
19

Visual Basic 6 and Visual
Basic .NET: Differences

More than three years ago, the Microsoft Visual Basic team set out to create
Visual Basic .NET. At that time managers would kid the development team by
saying that they were making only three “simple” changes to Visual Basic 6: a
new runtime system, a new development environment, and a new compiler.
The Visual Basic development team spent the next three years working on one
of these changes: the new compiler. Two other teams provided the develop-
ment environment and runtime. As we pointed out in Chapter 1, the end result
is not a new version of Visual Basic 6 but an entirely new product: Microsoft
Visual Basic .NET. The name is important for two reasons. First, Visual Basic is
still Visual Basic. Second, Visual Basic .NET is not Visual Basic 7.

This chapter describes the three “simple” changes made to create Visual
Basic .NET, including changes to the runtime, the development environment,
and the compiler. Microsoft also added other features to Visual Basic .NET
along the way, including a new forms package and a new debugger, and these
are also discussed in this chapter.

.NET Framework vs. ActiveX
As a Visual Basic developer, you will normally not be concerned with the run-
time systems that underlie your Visual Basic applications. Visual Basic 6, for
example, makes the details of how ActiveX works largely transparent. The
Visual Basic 6 runtime handles all of the messy details that come with imple-
menting an ActiveX-compliant component or application. Licensing, persistable
objects, Microsoft Transaction Server (MTS) transaction awareness, and binary

C0261587x.fm Page 19 Thursday, November 15, 2001 2:02 PM

20 Part I Introduction to Upgrading

compatibility are exposed as simple settings that you can turn on or off. In the
same vein, Visual Basic .NET does a good job of hiding the details of what hap-
pens under the hood. For example, you do not need to know that you are cre-
ating or using a .NET component. A .NET component is just like any other
component. It has properties, methods, and events just as an ActiveX compo-
nent does. Why should you care about the differences between ActiveX and
.NET if everything basically looks the same?

On the surface, it doesn’t matter whether you’re using ActiveX, .NET, or
your best friend’s component model—they all look about the same. When you
dig into the details, however, you need to understand the machine that lies
beneath.

If you have ever created an ActiveX control in Visual Basic 6, you may
have found that it behaves slightly differently from other ActiveX controls that
you bought off the shelf. For example, if you add a BackColor property to your
control, you’ll notice when you test it that the color picker is not associated with
your control. Digging deeper, you’ll find that you need to change the type of
the property to OLE_COLOR and set the Property ID attribute on the property to
BackColor. Only then will the property behave like a BackColor property. In
solving this problem, you needed to cross over from pure Visual Basic into the
world of ActiveX. Although Visual Basic attaches different terminology to
options and language statements, you end up being directly or indirectly
exposed to ActiveX concepts such as dispatch IDs (DISPIDs), what Visual Basic
refers to as property IDs, and OLE types such as OLE_COLOR. Visual Basic, as
much as it tries, cannot hide this from you. The more properties, events, methods,
and property pages you add to your Visual Basic 6 ActiveX control, the more
problems you encounter that require an ActiveX-related solution.

Visual Basic .NET works in much the same way. Most of the time, you are
just dealing with Visual Basic. However, when you need your application or
component to behave consistently with other types of applications, whether
they be standard Windows applications or Web service server objects, you will
need a detailed understanding of the environment in which you want your
application to run. In the case of .NET applications, you will need to under-
stand how .NET works. The more you know about the target environment, the
better equipped you are to create a component or application that behaves well
in that environment. So let’s dig a bit and uncover the machine that will run
your upgraded Visual Basic .NET application: the .NET Framework.

C0261587x.fm Page 20 Thursday, November 15, 2001 2:02 PM

Chapter 2 Visual Basic 6 and Visual Basic .NET: Differences 21

.NET Framework
The .NET Framework is composed of two general parts: the common language
runtime and the Framework class library. The runtime is the foundation upon
which the .NET Framework is based. It provides the basic services on which all
.NET applications depend: code execution, memory management, thread man-
agement, and code security. The Framework class library provides building
blocks for creating a variety of .NET applications, components, and services.
For example, the Framework class library contains the base classes for creating
ASP.NET Web applications, ASP.NET XML Web services, and Windows Forms. It
defines all of the value types, known as System types, such as Byte, Integer,
Long, and String. It gives you complex structure classes such as Collection and
HashTable, as well as the interfaces such as ICollection and IDictionary so you
can define your own custom implementation of a standard Collection or Hash-
Table class.

The .NET Framework as a whole, since it works across all .NET languages,
can be thought of as an expanded version of the Visual Basic 6 runtime. The
common language runtime corresponds to the Visual Basic Language Runtime
in Visual Basic 6, which includes the byte code interpreter and memory man-
ager. The counterparts of the .NET Framework class library in Visual Basic 6
include the Visual Basic forms package, the Collection object, and global
objects such as App, Screen, Printer, and Clipboard.

The main difference between the two environments is that Visual Basic 6
is a closed environment, meaning that none of the intrinsic Visual Basic types,
such as Collection, App, Screen, and so on, can be shared with other language
environments, such as C++. Likewise, Microsoft Visual C++ is largely a self-con-
tained language environment that includes its own runtime and class libraries,
such as MFC and ATL. The MFC CString class, for example, is contained within
the MFC runtime and is not shared with other environments such as Visual Basic.

In closed environments such as these, you can share components
between environments only when you create them as ActiveX components, and
even then there are a number of limitations. ActiveX components need to be
designed and tested to work in each target environment. For example, an
ActiveX control hosted on a Visual Basic 6 form may work wonderfully, but the
same control may not work at all when hosted on an MFC window. You then
need to add or modify the interfaces or implementation of your ActiveX com-
ponent to make it work with both the Visual Basic 6 and MFC environments. As
a result, you end up duplicating your effort by writing specialized routines to
make your ActiveX component work in all target environments.

