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ABSTRACT 
Gesture is becoming an increasingly popular means of in-
teracting with computers. However, it is still relatively cost-
ly to deploy robust gesture recognition sensors in existing 
mobile platforms. We present SoundWave, a technique that 
leverages the speaker and microphone already embedded in 
most commodity devices to sense in-air gestures around the 
device. To do this, we generate an inaudible tone, which 
gets frequency-shifted when it reflects off moving objects 
like the hand. We measure this shift with the microphone to 
infer various gestures. In this note, we describe the phe-
nomena and detection algorithm, demonstrate a variety of 
gestures, and present an informal evaluation on the robust-
ness of this approach across different devices and people.  
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INTRODUCTION AND MOTIVATION 
Recent advances in computer vision techniques have popu-
larized hand and body gestures for interacting with comput-
ers. For example, the Toshiba Qosmio G55 laptop uses its 
front-facing RGB webcam to allow the user to control 
PowerPoint slides or music/video playback. Unfortunately, 
vision-based gesture recognition techniques are generally 
brittle (e.g., sensitive to lighting conditions) and require 
quite a bit of processing power. The Microsoft Xbox Kinect 
is another example of a successfully deployed computer 
vision system, but miniaturizing this technology and mak-
ing it practical for mobile devices may take some time. 

As an alternative, sonic gesture sensing has been shown to 
be a reliable tool for sensing a variety of in-air gestures for 
controlling interfaces. Current technologies, however, have 
focused on separate transducers and receivers rather than 
leveraging arguably the most ubiquitous components in 
computing systems: the speaker and microphone.  

To this end, we present SoundWave, a sound-based gesture 
sensing approach that utilizes the existing audio hardware 
of mobile devices. This technique uses a well-understood 
phenomenon known as the “Doppler effect” or “Doppler 
shift”, which characterizes the frequency change of a sound 
wave as a listener moves toward or away from the source. 
A common example is the change in pitch of a vehicle siren 
as it approaches, passes, and then moves away from the 
listener. Using this effect, SoundWave detects motion in 
front of and around a computing device and uses properties 
of the detected motion – such as speed, direction, and am-
plitude – to recognize a rich set of gestures. For instance, 
the direction and speed of a hand moving up or down can 
be sensed to scroll a webpage in real-time (see sketch in 
Figure 1 as well as accompanying video figure). Sound-
Wave can also, for example, detect two hands moving in 
opposite directions, which we use as a “rotation” gesture in 
our example applications. Unlike vision, SoundWave can 
detect gestures without line of sight, making it complemen-
tary to vision-based systems. 

We are not the first to use sonic techniques or the Doppler 
effect for gesture and motion sensing. For example, Tarzia 
et al. measure the intensity of the echoes received by a mi-
crophone to detect human presence and attention [5]. Para-
diso et al. made use of a continuous 2.4 GHz tone to drive 
custom patch antennas. They used the reflected Doppler-
shifted signal to infer human motion and upper body kine-
matics in an interactive space [3]. More recently, Kalgaon-
kar et al. developed a device to recognize one-handed ges-
tures in 3D space using low-cost ultrasonic transducers that 
emit a 40 kHz tone. They placed one transmitter and two 
receivers in a triangle pattern where gestures could be per-
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Figure 1: SoundWave allows non-contact, real time in-air ges-

ture sensing on existing commodity computing devices. 



formed and sensed [4]. While these projects show the po-
tential of low-cost sonic gesture sensing, they require cus-
tom hardware, which is a significant barrier to widespread 
adoption. In our work, we focus on a solution that works 
across a wide range of existing hardware to facilitate im-
mediate application development and adoption. 

THE SOUNDWAVE SYSTEM 
SoundWave uses existing speakers on commodity devices 
to generate tones between 18-22 kHz, which are inaudible. 
We then use the existing microphones on these same devic-
es to pick up the reflected signal and estimate motion and 
gesture through the observed frequency shifts. 

Theory of Operation 
The phenomenon SoundWave uses to sense motion is the 
shift in frequency of a sound wave in response to a moving 
object, an effect called the Doppler effect. This frequency 
shift is proportional to source frequency and to the velocity 
with which the object moves. In our approach, the original 
source (the speakers) and listener (the microphone) are sta-
tionary, thus in absence of any motion, there is no frequen-
cy change. When a user moves his hand, however, it re-
flects the waves, causing a shift in frequency. This 
frequency is measured by the microphone ( ) and can be 
described by the following equation, which is used for 
Doppler radar as well as for estimating frequency changes 
in reflection of light by a moving mirror [2]: 

 

 

Figure 2 shows the frequency of the signal (a) when no mo-
tion is present and when a hand is moved (b) away from or 
(c) closer to the laptop. This change in frequency as a hand 
moves farther or closer is one of the many characteristic 
properties of the received signal that we leverage in detect-
ing motion and constructing gestures. 

