes long.

B’checktext’ Specifies the check text in binary form.
checktext must not be more than 50 characters long.

The original text for comparison with the check text is taken from the existing TXT records
for this area. If there is more than one text for the same address, the last one applies.

== Check text and correction text must be the same length.
= Check text and correction text may be different lengths.

C’corrtext’ Specifies the correction text in character format. Any quotes in the
text must be written twice.
corrtext must not be more than 50 characters long.

X'corrtext’ Specifies the correction text in hexadecimal form.
corrtext must not be more than 50 bytes long.

B'corrtext’ Specifies the correction text in binary form.
corrtext must not be more than 50 characters long.

ID="ident’ Specifies an identification in character format.
ident must not be more than 8 characters long.

This identification only applies to this *COR. If this operand is
omitted, the specification made in the *ID substatement is used.

CONTROL=number Defines a local check number (hexadecimal).
The check number is calculated by LMS for each *COR statement.
0 < number < FFFF

244 U4303-J-2125-4-7600

LMSCONV Update statements *DEL/*END (UPDL)

*DEL
Delete update journal records

*DEL excludes the update journal records (TXTP) from the input element.

Operation Operands

*DEL TXTP[,ID=\ident]
TXTP Update journal records are to be excluded from the input element.
ID="ident’ Specifies an identification in character format.

ident must not be more than 8 characters long.

This identification only applies to this *DEL. If this operand is
omitted, the specification made in the *ID substatement is used.

*END
Terminate update input

*END terminates the sequence of update statements. LMSCONYV then checks that all state-
ments are executable, and executes the set of statements.

Operation Operands
*END

U4303-J-2125-4-7600 245

Update statements *ID/*REM (UPDL) LMSCONV

*ID
Define identification

*ID defines a global identification. It applies to all statements in which no local identification
is specified.

Operation Operands

*ID [‘ident]
'ident’ Specifies the global identification.

ident must not be more than 8 characters long.

If this operand is not specified, 8 spaces are used as the default.
*REM

Undo updates

*REM undoes (reverses) all text corrections, or all text corrections for a particular identifi-
cation, for which an update journal record exists. The update journal records are then
deleted.

Operation Operands

*REM [ID="ident]

ID="ident’ Specifies a local identification in character format.
ident must not be more than 8 characters long.
If this operand is omitted, the specification made in the *ID
substatement is used.

246

U4303-J-2125-4-7600

LMSCONV Processing operands

6.5.5 Processing operands

Processing operands influence the execution of LMSCONV.

Where a processing operand is required to operate on a function, it must be set prior to
issuing the corresponding statement.

Processing operands are set by means of PAR:

Operation Processing operands

PAR

?

The following two sections contain an alphabetical table of the processing operands
followed by a detailed description of each of them.

The names of the processing operands and operand values may be abbreviated providing
the abbreviation is unique within the processing operands.

The following processing operand influences the operation of LMSCONYV, but not the
individual functions:

TERMINATE Termination behavior in the event of an error

The following processing operand influences the operation of both LMSCONYV and
individual functions:

LOG Statement logging

The other processing operands only influence individual functions. The function descrip-
tions indicate which operands affect which functions. You will find a summary in table form
of the effect of the processing operands in section 6.4.1, "Control via processing operands".

If PAR is specified with no processing operands, all the processing operands are set to their
default values.

If a processing operand is specified with no operand value (e.g. PAR LOG=), that
processing operand is reset to its default value.

U4303-J-2125-4-7600 247

Processing operands LMSCONV

Table of all processing operands

Processing operands Function

Define CSECT
CS[ECT]=[{§AME }]

Define compression

YES
DEC[OMPRESSED]=[s NO]
?

Control physical

YES deletion
DES[TROY]=K NO]
2
Define record
C format
X
SYMBOLIC
FO[RMAT]=|x XC]
REC
P
?
Define scope of
ALL output
SUMMARY
(rectype,...)

recypel(rechealt Frerepey |)

TXT[([addbeg][{:Ei%de }])]
TXTP[(identu]-idento])]

PHY[SICAL]

LOGICAL[({EEZ(T}]

IINFO]=[

248 U4303-J-Z2125-4-7600

LMSCONV

Processing operands

Processing operands

Function

YES
KIEY]sK NO]
?

Transfer file
attributes and
existing ISAM keys

MAX

MED
LO[G]=[MIN]
?

Log statements

YES
ONLY
NO
O[VERWRITE]=[\[;]

EXTEND
?

Overwrite elements
with same name

PA[TH]:[{[:'A'V'E }]

Define path name

PK
PH[ASE]=[x NK]
2

Define phase
format

name
CSECT

RE[FERENCE]=[K ([name],[x ENTRY
ALL

?

Dr]

Define reference
conditions

SL[ICE]:[{";‘AME}]

Define slice

U

NJ [V] [D
SO[RT]=[E;] M,

?

Sort table of
contents

U4303-J-2125-4-7600

249

PAR CSECT processing operand LMSCONV

Processing operands Function
Suppress records
rectype
(rectype,...)
STRIP=x YES]
NO
”
1 Termination
2 behavior in event of
3 error
4
TER[MINATE]=[K 5 1]
6
7
?

Description of the processing operands

PAR CSECT
Define CSECT name

This processing operand defines a CSECT name for UPDL and LSTL.

Operation Processing operands
PAR
CS[ECT]:[{!;‘AME }]
name CSECT name, max. 32 characters.
With LSTL, only the CSECT with this name is listed.
With UPDL, this name is the base for the displacement in the *COR
substatement.
? The current value is listed.

250 U4303-J-Z2125-4-7600

LMSCONV

PAR DECOMPRESSED processing operand

PAR DECOMPRESSED
Control compression of macros and source programs

This operand has no effect on program libraries. For other libraries, it controls the
compression of macros and source programs for output to libraries.

Operation Processing operands
PAR
YES
DEC[OMPRESSED]=K NO]
?
YES All elements are output in decompressed form.
NO All elements are output in compressed form.
? The current value is listed.

The DECOMPRESSED processing operand affects: ADD, DUP

PAR DESTROY
Control physical deletion

The DESTROY processing operand determines whether data is overwritten with binary
zeros on deletion, or whether space is simply released.

To work fully at the deletion stage, the operand must have been set when the element was
originally stored. If set later, only variants created after the operand was set will be physi-
cally deleted.

Operation Processing operands

PAR
YES
DES[TROY]=K NO]
2

YES All deleted data is overwritten with binary zeros before the storage
space is released.

This means that

— data is destroyed when elements in program libraries are
deleted.

U4303-J-2125-4-7600 251

PAR FORMAT processing operand LMSCONV

— when elements are written to program libraries, a data
destruction indicator is set so that when such elements are
deleted later, the data is destroyed.

This operand value can only be used with elements in program libraries.

NO Whenever data is deleted, only the space is released; data is not
destroyed.
? The current value is listed.

The DESTROY processing operand affects ADD, DEL, DUP, NAM, PRT, UPD.

PAR FORMAT
Define record format

The FORMAT processing operand defines the record format used when listing elements
with LST. The possible formats are

— character

— hexadecimal

— character and hexadecimal side by side

— character and hexadecimal one above the other

— character, with the first character of the record contents treated as a print control
character.

Operation Processing operands
PAR

c

X

SYMBOLIC

FO[RMAT]=R XC > 1
REC

P
?

C Character format.
X Hexadecimal format, only for elements of types

- RandC

— Xwhere these elements contain PAM files. 2*4 4-byte blocks are
output to the system file SYSLST and 2*3 4-byte blocks to the
system file SYSOUT. For all other elements, this operand value
has the same effect as the operand value REC.

252

U4303-J-2125-4-7600

LMSCONV

PAR FORMAT processing operand

SYMBOLIC

XC

REC

Formats the records differently for different element types:

Element type Record format

SSM,J,D, X Character format

P Character format, with the first character of each
record interpreted as a print control character.

R, L The ESD, ISD, RLD, TXT, TXTP, REP and END

information familiar to LMSCONYV is output in
edited form. Other information such as LSD and
DSDD is output unedited, i.e. the record length
field and, where applicable, the record number
are also output.

Continuous text information is not subdivided.

C Character and hexadecimal side by side.

Character and hexadecimal format side by side, only for elements
of types

— R,LandC
— X where these elements contain PAM files.

For all other elements this operand value has the same effect as the
value REC.

Character and hexadecimal format one above the other, i.e. two
lines are output for each element record, with the hexadecimal
format in the second line. For type L, REC has the same effect as
SYMBOLIC.

Character format, with the first character of the record contents
treated as a print control character.

This type of output is intended only for printable text elements or list
elements.

Elements of types R, C and L are represented as for operand value
XC.

The current value is listed.

The FORMAT processing operand affects LST.

U4303-J-2125-4-7600

253

PAR INFO processing operand

LMSCONV

PAR INFO

Define scope of output

The INFO processing operand defines the range of records to be selected when listing
elements using LST. The possible options are

— all records

— the most significant element data
— specific record types
— a particular range within a record type.

Operation Processing operands

PAR

IINFO]=[

ALL
SUMMARY

(rectype...)

recypel(rechealt Frerepey |)

TXT[([addbegll{j,"’;i‘é‘de }])]

TXTP[(['identu’][-idento’])]
PHY[SICAL]

LOGICAL[({EEET}]

>
—
—

SUMMARY

All element records are output.

The most significant element data is output, i.e.

— for text type elements (element types S, M, J, P, D, X) the user
record types are output in tabular form followed by the number

of records.

— for type R elements, the length of the object module together
with the names, lengths and addresses of the CSECTs are

output.

— for type C elements, the length of the load module together with
the names, lengths and addresses of the segments are output.
— for type L elements, the complete logical structure is output.

254

U4303-J-2125-4-7600

LMSCONV

PAR INFO processing operand

rectype

recbeg

recend

number

addbeg

addend

length

identl
identu
PHYSICAL

The specified record type of a type R, L or C element is output. For
text type elements (element types S, M, J, P, D, X) any record type
entry is ignored, i.e. all records in the element are output.

Possible record types are

— for type R elements: ESD, ISD, LSD, TXT, RLD, TXTP, REP,
INCLUDE, DSDD, REF, END. If REF is specified, all reference
names associated with the object module are output.

— for type C elements: ESD, ISD, LSD, TXT, RLD, TXTPR.

— for type L elements: ESVD, ESVR, TXT, LRLD, TXTP.

Specifies the first record at which output of the specified record type
is to start. This applies to type R elements only.

1 <recheg < 2147483647

Specifies the last record at which output of the specified record type
is to stop. This applies to type R elements only.

1 <recend < 2147483647

Specifies the number of records of the specified record type that is
to be output. This applies to type R elements only.

1 < number < 2147483647, where recbeg+number must be <
2147483647.

Specifies the start address of the area, in hexadecimal, from which
the specified record type is to be output. This applies to type L, R
and C elements only.

0 < addbeg < 7FFFFFFF

Specifies the end address of the area, in hexadecimal form, up to
which the specified record type is to be output. This applies to type
L, R and C elements only.

0 < addend < 7FFFFFFF

Specifies the length, in hexadecimal form, of the address area to be
output for the specified record type. This applies to type L, R and C
elements only.

1 < length < 7FFFFFFF
Specifies the lower identification boundary.
Specifies the upper identification boundary.

The physical LLM structure is logged.

U4303-J-2125-4-7600

255

PAR KEY processing operand LMSCONV

LOGICAL

?

The logical LLM structure is logged.

NEXT Only the next level down is logged.
ALL The complete structure is logged.

The current value is listed.

The INFO processing operand affects LST.

PAR KEY

Transfer file attributes and ISAM keys

The KEY processing operand specifies whether the existing ISAM keys and file attributes
are to be transferred to the output element.

Operation

Processing operands

PAR

YES
KIEY]=R NO]
?

YES

?

Note

The following file attributes are stored unchanged in the new
element to be added: ACCESS-METHOD, BUFFER-LENGTH,
PERFORMANCE, RECORD-FORMAT, RECORD-SIZE, USAGE,
USER-ACCESS. If ACCESS-METHOD=ISAM, the ISAM keys and
the following file attributes are stored in the new element to be
added: LOGICAL-FLAG-LENGTH, PADDING-FACTOR,
PROPAGATE-VALUE-FLAG, VALUE-FLAG-LENGTH.

This operand value is only allowed when processing program
libraries, but not when processing source program libraries.

The file attributes and ISAM keys are not transferred. In this case,
only ISAM files with KEY-POS=5, KEY-LEN<16 and RECFORM=V
can be transferred into the output element.

The current value is logged.

When LST is used to list an element containing ISAM keys, the values of KEY-POS and
KEY-LEN are also output.

The KEY processing operand affects ADD.

256

U4303-J-2125-4-7600

LMSCONV PAR LOG processing operand

PAR LOG
Log statements

The LOG processing operand governs the scope of the LMS log.

Operation Processing operands
PAR MAX
MED
LO[G]=[MIN]
?
MAX Complete log.
MED Statements are only logged when in error. Positive acknowledg-

ments are logged.

IN Only error messages, termination messages and negative acknowl-
edgments are logged.

)

The current value is logged.

The LOG processing operand affects the whole LMSCONV run and UPD.

PAR OVERWRITE
Overwrite elements with same name

This processing operand controls the overwriting of elements with the same name in the
output library, and files of the same name when using SEL. The OVERWRITE processing
operand influences ADD, DUP, NAM, PRT, SEL and UPD.

Operation Processing operands
PAR

YES
ONLY
NO
O[VERWRITE]=[\[;]

EXTEND
?

U4303-J-2125-4-7600 257

PAR PATH processing operand

LMSCONV

YES

ONLY

EXTEND

PAR PATH

Define path name

An element or file with the same name is overwritten. Note that the
element name always includes the element version (see section
called "Rules for element identifiers in program libraries").

An element is only written if an element or file with the same name
already exists.

An element or file with the same name is not overwritten and the
statement is not executed.

An element with the same name is overwritten only if new version
number > old version number. For program libraries it has the same
effect as NO.

An element with the same name is only overwritten if
0 new date > old date.

The element or file is to be extended. This operand value only
affects ADD and SEL. For other statements, EXTEND has the same
effect as NO.

An element or file is only extended if the element contains no ISAM
keys and if the file attributes stored in the element correspond to the
file attributes of the file, including the file name. Otherwise, ADD or
SEL will be rejected with an error message.

The current value is logged.

This processing operand is used to define a path name for UPDL and LSTL.

Operation Processing operands
PAR
PA[TH]:[{ NAME }]
name Path name, max. 255 characters.
With LSTL, only the sub-LLM with this path name is listed.
With UPDL, the name is used as the base for the displacement in
the *COR substatement.
? The current value is logged.

258

U4303-J-2125-4-7600

LMSCONV

PAR PHASE processing operand

The PATH processing operand affects UPDL and LSTL.
Note

If the SLICE processing operand is set, it can be reset by setting the PATH processing
operand to 'UNDEFINED'.

PAR PHASE
Define phase format

This processing operand defines the format of the phase (load module) to be generated.
Normally, PK phases are generated in the PAM key (PK) environment and NK phases in the
non-key (NK) environment. This processing operand also allows NK phases to be
generated in the PK environment.

Operation Processing operands
PAR
PK
PH[ASE]=[< NK >]
?

PK The phase is generated in PK format if it is written to a PK disk, and
in NK format if it is written to an NK disk.

NK The phase is always generated in NK format.

? The current value is listed.

The default value of the PHASE operand is defined by the class 2 option.
The PHASE processing operand affects SELC.

U4303-J-2125-4-7600 259

PAR REFERENCE processing operand LMSCONV

PAR REFERENCE
Define reference conditions

The REFERENCE processing operand defines conditions (reference conditions) under
which elements are selected for processing. The reference condition consists of a reference
name/attribute pair. This processing operand is only evaluated for type R elements in
program libraries.

Operation Processing operands
PAR
name
CSECT
RE[FERENCE]=[1 ([name],[{ ENTRY »])%]
ALL
2
name Specifies the reference name. A selector is permitted. "name" must not be
more than 32 characters long.
CSECT Only elements having reference names with the CSECT attribute are to be
processed.
ENTRY Only elements having reference names with the ENTRY attribute are to be
processed.
ALL Only elements having reference names with any attribute are to be
processed.
?

The current value is logged.

The entry PAR REFERENCE-= resets any existing reference conditions to “undefined”.

The entry PAR REFERENCE=name has the same effect as
PAR REFERENCE=(name, ALL).

The entry PAR REFERENCE=(,...) has the same effect as PAR REFERENCE=(*,...).
The REFERENCE processing operand affects: LST, TOC, DUP, DEL.

Note

Element type R must be explicitly specified, otherwise the reference condition is

ignored.

260

U4303-J-2125-4-7600

LMSCONV PAR SLICE processing operand

PAR SLICE
Define slice

This processing operand defines a segment for UPDL and LSTL.

Operation Processing operands
PAR
SL[ICE]:[{”;'AME }]
name Slice name, max. 32 characters.
With LSTL, only the slice with this name is listed.
With UPDL, the name forms the base for the displacement in the *COR
substatement.
? The current value is listed.
Note

If the PATH processing operand is set, it can be reset by setting the SLICE processing
operand to 'UNDEFINED'.

U4303-J-2125-4-7600 261

PAR SORT processing operand LMSCONV

PAR SORT
Sort table of contents

The SORT processing operand defines the sort criteria for outputting the table of contents

(cf. TOC).
Operation Processing operands
PAR U
(N] [V] [D]
SO[RTI=K g 1
?
U Unsorted output:
the contents entries are output in the order in which they appear in the table
of contents.
Output sorted by name.
\A Output sorted by version number.
D Output sorted by date.
R Output sorted by reference names as defined by the REFERENCE
processing operand.
If no reference condition is defined using the REFERENCE processing
operand, LMSCONYV outputs the primary name directory.
? The current value is logged.

N, V and D are the default values. They may be specified in any order and any combination.

If several sort criteria are specified, the TOC is output in the order in which they are
specified.

The SORT processing operand affects TOC.

262 U4303-J-Z2125-4-7600

LMSCONV PAR STRIP processing operand

PAR STRIP
Suppress records

The STRIP processing operand defines which record types are not to be transferred from
the input element to the output element. STRIP is evaluated for element types R, L and C
only.

Operation Processing operands
PAR

rectype
(rectype,...)

STRIP=x YES]
NO
?

rectype Excludes the specified record type from transfer to the output
element.

Possible record types are

— for type R elements:

ISD, LSD, TXTP, REP, INCLUDE, DSDD
— for type C elements:

TXTP
— for type L elements:

TXTP

Any other entry is ignored.

YES TXTP records are not transferred to the output element, i.e. the
update journal is not transferred.

NO All records are transferred to the output element.

? The current value is logged.

The STRIP processing operand affects UPD for element types R, L and C, and DUP for
element types R and C.

U4303-J-2125-4-7600 263

PAR TERMINATE processing operand LMSCONV

PAR TERMINATE
Termination action in event of error

The TERMINATE processing operand determines which situations are treated as errors
and therefore set the internal LMSCONYV abort flag.

If the abort flag is set on termination of LMSCONV, this leads in interactive mode to normal
program termination, and in batch mode or procedures to a branch to STEP or ABEND or
LOGOFF. In batch mode, TEST mode is always entered for serious errors, irrespective of
the current value.

This processing operand also influences the behavior of LMSCONYV after errors, i.e. it
determines which errors cause LMSCONYV to switch to TEST mode.

Operation Processing operands
PAR 1
2
3
4
TER[MINATE]=R 5]
6
7
?
1 TEST mode:

Set the abort bit on serious errors, i.e. errors which make continuation pointless
(e.g. device error).

2 RUN mode, 3 TEST mode:
Set the abort bit on serious errors and also on other types of error (e.g. syntax errors
in a statement, element could not be corrected).

4 RUN mode, 5 TEST mode:
As for 2 and 3, and also when a function cannot be executed because an element
could not be found.

6 RUN mode, 7 TEST mode:
As for 4 and 5 and also when a function cannot be executed because an existing
element was not allowed to be overwritten (OVERWRITE=NO) or the element
could not be written because no element existed with the same name
(OVERWRITE=ONLY).

? The current value is logged.

264

U4303-J-2125-4-7600

LMSCONV Messages

With the even values (2, 4, 6), the LMSCONYV run continues in RUN mode after the occur-
rence of the TERMINATE condition; with the odd values (1, 3, 5, 7) TEST mode is entered
except when LMSCONYV is reading the statements interactively from the terminal.

Every TERMINATE condition that occurs is logged.
The TERMINATE processing operand influences the overall LMSCONYV run.

6.6 Messages

The messages are supplied in a message file with the message class "LMC".

Messages are output as a 7-character code (LMSnnnn), together with their meaning (in
English and German) and any action that can be taken by the user.

Messages can be viewed by means of /HELP-MSG-INFORMATION LMCXXxXXx.

In addition, the LMSCONYV access routines output internal error codes (DMS, AMCB,
PLAM).

The PLAM error codes can be interrogated using the command /HELP-MSG-INFORMATION
PLAXXXX..

AMCSB error codes are included in the meanings of the LMSCONV messages.

The messages can be found in the "System Messages" manual [16]/[17].

U4303-J-2125-4-7600 265

LMSCONYV compared with LMS

LMSCONV

6.7 Comparison tables

6.7.1 LMSCONV compared with LMS

The following table compares the LMS and LMSCONYV statements. LMSCONV has fewer
statements than LMS. The functionality of the statements in terms of type handling is also

more limited.
LMSCONV Type LMS 3.0
statement sImIrlclplbpl x F |statement
ADD = |= |= |= |= |= ADD
+ |+ |- - 1+ T+ COM
+ + - - + + COR
e CTL
DEL = = = = = = DEL
DUP = |= |= |= |= |= DUP
+ + - - + + EDR/EDT
END - - - - - - END
LIB - - - - - - LIB
LIBOUT - - - - - - LIB
LST = = = = = = LST
NAM + = = = + + NAM
- - - - - - NOP
+ + - - + + NUM
PAR - - - - - - PAR
PRT - - - - - - PRT
RST - - - - - - RST
SEL = |= |= |= |= |= |= SEL
e SUM
S e SUMADD
- - - - - SUMDEL
e SUMPRT
SYS e e P SYS
e TCH
TOC = |= |[= |= |= |= |= TOC

266

U4303-J-2125-4-7600

LMSCONV

LMSCONYV compared with LMS
LMSCONV Type LMS 3.0
statement S D X H = statement
UPD - - - - UPD
- - - - USE
- - - - $
+ : applicable only to LMS

= : applicable to both LMS and LMSCONV

- : not applicable

LMSCONYV does not support all LMS processing operands. All the LMS processing
operands are listed below with an indication of their usage in LMSCONV.

Processing operand

LMS 3.0

LMSCONV

BASE

+

CHECK

COMPARE

CSECT

DECOMPRESSED

DESTROY

ERRCONS

FCBTYPE

FORMAT

INFO

KEY

LCASE

LINE

LOG

LST

NEWFORM

OVERWRITE

PATH

PHASE

RANGE

REFERENCE

S e I e e I O O S e I o (e

U4303-J-2125-4-7600

267

LMSCONYV compared with LMS

LMSCONV

Processing operand

LMS 3.0

LMSCONV

SEGMENT

SLICE

SORT

STRING

STRIP

SUM

TERMINATE

TEST

TOC

TYPE

VALUE

+ [+ |+ |+ |+ |+ |+ +]+

+

: not supported

: supported

The available LMSCONYV statements do not support the following LMS functions:

ADD from FMS libraries
ADDx FMS=fmslib(fmselem)
ADD from the LMSCONYV statement stream

CTL
ADDx < CMD
SYSDTA

SEL in FMS libraries

SELx elem>FMS=fmslib(fmselem)

Delta technique: the BASEVERSION operand must not be used (ADD, DUP).

Target version: LMSCONYV does not permit a version to be specified for the target

element.

Structured duplication: LMSCONV does not permit the structured duplication of delta

trees (DUP...,STRUC=YES).

268

U4303-J-2125-4-7600

LMSCONV

LMSCONYV compared with LMR

6.7.2 LMSCONV compared with LMR

LMR can only handle modules in OMLs (object module libraries). This corresponds to type
R in PLAM libraries. The following table compares the LMSCONV and LMR statements.
With LMSCONYV statements that allow several types to be processed, only type R is

mentioned.
LMSCONYV statement |LMR statement Function
ADDR ADD, COPYALL Add modules
DELR DELETE Delete modules
DUPR ADD, COPYALL Duplicate modules
END END Terminate program
LIB MODLIB, SOURCE Library assignment
PRT(LST)+LSTR LIST List modules via SYSLST
[PRT(OUT)+]LSTR DISP List modules via SYSOUT
NAMR REVISE Rename modules
PAR PARAMS Define processing operands
PRT - Define output medium
SELR - Select modules
[PRT(OUT)+]TOCR DISP Output table of contents to SYSOUT
PRT(LST)+TOCR LIST Output table of contents to SYSLST
RST - Restart following error
SYS - Issue system commands
UPDR INCLUDE Update modules
*INS RENAME - Insert INCLUDE
*NAM REP - Change internal name
*REP TRAITS - Insert REP record
*SET - - Modify attributes
*BASE - - Define base address
*CON - - Define cross-check number
*COR - - Correct text records
*DEL - - Delete record types
*END - - Terminate update statement
*ID - - Define identification
*INV - - Convert updates
*REM - Undo updates

U4303-J-2125-4-7600

269

LMSCONYV compared with LMR

LMSCONV

The following table compares the LMR and LMSCONYV processing operands:

LMSCONV statement |LMR Processing operand

CSECT - Define CSECT
DECOMPRESSED - Control compression
DESTROY - Control data destruction
FORMAT - Define record format

INFO - Define output scope on listing
KEY - Control transfer of file attributes and ISAM keys
LOG CLIST Define statement logging
OVERWRITE OVERWRITE Define overwrite

PATH - Define path name

PHASE - Define phase format
REFERENCE - Define reference condition
SLICE - Define segment

SORT - Sort contents listing
TERMINATE - Define abort action

STRIP ISD/NOISD Keep/delete ISD records
STRIP INCL/NDINCL Keep/delete INCLUDE records
STRIP REP/NOREP Keep/delete REP records

- CLASS1/CLASS2 Define program class indicator
- GENDATE Define creation date

Certain LMR attributes cannot be reproduced in LMSCONYV:

— task switches
— STXIT behavior
— log formats

— directory 2 information:
Only part of the corresponding information is stored in PLAM libraries by the programs
generating it, i.e. only what is needed for linking/loading is stored.

U4303-J-2125-4-7600

LMSCONV

LMSCONYV compared with MLU

6.7.3 LMSCONV compared with MLU

MLU only processes macro libraries. Macros are stored by LMS/LMSCONYV as type M
elements in PLAM libraries.

The following table compares the LMSCONYV statements that allow type M, and also the

typeless statements, with the MLU statements.

LMSCONYV statement | MLU statement Function

ADDM ADD Add macros

- COMP Compress macros

- DCOMP Decompress macros

DELM DEL Delete macros

DUPM COPY Copy macros

END END Terminate program

LIB MACLIB, COPYLIB Assign library

[PRT(OUT)+]LSTM LIST List macros via SYSOUT
PRT(LST)+LSTM PRINT List macros via SYSLST

NAMM - Rename macros

PAR - Define processing operands

PRT - Define output medium

SELM - Select macros into file
[PRT(OUT)+]TOCM LSDIR Output table of contents to SYSOUT
PRT(LST)+TOCM PRDIR Output table of contents to SYSLST
- PUNCH Output macros to SYSOPT

RST - Restart following error

SYS - Issue system command

There are further differences:

— LMSCONYV, unlike MLU, has processing operands (see section 6.5.5, "Processing

operands").

— The storage format can only be selected for OSM libraries in LMSCONV. The DECOM-
PRESSED processing operand has been implemented for this purpose. No statement
exists, however, to compress complete OSM libraries.

The MLU STXIT behavior and log formats have not been emulated.

U4303-J-2125-4-7600

271

Converting from LMR to LMSCONV LMSCONV

6.8 Conversion tools

6.8.1 Converting from LMR to LMSCONV

LMR format

Libraries created by LMR can be processed by LMSCONV. As elements processed by LMR
are not given a version number, LMSCONYV assumes a version number of O (zero) for these
elements. Non-empty object module libraries created and processed by LMSCONYV can be
processed by LMR. LMR cannot process program libraries.

