‘® redhat.

Red Hat Enterprise Linux 7

Virtualization Deployment and Administration
Guide

Installing, configuring, and managing virtual machines on a Red Hat Enterprise Linux
physical machine

Last Updated: 2018-10-05

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration
Guide

Installing, configuring, and managing virtual machines on a Red Hat Enterprise Linux physical
machine

Jiri Herrmann
Red Hat Customer Content Services
jherrman@redhat.com

Yehuda Zimmerman
Red Hat Customer Content Services
yzimmerm@redhat.com

Laura Novich
Red Hat Customer Content Services

Dayle Parker
Red Hat Customer Content Services

Scott Radvan
Red Hat Customer Content Services

Tahlia Richardson
Red Hat Customer Content Services

Legal Notice
Copyright © 2018 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide covers how to configure a Red Hat Enterprise Linux 7 machine to act as a virtualization
host system, and how to install and configure guest virtual machines using the KVM hypervisor.
Other topics include PCI device configuration, SR-IOV, networking, storage, device and guest virtual
machine management, as well as troubleshooting, compatibility and restrictions. Procedures that
need to be run on the guest virtual machine are explicitly marked as such. All procedures described
in this guide are intended to be performed on an AMDG64 or Intel 64 host machine, unless otherwise
stated. For using Red Hat Enterprise Linux 7 virtualization on architectures other than AMD64 and
Intel 64, see . For a more general introduction into virtualization solutions provided by Red Hat, see
the Red Hat Enterprise Linux 7 Virtualization Getting Started Guide.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

Table of Contents

PART I DEPLOYMENT ..ottt ittt i ittt a et a e a s a e s a e asaasansanranrnnrnnnnnns 8
CHAPTER 1. SYSTEM REQUIREMENTSt et ettt it e a s aa i a s n e nnnnns 9
1.1. HOST SYSTEM REQUIREMENTS 9
1.2. KVM HYPERVISOR REQUIREMENTS 10
1.3. KVM GUEST VIRTUAL MACHINE COMPATIBILITY 11
1.4. SUPPORTED GUEST CPU MODELS 11
CHAPTER 2. INSTALLING THE VIRTUALIZATION PACKAGES ¢ttt iiinaenananennns 13

2.1. INSTALLING VIRTUALIZATION PACKAGES DURING A RED HAT ENTERPRISE LINUX INSTALLATION
13

2.2. INSTALLING VIRTUALIZATION PACKAGES ON AN EXISTING RED HAT ENTERPRISE LINUX SYSTEM
16
CHAPTER 3. CREATING AVIRTUAL MACHINE it et et e et ana e aaneanns 19
3.1. GUEST VIRTUAL MACHINE DEPLOYMENT CONSIDERATIONS 19
3.2. CREATING GUESTS WITH VIRT-INSTALL 19
3.3. CREATING GUESTS WITH VIRT-MANAGER 23
3.4. COMPARISON OF VIRT-INSTALL AND VIRT-MANAGER INSTALLATION OPTIONS 35
CHAPTER 4. CLONING VIRTUAL MACHINESottt et i et i e a e e na s aaannanns 37
4.1. PREPARING VIRTUAL MACHINES FOR CLONING 37
4.2. CLONING A VIRTUAL MACHINE 40
CHAPTER 5. KVM PARAVIRTUALIZED (VIRTIO) DRIVERSot i e e e e nna e ans 44
5.1. USING KVM VIRTIO DRIVERS FOR EXISTING STORAGE DEVICES 44
5.2. USING KVM VIRTIO DRIVERS FOR NEW STORAGE DEVICES 45
5.3. USING KVM VIRTIO DRIVERS FOR NETWORK INTERFACE DEVICES 49
CHAPTER 6. NETWORK CONFIGURATIONttt ittt et e saesa e a e nanannananennns 52
6.1. NETWORK ADDRESS TRANSLATION (NAT) WITH LIBVIRT 52
6.2. DISABLING VHOST-NET 53
6.3. ENABLING VHOST-NET ZERO-COPY 54
6.4. BRIDGED NETWORKING 54
CHAPTER 7. OVERCOMMITTING WITH KVM . .. it e s et i et i e n e e snasnaannanns 59
7.1. INTRODUCTION 59
7.2. OVERCOMMITTING MEMORY 59
7.3. OVERCOMMITTING VIRTUALIZED CPUS 59
CHAPTER 8. KVM GUEST TIMING MANAGEMENTottt ittt it aena s naannanns 61
8.1. HOST-WIDE TIME SYNCHRONIZATION 62
8.2. REQUIRED TIME MANAGEMENT PARAMETERS FOR RED HAT ENTERPRISE LINUX GUESTS 63
8.3. STEAL TIME ACCOUNTING 64
CHAPTER 9. NETWORK BOOTING WITH LIBVIRTo it e e i e a e naananns 65
9.1. PREPARING THE BOOT SERVER 65
9.2. BOOTING A GUEST USING PXE 66
CHAPTER 10. REGISTERING THE HYPERVISOR AND VIRTUAL MACHINEccoiiiviinat, 68
10.1. INSTALLING VIRT-WHO ON THE HOST PHYSICAL MACHINE 68
10.2. REGISTERING A NEW GUEST VIRTUAL MACHINE 71
10.3. REMOVING A GUEST VIRTUAL MACHINE ENTRY 71
10.4. INSTALLING VIRT-WHO MANUALLY 72

