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ABSTRACT
Public cloud datacenters implement a distributed computing envi-
ronment built for economy at scale, with hundreds of thousands of
compute and storage servers and a large population of predominantly
small customers often densely packed to a compute server. Several
recent contributions have investigated how equitable sharing and
differentiated services can be achieved in this multi-resource envi-
ronment, using the Extended Dominant Resource Fairness (EDRF)
algorithm. However, we find that EDRF requires prohibitive exe-
cution time when employed at datacenter scale due to its iterative
nature and polynomial time complexity; its closed-form expression
does not alter its asymptotic complexity.

In response, we propose Deadline-Constrained DRF, or DC-DRF,
an adaptive approximation of EDRF designed to support centralized
multi-resource allocation at datacenter scale in bounded time. The
approximation introduces error which can be reduced using a high-
performance implementation, drawing on parallelization techniques
from the field of High-Performance Computing and vector arithmetic
instructions available in modern server processors. We evaluate DC-
DRF at scales that exceed those previously reported by several
orders of magnitude, calculating resource allocations for one million
predominantly small tenants and one hundred thousand resources,
in seconds. Our parallel implementation preserves the properties of
EDRF up to a small error, and empirical results show that the error
introduced by approximation is insignificant for practical purposes.
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1 INTRODUCTION
Public cloud datacenters (DC), of the sort hosting enterprise cus-
tomer workloads, face a fundamental trade-off between providing
performance isolation for each customer and achieving high re-
source utilization. Provisioning for each customer’s peak demand
for any given resource necessarily leaves resources idle much of
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Figure 1: An array (above) of shared resources on path from a
VM in a compute rack (left) to a VHD in a storage rack (right).

the time, while oversubscribing resources runs the risk of one cus-
tomer affecting another. Each customer has a set of virtual resources,
collectively called a tenant, which may include one or several vir-
tual machines (VMs), while the underlying physical resources are
shared between tenants. Shared resources in a modern datacenter
typically include storage servers [11, 18, 23, 29, 42], software load
balancers [33, 40, 46], middle-boxes [5, 16], shared caches [16, 41],
bump-in-the-wire offload devices [12], and the datacenter network
[7, 8, 21, 25, 28, 29, 35, 36, 38, 39, 44, 45, 47]. An ideal datacenter
resource allocator would provide performance isolation between ten-
ants to the extent possible, while gracefully degrading to some notion
of fair or differentiated service when resources become congested.

Overcoming the implications of sharing oversubscribed resources
requires the design and implementation of a scalable centralized
multi-resource allocator that operates at high frequency due to fre-
quent changes in tenants’ VM utilization levels. A centralized re-
source allocator has the advantage of datacenter-wide visibility that
enables better allocation decisions, especially for tenants that span
multiple clusters, such as compute, file storage, and database block
stores. For instance, Figure 1 illustrates an array of physical re-
sources on the path taken by I/O requests from a tenant with a single
VM in a compute rack, to a virtual hard disk in a storage rack, in-
cluding shared transmit and receive queues at the host hypervisor,
a shared storage service, and shared network links at both sides.
From time to time any single one of these resources could become a
bottleneck—due to sharing with an aggressive tenant—that limits
the rate of service obtained by the compliant tenant.

Numerous multi-resource allocation algorithms have been devel-
oped and evaluated at modest scale based on a generalization of max-
min fairness, known as Dominant Resource Fairness (DRF) [17].1

Of these, Extended DRF (EDRF) [32] represents the state-of-the-art

1DRF has been deployed in production as one of the resource schedulers in Hadoop,
albeit only at cluster scale [1, 24].
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due to its precise closed-form expression [5, 10, 13, 16, 20, 30, 31].
DRF considers what fraction of each resource a tenant is demanding,
and the resource of which the tenant demands the largest fraction
is the tenant’s dominant resource. Fairness between tenants is de-
termined according to their respective dominant resources, and at a
system level this approach satisfies a number of desirable properties.
In particular, DRF allows each tenant to be assigned a share of every
resource in the datacenter and guarantees that the tenant will never
be worse off than receiving that share, but may be better off if some
other tenant is not using their full share. This allows for performance
isolation when the shares reflect a lack of over-subscription and a
fair resource allocation when they do.

EDRF challenges. Designing a scalable datacenter-scale resource
allocator based on EDRF is challenging due to its proxibitive qua-
dratic complexity and the massive scale of today’s datacenters.2

Because each tenant demands only a fraction of each resource in
a small subset of the resources [22], EDRF proceeds in a series of
rounds; in each round it finds the most oversubscribed remaining
resource and fully allocates it along with proportional amounts of
each other resource. As only one resource is fully allocated in each
round, the number of rounds required for completion is linear to the
number of resources. Furthermore, each round requires consideration
of every remaining resource, resulting in a quadratic relationship
with the number of resources.

EDRF’s complexity is prohibitive when employed at datacenter
scale. Today’s cloud datacenters consist of around 100K servers
and each server employs more than 40 CPU cores. In public clouds,
tenants typically employ a handful of VMs (i.e., 80% of tenants de-
ploy 1-5 VMs) [14] and VMs typically utilize just a few cores (i.e.,
80% of VMs comprise 1-2 CPU cores) [14]. Under such scenarios,
it is very likely that a single oversubscribed cloud datacenter may
host 100K-1M tenants. While the quadratic nature of EDRF easily
requires minutes to complete at such massive scale, it is often nec-
essary to recalculate allocations at a frequency, or control interval,
measured in seconds [5], making EDRF impractical at such scales.

Our proposal. We present Deadline Constrained DRF, or DC-DRF,
an algorithm designed for performing fair reallocation of shared
datacenter resources at cloud datacenter scale in bounded time. The
key insight is to trade off a little (bounded) fairness for a significant
gain in speed and scalability. DC-DRF includes a control variable,
ϵ , which indicates what fraction of a resource we are willing to
discard to speed up computation. Doing so, it reduces the number
of rounds as more resources are eliminated in each round, dropping
the complexity of the algorithm from quadratic to essentially linear
(see Lemmas 3.1 and 3.2 for a precise statement). Across successive
control intervals, DC-DRF searches for a value of ϵ such that it
converges just short of a given deadline.

