
ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2013

JA
VA

 T
EC

H

66

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

Java EE 7 supports new and
evolving standard tech-

nologies such as WebSocket,
HTML5, and JSON, providing
an API for each one.

This article first pres-
ents some background on
WebSocket and then offers
a Web application to dem-
onstrate the new platform
features.

Note: The source code for
the example described in
this article can be down-
loaded as a Maven project
here.

WebSocket Background
Modern Web applications
have grown in interactivity,
demanding greater com-
munication between the
browser and the Web server.
At first, constant communi-
cation was achieved by serv-
lets with long polling in the
browser, but problems in the
server appeared because the
threading model of the Web
container demanded that

every request be handled by
a thread until the response is
written. Then, asynchronous
servlets came with Java EE 6
providing a more efficient
approach that allowed
requests to be processed
asynchronously.

The Polling, long pooling,
and Comet/Ajax approaches
simulate a full-duplex com-
munication between the
server and the browser.
WebSocket is a full-duplex
and bidirectional API, which
not only involves the server
but the Web browser, too.

WebSocket changes the
way the Web server reacts
to client requests: instead
of closing the connection, it
sends a 101 status and leaves
the connection open, expect-
ing messages to be written
on the stream and to be able
to write messages, as well.
The client also expects mes-
sages to be written and is
also able to write messages
at its end of the stream. This

allows both ends to read and
write to the stream and com-
municate in real time.

Before Java EE 7, imple-
menting a WebSocket was
Web container–dependent:
you could write a WebSocket
for Tomcat, but if you wanted
to migrate to Jetty, you had
to reimplement it for the
new server.

Note: As with every new
technology, WebSocket is
being adopted by different
Web browsers at different
times. You can check this

page for more information
about browser compatibility.

Overview of the Sticker
Story Application
Let’s start with a simple
example to see how the
things we have discussed so
far work.

This article showcases a
sticker story Web application
that children can use to cre-
ate a story collaboratively by
dragging stickers into a book
or canvas. At the instant a
sticker is placed into a child’s

Explore new features for creating next-generation internet applications.

EDUARDO MORANCHEL
AND EDGAR MARTINEZ
BIO

This video provides a demo of the sticker
story application.

Java EE 7

Embracing HTML5

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/MayJune2013
http://caniuse.com/websockets
http://caniuse.com/websockets
file:/Users/sbrennan/Desktop/Java_work/Java_MJ13/Supporting_files/Multimedia_files/intro.mp4

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2013

JA
VA

 T
EC

H

67

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

book, the sticker is drawn within
other children’s books. Watch
the video to see the application
in action.

Figure 1 shows the home page
for the sticker story Web appli-
cation. When you drag a sticker
from the sidebar on the left to the
canvas and drop it, the sticker is
rendered into all the Web brows-
ers that are open at that time, as
shown in the video.

Obtaining and Running the
Sticker Story Application

1.	 Download GlassFish v4
promoted build 79 (glassfish-
4.0-b79.zip). GlassFish can
be obtained here as a zip
archive.

2.	 Unzip GlassFish into a direc-
tory of your choice.

3.	 Download and install
NetBeans. The version used
in this article is NetBeans 7.3.

4.	 Download the sticker story
Maven project link to sticker-
story.zip.

5.	 Expand the project into a
directory of your choice.

6.	 Start NetBeans, and on the
Services tab, right-click the
Servers node, and then click
Add Server.

7.	 From the Server list, select
GlassFish Server 3+, and then
click Next.

8.	 In the Server Location field,
enter the path to the directory
where you unzipped GlassFish

v4, and then click Finish.
9.	 Select File -> Open Project.

10.	 From the Open Project dialog
box, open the sticker story
Maven project.

11.	 Right-click the project and
select Run. Select the recently
installed GlassFish server
(GlassFish Server 3+) when
prompted.

You can now point your Web
browser to http://localhost:8080/
sticker-story to see a page simi-
lar to that of Figure 1. Make sure
your browser is compatible with
WebSocket by checking this page.

Application Contents
The application contains the fol-
lowing files and Java classes:
■■ index.html is the home page

and contains JavaServer Faces
(JSF) 2.2 and HTML5 code.

■■ The org.sticker.jsf.StickerSheet
class is the managed bean used
by the home page to display all
the available stickers.

■■ story-page.js contains the
JavaScript code for the
WebSocket client and the drag-
and-drop functionality.

