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ABSTRACT

We introduce the Gaussian Process Transform (GPT), an or-
thogonal transform for signals defined on a finite but other-
wise arbitrary set of points in a Euclidean domain. The GPT
is obtained as the Karhunen-Loève Transform (KLT) of the
marginalization of a Gaussian Process defined on the domain.
Compared to the Graph Transform (GT), which is the KLT
of a Gauss Markov Random Field over the same set of points
whose neighborhood structure is inherited from the Euclidean
domain, the GPT retains up to 6 dB higher energy in the same
number of coefficients or the same energy in up to 20 times
fewer coefficients, and has several times higher coding gain.

Index Terms— Graph signal processing, graph trans-
form, Karhunen-Loève transform, Gaussian Process, energy
compaction, coding gain, voxels, point clouds.

1. INTRODUCTION

Graph Signal Processing is an emerging field within Signal
Processing. In Graph Signal Processing, the tools that are
used for processing signals defined on a regular Euclidian do-
main are extended to processing signals defined on a graph.
This extension opens signal processing to applications where
the signals are defined on an irregular domain, which is natu-
rally modeled by a graph, including social, energy, transporta-
tion, sensor and neuronal networks [1].

Many of the applications for Graph Signal Processing are
for signals defined on a graph whose nodes can be considered
to be embedded in a Euclidean domain. Common examples
include measurements from sensor networks as well as irreg-
ular samplings of 2D and 3D signals. An example considered
in this paper is the 3D voxelized point cloud shown in Fig. 1.

One of the central tools in Graph Signal Processing is the
Graph Transform (GT). The Graph Transform is defined as
a linear transform from signal space into the eigenspace of
the graph Laplacian. The Graph Transform plays the role
of the Fourier Transform in regular signal domains. Hence,
the Graph Transform and its inverse are used in many signal
processing operations, such as analysis, filtering, synthesis,
denoising, energy compaction, and compression. The Graph
Transform may be regarded as the Karhunen Loève Trans-
form (KLT) for a stochastic signal whose covariance matrix is

Fig. 1. Voxelized point cloud.

given by the inverse of the Graph Laplacian. It is well known
that for given signal statistics the KLT is the optimal trans-
form in terms of energy compaction and coding gain.

In this paper, we show that for signals defined on graphs
embedded in Euclidean domains, the Graph Transform may
be far from optimal in terms of energy compaction and coding
gain. The simple reason is that the Graph Laplacian does not
necessarily well model the statistics of the signal in this case.
The signal may be better modeled as an irregular sampling, or
restriction, of a stochastic signal or process whose domain of
definition is the containing Euclidean domain.

For graphs embedded in Euclidean domains, we introduce
the Gaussian Process Transform (GPT), which like the GT is
an orthogonal linear transform of signals defined on a finite
set of nodes. Also like the GT, the GPT can be regarded as
a Karhunen-Loève Transform. However, the covariance ma-
trix underlying the KLT that is the GPT is different than the
covariance matrix underlying the KLT that is the GT.

We show on datasets of voxelized point clouds that the
GPT has energy compaction that is up to 6 dB more efficient
than the GT, reduces the number of coefficients needed for
the same amount of energy compaction by up to a factor of
20, and has several times higher coding gain.

The paper is organized as follows. Section 2 couches the
Graph Transform as the KLT for a Gauss Markov Random
Field (GMRF). Section 3 presents two models for graphs of
GMRFs embedded in a regular Euclidean domain: a popular
model based on inverse distance, and a new model based on
auto-regressive fitting. Section 4 introduces the Gaussian Pro-
cess Transform as the KLT of a marginalized GMRF. Section
5 shows experimental results, and Section 6 concludes.



2. THE GRAPH TRANSFORM AND THE GMRF

We begin with the definition of the Graph Transform [1]. Let
G = (V, E) be an undirected graph, where V = {v1, . . . , vn}
is a finite set of nodes and E = {(vi, vj)} is a set of edges
between nodes in V . (A graph is undirected, also called bi-
directed, if (vi, vj) ∈ E whenever (vj , vi) ∈ E [2].) Let
(G,W ) be a weighted undirected graph, where W = [wij ] is
a symmetric non-negative n× n matrix of weights such that

wij > 0 if (vi, vj) ∈ E and wij = 0 otherwise. (1)

W defines the neighborhood structure of V in the graph. Let
D = [dij ] be a diagonal matrix such that dii = wii +

∑
j wij

for all i. The Graph Laplacian of the weighted graph (G,W )
is defined

L = D −W. (2)

Let L = ΨT ΛΨ be the eigen-decomposition of L, where Λ is
the diagonal matrix of eigenvalues and Ψ is the matrix whose
columns are the corresponding right eigenvectors. The Graph
Transform (or Graph Fourier Transform) is the linear trans-
form from Rn to Rn represented by the matrix ΨT .