The improved complexity, however, comes at the cost of error as
some resources that would have been allocated by precise EDRF,
remain unallocated. We reduce this error via an implementation that
is tailored to the underlying hardware, leveraging its parallel nature
(cores and vector arithmetic instructions) and utilizing effectively
available on-chip cache capacity. The optimized implementation

2In contrast, we do not consider the infrastructure for signaling and enforcing multi-
resource allocations as a barrier to adoption, having been adequately investigated in the
literature [2, 5, 13, 30, 31, 42]

maximizes the number of completed rounds within the deadline, and
hence converges to lower values of ϵ and results consequently in
lower errors.

The contributions of this paper are:

• We introduce DC-DRF, an adaptive and approximate version
of EDRF, whose accuracy and rate of convergence is adjusted
by means of a control variable, ϵ . DC-DRF adapts the value
of ϵ dynamically across successive control intervals so as to
calculate allocations in time bounded by the control interval
frequency;
• We provide an efficient implementation of DC-DRF, which

is tailored to underlying hardware, so as to significantly re-
duce the approximation error introduced by ϵ , improving the
fairness of allocations estimated by DC-DRF;
• We demonstrate that combining the ideas above enables prac-

tical multi-resource allocation at datacenter scale in bounded
time, for a wide range of resource demands, while achieving
near-optimal resource allocations and utilization.

We evaluate DC-DRF against EDRF using synthetic inputs mod-
elled on characteristics of a public cloud datacenter [14], where the
number of tenants exceeds that of prior work by up to two orders of
magnitude and, equally important, there are significant variations in
demand between tenants. Our results show that DC-DRF succeeds
in enabling multi-resource allocation at public cloud scale, on com-
modity hardware, in practical time, with much lower error (relative
to EDRF) than previous approaches.

2 BACKGROUND AND MOTIVATION
Our interest and motivation for this work dates from 2012 when the
Windows Server team challenged us to propose a practical storage
QoS architecture for private cloud that is capable of preventing
performance collapse for tenants sharing physical resources with
aggressive tenants. This led to the design of IoFlow [42] which is
employed by End-to-End Storage QoS feature of Windows Server
2016 and targets sharing of storage servers in private cloud setups,
typically containing hundreds of servers. Extending such architecture
to other shared resources led to the design and implementation
of Pulsar [5]. Pulsar uses per-resource cost functions and vector
rate limiters in hypervisors to a) measure tenants demand, and b)
to enforce work conserving reservations according to allocations
calculated by a central SDN-like controller running EDRF. While
it proved easy to construct effective demand estimation and vector
rate limiters, the major challenge lay in the implementation of a
centralized resource allocator. In particular, the performance and
scalability of EDRF stood out as a fundamental obstacle to scaling
Pulsar to public cloud datacenter scales.

2.1 Multi-Resource Allocation
Originally introduced for job scheduling in Hadoop clusters, Domi-
nant Resource Fairness (DRF) calculates multi-resource allocations
with four properties: (i) sharing incentive—i.e., no tenant would gain
from a simple partitioning of resources across tenants; (ii) strategy-
proofness—i.e., no tenant can benefit by indicating a false set of
resource requirements (demands); (iii) envy-freeness—i.e., no ten-
ant would prefer the allocation made to some other tenant; and (iv)
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Table 1: EDRF notation

symbol description

N set of tenants (called aдents in DRF and EDRF)
R set of resources, r ∈ R
Dir demand of tenant i for r as a fraction of r
dir Dir /(maxr ′Dir ′ )

di ⟨di1, ..., dim ⟩, normalized demand vector of i
wir weight of tenant i with respect to resource r
Air fraction of r allocated by DRF to tenant i
r ∗i weighted dominant resource of tenant i
ρi wir ∗i

/dir ∗i , weight ratio at dominant resource
sr t residual fraction of r after round t
Air ,t fraction of r allocated to i in round t

Algorithm 1 EDRF

1: t ← 1
2: ∀r , sr1 ← 1
3: S1 ← N
4: while St , 0 do
5: xt ←minr ∈R

sr t∑
i∈st ρi ·dir

6: ∀i ∈ St , r ∈ R,Air,t ← xt · ρi · dir
7: ∀i ∈ N \ St , r ∈ R,Air,t ← 0
8: ∀r ∈ R, sr,t+1 ← sr,t −

∑
i ∈St

Air,t

9: t ← t + 1
10: St ← {i ∈ N : ∀r ∈ R,dir > 0⇒ sr t > 0}

11: ∀i ∈ N , r ∈ R,Air ←
t−1∑
k=1

Air,k

Pareto efficiency—i.e., increasing one tenant’s allocation necessarily
decreases another tenant’s allocation.

DRF computes the share of each resource allocated to each user.
The maximum among all shares of a user is called that user’s domi-
nant share, and the resource corresponding to the dominant share is
called the dominant resource. DRF simply applies max-min fairness
across users’ dominant shares—i.e., DRF seeks to maximize the
smallest dominant share in the system, then the second smallest, and
so on untill all resources are exhausted [17].

Input/Output. The algorithm takes as input a Demand matrix in
which each row represents, for example, a tenant and each column
represents a resource. A matrix cell (ai , r j ) represents the demand
of tenant ai for resource r j . The output is an Allocation matrix
whose cells contain an allocation of resources to tenants that satisfies
the fairness properties of the algorithm. Optionally, the algorithm
supports weights wir which allow differentiated guarantees.

Algorithm. Algorithm 1 presents the state-of-the-art specification
of DRF from [32]. The set of all tenants and resources are denoted
by N and R, respectively. Set St denotes the set of active tenants at
round t . The algorithm takes as input the normalized demand matrix,
which is calculated by dividing the Demand matrix by the max
demand resource. The algorithm reports the allocated resources in
the Allocation matrix, denoted by A, where the proportions between
each pair of resources in the demand vector of a tenant are preserved
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Figure 2: Fraction of VMs that become active or idle at least
once within each 5-min interval.

in the allocation vector calculated for that tenant. We adopt the
notation from EDRF, summarized in Table 1.

Intuitively, EDRF calculates the allocation iteratively; each iter-
ation is akin to a round of a Max-Min water-filling algorithm. For
each resource r , the algorithm maintains the fraction remaining at
the start of each iteration, and calculates the fraction that can be
added before the water fills a resource. At the end of each round, at
least one resource and all tenants who demand it are eliminated—i.e.,
the resource that determined the quantity allocated in that round.