Algorithm & Implementation Details 
SoundWave generates a continuous pilot tone, played 
through the device’s speakers at the highest possible fre-
quency (typically in the range of 18-22 kHz on commodity 
audio systems). Although we have verified that SoundWave 
can operate on audio down to 6 kHz, we favor tones above 

18 kHz since they are generally inaudible [1]. Additionally, 
the higher the frequency, the greater the shift for a given 
velocity, which makes it computationally easier to estimate 
motion at a given resolution. The upper bound is largely a 
function of most laptop and phone speaker systems only 
being capable of producing audio at up to 22 kHz. Fortu-
nately, we do not need much higher frequencies to sense the 
relatively coarse gestures we are targeting.  

Due to variations in hardware as well as filtering in sound 
and microphone systems, SoundWave requires an initial 
calibration to find the optimal tone frequency (no user in-
tervention is required). It performs a 500 ms frequency 
sweep, and keeps track of peak amplitude measurements as 
well as the number of candidate motion events detected 
(i.e., potential false positives). SoundWave selects the high-
est frequency at which minimum false events are detected 
and the peak is most isolated (i.e., the amplitude is at least 
3 dB greater than next-highest peak in the sweep range). 
The system consistently favors the 18-19 kHz range.  

With the high-frequency tone being emitted, any motion in 
proximity (around 1 m depending on speed) of the laptop 
will cause Doppler-shifted reflections to be picked up by 
the microphone, which is continuously sampled at 
44.1 kHz. We buffer the incoming time-domain signal from 
the microphone and compute the Fast Fourier Transform 
(FFT) with 2048-point Hamming window vectors. This 
yields 1024-point magnitude vectors that are spread equally 
over the spectral width of 22.05 kHz. After each FFT vector 
is computed, it is further processed by our pipeline: signal 
conditioning, bandwidth extraction, motion detection, and 
feature extraction.  

Signal Conditioning: Informal tests with multiple people 
indicated that the fastest speed at which they could move 
their hands in front of a laptop was about 3.9 m/sec. Hence, 
we conservatively bound signals of interest at 6 m/sec. Giv-
en our sampling rate and FFT size, this yields about 33 fre-
quency bins on either side of the emitted peak.  

Bandwidth Extraction: As seen in Figure 2, motion around 
the device creates a shifted frequency that effectively in-
creases the bandwidth of the pilot tone (i.e., window aver-
aging and spectral leakage blur the movement of the peak). 
To detect this, SoundWave computes the bandwidth of the 
pilot tone by scanning the frequency bins on both sides in-

 
Figure 2: (a) Pilot tone with no motion. (b and c) Increase in bandwidth on left and right due to motion away from and towards the 

laptop respectively. (d) Shift in frequency large enough for a separate peak. A single scan would not capture the true shift in fre-
quency and would terminate at the local minima. A second scan compensates for the bandwidth of the shifted peak. 



dependently until the amplitude drops below 10% of the 
pilot tone peak. Using a relative amplitude drop allows the 
system to respond dynamically, such as when the user 
changes the volume of the speakers. 

For most cases (e.g. Figure 2b and 2c), this is sufficient for 
inferring motion. However, if the shift is large enough, the 
reflected signal separates from the pilot tone’s peak rather 
than blurring the peak (e.g. Figure 2d). To address this, we 
perform a second scan, looking beyond the stopping point 
of the first scan. If a second peak with at least 30% of the 
primary tone’s energy is found, the first scan is repeated to 
find amplitude drops calculated from the second peak.  

To verify our approach, we analyzed various hand motions 
at different speeds. Using our percentage-based thresholds, 
we found that motion can be detected in each case with 
near-perfect accuracy. We note that we did not change these 
percentage thresholds as we tested SoundWave on different 
computing devices or with different people. 