The .NET Framework eliminates this duplication by creating an environ-
ment in which all languages have equal access to the same broad set of .NET
types, base classes, and services. Each language built on the .NET Framework

C0261587x.fm Page 21 Thursday, November 15, 2001 2:02 PM

22 Part I Introduction to Upgrading

shares this common base. No matter what your language of choice is—Visual
Basic .NET , C#, or COBOL (for .NET)—the compiler for that language gener-
ates exactly the same set of .NET runtime instructions, called Microsoft Interme-
diate Language (MSIL). With each language distilled down to one base
instruction set (MSIL), running against the same runtime (the .NET common lan-
guage runtime), and using one set of .NET Framework classes, sharing and con-
sistency become the norm. The .NET components you create using any .NET
language work together seamlessly without any additional effort on your part.

Now that you have seen some of the differences between the Visual
Basic 6 ActiveX-based environment and the Visual Basic .NET environment,
let’s focus on various elements of the .NET Framework and see how each ele-
ment manifests itself in Visual Basic .NET. The elements we will be looking at
are memory management, type identity, and the threading model. Each of these
areas will have a profound impact on the way you both create new Visual Basic
.NET applications and revise upgraded Visual Basic 6 applications to work with
Visual Basic .NET.

Memory Management
Visual Basic .NET relies on the .NET runtime for memory management. This
means that the .NET runtime takes care of reserving memory for all Visual Basic
strings, arrays, structures, and objects. Likewise, the .NET runtime decides when
to free the memory associated with the objects or variables you have allocated.
This is not much different from Visual Basic 6, which was also responsible for
managing the memory on your behalf. The most significant difference between
Visual Basic 6 and Visual Basic .NET in terms of memory management involves
determining when an object or variable is freed.

In Visual Basic 6, the memory associated with a variable or object is freed
as soon as you set the variable to Nothing or the variable falls out of scope. This
is not true in Visual Basic .NET. When a variable or object is set to Nothing or
falls out of scope, Visual Basic .NET tells the .NET runtime that the variable or
object is no longer used. The .NET runtime marks the variable or object as
needing deletion and relegates the object to the Garbage Collector (GC). The
Garbage Collector then deletes the object at some arbitrary time in the future.

Because we can predict when Visual Basic 6 will delete the memory asso-
ciated with a variable, we refer to the lifespan of a variable in that language as
being deterministic. In other words, you know the exact moment that a vari-
able comes into existence and the exact moment that it becomes nonexistent.
The lifespan of a Visual Basic .NET variable, on the other hand, is indetermin-
istic, since you cannot predict exactly when it will become nonexistent. You
can tell Visual Basic .NET to stop using the variable, but you cannot tell it when
to make the variable nonexistent. The variable could be left dangling for a few

C0261587x.fm Page 22 Thursday, November 15, 2001 2:02 PM

Chapter 2 Visual Basic 6 and Visual Basic .NET: Differences 23

nanoseconds, or it could take minutes for the .NET Framework to decide to
make it nonexistent. In the meantime, an indeterminate amount of your Visual
Basic code will execute.

In many cases it does not matter whether or not you can predict when a
variable or object is going to be nonexistent. For example, a simple variable
such as a string or an array that you are no longer using can be cleaned up at
any time. It is when you are dealing with objects that things get interesting.

Take, for example, a File object that opens a file and locks the file when
the File object is created. The object closes the file handle and allows the file to
be opened by other applications when the object is destroyed. Consider the fol-
lowing Visual Basic .NET code:

Dim f As New File
Dim FileContents As String
f.Open(“MyFile.dat”)
FileContents = f.Read(“MyFile.dat”)
f = Nothing
FileContents = FileContents & “ This better be appended to my file! “
f.Open(“MyFile.dat”)
f.Write(FileContents)
f = Nothing

If you run this application in Visual Basic 6, it will run without error. How-
ever, if you run this application in Visual Basic .NET, you will encounter an
exception when you attempt to open the file the second time. Why? The file
handle associated with MyFile.dat will likely still be open. Setting f to Nothing
tells the .NET Framework that the File object needs to be deleted. The runtime
relegates the object to the garbage bin, where it will wait until the Garbage Col-
lector comes along to clean it up. The File object in effect remains alive and
well in the garbage bin. As a result, the MyFile.dat file handle is still open, and
the second attempt to open the locked file will lead to an error.

The only way to prevent this type of problem is to call a method on the
object to force its handle to be closed. In this example, if the File object had a
Close method, you could use it here before setting the variable to Nothing. For
example,

f.Close

f = Nothing

Dispose: Determinism in the Face of Chaos
Despite all of the benefits that a garbage-collected model has to offer, it has one
haunting side effect: the lack of determinism. Objects can be allocated and
deleted by the hundreds, but you never really know when or in what order

C0261587x.fm Page 23 Thursday, November 15, 2001 2:02 PM

24 Part I Introduction to Upgrading

they will actually terminate. Nor do you know what resources are being con-
sumed or locked at any given moment. It’s confusing, even chaotic. To add
some semblance of order to this system, the .NET Framework offers a mecha-
nism called Dispose to ensure that an object releases all its resources exactly
when you want it to. Any object that locks resources you need or that otherwise
needs to be told to let go should implement the IDisposable interface. The IDispos-
able interface has a single method, Dispose, that takes no parameters. Any client
using the object should call the Dispose method when it is finished with the object.