We next remark that the Graph Transform is the KLT of
a corresponding Gauss Markov Random Field. A GMRF is
a collection of Gaussian random variables whose joint distri-
bution has a covariance structure given by a weighted undi-
rected graph. Specifically, a random vector x = (X(v1), · · · ,
X(vN ))T is called a GMRF with respect to the undirected
graph G = (V, E) with mean vector µ and a symmetric posi-
tive definite precision matrix Q = [qij ] if and only if its den-
sity has the form [3]:

p(x) = (2π)−
n
2 |Q| 12 exp

(
− 1

2
(x− µ)TQ(x− µ)

)
, (3)

and qij 6= 0⇔ (vi, vj) ∈ E for all i 6= j. (4)

From the above definition, it is clear that a GMRF x is a mul-
tivariate Gaussian distribution with mean vector µ whose co-
variance matrix R is the inverse of precision matrix Q [4].

It is shown in [5, sec 2.1] that there is a one-to-one map-
ping from the set of symmetric non-negative weight matrices
W satisfying (1) to the set of symmetric positive semi-definite
precision matrices Q satisfying (4), through the mapping

qij = −wij , for all i 6= j (5)

qii =

n∑
j=1

wij , for all i (6)

and its inverse

wij = −qij , for all i 6= j (7)

wii =

n∑
j=1

qij , for all i. (8)

It can be shown that Q is positive semi-definite if W is non-
negative, and furthermore that Q is positive definite if W has
at least one self-loop (i.e., wii > 0 for some i) in every con-
nected component [5, 6]. In this paper, for simplicity we deal
with only the case where Q is positive definite. The case
where Q is singular requires more care but results in quali-
tatively similar conclusions. For details see [5].

Thus it can be seen that every weighted graph (G,W ) cor-
responds uniquely to a GMRF with zero mean and precision
matrix Q given by (5)-(6). Moreover, it is easy to verify from
(2) and (5)-(6) that

Q = L (9)

and therefore R = Q−1 = ΨΛ−1ΨT . Hence Λ−1 is the
diagonal matrix of eigenvalues of Σ and Ψ is the matrix whose
columns are the corresponding eigenvectors. Thus the Graph
Transform ΨT is the KLT of the GMRF.

3. GMRFS EMBEDDED IN A EUCLIDEAN DOMAIN

For a wide class of applications of Graph Signal Processing,
the nodes v1, . . . ,vn of V are embedded in a Euclidean do-
main RN . (Here we use boldface for the nodes to indicate
that they are vectors in RN .) It is common in this case for the
neighborhood structure of V to be inherited from the neigh-
borhood structure of the containing domain. In this section,
we deal with the simplified case where the containing domain
is the integer lattice ZN ⊂ RN , and we examine two mod-
els for determining the neighborhood structure of ZN . The
neighborhood structure of ZN is given by a symmetric set of
weights between pairs of elements of ZN .

3.1. The Inverse Distance Model

Let d(v,v′) denote the Euclidean distance between points in
RN , which defines a distance d(vi,vj) between nodes in a
set. In the Inverse Distance model, the weights are defined

wij =

{
1/d(vi,vj) for 0 < d(vi,vj) ≤ dmax

0 otherwise (10)

for some distance cutoff dmax. When applied to nodes on the
integer lattice ZN , typical cutoffs satisfy d2max = 1, . . . , N ,
leading to local neighborhoods as illustrated in Fig. 2. We
refer to these neighborhood models as IDd2max: ID1,. . . ,IDN .

Fig. 2. Local neighborhoods in Z3 for d2max = 1, 2, 3. Blue
are d2 = 1 edges; green are d2 = 2 edges; red are d3 = 3
edges. Respective local neighborhoods sizes are 6, 18, 26.



3.2. The Auto-Regressive Model

On the integer lattice ZN , let X(v) be the stationary zero-
mean Gaussian random process satisfying the auto-regressive
equation

X(v) = U(v)−
∑
d∈N

adX(v − d), (11)

where U(v) is an iid N(0, σ2
u) Gaussian white noise, ad is a

coefficient for offset d, and N = {d : 0 < |d| ≤ dmax} is a
set of offsets in a neighborhood around the current point v.

