
ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2013

JA
VA

 T
EC

H

61

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

Java EE 7 is the long-
awaited major overhaul of

Java EE 6. With each release
of Java EE, new features are
added and existing specifica-
tions are enhanced. Java EE 7
builds on top of the success
of Java EE 6 and continues to
focus on increasing devel-
oper productivity.

The Java EE umbrella con-
tains a number of specifica-
tions. JSR 342 describes the
overall container require-
ments, and it lists the tech-
nologies that should be sup-
ported in a Java
EE platform. The
Java EE Platform
Specification
project also has
a dedicated wiki.
The Java EE speci-
fication docu-
ment explicitly
mentions ease of
development as

one of the key goals:
“�Java EE 7 also continues

the ‘ease of development’
focus of Java EE 5 and
Java EE 6. Most notably,
Java EE 7 includes a
revised and greatly
simplified JMS 2.0 API.
Ease of development
encompasses ease of
configuration as well.”

The early versions of the
Java EE specification were
often criticized as being
very complex for develop-
ers to work with. The bal-

ance between
complexity and
simplicity was
clearly more in
the direction of
complexity.

With Java EE 5,
focus shifted
toward ease of
development. By
leveraging anno-

tations and by providing
default behavior and default
configuration, it enabled
a drastic reduction in lines
of code and lines of XML
configuration.

The Java EE 5 requirements
for simplicity are twofold:
■■ Defaults should be appli-

cable to most applica-
tions and useful for most
developers.

■■ It should always be possi-
ble to change the defaults
(by providing annotations
or descriptors).
By meeting these require-

ments, the Java EE speci-
fication adhered to the
convention-over-configu-
ration design paradigm. For
behavior that follows the
convention, no additional
code or XML should be
required. If developers want
nonconventional behav-
ior, they should be able to

achieve that by writing code
or declaring XML. This clearly
lowered the barrier to Java EE
development.

The Java EE 6 specification
made reasonable progress in
the same direction and added
a number of new APIs (for
example, JAX-RS, describing
the Java REST APIs).

Java EE 7 simplifies the
default development and
configuration even more. The
list of changes in the tech-
nologies that were already
part of Java EE 6 is huge, but
this article highlights a few
changes in existing specifica-
tions that will help developers
increase their productivity:
■■ JPA 2.1 (JSR 338) standard-

izes schema generation.
Developers can rely on JPA
to create tables, indexes,
generators, and so on.

■■ JPA 2.1 also adds support
for stored procedures.

Increase your productivity using the updated specifications and the new APIs in Java EE 7.JOHAN VOS

Java EE 7

Boosting Developer Productivity
with Java EE 7

BIO

PHOTOGRAPH BY
TON HENDRIKS

MAKING IT SIMPLER

Java EE 7
simplifies the
default development
and configuration
even more.

Listen to
author

Johan Vos
discuss the
productivity
gains offered
in Java EE 7.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jcp.org/en/jsr/detail?id=342
http://java.net/projects/javaee-spec/pages/Home
http://jcp.org/en/jsr/detail?id=338
file:/Users/sbrennan/Desktop/Java_work/Java_MJ13/Supporting_files/Multimedia_files/audio.wav

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2013

JA
VA

 T
EC

H

62

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

■■ JPA 2.1 requires containers to
provide a default datasource.

■■ Servlets 3.1 (JSR 340) allows
for asynchronous I/O based on
NIO2.

■■ JavaServer Faces (JSF) 2.2
(JSR 344) adds support for
HTML5.

■■ JSF 2.2 now contains a file
upload component.

■■ Bean Validation 1.1 (JSR 349)
allows for method-level
constraints.

■■ Contexts and Dependency
Injection (CDI) 1.1 (JSR 346)
allows developers to specify the
orders of the interceptors. In
addition, by using the @Vetoed
annotation, types or packages
can be prevented from being
considered by CDI.