One More Thing to Worry About
If you’ve been using Visual Basic 6, you’re not accustomed to calling Dispose
explicitly on an object when you write code. Unfortunately, when it comes to
Visual Basic .NET, you will have to get accustomed to doing so. Get in the habit
now of calling Dispose on any object when you are done using it or when the
variable referencing it is about to go out of scope. If we change the File object
shown earlier to use Dispose, we end up with the following code:

Dim f As New File
Dim FileContents As String
f.Open(“MyFile.dat”)
FileContents = f.Read(“MyFile.dat”)
f.Dispose
f = Nothing
FileContents = FileContents & “ This better be appended to my file! “
f.Open(“MyFile.dat”)
f.Write(FileContents)
f.Dispose
f = Nothing

Note The Visual Basic Upgrade Wizard does not alert you to cases
in which you may need to call Dispose. We advise you to review your
code after you upgrade to determine when an object reference is no
longer used. Add calls to the object’s Dispose method to force the
object to release its resources. If the object—notably ActiveX objects
that do not implement IDisposable—does not support the Dispose
method, look for another suitable method to call, such as Close. For
example, review your code for the use of ActiveX Data Objects (ADO)
such as Recordset and Connection. When you are finished with a
Recordset object, be sure to call Close.

C0261587x.fm Page 24 Thursday, November 15, 2001 2:02 PM

Chapter 2 Visual Basic 6 and Visual Basic .NET: Differences 25

When You Just Want It All to Go Away
While your application runs, objects that have been created and destroyed may
wait for the Garbage Collector to come and take them away. At certain points
in your application, you may need to ensure that no objects are hanging
around locking or consuming a needed resource. To clean up objects that are
pending collection, you can call on the Garbage Collector to collect all of the
waiting objects immediately. You can force garbage collection with the follow-
ing two calls:

GC.Collect

GC.WaitForPendingFinalizers

Note The two calls to Collect and to WaitForPendingFinalizers are
required in the order shown above. The first call to Collect kicks off the
garbage collection process asynchronously and immediately returns.
The call to WaitForPendingFinalizers waits for the collection process to
complete.

Depending on how many (or few) objects need to be collected, running
the Garbage Collector in this manner may not be efficient. Force garbage col-
lection sparingly and only in cases where it’s critical that all recently freed
objects get collected. Otherwise, opt for using Dispose or Close on individual
objects to free up needed resources as you go.

Type Identity
Mike once played on a volleyball team where everyone on his side of the net,
including himself, was named Mike. What a disaster. All the other team had to
do was hit the ball somewhere in the middle. Someone would yell, “Get it,
Mike!” and they would all go crashing into a big pile. To sort things out, they
adopted nicknames, involving some derivation of their full names. After that,
the game went much better.

Like names in the real world, types in Visual Basic can have the same
name. Instead of giving them nicknames, however, you distinguish them by
using their full name. For example, Visual Basic has offered a variety of data
access models over the years. Many of these data access models contain objects
with the same names. Data Access Objects (DAO) and ActiveX Data Objects
(ADO), for instance, both contain types called Connection and Recordset.

C0261587x.fm Page 25 Thursday, November 15, 2001 2:02 PM

26 Part I Introduction to Upgrading

Suppose that, for whatever reason, you decided to reference both DAO and
ADO in your Visual Basic 6 project. If you declared a Recordset variable, the
variable would be either a DAO or an ADO Recordset type:

Dim rs As Recordset

How do you know which type of Recordset you are using? One way to tell
is to look at the properties, methods, and events that IntelliSense or the event
drop-down menu gives you. If the object has an Open method, it is an ADO
Recordset. If instead it has an OpenRecordset method, it is a DAO Recordset.
In Visual Basic 6, the Recordset you end up with depends on the order of the
references. The reference that appears higher in the list wins. In Figure 2-1, for
example, the Microsoft ActiveX Data Objects 2.6 Library reference occurs
before the reference to the Microsoft DAO 3.6 Object Library, so ADO wins and
the Recordset is an ADO Recordset type.

F01km01

Figure 2-1 ADO 2.6 reference takes precedence over DAO 3.6.

If you change the priority of the ADO reference by selecting it and click-
ing the down arrow under Priority, the DAO reference will take precedence.
Clicking OK to apply the change transforms your Recordset type to a DAO
Recordset.

Suppose you want to use both types of Recordset objects in your applica-
tion. To do so, you need to fully qualify the type name as follows:

Dim rsADO As ADODB.Recordset
Dim rsDAO As DAO.Recordset

As you can see, Visual Basic 6 is quite flexible when it comes to using types.
Indeed, you could argue that it is too flexible, since you could mistakenly
change the type for variables in your code simply by changing the order of a
reference.

C0261587x.fm Page 26 Thursday, November 15, 2001 2:02 PM

Chapter 2 Visual Basic 6 and Visual Basic .NET: Differences 27

Visual Basic .NET is stricter about the use of the same types in an applica-
tion. The general rule is that you need to fully qualify every ambiguous type
that you are using. If you are referencing both ADO and DAO, for example, you
are forced to fully qualify your use of the types just as you would in Visual Basic 6:

Dim rsADO As ADODB.Recordset

Dim rsDAO As DAO.Recordset

Using Imports
To help you cut down on the number of words and dots that you need to type
for each reference, Visual Basic .NET allows you to import a namespace. You
can think of it as a global With statement that is applied to the namespace. (A
namespace is similar to a library or project name in Visual Basic 6.) For exam-
ple, type references can become quite bothersome when you are dealing with
.NET types such as System.Runtime.Interopservices.UnmanagedType. To sim-
plify the qualification of this type, you can add an Imports statement to the
beginning of the file in which it is used:

Imports System.Runtime

This statement allows you to reference the type as Interopservices.Unman-
agedType. You can also expand the Imports clause to

Imports System.Runtime.Interopservices.

and then simply refer to Unmanaged Type in your code.