With the proper boundary conditions, the above equation
can be used to generate X(·) from U(·). In particular,

x = A−1u, (12)

where x = [X(v) : v ∈ ZN
m] and u = [U(v) : v ∈ ZN

m] are
vectors truncated to blocks of size ` = mN and A = [aij ] is
an ` × ` matrix whose (i, j)th entry equals 1 if i = j, equals
ad if vi − d = vj for d ∈ N , and equals 0 otherwise.

Since the probability density of u is

p(u) =
1

(2πσ2
u)`/2

exp

(
− 1

2σ2
u

uTu

)
, (13)

the probability density of x can be written

p(x) =
|A|

(2πσ2
u)`/2

exp

(
− 1

2σ2
u

xTATAx

)
(14)

=
1

(2π)`/2|R|1/2
exp

(
−1

2
xTR−1x

)
, (15)

where R = σ2
u(ATA)−1 is the covariance matrix of x. It

can be seen the coefficients qij in the precision matrix Q =
R−1 = σ−2u (ATA) of x are the coefficients of the autocorre-
lation of the coefficients {ad} in A (scaled by σ−2u ). Indeed
since aij can be non-zero only if |vi − vj | ≤ dmax, qij can
be non-zero only if |vi − vj | ≤ 2dmax. Solving for W using
(7)-(8) gives a local neighborhood structure on ZN . We refer
to these neighborhood models as ARd2max.

The coefficients {ad} that best fit a set of data x can
be determined in principle by maximizing the log likelihood
log p(x) over the variables {ad}. However, this is an “ex-
tremely non-linear” problem that is difficult to solve [7]. A
close approximation is to maximize the pseudo log likelihood

−1

2
xTR−1x, (16)

or equivalently, minimize the squared prediction error ||u||2
over the variables {ad}, where the prediction of X(v) is
−
∑

d∈N adX(v − d) and therefore the prediction error is

U(v) = X(v) +
∑
d∈N

adX(v − d). (17)

The mean squared prediction error can be minimized using
the principle of orthogonality in Hilbert spaces, so that the
error U(v) in the approximation of X(v) by its projection
onto a span of basis vectors {X(v − d)} must be orthogonal
to each of the basis vectors. That is, for all d ∈ N ,

0 = 〈U(v), X(v − d)〉
= 〈X(v), X(v − d)〉+∑

d′∈N

ad′〈X(v − d′), X(v − d)〉. (18)

Using 〈X(v − d′), X(v − d)〉 = Rxx(d − d′), where the
covariance function Rxx(d − d′) is determined empirically
from the data x, the variables {ad} can be solved from the
|N | normal equations,

Rxx(d) = −
∑
d′∈N

ad′Rxx(d− d′) (19)

for all d ∈ N .

4. THE GAUSSIAN PROCESS TRANSFORM

In the previous section we considered how to find a neighbor-
hood structure for the integer lattice ZN . For nodes that lie in
a subset V ⊂ ZN , it is common practice for the neighborhood
structure of V to be inherited from the neighborhood structure
of ZN . For example, as shown in Fig. 3, nodes in a subset of
an image are neighbors in the subset if and only if they are
neighbors in the image. To be precise, if vi and vj are both in
V , and wij is the weight between them in ZN , then wij is also
the weight between them in V . This induces a weighted graph
((V, E),W ) and a corresponding GMRF on V . The KLT of
this GMRF is the Graph Transform (GT).

In this paper we introduce an alternative approach to
defining a transform for signals living on V . The concept
is simple. By regarding [X(v) : v ∈ ZN ] as a stationary
Gaussian random process, indeed as a GMRF with respect to
the same neighborhood structure on ZN determined in Sec-
tion 3, we find the marginal distribution of the random vector
[X(v) : v ∈ V]. The KLT with respect to the correlation
matrix of this random vector is a transform we call the Gaus-
sian Process Transform (GPT). Both the GT and the GPT are
orthogonal linear transforms for signals living on V .

Fig. 3. Left: Neighborhood structure in Z2 for d = 1. Right:
Inherited neighborhood structure in V ⊂ Z2.