■■ Expression Language (EL) 3.0
(JSR 341) supports lambda
expressions.
But Java EE 7 is more than a

maintenance release. It also adds
a few additional APIs, including
the following:
■■ JSR 352: Batch processing
■■ JSR 353: Java API for JSON

processing
■■ JSR 356: WebSocket
■■ JSR 236: Concurrency

The new JSRs were added to the
platform because they are relevant
to today’s Java EE developers. The
landscape in enterprise comput-
ing is always evolving, and the Java

EE standard should evolve as well.
More specifically, the Java EE speci-
fications should allow enterprise
developers to take advantage of the
latest and greatest technologies,
without having to write lots of boil-
erplate code and without running
into potential vendor locks—hence
the need for standardization.

Without exception, the new JSRs
target real developer needs, and
they allow developers to boost
their productivity and focus on
their core business.

Batch Processing
Many real-world business applica-
tions have a need for some means
of batch processing. Occasionally
or periodically, data has to be pro-
cessed in a noninteractive way,
and the processing can take a long
time. A typical example is a job that
runs once a day and calculates an
inventory and generates reports.

It was already possible to achieve
this in the Java EE world, but devel-
opers had to come up with their
own code, or they had to use exist-
ing third-party (nonstandardized)
frameworks. JSR 352 now describes
the involved entities and their rela-
tions. The terminology and con-
cepts are very familiar to users of
existing batch frameworks.

Using JSR 352, Java EE develop-
ers can define a job using XML.
Listing 1 shows how a job is com-

posed of steps containing chunks.
The typical job execution is a

process that reads data, processes
data, and writes results. Java
classes are used to read, process,
and write data. In the XML exam-
ple in Listing 1, three Java classes
are involved, which are shown in
Listing 2.

By using JSR 352, developers
don’t have to worry about the

infrastructure required for batch
processing. They can focus on their
domain-specific issues instead.

JSON
Many Web services use the JSON
format for receiving requests and
sending responses. Also, a large
number of Web frameworks (Java
and non-Java) rely on the JSON
format. As a consequence, many

Download all listings in this issue as text

<job id="myJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee">
 <step id="myStep" >
 <chunk item-count="3">
 <reader ref="myItemReader"></reader>
 <processor ref="myItemProcessor"></processor>
 <writer ref="myItemWriter"></writer>
 </chunk>
 </step>
</job>

LISTING 1 LISTING 2

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jcp.org/en/jsr/detail?id=340
http://jcp.org/en/jsr/detail?id=344
http://jcp.org/en/jsr/detail?id=349
http://jcp.org/en/jsr/detail?id=346
http://jcp.org/en/jsr/detail?id=341
http://jcp.org/en/jsr/detail?id=352
http://jcp.org/en/jsr/detail?id=353
http://jcp.org/en/jsr/detail?id=356
http://jcp.org/en/jsr/detail?id=236
http://java.net/projects/java-magazine/downloads/directory/MayJune2013

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2013

JA
VA

 T
EC

H

63

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

Java EE applications need to be
able to parse or generate JSON
code. A number of JSON parsers
and generators are available, but
using them implies that develop-
ers have to create hard dependen-
cies on nonstandard interfaces.

JSR 353 standardizes the con-
cepts of JSON parsing. Using
JSR 353 APIs, developers can use
standardized APIs in the package
javax.json (and in the subpackages
javax.json.spi and javax.json.stream)
rather than using proprietary APIs.
The underlying implementation

is shielded
from the devel-
oper, and it is
expected that
suppliers of
JSON parsers
will implement
the standard
APIs.

The JSON
processing
APIs have
some simi-
larities with
the XML pro-
cessing APIs.
This is impor-
tant, because
many appli-
cations have
to deal with
both XML and
JSON. Having a

similar approach for both formats
makes developers’ lives easier.

Similar to XML processing, there
are two ways to process JSON data:
stream-based processing and
document-based processing.

Using the stream-based
approach, a JSON document
is read and processed event by
event, as shown in Listing 3. The
document-based approach allows
developers to browse through the
whole JSON document—similar to
using the Document Object Model
(DOM) for browsing XML docu-
ments (see Listing 4).