Converting from LMR to LMS

General:

1. OVERWRITE default value.
In LMR, the default value is OVERWRITE=YES, whereas in LMSCONYV it is
OVERWRITE=NO.

2. Completion log.
In LMSCONYV you must set PAR LOG=MAX to obtain a completion log.

Mapping of LMR functions
a) Include all modules from *EAM, overwriting elements with the same name
/ISTART-PROGRAM FROM-FILE=$LMR /ISTART-PROGRAM FROM-FILE=$LMSCONV
$PAR OVERWRITE=YES
MODLIB <library> $LIB <library>,BOTH
COPYALL SOURCE=* $ADDR *OMF
END $END

b) Include one module from *EAM, overwriting elements with the same name

/ISTART-PROGRAM FROM-FILE=$LMR /ISTART-PROGRAM FROM-FILE=$LMSCONV
$PAR OVERWRITE=YES

MODLIB <library> $LIB <library>,BOTH

ADD OBJMOD=(name),SOURCE=* $ADDR *OMF(name)

END $END

272

U4303-J-2125-4-7600

LMSCONV

Converting from LMR to LMSCONV

c) Copy one module from another library, overwriting elements with the same name

ISTART-PROGRAM FROM-FILE=$LMR

MODLIB <library>

ADD OBJMOD=(name),SOURCE=
(LIB,<in.lib>)

END

/START-PROGRAM FROM-FILE=$LMSCONV
$PAR OVERWRITE=YES

$LIB <in.lib>

$LIB <library>,0UT

$DUPR name

$END

d) Copy all modules from another library, overwriting elements with the same name

/ISTART-PROGRAM FROM-FILE=$LMR

MODLIB <library>
COPYALL SOURCE=(LIB,<lib>)
END

/ISTART-PROGRAM FROM-FILE=$LMSCONV

$PAR OVERWRITE=YES

$SYS ADD-FILE-LINK LINK-NAME=LIBzzz,
FILE-NAME-=in.lib

$LIB <library>,BOTH

$DUPR *(<zzz>)

$END

e) List modules in a library

ISTART-PROGRAM FROM-FILE=$LMR
MODLIB <library>

DISP D1

DISP D2,ALL

DISP OBJMOD=(name,ALL)

END

ISTART-PROGRAM FROM-FILE=$LMSCONV
$LIB <library>

$TOCR *[/*]

$PAR INFO=REFI$LSTR *[/*]

$PAR INFO=ALLI$LSTR name[/*]

$END

f) Rename a module in the table of contents

/ISTART-PROGRAM FROM-FILE=$LMR
MODLIB <library>

REVISE OBJMOD=(old,new)

END

/ISTART-PROGRAM FROM-FILE=$LMSCONV
$LIB <library>,BOTH

$NAMR old>new

$END

g) Delete a module from the table of contents

/ISTART-PROGRAM FROM-FILE=$LMR
MODLIB <library>

DELETE (name)

END

ISTART-PROGRAM FROM-FILE=$LMSCONV
$LIB <library>,BOTH

$DELR name

$END

U4303-J-2125-4-7600

273

Converting from MLU to LMSCONV

LMSCONV

h) Insert REP in a module

/START-PROGRAM FROM-FILE=$LMR
MODLIB <library>
REP ...,OBJMOD=name

END

ISTART-PROGRAM FROM-FILE=$LMSCONV
$LIB <library>,BOTH
$UPDR name

6.8.2 Converting from MLU to LMSCONV

MLU format

Libraries created by MLU can be processed by LMSCONV. As elements processed by MLU
are not given a version number, LMSCONV assumes a version number of O (zero) for these
elements. Macro and source program libraries created by LMSCONV are in MLU format
and can be processed by MLU. MLU cannot process program libraries.

Mapping of MLU functions

a) Copy a macro from another library, overwriting any element with the same name

/START-PROGRAM FROM-FILE=$MLU
COPYLIB=<in.lib>
MACLIB=<library>

COPY macroname
END

ISTART-PROGRAM FROM-FILE=$LMSCONV

$PAR OVERWRITE=YES

$SYS ADD-FILE-LINK LINK-NAME=LIBzzz
FILE-NAME=in.lib

$LIB <library>,BOTH

$DUPM macroname(zzz)

$END

b) Delete macros from a library

/ISTART-PROGRAM FROM-FILE=$MLU
MACLIB=<library>

DEL macroname

END

/START-PROGRAM FROM-FILE=$LMSCONV
$LIB <library>

$DELM macroname

$END

c) Output table of contents

/START-PROGRAM FROM-FILE=$MLU
MACLIB=<library>

LSDIR

END

/ISTART-PROGRAM FROM-FILE=$LMSCONV
$LIB <library>

$TOCM */*

$END

274

U4303-J-2125-4-7600

LMSCONV

Converting from COBLUR to LMSCONV

6.8.3

6.8.4

Converting from COBLUR to LMSCONV

Libraries created by COBLUR are only read by LMSCONYV, which cannot make changes to
these libraries. As the elements in a COBLUR library have neither version numbers or
dates, zero is assumed for both. LMSCONYV ignores the sections into which the library is
divided, so it is not possible to tell from a contents listing which elements are held in which
sections. If different sections contain elements with the same name, these names will be
listed several times in a contents listing. If the LST statement specifies a name that exists
in several sections, the first element that is found is listed.

Converting from LMSCONYV to LMS

All LMSCONYV statements and processing operands are understood by LMS (on LMS, see
the "LMS (BS2000)" manual [11]). Thus the user can convert from LMSCONYV to LMS
without any problems.

All existing LMSCONV procedures also run under LMS and produce exactly the same
results.

U4303-J-2125-4-7600 275

276 U4303-J-Z2125-4-7600

7 PAMCONV
Utility routine for converting file formats

Version: PAMCONYV V11.0A

The PAMCONV routine is used for converting files from K format to NK format or vice versa.

In K format, the DMS management information is stored in a PAM key which is prefixed to
the data block. This file format is referred to as key format, or K format for short.

In NK format, which does not use the PAM key, the DMS management information is either
integrated in the data blocks or it is left out. This file format is known as nonkey format, or
NK format for short.

Prior to BS2000 V10.0 the only nonkey format was NK2 format. Files with this format were
generally referred to as NK files. As of BS2000/0OSD-BC V1.0 there is now another NK file
format, NK4. The term NK file now serves as a generic term for NK2 and NK4 files.
These file formats (K, NK2 and NK4) were created so as to be enable the data management
system to make the best possible use of the existing disk formats. As of BS2000/OSD-BC
V1.0, NK4 disks are also supported in addition to K and NK2 disks (BS2000 <V10.0). The
minimum transfer unit between the disk and main memory for this disk format is 4 Kbytes.
The size of the smallest file (minimum allocation unit = min. AU) is either 8 Kbytes or 64
Kbytes, depending on the formatting by system administration.

Files on NK4 disks must always be in NK4 format. PAMCONYV V11.0 offers the possibility
of converting K or NK2 files to NK4 format.

U4303-J-2125-4-7600 277

Converting file formats

PAMCONV

A disk format is defined by the critera "with/without PAM key", "minimum allocation unit (min.

AU)" and "minimum transfer unit (min. TU)".
The following disk formats are supported as of BS2000/0SD-BC V1.0:

Disk format

PAM key

with w/o

6KB

min.AU
8KB

64KB

2KB

min.TU

4KB

K disk

X

NK?2 disk

NK2 disk

NK4 disk

NK?2 disk

NK4 disk

X | X | X | X | X

The disk format within any one pubset is homogeneous.

For private disks the only formats supported are the K and NK2 disks with a minimum
allocation unit of 6 Kbytes.

The diagram below shows which file formats can be stored on the supported disk formats

without the file formats first having to be converted using PAMCONV.

278

U4303-J-2125-4-7600

PAMCONV Converting file formats

File format Disk format

< I . < I [
~ 2048 - ~ 2048 - ~ 2048 -

< [[
NK2 !
« 2048 -

< [-
~ 2048 -
- 4096 . — 2048 _l_ 2048 _
P 4096 -

Figure 10: File formats that can be mapped to certain disk formats without conversion

The primary purpose of PAMCONYV is to convert K files into NK files so that the latter can
be stored in NK pubsets.

K file - > NK2 file

PAMCONYV
NK2 fle — —— — NKd4file

U4303-J-2125-4-7600 279

Converting file formats

PAMCONV

The conversion options provided by PAMCONYV V11.0 for the individual file structures are
listed in the table below.

Conversion options with PAMCONV V11.0

File structure File formatl File format2
ISAM K-ISAM NK2-ISAM
K-ISAM NK4-ISAM
NK2-ISAM NK4-ISAM
SAM K-SAM NK2-SAM
K-SAM NK4-SAM
NK2-SAM NK4-SAM
PAM K-PAM NK-PAM
K-PAM NK4-PAM
NK2-PAM NK4-PAM
Load module K module NK2 module
K module NK4 module
NK2 module NK4 module

280

U4303-J-2125-4-7600

PAMCONV Calling PAMCONV

Calling PAMCONV

The routine can be started in two ways:

/START-PAMCONV

START-PAMCONV

CPU-LIMIT = *JOB-REST / <integer 1..32767>
,MONJV = *NONE / <full-filename without-gen-vers>
,PROGRAM-MODE =24 / *ANY

The CPU-LIMIT, MONJV and PROGRAM-MODE operands of the START-PROGRAM command are
available for calling the routine, e.g. to monitor the program run. For descriptions of these
operands, see the START-PROGRAM command in "Commands, Volume 3" [3].

/START-PROGRAM FROM-FILE=PAMCONV

The CPU-LIMIT, TEST-OPTIONS, MONJV, RESIDENT-PAGES and VIRTUAL-PAGES operands of the
START-PROGRAM command are also available for calling the routine. For descriptions of these
operands, see the START-PROGRAM command in "Commands, Volume 3" [3].

Command statements of the routine can be entered once the program has run.

The following messages are output:

% BLS0500 PROGRAM °PAMCONV’, VERSION "11.0A” OF °1993-03-11" LOADED

% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1993. ALL
RIGHTS RESERVED

% PEA7000 14:48:34/0.0859 PAMCONV-VERSION V11.0A64 IN BS2000 V11.2 STARTED
% PEA7001 ENTER PAMCONV STATEMENTS

//

U4303-J-2125-4-7600 281

Functionality PAMCONV

7.1 Functionality of PAMCONV

The PAMCONV utility routine provides the user with two basic functions for adapting files to
the available disk format.

« File format conversion

One of the functions of the PAMCONV routine is to convert files from K format to NK
format (and vice versa). File format conversion is performed using statements, specifi-
cally the CONVERT-FILE statement.

« Reblocking

The introduction of NK4 disks in BS2000/0OSD-BC V1.0 means that it is possible to
convert the blocking factor of a file from an odd number to an even number. Only files
with an even-numbered blocking factor can be stored on an NK4 disk.

PAMCONYV provides the "reblocking" function for this purpose.

Functionality of PAMCONV V11.0 in the different BS2000 versions

The PAMCONV V11.0 utility routine can run under BS2000 V9.5 or higher, although its
functionality differs according to the BS2000 version used. The following tables provide an
overview of the conversion options for ISAM, SAM, PAM and load module files in BS2000
V9.5, vV10.0 and BS2000/0SD-BC V1.0/V2.0.

In addition, the basic directions of conversion are shown in diagram form for each file
structure, with the block structure of the file before and after conversion.

282 U4303-J-Z2125-4-7600

PAMCONV

Conversion options for ISAM files

ISAM files

An ISAM file that is to be converted with PAMCONYV may have one of the following three

block structures.
o PAMKEY: the file is a K-ISAM file.

« DATAZ2K: the file is an NK2-ISAM file; the blocking factor n may be odd or even.

« DATA4K: the file is an NK4-ISAM file; the blocking factor n is even.

The table below summarizes all conversion options for an ISAM file:

Conversion options for an ISAM file

Conversion options V9.5 V10.0 | OSD-BC|OSD-BC
V1.0 V2.0

PAMKEY DATA2K 0 X X X
PAMKEY DATA4K X X
DATA2K PAMKEY X X X X
DATA2K DATA4K X X
DATA4K PAMKEY X X X
DATA2K DATA2K 0 X X X
DATA4K - » DATA4K X X
DATA4K DATA2K 0 X X X
X Conversion is supported.

0 If the NK-ISAM access method is available in the system, the file format can be

converted to NK format.

I

In BS2000 V9.5, NK-ISAM is optional. In order to convert K-ISAM files into NK-ISAM files

in BS2000 V9.5, therefore, NK-ISAM must be loaded.

MLU macro libraries are ISAM files and must be converted as such.

U4303-J-2125-4-7600

283

Conversion options for ISAM files PAMCONV

There are three basic directions of conversion

PAMKEY DATA2K
PAMKEY ~ | DATA4K
DATA2K DATA4K

The block structure of an ISAM file before and after file format conversion in these three
directions is shown below.

Key
* -16 bytes block management information

BLKSIZE - logical block length

Indexblock - index block

ISAM file before conversion ISAM file after conversion

PAMKEY (K-ISAM file) DATA2K (BLKSIZE=(STD,1))
(NK2-ISAM file)

Data Index bl| *‘ Data |Index bl|
—~ 2048 oI | 2048 _ — 2048 -l 2048 _
PAMKEY (K-ISAM file) DATA4K (BLKSIZE=(STD,2))

(NK4-ISAM file)

Data Index bl * Data Index bl.

— 2048 - |- 2048 _ - 4096 e 4096 .
DATA2K (BLKSIZE=(STD,1)) DATA4K (BLKSIZE=(STD,2))
(NK2-ISAM file) (NK4-ISAM file)

B Data |Index bl] x| Data Index bl.

2048 -l 2048 - [4096 Sl 4096 -

284 U4303-J-Z2125-4-7600

PAMCONV

Conversion options for SAM files

SAM files

A SAM file that is to be converted with PAMCONYV may have either of the following two block
structures:

« PAMKEY: the file is a K-SAM file.

« DATA: the file is an NK2-SAM file if the blocking factor n is odd, or an NK4-SAM file if n
is even.

The table below summarizes all conversion options for a SAM file:

Conversion options for a SAM file

Conversion options V9.5 V10.0 | OSD-BC|OSD-BC
V1.0 V2.0
PAMKEY DATA X X X X
DATA PAMKEY X X X X
DATA DATA X X X X
X Conversion is supported.

If SAM files are converted from K format to NK format in BS2000 V9.5, the target files have
an internal NK format but the source file remains in K format.

The diagram below shows the following direction of conversion

PAMKEY DATA

This illustrates the block structure of a SAM file before and after file format conversion.

U4303-J-2125-4-7600 285

Conversion options for SAM files PAMCONV

Key:
* - 16 byte block management information

BLKSIZE - logical block length; in the case of NK-SAM files the 16 bytes are deducted only
once per logical block length.

SAM file before conversion SAM file after conversion

PAMKEY (K-SAM file) DATA (BLKSIZE=(STD,1))
(NK2-SAM file)

Data *‘ Data
~ 2048 - ~ 2048 -
PAMKEY (K-SAM file) DATA (BLKSIZE=(STD,2))

(NK4-SAM file)

~ 2048 - - 4096 -
DATA (BLKSIZE=(STD,1)) DATA (BLKSIZE=(STD,2))
(NK2-SAM file) (NK4-SAM file)

*‘ Data * Data

— 2048 - - 4096 -

286 U4303-J-Z2125-4-7600

PAMCONV

Conversion options for PAM files

PAM files

A PAM file that is to be converted with PAMCONV may have one of the following three block

structures:

« PAMKEY: the file is a K-PAM file.

« DATA: the file is an NK2-PAM file if the blocking factor n is odd, or an NK4-PAM file if n

is even.

« NO: the file is an NK2-PAM file if the blocking factor n is odd, or an NK4-PAM file if n is

even. No block management information is stored.

The table below summarizes all conversion options for a PAM file:

Conversion options for a PAM file

Conversion options V9.5 V10.0 | OSD-BC|OSD-BC
V1.0 V2.0
PAMKEY NO X X X X
NO PAMKEY X X X X
NO NO X X X
DATA - » DATA X X X
X Conversion is supported.

If PAM files are converted from K format to NK format in BS2000 V9.5, the target files have

an internal NK format but the source file remains in K format.

PAM-DATA files cannot be converted into K format. If nonkey to key conversion is selected

nevertheless, processing in PAMCONYV V11.0 is rejected with message PEA2212.

PLAM libraries are PAM files that do not use the PAM key and must therefore be converted

as such.

U4303-J-2125-4-7600

287

Conversion options for SAM files PAMCONV

The diagram below shows the following three conversion directions:

PAMKEY NO
NO - |NO
DATA DATA

This illustrates the block structure of a PAM file before and after file format conversion.
Key:

* - 12 bytes block management information
BLKSIZE - logical block length

PAM file before conversion PAM file after conversion
PAMKEY (K-PAM file) NO (BLKSIZE=(STD,1))
(NK2-PAM-NO file)
Data Data
~ 2048 - ~ 2048 -
NO (BLKSIZE=(STD,1)) NO (BLKSIZE=(STD,2))
(NK2-PAM-NO file (NK4-PAM-NO file)
Data Data
< 2048 - - 4096 -
DATA (BLKSIZE=(STD,1)) DATA (BLKSIZE=(STD,2))
(NK2-PAM-DATA file) (NK4-PAM-DATA file
*‘ Data * Data
~ 2048 - - 4096 -

288 U4303-J-Z2125-4-7600

PAMCONV

Conversion options for load module files

Load module files

A load module is a specific type of PAM file. In the PAM file name (K-PAM or NK-PAM file),
'PAM’ is replaced by 'load module’. Reference is therefore made to K, NK2 and NK4 load

module files.

NK2 load module files have the file format with the block structure NO, i.e. no block control
information is stored. The logical block length is (STD,1), i.e. 2048 bytes.
NK4 load module files have a logical block length of (STD,2), i.e. 4096 bytes.
Any other block length specifications are rejected with an error message.

Conversion options for load module files

Conversion options V9.5 V10.0 | OSD-BC|OSD-BC
V1.0 V2.0
PAMKEY - > NO X X X X
NO NO X X X X
U4303-J-2125-4-7600 289

File format conversion PAMCONV

7.2 File format conversion

7.2.1 Types of conversion

Standard conversion

It is assumed that the source and target files for a conversion are stored on public volumes
(magnetic disk storage).

This might be called the standard case. Enough space for both files must be available. If
this is not the case, conversion must be effected via an intermediate file.

Conversion via an intermediate file

General

During file conversion, the target file requires about the same amount of disk space as
the source file. A "self-contained" conversion without the need for additional space is
not supported by PAMCONYV. This means that enough disk space must be available for
the target file. If this is not the case, conversion can be effected using an intermediate
file on magnetic tape or private disk.

After successful conversion from the source file to the intermediate file, the source file
is deleted to obtain space for the target file.

When conversion takes place via an intermediate file, the FILE-DISPOSAL operand of
the CONVERT-FILE statement (which specifies how the generated file is to be handled
after conversion) is ignored.

For this type of conversion, file convertibility is checked before an intermediate file is
generated. This avoids a situation where the intermediate file would not be convertible
into a target file.

Two-step conversion using an intermediate file

This type of conversion is performed explicitly by means of two CONVERT-FILE state-
ments.

The two statements may be issued in the same program run or in separate program
runs.

— Stepl
Conversion of the source (disk) file on magnetic tape or private disk.

— Step2
Conversion of the intermediate file from magnetic tape or private disk into the target
file.

290

U4303-J-2125-4-7600

PAMCONV

Conversion using an intermediate file

One-step conversion using an intermediate file

Two-step conversion as described above is combined into one operation here, which
means that only one CONVERT-FILE statement is needed. This is achieved by entering
DISK or TAPE for the DEVICE-FOR-TEMPFILE operand.

The intermediate file is assigned a name with the following format:
SYSTMP.tsn.PAMCONV.ss.cpusec

This intermediate file is erased after the two (internal) conversion steps have been
successfully completed; otherwise further processing of the file is possible via this
name.

Note

Internally, conversion is implemented in two steps as mentioned above. However,
the user is not requested to make a new input until both conversion steps have been
concluded.

Specification of the conversion options

The conversion variants are selected on the basis of the source and target file specifications
and the entry in the DEVICE-FOR-TEMPFILE operand of the CONVERT-FILE statement:

DEVICE-FOR-TEMPFILE = NONE

No intermediate file is stored on a private volume, unless this is specified via an ADD-
FILE-LINK command.

The following variants are possible:

— The source file is specified as a disk file and there is no catalog entry or ADD-FILE-
LINK command for the target file, or the target file is specified as a disk file.

0 Conversion from source file on magnetic disk to target file on magnetic disk
(standard case).

— The source file is specified as a disk file and the target file is specified as a tape file.

0 Conversion from source file on magnetic disk to intermediate file on magnetic
tape (two-step conversion via intermediate file on tape: step 1).

U4303-J-2125-4-7600 291

Conversion using an intermediate file PAMCONV

— The source file is specified as a tape file and there is no catalog entry or ADD-FILE-
LINK command for the target file, or the target file is specified as a disk file.

0 Conversion from source file on magnetic tape (must be an intermediate file
generated by PAMCONYV) to target file on magnetic disk (two-step conversion
via intermediate file on tape: step 2).

Specifying both source file and target file as magnetic tape files is not permitted.

Note

This implies that a file on magnetic tape must always be a PAMCONYV intermediate
file, otherwise conversion is rejected.

DEVICE-FOR-TEMPFILE = TAPE

An intermediate file on magnetic tape is generated in each case. The source and/or
target file must not simultaneously be specified as a tape file via an ADD-FILE-LINK
command.

The following options exist:

— The source file is specified as a disk file and there is no catalog entry or ADD-FILE-
LINK command for the target file, or

— the target file is specified as a disk file.

0 Conversion from source file on magnetic disk to target file on magnetic disk
(one-step conversion via intermediate file on tape).

DEVICE-FOR-TEMPFILE = DISK

An intermediate file on private disk is generated in each case. The source and/or target
file must not simultaneously be specified as a tape file via an ADD-FILE-LINK
command. If the source and/or target file is defined by means of an ADD-FILE-LINK
command (for private disk), the volume specified in this command must not be identical
to the private disk volume identified in the DEVICE-FOR-TEMPFILE operand.

The following options exist:

— The source file is specified as a disk file and there is no catalog entry or ADD-FILE-
LINK command for the target file, or

— the target file is specified as a disk file.

0 Conversion from source file on magnetic disk to target file on magnetic disk
(one-step conversion via intermediate file on disk).

292

U4303-J-2125-4-7600

PAMCONV Conversion using an intermediate file

Format of the intermediate file on magnetic tape

The source (disk) files may be SAM, ISAM or PAM files. The ISAM access method is not
defined for tapes. A standard format is therefore used for the intermediate file on tape. This
is a SAM file containing the data records of the source file (ISAM: sorted by keys in
ascending order). For general PAM files and load modules, a record consists of an 8-byte
field with the user part of the PAM key and a 2048-byte field with the PAM block.

Additional file attributes are stored in a separate user header label (UHL).

Such an intermediate file is merely intended as a temporary file for conversion purposes.
Magnetic tapes with standard labels must be used.

« Two-step conversion via intermediate file on tape

If several files are to be converted at the same time, an ADD-FILE-LINK command with
SUPPORT = TAPE(FILE-SEQUENCE =...) must be issued; otherwise the intermediate
file on tape will be overwritten.

o File attributes

An intermediate file on magnetic tape has the following attributes:

FCBTYPE = SAM
BLKSIZE = (STD,16)
RECFORM = VARIABLE
LABEL = STD
BLKCTRL = PAMKEY

Otherwise the default values from the FCB macro apply.

As can be seen from the following diagram, an intermediate file on tape is always a K-
SAM file, regardless of the key format or FCB type of the source and target files.

U4303-J-2125-4-7600 293

Conversion using an intermediate file

PAMCONV

Disk file in
K format

Intermediate file
on magnetic tape

.
4—.4—

—_—
‘—
—

K-

PAM —

Disk file in
NK format

NK-
SAM

NK-
ISAM

NK-

Figure 11: Intermediate file on magnetic tape

294

U4303-J-2125-4-7600

PAMCONV

Conversion using an intermediate file

e User labels

For the registration of the source file attributes, the user header label UHL1 with the
following format is used.

Position Contents Meaning

1.4 UHL1 user header label identification
5..12 PAMELA-I ID for ISAM intermediate file
5..12 PAMELA-S ID for SAM intermediate file
5..12 PAMELA-P ID for PAM intermediate file
13..66 CL54 Name of source file

67 AL1(b) BLKSIZE=(STD,b)

68 X'02" RECFORM=VARIABLE

68 X'04° RECFORM=FIXED
69..70 AL2(r) RECSIZE=r
71..72 AL2(p) KEYPOS=p

73 AL1(k) KEYLEN=k

74 X‘00* VALPROP=MIN

74 X'01* VALPROP=MAX

75 AL1(f1) LOGLEN=f1

76 AL1(f2) VALLEN=f2

77 X80 DUPEKY=YES

77 X'00° DUPEKY=NO
78..80 XL3'00* not used

Format of the intermediate file on private disk

In contrast to an intermediate file on tape, an intermediate file on private disk has no special
format. It is always a copy of the source/target file, depending on the conversion direction.
The intermediate file is always generated as an NK file, which makes it independent of the
private disk’s key mode.

Note

In the case of SAM files, the RECSIZE value of the copy (intermediate file) may differ
from that of the NK source file. If the RECSIZE value of the NK source file is zero, the
maximum possible value is used for the intermediate file.

U4303-J-2125-4-7600

295

Conversion using an intermediate file PAMCONV

The following diagram shows in which format the intermediate file is created on private disk
and from which file the copy is made (depending on the conversion direction).

Disk file in Intermediate file Disk file
K format on private disk in NK format

Copy of NK-SAM target file

S G| S——
e —

Copy of NK-SAM source file

Copy of NK-ISAM target file

U (G| s
T

Copy of NK-ISAM source file

Copy of NK-PAM target file

A [l s
e —

Copy of NK-PAM source file

Figure 12: Intermediate file on private disk

296 U4303-J-Z2125-4-7600

PAMCONV

System environment requirements

71.2.2

System environment requirements

Tape peripherals

Magnetic tapes which are to store intermediate files must be equipped with standard labels.

Disk peripherals

If a system contains pure NK disk peripherals (without key simulation), creation of K disk
files is not possible. As a consequence, "nonkey to key" conversion is impossible in such
systems.

If, generally speaking, both the source and the target file are to be situated within one
pubset, care must be taken to provide enough space so that both files can be accommo-
dated during conversion. (The target file may need more space than the source file.) If this
is not possible, conversion should be effected via an intermediate file.

Operating system versions

The NK-ISAM access method is used for the "to nonkey" conversion of ISAM files. Accord-
ingly, NK-ISAM must be present in the system (optional in V9.5, standard as of V10.0).

Generation of ISAM files with BLKCTRL = DATA4K is only possible as of BS2000/0SD-BC
V1.0 and PAMCONYV V11.0A.

SDF

PAMCONYV statements have an SDF interface.

The SDF subsystem is available in the system as of BS2000 V10.0 and therefore does not
have to be loaded separately.

In BS2000 V9.5, SDF is loaded automatically from the $TSOS.SDF.OML.P1 module library.
This library must therefore be available in the system.

ACS

The ACS (Alias Catalog Service) subsystem is available as of BS2000/0SD-BC V1.0. Alias
names may be used when specifying the source and target files for conversion. These
names must be specified in precisely the form in which they are entered in the alias catalog,
otherwise it is impossible to establish the connection to the correct file name.

U4303-J-2125-4-7600 297

System environment requirements PAMCONV

Diagnostic documents

If problems occur in a PAMCONYV run (unexpected messages, dump, ...), the following
documents are required for the diagnosis:

e SYSLST log
The log is designed to show the factors possibly affecting the PAMCONYV run (e.g.
inputs made immediately before the error occurred).

« Input file in which the error occurred. The development engineers may then be able to
find the cause of a problem which may not lead to an abort until considerably later.

Syntax files

A syntax file with a description of the PAMCONYV syntax must be active. For BS2000/0OSD-
BC versions earlier than V1.0, two SDF syntax files are supplied, which system adminis-
tration has to integrate into the existing syntax files. As of BS2000/0OSD-BC V1.0, there is
only one system syntax file, which contains the full function range of PAMCONV.

« [For BS2000/0SD-BC versions earlier than V1.0:
1. PAMCONV system syntax file

Contains the restricted function range of PAMCONYV, which is available to all users.
This file must be merged with the system syntax file.

2. PAMCONY group syntax file for TSOS

Contains the full function range of PAMCONY, which is only available to system
administration under the TSOS ID. This file must be merged with the group syntax
file for TSOS.

e [For BS2000/0SD-BC V1.0 and later:
PAMCONYV system syntax file

Contains the full function range of PAMCONV. This file must be merged with the system
syntax file.

298 U4303-J-Z2125-4-7600

PAMCONV

Specifying source and target files

7.2.3

Specifying source and target files

The source file and the corresponding target file can be specified in one of three ways:

Specifying fully qualified file names

Source and target files can be selected by specifying fully qualified file names.
A single file generation can also be specified in this way.

In this case, the file attributes of the source file are transferred internally from the catalog
entry.

The file attributes of the source file likewise apply to the target file.
The following file attributes are registered (see the ADD-FILE-LINK command):

— access method

— record format

— record length

— data block length

— key length in ISAM files

— key position in ISAM files

— multiple keys in ISAM files

— length of logical markers in ISAM files
— length of value markers in ISAM files
— character set

Specifying selection criteria

The source file is specified in the form of a partial qualification with or without additional
selection criteria operand (SELECT=BY-ATTRIBUTES(...) of the CONVERT-FILE
statement with CREATION-DATE, LAST-ACCESS-DATE, SIZE, FILE-STRUCTURE,
BLKSIZE, BLKCTRL).