The complexity of the algorithm is O(|R |2 |N |) as in the worst
case there is one round per resource and each iteration of lines 5-8
requires actions per each (tenant, resource) pair. Even with a bound
B on the number of demanded resources, complexity is O(|R | |N |B).
As we show in Section 2.3, the algorithm suffers from scalability
issues when the number of tenants and/or resources is large—e.g.,
100s of thousands.

2.2 Short Control Intervals
In datacenters with high workload variation, it is important that
resource allocations are recalculated at small control intervals so
as to reduce the negative impact of staleness of resource demands.
Short control intervals allow for accommodating the resource re-
quirements of new tenants and idle tenants who become active, as
well as reclaiming resources from tenants who become less active.
Being reactive to the arrival of new tenants is particularly impor-
tant. Without prior demands, these tenants have no allocations for
resources; hence, we can either delay their progress until the next
control interval, or allow them to ramp up unchecked until the next
control interval. In the former case, a short control interval benefits
tenants who are ramping up by allowing them to do so sooner, and in
the latter case it benefits active tenants sharing resources that become
temporarily overloaded by tenants ramping up—i.e., the so-called
noisy neighbor effect.

We substantiate the need of short control intervals by studying
the variation in CPU load utilization of Azure virtual machines
(VMs) [14]. Figure 2 plots the number of VMs that transition at
least once within a five-minute interval either from an idle state
to an active one or from an active state to an idle one. A VM is
considered to become active within an interval in case that either its
maximum CPU utilization is at least 3x higher than its average CPU
utilization, or its maximum CPU utilization is at least 10% (absolute
value) higher than its average CPU utilization (e.g., 20% to 30%).
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Figure 3: Conventional DRF performance analysis: (Left) Number of rounds and time for 100K resources and 1M tenants. Key:
demand vector lengths [0,128] chosen by Gaussian (g) or Uniform (u), resource locality is none (0), single cluster (1) or two clusters
(2); (Right) Scalability under variable scale and different Tenant:Resource ratios.

Likewise, a VM with non-negligible CPU utilization (at least 5%) is
considered to become idle within an interval in case that either its
minimum CPU utilization is at least 3x lower than its average CPU
utilization, or its minimum CPU utilization is at least 10% (absolute)
lower than its average CPU utilization. The measured 95th percentile
of the fraction of VMs that become active (29%) and idle (13%) over
a period of 350 five-minute intervals corroborates earlier findings
that VMs exhibit bursty traffic patterns [14].

Prior work in resource management advocates for control inter-
vals ranging from 10 seconds to 30 seconds due to high workload
variation in enterprise servers [5]. In order to obtain conservative
estimates of datacenter workload variation at the proposed control in-
tervals, we assume that the observed transitions: (a) occur only once
within each five-minute interval and (b) are spread uniformly across
all control intervals. For the proposed (10-second – 30-second) inter-
vals, 1.4-4.2% of VMs exhibit at least one state transition, indicating
significant churn in the level of activity for a significant fraction of
VMs. This VM-based estimate is low because we care about fairness
on the level of workloads which span multiple VMs. This finding
motivates the choice of a short control interval, such as ten seconds.

2.3 Scalability Limitations
We now demonstrate that conventional DRF is impractical at datacen-
ter scale using a hypothetical datacenter modelled on modern cloud
datacenters. Modern datacenters consist of around 100K servers
arranged in racks of 20-40 servers each, connected to a shared multi-
tier CLOS network built from 40-100Gbps Ethernet [22]. Persistent
data reside in shared storage racks, and customer VMs are packed
into compute racks, so that VMs of each tenant access data and each
other over a shared multi-resource environment. Access patterns
exhibit variable degrees of locality [9, 11, 26, 34, 39]. Tenants are
predominantly small, nearly 80% of VMs have only 1 or 2 cores and
80% of tenants have 5 or fewer VMs [14]. Thus, with multiple cores
per server, the number of tenants, or tenants, may easily exceed the
number of servers.

We generate synthetic multi-resource workloads for a 100K server
datacenter supporting 1M tenants (Section 5.1). Figure 3 (left) plots
the number of rounds and elapsed time using a basic implementation
of DRF such as found in FILO [31] and Yarn [1]. Figure 3 (right)
plots runtime as the number of resources increases for several (ten-
ant:resource) ratios, demonstrating a non-linear relationship between

completion time and scale. The number of rounds highly depends on
the size (or scale) and diversity of the demand matrix. DRF may com-
plete in a small number of rounds for either (a) small or (b) highly
symmetric demand matrices. Cases where this is approximately true
have been exploited by prior work [13]. In contrast, large inputs with
high diversity require large execution times.

2.4 Suboptimal Solutions
Resource aggregation. We have investigated hierarchic structure
and aggregation as a possible abstraction for limiting the complexity
of DRF, and found that aggregating resources and/or tenants can
introduce error and unfairness, as follows. Consider two tenants, A
and B, with demand vectors ranging over the sets {r1, r2} and {r2, r3},
respectively. In an attempt to decrease the number of tenants in the
input to DRF, we construct an aggregate demand vector from the
union of the above sets and sum the demand for any resources that
appear in both sets, in this case r2. Recall from Section 2.1 that DRF
evicts a tenant in the round where one (or more) of its resources is
saturated, thereby preserving demand proportions. If r1 is the only
resource saturated in that round, then B will be denied its share of
the residual capacity remaining at r2 and r3 (likewise for A and r3.)
This finding compares to H-DRF in that while H-DRF does have
a hierarchical structure, it does not rely on aggregation ensuring
fairness but without improvement in complexity [10].

Early termination. Terminating EDRF after a reduced number of
rounds (e.g., one round) introduces error. While it is guaranteed
that the most demanded resources are fully allocated at the end of
a round, the remaining resources are allocated proportionally. De-
pending on the ratio of resources allocated to resources not allocated,
early termination may result in severe resource under-utilization and
unfairness. Section 5 discusses and quantifies the implications of
early termination on resource utilization and fairness.