Managing Conflicts
Imports works great until there is a conflict. As we indicated earlier, in Visual
Basic 6, the rule is that the type library that is higher in the precedence list takes
priority. Visual Basic .NET is different in that all conflicts are irreconcilable. You
have to either change your Imports clause to avoid the conflict or fully qualify

each type when it is used. Suppose that you add Imports statements for ADO

and DAO as follows:

Imports ADO
Imports DAO

Now suppose that you want to declare a variable of type Recordset. As in the
volleyball game described earlier, it’s as if you yelled out, “Recordset!” Both
ADO and DAO jump in. Crash! Big pile. Any attempt to use the unqualified type
Recordset will lead to an error that states, “The name ‘Recordset’ is ambiguous,
imported from Namespace ADO, DAO.” To resolve the problem, you need to
either fully qualify the type or remove one of the Imports statements.

C0261587x.fm Page 27 Thursday, November 15, 2001 2:02 PM

28 Part I Introduction to Upgrading

No More GUIDs
Each ActiveX type, whether it is a class, an interface, an enumerator, or a struc-
ture, generally has a unique identifier associated with it. The identifier is a 128-
bit, or 16-byte, numeric value referred to as UUID, GUID, LIBID, CLSID, IID, or
<whatever>ID. No matter what you call it, it is a 128-bit number.

Rather than make you think in 128-bit numbers, Visual Basic (and other
languages) associates human-readable names with each of these types. For
example, if you create a Visual Basic 6 class called Customer, its type identifier
will be something like {456EC035-17C9-433c-B5F2-9F22C29D775D}. You can
assign Customer to other types, such as LoyalCustomer, if LoyalCustomer imple-
ments the Customer type with the same ID value. If the LoyalCustomer type
instead implements a Customer type with a different ID value, the assignment
would fail with a “Type Mismatch” error. In ActiveX, at run time, the number is
everything; the name means little to nothing.

In .NET, on the other hand, the name is everything. Two types are consid-
ered the same if they meet all of the following conditions:

� The types have the same name.

� The types are contained in the same namespace.

� The types are contained in assemblies with the same name.

� The assemblies containing the types are weak named.

Note that the types can be in assemblies that have the same name but a
different version number. For example, two types called Recordset contained in
the namespace ADODB are considered the same type if they live in an assem-
bly such as Microsoft.ADODB.dll with the same name. There could be two
Microsoft.ADODB.dll assemblies on your machine with different version num-
bers, but the ADODB.Recordset types would still be considered compatible. If,
however, the Recordset types lived in different assemblies, such as
Microsoft.ADODB_2_6.dll and Microsoft.ADODB_2_7.dll, the types would be
considered different. You cannot assign two variables of type Recordset to
each other if each declaration of Recordset comes from an assembly with a
different name.

C0261587x.fm Page 28 Thursday, November 15, 2001 2:02 PM

Chapter 2 Visual Basic 6 and Visual Basic .NET: Differences 29

Threading Model
Visual Basic 6 ActiveX DLLs and controls can be either single threaded or apart-
ment threaded; they are apartment threaded by default. Apartment threading
means that only one thread can access an instance of your Visual Basic 6
ActiveX component at any given time. In fact, the same thread always accesses
your component, so other threads never disturb your data, including global
data. Visual Basic .NET components, on the other hand, are multithreaded by
default, meaning that two or more threads can be executing code within your
component simultaneously. Each thread has access to your shared data, such
as class member and global variables, and the threads can change any data
that is shared.

Visual Basic .NET multithreaded components are great news if you want
to take advantage of MTS pooling, which requires multithreaded components.
They are bad news if your component is not multithread safe and you wind up
trying to figure out why member variables are being set to unexpected or ran-
dom values in your upgraded component.

There is certainly more to cover on this topic, but we’ll leave that for the
discussion of threading in Chapter 11where we discuss how to make your mul-
tithreaded Visual Basic .NET components multithread safe.

Differences in the Development Environment
Although Visual Basic 6 shipped as part of Microsoft Visual Studio 6, it did not
share a common infrastructure with its siblings C++, Visual InterDev, and Visual
FoxPro. The only sharing came in the form of ActiveX components and in
designers such as the DataEnvironment. Although Visual Studio 6 shipped with
a common integrated development environment (IDE) called MSDev, Visual
Basic 6 did not participate in MSDev and instead came with its own IDE called
VB6.exe.

Visual Studio .NET ships with a single IDE that all languages built on the
.NET Framework share called Devenv.exe. The Visual Studio .NET IDE is a host
for common elements such as the Windows and Web Forms packages, the
Property Browser, Solution Explorer (also known as the project system), Server
Explorer, Toolbox, Build Manager, add-ins, and wizards. All languages, includ-
ing Visual Basic .NET and C#, share these common elements.

Although the Visual Studio .NET IDE provides a common environment for
different languages, the various languages are not identical or redundant. Each
language maintains its own identity in the syntax, expressions, attributes, and

C0261587x.fm Page 29 Thursday, November 15, 2001 2:02 PM

30 Part I Introduction to Upgrading

runtime functions you use. When you write code behind a form in a common
forms package such as Windows Forms or Web Forms, the code behind the
form is represented by the language you are using. If you use Visual Basic, the
events for the form are represented using Visual Basic syntax and have event
signatures almost identical to those you are accustomed to using in Visual Basic
6. If you use C#, all of the Windows Forms event signatures appear in the syn-
tax of the C# language.