This information is used to determine all files to be converted (see the SHOW-FILE-
ATTRIBUTES command in the manual “Commands, Volume 3" [3]).

The names of the target files may include wildcards (see the SHOW-FILE-ATTRIBUTES
command).

The remaining attributes of the target file are the same as for the source file.

U4303-J-2125-4-7600 299

Specifying source and target files PAMCONV

Note

If LMR module libraries were included in the specification of selection criteria for PAM
files, the module libraries could be destroyed.

To avoid this, a check is performed prior to conversion of a PAM file, and if an LMR
module library is detected it is not converted.

LMR module libraries can be converted using LMS (see the description of LMSCONV
starting on page 141).

PAM files which are load modules are recognized as such and converted to the appro-
priate load module file format.

Specifying a reference via a link name

The reference is established via the link name to a previous ADD-FILE-LINK command
specifying the file.

The link name is specified in the *LINK(LINK-NAME=...) operand of the CONVERT-FILE
statement.

This method can also be used to select a single file generation.

If PAMCONYV is executed under a BS2000 version = V9.5, the BLKCTRL-INDICATOR
operand of the MODIFY-BLKCTRL-INDICATOR statement need not be specified.
If it is specified, it must be correct; in the case of any inconsistencies, conversion is rejected.

The link name is mandatory if the target file is to have specific attributes which cannot be
taken from the catalog entry of the source file. These include in particular:

— SPACE definitions

— index/data separation (for K-ISAM files only)
— PAD factor (normally the default value is used)
— RETPD specification

— WROUT=NO (WROUT=YES is standard)

— WRCHK=YES (WRCHK=NO is standard)

300 U4303-J-Z2125-4-7600

PAMCONV Reblocking

7.3 Reblocking

7.3.1 General information

Only files with an even blocking factor can be stored on NK4 disks. For this reason, the
"reblocking” function has been incorporated in PAMCONYV V11.0. This function allows files
with an uneven blocking factor to be stored on NK4 disks. It is implemented in the TO-FILE-
BLKSIZE operand of the CONVERT-FILE, MODIFY-CONVERT-FILE-DEFAULTS and
SHOW-CONVERT-FILE-DEFAULTS statements.

7.3.2 Explicit reblocking

The user initiates reblocking in the TO-FILE-BLKSIZE operand, which defines the logical
block size of the target file. If the block size of the source file is uneven and the user explicitly
specifies the block size of the target file, an error message is issued when the file is opened
on an NK4 disk.

7.3.3 Implicit reblocking
If TO-FILE-BLKSIZE = STD or TO-FILE-BLKSIZE = NK4 is specified, reblocking is carried
out by PAMCONV.
« Increasing the blocking factor implicitly with TO-FILE-BLKSIZE = STD

The blocking factor of the target pubset applies; if necessary, PAMCONYV increases the
blocking factor implicitly.

The block size remains unchanged for NK2 and NK2(8K,64K) pubsets. In the case of

NK4 pubsets, the blocking factor of the target file is increased if the blocking factor of

the source file is uneven.

« Increasing the blocking factor implicitly with TO-FILE-BLKSIZE = NK4

If the blocking factor of the source file is uneven, the blocking factor of the target file is
increased, regardless of the target pubset blocking factor.

PAMCONYV does not decrease the blocking factor implicitly.

U4303-J-2125-4-7600 301

Reblocking

PAMCONV

7.3.4

Reblocking PAM-DATA files without changing the file format

Another function of PAMCONV V11.0 is reblocking NK-PAM-DATA files without changing
the file format, i.e. both the source and the target file have the attribute BLKCTRL = DATA.
Reblocking without conversion is supported by the specification DIRECTION = TO-
NONKEY and by the TO-FILE-BLKSIZE operand.

The blocking factor of a PAM-DATA file is increased only if the block size of the target file
(TO-FILE-BLKSIZE) can be divided by the block size of the source file without leaving a
remainder.

Modulo(target-BLKSIZE / source-BLKSIZE) = 0
If the remainder is not zero, reblocking is aborted with an error message.

When increasing the blocking factor of PAM-DATA files, only the block control field of the
first block in each logical block is written to the target file. All other control fields in the same
logical block are filled to 12 bytes with X'00’.

The blocking factor of PAM-DATA files is decreased only if the block size of the source file
can be divided by the block size of the target file without leaving a remainder.

Modulo(source-BLKSIZE / target-BLKSIZE) = 0
If the remainder is not zero, reblocking is aborted with an error message.

When the blocking factor is decreased, a check is made as to whether the control fields
contain X'00'. If not, reblocking is aborted with an error message.

The blocking factor is decreased only if the blocking factor of the file has already been
increased.

If the source PAM-DATA file has the block size BLKSIZE = (STD,1), PAMCONYV performs
implicit reblocking. Since this changes the file structure, a warning is issued.

Restrictions

— PAMCONYV cannot convert NK2-PAM-DATA files with a BLKSIZE greater than (STD,8).

— The "reblocking" function for PAM-DATA files is executed for the TO-NONKEY
conversion direction only. If NONKEY-TO-KEY is specified, conversion is aborted with
message PEA2212, because PAM-DATA files cannot be converted to KEY.

302

U4303-J-2125-4-7600

PAMCONV Reblocking

7.3.5 Problems when decreasing the blocking factor

Decreasing the blocking factor can cause the record length (RECSIZE) of the source file to
exceed the block size of the target file.

o Fixed record length (RECFORM = F)

PAMCONYV checks the record length of the source file and compares it with the record
length of the target file, calculated from the block size of the target file. If the record
length of the source file is greater than that of the target file, processing is aborted with
a message.

o Variable or undefined record length (RECFORM = V/U)

PAMCONYV assumes that the record length of the target file is not exceeded and starts
processing. If the record length of the target file is nevertheless exceeded, DMS informs
PAMCONYV and processing is aborted with a message.

Increasing the blocking factor does not cause any problems relating to the record length of
the target file.

U4303-J-2125-4-7600 303

Controlling conversion and reblocking PAMCONV

7.4 Controlling conversion and reblocking

The CONVERT-FILE statement is used to control the conversion and reblocking of files.
Other PAMCONYV statements are used to set or query the user-defined PAMCONV
environment.

The following subsections describe special points relating to the conversion of ISAM and
PAM file structures and to the conversion procedure.

7.4.1 Special points relating to conversion

Special points relating to the conversion of ISAM files

The TO-FILE-BLKCTRL operand of the CONVERT-FILE or MODIFY-CONVERT-FILE-
DEFAULTS statement can be used to define the file format for ISAM files if the conversion
direction TO-NONKEY is selected.

This particular case is subject to certain restrictions with regard to compatibility between
the logical block size (TO-FILE-BLKSIZE) and the file format (TO-FILE-BLKCTRL) of an
ISAM target file.

The assignment TO-FILE-BLKCTRL = STD means that the block control information is set
according to the target pubset. With NK2 and NK2(8K,64K) pubsets, the file format is
DATA2K; with NK4 pubsets, it is DATA4K.

If TO-FILE-BLKCTRL = NK4 is specified, the block control information is assigned the value

DATA4K.

TO-FILE-BLKSIZE = STD or NK4 or <integer 1..16> defines the logical block size of the
target file.

If TO-FILE-BLKSIZE = STD is specified, the logical block size is set according to the target
pubset.

If TO-FILE-BLKSIZE = NK4 is specified, the logical block size is always even.
If TO-FILE-BLKSIZE = <integer 1..16> is specified, the target file is generated with a logical
block size equal to the value specified here.

304 U4303-J-Z2125-4-7600

PAMCONV

Controlling conversion and reblocking

The following table shows the compatibility between the logical block size TO-FILE-
BLKSIZE and the file format TO-FILE-BLKCTRL of an ISAM target file.

TO-FILE-BLKSIZE

STD | Nk4 | 1 2 3 4 5 6 7
TO- STD X X X X X X X X
FILE- NK4 X X X X
BLCTRL

TO-FILE-BLKSIZE
8 9 10 | 12 | 12| 13] 14 | 158 | 16

TO- STD X X X X X X X X X
;ILLCIZE'I-'RL NK4 X X X X X
Key

X means that both specifications are supported; otherwise, an error message is issued.

Special points relating to the conversion of PAM files (not load modules)

In order to ascertain whether a PAM file with a PAM key actually uses this key, the user part
of the PAM key is checked.

If the user part contains 8 X’00’ bytes in each PAM block, the file is considered to be
convertible.

Conversion to NK format consists in dropping the PAM key information (which is not in use);
the BLKCTRL indicator field (see the section on "Defining block control information during
conversion") is assigned the value NO.

If the user part does not contain X’00’, the file is assumed to use the PAM key and is
therefore classified as inconvertible, i.e. conversion is aborted.

Exception:

For PAM files whose PAM key user part contains X'01’ or X’80’in byte 1, but otherwise X'00’,
the system assumes that the PAM key is not used and that byte 1 contains a deviating value
due to a DMS error. Such files are therefore classified as convertible to nonkey format, and
a message pointing out this exception is displayed during conversion.

U4303-J-2125-4-7600 305

Controlling conversion and reblocking PAMCONV

If a K-PAM file contains gaps, these are replaced by "zero blocks" (2048 X'00’ bytes) in the
NK-PAM file during conversion.
Note

This statement incorporates checking functions which reject any attempt to convert
LMR module libraries (PAM files) by means of CONVERT-FILE in V11.0A.

Conversion of LMR module libraries (and also MLU macro libraries) into PLAM libraries
can be effected via the utility routine LMSCONYV (see page 141).

Conversion of file generations

The file generations making up a file generation group can be converted by issuing a
separate CONVERT-FILE statement for each file generation.

Fully automatic conversion of a file generation group with all its file generations in one pass
is not possible; any such attempt is rejected with an error message.
Defining block control information during conversion

When converting from K to NK format, the block control information is set for the target file,
depending on the current BS2000 version and the relevant access method:

= V9.5 : to BLKCTRL = DATA for ISAM files only.
as of V10.0: to BLKCTRL = DATA for ISAM andSAM files.
to BLKCTRL = NO for PAM files..

If the file name is specified by means of a link name and the BLKCTRL parameter is used,
the BLKCTRL specification must be correct.

306

U4303-J-2125-4-7600

PAMCONV

Controlling conversion and reblocking

Converting an NK file into NK format

A special case is the conversion of a file into NK format when the source file is already in
NK format.

The source file is copied to the target file, but the target file receives the correct block control
information, provided the operating system version permits this (see the section on
"Defining block control information during conversion").

This method enables also the nonprivileged user to modify block control information (which
is otherwise only possible via the MODIFY-BLKCTRL-INDICATOR statement under the
TSOS ID).

Transfer of file protection attributes after conversion

Following successful conversion, the file protection attributes of a source file can be trans-
ferred to the target file. To do this, the PROTECTION operand must be specified with the
SAME value in the CONVERT-FILE statement. If the user does not specify this value, the
target file will be created without the file protection and file security features of the source
file. This response corresponds to the functionality of PAMCONY for BS2000 versions <
V10.0.

File protection attributes are transferred in accordance with the specification
PROTECTION=SAME in the system command /COPY-FILE (see "Commands, Volumes
1-3"[1], [2], [3D.

In order to be able to convert a protected file, before the PAMCONYV run the user must
specify all access authorizations (e.qg. issuing of passwords) with the corresponding system
commands. The conversion algorithm itself is then executed in the usual way, without
change. At the end of a successful conversion procedure, the protection attributes of the
source file are transferred to the target file.

« Transfer of file protection attributes according to user 1D

The list below is based on direct conversion (without intermediate medium) from disk to
disk.

— Conversion within any user ID

The following protection attributes are transferred:

Protection attribute Description

ACCESS Standard access control; specifies whether
write access (implicit read access) is permitted
for the file, or read access only.

ACL Access control list (ACL); access control for the
file is implemented via an ACL entry (only
possible with the software product SECOS).

U4303-J-2125-4-7600 307

Controlling conversion and reblocking

PAMCONV

Protection attribute Description

BACKUP-CLASS Specifies the frequency of automatic file saving
with the ARCHIVE or HSMS backup system.

BASIC-ACL Basic access control list; access control for the
file is implemented via a BASIC-ACL entry.
The read, write and execute access rights can
be distributed among various user groups.

DESTROY-BY-DELETE Files that are no longer required are overwritten
with X'00', thereby increasing data protection.

ENCRYPTION Password encryption

GUARDS Access kontrol via GUARDS; GUARDS is a
functional unit of the SECOS software product.

LARGE Exent of automatic file saving with the
ARCHIVE or HSMS backup system.

MIGRATE Files are migrated to another storage level if
they have not been accessed for a certain
length of time.

OPNBACK Specifies whether database files can also be
saved with ARCHIVE even when they are open.

RETENTION-PERIOD Defines a protective deadline up until which
only read access to the file is allowed, i.e. it
must not be modified or deleted.

USER-ACCESS Controls access to the file via other user IDs.

Passwords cannot be transferred as part of conversion within any user ID. This is

only possible during conversion under the system administration ID (TSOS).

Conversion under the system administration ID (TSOS)

Read (RDPASS), write (WRPASS) and execute passwords (EXPASS) are trans-
ferred, as are all protection attributes described above.

Conversion of a source file from another user ID to the user’s own ID

The file saving attributes LARGE, BACKUP, MIGRATE and OPNBACK and the file
security attributes DESTROY-BY-DELETE, RETENTION-PERIOD, RDPASS,
WRPASS, EXPASS and ENCRYPTION are transferred.

ACL, BASIC-ACL or GUARDS entries in the source file are not transferred to the
target file. These entries are assigned default values in the target file, as is the file
protection attribute ACCESS.

If an existing target file already has protection entries, they will be reset before the
source file entries are transferred.

308

U4303-J-2125-4-7600

PAMCONV Controlling conversion and reblocking

— Conversion of a source file from the user’s own ID to another user ID

The protection attributes of the source file are not transferred to the target file, even
if the user is authorized to create the target file.

o Restrictions applying to the transfer of file protection attributes when converting via an
intermediate medium

The transfer of file protection attributes is only supported within "one-step conversion
using an intermediate file".

The file protection attributes are not transferred in the event of "two-step conversion
using an intermediate file". If PROTECTION=SAME is specified in the CONVERT-FILE
statement, it is ignored.

— One-step conversion using an intermediate medium

The protection attributes of the source file are transferred because neither the
PAMCONV run nor the current conversion command CONVERT-FILE are inter-
rupted.

The following processing steps are executed:

— conversion from a common disk to an intermediate medium

— release of the source file's storage space

— internal transfer from the intermediate medium to the common disk
— setting of protection attributes

— deletion of the source file

— Two-step conversion using an intermediate medium

With this method of conversion both the PAMCONYV run and the conversion
command may be interrupted. The file protection attributes cannot be transferred
when the intermediate file is output on magnetic tape or disk, for the following
reasons:

— The second conversion step (from magnetic tape or private disk to the target
file) could take place at an arbitrary later time, on an arbitrary system. This may
result in incompatibility, because the transfer of the NK file from the intermediate
medium to a common data medium does not have to be executed with
PAMCONV. Other transfer routines do not receive any information about the
transfer of file protection attributes.

— The user label of the magnetic tape on which the intermediate file is to be stored
must be retained, for compatibility reasons; since further file characteristics
cannot be included due to lack of space, it is impossible to transfer the
protection attributes.

U4303-J-2125-4-7600 309

Controlling conversion and reblocking

PAMCONV

o Procedure with the target file after conversion

The procedure with the target file after conversion is governed by the FILE-DISPOSAL
operand in the CONVERT-FILE statement. The file protection attributes are transferred
as shown below when the following operand values are specified:

FILE-DISPOSAL =

Meaning for transfer of file protection attributes

KEEP

Default setting. Source and target files are retained. The file
protection attributes are transferred without problems.

RENAME

The source file is deleted after conversion. The protection
attributes are transferred before deletion. If an error occurs
during transfer, the source file is not deleted and the
process is aborted with an error. The file protection
attributes are therefore retained.

REPLACE

The source file is deleted after conversion and the target file
is recataloged in accordance with the source file. The
protection attributes are transferred before deletion. If an
error occurs during transfer, the source file is not deleted
and the process is aborted with an error. The file protection
attributes are therefore retained.

INPLACE

After conversion, the source file is overwritten with the
target file. The file protection attributes are transferred.

7.4.2 Further notes on conversion

To facilitate decision-making, PAMCONYV offers a function which checks files for their

convertibility.

The presence of more than one file format may lead to inconsistencies between catalog
entries and file formats, in particular in multiprocessor systems with different operating

system versions.

PAMCONYV therefore checks the file format for consistency with the catalog entry

(BLKCTRL indicator).

Since catalog updates can only be performed by privileged users, the function for changing
the BLKCTRL indicator is only executable under the TSOS ID.

310

U4303-J-2125-4-7600

PAMCONV

Statements

7.5 Statements

PAMCONYV reads one statement at a time and executes it immediately. If link names are
specified for a conversion, the associated TFT entries are not deleted following conversion,
so that the link names can be used again.

7.5.1 Overview of the PAMCONYV statements

Statement Function Page
CHANGE-TO-SYSTEM-MODE Switch to system mode 312
CHECK-BLKCTRL-INDICATOR Check file format and BLKCTRL indicator for 313
consistency, show file format
CLASSIFY-FILE Classify files according to their convertibility 320
CONVERT-FILE Convert ISAM/SAM/PAM files or load module 327
files
END Terminate the PAMCONYV program 335
HALT Same as END 335
MODIFY-BLKCTRL-INDICATOR Set the specified BLKCTRL indicator in the 336
catalog entry of the file. Valid under TSOS
only.
MODIFY-CONVERT-FILE- Change the current default values for the 343
DEFAULTS CONVERT-FILE statement
MODIFY-LOGGING-OPTIONS Change the current logging options 351
SHOW-CONVERT-FILE-DEFAULTS | List the current default values for the 352
CONVERT-FILE statement
SHOW-LOGGING-OPTIONS List the current logging options 354
STOP Same as END 355

Further permissible statements

In addition, the SDF standard statements such as //STEP can be used. They are of general
importance in connection with SDF; for a detailed description see the manual "Introductory
Guide to the SDF Dialog Interface” [13].

Restriction

The nonprivileged user can only access a limited range of functions. The MODIFY-

BLKCTRL-INDICATOR statement is based on system functions and thus may only be
entered by privileged users under the TSOS ID.

U4303-J-2125-4-7600

311

CHANGE-TO-SYSTEM-MODE statement PAMCONV

For BS2000 < V10.0:
The functions initiated by this statement are defined only in the PAMCONYV group syntax
file for TSOS.

For BS2000/0OSD-BC > V1.0:
The MODIFY-BLKCTRL-INDICATOR statement is available only to users with the
TSOS privilege.

If a nonprivileged user enters this statement nonetheless, it is rejected.

7.5.2 Descriptions of the statements

CHANGE-TO-SYSTEM-MODE
Switch to system mode

Function

The CHANGE-TO-SYSTEM-MODE statement causes a switchover to BS2000 system
mode with the subsequent possibility of entering BS2000 commands. Provided PAMCONV
was not unloaded (e.g. by a START-PROGRAM or LOAD-PROGRAM command), the
PAMCONYV run can then be continued via the RESUME-PROGRAM command.

Format

CHANGE-TO-SYSTEM-MODE

Alternatively the SYSTEM or SYS statement can be entered to switch to system mode.
These statements cannot be further abbreviated.

312 U4303-J-Z2125-4-7600

PAMCONV CHECK-BLKCTRL-INDICATOR statement

CHECK-BLKCTRL-INDICATOR
Check file format consistency and BLKCTRL indicator

Function

This statement checks the file format entered in the BLKCTRL indicator of the catalog
against the actual file format. It also informs the user as to whether the file is in K-PAM or
NK-PAM format.

Note

The default values set via the MODIFY-CONVERT-FILE-DEFAULTS statement are not
taken into account here.

Format

CHECK-BLKCTRL-INDICATOR

FROM-FILE = *LINK(...) / *ALL / <partial-filename 2..79 with-wild> / <full-filename 1..54>
*LINK(...)
[0 LINK-NAME = <full-filename 1..8 without-gen>
,SELECT = ALL / BY-ATTRIBUTES(...)
BY-ATTRIBUTES(...)
[l CREATION-DATE = ANY / <date 8..10> / TODAY / YESTERDAY / INTERVAL(...)
INTERVAL(...)
[FROM = 0000-01-01 / <date 8..10> / YESTERDAY
,TO = TODAY / <date 8..10>/ TODAY / YESTERDAY
,LAST-ACCESS-DATE = ANY / <date 8..10>/ TODAY / YESTERDAY / INTERVAL(...)
INTERVAL(...)
L] FROM = 0000-01-01 / <date 8..10> / YESTERDAY

I | A A

,TO = TODAY / <date 8..10>/ TODAY / YESTERDAY

continued O

U4303-J-2125-4-7600 313

CHECK-BLKCTRL-INDICATOR statement PAMCONV

/SIZE = ANY / <integer 0..16777215> / INTERVAL(...)
INTERVAL(...)
[0 FROM =0/ <integer 0..16777215>
,TO = 16777215 / <integer 0..16777215>

I I

,FILE-STRUCTURE = ANY / list-poss(3): SAM / ISAM / PAM
E ,BLKSIZE = ANY / <integer 1..16>

,BLKCTRL = ANY / PAMKEY / NO / DATA / DATA2K / DATA4K

Operands

FROM-FILE = <full-filename 1..54> / *LINK(...) / <partial-filename 2..79 with-wild> /
*ALL
Designates the files to be checked.

FROM-FILE = <full-filename 1..54>
Specifies the fully qualified file name. Specification of a file generation is possible.

FROM-FILE = *LINK(...)
Identifies the files via a link name.

LINK-NAME = <full-filename 1..8 without-gen>
Specifies the link name.

FROM-FILE = <partial-filename 2..79 with-wild>
Specifies the partially qualified file name with wildcard syntax.

FROM-FILE = *ALL
All files of the user ID are to be checked.

SELECT = ALL / BY-ATTRIBUTES(...)
Specifies whether the files to be checked are selected via specific selection criteria in
addition to the partially qualified file name.

SELECT = ALL
No additional selection criteria are set for the source files.

SELECT =BY-ATTRIBUTES(...)
Defines the selection criteria for the files to be checked.

CREATION-DATE = ANY / INTERVAL(...) / <date 8..10> / TODAY / YESTERDAY
Designates the creation date as a selection criterion.

314 U4303-J-Z2125-4-7600

PAMCONV

CHECK-BLKCTRL-INDICATOR statement

CREATION-DATE = ANY
The creation date is not used as a selection criterion. All files are taken into account for
selection.

CREATION-DATE = INTERVAL(...)
Files with a creation date within the specified interval are checked. The interval limits
are defined by the FROM and TO operands.

FROM = 0000-01-01 / YESTERDAY / <date 8..10>
Files with a creation date equal to or later than the specified limit are checked.

FROM = 0000-01-01
The lower limit is the earliest possible date.

FROM =YESTERDAY
The lower limit is yesterday’s date. Files with a creation date > yesterday’s date are
checked.

FROM = <date 8..10>
The lower limit is the specified date. Files with a creation date = the specified value
are checked.

TO =TODAY / YESTERDAY / <date 8..10>
Files with a creation date equal to or earlier than the specified limit are checked.

TO =TODAY
The upper limit is the current date. Files with a creation date < the current date are
checked.

TO = YESTERDAY
The upper limit is yesterday’s date. Files with a creation date < yesterday’s date are
checked.

TO = <date 8..10>
The upper limit is the specified date. Files with a creation date < the specified value
are checked.

LAST-ACCESS-DATE = ANY / INTERVAL(...) / <date 8..10>/ TODAY / YESTERDAY
Designates the date of the last file access as a selection criterion.

For the meaning of ANY, INTERVAL(...), <date 8..10>, TODAY and YESTERDAY see
the CREATION-DATE operand.

SIZE = ANY / <integer 0..16777215>/ INTERVAL(...)
Designates the file size as a selection criterion.

SIZE = ANY
The file size is not used as a selection criterion.

SIZE = <integer 0..16777215>
Files with a size equal to the specified value are checked.

U4303-J-2125-4-7600 315

CHECK-BLKCTRL-INDICATOR statement

PAMCONV

SIZE = INTERVAL(...)

Files with a size within the specified range are checked. The range limits are defined by

the FROM and TO operands.

FROM = 0/ <integer 0..16777215>
Files with a size = the specified limit are checked.

FROM =0
The lower limit is the absolute minimum.

FROM = <integer 0..16777215>
The lower limit is the specified size.

TO = 16777215/ <integer 0..16777215>
Files with a size < the specified limit are checked.

TO = 16777215
The upper limit is the absolute maximum.

TO =<integer 0..16777215>
The upper limit is the specified size.

FILE-STRUCTURE = ANY / list-poss(3): SAM / ISAM / PAM
Designates the access method as selection criterion.

FILE-STRUCTURE = ANY
The access method is not used as selection criterion.

FILE-STRUCTURE = SAM
Files with the SAM access method are checked.

FILE-STRUCTURE = ISAM
Files with the ISAM access method are checked.

FILE-STRUCTURE = PAM
Files with the PAM access method are checked.

BLKSIZE = ANY / <integer 1..16>
Designates the block size as a selection criterion.

BLKSIZE = ANY
The block size is not used as a selection criterion.

BLKSIZE = <integer 1..16>
Files with a block size equal to the specified value are checked.

BLKCTRL = ANY / PAMKEY / NO / DATA / DATA2K / DATA4K
Designates the block control attribute as a selection criterion.

BLKCTRL = ANY
The block control attribute is not used as a selection criterion.

316

U4303-J-2125-4-7600

PAMCONV CHECK-BLKCTRL-INDICATOR statement

BLKCTRL = PAMKEY
Files with the block control attribute PAMKEY are checked.

BLKCTRL =NO
Files with the block control attribute NO are checked.

BLKCTRL = DATA
Files with the block control attribute DATA are checked.

BLKCTRL = DATA2K
Files with the block control attribute DATA2K are checked.

BLKCTRL = DATA4K
Files with the block control attribute DATA4K are checked.

The output destination is determined by the OUTPUT operand of the MODIFY-LOGGING-
OPTIONS statement.

— Output of the results to SYSLST:

A maximum of 132 characters per line is output.

%/ /CHECK-BLKCTRL-INDICATOR FROM-FILE=>from-file<
% CHECK-BLKCTRL-INDICATOR >from—file<
%

% FILENAME ! FOR- ! BLKCTRL-INDICATOR !
% I MAT I IN CATALOG ! SHOULD BE ! COMPARE

%

% :CATID:$USERID.>filename 1<..........ccuiiuuuninun... I>format<! >catalog< ! >should< ! >compare<!
% :CATID:$USERID.>filename 2<..........ccoeeeieennnn. I>format<! >catalog< ! >should< ! >compare<!
% :CATID:$USERID.>filename 3<...........ccceiieian.. I>format<! >catalog< ! >should< ! >compare<!
%

%

% :CATID:$USERID.>filename n<..............ccccooo... I>format<! >catalog< ! >should< ! >compare<!
%

% >n< FILE(S) LISTED

U4303-J-2125-4-7600 317

CHECK-BLKCTRL-INDICATOR statement PAMCONV

— Output of the results to SYSOUT;
A maximum of 80 characters per line is output.

%/ /CHECK-BLKCTRL-INDICATOR FROM-FILE=>from-file<
% CHECK-BLKCTRL-INDICATOR >from—file<

% FILENAME ! FOR- ! BLKCTRL

% I MAT I COMPARE !
%

% :CATID:$USERID.>filename 1<...............ccccvv.......>fOormat<! >compare< !
% :CATID:$USERID.>filename 2<............c.ccceeeee.......>fOormat<! >compare< !
% :CATID:$USERID.>filename 3<..............ccccevv.......I>fOormat<! >compare< !
%

%

% :CATID:$USERID.>filename n<...........................>format<! >compare< !
%

% >n< FILE(S) LISTED

Meanings of the output fields:

>from—-file< |File names specified in the CHECK-BLKCTRL-INDICATOR statement
>filename< | Name of the file checked
>n< Total number of files checked
>format< K ... File has format with PAM key.
NK ... File has format without PAM key
>catalog< Value of BLKCTRL inidcator in catalog entry. Possible values:
*NONE The BLKCTRL indicator from the catalog entry is not available (in
BS2000 < V9.5)
PAMKEY The BLKCTRL indicator from the catalog entry has the value
PAMKEY
DATA The BLKCTRL indicator from the catalog entry has the values DATA.
Possible for PAM, SAM or ISAM in BS2000/0SD-BC < V1.0.
DATA4K The BLKCTRL indicator from the catalog entry has the value
DATA4K. Possible only for ISAM and BS2000/0SD-BC = V1.0.
NO The BLKCTRL indicator in the catalog entry has the value NO.
>should< BLKCTRL indicator value the file ought to have in accordance with the file structure.
Possible values:
PAMKEY The BLKCTRL indicator in the catalog entry should have the value
PAMKEY.
DATA The BLKCTRL indicator from the catalog entra has the value DATA.
Possible for PAM, SAM and ISAM in BS2000/0SD-BC <V1.0.