3 DC-DRF
Algorithm 2 gives the specification for DC-DRF, which comprises
an outer loop and an inner loop. Each iteration of the inner loop
performs multi-resource allocation using an approximation of DRF
whose time and relative error are determined by a control variable ϵ .
The outer loop represents consecutive control intervals of duration
∆α and has a deadline τ after which the inner loop will terminate
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on completing its current iteration. Over consecutive control inter-
vals the outer loop searches for a value of ϵ such that the inner
loop completes just within the deadline. The inner loop of DC-DRF
derives from EDRF and our description highlights two key algorith-
mic changes, that are key in reducing the number of iterations and
execution time of each iteration, respectively.

Element ϵ . DC-DRF introduces the approximation variable ϵ ≪ 1,
which relaxes the decision of when a resource is considered to be
exhausted. Most importantly, this variable provides a mechanism for
constraining the number of iterations required for the algorithm to
converge and terminate.

DC-DRF considers a resource r ∈ R, to be exhausted when the
residual capacity of r falls below the value of ϵ , thus causing early
exhaustion of resources and early eviction of tenants compared
to DRF. The early eviction implements a form of approximation,
achieving faster termination than DRF, but introducing error relative
to the allocations obtained by DRF.

Observe in line 16 that DC-DRF replaces the constant zero of
EDRF line 10 with the control variable ϵj . In the event that ϵj has
value zero then the two constructs are equivalent; however, non-zero
ϵj causes early exhaustion of the resource and early eviction of any
tenant that has non-zero demand for that resource. The inner loop is
terminated if its elapsed time exceeds the deadline ∆j with timeout
indicated in τj (lines 11, 19, 20, 24).

The outer loop, lines 3-11 and 23-27, represents consecutive con-
trol intervals, j, over which DC-DRF searches for a value of ϵ such
that the inner loop can complete just ahead of a time deadline ∆α .
We assume that inputs vary from one interval to the next and that
DC-DRF must continually adjust ϵ to adjust for the variations in
execution time. In the event of timeout the value of ϵ is increased,
otherwise it is decreased, by the function raise() and lower(), re-
spectively. We do not specify the precise search strategy followed
by raise() and lower(); in our implementation we maintain a search
window with initial fast-start gradient. The intention is, given sta-
ble inputs, DC-DRF will oscillate between an ϵ that completes just
within the deadline, and timeout that tests a slightly lower ϵ .

Element µ. EDRF evaluates the evaluation of the expression
∑

ρi · dir
in each iteration of its body at line 5. This entails repeatedly sum-
ming elements whose value has not changed from one iteration to
the next. Based on this observation, DC-DRF introduces the element
µ into which it performs the summation prior to entering the iterative
part of its body (line 8). Subsequently, DC-DRF subtracts from µ
the values associated with evicted tenants once at the time of the
tenants’s eviction (line 17). This optimization allows us to compute
the values of xt for each t while performing 2 operations per tenant-
resource pair rather than 1 operation per tenant-resource pair per
inner loop iteration. Relatedly, note that ρi and dir only appear as
the product ρi · dir , and thus this product can be computed a single
time per outer loop iteration. (For ease of comparison to EDRF, we
omit this from the description in Algorithm 2.)

Elements y and z. EDRF calculates intermediate values of Air,t
at line 6. We observe that computing all of these values xt · ρi ·
dir requires several operations per tenant-resource pair per round.
Instead we can keep these implicit using y and z, allowing them
to be computed just once per tenant-resource pair. We use yt as an
accumulator to hold a running total of the sum of all xt (line 14),

and use zi to cache for each tenant the value of yt at the time of the
tenant was evicted (typically line 18, or line 21 when terminating on
τj ). In this way Air,t is calculated once per tenant on exit from the
inner loop (line 23). In addition, factoring things this way allows the
sharing of some additional computations across tenants (we compute
one yt per round rather than needing to do this addition for each
tenant). Not only does this decrease the total number of arithmetic
operations performed, it also improves the spatial locality of the
algorithm by eliminating references to Air from the inner loop: this
is important for performance and therefore for precision, as later
sections will show.

Algorithm 2 DC-DRF

1: j ← 1
2: ϵ1 ← 0
3: while true do /* once per control interval */
4: ∆j ← time() + ∆α
5: t ← 1
6: ∀r , sr1 ← 1
7: S1 ← N

8: µ1r =
∑
i ∈st

ρi · dir /* see Element µ */

9: y0 ← 0
10: zi ← 0
11: τj ← f alse
12: while St , ∅ and not τj do /* inner loop */
13: xt ←minr ∈R

sr t
µtr

14: yt ← yt−1 + xt
15: ∀r ∈ R, sr,t+1 ← sr,t − xt µtr
16: St+1 ← {i ∈ N : ∀r ∈ R,dir > 0→ sr (t+1) > ϵj }

17: ∀r ∈ R, µt+1,r ← µt,r −
∑

i ∈St \St+1

ρi · dir

18: ∀i ∈ St \ St+1, zi ← yt
19: τj ← time() > ∆j
20: if τj then /* timeout occurred */
21: ∀i ∈ St+1, zi ← yt

22: t ← t + 1
23: ∀i ∈ N , r ∈ R,Air ← ρi · dir · zi /* see y, z */
24: if τj then
25: ϵj+1 ← raise(ϵj )
26: else
27: ϵj+1 ← lower (ϵj )

Computational Complexity. The variable ϵ is crucial for both the
computational complexity of the algorithm. The key feature for the
time complexity of the algorithm is the number of iterations of the
inner loop required. For EDRF, there will be O(|R |) iterations, as
barring ties in line 5 only one resource is exhausted per iteration.
For a simplified version of DC-DRF, we can show that the number
of iterations is independent of |R |. In particular, suppose that µtr is
not updated in the course of the inner loop and instead is always
fixed at µ1r . Furthermore, suppose that there is a constant c such that
minr,r ′∈R µ1r /µ1r ′ > c. That is, there is a a bound on how large the
relative demands for two resources are.