■■ The org.sticker.websocket.Sticker
class is the object being sent
and received by the WebSocket.

■■ The org.sticker.websocket
.StickerEncoder and org.sticker
.websocket.StickerDecoder
classes transform the data sent

by a WebSocket into objects.
■■ The org.sticker.websocket

.StoryWebSocket class is the
WebSocket handler. It also
stores the stickers in the current
story book.

Combining HTML5 with the
JSF 2.2–Friendly HTML Markup
Just as Ed Burns, spec lead of
JSF 2.2 (JSR 344), mentioned
in his blog, JSF 2.2 allows page
authors to have complete control
of the HTML rendering by using
the Friendly Markup feature of
JSF 2.2. It also facilitates the
separation of markup and busi-
ness logic.

Let’s see an example. The view
of the sticker story application
is provided using HTML5 and
JSF. Listing 1 shows the content
of the index.xhtml file, which
is mostly HTML5; JSF is used to
render the sticker images in the
sidebar of the browser using the
<h:graphicImage> tag.
■■ JSF 2.2 lets you pass through

HTML attributes. There are
two ways to do this: with the
namespace for the pass-through
attributes, which is http://java
.sun.com/jsf/passthrough, or
by using the child TagHandler
f:passThroughAttribute (or
f:passThroughAttributes for mul-
tiple attributes). In our example,
we use the former.

Figure 1

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://dlc.sun.com.edgesuite.net/glassfish/4.0/promoted/
http://netbeans.org/
http://caniuse.com/websockets
http://jcp.org/en/jsr/detail?id=344
http://weblogs.java.net/blog/edburns/archive/2012/11/01/html5-friendly-markup-jsf-22

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2013

JA
VA

 T
EC

H

68

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

In Listing 1, notice the
<h:graphicImage>tag. There
are three attributes (draggable,
ondragstart, and data-sticker) in
our graphicImage tag that are not
part of the attributes for
graphicImage but that we need in
order to make our stickers work.
Therefore, we use the prefix p: so
that JSF pass-through adds these
three attributes. Note: Because
graphicImage is a JSF markup,
we have used the namespace
http://java.sun.com/
jsf/passthrough. If you
want to pass through
elements into a non-
JSF-aware markup, use
the namespace http://
java.sun.com/jsf. Look
for some examples in
Listing 1, such as head or
script tags.

Listing 2 shows the
managed bean, which
provides the names of
the stickers. The
@Named annotation
exposes the bean to JSF, and later
the bean method is called using
the #{stickerSheet.allStickers}
expression as the value in the JSF
ui:repeat tag in the index.xhtml file
shown in Listing 1.

Writing Drag-and-Drop Code
In HTML5, drag-and-drop
functionality is simplified and

requires specific events that are
handled using JavaScript code
that is divided into two parts: the
dragged-object events and the
receiving-object events.

The dragged object (that is, the
sticker) must define the
ondragstart event (see Listing 1)
and handle it using JavaScript. As
we discussed earlier, in JSF 2.2,
you can use the pass-through
parameters to add this event.
The JavaScript code in Listing 3

specifies what will be
executed when the
drag starts.

In drag-and-drop
interactions, you might
have to use an inter-
mediate object to store
the data being trans-
ferred between com-
ponents. In JavaScript,
you do this by storing
the data inside the drag
event.dataTransfer prop-
erty. Because this prop-
erty allows only strings

to be stored, the easiest way to
store data is using JSON.

The JavaScript code for the drag
event creates the sticker repre-
sentation, gets from the screen
the coordinates of the location
to which the sticker was dragged,
and—using another HTML5 fea-
ture—gets the sticker image file-
name from the tag’s data-sticker

Download all listings in this issue as text

<?xml version=’1.0’ encoding=’UTF-8’ ?>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:jsf="http://java.sun.com/jsf"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:p=" http://java.sun.com/jsf/passthrough">
 <head jsf:id="head">
 <title>Sticker Story</title>
 <script jsf:target="body" jsf:name="story-page.js"/>
 <link jsf:name="styles.css" rel="stylesheet" type="text/css" />
 </head>
 <body jsf:id="body">
 <header>
 <h1>Sticker Story Book</h1>
</header>
 <nav>
 Drag stickers from the left bar to the canvas.
 </nav>
 <aside>
 <h2>Stickers</h2>
 <div id="stickerContainer">
 <ui:repeat var="imgName"
 value="#{stickerSheet.allStickers}">
 <h:graphicImage library="stickers" name="#{imgName}"
 style="float:left" p:draggable="true"
 p:ondragstart="drag(event)" p:data-
 sticker="#{imgName}" />
 </ui:repeat>
 </div>
 </aside>
 …
 </body>
</html>

LISTING 1 LISTING 2 LISTING 3

DID YOU KNOW?