Motion Detection and Feature Extraction: The frequency 
vectors have a per-bin resolution of 21.5 Hz. With a pilot 
tone of 20 kHz this translates to detecting movements as 
slow as 18.5 cm/sec. In practice, we have found that the 
bandwidth of the pilot tone itself with no motion is ~80 Hz, 
which can vary from 60-120 Hz (1-3 bins on either side of 
the tone) depending on the quality of the sound system. 
Thus, we consider a “motion event” to occur when there is 
a frequency shift bandwidth of 4 or more bins. We have 
found that this threshold allows sufficiently slow move-
ments of the hand to be detected while ignoring false posi-
tives due to variations in the bandwidth.  

Measurable Properties  
In addition to the fundamental frequency shift, we can also 
compute other useful features for inferring gestures.  

Velocity: The measured frequency change is proportional to 
the absolute speed of the target. SoundWave can measure 
the difference between the original and reflected frequen-
cies to differentiate slow, medium, and fast gestures. 

Direction: Determining whether the hand is moving toward 
or away from the computing device can be made from the 
sign of the frequency shift. A positive shift indicates 
movement toward the device. 

Proximity and Size of Target: The amplitude of the ob-
served signal increases as the target moves closer to the 
computing device, and it also increases with size and reflec-
tivity of the target. For example, a larger hand or open palm 
manifests as larger amplitude than a smaller or fisted hand. 

Time Variation: Measuring the variation of the above three 
properties over time allows us to both observe the rate of 
change and use it for filtering spurious signals. For exam-
ple, any motion that lasts for a very short period of time can 
be reliably filtered out, while longer lasting motion events 
can be used to identify activities like walking toward or 
away from the device. 

GESTURES AND USE CASES 
The features described above can then be combined to form 
complex gestures (see Video Figure for demonstration).  

Scrolling: We found that mapping motion events directly to 
control scrolling, such as for a web browser, works quite 
well. However, a clutching mechanism is required to pre-
vent inadvertent scrolling as the hand returns to a particular 
position. Using the velocity feature and scrolling only when 
it meets a certain speed criterion makes this possible. We 
also investigated using a ‘double-tap’ gesture to activate 
scrolling and using an idle timeout for deactivation. 

Single-Tap or Double-Tap: By observing the change in 
direction over time, the ‘frequency’ at which the direction is 
changing can be computed. The value of this direction fre-
quency can be used for detecting tap gestures, which can be 
further used to distinguish quick taps, much like a mouse 
double-click, from slower taps. In a Tetris application, we 
mapped slow taps to ‘left’ and quick taps to ‘right’ and 
were able to maneuver with reasonable precision. 

Two-Handed Seesaw: This gesture requires moving both 
hands simultaneously in opposite directions at the same 
time. It is detected by the presence of both up- and down-
shifted frequency components in the same FFT vector. We 
mapped this gesture to rotation action in the Tetris game. 

Sustained Motion: This gesture is activated when at least N 
consecutive motion events in the same direction are detect-
ed. A large N can signify that a person is walking (as op-
posed to moving the hand, which has fewer consecutive 
motions). We have used the walking gesture to automatical-
ly put a computer to sleep or wake it up as a user walks 
away from or toward it. In a game of Tetris, we mapped a 
‘pull back’ gesture (sustained motion of N=10 events away 
from the device) to the ‘drop block’ action. Lastly, we im-
plemented a ‘flick’ gesture with a sustained-motion thresh-
old of N=5 events to allow users to browse a photo album 
by moving her hands left or right; in this case we also put a 
maximum and minimum limit on gesture speed. 

PRELIMINARY PERFORMANCE EVALUATION 
We performed a set of preliminary tests to evaluate how 
well SoundWave works across devices and people and to 
estimate accuracy and robustness in different environments. 

Generalizability Across Laptops and People 
To support our claim that SoundWave could potentially 
work with most commodity computing platforms, we tested 
SoundWave on 11 different computers: five desktop PCs (4 
Dell, 1 HP), 2 MacBook Pros (15” & 13”), a Lenovo T61p, 
an IBM Thinkpad T43, a Dell Studio 1555, and a HP 
EliteBook laptop. We found that all of them performed sim-
ilarly to our performance results without any changes to the 
algorithms or thresholds. This also included two desktop 
PCs with an external USB soundcard and microphone. 

To ensure that SoundWave works across people, we tested 
it with 6 individuals. We asked them to control 3 applica-



tions using various gestures: (1) scrolling a webpage using 
simple hand motion toward or away; (2) playing Tetris us-
ing two-handed seesaw, pull-back, double-tap, and slow-tap 
gestures; and (3) browsing pictures in a cover flow layout 
with a ‘flick’ gesture. Although it took a few minutes for 
users to understand how to perform certain gestures, all 
users were able to successfully control all 3 applications. 