LEMMA 3.1. Under the two assumptions the number of iterations
of the inner loop is O(− log−1(1 − ϵ)), independent of |R |.
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PROOF. The first iteration completes with y1 sufficient to exhaust
some resource r1 (y1µr11 = s1r1 = 1). Any resource r still demanded
by some tenant in S2 must have at least an ϵ fraction remaining
(y1µr1 < 1 − ϵ). Taking advantage of our first assumption, we can
express the more general version of this fact for each iteration as
yt µrt 1 = 1 for the resource rt exhausted in iteration t and yt µr1 <
1 − ϵ for any resource r still available in iteration t + 1. In particular,
this holds for rt+1. This means that (1 − ϵ)µrt 1 > µrt+11 for all t .
These inequalities telescope to give (1 − ϵ)t−1µr11 > µrt 1. By our
second assumption, this puts a bound on the number of iterations
that (1 − ϵ)t−1 > c. Solving for t gives the desired bound. �

The proof of the lemma suggests how pathological inputs can be
constructed to cause DC-DRF to require |R | iterations: cause the
µtr to decay in such a way that there is always only one resource
exhausted per iteration. Note however that, (i) such inputs require
a coordination of demand which seems unrealistic in a real system,
(ii) in such cases DC-DRF effectively falls back to the performance
of EDRF, and most importantly (iii) whether a given example is
pathological depends on ϵ , so we would expect our outer loop to
drive ϵ smaller and restore good performance. Thus we believe such
inputs have no relevance in practice.

We can now quantify the overall computational complexity of an
iteration of the outer loop.

LEMMA 3.2. The computational complexity of an iteration of
DC-DRF is O(|R | |N |). Furthermore, let B be a bound on the number
of resources a tenant demands and let I be the number of iterations
of the inner loop. Then the computational complexity of an iteration
of DC-DRF is O(|N |B + I |N | + I |R |)

PROOF. Non-trivial amounts of computation occur in lines 8, 13,
15–18, 21, and 23. Per the discussion of µ, the combined complexity
of lines 8 and 17 is O(|N |B). For lines 13 and 15 is is O(I |R |), while
for line 16 it is O(I |N |). By hoisting the computation of allocations
into the outer loop, lines 18, 21, and 23 have combined complexity
O(|N |B). Since I ≤ min(|N |, |R |) and B ≤ |R |, the result follows. �

Lemma 3.2 shows that our more careful implementation reduces
the complexity of EDRF from O(|R |2 |N |) to O(|R | |N |) for the case
without a bound B, and in this case ϵ does not improve the overall
complexity, which is dominated by calculating the initial demand for
resources (line 8). However, with such a constant bound B, under the
assumptions of Lemma 3.1 the gain from using ϵ is substantial (as
I is now constant for fixed ϵ), from O(|R | |N |) to O(|N |). If |R | and
|N | are of similar magnitude, as we expect in public cloud settings,
this is a reduction from quadratic to linear.

Approximation Quality. The variable ϵ is crucial for the quality of
the approximation, but its effects of ϵ are somewhat subtle. The sim-
plest concrete statement is that if the inner loop runs to completion
(i.e. there is no timeout) then every tenant desires some resource of
which we have allocated a 1 − ϵ fraction. However, this does not
imply a 1 − ϵ fraction of each tenant’s optimal utilization because
different tenants will have different bottleneck resources (although
our results in Section 5 show that it does empirically). Additionally,
consider the scenario in which ϵ causes a tenant to get less than is
“fair.” If all tenants using the tenant’s bottleneck resource desired
more, the tenant could get at most 1/(1 − ϵ) ≈ 1 + ϵ times its actual
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Figure 4: A central DC-DRF server receives tenant demands
from trusted infrastructure components and returns allocations
for enforcement.

allocation, which is an insignificant difference. The possibility to
have large gains requires other tenants be unable to use more because
they are bottlenecked on some other resource. Thus the “unfairness”
corresponds to not getting an outsize share of a heavily loaded re-
source when others rely on an even more heavily loaded resource.
Given the benefits of providing fairer and more efficient resource
allocation overall, this particular “unfairness” may well be worth
tolerating.

Finally, EDRF was motivated by four desiderata [17]. Despite
our approximation, DC-DRF fully satisfies two of them (i.e., shar-
ing incentive and envy-freeness), while partially satisfying Pareto
efficiency and strategy-proofness up to the resources discarded by ϵ .

4 DESIGN AND IMPLEMENTATION
4.1 High-level Design
The scope of our work presented herein is limited to the design and
implementation of the DC-DRF algorithm itself. While we have not
attempted to integrate it into datacenter infrastructure, we provide
context for the reader we sketch a design of how we envisage that
might work

In outline, DC-DRF would provide a centralized service for cal-
culating multi-resource allocations in a public cloud datacenter of
around 100K resources, such as individual servers or storage vol-
umes, and one million tenants. Separate admission control and VM
placement services would provide DC-DRF with initialization data
including resource identities. Trusted components within infrastruc-
ture report demands and enforce allocation limits; Pulsar demon-
strated the use of cost functions in trusted hypervisor drivers to
generate dynamic demand vectors based on the queued and in-flight
operations of each tenant[5]. The frequency, or control interval, with
which allocations are revised needs to be in the order of seconds,
so as to rapidly curtail excessive resource consumption by tenants
whose demand suddenly becomes excessive, and to reclaim resource
allocations from tenants whose demand has dropped.

Referring to Figure 4, infrastructure components (A) determine a
demand vector for each tenant by sampling queue lengths, sending
these over the datacenter network (B) to a front-end server (C). The
front-end offloads communication overheads from the performance-
sensitive back-end, which runs on a dedicated server. The front-end
loads tenant demands into the input buffer (D) of the back-end DC-
DRF process (E), where allocations for the current control interval
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Table 2: Degree of parallelism (MPL) for n NUMA nodes of c
cores each.

Line Tiles MPL (min) MPL (max)

13 Resource 1 c*n
15 Resource c*n c*n
16 Tenant c*n c*n
17 Resource c c*n

are calculated and loaded into an output buffer (F). The front-end
(G) retrieves the allocations and sends them for enforcement in the
infrastructure (A). The network overheads are less than 2 Gbps.3

4.2 Evaluation Platforms
Unless stated otherwise, we use a dual-socket Dell R740 server
with Intel Xeon Platinum 8160 CPUs. Each CPU employs 24 cores
operating at 2.1GHz and a shared 33MB L3 cache.4

4.3 Data Structures
In order to avoid memory allocation overheads at runtime, data
structures are statically allocated during initialization to maximum
sizes given by a runtime parameter. The first thread to run allocates
the central data structures and initializes a set of worker threads,
each of which allocates the private data structures and scratch space
for its own use.