What happened to the common tools that you have grown to love or hate
in Visual Basic 6? They have all been rewritten for Visual Studio. NET, as you’ll
see next.

Menu Editor
Do you really want to keep using the same clunky Menu Editor that has been
around since Visual Basic 1, shown in Figure 2-2? We doubt it. So you’ll probably
be pleased to know that you won’t find it in the Visual Studio .NET environment.
Instead, you create menus by inserting and editing the menu items directly on
a Windows form.

F01km02

Figure 2-2 Visual Basic 6 Menu Editor.

To insert a new menu in the .NET environment, you drag a MainMenu
component from the Toolbox and drop it on the form. Then you select the
MainMenu1 component in the component tray, below the form, and type your
menu text in the edit box that says “Type Here” just below the title bar for your
form. Figure 2-3 shows the Visual Basic .NET menu editor in action.

C0261587x.fm Page 30 Thursday, November 15, 2001 2:02 PM

Chapter 2 Visual Basic 6 and Visual Basic .NET: Differences 31

F01km03

Figure 2-3 Visual Basic .NET’s in-place menu editor.

Toolbox
The Visual Studio .NET Toolbox is similar to the Visual Basic 6 Toolbox in
appearance and use. A difference you will notice right away is that the Visual
Studio .NET Toolbox contains the name of each Toolbox item in addition to the
icon. Also, depending on the type of project selected, the Toolbox displays a
variety of tabs containing different categories of controls and components that
you can add to a form or designer. For example, when you are editing a Win-
dows Forms project, the Toolbox will contain categories titled Data, Compo-
nents Windows Forms, Clipboard Ring, and General. Each tab contains ADO
.NET data components such as DataSet and OleDBAdaptor; system components
such as MessageQueue and EventLog; and Windows Forms controls and compo-
nents such as Button, TextBox, Label, and TreeView.

A subtle difference between the Visual Basic 6 Toolbox and the Visual
Basic .NET Toolbox relates to references. In Visual Basic 6, any ActiveX control
you add to the Toolbox is also added as a reference within your project. The
reference exists whether you use the ActiveX control on a form or not. In Visual
Basic .NET, the items you add to the Toolbox are not referenced by default. It
is not until you place the control on a Windows form or designer that a refer-
ence to that component is added to your project.

C0261587x.fm Page 31 Thursday, November 15, 2001 2:02 PM

32 Part I Introduction to Upgrading

Because a reference to an ActiveX control automatically exists when you
place the control on the Toolbox in Visual Basic 6, you can use the reference in
code. For example, suppose you add the Masked Edit ActiveX control to the
Toolbox but don’t add an instance of the control to the form. You can write code
to add an instance of the Masked Edit ActiveX control to a form at runtime,
as follows:

Dim MyMSMaskCtl1 As MSMask.MaskEdBox
Set MyMSMaskCtl1 = Controls.Add(“MSMask.MaskEdBox", “MyMSMaskCtl1”)
MyMSMaskCtl1.Visible = True

If you attempt to place a Masked Edit ActiveX control on a Visual Basic
.NET Toolbar, you will find that if you declare a variable of the ActiveX control
type, the statement will not compile. For example, if you attempt to declare the
Masked Edit control, using Visual Basic .NET equivalent syntax, the statement
won’t compile, as follows:

Dim MyMSMaskCtl1 As AxMSMask.AxMaskEdBox

To declare a variable of the ActiveX control type, you need to place the ActiveX
control on a form. You will then be able to dimension variables of the
ActiveX control type.

Note After you place an ActiveX control on a Visual Basic .NET
form, you will find that you can declare variables of the control type.
However, you will not be able to use Controls.Add, as demonstrated in
the Visual Basic 6 code above. Controls.Add is not supported in Visual
Basic .NET.

Property Browser
The Visual Studio .NET Property Browser is, for the most part, identical in terms
of appearance and use to the Visual Basic 6 Property Browser. One minor dif-
ference is that the default view for the Property Browser in Visual Studio .NET
is Category view, meaning that related properties are grouped under a descrip-
tive category. Alphabetical view is also supported. The Visual Basic 6 Property
Browser, on the other hand, defaults to listing properties alphabetically,
although it supports a categorized view.

The Visual Studio .NET Property Browser can list all of the properties
associated with a control or component. This is not the case when you are
using the Visual Basic 6 Property Browser. For example, the Visual Basic 6

C0261587x.fm Page 32 Thursday, November 15, 2001 2:02 PM

Chapter 2 Visual Basic 6 and Visual Basic .NET: Differences 33

Property Browser cannot list object or variant-based properties. It can display
properties for a limited number of objects, such as Picture or Font, but it cannot
represent an object property such as the ColumnHeaders collection of a List-
View control. Instead the Visual Basic 6 Property Browser relies on an ActiveX
control property page to provide editing for object properties such as collections.

The Visual Studio .NET Property Browser allows direct editing of an object
property if a custom editor is associated with the property or the property type.
For example, the Visual Studio .NET Property Browser provides a standard Col-
lection Editor for any property that implements ICollection. In the case of the
ColumnHeaders collection for a ListView control, a ColumnHeader Collection
Editor, based on the standard Collection Editor, is provided for you to edit the
ColumnHeaders collection for the ListView. Figure 2-4 shows an example of
editing the ListView Columns property.

F01km04

Figure 2-4 Visual Basic .NET ColumnHeader Collection Editor in action.