WebSocket
Java EE developers are increasingly
confronted with Web clients or cli-
ent applications that require full-
duplex bidirectional communica-
tion. This request is often driven
by HTML5–based Websites that
want to leverage the WebSocket
protocol, as described in the IETF
RFC 6455. Also, applications that
are not Web–based (for example,
JavaFX applications) often benefit
from the advantages provided by
the WebSocket protocol.

As part of the Java EE 7 platform,
developers are able to use JSR 356,
Java API for WebSocket. This JSR
provides Java EE developers with
an easy-to-use annotations-
based framework for managing
WebSockets. Without this JSR,

developers would need to write
lots of boilerplate code in order
to register a WebSocket endpoint
or make a connection to another
WebSocket endpoint.

All the internal details about
the WebSocket protocol are pro-
vided by implementations of
JSR 356. This saves a huge amount
of time. Registering a WebSocket
endpoint and accepting incoming
messages can be done as shown
in Listing 5.

From the code in Listing 5, it
should be clear that the bulk of
the work—including the lifecycle
management of the WebSockets—
is done by the implementation
provided by the Java EE platform.

When a client makes a connection
to a WebSocket annotated with
@ServerEndpoint("/myEndpoint"),
the method annotated with
@OnOpen is called and a Session
object is passed.

Each time a message is received,
the method annotated with
@OnMessage is called. When
the connection gets closed, the
method annotated with @OnClose
is called.

For developers, using the
WebSocket API is almost as simple
as implementing the application-
specific logic and annotating the
methods with the correct annota-
tions. More WebSocket examples
can be found here.

JsonParserFactory factory = Json.createParserFactory();
 JsonParser parser = factory.createParser(...);
while (parser.hasNext()) {
Event event = parser.next();
}

LISTING 3 LISTING 4 LISTING 5

Download all listings in this issue as textCOMPLEXITY WON

The early versions
of the Java EE
specification were
often criticized as
being very complex
for developers
to work with.
The balance
between
complexity and
simplicity was
clearly more in
the direction of
complexity.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455
https://blogs.oracle.com/arungupta/entry/collaborative_whiteboard_using_websocket_in
http://java.net/projects/java-magazine/downloads/directory/MayJune2013

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2013

JA
VA

 T
EC

H

64

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

Concurrency
A complaint often heard before
Java EE 7 was that the concur-
rency tools developed for Java SE
cannot be used in Java EE imple-
mentations. In the Java EE world,
all resources are managed by
containers. Threads and execu-
tors, as in the java.util.concurrent
package, are not man-
aged by containers. It is,
therefore, dangerous or
even forbidden to use
them in an enterprise
application.

This situation made
life for the average Java
developer pretty dif-
ficult, because a devel-
oper is used to working
with the concurrency
tools when develop-
ing a Java SE applica-
tion, but can’t use the
same concepts when developing
a Java EE application. JSR 236 now
provides the infrastructure for
using the traditional concurrency
concepts in a container-managed
environment.

Building on the java.util
.concurrent.ExecutorService, the
ManagedExecutorService pro-
vides a container-managed
ExecutorService, which is safe
to use in Java EE applications. A
ManagedExecutorService imple-
mentation can be obtained using

JNDI and easily inserted, as shown
in Listing 6.

Other Upgrades in Java EE 7
Apart from the new JSRs, a num-
ber of existing specifications got a
major upgrade in Java EE 7. Most
notably, the specification for Java
Message Service (JMS) has been

changed from 1.1 to 2.0.
The JAX-RS specifica-
tion, which was intro-
duced in Java EE 6, was
also updated to version
2.0 and is now included
in Web Profile.
JMS. The Java EE 5 and
Java EE 6 specifications
made it much easier
to use most of the
enterprise resources,
including Enterprise
JavaBeans (EJB) and
persistence resources.

The messaging component, how-
ever, had not changed since 2003,
when version 1.1 was released.
Compared to other Java EE 6 tech-
nologies, using JMS 1.1 required
lots of boilerplate code and
configuration.

JMS 2.0 now provides the same
simplifications provided for the
other components. By default,
sending a message or processing
a message requires less code and
less configuration. But more-
flexible and more-complex con-

figurations are still possible using
either annotations or descriptors.