Each tenant has a data structure encoding its demand, weight
and accumulated allocation vectors for each resource for which it
has non-zero demand. DC-DRF implements a sparse encoding of
demand and allocation matrices, imposing an upper bound B on the
number of resources that a tenant may demand. By default, B=128.
This optimization helps reduce the memory footprint and working
set of our implementation, alleviating pressure on CPU caches and
memory bandwidth.

4.4 Arithmetic Precision
Assuming a worst case of 1M tenants each demanding an equal share
of a given resource, then each tenant would receive a 1/1M allocation
and this value sits comfortably within the range [5.96× 10−8, 65504]
of IEEE 754-2008 half-precision (16-bit) floating point. In contrast,
16-bit integer arithmetic underflows to produce 1/N = 0 for N >
65536. At public cloud datacenter scale the number of tenants sharing
a resource could generate denominators much larger than that.

Contemporary processors do not support 16-bit floating point;
hence, we choose between 32-bit (single-precision) and 64-bit (double-
precision) at compile-time. Figure 6 shows that single-precision con-
sistently outperforms double-precision, primarily due to better Last
Level Cache (LLC) performance. The improved LLC performance is
attributed to higher temporal and spatial locality. First, the working
set of single-precision setups is half of double-precision, thereby
alleviating cache pressure at high thread count. Second, as caches
3Assume each tenant has demand for 128 resources and encodes this as a list of
(resource,demand) integer pairs. With 1M tenants the DC-DRF server receives 1M ×
128 × 4 × 4 bytes of demand data per control interval, and sends the same in allocation
data.
4We have also tested on a Dell R730 dual-socket server with Intel Xeon E5-2660v3
processors of 10 cores each 2.6GHz and a shared 25MB L3 cache, typical of legacy
servers still found in Public Cloud datacenters today.

utilize a 64-byte cache block, more single-precision variables are
fetched upon a cache miss, leading to higher cache hit rates.

4.5 Thread-level Parallelism
We achieve parallelism by tiling the data space so that independent
threads can proceed on distinct partitions, synchronizing when nec-
essary on custom lock-free barriers based on atomic counters and
busy-waiting. We employ two types of tile, namely tenant tiles and
resource tiles. Tenant tiles partition the set of tenants, and resource
tiles partition the set of resources. Each tile is assigned to a distinct
thread. Careful memory alignment of resource tiles along cache-line
boundaries avoids false sharing: the worker threads do not collide
when updating fields within shared data structures. The two types
of tile can be imagined as horizontal and vertical stripes over a 2D
matrix. To illustrate, consider a system comprising n NUMA nodes
each with c cores. Table 2 summarizes how tiling is applied within
the inner loop, and the level of parallelism (MPL) achieved.

Figure 5 (left) shows the elapsed time of a DC-DRF microbench-
mark as we vary the number of cores, using hyperthreading and
32-bit variables throughout. Each step adds two threads to fully
load each core (with hyperthreading the second thread on each core
invariably provides less benefit than the first thread). With a small
number of cores the computation is CPU-bound, and increasing the
number of cores leads to a clear decrease in elapsed time. While
adding more cores improves performance, the scalability is sub-
linear to the number of cores and gradually the benefit of adding
more cores decreases because (a) increased inter-thread contention
for LLC space; as our data structures greatly exceed the LLC size,
this contention spills over into demand for memory bandwidth for
moving data between CPU caches and DRAM and (b) the existence
of variables sr,t and µt,r shared across all threads require the use
of synchronization primitives, thereby introducing a non-negligible
sequential part which becomes dominant as the number of threads
increase and the parallel part becomes smaller. 5

4.6 NUMA Awareness
To eliminate unnecessary cross-NUMA memory accesses over QPI [3],
we explicitly allocate memory to each thread from the DRAM at-
tached to that thread’s NUMA node, and perform intermediate ag-
gregation of partial results at each NUMA node prior to calculating
global results for each round of DRF.6

We measure the benefit obtained from additional NUMA nodes
by running a micro-benchmark on a Dell R910 server featuring four
NUMA nodes, increasing the number of NUMA nodes at each step.
The results are shown in Figure 5 (right). Because each NUMA
node employs its own LLC, adding a second NUMA node improves
performance by almost 50 percent. However, the benefit from addi-
tional NUMA nodes decreases because, while the cache bottleneck
is alleviated by the extra LLC capacity provided by each NUMA
node, the sequential phase in each round of the algorithm limits the
total performance.

5We choose C++ memory barriers over the native SYNCHONIZATIONBARRIER of
our host OS as, while the latter provided correctness, its performance over multiple
NUMA nodes was poor, leading to a drop-off in performance when operating over more
than one NUMA node.
6Our findings indicate the default OS allocator fails to choose local DRAM—i.e.,
DRAM that is connected to the NUMA node to which the invoking thread was bound.
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Figure 5: Multi-threaded scalability: (Left) Core-level scalability with hyperthreading enabled (two threads per core); (Right) NUMA-
level scalability

4.7 Vector Arithmetic
Contemporary processors support 256-bit vector instructions (AVX-
256)[4] while recently announced Intel Xeon-SP adds support for
512-bit vectors (AVX-512) capable of operating on eight double-
precision or 16 single-precision values. The latter also adds a scatter
instruction for moving values from a 512-bit vector registers into
memory, an attractive feature given the sparse random memory
access patterns of DC-DRF. Our implementation is optimized for
both instruction sets.

As shown in Figure 6, AVX-256 and AVX-512 deliver similar
performance. Both AVX-256 and AVX-512 improve performance
over the baseline scalar version by 25%. To our surprise, AVX-512
provides marginal performance gains over AVX-256 that are within
the statistical error. We shed light on this surprising result through a
micro-architectural analysis of all configurations, finding a trade-off
between (a) instruction count and memory-level parallelism (MLP)
and (b) operating core frequency.