318 U4303-J-Z2125-4-7600

PAMCONV CHECK-BLKCTRL-INDICATOR statement

>should< DATA4K The BLKCTRL indicator in the catalog entry should have the value
DATA4K. Possible only for ISAM and BS2000/0SD-BC = V1.0.
NO The BLKCTRL indicator in the catalog entry should have the value
NO.

>compare< Value comparsion, possible values:

SAME The BLKCTRL indicator in the catalog entry corresponds to that of
the actual file structure.

DIFFERENT | The BLKCTRL indicator iin the catalog entry does not correspond to
that of the actual file structure.

U4303-J-2125-4-7600 319

CLASSIFY-FILE statement PAMCONV

CLASSIFY-FILE
Classify files by convertibility

Function

On each selected file, information as to its convertibility and any incompatibilities is
requested.

Note

The default values set via the MODIFY-CONVERT-FILE-DEFAULTS statement are not
taken into account here. The results of the CLASSIFY-FILE statement indicate the
convertibility of a source file. For similar information on the target file, see

section “Reblocking” on page 301.

Format

CLASSIFY-FILE

DIRECTION = TO-NONKEY / NONKEY-TO-KEY
,FROM-FILE = *LINK(...) / *ALL / <partial-filename 2..79 with-wild> / <full-filename 1..54>
*LINK(...)
O LINK-NAME = <full-flename 1..8 without-gen>
,SELECT = ALL / BY-ATTRIBUTES(...)
BY-ATTRIBUTES(...)
[0 CREATION-DATE = ANY / <date 8..10> / TODAY / YESTERDAY / INTERVAL(...)
INTERVAL(...)
[0 FROM = 0000-01-01 / <date 8..10> / YESTERDAY
H H ,TO = TODAY / <date 8..10>/ TODAY / YESTERDAY

H LAST-ACCESS-DATE = ANY / <date 8..10> / TODAY / YESTERDAY / INTERVAL(...)
INTERVAL(...)
0 FROM = 0000-01-01 / <date 8..10> / YESTERDAY
H H ,TO = TODAY / <date 8..10> / TODAY / YESTERDAY

continued O

320 U4303-J-Z2125-4-7600

PAMCONV CLASSIFY-FILE statement

,SIZE = ANY / <integer 0..16777215> / INTERVAL(...)
INTERVAL(...)
U FROM=0/ <integer 0..16777215>
,TO = 16777215 / <integer 0..16777215>
,FILE-STRUCTURE = ANY / list-poss(3): SAM / ISAM / PAM
,BLKSIZE = ANY / <integer 1..16>

I | A

,BLKCTRL = ANY / PAMKEY / NO / DATA / DATA2K / DATA4K

Operands

DIRECTION =TO-NONKEY / NONKEY-TO-KEY
Designates the user-defined direction of file conversion. This must be specified here
because it influences the classification type.

DIRECTION =TO-NONKEY
Files are to be converted to NK format.

DIRECTION = NONKEY-TO-KEY
Files are to be converted from NK to K format.

FROM-FILE = <full-filename 1..54> / *LINK(...) /
<partial-name 2..79 with-wild>/ *ALL
Defines the files to be checked.

FROM-FILE = <full-filename 1..54>
Designates the fully qualified file name. Specification of a file generation is possible.

FROM-FILE = *LINK(...)
Identifies the files via a link name.

LINK-NAME = <full-filename 1..8 without-gen>
Specifies the link name.

FROM-FILE = <partial-filename 2..79 with-wild>
Identifies the partially qualified file name with wildcard syntax.

FROM-FILE = *ALL
All files of the user ID are to be checked.

SELECT = ALL / BY-ATTRIBUTES(...)
Specifies whether the files to be classified are selected via specific selection criteria in
addition to the partially qualified file name.

U4303-J-2125-4-7600 321

CLASSIFY-FILE statement PAMCONV

SELECT = ALL
No additional selection criteria are set for the source files.

SELECT = BY-ATTRIBUTES(...)
Defines the selection criteria for the files to be classified.

CREATION-DATE = ANY / INTERVAL(...) / <date 8..10>/ TODAY / YESTERDAY
Designates the creation date as selection criterion.

CREATION-DATE = ANY
The creation date is not used as a selection criterion. All files are taken into account for
selection.

CREATION-DATE = INTERVAL(...)
Files with a creation date within the specified interval are selected. The interval limits
are defined by the FROM and TO operands.

FROM = 0000-01-01 / YESTERDAY / <date 8..10>
Files with a creation date equal to or later than the specified limit are selected.

FROM = 0000-01-01
The lower limit is the earliest possible date.

FROM =YESTERDAY
The lower limit is yesterday’s date. Files with a creation date = yesterday’s date are
selected.

FROM = <date 8..10>
The lower limit is the specified date. Files with a creation date = the specified value
are selected.

TO =TODAY / YESTERDAY / <date 8..10>
Files with a creation date equal to or earlier than the specified limit are selected.

TO =TODAY
The upper limit is the current date. Files with a creation date < the current date are
selected.

TO = YESTERDAY
The upper limit is yesterday’s date. Files with a creation date < yesterday’s date are
selected.

TO = <date 8..10>
The upper limit is the specified date. Files with a creation date < the specified value
are selected.

LAST-ACCESS-DATE = ANY / INTERVAL(...) / <date 8..10>/ TODAY / YESTERDAY
Designates the date of the last file access as a selection criterion.

For the meaning of ANY, INTERVAL(...), <date>, TODAY and YESTERDAY see the
CREATION-DATE operand.

322

U4303-J-2125-4-7600

PAMCONV

CLASSIFY-FILE statement

SIZE = ANY / <integer 0..16777215>/ INTERVAL(...)
Designates the file size as a selection criterion.

SIZE = ANY
The file size is not used as a selection criterion.

SIZE = <integer 0..16777215>
Files with a size equal to the specified value are selected.

SIZE = INTERVAL(...)

Files with a size within the specified range are selected. The range limits are defined by

the FROM and TO operands.

FROM =0/ <integer 0..16777215>
Files with a size = the specified limit are selected.

FROM =0
The lower limit is the absolute minimum.

FROM = <integer 0..16777215>
The lower limit is the specified size.

TO = 16777215/ <integer 0..16777215>
Files with a size < the specified limit are selected.

TO = 16777215
The upper limit is the absolute maximum.

TO =<integer 0..16777215>
The upper limit is the specified size.

FILE-STRUCTURE = ANY / list-poss(3): SAM / ISAM / PAM
Designates the access method as selection criterion.

FILE-STRUCTURE = ANY
The access method is not used as selection criterion.

FILE-STRUCTURE = SAM
Files with the SAM access method are selected.

FILE-STRUCTURE = ISAM
Files with the ISAM access method are selected.

FILE-STRUCTURE = PAM
Files with the PAM access method are selected.

BLKSIZE = ANY / <integer 1..16>
Designates the block size as a selection criterion.

BLKSIZE = ANY
The block size is not used as a selection criterion.

U4303-J-2125-4-7600

323

CLASSIFY-FILE statement PAMCONV

BLKSIZE = <integer 1..16>
Files with a block size equal to the specified value are selected.

BLKCTRL = ANY / PAMKEY / NO / DATA / DATA2K / DATA4K
Designates the block control attribute as a selection criterion.

BLKCTRL = ANY
The block control attribute is not used as a selection criterion.

BLKCTRL = PAMKEY
Files with the block control attribute PAMKEY are selected.

BLKCTRL =NO
Files with the block control attribute NO are selected.

BLKCTRL = DATA
Files with the block control attribute DATA are selected.

BLKCTRL = DATA2K
Files with the block control attribute DATA2K are selected.

BLKCTRL = DATA4K
Files with the block control attribute DATA4K are selected.

The output destination is determined by the OUTPUT operand of the MODIFY-LOGGING-
OPTIONS statement.

The results of the check are output to SYSLST in the following form: (line length up to 132
characters)

%//CLASSTFY-FILE

%
%
%
%

CLASSIFY-FILE

FILENAME

FROM-FILE=>from—file<
>from—file< DIRECTION = >direction<

! PAM- IFCB— !CONVER-! INCOMPATIBILITIES !
! PAGES !TYPE !TIBLE ! !

:CATID:$USERID
:CATID:$USERID
:CATID:$USERID

:CATID:$USERID

>filename 1< .. ! >size< I>fcb<!>yesno<! >reason<
>filename 2< ..o I >sjze< I>fcb<!>yesno<! >reason<
>filename 3< o e ! >size< I>fcb<!>yesno<! >reason<
! ! ! ! !
! ! ! ! !
>filename n< L . ! >size< I>fcb<!>yesno<! >reason<

>n<

FILECS) LISTED

324

U4303-J-2125-4-7600

PAMCONV

CLASSIFY-FILE statement

The results of the check are output to SYSOUT in the following form: (line length up to 80

characters)

3R 3R 3R R X X

//CLASSIFY—
CLASSIFY-FILE

FILE FROM-FILE=>from—file<

>from—file< DIRECTION = >direction<

3R 3R 3R 3R 3 X X

FILENAME ! CONVER- !

! TIBLE !
:CATID:$USERID.>filename 1<ttt et iieeeennn I >yesno< !
:CATID:$USERID.>filename 2< ...ttt ettt et e e e e ieeeee I >yesno< !
:CATID:$USERID.>filename 3< ...ttt e i it I >yesno< !
:CATID:$USERID.>filename N< ... iiiin et eeenn I >yesno< !

IS

>n<

FILE(S) LISTED

Meanings of the output fields:

>from-file<

File names specified in the CLASSIFY-FILE statement

>direction<

Conversion direction specified in the CLASSIFY-FILE statement

>filename<

Name of the file checked

>size< Size of the file checked
>fch< FCB type of the file checked
>n< Total number of files checked
>yesno< File convertibility information. Possible values:
YES File is convertible
NO File is not convertible
NK2 File is only convertible on NK2 pubsets with standard blksize (PLAM
libraries).
NK4 ... |Fileis only convertible on NK2 pubsets (e.g. SAM files with
BLKSIZE=RECSIZE and standard blksize).
>reason< Reason for incompatibility. Possible values:

NONE

No incompatibilities, file is convertible

RECSIZE

EXCEEDS MAXIMUM

The record length exceeds the maximum value determined by
BLKSIZE. The file can be converted by increasing the blocking factor.

RECSIZE

EXCEEDS MAX(NK2)

The record length would exceed the maximum value determined by
BLKSIZE on NK2 pubsets. It is possible to convert to NK4 pubsets.

U4303-J-2125-4-7600

325

CLASSIFY-FILE statement

PAMCONV

>reason<

PLAM(NK4) NO CONVERT
PLAM libraries with BLKSIZE > 2 are not converted with PAMCONV.

FILE ALREADY IN KEY—-FORMAT
Since the file is already in K format, it cannot be converted into K format.

FILESIZE INCREASES

The formation of overflow blocks increases the size of the target file, the
file is convertible.

KEYPOS IN OVERFLOW-BLOCK

The ISAM key would have to be stored in an overflow block. The file can
be converted by increasing the blocking factor.

LMR-LIBRARY
File is an LMR library, i.e. it is not convertible.

PAMKEY IS USED

The file makes use of the user part of the PAM key, file is not convertible

PAMKEY CONTAINS SPECIAL FLAG

The file contains X'01' or X'80' only in byte 1 of the user part of the PAM
key, file is convertible

326

U4303-J-2125-4-7600

PAMCONV

CONVERT-FILE statement

CONVERT-FILE
Convert files

Function

This statement serves to convert files from a format in which the PAM key is used for data
representation into a format in which the PAM key is not used, or vice versa.

As of PAMCONV V11.0A, the CONVERT-FILE statement is also used for reblocking (see
section “Reblocking” on page 301).

The CONVERT-FILE statement now offers three options:

— Conversion: changes the file format, i.e. converts a file from K format to NK format or
vice versa.

— Reblocking: changes the logical block size without changing the file format.
— Conversion and reblocking

The default values for the CONVERT-FILE statement are set using the MODIFY-CONVERT-
FILE-DEFAULTS statement.

The default values indicated by underscoring take effect only if no other values have been
specified.

Format

CONVERT-FILE

DIRECTION = TO-NONKEY / NONKEY-TO-KEY
,FROM-FILE = <full-filename 1..54> / *LINK(...) / <partial-filename 2..79 with-wild> / *ALL
*LINK(...)
O LINK-NAME = <full-flename 1..8 without-gen>

continued O

U4303-J-2125-4-7600 327

CONVERT-FILE statement PAMCONV

,SELECT = ALL / BY-ATTRIBUTES(...)
BY-ATTRIBUTES(...)
0 CREATION-DATE = ANY / <date 8..10> / TODAY / YESTERDAY / INTERVAL...)
INTERVAL(...)
0 FROM = 0000-01-01 / <date 8..10> / YESTERDAY
,TO = TODAY / <date 8..10> / TODAY / YESTERDAY

,LAST-ACCESS-DATE = ANY / <date 8..10>/ TODAY / YESTERDAY / INTERVAL(...)
INTERVAL(...)
[l FROM =0000-01-01 / <date 8..10> / YESTERDAY
,TO =TODAY / <date 8..10>/ TODAY / YESTERDAY
,SIZE = ANY / <integer 0..16777215> / INTERVAL(...)
INTERVAL(...)
0 FROM =0/ <integer 0..16777215>
,TO = 16777215/ <integer 0..16777215>
,FILE-STRUCTURE = ANY / list-poss(3): SAM / ISAM / PAM
,BLKSIZE = ANY / <integer 1..16>

e o o

,BLKCTRL = ANY / PAMKEY / NO / DATA / DATA2K / DATA4K
,TO-FILE = <full-flename 1..54> / *LINK(...) / <partial-flename 2..79 with-wild>
*LINK(...)
[l LINK-NAME = <full-filename 1..8 without-gen>
,TO-FILE-BLKSIZE = STD / NK4 / <integer 1..16>
,TO-FILE-BLKCTRL = STD / NK4
,REPLACE-OLD-FILES = NO / YES / DIALOG
,FILE-DISPOSAL = KEEP / REPLACE / INPLACE / RENAME
,PROTECTION = STD / SAME

continued O

328

U4303-J-2125-4-7600

PAMCONV CONVERT-FILE statement

,DEVICE-FOR-TEMPFILE = NONE / TAPE(...) / DISK(...)
TAPE(..)
[] VOLUME = list-poss(100): <alphanum-name 1..6>
,DEVICE-TYPE = <text 1..20>
DISK(...)
0 VOLUME = list-poss(100): <alphanum-name 1..6>
H ,DEVICE-TYPE = <text 1..20>

Operands

DIRECTION =TO-NONKEY / NONKEY-TO-KEY
Designates the direction in which file conversion is to take place.

DIRECTION =TO-NONKEY
The file is to be converted into NK format. The source file may be in K format or NK format.

DIRECTION = NONKEY-TO-KEY
File conversion is to be from NK to K format.

FROM-FILE = <full-filename 1..54> / *LINK(...) /
<partial-filename 2..79 with-wild> / *ALL
Identifies the files to be converted.

FROM-FILE = <full-filename 1..54>
Designates the file to be converted. Specification of a file generation is possible.

FROM-FILE = *LINK(...)
The file to be converted was specified by a previous ADD-FILE-LINK command; the link
name given there must be identical to the one specified here.

LINK-NAME = <full-filename 1..8 without-gen>
Specifies the link name.

FROM-FILE = <partial-filename 2..79 with-wild>
Means that all files corresponding to the specified wildcard syntax and to any additional
selection criteria are to be converted.

FROM-FILE = *ALL
Means that all files corresponding to the specified selection criteria are to be converted.

SELECT = ALL / BY-ATTRIBUTES(...)
Defines whether the files to be converted are to be selected via specific criteria in addition
to the partially qualified file name.

U4303-J-2125-4-7600 329

CONVERT-FILE statement PAMCONV

SELECT = ALL
No additional selection criteria are specified for the source files.

SELECT = BY-ATTRIBUTES(...)
Defines the selection criteria for the files to be converted.

CREATION-DATE = ANY / INTERVAL(...) / <date 8..10>/ TODAY / YESTERDAY
Designates the creation date as a selection criterion.

CREATION-DATE = ANY
The creation date is not used as a selection criterion. All files are taken into account for
selection.

CREATION-DATE = INTERVAL(...)
Files with a creation date within the specified interval are selected. The interval limits
are defined by the FROM and TO operands.

FROM = 0000-01-01 / YESTERDAY / <date 8..10>
Files with a creation date equal to or later than the specified limit are selected.

FROM = 0000-01-01
The lower limit is the earliest possible date.

FROM =YESTERDAY
The lower limit is yesterday’s date. Files with a creation date = yesterday’s date are
selected.

FROM = <date 8..10>
The lower limit is the specified date. Files with a creation date = the specified value
are selected.

TO =TODAY / YESTERDAY / <date 8..10>
Files with a creation date equal to or earlier than the specified limit are selected.

TO =TODAY
The upper limit is the current date. Files with a creation date < the current date are
selected.

TO = YESTERDAY
The upper limit is yesterday’s date. Files with a creation date < yesterday’s date are
selected.

TO = <date 8..10>
The upper limit is the specified date. Files with a creation date < the specified value
are selected.

LAST-ACCESS-DATE = ANY / INTERVAL(...) / <date 8..10>/ TODAY / YESTERDAY
Designates the date of the last file access as a selection criterion.

For the meaning of ANY, INTERVAL(...), <date 8...10>, TODAY and YESTERDAY see
the CREATION-DATE operand.

330

U4303-J-2125-4-7600

PAMCONV

CONVERT-FILE statement

SIZE = ANY / <integer 0..16777215>/ INTERVAL(...)
Designates the file size as a selection criterion.

SIZE = ANY
The file size is not used as a selection criterion.

SIZE = <integer 0..16777215>
Files with a size equal to the specified value are selected.

SIZE = INTERVAL(...)

Files with a size within the specified range are selected. The range limits are defined by

the FROM and TO operands.

FROM =0/ <integer 0..16777215>
Files with a size = the specified limit are selected.

FROM =0
The lower limit is the absolute minimum.

FROM = <integer 0..16777215>
The lower limit is the specified size.

TO = 16777215/ <integer 0..16777215>
Files with a size < the specified limit are selected.

TO = 16777215
The upper limit is the absolute maximum.

TO =<integer 0..16777215>
The upper limit is the specified size.

FILE-STRUCTURE = ANY / list-poss(3): SAM / ISAM / PAM
Designates the access method as a selection criterion.

FILE-STRUCTURE = ANY
The access method is not used as a selection criterion.

FILE-STRUCTURE = SAM
Files with the SAM access method are selected.

FILE-STRUCTURE = ISAM
Files with the ISAM access method are selected.

FILE-STRUCTURE = PAM
Files with the PAM access method are selected.

BLKSIZE = ANY / <integer 1..16>
Designates the block size as a selection criterion.

BLKSIZE = ANY
The block size is not used as a selection criterion.

U4303-J-2125-4-7600

331

CONVERT-FILE statement PAMCONV

BLKSIZE = <integer 1..16>
Files with a block size equal to the specified value are selected.

BLKCTRL = ANY / PAMKEY / NO / DATA / DATA2K / DATA4K
Designates the block control attribute as a selection criterion.

BLKCTRL = ANY
The block control attribute is not used as a selection criterion.

BLKCTRL = PAMKEY
Files with the block control attribute PAMKEY are selected.

BLKCTRL =NO
Files with the block control attribute NO are selected.

BLKCTRL = DATA
Files with the block control attribute DATA are selected.

BLKCTRL = DATA2K
Files with the block control attribute DATA2K are selected.

BLKCTRL = DATA4K
Files with the block control attribute DATA4K are selected.

TO-FILE = <full-filename 1..54> / *LINK(...) / <partial-filename 2..79 with-wild>
Identifies the files to be created by conversion.

TO-FILE = <full-filename 1..54>
Designates the file to be created by conversion. Specification of a file generation is possible.

TO-FILE = *LINK(...)
The file to be created was specified by a previous ADD-FILE-LINK command; the link name
given there must be identical to the one specified here.

LINK-NAME = <full-filename 1..8 without-gen>
Specifies the link name.

TO-FILE = <partial-filename 2..79 with-wild>
Specifies the files to be created by conversion in the form of a partial qualification with
wildcard syntax.

TO-FILE-BLKSIZE = STD / NK4 / <integer 1..16>
Specifies the logical block size of the target file.

TO-FILE-BLKSIZE = STD

The logical block size of the target file is not defined by the user. PAMCONYV uses the values
defined for the target pubset and, if necessary, increases the blocking factor. The blocking
factor is increased internally by a maximum of 1.

332

U4303-J-2125-4-7600

PAMCONV CONVERT-FILE statement

TO-FILE-BLKSIZE = NK4

The logical block size of the target file is controlled in such a way that it is always even, i.e.
the target file can be stored on an NK4 pubset. The blocking factor is increased internally
by a maximum of 1.

TO-FILE-BLKSIZE = <integer 1..16>

The target file is generated with a block size equal to the specified value, provided that this
specification is compatible with the other conditions governing reblocking (see

section “Reblocking” on page 301).

TO-FILE-BLKCTRL = STD / NK4
Specifies the block control indicator of the target file. This operand is relevant only for the
conversion direction TO-NONKEY and for ISAM files.

TO-FILE-BLKCTRL = STD
The block control indicator is set in accordance with the target pubset. The DATA2K data
format is defined for NK2 and NK2(8K,64K) pubsets, and DATA4K for NK4 pubsets.

TO-FILE-BLKCTRL = NK4
The block control indicator is assigned the value DATA4K.

REPLACE-OLD-FILES = NO/YES / DIALOGUE
Indicates whether any files existing under this name are to be overwritten.

REPLACE-OLD-FILES = NO
Existing files must not be overwritten; file conversion is aborted in this case.

REPLACE-OLD-FILES =YES
Existing files are overwritten unless additional protection (password, ACCESS=READ) has
been provided.

REPLACE-OLD-FILES = DIALOGUE
The system issues a query as to the desired procedure for existing files with the same
name. Possible in interactive mode only.

FILE-DISPOSAL = KEEP / RENAME / REPLACE / INPLACE
Determines what happens to the file after conversion.

FILE-DISPOSAL = KEEP
The target files are to be created with the names specified for them in the conversion
statement. The target files exist in addition to the source files.

FILE-DISPOSAL = RENAME
The target files are to be created with the names specified for them in the conversion
statement. After successful conversion, the source files are to be deleted.

U4303-J-2125-4-7600 333

CONVERT-FILE statement PAMCONV

FILE-DISPOSAL = REPLACE

The target files are to be created with the names specified for them in the conversion
statement. After successful conversion, the source files are to be deleted and the target files
are to receive the names of the source files, i.e. in effect the source file is replaced by the
target file.

FILE-DISPOSAL = INPLACE

The target files are to be created with the names specified for them in the conversion
statement. After successful conversion, an attempt is to be made to overwrite the source
file with the target file and to assign the source file name to the target file. As a result, the
target file will occupy roughly the same physical space as the source file. In effect, the
source file is replaced by the target file.

PROTECTION = STD / SAME
Specifies whether the file protection attributes of the source file are to be transferred to the
target file.

PROTECTION = STD
The file protection attributes are not transferred. Conversion is executed as in BS2000
versions < V10.0.

PROTECTION = SAME
The file protection attributes are transferred to the target file. For more details see "Transfer
of file protection attributes after conversion" on page 307.

DEVICE-FOR-TEMPFILE = NONE / TAPE(...) / DISK(...)
Designates the storage medium which is to accommodate the intermediate (temporary) file
created.

DEVICE-FOR-TEMPFILE = NONE
No intermediate file is to be stored on a private volume.

DEVICE-FOR-TEMPFILE =TAPE(...)
The intermediate file is to be stored on magnetic tape.

VOLUME = list-poss(100): <alphanum-name 1..6>
Designates the VSN(s) of the tape(s) to be used as storage medium.

DEVICE-TYPE = <text 1..20>
Designates the device type to be used.

DEVICE-FOR-TEMPFILE = DISK(...)
The intermediate file is to be stored on private disk.

VOLUME = list-poss(100): <alphanum-name 1..6>
Designates the VSN(s) of the private disk(s) to be used as storage medium.

DEVICE-TYPE = <text 1..20>
Designates the device type to be used.

334

U4303-J-2125-4-7600

PAMCONV END/HALT statements

END
Terminate PAMCONYV

Function

The END statement terminates the PAMCONYV program.

Format

END

The END statement has no operands.

HALT
Terminate PAMCONYV

Function

The HALT statement terminates the PAMCONYV program. It is a synonym of the END
statement but cannot be abbreviated and does not appear in the menu screen of available
PAMCONYV statements.

Format

HALT

The HALT statement has no operands.

U4303-J-2125-4-7600 335

MODIFY-BLKCTRL-INDICATOR statement PAMCONV

MODIFY-BLKCTRL-INDICATOR
Change value in BLKCTRL indicator of catalog entry for file

Function

This statement is available to privileged (TSOS) users only.

The value entered by the system in the catalog entry of the specified files is replaced by the
value specified by system administration for the file format in the BLKCTRL indicator field.

The actual file format is not checked.

System administration is responsible for preventing inconsistencies resulting from invalid
specifications.

Note

The default values set via the MODIFY-CONVERT-FILE-DEFAULTS statement are not
taken into account here.

Format

MODIFY-BLKCTRL-INDICATOR

FROM-FILE = *LINK(...) / *ALL / <partial-filename 2..79 with-wild> / <full-filename 1..54>
*LINK(...)
[0 LINK-NAME = <full-filename 1..8 without-gen>
,SELECT = ALL / BY-ATTRIBUTES(...)
BY-ATTRIBUTES(...)
[l CREATION-DATE = ANY / <date 8..10> / TODAY / YESTERDAY / INTERVAL(...)
INTERVAL(...)
H [0 FROM = 0000-01-01 / <date 8..10> / YESTERDAY
H ,TO = TODAY / <date 8..10>/ TODAY / YESTERDAY

continued O

336 U4303-J-Z2125-4-7600

PAMCONV MODIFY-BLKCTRL-INDICATOR statement

LAST-ACCESS-DATE = ANY / <date 8..10> / TODAY / YESTERDAY / INTERVAL...)
INTERVAL(...)
0 FROM = 0000-01-01 / <date 8..10> / YESTERDAY
,TO = TODAY / <date 8..10> / TODAY / YESTERDAY

,SIZE = ANY / <integer 0..16777215> / INTERVAL(...)
INTERVAL(...)
O FROM =0/ <integer 0..16777215>
,TO = 16777215 / <integer 0..16777215>
,FILE-STRUCTURE = ANY / list-poss(3): SAM / ISAM / PAM
,BLKSIZE = ANY / <integer 1..16>

N I A

,BLKCTRL = ANY / PAMKEY / NO / DATA / DATA2K / DATA4K
,BLKCTRL-INDICATOR = PAMKEY / NO / DATA / DATA4K

Operands

FROM-FILE = <full-filename 1..54> / *LINK(...) /
<partial-filename 2..79 with-wild> / *ALL
Designates the files whose catalog entry is to be modified.

FROM-FILE = <full-filename 1..54>
Specifies the fully qualified file name. Specification of a file generation is possible.

FROM-FILE = *LINK(...)
Identifies the files via a link name.

LINK-NAME = <full-filename 1..8 without-gen>
Specifies the link name.

FROM-FILE = <partial-filename 2..79 with-wild>
Designates the partially qualified file name with wildcard syntax.

FROM-FILE = *ALL
The catalog entries of all files of the user ID are to be changed.

SELECT = ALL / BY-ATTRIBUTES(...)
Specifies whether the files whose catalog entry is to be changed are selected via specific
selection criteria in addition to the partially qualified file name.

SELECT = ALL
No additional selection criteria are set for the source files.

U4303-J-2125-4-7600 337

MODIFY-BLKCTRL-INDICATOR statement PAMCONV

SELECT = BY-ATTRIBUTES(...)
Determines the selection criteria for the files whose catalog entry is to be changed.

CREATION-DATE = ANY / INTERVAL(...) / <date 8..10>/ TODAY / YESTERDAY
Designates the creation date as selection criterion.

CREATION-DATE = ANY
The creation date is not used as selection criterion. All files are taken into account for
selection.

CREATION-DATE = INTERVAL(...)
Files with a creation date within the specified interval are selected. The interval limits
are defined by the FROM and TO operands.

FROM = 0000-01-01 / YESTERDAY / <date 8..10>
Files with a creation date equal to or later than the specified limit are selected.

FROM = 0000-01-01
The lower limit is the earliest possible date.

FROM =YESTERDAY
The lower limit is yesterday’s date. Files with a creation date = yesterday’s date are
selected.

FROM = <date 8..10>
The lower limit is the specified date. Files with a creation date = the specified value
are selected.

TO =TODAY / YESTERDAY / <date 8..10>
Files with a creation date equal to or earlier than the specified limit are selected.