Tab Layout Editor
Your days of clicking a control, setting the TabIndex property, and then repeat-
ing the process for the several dozen controls on your form are over. Welcome
to the Visual Studio .NET Tab Layout Editor. The Tab Layout Editor allows you
to view and edit the tab ordering for all elements on the form at once. To view
your tab layout for the current form, select Tab Order from the View menu. A
tab index number displays for each control on the form. You can start with the
control that you want to be first in the tab order, and then click the remaining

C0261587x.fm Page 33 Thursday, November 15, 2001 2:02 PM

34 Part I Introduction to Upgrading

controls in the tab order that you want. The tab index numbers will correspond
to the order in which you click the controls. Figure 2-5 illustrates the Tab Layout
Editor.

F01km05

Figure 2-5 Visual Studio .NET Tab Layout Editor in action.

Forms Packages
The forms package that you use in Visual Basic 6 to create standard .exe
projects or ActiveX control projects is essentially the same package that has
been in existence since Visual Basic 1. Visual Basic .NET offers a brand new
forms package called Windows Forms. In addition, Visual Basic .NET gives
you a second forms package to help in creating Web applications: the Web
Forms package.

A Single Standard for Windows Forms
A significant difference between Visual Basic .NET and Visual Basic 6 is that the
forms you use with Visual Basic .NET can be used in any type of .NET project.
For example, you can use the same forms with both a Visual Basic application
and a C# application.

C0261587x.fm Page 34 Thursday, November 15, 2001 2:02 PM

Chapter 2 Visual Basic 6 and Visual Basic .NET: Differences 35

The forms package found in Visual Basic 6 is local to that environment.
You can use Visual Basic 6 forms only in Visual Basic 6. Microsoft has tried in
the past to create a single, standard forms package that could be shared across
multiple products such as Visual Basic, C++, and Office. The initiative, called
Forms3 (pronounced Forms Cubed), never realized this goal. Forms3 is alive
and well in Office but was never made fully compatible with the Visual Basic
forms package.

The Windows Forms package reignites some hope of having a single
forms standard applied across various Microsoft products—at least for client
applications based on the .NET platform. The ideal of having a single, universal
forms package, however, will need to wait; Visual Studio .NET also introduces
a separate forms package for Web applications.

Two Forms Packages for the Price of One
One of the appealing features of Visual Studio .NET is that you can create a
Web application more quickly and easily than you ever have before. This ease
stems from the marriage between the Web Forms package and Visual Basic
.NET. For the first time, you can create a Web application in the same manner
that you create a Windows client application. You drag and drop controls onto
a Web form and then write code to handle the form and control events. All of
the skills that you use to create Visual Basic Windows applications can now be
used to create Web applications.

Note The Upgrade Wizard will upgrade your client-based applica-
tions to use Windows Forms and will upgrade your WebClasses-
based applications to use Web Forms.

Language Differences
With each new version of Visual Basic, Microsoft has expanded the language by
offering new keywords, new syntactical elements, new conditional statements
or modifiers, new attributes, and so on. Visual Basic .NET is no exception. It
makes the same types of additions to the language as previous versions have,
but on a much grander scale than before. Table 2-1 gives a complete list of key-
words that have been added to the Visual Basic .NET language.

C0261587x.fm Page 35 Thursday, November 15, 2001 2:02 PM

36 Part I Introduction to Upgrading

Table 2-1 New Keywords in Visual Basic .NET

Visual Basic .NET Keyword Description

AddHandler and RemoveHandle Dynamically adds or removes event handlers
at runtime, respectively

AndAlso and OrElse Short circuited logical expressions that com-
plement And and Or, respectively

Ansi, Auto, and Unicode Declare statement attributes

CChar, CObj, CShort, CType, and DirectCast Coercion functions

Class, Interface, Module, and Structure Type declaration statements

Default Attribute for indexed property declarations

Delegate Declare pointer to instance method or shared
method

GetType Returns Type class for a given type

Handles Specifies event handled by a subroutine

Imports Includes given namespace in current code
file

Inherits Optional statement used with a class to
declare classes that inherit from another class

MustInherit Optional statement used with a class to
declare the class as an abstract base class

MustOverride Optional subroutine attribute that specifies an
inherited class must implement the subroutine

MyBase Refers to base class instance

MyClass Refers to the current class instance. Ignores a
derived class.

Namespace Defines a namespace block

NotInheritable Optional statement used with Class to indi-
cate the class cannot be inherited

NotOverridable Optional subroutine attribute which specifies
that a subroutine cannot be overridden in a
derived class

Option Strict Allows you to turn strict type conversion
checking on or off. Default is off.

Overloads Optional subroutine attribute that indicates
the subroutine overloads a subroutine with
the same name, but different parameters

Overridable Optional subroutine attribute which specifies
that a subroutine can be overridden in a
derived class

C0261587x.fm Page 36 Thursday, November 15, 2001 2:02 PM

Chapter 2 Visual Basic 6 and Visual Basic .NET: Differences 37

Because the Upgrade Wizard generally does not modify or update your
code to take advantage of new Visual Basic .NET features, only a subset of the
new features come into play after an upgrade. Therefore, we will focus here on
some of the general language differences that affect your upgraded Visual Basic
6 application. Chapter 11covers how to deal with these and other language
changes in detail. The sections that follow describe the types of changes you
will notice when you look at your upgraded Visual Basic .NET code.