First, vectorization reduces the instruction count by up to 21%
and improves MLP (i.e., number of concurrent outstanding long-
latency memory accesses [15]) by up to 8% allowing for overlapping
memory stalls with computation. The small gain in MLP is attributed
to the fact that the core is capable of extracting MLP from scalar
loads and stores due to its out-of-order execution and large instruc-
tion window; hence, the gather/scatter instructions provide relatively
small gains.

Second, cores operate at lower frequency when using AVX-256
and AVX-512, by 3% and 11%, respectively. The observed lower
frequency is due to the higher number of switching transistors when
vector instructions are executed (due to larger register file and exe-
cution unit’s datapath). To account for this, core frequency is scaled
down so that power/thermal limits are not exceeded. The resulting
lower frequency offsets the performance gains of larger degree of
vectorization. In the case of AVX-512, we observe diminishing re-
turns as the drop in frequency is modest while instruction-count and
MLP are improved over AVX-256 by a small factor.

4.8 Baseline Configuration
Figure 6 shows a parameter sweep of significant configuration op-
tions, ranked left to right in order of decreasing completion time.
The right-most columns indicate the configurations that complete
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Figure 6: Configuration options ranked by runtime. Key: dou-
ble (d) or single (f) precision, scalar (c), AVX256 (2), AVX512
(5), hyper-threading (h).

the same computation in the shortest time. While hyper-threading
improves performance of scalar versions, it provides negative perfor-
mance gains when vectorization is enabled. This is due to the fact
that hyperthreads introduce a high degree of destructive inter-core
and intra-core sharing: (i) hyperthreads contend against each other
for core’s vector unit which is utilized even when hyperthreading is
disabled and (ii) inter-core contention for shared caches; thus mak-
ing hyperthreading ineffective for parallel vectorized sections at high
thread counts. Based on our findings, we use 32-bit floating point
and 512-bit vector instructions without hyperthreading throughout
Section 5.

5 EVALUATION
We now report the results of our experiments to explore the precision
of allocations calculated by DC-DRF, and its performance limits
running on commodity servers. Further results are available in our
technical report [27].

5.1 Methodology
Demand profiles. We evaluate DC-DRF on datacenter-scale inputs
using demand profiles whose parameters model the workload char-
acteristics of public cloud datacenters [14, 22]. Table 3 summarizes
the different demand profiles we use throughout the evaluation.
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Table 3: Demand profiles: U=Uniform, G=Gaussian, Resource
locality: DC=datacenter, PodA=1st cluster, PodB=2nd cluster

key vector len select resource res.

U0 U[2,128] U(DC) U(R)
U1 U[2,128] U(PodA*.5, DC*.5) U(R)
U2 U[2,128] U(PodA*.5, PodB*.3 DC*.2) U(R)
G0 G[2,128] U(DC) U(R)
G1 G[2,128] U(PodA*.5, DC*.5) U(R)
G2 G[2,128] U(PodA*.5, PodB*.3 DC*.2) U(R)

Number of elements. We fix the number of resources at 100 thou-
sand and the number of tenants at one million throughout [22].

Demand vector size. Cortez et al. recently contributed the first
characterization of a full-scale Public Cloud VM workloads, finding
that they are dominated by small tenants: 80% of tenants use only
1-5 VMs and 40% of tenant VMs have a single virtual core[14].
We model this using a truncated Gaussian distribution to generate
demand vectors drawn from the interval [2,128]. We also use a
uniform distribution that better represents the substantial first-party
(cloud provider) workloads.

Resource selection. Traffic between VMs collocated at rack level
exhibit strong locality [9, 26]. In contrast, Internet services, such as
search and social media, exhibit similar locality only for heavy-hitter
flows at rack level [37]. We model three different degrees of locality:
first, uniform selection across the entire datacenter; second, 50% of
resources selected locally within a single cluster of the datacenter;
third, 50% of resources selected within one cluster and 30% within
a second cluster.

Demand vector values. The DC-DRF and DRF algorithms are sen-
sitive to the value of each element in a demand vector. To minimize
correlation between the demand at each resource across tenants,
which could artificially accelerate the rate at which resources are
exhausted, we select uniformly in the interval [1,C[r]] where C is
the absolute capacity of resource r.

DC-DRF configurations. We evaluate four run-time configurations:
a) parallel DC-DRF (DC-DRF); b) single-threaded DC-DRF (sDC-
DRF); c) parallel EDRF terminated at the deadline (pEDRF); d)
parallel EDRF allowing just one round of the inner loop akin to
HUG[13] (pEDRF-1). pEDRF isolates the benefit of parallelism,
and pEDRF-1 highlights the fundamentally iterative nature of EDRF.
We report results normalized to a baseline of conventional single-
threaded EDRF which completes in 765 seconds.

5.2 Sensitivity to Demand Profiles

We use range of diverse demands to show that DC-DRF has not been
inadvertently specialised to narrow inputs that cannot be guaranteed
in practice, such as choosing highly symmetric demands [13]. We set
the deadline at 8 seconds, based on results of Section 5.5. Figure 7
shows the number of rounds for each demand profile normalized
to those of the baseline. In these cases the use of approximation in
DC-DRF has decreased the number of rounds by an order of mag-
nitude because more tenants are evicted in each round. Following
FILO[31], we measure fairness using the standard deviation between
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the allocation obtained by DC-DRF and the baseline allocation as
shown in Figure 7. The low standard deviation from baseline, which
remains very low throughout, indicates that there is no significant
compromise made to fairness because the allocations obtained by
DC-DRF lie close to those of EDRF which we take as ground truth.

5.3 Resource Utilization
Henceforth, unless stated otherwise, we use the G0 demand profile,
vary the deadline in steps of one second and measure overall re-
source utilization summed over all resources. Figure 8 plots resource
utilization normalized to baseline. Both sDC-DRF and DC-DRF
achieve near-optimal utilization for deadlines to the right of the knee
in Figure 8 (discussed in in Section 5.5).

In general, outside of narrow corner-cases, pEDRF-1 performs
poorly because only those resources selected by EDRF line 5 will be
fully allocated in the first round; this set may consist of only one re-
source while the remaining resources will be allocated proportionally
at each tenant. pEDRF enables higher resource utilization as more it-
erations are completed. pEDRF achieves a utilization that converges
with baseline utilization as deadlines approach its completion time.