The computational difference between the two transforms
can be seen clearly by partitioning the random vector x =
[X(v) : v ∈ ZN ] into two pieces, x1 = [X(v) : v ∈ V]
and x2 = [X(v) : v ∈ ZN \ V], and likewise partitioning its
covariance and precision matrices,[

R11 R12

R21 R22

]
=

[
Q11 Q12

Q21 Q22

]−1
(20)

=

[
S−111 −Q−111 Q12S

−1
22

−Q−122 Q21S
−1
11 S−122

]
, (21)

the latter following from the block matrix inverse formula
with S11 = Q11−Q12Q

−1
22 Q21 and S22 = Q22−Q21Q

−1
11 Q12

being the Schur complements of Q11 and Q22 [8]. Thus

R−111 = S11 = Q11 −Q12Q
−1
22 Q21, (22)

which is also known as the Kron reduction [5, 6]. The eigen-
vectors of Q11 form the Graph Transform, while the eigen-
vectors of R11, or equivalently the eigenvectors of R−111 , form
the Gaussian Process Transform. Note that Q11 is generally
sparse while both R11 and R−111 are generally dense. The GT
is based on considering V as the nodes of a graph, while the
GPT is based on considering the variables on V as samples of
a process on a Euclidean domain.

5. EXPERIMENTAL RESULTS

We compare GPT and GT on the voxelized point cloud dataset
shown in Fig. 1. This dataset comprises 207242 occupied
voxels within a cubic volume 512 voxels per side. Each occu-
pied voxel has a color in Y UV space. We remove the mean
of Y and treat it as a signal X living on the set of occupied
voxels V ⊂ Z3. We measure the autocovariance function
Rxx(d) of X empirically by assuming Rxx(d) = Rxx(d),
where d = |d|, and for each value of d averaging the product
X(vi)X(vj) over all pairs (vi,vj) for which both vi and vj

are in V , and |vi − vj | = d.
We partition the voxel cube of size 5123 into 643 blocks

each of size ` = 83. For this dataset, only 3025 blocks are
occupied, yielding an average of 69 occupied voxels per oc-
cupied block. In each occupied block, we treat the occupied
voxels as a set of nodes V ⊆ Z3

8. We determine six different
neighborhood structures on Z3

8, using both Inverse Distance
(ID) and Auto-Regressive (AR) models and d2max = 1, 2, 3:
ID1, ID2, ID3, AR1, AR2, AR3. Each neighborhood struc-
ture induces possible precision matrices Q11 and S11 = Q11

−Q12Q
−1
22 Q21 for the signal [X(v) : v ∈ V]. Eigenvectors

of the former are the GT, while eigenvectors of the latter are
the GPT. The dot product of each eigenvector with the sig-
nal is a coefficient whose “frequency” equals the eigenvalue
associated with the eigenvector. The coefficients from all the
occupied blocks are sorted by increasing frequency.

Fig. 4 shows the percentage of energy of the signal cap-
tured in the first (low-frequency) fraction of coefficients,
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Fig. 4. Energy compaction.

under various conditions (model ID or AR and size dmax).
Higher dmax is not necessarily better, probably because of
boundary effects in our small 83 block. However, GPT has
far greater energy compaction than GT, regardless of condi-
tion. The first 1% of the GPT coefficients (under AR1 or AR2
conditions) captures over 6 dB more energy than the first 1%
of the GT coefficients (under the ID3 condition — the most
popular for 3D voxels [9]). Alternatively, 93% of the signal
energy is captured by fewer GPT coefficients than 5% of the
GT coefficients. Table 1 shows the transform coding gain
(ratio of arithmetic to geometric mean of the energies in each
band [10]) for each condition. The GPT has a coding gain
several times that of the GT, regardless of condition.

Table 1. Transform coding gain.
Model Inverse Distance Auto-Regressive
d2max 1 2 3 1 2 3
GT 15.1 14.8 13.0 9.7 6.7 3.6

GPT 71.4 64.4 64.5 72.7 73.1 51.7

6. CONCLUSION

This paper presents clear evidence from the point of view of
energy compaction and transform coding gain that for signals
defined on points embedded in a Euclidean domain, model-
ing the signal as samples of a stochastic process may be far
better than modeling it as a signal on a graph whose neighbor-
hood structure is inherited from the domain. This has implica-
tions for transform coding of many natural signals. In future
work, we will examine how this new perspective can improve
the coding efficiency of voxelized point clouds. Based on the
transform coding gains seen in this paper, we expect a multi-
fold reduction in bit rate.
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