Virtualization Deployment and Administration Guide

10.5. TROUBLESHOQOTING VIRT-WHO 73
CHAPTER 11. ENHANCING VIRTUALIZATION WITH THE QEMU GUEST AGENT AND SPICE AGENT ... 74
11.1. QEMU GUEST AGENT 74
11.2. USING THE QEMU GUEST AGENT WITH LIBVIRT 78
11.3. SPICE AGENT 80
CHAPTER 12. NESTED VIRTUALIZATION ...ttt ittt et e ta et n s a e a s nannnanennns 83
12.1. OVERVIEW 83
12.2. SETUP 83
12.3. RESTRICTIONS AND LIMITATIONS 85
PART II. ADMINISTRATION ...ttt et it a e st aa s aa s a e s a e aaaeaananennens 86
CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES ..ot iiaenns 87
13.1. STORAGE CONCEPTS 87
13.2. USING STORAGE POOLS 88
13.3. USING STORAGE VOLUMES 122
CHAPTER 14. USING QEMU-IMGttt et et i et it e a s aa e nana e aanannnnnnns 144
14.1. CHECKING THE DISK IMAGE 144
14.2. COMMITTING CHANGES TO AN IMAGE 144
14.3. COMPARING IMAGES 144
14.4. MAPPING AN IMAGE 145
14.5. AMENDING AN IMAGE 146
14.6. CONVERTING AN EXISTING IMAGE TO ANOTHER FORMAT 146
14.7. CREATING AND FORMATTING NEW IMAGES OR DEVICES 146
14.8. DISPLAYING IMAGE INFORMATION 147
14.9. REBASING A BACKING FILE OF AN IMAGE 147
14.10. RE-SIZING THE DISK IMAGE 148
14.11. LISTING, CREATING, APPLYING, AND DELETING A SNAPSHOT 148
14.12. SUPPORTED QEMU-IMG FORMATS 148
CHAPTER 15. KVM MIGRATION ...t et e ettt e s e aa e aaa e sannannnnnns 150
15.1. MIGRATION DEFINITION AND BENEFITS 150
15.2. MIGRATION REQUIREMENTS AND LIMITATIONS 150
15.3. LIVE MIGRATION AND RED HAT ENTERPRISE LINUX VERSION COMPATIBILITY 152
15.4. SHARED STORAGE EXAMPLE: NFS FOR A SIMPLE MIGRATION 153
15.5. LIVE KVM MIGRATION WITH VIRSH 154
15.6. MIGRATING WITH VIRT-MANAGER 159
CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATIONciiiiiiiiiiiinannn, 164
16.1. PCI DEVICES 164
16.2. PCI DEVICE ASSIGNMENT WITH SR-IOV DEVICES 177
16.3. USB DEVICES 189
16.4. CONFIGURING DEVICE CONTROLLERS 190
16.5. SETTING ADDRESSES FOR DEVICES 194
16.6. RANDOM NUMBER GENERATOR DEVICE 196
16.7. ASSIGNING GPU DEVICES 198
CHAPTER 17. VIRTUAL NETWORKINGttt it e s et na s a s a e annannannnnnns 207
17.1. VIRTUAL NETWORK SWITCHES 207
17.2. BRIDGED MODE 207
17.3. NETWORK ADDRESS TRANSLATION 208
17.4. DNS AND DHCP 209