All Subroutine Calls Must Have Parentheses
Parentheses are required on all subroutine calls. If you write code that does not
use the Call keyword, as follows:

MsgBox “Hello World”

you are required to use parentheses in your Visual Basic .NET code, as follows:

MsgBox(“Hello World”)

Overrides Optional subroutine attribute that indicates
the subroutine overrides a subroutine in the
base class

Protected Class member attribute that limits member
access to the class and any derived class

Protected Friend Same as Protected, but expands the scope to
include access by any other class in the same
assembly

ReadOnly and WriteOnly Attribute on a Property declaration to specify
the property is read-only or write-only

Return* Statement used to return, possibly with a
value from a subroutine

Shadows Attribute on class members to specify that a
class member is distinct from a same-named
base class member

Short 16-bit type known as Integer in Visual Basic 6

SyncLock Specifies the start of a thread synchronization
block

Try, Catch, Finally, and When Keywords related to structured error handling

Throw Keyword to throw an exception

* Existing keyword with different behavior.

Table 2-1 New Keywords in Visual Basic .NET continued

Visual Basic .NET Keyword Description

C0261587x.fm Page 37 Thursday, November 15, 2001 2:02 PM

38 Part I Introduction to Upgrading

ByVal or ByRef Is Required
In Visual Basic .NET, all subroutine parameters must be qualified with ByVal or
ByRef. For example, instead of this Visual Basic 6 code:

Sub UpdateCustomerInfo(CustomerName As String)
End Sub

you will see the following Visual Basic .NET code:

Sub UpdateCustomerInfo(ByRef CustomerName As String)

End Sub

In this case, an unqualified Visual Basic 6 parameter has been upgraded to
use the ByRef calling convention. In Visual Basic .NET, the default calling con-
vention is ByRef.

Is That My Event?
Visual Basic 6 associates events by name, using the pattern <Object-
Name>_<EventName>. For example, the click event associated with a com-
mand CommandButton is

Private Sub Command1_Click()

If you change the name of the Visual Basic 6 event to the name of a sub-
routine that does not match any other event, it becomes a simple subroutine.
The name pattern, therefore, determines whether a subroutine is an event or not.

Handles Clause
Visual Basic .NET does not associate events by name. Instead, a subroutine is
associated with an event if it includes the Handles clause. The name of the sub-
routine can be any name you want. The event that fires the subroutine is given
in the Handles clause. For example, the click event associated with a Visual
Basic .NET button has the following signature:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles Button1.Click

Because the event hookup is an explicit part of the event declaration, you can
use unique names for your events. For example, you can change the name of
your Button1_Click event to YouClickedMyButton as follows:

Private Sub YouClickedMyButton(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles Button1.Click

C0261587x.fm Page 38 Thursday, November 15, 2001 2:02 PM

Chapter 2 Visual Basic 6 and Visual Basic .NET: Differences 39

Event Parameters
Another interesting change related to events is that event parameters are differ-
ent between Visual Basic 6 and Visual Basic .NET. In Visual Basic 6, the event
subroutine contains the name and type of each parameter. In Visual Basic .NET,
the parameters are bundled up in an EventArgs object and passed in as a refer-
ence to that object. Also, the event subroutine for a Visual Basic .NET event
includes a reference to the object that fired the event.

As an example of the different handling of event parameters in the two
versions of Visual Basic, consider a form with a Listbox control on it, for which
you need to write code to show the checked item.

In Visual Basic 6, you would write the following code:

Private Sub List1_ItemCheck(Item As Integer)
MsgBox “You checked item: “ & Item

End Sub

The equivalent code in Visual Basic .NET is as follows:

Private Sub CheckedListBox1_ItemCheck(ByVal sender As Object, _
ByVal e As System.Windows.Forms.ItemCheckEventArgs) _
Handles CheckedListBox1.ItemCheck
MsgBox(“You checked item: “ & e.Index)

End Sub

Observe how the item that is checked is passed directly as a parameter in Visual
Basic 6. In Visual Basic .NET, it is passed as a member of the passed-in Item-
CheckEventArgs object e.

Arrays Must Have a Zero-Bound Lower Dimension
You cannot declare an array in Visual Basic .NET to have a nonzero-bound
lower dimension. This requirement also means that you cannot use Option Base 1.
In fact, you cannot specify a lower dimension in an array declaration, since it must
always be zero. The following types of declarations are no longer supported:

Dim MyIntArray(-10 To 10) As Integer ‘21 elements
Dim MyStringArray(1 To 100) As String ‘100 elements

Option Base 1
Dim MyOptionBase1Array(5) As Long ‘5 elements (1-5)

Instead, you must use zero-based lower bound arrays, and you need to adjust
the bounds to create an array with the same number of elements, such as

Dim MyIntArray(20) As Integer ‘21 elements (0-20)
Dim MyStringArray(99) As String ‘100 elements (0-99)

‘Option Base 1 ‘Not supported by VB .NET

Dim MyOptionBase1Array(4) As Long ‘5 elements (0-4)

C0261587x.fm Page 39 Thursday, November 15, 2001 2:02 PM

40 Part I Introduction to Upgrading

Refer to Chapter 11 for more information on how you can change your
array declarations in Visual Basic .NET to be compatible with your array decla-
rations in Visual Basic 6.

Fixed-Length Strings Are Not Supported
Visual Basic .NET does not support fixed-length strings. For example, the fol-
lowing type of declaration is not supported:

Dim MyString As String * 32

Instead, you can dimension the string as a fixed-length array of characters,
as follows:

Dim MyString(32) As Char

Or you can use a special class, VBFixedLengthString, defined in the Visual
Basic .NET compatibility library. If you use the VBFixedLengthString class the
declaration will be:

Imports VB6 = Microsoft.VisualBasic.Compatibility.VB6
…

Dim MyFixedLenString As New VB6.FixedLengthString(32)

To set the value of a FixedLengthString variable you need to use the Value
property as follows:

MyFixedLenString.Value = “This is my fixed length string”

Refer to Chapter 7 for more information about the Visual Basic .NET com-
patibility library.