WebSocket is a
full-duplex and
bidirectional
API, which not
only involves the
server but the
Web browser, too.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/MayJune2013

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2013

JA
VA

 T
EC

H

69

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

attribute. In HTML5, you can use
custom attributes to store appli-
cation-specific data by adding the
data- prefix to the attribute; in
JSF 2.2, you use the pass-through
attributes to add such attributes.

For the drop action, the drop
target object (that is, the receiv-
ing end) must define two event
handlers.

One is the ondragover event
handler, which must handle the
drag-over (hover action) of the
mouse to determine whether a
drag is valid. To allow drops with
further validation, the code just
calls ev.preventDefault(), since the
default behavior is to deny drops.

The second event handler is
ondrop, which handles the drop
event when the mouse button
is released while something is
being dragged. The JavaScript
code that handles this event (see
Listing 4) begins by preventing
the default behavior (denying
the drop) and then gets the data
from dataTransfer. Because we
are transferring text, we have to
convert it to an object using the
JSON.parse method, which is a
standard JavaScript method. Next,
we convert the dragged object to
the actual object that we are going
to send to the server. The drop
method in Listing 4 also calculates
the coordinate for the position of
the upper left corner of the sticker

on the canvas and adds the name
of the sticker to the object. The
object then is converted to a JSON
string and finally sent using the
WebSocket.send method.

A WebSocket Client
with JavaScript
Using WebSocket, the sticker story
application sends data to the server
when a drag-and-drop action
occurs. So how is a WebSocket
connection established? Let’s see.

After the page loads, the
initialize method is called (see
Listing 3), and the first thing this
method does is draw the back-
ground for the application using
the HTML5 canvas. Next, it opens
the WebSocket connection by
using the statement socket = new
WebSocket("ws://localhost:8080/
sticker-story/story/notifications")
to establish and open the com-
munication. Note that it uses the
WebSocket protocol instead of
HTTP and the path is absolute.

Note: If you are running the Web
server in a different port, you will
need to change this line to use
your server’s port.

The next line in Listing 3 defines
what the client will call when the
server pushes a message to the
browser.

Now, take a look at the
onSocketMessage method in
Listing 4. This method will handle

function drop(ev) {
 ev.preventDefault();
 var bounds = document.getElementById("board")
.getBoundingClientRect();
 var draggedText = ev.dataTransfer.getData("text");
 var draggedSticker = JSON.parse(draggedText);
 var stickerToSend = {
 action: "add",
 x: ev.clientX - draggedSticker.offsetX - bounds.left,
 y: ev.clientY - draggedSticker.offsetY - bounds.top,
 sticker: draggedSticker.sticker
 };
 socket.send(JSON.stringify(stickerToSend));
 log("Sending Object " + JSON.stringify(stickerToSend));
}

// Web socket on message received:
function onSocketMessage(event) {
 if (event.data) {
 var receivedSticker = JSON.parse(event.data);
 log("Received Object: " + JSON.stringify(receivedSticker));
 if (receivedSticker.action === "add") {
 var imageObj = new Image();
 imageObj.onload = function() {
 var canvas = document.getElementById("board");
 var context = canvas.getContext("2d");
 context.drawImage(imageObj,
receivedSticker.x, receivedSticker.y);
 };
 imageObj.src =
"resources/stickers/" + receivedSticker.sticker;
 }
 }

LISTING 4

Download all listings in this issue as text

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/MayJune2013

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2013

JA
VA

 T
EC

H

70

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

WebSocket messages from the
server side.

The sticker story application
sends JSON objects as text using
the WebSocket connection.
Therefore, when a message is
received, it is transformed to
a Sticker object and the
onSocketMessage method does
the following:
■■ Transforms the data
■■ Gets the image for the sticker
■■ Draws the image on the canvas

using the coordinates from the
sticker
And because the connection

is open at this time, sending a
message to the server is done
using the send method in the
WebSocket JavaScript object. It’s
just that simple.