Basically, JMS is about sending
messages from one software
component to another. This is
nontrivial, and it requires a num-
ber of intermediate steps pro-
vided by different actors. In JMS
1.1, most of these steps had to be
implemented by the Java devel-
oper. In JMS 2.0, most of the
steps are implemented by the
JMS implementation.

A typical usage of JMS 1.1 would
inject a ConnectionFactory and
a ConnectionQueue and cre-
ate a Connection, a Session, a
MessageProducer, and a Message.
In JMS 2.0, this becomes much
simpler by default. A JMSContext is
created, and this context is used

to send messages, as shown in
Listing 7.
JAX-RS. The Java API for RESTful
Web Services is one of the fastest-
evolving APIs in the Java EE land-
scape. This is, of course, due to the
massive adoption of REST-based
Web services and the increasing
number of applications that con-
sume those services.

JAX-RS 2.0 fine-tunes the server-
side specifications for REST APIs
and adds a client part. Today’s
enterprise applications often make
their services available via REST
APIs, but they also need to con-
sume other (external) Web ser-
vices. In order to do this with Java
EE 6, developers needed to either
create their own boilerplate code or
use a proprietary framework.

Download all listings in this issue as text

ManagedExecutorService mes = (ManagedExecutorService)ctx.lookup(
"java:comp/env/concurrent/ThreadPool");

LISTING 6 LISTING 7 LISTING 8

EVER EVOLVING

The landscape
in enterprise
computing is
always evolving,
and the Java EE
standard should
evolve as well.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/MayJune2013

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2013

JA
VA

 T
EC

H

65

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

JAX-RS specifies a javax.ws.rs
.client package that can easily be
used for querying external Web
services. A POST request to a fictive
server called my.server.com can be
done as shown in Listing 8.

Note the use of method chain-
ing, which is very convenient and
productive when a (potentially)
large number of methods have to
be called.

The JAX-RS 2.0 specification
also allows the result of a client
request to be java.util.concurrent
.Future, thereby enabling asyn-
chronous requests. This can sim-
ply be done by adding the async()
method call on the Target instance.
Asynchronous processing is also
possible on the server side by add-
ing the @Suspended Asyncresponse
signature in the processing
method.

Conclusion
The Java EE specifications need to
strike a difficult balance between
business needs and developer pro-
ductivity. Starting with Java EE 5,
developer productivity became
more of a priority and changes to
support increased productivity
were done without jeopardizing
business needs.

Java EE 7 follows this path by
providing some new features that
are very important in today’s busi-
ness environments and by sim-

plifying some existing specifica-
tions. The Java EE 7 specifications,
thereby, achieve two goals:
■■ It is very easy to use the default

behavior with very few lines of
code.

■■ If the default behavior is not
what is needed, it is still possible
to configure the behavior.
The majority of existing appli-

cation servers will likely imple-
ment the Java EE 7 specifications.
The GlassFish project serves as a
Reference Implementation for the
various specifications. </article>

LEARN MORE
•	Java EE 7 specification
•	“�Batch Applications in Java EE 7—

Understanding JSR 352 Concepts”
•	“�JSON-P: Java API for JSON

Processing”
•	“�JMS 2.0 Early Draft—Simplified

API Sample Code”
•	JMS 2.0 blog

Copyright © 2013, Oracle and/or its affiliates.
All rights reserved.

REGISTER NOW
Save $400 by July 19th

SEPT. 22 - 26, 2013 | SAN FRANCISCO

Register at oracle.com/javaone

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://glassfish.java.net
http://jcp.org/en/jsr/detail?id=342
https://blogs.oracle.com/arungupta/entry/batch_applications_in_java_ee
https://blogs.oracle.com/arungupta/entry/batch_applications_in_java_ee
https://blogs.oracle.com/arungupta/entry/json_p_java_api_for
https://blogs.oracle.com/arungupta/entry/json_p_java_api_for
https://blogs.oracle.com/arungupta/entry/jms_2_0_early_draft
https://blogs.oracle.com/arungupta/entry/jms_2_0_early_draft
http://j0hnk.github.com/blog/2013/01/06/jms-2-dot-0/
http://oracle.com/javaone