Variant Data Type Is Eliminated
Visual Basic .NET eliminates the Variant data type. The main reason is that the
underlying .NET Framework does not natively support the Variant type or any-
thing like it. The closest approximation that the .NET Framework offers is the
Object type. The Object type works somewhat like the Variant type because
the Object type is the base type for all other types, such as Integer and String.
Just as you can with a Variant, you can assign any type to an Object. How-
ever, in Visual Basic .NET, to get a strong type back out of a Variant to assign, for
example, to an Integer or a String, you need to use a type-casting function, such
as CInt or CString. With Visual Basic 6, you can write code such as the following:

Dim v As Variant
Dim s As String
v = “My variant contains a string"
s = v

C0261587x.fm Page 40 Thursday, November 15, 2001 2:02 PM

Chapter 2 Visual Basic 6 and Visual Basic .NET: Differences 41

When using Visual Basic .NET, however, you need to use type conversion
functions such as CStr, as follows:

Dim v As Variant
Dim s As String
v = “My variant contains a string"
s = CStr(v)

Refer to Chapter 11 for more information on differences between the
Visual Basic 6 Variant and Visual Basic .NET Object types.

Visibility of Variables Declared in Nested Scopes Is Limited
Variables that are declared in a nested scope, such as those occurring within an
If…Then or For…Next block, are automatically moved to the beginning of the
function. The Upgrade Wizard does this for compatibility reasons. In Visual
Basic 6, a variable declared in any subscope is visible to the entire function. In
Visual Basic .NET, this is not the case. A variable declared within a subscope is
visible only within that subscope and any scope nested beneath it.

Take, for example, the following Visual Basic code:

Dim OuterScope As Long

If OuterScope = False Then
Dim InnerScope As Long

End If

InnerScope = 3

This code works fine in Visual Basic 6, but it will lead to a compiler error in
Visual Basic .NET. The compiler error will occur on the last line, InnerScope =
3, and will indicate that the name InnerScope is not declared.

Note The Upgrade Wizard will upgrade your code so that no com-
piler error occurs. It does this by moving the declaration for Inner-
Scope to the top of the function along with all other top-level
declarations. Moving the variable declaration to the top-level scope
allows the variable to be used from any scope within the function. This
move makes the behavior compatible with Visual Basic 6. It is one of
the few cases in which the Upgrade Wizard changes the order of code
during upgrade.

C0261587x.fm Page 41 Thursday, November 15, 2001 2:02 PM

42 Part I Introduction to Upgrading

Changes in the Debugger
Visual Basic .NET shares the same debugger with all .NET languages in Visual
Studio .NET. This debugger works much the same as the one in Visual Basic 6
in that you can step through code and set breakpoints in the same way. How-
ever, there are some differences that you should be aware of. These are dis-
cussed in the following sections.

No Edit and Continue
What percentage of your Visual Basic 6 application would you say is developed
when you are debugging your application in what is commonly referred to as
break mode? Ten percent? Forty percent? Ninety percent? Whatever your
answer, the number is likely above zero. Any problems you encounter while
debugging your Visual Basic 6 application are quite easy to fix while in break
mode. This is a great feature that allows you to create applications more
quickly. You will miss this ability in Visual Basic .NET.

The Visual Studio .NET common debugger does not allow you to edit your
code while in break mode. Any time you encounter code that you want to
change or fix, you need to stop debugging, make the change, and then start the
application again. Doing so can be a real pain.

The Visual Basic .NET team recognizes that this is not what you would call
a RAD debugging experience. The team hopes to offer an updated debugger
that supports edit and continue in a future release of Visual Studio .NET. Until
then, prepare to break, stop, edit, and rerun your application.

Cannot Continue After an Error
If an error or exception occurs while you are running your application, the
Visual Basic .NET debugger will stop at the point where the exception
occurred. However, unlike Visual Basic 6, in the Visual Basic .NET debugger
you cannot fix your code or step around the code that is causing the error. If
you attempt to step to another line, the application will terminate and switch to
Design view. You will need to determine the source of the exception, fix your
code, and then rerun the application.

No Repainting in Break Mode
In Visual Basic 6, the form and all controls on it continue to display even when
you are in break mode. This happens because the Visual Basic 6 debugger lets
certain events occur and allows certain code to execute when you are in break
mode. For example, painting is allowed to occur.

C0261587x.fm Page 42 Thursday, November 15, 2001 2:02 PM

Chapter 2 Visual Basic 6 and Visual Basic .NET: Differences 43

When debugging your application using Visual Basic .NET, you will find
that your form does not repaint. In fact, if you place another window over it
while you are in break mode, you will find that the form image does not update
at all. The Visual Basic .NET debugger does not allow any events or code to run
while you are in break mode.

One benefit of the Visual Basic .NET debugger is that you can debug your
paint code and watch your form update as each statement that paints the form
executes. It allows you to pinpoint the exact statement in your code that is
causing a problem with the display. Because the Visual Basic 6 debugger allows
the form to repaint constantly, it is difficult to pinpoint painting problems using
the Visual Basic 6 debugger.

Conclusion

As you can see, quite a bit is involved in the three “simple” changes that the
teams made to create Visual Basic .NET. Despite all of these changes, you
should find the development environment, compiler, and language familiar.
The skills that you have acquired using Visual Basic 6 are not lost when you
upgrade to Visual Basic .NET. The way you create, run, and debug a Visual
Basic .NET application is nearly identical to the process you are already familiar
with. After all, Visual Basic is still Visual Basic. The spirit is alive and well in
Visual Basic .NET.

C0261587x.fm Page 43 Thursday, November 15, 2001 2:02 PM

C0261587x.fm Page 44 Thursday, November 15, 2001 2:02 PM