WebSocket for Real-Time
Communication
Creating a WebSocket in Java EE 7
is very easy. You just need to create
a couple of annotations and your
WebSocket will be configured.

In the sticker story applica-
tion, the class configured as a
WebSocket is the StoryWebSocket
class (see Listings 5a and 5b).

Notice the @ServerEndpoint
annotation at the top of the class
declaration. Just as with servlets,
you have to define a mapping. For
a WebSocket, the value of the
@ServerEndpoint defines the

mapping of the WebSocket. This
means that you can declare a
WebSocket just by using the
following and the server will
wait for connections at the
/websocketMapping URL to
connect to the WebSocket:

For now, skip the encoders and
decoders attributes and head over
to the methods of the class. To
define the methods that will han-
dle the WebSocket events, you use
annotations as well.

The @OnOpen, @OnClose, and
@OnError annotations are related
to the lifecycle of the WebSocket
connection. You can annotate a
method with any of them and the
method will be called when a con-
nection opens or closes or when
there is an error in the connection
(an exception was not handled).

Our application uses the
@OnOpen annotation to push the
stickers to the connected user.
This way, a newly connected
user receives all the stickers pre-
viously posted on the canvas by
other users.

The @OnMessage annotation is
the core of the WebSocket imple-
mentation. The annotated method
will be called whenever the client
sends a message; in the appli-

@ServerEndpoint(
"/websocketMapping")

package org.sticker.websocket;

import java.io.IOException;
import java.util.*;
import java.util.logging.*;
import javax.websocket.EncodeException;
import javax.websocket.Session;
import javax.websocket.server.ServerEndpoint;
import javax.websocket.OnMessage;
import javax.websocket.OnOpen;

@ServerEndpoint(
 value = "/story/notifications",
 encoders = {StickerEncoder.class},
 decoders = {StickerDecoder.class})
public class StoryWebSocket {

 private static final List<Sticker> stickers =
Collections.synchronizedList(new LinkedList<Sticker>());

@OnOpen
 public void onOpen(Session session) {
 synchronized (stickers) {
 for (Sticker sticker : stickers) {
 try {
 session.getBasicRemote().sendObject(sticker);
 } catch (IOException | EncodeException ex) {
 Logger.getLogger(StoryWebSocket.class.getName()).log
(Level.SEVERE, null, ex);
 }
 }
 }
 }

LISTING 5a LISTING 5b

Download all listings in this issue as text

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/MayJune2013

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2013

JA
VA

 T
EC

H

71

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

cation, the client sends stickers
and then the WebSocket stores
the added sticker and pushes the
sticker to all the connected peers.

Notice that the @onMessage
method receives a Sticker object
(see Listing 6) and a Sticker object
is written to the other peers using
the following method:

We discussed the fact that
WebSocket sends and receives
text. So, why do the methods
receive a Sticker object, and why
are we writing Sticker objects to the
sessions? The answer lies in the
@ServerEndpoint declaration, spe-
cifically in the encoders
and decoders attributes.

A WebSocket may use
a decoder to transform
the text message into an
object and then handle it
in the matching
@OnMessage method,
and whenever an object
is written to the session,
a WebSocket may use an
encoder to convert the
object to text and send it
to the client.
URL path parameters.
You can set URL path
parameters by add-
ing them to the

@ServerEndpoint mapping. Do so
by enclosing the parameter name
inside brackets:

To use it, add a string parameter
to any annotated method and add
the @PathParam("parameterName")
annotation to the method param-
eter. In the example in Listings 5a
and 5b, you would add the
@PathParam("parameter1") string
parameter. You can add as many
parameters as you need.

And while we are at it, for the
methods annotated using any
WebSocket–related annotation,
you can receive the WebSocket

session as a parameter.
In the application, we
add it as a parameter,
but it is not needed
and it can be omitted
completely.