TO =TODAY
The upper limit is the current date. Files with a creation date < the current date are
selected.

TO = YESTERDAY
The upper limit is yesterday’s date. Files with a creation date < yesterday’s date are
selected.

TO = <date 8..10>
The upper limit is the specified date. Files with a creation date < the specified value
are selected.

LAST-ACCESS-DATE = ANY / INTERVAL(...) / <date 8..10>/ TODAY / YESTERDAY
Designates the date of the last file access as selection criterion.

For the meaning of ANY, INTERVAL(...), <date 8...10>, TODAY and YESTERDAY see
the CREATION-DATE operand.

SIZE = ANY / <integer 0..16777215>/ INTERVAL(...)
Designates the file size as a selection criterion.

338

U4303-J-2125-4-7600

PAMCONV

MODIFY-BLKCTRL-INDICATOR statement

SIZE = ANY
The file size is not used as a selection criterion.

SIZE = <integer 0..16777215>
Files with a size equal to the specified value are selected.

SIZE = INTERVAL(...)
Files with a size within the specified range are selected. The range limits are defined by
the FROM and TO operands.

FROM =0/ <integer 0..16777215>
Files with a size = the specified limit are selected.

FROM =0
The lower limit is the absolute minimum.

FROM = <integer 0..16777215>
The lower limit is the specified size.

TO = 16777215/ <integer 0..16777215>
Files with a size < the specified limit are selected.

TO = 16777215
The upper limit is the absolute maximum.

TO =<integer 0..16777215>
The upper limit is the specified size.

FILE-STRUCTURE = ANY / list-poss(3): SAM / ISAM / PAM
Designates the access method as a selection criterion.

FILE-STRUCTURE = ANY
The access method is not used as a selection criterion.

FILE-STRUCTURE = SAM
Files with the SAM access method are selected.

FILE-STRUCTURE = ISAM
Files with the ISAM access method are selected.

FILE-STRUCTURE = PAM
Files with the PAM access method are selected.

BLKSIZE = ANY / <integer 1..16>
Designates the block size as a selection criterion.

BLKSIZE = ANY
The block size is not used as a selection criterion.

BLKSIZE = <integer 1..16>
Files with a block size equal to the specified value are selected.

U4303-J-2125-4-7600 339

MODIFY-BLKCTRL-INDICATOR statement PAMCONV

BLKCTRL = ANY / PAMKEY / NO / DATA / DATA2K / DATA4K
Designates the block control attribute as a selection criterion.

BLKCTRL = ANY
The block control attribute is not used as a selection criterion.

BLKCTRL = PAMKEY
Files with the block control attribute PAMKEY are selected.

BLKCTRL =NO
Files with the block control attribute NO are selected.

BLKCTRL = DATA
Files with the block control attribute DATA are selected.

BLKCTRL = DATA2K
Files with the block control attribute DATA2K are selected.

BLKCTRL = DATA4K
Files with the block control attribute DATA4K are selected.

BLKCTRL-INDICATOR = PAMKEY / DATA / DATA4K / NO
Identifies the value of the BLKCTRL indicator which is to be entered in the catalog entry.

BLKCTRL-INDICATOR = PAMKEY
The BLKCTRL indicator is to have the value PAMKEY.

BLKCTRL-INDICATOR = DATA
The BLKCTRL indicator is to have the value DATA.

BLKCTRL-INDICATOR = DATA4K
The BLKCTRL indicator is to have the value DATA4K (for ISAM files only).

BLKCTRL-INDICATOR = NO
The BLKCTRL indicator is to have the value NO.

The files whose catalog entry was modified are listed.

The output destination is determined by the OUTPUT operand of the MODIFY-LOGGING-
OPTIONS statement.

340 U4303-J-Z2125-4-7600

PAMCONV MODIFY-BLKCTRL-INDICATOR statement

The results are output via
— SYSLST: (line length up to 132 characters)

% MODIFY-BLKCTRL-INDICATOR >from-file<

% FILENAME ! BLKCTRL!MODIFIED !
% I FROM I T0 !
%

% >filename 1< I >o0ld< | >new< !
% >filename 2< I >0ld< | >new< !
% ! ! !
% >filename n< I >o0ld< | >new< !
%

% >n< FILES LISTED

— SYSOUT: (line length up to 80 characters)

% MODIFY-BLKCTRL-INDICATOR >from-file<

% FILENAME ! BLKCTRL!MODIFIED !
% I FROM I T0 !
%

% >filename 1< I >0ld< | >new< !
% >filename 2< I >0ld< | >new< !
% ! ! !
% >filename n< I >o0ld< | >new< !
%

% >n< FILES LISTED

Meanings of the output fields:

from—file< [ile names given in the MODIFY-BLKCTRL-INDICATOR statement
>filename< [Name of the modified file
Pn< [Total number of files modified
old< Value of the BLKCTRL indicator as stored in the catalog entry, possible values:
PAMKEY The BLKCTRL indicator from the catalog entry has the value PAMKEY
DATA The BLKCTRL iindicator from the catalog has the value DATA
DATA4K The BLKCTRL indicator from the catalog entry has the value DATA4K
(for ISAM files only)
NO The BLKCTRL indicator from the catalog entry has the value NO
new< Value of the BLKCTRL indicator as updated in the catalog entry of the file, possible
values:
see >0ld<

U4303-J-2125-4-7600 341

MODIFY-BLKCTRL-INDICATOR statement PAMCONV

When changing the BLKCTRL indicator on private disks (SPD), error messages with the
following return codes may occur.

Sub-return code:

04 Device allocation failed (no device available).
Notify operator.

08 Volume allocation failed (volume not available).
Notify operator.

Main return code:

333 File name does not exist.

342 U4303-J-Z2125-4-7600

PAMCONV MODIFY-CONVERT-FILE-DEFAULTS statement

MODIFY-CONVERT-FILE-DEFAULTS
Set default values for CONVERT-FILE statement

Function

This statement sets the default values for the CONVERT-FILE statement. The specified
defaults then apply to the current program run until the next MODIFY-CONVERT-FILE-
DEFAULTS statement is issued.

If the statement is entered without operands, the existing default values remain valid.

The currently applicable values may be queried using the SHOW-CONVERT-FILE-
DEFAULTS statement.

Note

The default values set here apply only to the CONVERT-FILE statement.
The CLASSIFY-FILE, CHECK-BLKCTRL-INDICATOR and MODIFY-BLKCTRL-
INDICATOR statements are not influenced by this statement.

Format

MODIFY-CONVERT-FILE-DEFAULTS

DIRECTION = UNCHANGED / TO-NONKEY / NONKEY-TO-KEY
,SELECT = UNCHANGED / ALL / BY-ATTRIBUTES(...)
BY-ATTRIBUTES(...)
0 CREATION-DATE = ANY / <date 8..10> / TODAY / YESTERDAY / INTERVAL(...)
INTERVAL(...)
H 0 FROM =0000-01-01 / <date 8..10> / YESTERDAY
H ,TO = TODAY / <date 8..10> / TODAY / YESTERDAY

continued O

U4303-J-2125-4-7600 343

MODIFY-CONVERT-FILE-DEFAULTS statement PAMCONV

LAST-ACCESS-DATE = ANY / <date 8..10> / TODAY / YESTERDAY / INTERVAL...)
INTERVAL(...)
0 FROM = 0000-01-01 / <date 8..10> / YESTERDAY
,TO = TODAY / <date 8..10> / TODAY / YESTERDAY

,SIZE = ANY / <integer 0..16777215> / INTERVAL(...)
INTERVAL(...)
O FROM =0/ <integer 0..16777215>
H ,TO = 16777215 / <integer 0..16777215>
,FILE-STRUCTURE = ANY / list-poss(3): SAM / ISAM / PAM
,BLKSIZE = ANY / <integer 1..16>

N I A

,BLKCTRL = ANY / PAMKEY / NO / DATA / DATA2K / DATA4K
,TO-FILE-BLKSIZE = UNCHANGED / STD / NK4 / <integer 1..16>
,TO-FILE-BLKCTRL = UNCHANGED / STD / NK4
,REPLACE-OLD-FILES = UNCHANGED / NO / YES / DIALOG
,FILE-DISPOSAL = UNCHANGED / KEEP / REPLACE / INPLACE / RENAME
,PROTECTION = UNCHANGED / STD / SAME
,DEVICE-FOR-TEMPFILE = UNCHANGED / NONE / TAPE(...) / DISK(...)
TAPE(...)
0 VOLUME = list-poss(100): <alphanum-name 1..6>
H ,DEVICE-TYPE = <text 1..20>
DISK(...)
[0 VOLUME = list-poss(100): <alphanum-name 1..6>
,DEVICE-TYPE = <text 1..20>

Operands

DIRECTION = UNCHANGED / TO-NONKEY / NONKEY-TO-KEY
Designates the desired default value for the direction of file conversion.

DIRECTION = UNCHANGED
The current default value for DIRECTION is not changed.

DIRECTION =TO-NONKEY
This file is to be converted into NK format.

344

U4303-J-2125-4-7600

PAMCONV

MODIFY-CONVERT-FILE-DEFAULTS statement

DIRECTION = NONKEY-TO-KEY
This file is to be converted from NK to K format.

SELECT = UNCHANGED / ALL / BY-ATTRIBUTES(...)
Specifies whether the files to be converted are selected via specific selection criteria in
addition to the partially qualified file name.

SELECT = UNCHANGED
The current default value for SELECT is not changed.

SELECT = ALL
No selection criteria are set for the source files.

SELECT = BY-ATTRIBUTES(...)
Defines the selection criteria for the files to be converted and which are to apply as default
values for the CONVERT-FILE statement.

CREATION-DATE = ANY / INTERVAL(...) / <date 8..10>/ TODAY / YESTERDAY
Designates the creation date as a selection criterion.

CREATION-DATE = ANY
The creation date is not used as a selection criterion. All files are taken into account for
selection.

CREATION-DATE = INTERVAL(...)
Files with a creation date within the specified interval are selected. The interval limits
are defined by the FROM and TO operands.

FROM = 0000-01-01 / YESTERDAY / <date 8..10>
Files with a creation date equal to or later than the specified limit are selected.

FROM = 0000-01-01
The lower limit is the earliest possible date.

FROM =YESTERDAY
The lower limit is yesterday’s date. Files with a creation date = yesterday’s date are
selected.

FROM = <date 8..10>
The lower limit is the specified date. Files with a creation date = the specified value
are selected.

TO =TODAY / YESTERDAY / <date 8..10>
Files with a creation date equal to or earlier than the specified limit are selected.

TO =TODAY
The upper limit is the current date. Files with a creation date < the current date are
selected.

U4303-J-2125-4-7600 345

MODIFY-CONVERT-FILE-DEFAULTS statement

PAMCONV

TO =YESTERDAY

The upper limit is yesterday’s date. Files with a creation date < yesterday’s date are

selected.
TO = <date 8..10>

The upper limit is the specified date. Files with a creation date < the specified value

are selected.

LAST-ACCESS-DATE = ANY / INTERVAL(...) / <date 8..10> / TODAY / YESTERDAY

Designates the date of the last file access as a selection criterion.

For the meaning of ANY, INTERVAL(...), <date 8...10>, TODAY and YESTERDAY see

the CREATION-DATE operand.

SIZE = ANY / <integer 0..16777215>/ INTERVAL(...)
Designates the file size as a selection criterion.

SIZE = ANY
The file size is not used as a selection criterion.

SIZE = <integer 0..16777215>
Files with a size equal to the specified value are selected.

SIZE = INTERVAL(...)

Files with a size within the specified range are selected. The range limits are defined by

the FROM and TO operands.

FROM =0/ <integer 0..16777215>
Files with a size = the specified limit are selected.

FROM =0
The lower limit is the absolute minimum.

FROM = <integer 0..16777215>
The lower limit is the specified size.

TO = 16777215/ <integer 0..16777215>
Files with a size < the specified limit are selected.

TO = 16777215
The upper limit is the absolute maximum.

TO =<integer 0..16777215>
The upper limit is the specified size.

FILE-STRUCTURE = ANY / list-poss(3): SAM / ISAM / PAM

Designates the access method as a selection criterion.

FILE-STRUCTURE = ANY
The access method is not used as a selection criterion.

346

U4303-J-2125-4-7600

PAMCONV

MODIFY-CONVERT-FILE-DEFAULTS statement

FILE-STRUCTURE = SAM
Files with the SAM access method are selected.

FILE-STRUCTURE = ISAM
Files with the ISAM access method are selected.

FILE-STRUCTURE = PAM
Files with the PAM access method are selected.

BLKSIZE = ANY / <integer 1..16>
Designates the block size as a selection criterion.

BLKSIZE = ANY
The block size is not used as a selection criterion.

BLKSIZE = <integer 1..16>
Files with a block size equal to the specified value are selected.

BLKCTRL = ANY / PAMKEY / NO / DATA / DATA2K / DATA4K
Designates the block control attribute as a selection criterion.

BLKCTRL = ANY
The block control attribute is not used as a selection criterion.

BLKCTRL = PAMKEY
Files with the block control attribute PAMKEY are selected.

BLKCTRL =NO
Files with the block control attribute NO are selected.

BLKCTRL = DATA
Files with the block control attribute DATA are selected.

BLKCTRL = DATA2K
Files with the block control attribute DATA2K are selected.

BLKCTRL = DATA4K
Files with the block control attribute DATA4K are selected.

TO-FILE-BLKSIZE = UNCHANGED / STD / NK4 / <integer 1..16>
Specifies the logical block size of the target file.

TO-FILE-BLKSIZE = UNCHANGED
The default value currently valid for BLKSIZE-TO-FILE is to remain unchanged.

TO-FILE-BLKSIZE = STD

The logical block size of the target file is not defined by the user. PAMCONYV uses the values
defined for the target pubset and, if necessary, increases the blocking factor. The blocking
factor is increased internally by a maximum of 1.

U4303-J-2125-4-7600 347

MODIFY-CONVERT-FILE-DEFAULTS statement PAMCONV

TO-FILE-BLKSIZE = NK4

The logical block size of the target file is controlled in such a way that it is always even, i.e.
the target file can be stored on an NK4 pubset. The blocking factor is increased internally
by a maximum of 1.

TO-FILE-BLKSIZE = <integer 1..16>

The target file is generated with a block size equal to the specified value, provided that this
specification is compatible with the other conditions governing reblocking (see

section “Reblocking” on page 301).

TO-FILE-BLKCTRL = UNCHANGED / STD / NK4
Specifies the block control indicator of the target file. This operand is relevant only for the
conversion direction TO-NONKEY and for ISAM files.

TO-FILE-BLKCTRL = UNCHANGED
The default value currently valid for TO-FILE-BLKCTRL is to remain unchanged.

TO-FILE-BLKCTRL = STD
The block control indicator is set in accordance with the target pubset. The DATA2K data
format is defined for NK2 and NK2(8K,64K) pubsets, and DATA4K for NK4 pubsets.

TO-FILE-BLKCTRL = NK4
The block control indicator is assigned the value DATA4K.

REPLACE-OLD-FILES = UNCHANGED / NO /YES / DIALOGUE
Indicates whether any files existing under this name are to be overwritten.

REPLACE-OLD-FILES = UNCHANGED
The current default value for REPLACE-OLD-FILES is not changed.

REPLACE-OLD-FILES = NO
Existing files must not be overwritten; file conversion is to be aborted in this case (default
value).

REPLACE-OLD-FILES =YES
Existing files are overwritten unless additional protection (password, ACCESS=READ) has
been provided.

REPLACE-OLD-FILES = DIALOGUE
The system issues a query as to the desired procedure for existing files with the same
name. Possible in interactive mode only.

FILE-DISPOSAL = UNCHANGED / KEEP / RENAME / REPLACE / INPLACE
Determines what happens to the file after conversion.

FILE-DISPOSAL = UNCHANGED
The current default value for FILE-DISPOSAL is not changed.

348

U4303-J-2125-4-7600

PAMCONV MODIFY-CONVERT-FILE-DEFAULTS statement

FILE-DISPOSAL = KEEP
The target files are to be created with the names specified for them in the conversion
statement. The target files exist in addition to the source files.

FILE-DISPOSAL = RENAME
The target files are to be created with the names specified for them in the conversion
statement. After successful conversion, the source files are to be deleted.

FILE-DISPOSAL = REPLACE

The target files are to be created with the names specified for them in the conversion
statement. After successful conversion, the source files are to be deleted and the target files
are to receive the names of the source files, i.e. in effect the source file is replaced by the
target file.

FILE-DISPOSAL = INPLACE

The target files are to be created with the names specified for them in the conversion
statement. After successful conversion, an attempt is to be made to overwrite the source
file with the target file and to assign the source file name to the target file. As a result, the
target file will occupy about the same physical space as the source file. In effect, the source
file is replaced by the target file.

PROTECTION = UNCHANGED / STD / SAME
Specifies whether the file protection attributes of the source file are to be transferred to the
target file.

PROTECTION = UNCHANGED
The currently valid default value for PROTECTION is to remain unchanged.

PROTECTION = STD
The file protection attributes are not transferred. Conversion is executed as in BS2000
versions < V10.0.

PROTECTION = SAME
The file protection attributes are transferred to the target file. For more details see "Transfer
of file protection attributes after conversion" on page 307.

DEVICE-FOR-TEMPFILE = UNCHANGED / NONE / TAPE(...) / DISK(...)
Designates the storage medium which is to accommodate the intermediate (temporary) file
created.

DEVICE-FOR-TEMPFILE = UNCHANGED
The current default value for DEVICE-FOR-TEMPFILE is not changed.

DEVICE-FOR-TEMPFILE = NONE
No intermediate file is to be stored on a private volume.

DEVICE-FOR-TEMPFILE =TAPE(...)
The intermediate file is to be stored on magnetic tape.

U4303-J-2125-4-7600 349

MODIFY-CONVERT-FILE-DEFAULTS statement PAMCONV

VOLUME = list-poss(100): <alphanum-name 1..6>
Designates the VSN(s) of the tape(s) to be used as storage medium.

DEVICE-TYPE = <text 1..20>
Designates the device type to be used.

DEVICE-FOR-TEMPFILE = DISK(...)
The intermediate file is to be stored on private disk.

VOLUME = list-poss(100): <alphanum-name 1..6>
Designates the VSN(s) of the private disk(s) to be used as storage medium.

DEVICE-TYPE = <text 1..20>
Designates the device type to be used.

Note

The volume specified in the DEVICE-FOR-TEMPFILE operand is only reserved/
released during execution of the CONVERT-FILE statement.

350 U4303-J-Z2125-4-7600

PAMCONV

MODIFY-LOGGING-OPTIONS statement

MODIFY-LOGGING-OPTIONS
Set logging values

Function

This statement defines logging values for PAMCONYV which have global validity for all
functions of the program. If the statement is entered without operands, the existing values
remain valid. The currently applicable values can be queried using the SHOW-LOGGING-
OPTIONS statement.

Format

MODIFY-LOGGING-OPTIONS

INFORMATION = UNCHANGED / MEDIUM / MINIMUM / MAXIMUM
,OUTPUT = UNCHANGED / list-poss(2): SYSOUT / SYSLST

Operands

INFORMATION = UNCHANGED / MEDIUM / MINIMUM / MAXIMUM
Controls the scope of the log created by PAMCONV.

INFORMATION = UNCHANGED
The current default value for INFORMATION is not changed.

INFORMATION = MEDIUM
Statements are logged in the case of errors only. Positive acknowledgments (message
class 5) are logged in addition to MINIMUM.

INFORMATION = MINIMUM
Only error messages, completion messages and negative acknowledgments are logged
(i.e. all message classes except class 5).

INFORMATION = MAXIMUM
The log created consists of statements, positive and negative acknowledgments, error
messages and completion messages.

OUTPUT = UNCHANGED / list-poss(2): SYSOUT / SYSLST
Defines the output medium for the logs created by PAMCONV.

OUTPUT = UNCHANGED
The current default value for OUTPUT is not changed.

U4303-J-2125-4-7600 351

SHOW-CONVERT-FILE-DEFAULT statement PAMCONV

OUTPUT = list-poss(2): SYSOUT / SYSLST

Either one output medium or a list of 2 output media (SYSOUT and SYSLST) may be
entered. If SYSOUT is specified, logs are output on the display terminal in interactive mode
(in batch mode they are written to the SYSOUT system file). If SYSLST is specified, logs
are written to the SYSLST system file. In the case of a list, the logs are output to the appro-
priate system files (in interactive mode also to the terminal).

Note

The following values are preset:
INFORMATION = MEDIUM , OUTPUT = SYSOUT

SHOW-CONVERT-FILE-DEFAULTS
List current default values for CONVERT-FILE statement

Function

The SHOW-CONVERT-FILE-DEFAULTS statement lists the currently valid default values
for the CONVERT-FILE statement.

Format

SHOW-CONVERT-FILE-DEFAULTS

The output destination is determined by the OUTPUT operand of the MODIFY-LOGGING-
OPTIONS statement.

The default values are listed in the following form:

%//SHOW-CONVERT-FILE-DEFAULTS
% CURRENT ~ CONVERT-FILE DEFAULTS

% DIRECTION : <value>
% SELECT : <value>
% TO-FILE-BLKSIZE : <value>
% TO-FILE-BLKCTRL : <value>
% REPLACE-OLD-FILES : <value>
% FILE-DISPOSAL : <value>
% PROTECTION : <value>
% DEVICE-FOR-TEMPFILE : <value>

<value> ... see MODIFY-CONVERT-FILE-DEFAULTS for possible values.

352

U4303-J-2125-4-7600

PAMCONV SHOW-CONVERT-FILE-DEFAULT statement

Note

The following text segments have been defined in the message file and are taken from
there:

— 'CURRENT CONVERT-FILE DEFAULTS’
— 'DIRECTION’

— 'SELECT

— 'TO-FILE-BLKSIZE’

— 'TO-FILE-BLKCTRL

— 'REPLACE-OLD-FILES’

— 'FILE-DISPOSAL

— 'PROTECTION’

— 'DEVICE-FOR-TEMPFILE’

If the text is to be changed, these segments can be redefined in the message file. The
SHOW-CONVERT-FILE-DEFAULTS statement can then be used to check whether the
user-defined modification of statement and operand names in the SDF syntax file has
been duly performed. This also facilitates work with multilingual output.

U4303-J-2125-4-7600 353

SHOW-LOGGING-OPTIONS statement PAMCONV

SHOW-LOGGING-OPTIONS
List specified logging options

Function

A list of the currently valid values for logging is requested.

Format

SHOW-LOGGING-OPTIONS

The output destination is determined by the OUTPUT operand of the MODIFY-LOGGING-
OPTIONS statement.

The specified values are listed in the following form:

%//SHOW-LOGGING-OPTIONS
%CURRENT LOGGING OPTIONS
% INFORMATION : <value>
% OUTPUT : <value>

<value> ... see MODIFY-LOGGING-OPTIONS for possible values.

Note
The text segments

— 'CURRENT LOGGING OPTIONS’
— 'INFORMATION’
- 'OUTPUT

have been defined in the message file and are taken from there. If the text is to be
changed, these segments can be redefined in the message file by system adminis-
tration. The SHOW-LOGGING-OPTIONS statement can then be used to check whether
the user-defined modification of statement and operand names in the SDF syntax file
has been duly performed. This also facilitates work with multilingual output.

354 U4303-J-Z2125-4-7600

PAMCONV STOP statement

STOP
Terminate PAMCONYV

Function

The STOP statement terminates the PAMCONYV program. It is a synonym of the END
statement but cannot be abbreviated and does not appear in the menu screen of available
PAMCONYV statements.

Format

STOP

The STOP statement has no operands.

U4303-J-2125-4-7600 355

PAMCONYV program execution

PAMCONV

7.6

PAMCONYV program execution

The program reads the control statements via SYSDTA.

Messages are output via SYSOUT and/or SYSLST, depending on the logging options

specified (see the MODIFY-LOGGING-OPTIONS and SHOW-LOGGING
ments).

Example

/START-PAMCONV

-OPTIONS state-

% BLS0500 PROGRAM 'PAMCONV', VERSION '11.0A' OF '1993-03-11' LOADED
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1993.

ALL RIGHTS RESERVED
% PEA7000 15:41:51/0.0223 PAMCONV VERSION V11.0A64 STARTED IN

BS2000 V11.2
(1)

% PEA7001 PLEASE ENTER PAMCONV STATEMENTS

%/ /CONVERT-FILE FROM-FILE=DAT*,SELECT=BY-ATTRIBUTES(CREATION-DATE=

INTERVAL(,YESTERDAY) ,FILE-STRUCTURE=SAM),TO-FILE=NK.DAT*

(2)

% PEA5000 CONVERSION TO NON-KEY FORMAT COMPLETED. SOURCE FILE:

":N:$USEROOO1.DATEI1'; TARGET FILE: ':N:$USER0O001.NK.DATEIL'

% PEA5000 CONVERSION TO NON-KEY FORMAT COMPLETED. SOURCE FILE:

":N:$USEROOOL.DATEIZ2'; TARGET FILE: ':N:$USERO001.NK.DATEIZ'

% PEA5000 CONVERSION TO NON-KEY FORMAT COMPLETED. SOURCE FILE:

":N:SUSEROOO1.DATEI3"'; TARGET FILE: ':N:$USEROOOI.NK.DATEI3'

% PEA5000 CONVERSION TO NON—-KEY FORMAT COMPLETED. SOURCE FILE:

":N:$USEROOO1.DATEI4'; TARGET FILE: ':N:$USER0O001.NK.DATEI4'

— (3)

%/ /CONVERT-FILE FROM-FILE=DAT*,TO-FILE=NK.DAT*

(4)

% PEA5000 CONVERSION TO NON-KEY FORMAT COMPLETED. SOURCE FILE:

":N:$USEROOO1.DATEIS'; TARGET FILE: ':N:$USER0001.NK.DATEIS'

% PEA2103 'TO-FILE' ALREADY EXISTS. TARGET FILE: 'NK.DATEII1'
% PEA2103 'TO-FILE' ALREADY EXISTS. TARGET FILE: 'NK.DATEIZ2'
% PEA2103 'TO-FILE' ALREADY EXISTS. TARGET FILE: 'NK.DATEI3'
% PEA2103 'TO-FILE' ALREADY EXISTS. TARGET FILE: 'NK.DATEI4'

(5)

(6)

%/ /MODIFY-CONVERT-FILE-DEFAULTS SELECT=BY-ATTRIBUTES(FILE-STRUCTURE=ISAM) (7)

356

U4303-J-2125-4-7600

PAMCONV

PAMCONYV program execution

%/ /SHOW-CONVERT-FILE-DEFAULTS

% CURRENT
% DIRECTION

CONVERT-FILE DEFAULTS

: TO-NONKEY

% SELECT : BY-ATTRIBUTESC()
% CREATION-DATE : ANY
% LAST-ACCESS—-DATE : ANY
% SIZE : ANY
% ACCESS—-METHOD : ISAM
% BLKSIZE : ANY
% BLKCTRL : ANY
% TO-FILE-BLKSIZE : STD
% TO-FILE-BLKCTRL : STD
% REPLACE-OLD—-FILES : NO

% FILE-DISPOSAL : KEEP
% PROTECTION : STD
% DEVICE-FOR-TEMPFILE : NONE

(8)

(9

%/ /CONVERT-FILE DIRECTION=NONKEY-TO-KEY, FROM-FILE=NK.DAT*,TO-FILE=K.DAT* (10)

% PEA5001 CONVERSION FROM NON-KEY TO KEY FORMAT COMPLETED. SOURCE FILE:

":N:$USEROOOL.NK.DATEI5'; TARGET FILE: ':N:$USER0001.K.DATEIS' (11)
%/ /CLASSIFY-FILE FROM—FILE=*DAT* (12)
% CLASSIFY-FILE *DAT* DIRECTION = KEY-TO-NONKEY
%

% FILENAME ! CONVER- !
% ! TIBLE !
% N:SUSEROOOL.DATEILL .ottt i e et et et e e ! YES !
% iN:SUSEROOOL.DATEIZ . it e e e e e e ! YES !
% :N:SUSEROOOL.DATEIZ ottt et e e e ! YES !
% :N:$USEROOOL.DATEILZ ittt e e ! YES !
% :N:$USEROOOL.DATELS ottt e ! YES !
% :N:$USEROOOL.K.DATELS t i vttt e e e ! YES !
% :N:$SUSEROOOL.NK.DATEIL . ittt e e ! YES !
% :N:SUSEROOOL.NK.DATEIZ . vttt e i ! YES !
% :N:$SUSEROOOL.NK.DATEIZ ..ttt e e e ! YES !
% :N:$USEROOOL.NK.DATEIZ .. e ! YES !
% :N:$USEROOOL.NK.DATEID i e e ! YES !
% 11 FILE(S)LISTED (13)
U4303-J-2125-4-7600 357

PAMCONYV program execution PAMCONV

%/ /CHECK-BLKCTRL-INDICATOR FROM-FILE=*DAT* (14)

% CHECK-BLKCTRL-INDICATOR *DAT*
%

% FILENAME ! FOR- ! BLKCTRL !
% ! MAT I COMPARE !
% :N:$USEROOOLI.DATEIL ... Kol SAME

% :N:$USEROOOLI.DATEIZ ... Ko SAME

% :N:$USEROOOLI.DATEI3 .. ! Ko SAME

% N:$SUSEROOOL.DATEI4 ...l ! Ko SAME

% N:$USEROOOL.DATEIS ...l ! Kol SAME !
% :N:$USEROOOL.K.DATEIS ... Kol SAME !
% :N:$USEROOOLI.NK.DATEI1 oo NK ! SAME !
% :N:$USEROOOI.NK.DATEIZ oo NK O SAME !
% :N:$USEROOOLI.NK.DATEI3 ... i b NK SAME !
% :N:$USEROOOL.NK.DATEI4 b NK SAME !
% :N:$USEROOOLI.NK.DATEI5o b NK 1 DIFFERENT !
% 11 FILE(S)LISTED (15)
%/ /END (16)
% PEA7003 15:46:32/1.5323 PAMCONV TERMINATED ABNORMALLY (17)

(1) The PAMCONYV program is called.