5.4 Fairness Analysis
Figure 9 (left) shows the standard deviation from baseline for in-
creasing values of deadline. The knee in the curves of sDC-DRF
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and DC-DRF is explained in Section 5.5, and when DC-DRF is
operating to the right of the knee the stddev remains small, indicat-
ing a high degree of fairness for epsilon values in that range.7 The
standard deviation for pEDRF starts high but converges to zero as
the deadline approaches the time within which it can complete. The
standard deviation for pEDRF-1 is high throughout, making it a poor
choice of configuration. Note that the error for pEDRF exceeds that
of pEDRF-1 due to a higher variance between individual tenants,
where instead the variance of pEDRF-1 remains uniformly poor
throughout.

However, the standard deviation may conceal outliers in the form
of tenants whose deviation from baseline lies far from the mean.
Of primary concern are tenants whose allocation under DC-DRF
falls below their baseline allocation, because for them DC-DRF is
in some sense less fair. To expose the fraction of tenants effected
in this way we take the results for the DC-DRF configuration, rank
them on deviation from baseline allocation, and show in Figure 9
(right) the under allocation for the tenant with the greatest shortfall,
together with the shortfall at the first tenth of a percentile (i.e., the
1000 tenants with the greatest shortfall). The shortfall for DC-DRF
is substantially better than that of sDC-DRF, for both the outlier and
at one tenth of a percentile.

5.5 Value of Epsilon
We have repeatedly observed a distinct knee in the results of pre-
ceding sub-sections, which we now explain. Figure 10 plots the
values of epsilon to which DC-DRF converges for the sDC-DRF and
DC-DRF configurations. Both configurations feature an initial steep
gradient for short deadlines, with a knee leading to a plateau after
a few seconds. To the left of the knee, co-variant with the curves
seen in earlier experiments, lies a region where DC-DRF is forced to
terminate within a very small number of rounds, requiring aggressive
values of epsilon. In particular, the first round considers the entire
tenant and resource sets independent of the value of epsilon. Note
that the values for DC-DRF, shown on the left hand axis, are two
orders of magnitude lower than those of sDC-DRF, shown on the
right-hand axis, reaffirming that DC-DRF achieves better fairness
than sDC-DRF.
7Note that the standard deviation is orders of magnitude lower than the value of 1.0
reported for FILO.
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5.6 Adaptation to Change
Figure 11 demonstrates DC-DRF adapting to changes in demand
and changes in deadline. As before, we use the 8-second deadline
suggested by section 5.5. In addition to earlier experiments, a random
5% of tenants change their demand by 5% at each control interval,
to represent variations in demand that occur in the real world.

Initially epsilon starts at zero, so the first control interval is termi-
nated at the deadline triggering the search for epsilon in the second
interval. Over the next 18 intervals, the DC-DRF outer loop expands
its search window as the algorithm completes within the deadline.
In the 18th control interval the elapsed time exceeds the deadline so
DC-DRF starts to contract its search window. Once stable, DC-DRF
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adjusts epsilon by small amounts while keeping close to the deadline,
in order to detect when to restart its search in reaction to variations in
demand. At control interval 30 there is an abrupt change in demand
when half the tenants change their demands by 50%, as may happen
in response to a significant infrastructure failure; DC-DRF absorbs
this with minor adjustment to the value of epsilon. At control inter-
val 50 the deadline is increased to 10 seconds, for example due to
a manual change by the datacenter provider, and DC-DRF adapts
to this by commencing a new search for epsilon that completes at
around interval 60. The deadline is changed back to 8 seconds at
control interval 70, and again DC-DRF adapts by adjusting epsilon.

6 RELATED WORK
The foundational work of Dominant Resource Fairness (DRF) de-
fined fairness properties upon which our work, and that of others, is
based [17]. Extended DRF (EDRF) contributed a formalized spec-
ification of a DRF algorithm using a closed-form expression to
calculate resource allocations in each round of the algorithm [32].

H-DRF investigated fairness for jobs in a shared compute cluster
from the perspective of competing groups within the organizational
structure (division, department, office, etc.) from which the jobs
originate [10]. It concludes by recognizing that computing DRF for
large inputs may be computationally expensive, and suggests this as
an area for further research.

HUG used EDRF to investigate trade-offs between utilization
and isolation guarantees at Public Cloud scale in specialized cases
where every tenant must have non-zero demand for each and every
resource[13]. For such scenarios they introduce “elastic demands”
and add an additional phase following EDRF to provide work con-
servation for elastic demands. When elastic demands are present,
the HUG approach for achieving work conservation is orthogonal to
our approach, and could be applied after DC-DRF for those elastic
demands that have been over-estimated.

Prior work utilized DRF at relatively small scales. Pulsar em-
ployed DRF to enable dynamic multi-resource differentiated service
levels with work conversation for shared resources in a data cen-
ter setting, running DRF in a central SDN-like controller [5]. Its
scale was limited to Private Cloud due to the cost of calculating
multi-resource allocations at its central controller. Filo used DRF
to implement throughput guarantees in a distributed multi-tenant
Cloud-based consensus service [31]. To decrease the time spent
in calculating allocations, it used a distributed adaptation of DRF.
Relatively to DC-DRF, its scale was small and the error incurred by
distribution was relatively high.

Non-DRF approaches to resource allocation at cluster scale in-
clude a mix of priorities and quotas, as in Borg [43], and min-cost
max-flow, as in Firmament [19].

Prior work has explored how to approximate max-min fairness.
Awebuch et al. [6] designed an approximation algorithm up to a mul-
tiplicative ϵ factor, which works quite differently from our approach,
based on a discretization of the set of permissible allocations on a
logarithmic scale. However, being an approximation of max-min,
their approach considers a single-resource only and is therefore not
directly comparable to multi-resource DRF.

7 CONCLUSION
We have presented the DC-DRF algorithm, an adaptive approxi-
mation of EDRF designed to support centralized multi-resource
allocation in bounded time. We have shown that a high-performance
implementation of DC-DRF calculates multi-resource allocations
at Public Cloud scale in practical time and with lower error than
previous approaches. This removes a fundamental barrier to the de-
ployment of multi-resource allocation in future cloud datacenters. A
possible opportunity for further work would be to explore dynamic
ways of detecting the set of resources used by a tenant, when this is
not explicitly specified by either provider or tenant.
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