The @OnMessage
annotation applies to a
method that can have
an extra parameter. This
parameter is the mes-
sage being received and
can take the form of any
object decoded using the
declared decoders in the
@ServerEndpoint anno-
tation or String, if no
decoders are specified.

session.getBasicRemote()
.sendObject()

/pathToWebSocket/
{parameter1}

Download all listings in this issue as text

package org.sticker.websocket;

public class Sticker {
 private int x;
 private int y;
 private String image;

 public Sticker() {
 }
 public int getX() {
 return x;
 }

 public void setX(int x) {
 this.x = x;
 }

 public int getY() {
 return y;
 }

 public void setY(int y) {
 this.y = y;
 }
 public String getImage() {
 return image;
 }
 public void setImage(String image) {
 this.image = image;
 }
}

LISTING 6

EASY AS 1, 2, 3

Creating a
WebSocket
in Java EE 7
is very easy.
You just need to
create a couple
of annotations
and your
WebSocket will
be configured.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/MayJune2013

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2013

JA
VA

 T
EC

H

72

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

Using the New JSON API
with WebSocket
The new Java API for JSON
Processing (JSR 353) is part of
Java EE 7, and we are using it in
our example.

The sticker story application
communicates with the client and
the WebSocket server by using
a JSON string representation of
objects. The WebSocket uses
decoders and encoders to trans-
parently convert the text sent to
the WebSocket into a Sticker object
and to convert Sticker objects sent
to the client into text.

In the StickerDecoder and
StickerEncoder classes (Listing 7
and Listing 8), the application uses
the JSON API for the following:
■■ Reading from the socket stream

to get objects
■■ Transforming objects into JSON

string representation and writ-
ing them to the socket
You can create appropriate

decoders depending on the format
in which you want to read the data
from the WebSocket. Similarly, you
can create encoders depending on
how you want to write the data to
the socket.

As shown in Listing 7, a decoder
must implement any interface
inside the parent Decoder inter-
face. There are several types of
decoders and encoders, and they
vary in the parameters that the

decode and encode methods take.
The StickerDecoder class in

Listing 7 uses the Decoder
.TextStream interface, which allows
you to read the data from the
socket using a Reader. To convert
a string into a JsonObject you use
a JsonReader, which conveniently
takes a Reader to be constructed.

Note: The JsonReader object
should not be created; instead,
use the JsonProvider class to create
readers and writers.

Listing 8 shows the StickerEncoder
class that writes the object to the
WebSocket stream.

Conclusion
WebSocket technology, JSF’s
HTML5 pass-through parameters,
and JSON object serialization are
powerful additions to Java EE 7
that greatly simplify the develop-
ment of applications that require
constant communication between
the browser and the Web server.

In this article, we’ve built a
Web application to show how
to combine HTML5 with the
JSF 2.2–friendly HTML markup.
We also wrote a WebSocket client
and drag-and-drop functionality
for the application with JavaScript.
Lastly, we built a WebSocket server
by using the new Java APIs for
WebSocket and JSON processing.
The example shown in this article
barely touches on their potential.

Acknowledgements. The authors
would like to thank Marco Velasco,
a young Mexican artist, for the
illustration of the sticker story
application. </article>

LEARN MORE
•	JSF 2.2 JSR
•	Java API for WebSocket JSR
•	Java API for JSON Processing JSR
•	Arun Gupta’s video about Java EE 7

and the WebSocket API

package org.sticker.websocket;

import java.io.IOException;
import java.io.Reader;
import javax.json.JsonObject;
import javax.json.JsonReader;
import javax.json.spi.JsonProvider;
import javax.websocket.DecodeException;
import javax.websocket.Decoder;

public class StickerDecoder implements
Decoder.TextStream<Sticker> {

 @Override
 public Sticker decode(Reader reader) throws DecodeException,
IOException {
 JsonProvider provider = JsonProvider.provider();
 JsonReader jsonReader = provider.createReader(reader);
 JsonObject jsonSticker = jsonReader.readObject();
 Sticker sticker = new Sticker();
 sticker.setX(jsonSticker.getInt("x"));
 sticker.setY(jsonSticker.getInt("y"));
 sticker.setImage(jsonSticker.getString("sticker"));
 return sticker;

 }
}

LISTING 7 LISTING 8

Download all listings in this issue as text

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jcp.org/en/jsr/detail?id=353
http://jcp.org/en/jsr/detail?id=353
http://jcp.org/en/jsr/detail?id=353
http://jcp.org/en/jsr/detail?id=344
http://jcp.org/en/jsr/detail?id=356
http://jcp.org/en/jsr/detail?id=353
http://www.youtube.com/watch?v=QqbuDFIT5To
http://www.youtube.com/watch?v=QqbuDFIT5To
http://java.net/projects/java-magazine/downloads/directory/MayJune2013