(2) The CONVERT-FILE statement is entered with partially qualified file names and
selection criteria.

3) Acknowledgment of successful file conversion.

(4) Input of the CONVERT-FILE statement with partially qualified file names without
further selection criteria.

(5) Acknowledgments of successful file conversions.

(6) File exists already, conversion is rejected.

(7) Definition of selection criteria for further CONVERT-FILE statements.
(8) Input of the SHOW-CONVERT-FILE-DEFAULTS statement.

(9) Output of the values requested via the SHOW-CONVERT-FILE-DEFAULTS
statement. The values shown are the defaults for subsequent CONVERT-FILE
statements.

(10) Input of the CONVERT-FILE statement with partially qualified file names for NK to
K conversion.

(11) Acknowledgments of successful file conversions.

358

U4303-J-2125-4-7600

PAMCONV PAMCONYV program execution

(12) Input of the CLASSIFY-FILE statement with partially qualified file names.

(13) Output of the values requested via the CLASSIFY-FILE statement. Classification of
the input files by convertibility.

(14) Input of the CHECK-BLKCTRL-INDICATOR statement with partially qualified file
names.

(15) Output of the results requested via the CHECK-BLKCTRL-INDICATOR statement
(check of the internal file format and comparison with the BLKCTRL value from the
catalog entry).

(16) Input of the END statement.

(17) The PAMCONYV program is terminated abnormally, since an error has occurred in
the PAMCONYV run.

U4303-J-2125-4-7600 359

Error handling PAMCONV

7.7

7.7.1

1.7.2

7.7.3

Error handling

Control statement errors in interactive mode

— Syntax errors

Errored control statements are rejected with appropriate error messages.
— Semantic errors

An error dialog is conducted with the user.

Control statement errors in batch mode

Syntax and/or semantic errors.
As soon as an errored statement is detected, all statements up to the next STEP or END
statement are skipped.

Errors during conversion

If errors occur during processing of a CONVERT-FILE statement before the target file has
been successfully generated and closed, the incomplete target file (or the intermediate file)
is deleted and the source file is retained regardless of the explicitly or implicitly (default
value) specified FILE-DISPOSAL operand of the MODIFY-CONVERT-FILE-DEFAULTS
statement. Successful closure of the target file is acknowledged with a corresponding
message.

The following error situations are possible after successful closure of the target file (or inter-
mediate file):

— The source file cannot be closed properly. Conversion has been successfully
concluded, but the activities specified explicitly or implicitly (default value) in the FILE-
DISPOSAL operand are not performed. Successful closure of the source file is
acknowledged with a corresponding message.

— Both the source and the target file have been successfully closed, and in accordance
with the conversion specification of the FILE-DISPOSAL operand the source file is to
be replaced with the target file (REPLACE or RENAME), but the source file cannot be
deleted. The same procedure as above applies.

— The source file is to be replaced with the target file; the source file has been deleted,
but the renaming operation in accordance with the conversion value REPLACE in the
FILE-DISPOSAL operand cannot be performed. In this case the end result is the same
as if RENAME had been specified in the FILE-DISPOSAL operand.

Subsequently the next statement is executed.

360

U4303-J-2125-4-7600

PAMCONV

Error handling

1.7.4

1.7.5

7.7.6

1.7.7

DMS error messages, error code

DMS error messages are output for the user (missing passwords, ACCESS=READ,...). The
DMS error code reported is output with additional PAMCONV-specific information in certain
cases.

Inconsistent files
If the source file is an ISAM/SAM file or a load module, it is subjected to a strict check for
formal consistency during conversion. Inconsistencies may be subdivided into two groups:

— The inconsistency is such that loss of data is to be expected during further conversion
(e.g. in the case of defective index entries). Conversion is aborted with an appropriate
message.

— There is a formal inconsistency, but loss of data can be excluded (e.g. reserved fields
or free blocks do not contain binary zero). In this case a warning is output and
conversion continues.

Subsequently the next statement is executed.

Incompatible files

Operation of NK formats is not fully compatible. Consequently, various incompatibilities
result from conversion into NK format. See the section on PAM key elimination in the manual
"Introductory Guide to DMS" [3].

As soon as incompatibilities are sensed which prevent proper conversion, the conversion
process is aborted with an appropriate message (hard incompatibility).

If incompatibilities are detected which reduce performance but do not essentially prevent
conversion, a warning is issued and conversion continues (soft incompatibility).

Subsequently the next statement is executed.

Messages

The messages of the PAMCONYV program have a 7-character code consisting of the string
PEA followed by a 4-digit hexadecimal number. These messages can be found in volume 2
of the "System Messages" manual [17].

U4303-J-2125-4-7600 361

362 U4303-J-Z2125-4-7600

8 PASSWORD
Password encryption routine

Version: PASSWORD V11.2A

This chapter describes the password encryption routine PASSWORD.

The PASSWORD routine encrypts passwords in a system without automatic password
encryption, thus enabling files to be read that were created in a system with password
encryption.

PASSWORD is a service routine for use when exporting files from one system to another
(e.g. with the ARCHIVE routine). PASSWORD is needed only if files that have been created
and protected in a system with password encryption are to be processed in a system
without password encryption. PASSWORD encrypts the specified passwords and enters
them in the password table of the job.

System with password System with password
encryption encryption
PASSWORD
System with password System without
encryption password encryption

Figure 13: Password processing in systems with and without password encryption

U4303-J-2125-4-7600 363

Operation and execution PASSWORD

8.1

8.1.1

Operation and execution

A file or LOGON password specified by a user is written into the catalog entry of the file or
the user catalog, respectively. In systems operating with password encryption, the
password entered by the user is encrypted according to an internal code and transferred in
this form to the catalog entry or user catalog. The user must enter the password in its
unencrypted form when calling the file or entering the SET-LOGON-PARAMETERS
command, since the encryption is performed internally by the system.

The purpose of this procedure is to prevent unauthorized persons from discovering
passwords if parts of the catalog or user catalog happen to be included in the output when
a dump is taken.

When files with encrypted passwords are imported into a system operating without
password encryption, a user who specifies the unencrypted password will not be given
access to the file because the password is contained in its encrypted form in the catalog.
The function of PASSWORD is to convert the unencrypted passwords into encrypted
passwords in order to allow the file to be accessed.

Passwords

PASSWORD processes file passwords and LOGON passwords.
File passwords protect files against

— unauthorized writing (write password, WRITE-PASSWORD operand of the MODIFY-
FILE-ATTRIBUTES command)

— unauthorized reading (read password, READ-PASSWORD operand of the MODIFY-
FILE-ATTRIBUTES command)

— unauthorized execution in the case of program and procedure files (execute password,
EXEC-PASSWORD operand of the MODIFY-FILE-ATTRIBUTES command).

The power of these file passwords is weighted with respect to access. Write passwords are
the most powerful, read passwords the next most powerful, then execute passwords. A less
powerful password does not have to be specified explicitly if a more powerful one has
already been specified.

File passwords are defined for one or more files. A check is made for the presence of the
correct passwords prior to execution of the system commands START-PROGRAM, LOAD-
PROGRAM, MODIFY-FILE-ATTRIBUTES, DELETE-FILE, CREATE-FILE, ADD-FILE-
LINK, COPY-FILE and SHOW-FILE, and also at file opening.

To avoid repeated specification of file passwords for system commands, the password can
be written to the password table during task execution. This table is then searched for the
appropriate password whenever a password-protected file is to be processed.

364

U4303-J-2125-4-7600

PASSWORD Operation and execution

The LOGON password is a password that must be entered with the SET-LOGON-
PARAMETERS command in order to ensure that only authorized users may work under a
particular user ID.

LOGON passwords contained in ENTER procedures are evaluated only if the ENTER job
was called from an operator terminal. Otherwise all LOGON operands specified in the
ENTER procedure, including the LOGON password, are ignored.

Format conventions for passwords

File passwords and job variable passwords must not exceed 4 bytes in length. They are repre-
sented in the following format:

C'x’ where x stands for 1 to 4 alphanumeric or special characters
X'n" where n stands for 1 to 8 hexadecimal digits

d where d stands for a decimal number of up to 8 digits (with or without a positive or
negative sign) whose value is converted to a binary value

LOGON passwords may be between 1 and 8 characters long. For security reasons, the
maximum length should always be used. The passwords are represented in the following
format:

C'x’ where x stands for 1 to 8 alphanumeric or special characters

X'n" where n stands for 1 to 16 hexadecimal digits

U4303-J-2125-4-7600 365

Operation and execution PASSWORD

8.1.2 Program execution

The PASSWORD routine is loaded and started with the system command:
/START-PROGRAM FROM-FILE=$PASSWORD
This produces the message:

BLSO500 PROGRAM *PASSWORD’, VERSION *11.2A00° OF *1994-12-12° LOADED

% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991. ALL
RIGHTS RESERVED

ENTER COMMAND NOW :

*

The CPU-LIMIT, TEST-OPTIONS, MONJY, RESIDENT-PAGES and VIRTUAL-PAGES operands of the
START-PROGRAM command are available for calling the routine, e.g. to monitor the program
run. For descriptions of these operands, see the START-PROGRAM command in the
"Commands, Volume 3" manual [3].

When the program has been called, you are prompted to input statements.

Each statement issued to PASSWORD is executed immediately. Any output is displayed on
the terminal (SYSOUT).

Once a statement has been completely executed, a new PASSWORD statement may be
entered or the routine may be terminated with the END statement. Normal termination is
indicated by the message:

PASSWORD : NORMAL END

366

U4303-J-2125-4-7600

PASSWORD

Statements

8.2 Statements

Statements for the PASSWORD routine are entered via SYSDTA.

8.2.1

Overview of the PASSWORD statements

Control statements for PASSWORD are entered via SYSDTA.

[l WRPASS=jpasswordt]
[,RDPASS=jpassword]

Operation Operands Brief description
CONVERT filename The most powerful password for the specified file
[l WRPASS=fpassword] is entered in the password table in its encrypted
form. The MODIFY-FILE-ATTRIBUTES
[[RDPASS=fpassword] command containing the passwords is issued for
the file.
[LEXPASS=fpassword]
JVCONV jvname The most powerful password for the specified job

variable is entered in the password table in its
encrypted form. The MODIFY-JV-ATTRIBUTES
command containing the passwords is then
issued for the job variable.

dpassword Encrypts the specified password and enters the
ENCPASS result in the password table.
EP

dpassword Encrypts the specified file password and writes
ENCRYPTD the result to SYSOUT.
ED

Ipassword Encrypts the specified LOGON password and
ENCRYPTJ writes the result to SYSOUT.
EJ

END Terminates the PASSWORD run.

statement Outputs a brief description of all statements or of
HELP the specified statement.
H

U4303-J-2125-4-7600

367

Statements PASSWORD
Operation Operands Brief description
mode Determines the encryption algorithm.
MODE
M
PASSWORD dpassword Encrypts the specified file password and enters
both the password and its encrypted form in the
password table.
Note

fpassword stands for "file password".

jpassword stands for "job variable password".

Ipassword stands for "LOGON password".

368

U4303-J-2125-4-7600

PASSWORD CONVERT statement

8.2.2 Description of the individual statements

CONVERT statement

The CONVERT statement encrypts the most powerful password (see also the ADD-
PASSWORD command in the manual "Commands, Volume 1" [1] and writes it to the
password table by issuing the ADD-PASSWORD command. Then a MODIFY-FILE-
ATTRIBUTES command is issued containing the specified passwords.

Operation Operands
CONVERT
WRPASS=fpassword
fileiname, < RDPASS=fpassword
EXPASS=fpassword
file Fully qualified name of the file whose passwords are to be

encrypted.
WRPASS=fpassword Specifies the write password to be encrypted.
RDPASS=fpassword Specifies the read password to be encrypted.

EXPASS=fpassword Specifies the execute password to be encrypted.

Note

fpassword is a file password consisting of 1 to 4 bytes (see "Format conventions for
passwords" on page 365). At least one of the three passwords must be specified.

Example

BLS0500 PROGRAM *PASSWORD’, VERSION *11.2A00° OF ’*1994-12-12° LOADED

% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991. ALL
RIGHTS RESERVED

ENTER COMMAND NOW :

*convert anne.3,rdpass=c'susi'

PASSWORD X'9A41632A"

CAT ANNE.3,RDPASS=C'SUST',STATE=U

*end

PASSWORD : NORMAL END

/

U4303-J-2125-4-7600 369

JVCONYV statement PASSWORD

JVCONYV statement

The JVCONYV statement is used to encrypt the password(s) for a specified job variable. A
password must be specified in addition to the job variable name. The most powerful
password is encrypted and entered in the password table by means of the ADD-
PASSWORD command. Then a MODIFY-JV-ATTRIBUTES command is issued.

Operation Operands
JVCONV
,WRPASS=jpassword
jvname
,RDPASS=jpassword
jvname Name of the job variable whose passwords are to be encrypted.

WRPASS=jpassword Specifies the write password to be encrypted.
RDPASS=jpassword Specifies the read password to be encrypted.
Note

jpassword is a job variable password consisting of 1 to 4 bytes (see "Format conven-
tions for passwords" on page 365). At least one of the two passwords must be specified.

370 U4303-J-Z2125-4-7600

PASSWORD END / ENCPASS statements

END statement

The END statement terminates the PASSWORD run.

Operation Operands
END

Normal termination of the routine produces the message:
PASSWORD : NORMAL END

ENCPASS statement

This statement encrypts the specified file password and enters the result in the password
table of the task. The encrypted password is also output to SYSOUT.

Operation Operands
fpassword
ENCPASS
EP
fpassword File password consisting of 1 to 4 bytes (see "Format conventions for

passwords" on page 365).

Example

BLS0500 PROGRAM *PASSWORD’, VERSION ’11.2A00° OF ’1994-12-12° LOADED

% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991. ALL
RIGHTS RESERVED

ENTER COMMAND NOW :

*encpass c'susi'

PASSWORD X'9A41632A"

*end

PASSWORD : NORMAL END

/

U4303-J-2125-4-7600 371

ENCRYPTD statement PASSWORD

ENCRYPTD statement

This statement encrypts the specified file password and outputs the result to SYSOUT.

Function

A protected file from a system operating with password encryption is transferred (e.g. by
ARCHIVE) to a system not using password encryption. The catalog entry of the file contains
an encrypted password, i.e. access to the file is possible only by specifying the encrypted
password.

The ENCRYPTD statement encrypts the original password. By entering the encrypted
password the user regains access to the file.

Operation Operands

ENCRYPTD) |fpassword

ED
fpassword File password consisting of 1 to 4 bytes (see "Format conventions
for passwords" on page 365).
Example

BLS0500 PROGRAM ’PASSWORD’, VERSION *11.2A00° OF ’1994-12-12° LOADED

% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991. ALL
RIGHTS RESERVED

ENTER COMMAND NOW :

*encryptd c'susi'

PASSWORD ENCRYPTED IS = X'9A41632A"

*end

PASSWORD : NORMAL END

/

372

U4303-J-2125-4-7600

PASSWORD ENCRYPTJ statement

ENCRYPTJ statement

This statement encrypts the specified LOGON password and outputs the resultto SYSOUT.

Operation Operands

ENCRYPTJ Ipassword

EJ
Ipassword LOGON password consisting of 1 to 8 bytes (see "Format conven-
tions for passwords" on page 365).
Note

As of BS2000/0SD-BC V2.0, LOGON passwords of up to 32 characters can be
declared. To be able to edit them with PASSWORD, they must be shortened to 8
characters at system level. The charegable product SDF-P V2.0 provides the
predefined function HASH-STRING() which enables this conversion.

&(TO=X=LIT(HASH-STRING(’<long password>’,8)))

Example 1

Encryption of a password 4 characters long.

BLS0500 PROGRAM ’PASSWORD’, VERSION ’*11.2A00° OF ’1994-12-12° LOADED

% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991. ALL
RIGHTS RESERVED

ENTER COMMAND NOW :

*encryptj c'susi'

PASSWORD ENCRYPTED IS = X'6B0537211705D615'

*end

PASSWORD : NORMAL END

/

U4303-J-2125-4-7600 373

HELP statement PASSWORD

Example 2

Encryption of a password 13 characters long.

/A=&(TO—X-LIT(HASH-STRING('long password',8)))
/show—var a,value=*x—literal
A = X'523E146036CED784"'

/start-prog $password

% BLS0500 PROGRAM 'PASSWORD', VERSION '11.2A00' OF '1994-11-17' LOADED

% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991. ALL
RIGHTS RESERVED

ENTER COMMAND NOW :

*encryptj x'523E146036CED784"'

PASSWORD ENCRYPTED IS = X'73FE57A922EA780D'

*end

PASSWORD : NORMAL END

/

HELP statement

This statement lists either all control statements for PASSWORD with their permitted
operands, or all additional operands of a specified statement.

Operation Operands

HELP statement

H

statement Full name of a PASSWORD statement, i.e.:

CONVERT
JVCONV
ENCRYPTD
ENCRYPTJ
ENCPASS
MODE
PASSWORD
END

Note, however, that the short form of each statement, as shown in the
statement formats, is equally valid as input.

374

U4303-J-2125-4-7600

PASSWORD MODE statement

MODE statement

MODE selects the encryption routine to be used in BS2000. The choice is between the "old"
and the "SCA85" encryption routine.

Operation Operands
mode
MODE
M
mode The following may be specified for "mode":
OLD This means that the predefined default routine is
to be chosen.
@)
SCA This means that the SCA85 encryption routine is to be used.

U4303-J-2125-4-7600 375

PASSWORD statement PASSWORD

PASSWORD statement

This statement encrypts the specified file password. Both the encrypted and the
unencrypted password are entered in the password table of the job. Both forms of the
password are also output to SYSOUT.

This means that although the file password is contained in its encrypted form in the catalog,
the user can specify the unencrypted password when accessing the file, without the access
being rejected as unauthorized.

Operation Operands
PASSWORD fpassword

fpassword File password consisting of 1 to 4 bytes (see "Format conventions for
passwords" on page 365).

Example

BLSO500 PROGRAM ’*PASSWORD’, VERSION *11.2A00° OF *1994-12-12° LOADED

% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991. ALL
RIGHTS RESERVED

ENTER COMMAND NOW :

*password c'susi'

PASSWORD X'9A41632A'

PASSWORD C'SUST'

*end

PASSWORD : NORMAL END

/

376

U4303-J-2125-4-7600

9 PDPOOLS
Creating and managing private disk pools

Version: PDPOOLS V11.2A

The PDPOOLS utility routine (Private Disk POOL Support) is used to create and manage
private disk pools. PDPOOLS can run only under the user ID TSOS and is available in
different versions according to the version of BS2000. A set of up to 32 private disks can be
declared as a pool. Pool monitoring prevents a file that extends over several volumes (multi-
volume file) from beginning on a volume of one pool and continuing on a volume of another
pool. In extreme cases even a single disk can be declared a "pool”, thereby preventing
multivolume files from being set up at all.

PDPOOLS supports reconstruction of a pool where a private disk has been physically
destroyed.

A defective volume requiring re-initialization with VOLIN is removed from the pool by a
special function.

To prevent subsequent duplicate allocations, all multivolume files that were continued on
the defective disk are deleted.

The SVL (standard volume label) of each volume of a pool contains a directory of all volume
serial numbers belonging to the pool. When new pools are formed, reference is made to
this directory so as to prevent overlaps.

Note

For compatibility reasons, private disks not assigned to a pool by the PDPOOLS routine
are handled as though they belong to every pool. This may produce files which cannot
be opened or extended. For this reason it makes sense to combine all the private disks
of a computer center into pools, if possible.

U4303-J-2125-4-7600 377

Calling PDPOOLS PDPOOLS

Calling PDPOOLS

The PDPOOLS utility routine can be started in two ways:
/START-PDPOOLS
You receive the followlng messages:

% BLS0523 ELEMENT ’PDPOOLLM’, VERSION *V11.2R10” OF LIBRARY
*:1SBZ:$TSOS.SYSLNK.PDPOOLS.112" IN PROGRESS

% BLS0524 LLM ’*PDPOOLS’, VERSION ’V11.2® OF *1995-03-29:19:50:49° LOADED

% BLS0551 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1993. ALL
RIGHTS RESERVED

PDPOOLS VERS. 11.2A40

ENTER ,HELP“ OR ,HELP <CMD>*“ TO GET MORE INFORMATION

*

In addition, the VERSION, MONJV and CPU-LIMIT operands are available for calling the routine.

or

/START-PROGRAM $PDPOOLS
You receive the followlng messages:

% BLS0500 PROGRAM ’PDPOOLS’, VERSION *11.2A° OF ’1994-12-12° LOADED

% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1993. ALL
RIGHTS RESERVED

PDPOOLS VERS. 11.2A20

ENTER ,HELP* OR ,HELP <CMD>* TO GET MORE INFORMATION

*

The CPU-LIMIT, TEST-OPTIONS, MONJV, RESIDENT-PAGES and VIRTUAL-PAGES operands of the
START-PROGRAM command are available for calling the routine, e.g. to monitor the program
run. For descriptions of these operands, see the START-PROGRAM command in the
"Commands, Volume 3" manual [3].

You are prompted to enter statements.

378 U4303-J-Z2125-4-7600

PDPOOLS

Statements

9.1 Statements

9.1.1 Overview of the PDPOOLS statements

Statement

Meaning

BKPT

Interrupt PDPOOLS in interactive mode

CHECK

Check the pool for consistency

CREATE

Create or extend pools

EDT

Call the EDT file editor

END

Terminate PDPOOLS

EXPORT

Remove catalog entries from the system catalog

HELP

Output explanations

LIST

List directory or multivolume files

MODIFY

Modify default parameters

PATCH

Output information on corrections made in patch form

PURGE

Release dead space, remove a pool directory

REMOVE

Remove VSNs from a pool

9.1.2 Description of the individual statements

PDPOOLS is controlled by statements entered in interactive mode at the terminal. In batch
mode input is initially read from SYSDTA; when end-of-file is detected for SYSDTA, a switch
is made to input from the console. Here output is also to console but may be redirected to
SYSLST by the user. Apart from a few exceptions the statements can be formatted freely.
In interactive mode a slash (/) in position 1 is ignored.

U4303-J-2125-4-7600

379

BKPT statement

PDPOOLS

BKPT

Interrupt PDPOOLS in interactive mode

In interactive mode the BKPT (BreaK PoinT) statement is used to interrupt PDPOOLS. In
batch mode a PASS loop is formed. Control can be returned to PDPOOLS by means of the
BS2000 command SEND-MSG.

Operation

-

"I" is recognized in place of "BKPT" only in position 1.

1/0 control

The following inputs, which are recognized only in position 1, are used for input/output

control:

Operation

* 3t

The entire ensuing dialog with PDPOOLS is additionally logged to
SYSLST. Not logged, however, are input/ output operations during
execution of EDT and while in system mode (after a BKPT
statement), as well as BS2000 command output.

This activates SYSLST logging and at the same time suppresses
output of all subsequent PDPOOLS messages to SYSOUT or to the
console. If SYSLST logging was already activated by means of "=",
the only effect is that SYSOUT/console output is deactivated. It can
be reactivated with "=" (SYSLST logging is continued) or with "#"

(SYSLST logging is terminated).
SYSLST logging activated by "=" or "-" is deactivated.

380

U4303-J-2125-4-7600

PDPOOLS

CHECK statement

CHECK

When PDPOOLS detects SYSDTA EOF, it requests further input via
the WRTRD macro with the message:

PDPOOLS INPUT REQUEST

The input request can be switched back to RDATA by entering an
asterisk (*).

Check pool for consistency

The CHECK statement can be used to check a pool for consistency. Among other checks,
the VTOC of each volume is read to ascertain whether there are multivolume files that are
incompatible with the directory in the SVL of the volume.

Operation

Operands

CH
CHECK

vsn
POOL=< (vsn,dc) }
(vsn,[dc],vsn,[dc],...)

POOL

=vsn

=(vsn,dc)

Specifies the pool involved. The directory entries are always
used in order to determine all volumes of the pool whenever

=(vsn,[dc],vsn,[dc],...) possible. The pool is always complete when no overlapping

occurs.
For an explanation of "dc", see the CREATE statement.

U4303-J-2125-4-7600

381

CREATE statement PDPOOLS

CREATE
Create or extend pools

The CREATE statement is used to set up or extend pools. The SVL of each volume contains
a directory of all volume serial numbers on which multivolume files beginning on that
volume may be continued. Normally all directories of a pool contain the same volume serial
numbers, so that specifying a single volume is sufficient to define the pool. If, however,
overlapping is permitted, the SVL entries of two volumes of the same pool can be of
different lengths. This is the only indication of pool overlapping. An explicit entry of the
number of pools to which a volume belongs is not made. Overlapping pools can be created
only when expressly requested by system administration (MODE=MULTIPLE). However,
such pools should generally be avoided since the danger is always present that not all
relevant volumes will be recorded if reconstruction is necessary.

Operation Operands
CR vsn
[J
CREATE (vsn’dc)

vshn
POOL=< (vsn,dc)
(vsn,[dc],vsn,[dc],...)

Y[ES]}
]

N[O]

[,DIRECTORY:{

S[INGLE]
[LMODE=]
M[ULTIPLE]}

vsn The volume serial number specified is to be added to the pool
defined by POOL-=.... If DIRECTORY=NO is specified, the result is
the same if "vsn" is specified under POOL-=... instead of additionally.

(vsn,dc) This specification, where "dc" = device type, is required if volume
"vsn" is not available online.

382

U4303-J-2125-4-7600

PDPOOLS CREATE statement

POOL
=vsn

=(vsn,dc) Specifies which volume serial number is to be used to generate the
pool. The result depends upon the specification for DIRECTORY.
For "dc", see above.

=(vsn,[dc],vsn,[dc],...)
Specifies a number of volume serial numbers to be used to generate
the pool. For "dc", see above.

DIRECTORY
=YES Specifies that the directories of the volume serial numbers specified
under POOL-=... are to be taken into account when the pool is
generated (default value).
=NO Specifies that the pool is to be generated without taking the
directory entries into account. This specification is mandatory if
none of the volumes listed under POOL= has a directory.
MODE
=SINGLE When a pool is generated, overlapping with a second pool is not
permitted and will be rejected with an error message (default value).
=MULTIPLE Pool overlapping is permitted.

The volumes required for execution of the CREATE statement are reserved exclusively. If
this is not possible because, for example, a volume may be accessed by several jobs, the
statement is rejected. However, if the disk is mounted on an SPD device, the volume is
locked against any other access while the CREATE statement is being executed.

Example of pools without overlap

Using the volumes A and B and also C and D, none of which has a directory, 2 separate
pools are to be created. The following statements are required to do this:

CR POOL=C(A,,B),DIRECTORY=NO
CR POOL=(C,,D),DIRECTORY=NO

The following directories are generated on the four volumes:
A: A,

O O w
O O > w

B,
C,
D

U4303-J-2125-4-7600 383

CREATE statement PDPOOLS

If a single pool is now to be formed from the four volumes, this can be done with the
following statement:

CR POOL=(A,,C)

The following directories are then written to the SVLs:

A: A, B, C, D
B: B, C, D, A
c: C, D, A, B
D: D, A, B, C

Example of poolswith overlap

The two pools (A, B) and (C, D) of the previous example are used once again. If a new pool
is to be created from volumes A and C alone, this can be achieved by means of one of the
two statements:

CR POOL=C(A,,C),DIRECTORY=NO,MODE=MULTIPLE
CR C,POOL=A,DIRECTORY=NO,MODE=MULTIPLE

The directories of the four volumes are then as follows:

A: A, B, C
B: B, A
Cc: C, D, A
D: D, C

If a new pool is to be created from volumes A, B and C of the two pools (A, B) and (C, D),
the following statement must be issued:

CR C,PO0OL=A,MODE=MULTIPLE

The volume serial number C is thus added to pool (A,B). The four volumes contain the direc-

tories:

A: A, B, C

B: B, A, C

c. C, D, A, B
D: D, C

384 U4303-J-Z2125-4-7600

PDPOOLS EDT / END statements

EDT
Call EDT file editor

The EDT statement calls the EDT file editor. Control is returned to PDPOOLS by means of
the EDT statement @RETURN or @HALT. This does not cause destruction of the data in
the virtual memory of EDT.