Accuracy and Robustness 
To measure how well gestures can be detected using 
SoundWave, we asked 3 users (1 female) aged 25-28 to 
perform 5 different gestures. Each user performed 10 repe-
titions of each gesture in both quiet and noisy environ-
ments. The first was in a home environment (noise level 
~45 dB SPL) and the second in a noisy cafeteria (noise lev-
el ~72 dB SPL). This task was repeated twice for each user. 
In total, 600 gestures were performed. SoundWave per-
formed well irrespective of the location (Table 1). This was 
especially the case for two-handed gestures. Quick taps 
performed the worst since users tended to move their fin-
gers rather than their palm; different fingers generated dif-
ferent velocity components. However, this may not be a 
problem in applications where there is visual feedback. 

To measure the number of times any unintended motion 
was detected, we conducted an hour-long test in each of the 
two locations. Users sat in front of the laptop, but neither 
performed any explicit gesture nor typed on the keyboard. 
For the home environment, an average of 2.5 false motion 
events occurred per minute, whereas for the café 6 events 
per minute were detected. Though relatively high, setting a 
threshold of N=4 for consecutive events eliminates the in-
terpretation of these ‘motions’ as ‘gestures.’ Here N means 
the number of consecutive motion events or FFT frames, 
i.e. the gesture needs to last for at least 4 frames or ~185ms 
for it to be even considered for gesture recognition. There-
fore, although motion was detected, post-processing these 
events with N=4 resulted in 0 false gesture detections, i.e. 
they were classified as ‘noise’. 

Because laptop microphones are generally housed in the 
bezel around the keyboard, the number of false events de-
tected greatly increases when a user types. We mitigate this 
by disabling SoundWave when we know the user is typing, 
similar to what track-pads do to prevent accidental input.  

We also confirmed that we are able to play audible music 
on the same laptop while successfully detecting motion 
events. We found that music does not harm performance, 
because frequencies seldom conflict and the threshold 
adapts. Additionally, we tested the range of detection by 
setting the volume of the speakers, which in turn controls 

how loud the pilot tone is. The volume control can be used 
to regulate the effective detection range, which could be 
useful in crowded situations in which the user may explicit-
ly not want to pick up ambient movement. 

LIMITATIONS & IMPROVEMENTS 
SoundWave is a promising approach for sensing interactive 
in-air gestures with no additional hardware requirements. 
However, it is not without limitations. The key drawback of 
this approach is the dependence on a tone, which may be 
audible and possibly annoying for children and pets. In ad-
dition, some devices incorporate filtering that prevents tone 
generation or recording over 18 kHz; a potential solution to 
this problem is “piggy-backing” a tone on a user’s digital 
music. Additionally, using Doppler shift inherently limits 
detection to motion gestures, thus requiring other compli-
mentary techniques for detection of static poses. 

In this work, the algorithms presented were implemented 
and tested on various laptops and desktop PCs, however 
this approach extends to smart phones and tablets. Anecdo-
tally, we observe the same frequency shift when performing 
gestures in front of mobile phones. Computational com-
plexity and power requirements on such devices can be 
further reduced by using Goertzel’s algorithm for compu-
ting selective frequency bins instead of a complete FFT. 

We believe gesture sets could be extended beyond the ones 
presented here by using techniques like Hidden Markov 
Models for multi-state gestures. Many newer mobile devic-
es also have multiple speakers and microphones that we 
could leverage for gesture localization. 

CONCLUSION 
In this paper, we described the use of the Doppler effect to 
build a software-only solution capable of sensing motion 
gestures on commodity computing hardware. Furthermore, 
we detailed a robust algorithm for detecting motion events 
and using characteristics of the sensed signal for imple-
menting two-handed gestures, as well as more complex 
gestures such as double-tap. Lastly, we showed the robust-
ness of the approach across different devices, users, and 
environments.  
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Location Two 
Handed 

Pull 
Back Flick Quick 

Taps 
Slow 
Taps 

Home 96.67 95.00 98.33 86.67 96.67 
Cafe 100 96.67 93.33 88.33 93.33 

Table 1: Average % of correctly recognized gestures across 
three users and two sessions in quiet and noisy locations. 

 