Operation Operands

-

The entry "@" instead of "EDT" is recognized only in position 1.

END
Terminate PDPOOLS

The END statement terminates PDPOOLS.

Operation Operands

{ou)

IfIE ... is entered, the BS2000 command ENTER-JOB is executed.

U4303-J-2125-4-7600 385

EXPORT statement

PDPOOLS

EXPORT
Remove catalog entries

The EXPORT statement can be used to remove all file catalog entries referring to a
particular VSN from the system catalog. The volume itself is not affected.

Operation Operands
EXP ALL
vsnl,]
EXPORT VTOC
NO
ERROR
ALL
SYSOUT
_J(ERROR],] .
[LOUTPUT= sysLsT | 1 [CATID=catid]
SYSOUT
(ALL []
SYSLST

>
=
=

VTOC

OUTPUT
=NO

=ERROR

Specifies the volume for which the EXPORT function is to be
performed.

Specifies that all catalog entries with a pointer to "vsn" are to be
removed from the system catalog (default value).

Specifies that only those catalog entries also contained in the VTOC
of "vsn" are to be removed from the system catalog.

No check list of the exported files is output.

=(ERROR,SYSOUT)

=ALL

A check list of all the errors that occurred during export is output to
SYSOUT.
ERROR is the default value.

=(ALL,SYSOUT) A check list of all exported files is output to SYSOUT.

386

U4303-J-2125-4-7600

PDPOOLS HELP statement

OUTPUT=(...,SYSLST)
The check list is output to SYSLST.

CATID=catid Specifies the catalog from which the catalog entries are to be
removed. If this entry is omitted, the user’s default catalog ID will be
assumed.

HELP

Output explanations

The HELP statement is used to output explanations for all statements.

Operation Operands

H
} [stmt]
HELP

stmt An explanation of the specified statement is provided.

If no statement is specified, a summary of all statements is given.

U4303-J-2125-4-7600 387

LIST statement

PDPOOLS

LIST

List directory or multivolume files

The LIST statement is used to list the directories or the multivolume files in the VTOC of a

volume.

Operation

Operands

o

vsn
(vsn,dc)

CATL
(CATL,SYSOUT)
(CATL,SYSLST)
EXTS

[POOL
MVFS

(MVFS,SYSOUT)
(MVFS,SYSLST)

~1[,CATID=catid]

vsn

(vsn,dc)

CATL
(CATL,SYSOUT)

(CATL,SYSLST)

EXTS

Specifies the volume for which the LIST function is to be performed.
For an explanation of "dc", see the CREATE statement.

Specifies that a list of the system catalog entries for "vsn"

is to be output, or, if "vsn" is omitted, a list of the entries for all private
disks. The list contains the number of users sharing the volume, the
number of first entries (also contained in the VTOC of the volume)
and the number of second entries (not contained in the VTOC of the
volume). The list thus also provides an overview of the volumes for
which multivolume files are cataloged.

Specifies that the summary of catalog entries for private disks is to
be output to SYSLST, sorted according to volume serial numbers.

Specifies that all extents with free, occupied or dead space on the
volume designated by "vsn" are to be output to SYSLST, sorted by
extents. In particular, information is given on any duplicate alloca-
tions (overlays).

This operand can be used for pool volumes only. All volumes
entered in the directory of the disk are requested. Execution of the
statement is aborted if conflicting directory entries (missing
backward references) occur.

Specifies that the directory of the volume "vsn" is to be output to
SYSOUT.

388

U4303-J-2125-4-7600

PDPOOLS

MODIFY statement

CATID=catid Specifies the catalog to be searched in connection with the CATL
option. If the operand is omitted, the user’s default catalog ID is
assumed.

MVFS Specifies that all multivolume files in the VTOC of the

(MVFS,SYSOUT) volume "vsn" (i.e. all files beginning on "vsn") are to be output to
SYSOUT.

(MVFS,SYSLST) Specifies that all multivolume files in the VTOC of the volume "vsn"
are to be output to SYSLST.

MODIFY
Modify default parameters

The MODIFY statement can be used to modify various default operands. These include:

— routing code for output via the console (default value: X)
— lines per page on SYSLST logs (default value: 60)
— mode of reservation for disk devices (default value: "exclusive").

If no operands are specified, MODIFY functions as an information statement, displaying
information on the current values of the variable parameters.

Operation Operands
RC=r
M
LINES=nn
{MODIFY }
< J[,HOLD]
Y[ES]
EXCL=
N[C]
RC=r Sets the routing code to the value "r". Any character may be used
for "r". No validity check is made.
LINES=nn Specifies the number of lines per page for SYSLST logs. "nn" is a
decimal number between 5 and 99.
EXCL
=Y[ES] Sets the mode of reservation for disk devices to "exclusive", i.e. with

CREATE and REMOVE statements attempts to access private
volumes of the system are rejected unless the volumes are mounted
on shareable private disks (SPD).

U4303-J-2125-4-7600 389

PATCH statement PDPOOLS

=NJ[O] Sets the mode of reservation for disk devices to "shareable". Private
volumes of the system are locked against access by other jobs
during execution of the CREATE and REMOVE statements. Since
this modifies running conditions for the other jobs to such an extent
as to provoke abnormal task termination, this mode should be
selected only when unavoidable.

HOLD Specifies that the required modification is to be permanent and is to
remain valid for all further calls. This operand cannot be used with
multiple loading of PDPOOLS. In such a case the program must first
be unloaded by all jobs involved.

PATCH
Output information on corrections made in patch form

The PATCH statement is used to output information on corrections made in patch form to
the current version of PDPOOLS. The number of existing patches is indicated by "nn" in the
following message after the program is loaded:

PDPOOLS VERS. vvvvv (xxx / nn)

where "vvvw" is the PDPOOLS version and "xxx" the source version.

Operation Operands

+
PATCH

The entry "+" instead of "PATCH" is recognized only in position 1.

390 U4303-J-Z2125-4-7600

PDPOOLS PURGE statement

PURGE
Release dead space/remove pool directory
The PURGE statement has two distinct functions:

1. Itreleases dead space (SPACE NOT ASSIGNED) that has appeared on a pool volume
as a result of REMOVE.

2. It completely removes the pool directory from a volume.

Both functions may be used only if the disk in question is a pool volume. The directory can
be deleted only when it consists of a single entry (SINGLE POOL VOLUME).

Operation Operands

P vsn
} }[,poou
PURGE (vsn,dc)

vsn Specifies the volume for which the PURGE function is to

(vsn,dc) be performed. For an explanation of "dc", see the CREATE
statement.

POOL Specifies that the directory of the volume "vsn" is to be removed.

If this operand is omitted, the dead space resulting from the
REMOVE statement is removed from the disk. This involves an
implicit request for all volumes entered in the directory (cf. the EXTS
operand of the LIST statement).

Note

The PURGE statement in the form PURGE vsn is invalid for the 3410 External High-
Speed Storage Unit; however, PURGE vsn,POOL is acceptable.

U4303-J-2125-4-7600 391

REMOVE statement PDPOOLS

REMOVE
Remove volume serial numbers from pool

The REMOVE statement can be used to remove individual volume serial numbers from a
pool. A search is made of the remaining volumes of the pool to find any multivolume files
that continue on the volumes to be removed; if there are any such files, they are deleted.
The catalog entries of all files with extents on volumes having these volume serial numbers
are normally removed from the system catalog. However, this option can also be
suppressed. If a volume contains no directory entries, a dummy directory is generated from
the F1 label. In this way it is possible to "clean up" even those pools that were not set up
using CREATE. It remains the responsibility of system administration to specify all volume
serial numbers with multivolume files that continue on the volume to be removed.

Operation Operands
R vsn
REMOVE (vsn,vsn,...) l
vsn
POOL=< (vsn,dc)
(vsn,[dc],vsn,[dc],...)
Y[ES
[L[EXPORT=]
N[O]
NO
ERROR
ALL
SYSOUT
_J) (ERROR,]
[OUTPUT=} SYSLST =]
SYSOUT
(ALL [
SYSLST
vsn All volume serial numbers specified here under "vsn" are
(vsn,...) to be removed from the pool defined under POOL=....

392

U4303-J-2125-4-7600

PDPOOLS REMOVE statement

POOL

=vsn

=(vsn,dc)
=(vsn,[dc],vsn,[dc],...)

This specifies the pool involved. The directory entries are always
used in order to determine all volumes of the pool whenever
possible. The pool is always complete when no overlapping occurs.
For an explanation of "dc", see the CREATE statement.

EXPORT
=YES All system catalog entries for the volumes to be removed from the
pool are deleted (default value).
=NO The system catalog entries for the volumes to be removed from the
pool are not deleted.
OUTPUT
=NO No check list of the deleted files and catalog entries is output.
=ERROR

=(ERROR,SYSOUT)
A check list of all the errors that occurred during deletion is output

to SYSOUT.
=ALL

=(ALL,SYSOUT) A check list of all files deleted is output to SYSOUT. ALL is the
default value.

OUTPUT=(...,SYSLST)
The check list is output to SYSLST.

As with the CREATE statement, the volumes required for execution of the REMOVE
statement are reserved exclusively. The procedure is the same as for the CREATE
statement.

U4303-J-2125-4-7600 393

PDPOOLS messages PDPOOLS

9.2 PDPOOLS Messages

EXPORT ERROR dddd

Meaning
DMS error dddd has occurred whilst performing EXPORT.

NO DIRECTORY AVAILABLE. USE DIRECTORY=NO

Meaning
None of the volumes designated by POOL= has a directory.

Response
The CREATE statement must be repeated with the option DIRECTORY=NO.

OVERFLOW POOL SAVE AREA

Meaning
The pool designated by POOL= contains more than 32 volumes when a REMOVE or

CHECK statement is issued.

Response
The statement must be repeated with a different pool definition.

POOL TO BE CREATED HAS MORE THAN 32 VOLUMES

Meaning
Self-explanatory.

Response
The CREATE statement must be repeated with a different pool definition.

REQUEST MEMORY ERROR xx (CLASS 6)

Meaning
A request for class 6 memory could not be processed successfully. Error xx has occurred.

VOLUME vvvvvv CANNOT BE ACQUIRED EXCLUSIVELY

Meaning
Volume vvvvvv may be accessed by several jobs but is not mounted on a shareable private

disk.

Response
The rejected statement (CREATE or REMOVE) may be repeated after changing the reser-
vation mode for the disk drive from "shareable" to "exclusive" with the MODIFY statement.

VOLUME vvvvvv: CLOSE ERROR dddd

Meaning
DMS error dddd has occurred during CLOSE.

394 U4303-J-Z2125-4-7600

PDPOOLS

PDPOOLS messages

VOLUME vvvvvv: I/0 ERROR dddd

Meaning
DMS error dddd has occurred during reading/writing.

VOLUME vvvvvv NOT IN CVT. USE DEVICE OPTION.

Meaning
Volume vvvvvv is not online.

Response
The statement must be repeated with specification of the device type.

VOLUME vvvvvv NOT IN POOL. USE DIRECTORY=NO.

Meaning
A volume which does not belong to the pool defined has been found in the second level via

the directory entries. The pool to be created contains too many individual pools.

Response
The CREATE statement should be repeated with a different pool definition or with the option

DIRECTORY=NO.

VOLUME vvvvvv NOT IN POOL. USE MODE=MULTIPLE.

Meaning
The pool to be created overlaps with another pool.

Response
The pool is set up by repeating the CREATE statement with the option MODE=MULTIPLE.

VOLUME vvvvvv: OPEN ERROR dddd

VTOC ENTRY

LIST ERROR

Meaning
DMS error dddd has occurred during OPEN.

WITH VOLUME vvvvvv EXCEEDS POOL

Meaning
A volume of the pool to be created contains no directory entries; however, a multivolume file

is cataloged in the VTOC with a pointer to the volume vvvvvy, which is located outside the
pool.

Response
The statement should be reformulated using a pool definition which includes volume

VVVVVV.,

dddd

Meaning
A DMS error with the error code dddd has occurred during execution of the LIST statement.

U4303-J-2125-4-7600 395

PDPOOLS messages PDPOOLS

MODIFY ERROR dddd

Meaning
A DMS error with the error code dddd has occurred during execution of the LIST statement.

PURGE ERROR dddd

Meaning
A DMS error with the error code dddd has occurred during execution of the PURGE

statement.
PURGE REQUEST PARTIALLY SATISFIED

Meaning
The dead space (SPACE NOT ASSIGNED) which is to be released consists of more than

255 extents. The space belonging to the first 255 extents is removed.

Response
A further PURGE statement must be issued in order to release the remaining space.

SORT ERROR

Meaning
An error has occurred in SORT output during execution of the statement LIST, REMOVE or

EXPORT, in which the SYSLIST operand was specified.
VOLUME vvvvvv: INCONSISTENT DIRECTORY ENTRY wwwwww

Meaning
After entry of the CREATE statement, a directory entry for volume wwwwww was found on

volume vvvvvv. However, the check reference to volume vvvvvy is missing on volume
wwwwww. Volume vvvvvy cannot be included in the pool since multiple space assignment
on volume wwwwww would then be possible.

Note

This message may appear more than once with different wwwwww volume specifica-
tions for the same vvvvvv volume. In this case, all wwwwww volumes should be
removed from volume vvvvvv by means of a single REMOVE statement: If this is not
done, unforeseen results may occur.

Response
Volume vvvvvv should be cleaned up by means of the statement REMOVE

wwwwww,POOL=vvvvvv,EXPORT=NO prior to repeating the CREATE statement.
VOLUME vvvvvv: NO DIRECTORY

Meaning
A PURGE or LIST statement containing the operand EXTS was issued for a volume without

directory entries.

396 U4303-J-Z2125-4-7600

PDPOOLS PDPOOLS messages

VOLUME vvvvvv: NO SINGLE POOL VOLUME

Meaning
A PURGE statement containing the POOL operand was issued for volume vvvvvv.
However, this volume contains more than one directory entry.

DEVICE gggggggg INVALID

Meaning
NKGTYPE does not recognize the specified device gggggggg.

VOLUME vvvvvv: NO PRIVATE DISK

Meaning
The disk with the volume serial number vvvvwv is not a private disk. PDPOOLS operates
exclusively with private disks.

U4303-J-2125-4-7600 397

Error codes

PDPOOLS

9.3 Error codes

Certain DMS error codes are generated by PDPOOLS. Some have a special meaning in
this context and are listed in the following.

0222:
0228:
0300:
0301:
0302:
0331:
0332:
0334:

033D:

0400:
0500:

05B6:
05C5:
05C7:
05FC:

0900:
0922:
0932:

099F:
OD9F:

invalid page request when reading/writing a volume

invalid extent list address when reading/writing a volume

DKCMSE entry not found in EOLDTAB

invalid function for READ-VTOC routine (program error)

SORT error during execution of PURGE statement

save area problem or release memory error when reading VTOCs
the file to be removed from the system catalog is currently being used.
request memory error when reading VTOCs

invalid VTOC size in F5 label

DRMO0100 or DRN1110 entry not found in EOLDTAB

EJWDWGNX entry not found in EOLDTAB

$REQM error during EXPORT initialization

the EXPORT function should have been performed for a tape volume
$RELM error during initialization or termination of EXPORT function
error in reading TSOSJOIN during EXPORT initialization

DQNFILTA entry not found in EOLDTAB

invalid PAM page found when executing MODIFY statement

program is or was multiply loaded, MODIFY statement with HOLD operand is not
possible.

request memory error when executing MODIFY statement

$REQM error when requesting memory for extent list

Normally, no overlapping pools should be used. However, if they are permitted it should be
noted that an unsuitable choice of operands in the CREATE-FILE and MODIFY-FILE-
ATTRIBUTES commands may result in the creation of files that cannot be extended beyond
a certain point. For this to happen the volume serial numbers specified in the commands
must be selected incorrectly, i.e. such that they belong to different pools.

398

U4303-J-2125-4-7600

PDPOOLS

Examples

9.4

Examples

Example 1

Assume the following pools exist:

Pooll = vsna, vsnb
Pool2 = vsnc, vsnb

If the command:

/CREATE FILE FILE-NAME=filename,
SUPPORT=*PRIVATE-DISK(VOLUME=vsnb,vsna,vsnc,
DEVICE-TYPE=devicetype, SPACE=*RELATIVE(PRIMARY-ALLOCATION=3))

is given and if it is assumed that at least 3 blocks are free on "vsnb", the file will be created
despite the incorrect operand ("vsnc", a volume serial number belonging to the other pool,
namely pool 2) having been given in the command. This is because a check is made only
as to whether the disks "vsna", "vsnb" and "vsnc" are entered in the SVL of b. When OPEN
is issued, the file is accepted since there are extents on only one volume. If, however, the

file is to be extended onto volume "vsna", a check is made as to whether "vsna", "vsnb" and
vsnc are in the SVL of vsna. This is not the case and the request will be rejected.

Example 2

Assume the following pools exist:

Pooll = vsna, vsnb
Pool?2 vsnc, vsnd

If the command:

/CREATE-FILE FILE-NAME=filename, SUPPORT=*PRIVATE-DISK(VOLUME=vsna,
DEVICE-TYPE=devicetype, SPACE=*RELATIVE(PRIMARY-ALLOCATION=3))

is given, followed by the command

/MODIFY-FILE-ATTRIBUTES FILE-NAME=dateiname,
SUPPORT=*PRIVATE-DISK(VOLUME=vsnc,
SPACE=*RELATIVE(PRIMARY—-ALLOCATION=3))

the MODIFY-FILE-ATTRIBUTES command is rejected as vsnc belongs to pool 2. This
command is intended to extend the file on volume vsnc which, however, was created with
the CREATE-FILE command (in this case pool 1).

U4303-J-2125-4-7600 399

Examples

PDPOOLS

When files are created or extended with the CREATE-FILE and MODIFY-FILE-
ATTRIBUTES command, the following messages may occur:

DMSO511E PRIVATE DISK POOL INCONSISTENCY OR PARAMETER ERROR DETECTED.
ALLOCATION REJECTED.

or

DMSO51E PRIVATE DISC POOL INCONSISTENCY OR PARAMETER ERROR DETECTED.
REQUEST PARTIALLY SATISFIED.

In the latter case it is advisable to delete the file.

If an inconsistency is recognized during secondary allocation, no message is issued;
instead only the return code

441 NO SPACE AVAILABLE
or
44a REQUEST PARTIALLY SATISFIED

is returned to the calling access method. This then activates the NOSPACE exit or abnormal
program termination.

400

U4303-J-2125-4-7600

10 PVSREN
Pubset conversion

Version: PVSRENV1.1A

In order to extend the number of pubsets and give a greater choice of pubset names,
Version 10.0A introduces a new format called POINT notation in addition to the existing
form of VSN addressing (PUB notation) for public volumes. The number of volumes per
pubset depends on the value of ALLOCATION-UNIT (AU):

AU = 8 Kbytes or 64 Kbytes and 2- or 3-digit sequence number: max. 255 volumes per
pubset;

AU = 8 Kbytes or 64 Kbytes and a 1-digit sequence number: max. 36 volumes per pubset;
AU = 6 Kbytes: max. 32 volumes per pubset.

The PVSREN utility routine (Public Volume Set REName) enables a pubset to be converted
without re-initializing.

PVSREN V1.1A under BS2000/0SD-BC V1.0 enables system administration under TSOS
to rename NK2, NK2(8K,64K), NK4 and key pubsets under TSOS.

U4303-J-2125-4-7600 401

VSN addressing PVSREN

10.1 Comparison of the two formats of VSN addressing

The POINT notation (' notation) is the format used for extended VSN addressing:

VSN: pppp.[xy]z

L sequence number (1..3 characters)
type identification (point)

PVSID (2..4 characters)

The following features distinguish the new format from the old format:

The PUB prefix (allowed by the old format) is not permitted. (Example: PUBA.O and
PUB.01 are not permitted by the new format.)

In contrast to the format for VSN addressing used to date (1-character PVSID), in the
new format of POINT notation the PVSID length is variable and can be from 2 to 4
characters.

The PVSID and the sequence number are separated by a period (.). The period (point)
distinguishes the volume from a private disk and is also the type identification (in the old
format: PUB).

The length of the sequence number is variable and can be from 1 to 3 characters (in the
old format the sequence number was always 2 characters long). The following values
are valid sequence numbers (depending on ALLOCATION-UNIT):
ALLOCATION-UNIT = 8 Kbytes or 64 Kbytes: x,y, z=0...9,A...Z.

ALLOCATION-UNIT = 6 Kbytes: x,y =0;z=0...9, A...V.

The SYSID is always a value other than PVSID. In the '. notation, SYSID can be a
numerical value between 65 and 192; in the old format SYSID was a value between
A...Z and 0..9. The system default SYSID is 250.

In the new format, the SYSID can be assigned on initialization and can also be modified
by the SET-PUBSET-ATTRIBUTES command. It is also possible for the SYSID not to
be present in the SVL. In the old format, however, the SYSID is the same as the PVSID
and cannot be specified at generation time, nor modified.

In shared-pubset mode, note that the SYSIDs must be unique within in the network -
particular care is required when the system default is used.

The value can be assigned on initialization and can be modified by means of the SET-
PUBSET-ATTRIBUTES command.

402

U4303-J-2125-4-7600

PVSREN

Prerequisites for running PVSREN

10.2

Furthermore, the format of the file names on a disk with the new VSN addressing is different
from the old format. With both file name formats, the maximum length (54 characters) is the
same, but in the new format the catalog ID is 4 to 6 characters long (2 to 4 characters
between two colons). This shortens the length of the user ID and of the file name proper.
The same is true of file generation groups and job variable entries.

Conversion is supported in the following directions:

— PUB notation to PUB notation (irrespective of ALLOCATION-UNIT 6 Kbytes or 8 Kbytes
/ 64 Kbytes)

— PUB notation to POINT notation (irrespective of ALLOCATION-UNIT 6 Kbytes or 8
Kbytes / 64 Kbytes)

— POINT notation to PUB notation: renaming is not possible if the number of disks
belonging to the pubset is in excess of 32, the maximum permissible number for PUB
notation. If the number is < 32, renaming is implemented.

— POINT notation to POINT notation: a pubset may be renamed only if the number of
disks in the pubset is not in excess of the value that would be yielded by the PVSID
length of the pubset after renaming.

For more details on the new format for VSN addressing, see the manual "Commands,
Volumes 1 - 3"[1], [2], [3].

Prerequisites for running PVSREN

For PVSREN to execute, a syntax file containing a description of the PVSREN syntax must
be activated.

BS2000/0SD-BC versions = V1.0:

The SDF syntax file called $TSOS.SYSSDF.PVSREN.011.SYSTEM, which was supplied
with the system and which contains the entire functionality of PVSREN, must be incorpo-
rated in the existing syntax files by system administration by means of SDF-I. This entails
merging the file with the system syntax file.

BS2000/0SD-BC versions < V1.0: use the syntax file
$TSOS.SYSSDF.PVSREN.011.TSOS. Merge this file with the group syntax file for the user
ID TSOS.

U4303-J-2125-4-7600 403

Operating instructions PVSREN

10.3

Operating instructions

Before conversion, a catalog entry must be made for each private file that may be imported
either immediately or in the future. This ensures that all files on these private disks have an
entry in the system catalog (TSOSCAT), and means that the length of the file names can
also be checked.

It must also be ensured that no MRSCAT entry already exists with the catalog ID that the
pubset is to be assigned, otherwise no change is made to the JOIN file.

A further point to note is that print jobs for files residing on the pubset to be converted
cannot be performed following the conversion. The jobs remain in the queue because they
are waiting for the corresponding pubset with the catalog ID specified in the jobs to be
mounted. However, this catalog ID has already been changed in the current system catalog
and there is no longer any means of accessing the old catalog.

The pubset should be exported by means of the EXPORT-PUBSET command and set to
"inaccessible" to exclude any possibility of unwanted access to the catalog during the
conversion.

If the conversion is being run from another system, all the disks belonging to the pubset
must be switched to the system executing the conversion.

A home pubset is always required when a pubset is being converted. If a home pubset is
being renamed, a second home pubset, e.g. a duplicate of the one to be renamed, must be
available.

Before calling PVSREN, check that there are no ENTER jobs in the job pool, because jobs
left in the pool may not be executable after renaming.

The PVSREN utility is called under the TSOS user ID with the following
command:

START-PROGRAM FROM-FILE=PVSREN
The following messages are output:

BLSO500 PROGRAM ’*PVSREN’, VERSION '01.1A° OF *1992-10-07° LOADED

% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1992. ALL
RIGHTS RESERVED

% PVROOOQ #*#*#*x*x PVSREN VERSION '01.1A80° folalakotel

//

The output medium and scope of the log must be selected.

The CPU-LIMIT, TEST-OPTIONS, MONJV, RESIDENT-PAGES and VIRTUAL-PAGES operands of the
START-PROGRAM command are available for calling the routine, e.g. to monitor the program

run. For descriptions of these operands, see the START-PROGRAM command in the manual

"Commands, Volume 3" [3].

404

U4303-J-2125-4-7600

PVSREN

Operating instructions

If the conversion will increase the length of the catalog ID, it is advisable first to run the
CHECK-FILENAME-LENGTH statement. This will list all file and job variable names whose
length exceeds the maximum. This list must then be used to modify the file names that are
too long.

Once these steps have been performed, the CONVERT-PUBSET statement can be
entered. First of all, the program checks the names for length even if the CHECK-
FILENAME-LENGTH function was executed beforehand. This is because there is a possi-
bility of other users creating problems while PVSREN is renaming the object. The implicit
check of object name length also provides an opportunity of checking the pubset for
migrated files. If any such files are found, conversion is not implemented and the user is
informed to this effect by a negative acknowledgment.

Backup files created with ARCHIVE are treated in the same way.

After successful conversion of the file catalog TSOSCAT and the VOL1 labels, it is also
possible on request to:

— modify the default catalog ID (catid-old - catid-new) in the TSOSJOIN of the home
pubset and/or

— inthe TSOSJOIN of the converted pubset,

— import the pubset into the system.

If the JOIN file cannot be modified because the multi-positional catalog ID means that the
pubset cannot be imported into this system (prior to V10) it is possible to use a system =
V10 to convert the default catalog ID in the JOIN file subsequently (MODIFY-JOINFILE
statement).

If the modified pubset is one that will later be used as a home pubset, the following points
must be borne in mind:

In many computer centers, batch tasks in which this catalog ID is defined are held in an
ENTER file and started automatically at startup (these may include, for example, ENTER to
load SPEEDCAT). This catalog ID is now no longer valid and must be replaced by the new
one. A fast startup is executed using a parameter file in which references to the VSN must
also be changed.

Note

As of BS2000/0SD-BC V1.0, PVSREN V1.1A supports both the old NK2 format and
the new NK4 format of TSOSCAT.

The PVSREN routine is controlled by statements, which are described below.

U4303-J-2125-4-7600 405

Statements

PVSREN

10.4 Statements

10.4.1 Overview of the PVSREN statements

Statement Meaning

CHECK-FILENAME-LENGTH | Check the length of file and job variable names in a pubset catalog
CONVERT-PUBSET Convert (rename) a pubset

END Terminate the program

HOLD-PROGRAM

Interrupt the program for command input

MODIFY-JOINFILE

Modify the default catalog ID in the pubset JOIN entry

MODIFY-LOGGING-
OPTIONS

Modify the current default logging option values for all program
functions

SHOW-LOGGING-OPTIONS

List the current logging option values

Other permissible statements are:

//MODIFY-SDF-0PTIONS,
//SHOW-SDF—-0PTIONS
//EXECUTE-SYSTEM-CMD

These are mentioned here only briefly, as they are used in conjunction with SDF and are
described in detail in the manual "Introductory Guide to the SDF Dialog Interface" [13].

406

U4303-J-2125-4-7600

PVSREN

CHECK-FILENAME-LENGTH statement

10.4.2 Description of the statements

CHECK-FILENAME-LENGTH
Check length of file and job variable names

The CHECK-FILENAME-LENGTH statement checks that the length of all file and job
variable names in the pubset catalog does not exceed the maximum.

This function is only useful in performing a conversion in which the catalog ID length
increases. The statement is only executed for a pubset that is set to "inaccessible" for an
EXPORT-PUBSET command.

If the program finds names whose length exceeds the maximum length, these names are
listed and PVSREN moves to the next //STEP statement. These file or job variable names
must then be changed to the correct length by means of a MODIFY-FILE-ATTRIBUTES or
MODIFY-JV-ATTRIBUTES command.

The maximum length of a path name (with catalog ID and user ID) is 54 characters for files
and 47 characters for file generation groups.

The maximum length of the file name as such (without catalog ID and user ID) is calculated
as follows:

for files:
54 minus 4 minus length of catalog ID minus length of user ID

for file generation groups:
47 minus 4 minus length of catalog ID minus length of user ID

The length check, where required, should always be performed before the conversion.

The program also checks whether the SYSID is initialized in the SVL of the PUBRES. If not,
an appropriate message is output.

CHECK-FILENAME-LENGTH

CATID = <alphanum-name 1..3>

,NEW-CATID = <alphanum-name 2..4>

CATID = <alphanum-name 1..3>
The current catalog ID.

NEW-CATID = <alphanum-name 2..4>
The required catalog ID.

U4303-J-2125-4-7600 407

CHECK-FILENAME-LENGTH statement

PVSREN

Example
» Input
CATID=A

NEW-CATID = ABC

The new catalog ID has 3 characters, giving a maximum length as follows:

for file names:
39 characters

(CATID: 3 characters + 2 colons = 5 characters,

$userid = max. 10 characters,

file name: 54 characters minus 15 characters = 39 characters)

for file generation groups:
32 characters

(CATID: 3 characters + 2 colons = 5 characters,

$userid = max. 10 characters,
*index = 7 characters,

file name: 54 characters minus 22 characters = 32 characters)

Output:

When names are found that exceed the maximum length, the following message is

output:

Following object names exceed maximum length of 39 or 32 characters:

:<catid>:<userid>.<jvname> (Jv)

*:<catid>:<userid>.<filename> (FGG)

:<catid>:<userid>.<filename> (FGG)

*:<catid>:<userid>.<filename>

:<catid>:<userid>.<filename>

@)
)
®3)
(4)
(®)

(1)

(2)

(3)

(4)

Is a job variable

Is a private file generation group
Is a public file generation group
Is a private file

Is a public file

(5)

408

U4303-J-2125-4-7600

PVSREN CONVERT-PUBSET statement

CONVERT-PUBSET
Convert pubset

The CONVERT-PUBSET function is executed only for pubsets that are set to "inaccessible"
(not imported).

This statement provides the following functions:

1. Checking the length of file names and names of file generation groups; checking for
HSMS files (migration files) and backup files (created with ARCHIVE).

2. Changing the catalog ID of the pubset

a) Replacing the old catalog ID by a new one for file and file generation group names
in the TSOSCAT catalog.

b) Converting the VOL1 labels of all public volumes belonging to the pubset.
¢) Modifying on request the JOIN files

— of the home pubset

— of the modified pubset

using the new catalog ID as the default value for all user IDs.

3. Updating the names of the paging areas.

The following conversion directions are supported:

from PUB notation to PUB notation
from PUB notation to POINT notation
from POINT notation to PUB notation
from POINT notation to POINT notation.

Checking the length of object names (files, file generation groups)
There are two methods of checking the lengths of object names.
The first method is to use the CHECK-FILENAME-LENGTH statement (see page 407).

The second method is to use the CONVERT-PUBSET statement. This check is always run
before the actual conversion takes place, in case the conversion increases the length of
CATID. The check is carried out implicitly even if a CHECK-FILENAME-LENGTH statement
was previously used to perform a length check.

This is done for security reasons, because further problems may occur when the CHECK-
FILENAME-LENGTH statement finds names that exceed the maximum length, and
modifies them. If the CONVERT-PUBSET statement finds names that exceed the maximum
length, the conversion cannot be performed.

U4303-J-2125-4-7600 409

CONVERT-PUBSET statement PVSREN

The check for HSMS files and ARCHIVE backup files is performed before conversion,
namely during the implicit length check of the object names in the CONVERT-PUBSET
statement.

If the pubset includes catalog entries for migrated files, conversion does not take place. If
this happens, a message is output to inform the user in order to avoid inconsistencies. The
same procedure is applied to backup files created with ARCHIVE.

Changing the catalog ID of the pubset
The pubset catalog ID is modified in three stages:

1. The old catalog IDs are replaced by the new ones in the names of files and file gener-
ation groups in the TSOSCAT catalog.
The VSNs are modified in the catalog entries of public files and file generation groups
in the volume table.

Note

As of BS2000/0SD-BC V1.0, PVSREN V1.1A supports both the old NK2 and the
new NK4 format of TSOSCAT.

If a PROFIL entry (possible as of BS2000/0SD-BC V1.0) exists, the catalog ID in
this entry, too, is renamed.

2. Conversion of VOL1 labels (SVL).
The VSN is changed in the SVL of all volumes belonging to the pubset. The SYSID and
the OLC in the SVL of the PUBRES are also changed.

Before the conversion, the first entry (VSN entry for the PUBRES) in the OLC (=online-
catalog, list of disks belonging to the pubset) is set to spaces and replaced by the
current VSN only after the conversion. This means that after a system crash, for
example (INCONSISTENCY), the pubset cannot be imported.

3. Changing the JOIN files on request.

The system administrator receives a message asking whether the new catalog 1D
should be used instead of the old one as the default catalog ID in the TSOSJOIN of the
home pubset and the modified pubset. The pubset is imported from the program for this
purpose. Sometimes, execution of the implicit IMPORT-PUBSET command can last a
considerable time. If the pubset has not been imported after 10 minutes, PVSREN
aborts. If the pubset is imported before the 10 minutes expire, a message appears
asking whether the imported pubset is to be "accessible" for this session, i.e. is to
remain imported. If this is not required and the pubset had an entry in the home pubset’s
MRSCAT, this entry is deleted and replaced by the entry with the new catalog ID.

410

U4303-J-2125-4-7600

PVSREN

CONVERT-PUBSET statement

For BS2000 versions < V10.0 and the conversion directions

— PUB notation — POINT notation
— POINT notation — POINT notation
— POINT notation — PUB notation

the JOIN file cannot be changed, because these versions do not accept a multichar-
acter catalog ID.

Note

As of BS2000 V10.0, user information is stored in the file $TSOS.SYSSRPM and
not only in $TSOS.TSOSJOIN. The user file is processed only logically, not physi-
cally, by JOINFOAI or by the JOIN command.

Warning

Any existing MRSCAT entry with the modified catalog ID prevents the implicit impor-
tation of the pubset.

CONVERT-PUBSET

PUBSET = *PUB-NOTATION(...) / *POINT-NOTATION(...)
*PUB-NOTATION(...)
O CATID = <alphanum-name 1..1>
*POINT-NOTATION(...)
O CATID = <alphanum-name 2..4>
,NEW-NAME = *PUB-NOTATION(...) / *POINT-NOTATION(...)
*PUB-NOTATION(...)
[0 CATID = <alphanum-name 1..1>
*POINT-NOTATION(...)
O CATID = <alphanum-name 2..4>

,SYSID = <integer 65..192> /| *SAME

U4303-J-2125-4-7600

411

CONVERT-PUBSET statement PVSREN

PUBSET =
Gives the VSN format (notation) and catalog ID of the pubset to be converted.

PUBSET = *PUB-NOTATION(...)
The pubset to be modified has the old VSN format (PUB notation). The direction of the
conversion is PUB notation to PUB notation or to POINT notation.

CATID =
Gives the catalog ID of the pubset to be converted.

CATID = <alphanum-name 1>
The catalog ID of the pubset to be converted consists of a single alphanumeric
character.

PUBSET = *POINT-NOTATION(...)
The pubset to be converted has the new VSN format (POINT notation). The direction of the
conversion is POINT notation to PUB notation or to POINT notation.

CATID =
Gives the catalog ID of the pubset to be converted.

CATID = <alphanum-name 2..4>
The catalog ID of the pubset to be converted consists of 2 to 4 alphanumeric characters.

NEW-NAME =
Specifies the VSN format (target notation) and catalog ID to which the pubset is to be
converted.

NEW-NAME = *PUB-NOTATION(...)
The pubset is to be converted from the VSN format specified in the PUBSET operand to
PUB notation format.

CATID =
Gives the new catalog ID the pubset is to receive on conversion.

CATID = <alphanum-name 1>
The new catalog ID consists of 1 alphanumeric character.

NEW-NAME = *POINT-NOTATION(...)
The pubset is to be converted from the VSN format specified in the PUBSET operand to
POINT notation format.

CATID =
Specifies the new catalog ID the pubset is to receive on conversion.

CATID = <alphanum-name 2..4>
The new catalog ID consists of 2 to 4 alphanumeric characters.

SYSID =
The SYSID to be entered in the pubset's SVL.

412

U4303-J-2125-4-7600

PVSREN END / HOLD-PROGRAM statements

SYSID = <integer 65..192>
The values permitted for SYSID are in the range 65 to 192.

SYSID = *SAME

If the SYSID is to remain unchanged, *SAME must be specified.

If there is no SYSID in the SVL, an appropriate message is output. In this case system
administration must allocate a SYSID retroactively. If the pubset exists in PUB notation,
however, *SAME is rejected.

Note

If semantic errors are found in the statement, they can be corrected interactively.

On completion, the successful/unsuccessful conversion is listed in accordance with the
MODIFY-LOGGING-OPTIONS statement, to include all associated VSNs, file names
and job variable names.

END
Terminate program

The END statement causes PVSREN to be terminated.

END

HOLD-PROGRAM
Switch from program mode to system mode

The HOLD-PROGRAM statement interrupts program mode and switches to system mode.
In system mode, the user can enter commands between the statements. The RESUME
command is used to return to program mode.

HOLD-PROGRAM

U4303-J-2125-4-7600 413

MODIFY-JOINFILE statement PVSREN

MODIFY-JOINFILE
Modify default catalog ID in JOIN entry

The MODIFY-JOINFILE statement can be used to change the default catalog ID for all users
in a pubset’s user catalog. There is one exception: under the TSOS user ID, a prerequisite
for conversion is that the values for the PUBSET and NEW-DEFAULT-CATID operands are
the same.

In order to execute this statement, the pubset must be imported.

Where a pubset has been converted to POINT notation in a system <V10.0, the JOIN file
cannot be converted because multicharacter catalog IDs are not permitted in such systems.
This statement is important in cases of this type, as it allows the default catalog ID to be
modified after execution of a CONVERT-PUBSET statement.

MODIFY-JOINFILE

PUBSET = <alphanum-name 1..4>
,DEFAULT-CATID = <alphanum-name 1..4>

,NEW-DEFAULT-CATID = <alphanum-name 1..4>

PUBSET = <alphanum-name 1..4>
Specifies the catalog ID of the pubset in which the JOIN file in question resides.

DEFAULT-CATID = <alphanum-name 1..4>
Specifies the default catalog ID in the JOIN file to be modified.

NEW-DEFAULT-CATID = <alphanum-name 1..4>
Specifies the catalog ID that is to replace the old one and become the new default catalog
ID.

414 U4303-J-Z2125-4-7600

PVSREN

MODIFY-LOGGING-OPTIONS statement

MODIFY-LOGGING-OPTIONS
Modify default logging option values

The MODIFY-LOGGING-OPTIONS statement enables default logging values for PYSREN
to be modified globally for all program functions.

If the statement is entered without operands, the default values remain unchanged. The
user can request the current values via the SHOW-LOGGING-OPTIONS statement.

MODIFY-LOGGING-OPTIONS

INFORMATION = UNCHANGED / *MEDIUM / *MINIMUM / *MAXIMUM
,OUTPUT = UNCHANGED / list-poss(2): *SYSOUT / *SYSLST

INFORMATION =
Gives the scope of the log generated by PVSREN.

INFORMATION = UNCHANGED
The default logging option value remains unchanged. The default value is
INFORMATION = *MEDIUM.

INFORMATION = *MEDIUM
Positive acknowledgments of special significance to the user are to be logged in addition to
error messages.

INFORMATION = *MINIMUM
Only error messages are to be logged.

INFORMATION = *MAXIMUM
All PVSREN messages are to be logged.

OUTPUT =
Defines the output medium for the PVSREN log.

OUTPUT = UNCHANGED
The default value for the output medium is to remain unchanged. The default value is
OUTPUT = *SYSOUT.

OUTPUT = *SYSOUT
In interactive mode the output is to go to the terminal and in batch mode to the system file
SYSOUT.

OUTPUT = *SYSLST

The output medium for logging is the system file SYSLST.

If SYSOUT and SYSLST are specified as lists, the logs are output to the system files
SYSLST and SYSOUT (or to the terminal in interactive mode).

No message is output when the OUTPUT = function is executed.

U4303-J-2125-4-7600 415

SHOW-LOGGING-OPTIONS statement PVSREN

10.5

SHOW-LOGGING-OPTIONS
List current logging option values

The SHOW-LOGGING-OPTIONS statement requests a list of the current logging option
values.

The output medium is specified by the OUTPUT operand of the MODIFY-LOGGING-
OPTIONS statement (see previous statement).

SHOW-LOGGING-OPTIONS

The values that have been set are listed as follows:

%CURRENT LOGGING OPTIONS:
% INFORMATION:<value>
% OUTPUT:<value>

Messages

Like all system messages, the PVSREN utility routine messages are 7 characters long;
they start with the string PVR.

The output destination is defined by means of the MODIFY-LOGGING-OPTIONS
statement. They are output to the terminal by default. The individual messages are
described in detalil in the manual "System Messages, Volume 2" [17].

416

U4303-J-2125-4-7600

11 RFUPD
System corrections management

Version: RFUPD V11.0A

i BS2000/0SD-BC V2.0 is the last version to support RFUPD; in the next version, it
will be replaced by RMS (REP mounting system).

RFUPD (REP file update) is a class 2 program that processes REP files in BS2000, gener-
ating as output REP files (loaders) on tape and/or disk. The input to RFUPD may consist of
up to 16 loaders from disk, 1 loader from tape and 1 loader from SYSDTA.

The loaders are read in the following sequence:
1. Loader from SYSDTA or REP records input from the terminal

2. Loaders from disk (in the sequence LDR01-LDR16; the REP records can be 1-256
bytes long, excluding the record length field)

3. Loader from tape (tapes with and without labels and automatic tape rewind are
supported).

They are then merged to form one output loader on disk and/or tape. (For the structure of
a loader, see "Structure of a REP file" below.)

The output loader is checked in its entirety for format and logical errors. Format checking
covers the syntax of all valid input records (REPs, modules, comments). Logical checking
is conducted on the basis of the assigned object module library.

RFUPD can be run both as a batch job and in interactive mode.

From statements, REP records and earlier REP files (from disk or tape) the RFUPD routine
creates or updates a file for system corrections (REP file or loader), and writes it to disk or
tape.

The log of the RFUPD run is output on the printer.

At system startup the Control System is updated for the duration of the session by means
of a correction file.

U4303-J-2125-4-7600 417

Introduction RFUPD

Earlier files

Statements
REP file

SYSDTA

Information
Error message

+«—SYSOUT—
RFUPD

Statements
REP records [—SYSDTA—

178YSLST

| TAPEOUT

- New
New REP REP
file file
1 1
¥

Figure 14: Creating or updating a REP file

418 U4303-J-Z2125-4-7600

RFUPD

Introduction

Note

RFUPD operates with three work files:

File 1:

File 2:

File 3:

SORTWORK.Dyyxxx. TS#H###

vy =Year
XXX = Current day of the year
Bt = Task sequence number (TSN) for this job

SORTWORK is set up by the SORT routine.

REXxxxhhmmss.SORTOUT

XXX = Current day of the year
hhmmss =Time of generation

hh = Hour

mm = Minute

SS = Second

The file is set up by RFUPD. It contains all the REP records.

RE.xxxhhmmss.MODULEFILE

XXX = Current day of the year
hhmmss =Time of generation

hh = Hout

mm = Minute

Ss = Second

The file is set up by RFUPD.
It contains all the module records in the order in which they were
input.

The files are erased by RFUPD at the end of the run, unless a program error occurs, in
which case they must be erased by the user.

U4303-J-2125-4-7600

419

Starting the program run RFUPD

11.1

11.2

Starting the program run

The RFUPD routine is started with the following command:
/START-PROGRAM RFUPD

The CPU-LIMIT, TEST-OPTIONS, MONJV, RESIDENT-PAGES and VIRTUAL-PAGES operands of the
START-PROGRAM command are available for calling the routine, e.g. to monitor the program
run. For descriptions of these operands, see the START-PROGRAM command in the
"Commands, Volume 3" manual [3].

Input

1. Statements from SYSDTA.
2. Loader or individual REP records from SYSDTA.

3. Upto 16 loaders from disk (REP files), which are assigned by means of the ADD-FILE-
LINK command and link names (LDRO1-LDR16):

/ADD-FILE-LINK LINK-NAME=LDRO1,FILE-NAME=filenamel, ACCESS-METHOD=SAM
/ADD—FILE-LINK LINK-NAME=LDROZ,FILE-NAME=f1ilename2,ACCESS-METHOD=SAM

The REP files must be SAM files with variable record format, but a uniform record length
of 80 bytes. Records that are too short can be padded to 80 bytes by means of
automatic record correction. Records that are too long are truncated.

The REP files can be created, for example, by means of /DATA.../END.

4. A loader from a magnetic tape.

The loader must be assigned by means of an ADD-FILE-LINK command (LINK-
NAME=TAPEIN):

/IMPORT-FILE SUPPORT=*TAPE(DEVICE-TYPE=xxxxx)

/ADD-FILE-LINK LINK-NAME=TAPEIN, FILE-NAME=filename
ACCESS—-METHOD=*BTAM, RECORD—-FORMAT=*FIXED, (RECORD-SIZE=80),
BUFFER-LENGTH=80

Certain records are ignored in the files serving as input, namely the first record of a loader
("BS2000 LOADER"), trace records, END records for class 1 and class 2 REPs, and the
terminating slash character. Consequently, there is no need for these records to be present
in the input files. Except for trace records, all these records are reconstructed by RFUPD
during generation.

An exception is made only if a completeness check was requested in the HDR statement.
In this case a check is made to see whether all loader records are present and are in the
correct place.

420

U4303-J-2125-4-7600

RFUPD Input

Note
At the end of its run the RFUPD utility implicitly releases (via a REL macro) the devices
assigned for TAPEIN/TAPEOUT. If desired, this can be prevented by means of a LOCK-
FILE-LINK command.
The LOCK-FILE-LINK command should be issued after the ADD-FILE-LINK command
and before RFUPD is called. In this way the device assignments are retained even
though RFUPD has terminated. Subsequently, the devices have to be released
explicitly by means of the UNLOCK-FILE-LINK command once they are no longer
required.

A loader generated by RFUPD contains 80-byte records only. Any shorter input records are
automatically padded with blanks to 80 bytes and any records that are too long are
truncated.

Consequently, "FORMAT ERROR" can occur on system loading only if the loader was
modified, for example using EDT.

Example

/ADD—FILE-LINK LINK-NAME=TAPEIN,FILE-NAME=f1ilename
/LOCK=FILE-LINK LINK-NAME=TAPEIN
/START-PROGRAM FROM—-FILE=RFUPD

*HALT
/UNLOCK—-FILE-LINK LINK-NAME=TAPEIN

U4303-J-2125-4-7600 421

Output

RFUPD

11.3 Output

11.3.1 Files

1. Output loader on disk

In order to generate an output loader on disk and optionally print it out subsequently, an
ADD-FILE-LINK command with the link name LDROUT must first be issued:

/ADD=FILE-LINK LINK-NAME=LDROUT,FILE-NAME=f1ilename, ACCESS-METHOD=*SAM
(File name of the disk loader to be generated.)
2. Output loader on tape

To generate an output loader on tape requires a CREATE-FILE command followed by
an ADD-FILE-LINK command with the link name TAPEOUT:

/CREATE-FILE FILE-NAME=filename, SUPPORT=*TAPE(VOLUME=vsn,DEVICE-TYPE=xxxx)
/ADD—FILE-LINK LINK-NAME=TAPEOUT,FILE-NAME=f1ilename
ACCESS-METHOD=*BTAM, RECORD—-FORMAT=*FIXED,RECORD-SIZE=80,
BUFFER-LENGTH=80

A loader can be created on disk and/or tape, as desired.

If neither of the two above-mentioned link names was specified correctly, no output loader
is generated but all the runtime listings are produced.

The REP records and modules are included in the output loader in the order of their input,
sorted according to class 1 REPs, modules and class 2 REPs.

Comments are likewise included in the output loader. To ensure that the comments are
correctly sorted with the corresponding REP records and modules, they should have a
character in column 72 identifying them by class of REP record (1 or 2) or module (M).

REP records and modules which are already flagged in the loader listing as existing in
duplicate, or which are to be deleted, are not included in the output loader.

The text of the comment should not go beyond column 71 so as to avoid the possibility of
one of the above characters wrongly occurring in column 72.

The REP records "BS2000 LOADER", "END" (for class 1 and class 2 REPs) and "/" are
automatically generated for the output loader unless the statement HDR GEN=N was
specified. The date and time of creation, the loader code and version are entered in the
REP record "BS2000 LOADER".

The loader code is generated as a function of all the REP records and serves to identify the
loader. The loader code is computed from the sum of the REP addresses and check
numbers of all REP records in the output loader.

422

U4303-J-2125-4-7600

RFUPD

Output

The REP records contain the loader version (a letter) in column 71. RFUPD finds the
highest loader version and enters the corresponding letter in the REP record "BS2000
LOADER".

11.3.2 Listings

1.

Option list

All statements and commands input from SYSDTA are logged. Default values are also

logged, if present. (See the example in "Example of RFUPD output" below.)
Loader listing
This is a sorted listing of all the input files.

Only REP records and modules are included in the listing. The files are sorted
according to module name, module class and address. Errors and the input file are
output with each REP record or module.

(See the example in "Example of RFUPD output” below.)

Statistics listing
A listing containing statistical information on the generated loader is printed.

The number and type of errors that occurred are output. The number of class 1 and
class 2 REP records and the number of modules are also output.

The computed loader code is printed at the end of this listing (see the example in
"Example of RFUPD output" below.)

Listing of the generated loader on disk
(See the example in "Example of RFUPD output” below.)

Compare listing

A compare listing is output if the COMPARE statement was entered (see statements).
The listing includes all the differences between the input loaders to be compared. (See

the example in "Example of RFUPD output below".)

U4303-J-2125-4-7600

423

Output

RFUPD

11.3.3 Check functions

All REP records are checked for format errors and logical errors. Errored REP records are
flagged by error codes in the output listing (loader listing). These appear on the left
alongside the REP records or modules. If more than 10 error codes are set in a single REP
record, only the first 10 errors are indicated, followed by an asterisk (*). Error statistics are
also output along with the loader listing.

Standard check functions

The syntax of all REP records is checked.

1. Format check

a)
b)
c)
d)

e)

Record length: 80 bytes

Format of the address field

Date: Is the date present? If so, a check is made that 001 < date < 366
Format of the REP information

Version number: 000 < ver < 999

2. Overlay check

a)

b)

c)

d)
e)
f)
9)
h)

Parity byte
If the parity byte is missing, one is generated. If it is present, it is checked for errors.

Module class
Class 1 or class 2.

Module name
Does the module name conform to conventions?

Are the module records ESD, ISD, RLD, TXT or END records?
Is the END record present in the module or not?

Module with or without ETPND?

Do REP records overlap each other in the loader?

Do REP records overlap a module in the loader?
If so, a logical check is performed on the REP record vis-a-vis this module (see the
following section, item 3),

Are there duplicate REP records or modules in the loader?
Sequence check for module records.

Generation of the sequence number, if not present.

424

U4303-J-2125-4-7600

RFUPD Statements

11.4 Statements

11.4.1 Overview of the RFUPD statements

Statement Meaning

DELETE Delete records in the output file

DISPLAY Specify REP and comment records
COMPARE Compare input files

HDR Control generation of loader records

HALT Terminate input from SYSDTA

HELP Output format of a REP record to SYSOUT

11.4.2 Descriptions of the statements

All statements are entered via SYSDTA. With the exception of the DISPLAY statement, all
statements may be used in both interactive and batch mode. In addition to the statements,
REP records may also be entered via SYSDTA, in which case, however, the statements
must always precede all REP records. The only exceptions to this rule are the HELP and
HALT statements, since these support and terminate the REP input, respectively.

U4303-J-2125-4-7600 425

DELETE statement RFUPD

DELETE
Delete records in output file

This statement enables one or more records in the output file to be deleted. Deletion is
performed if the conditions contained in the DEL statement are satisfied.

Operation Operands

{BEtETE } [type],[name],[add1],[add2],[field],[source]

for REP

for module

for comment ("*" in the first byte);
for ALL (i.e. R, M and C);

Default value: A.

type

>0

name Module name.
Default value: all names (i.e. no names check).

addrl Address at which deletion of the REP records of a module is to start.

Specification: hexadecimal, up to 5 bytes.
Leading zeros may be omitted,
e.g.: X'00123'=X'123".
Default value: X'0’
addr2 Address at which deletion is to end. Specification: as for "addr1";
addr2 = addrl
Default value: X'FFFFF’.

field A string of up to 8 bytes may be specified, with a column number
("col,string").
(col,string)
col 1<col<80

If the specified character string starts at this column, the REP
record is deleted.

string String of up to 8 characters, e.g.: C'ABC'.

Default value: all character strings (i.e. no check on character
strings).

426 U4303-J-Z2125-4-7600

RFUPD

DELETE statement

source 1<source<17

Specifies the input file from which deletions are to be made.
The input file itself is not modified.

1-16 = LDRO1 - LDR16
17 = tape loader

Default value: all input files.

Notes

All operands are optional.
The default values apply to all records.

Unnecessary operands at the end may be omitted. Missing operands in the middle must
be replaced by commas.

For modules, only the operands "type", "name”, "field" and "source" may be specified.

For comments, only the operands "type", "field" and "source" may be specified.

If a column number and character string are specified under "field", they relate to the
module record generated for this module (for format see "Format of module records").

Syntactically correct DEL statements whose conditions (operands) are not satisfied are
marked in the option listing with an asterisk (*). If all conditions are satisfied, the record
is deleted (for an example, see "Example of RFUPD output" below). An asterisk also
appears when the record involved has already been deleted by means of a previous
DELETE statement.

A maximum of 500 DELETE statements can be processed. After this, all further
DELETE statements are ignored.

Examples

DELETE R,BOTS61#X,X'1024',X'2400"',(54,C'9004"),4
DEL R,DJPGER,,,.3

DEL R,,X'01251',X'02222",(20,C'10")

DEL M,EVSTART

DEL A,,,,(19,C'11111"),1

DEL C,,,.(2,C'0")

U4303-J-2125-4-7600 427

DISPLAY statement

RFUPD

DISPLAY

Specify REP and comment records

The DISPLAY statement can be used only in interactive mode. It enables the user to specify
certain REP records and comment records. When HALT is entered, these records are
displayed individually on the screen in the order in which they were input.

The user can then decide whether the record is to be modified, deleted or left unchanged.
Subsequently, REP records or comments may be inserted.

Operation

Operands

{DISPLAY\
DIS /

[type],[name],[add1],[add2],[field],[source]

type

name

addrl

addr2

field

R for REP;
C for comment ("*" in the first byte);
A for ALL (i.e. R and C);

Default value: A.

Module name.
Default value: all names (i.e. no names check).

Address at which display of the REP records of a module is to start.
Specification: hexadecimal, up to 5 bytes. Leading zeros may be
omitted, e.g.: X'00123'=X'123".

Default value: X'0’

Address at which display of the REP records is to end.

Specification: as for "addrl"; addr2 = addrl.
Default value: X'FFFF'.

A string of up to 8 bytes may be specified, with a column number
("col,string").

(col,string)

col 1<col<80

If the specified character string starts in this column, the REP
record is displayed on the screen.

string String of up to 8 characters, e.g. C'ABC'.

Default value: all character strings (i.e. no check on character
strings).

428

U4303-J-2125-4-7600

RFUPD

DISPLAY statement

source 1<source<17

Specifies the input file from which the REP records are to be
displayed, where:

1-16 = LDRO1 - LDR16
17 = tape loader

Notes

All operands are optional. The default values apply to all REP records.

Unnecessary operands at the end may be omitted; missing operands in the middle must
be replaced by commas.

For comments, only the operands "type", "field" and "source" may be specified.

Syntactically correct DIS statements whose conditions (operands) are not satisfied are
marked in the option listing with an asterisk (*). If all conditions are satisfied, after a
HALT statement the first record specified with DISPLAY is displayed at the terminal. An
asterisk also appears when the record involved has already been displayed by means
of an earlier DIS statement.

A maximum of 500 DISPLAY statements are processed. After this, all further DISPLAY
statements are ignored.

Examples

DISPLAY R,BOTS61#X,X'1204',X'2400',(54,C'9004"),4
DIS R,DJPGER,,,.3

DIS R,,X'01251',X'02222",(20,C'10")

DIS A,,,,(19,C'11111"),1

pIs C,,,.(2,C'0")

After a REP or comment record specified by DISPLAY has been displayed on the
screen, RFUPD expects an immediate response from the user. No explicit request to
this effect is made.

The following inputs are possible:
REP... 80-byte REP record.

This replaces the REP record previously displayed.

A comment record with * in the first byte.
This record overwrites the displayed record.

DEL The record displayed is deleted.
CONT The record displayed remains unchanged.
HELP The format of a REP record is displayed.

U4303-J-2125-4-7600 429

COMPARE statement RFUPD

NEXT The insert mode is terminated.
The next record specified by DISPLAY will appear on the screen.
HALT The entire DISPLAY function is deactivated.

After any of these inputs (except for NEXT or HALT),