Table of Contents

17.5. ROUTED MODE 210
17.6. ISOLATED MODE 210
17.7. THE DEFAULT CONFIGURATION 211
17.8. EXAMPLES OF COMMON SCENARIOS 212
17.9. MANAGING A VIRTUAL NETWORK 213
17.10. CREATING A VIRTUAL NETWORK 214
17.11. ATTACHING A VIRTUAL NETWORK TO A GUEST 224
17.12. ATTACHING A VIRTUAL NIC DIRECTLY TO A PHYSICAL INTERFACE 226
17.13. DYNAMICALLY CHANGING A HOST PHYSICAL MACHINE OR A NETWORK BRIDGE THAT IS
ATTACHED TO A VIRTUAL NIC 230
17.14. APPLYING NETWORK FILTERING 231
17.15. CREATING TUNNELS 263
17.16. SETTING VLAN TAGS 264
17.17. APPLYING QOS TO YOUR VIRTUAL NETWORK 265
CHAPTER 18. REMOTE MANAGEMENT OF GUESTSottt et et e e e aanannns 266
18.1. TRANSPORT MODES 266
18.2. REMOTE MANAGEMENT WITH SSH 269
18.3. REMOTE MANAGEMENT OVER TLS AND SSL 271
18.4. CONFIGURING A VNC SERVER 274
18.5. ENHANCING REMOTE MANAGEMENT OF VIRTUAL MACHINES WITH NSS 274
CHAPTER 19. MANAGING GUESTS WITH THE VIRTUAL MACHINE MANAGER (VIRT-MANAGER) 276
19.1. STARTING VIRT-MANAGER 276
19.2. THE VIRTUAL MACHINE MANAGER MAIN WINDOW 277
19.3. THE VIRTUAL HARDWARE DETAILS WINDOW 278
19.4. VIRTUAL MACHINE GRAPHICAL CONSOLE 283
19.5. ADDING A REMOTE CONNECTION 285
19.6. DISPLAYING GUEST DETAILS 286
19.7. MANAGING SNAPSHOTS 293
CHAPTER 20. MANAGING GUEST VIRTUAL MACHINES WITHVIRSH i 297
20.1. GUEST VIRTUAL MACHINE STATES AND TYPES 297
20.2. DISPLAYING THE VIRSH VERSION 298
20.3. SENDING COMMANDS WITH ECHO 298
20.4. CONNECTING TO THE HYPERVISOR WITH VIRSH CONNECT 298
20.5. DISPLAYING INFORMATION ABOUT A GUEST VIRTUAL MACHINE AND THE HYPERVISOR 299
20.6. STARTING, RESUMING, AND RESTORING A VIRTUAL MACHINE 300
20.7. MANAGING A VIRTUAL MACHINE CONFIGURATION 302
20.8. SHUTTING OFF, SHUTTING DOWN, REBOOTING, AND FORCING A SHUTDOWN OF A GUEST
VIRTUAL MACHINE 305
20.9. REMOVING AND DELETING A VIRTUAL MACHINE 307
20.10. CONNECTING THE SERIAL CONSOLE FOR THE GUEST VIRTUAL MACHINE 308
20.11. INJECTING NON-MASKABLE INTERRUPTS 308
20.12. RETRIEVING INFORMATION ABOUT YOUR VIRTUAL MACHINE 309
20.13. WORKING WITH SNAPSHOTS 314
20.14. DISPLAYING A URI FOR CONNECTION TO A GRAPHICAL DISPLAY 317
20.15. DISPLAYING THE IP ADDRESS AND PORT NUMBER FOR THE VNC DISPLAY 317
20.16. DISCARDING BLOCKS NOT IN USE 318
20.17. GUEST VIRTUAL MACHINE RETRIEVAL COMMANDS 318
20.18. CONVERTING QEMU ARGUMENTS TO DOMAIN XML 321
20.19. CREATING A DUMP FILE OF A GUEST VIRTUAL MACHINE'S CORE USING VIRSH DUMP 322
20.20. CREATING A VIRTUAL MACHINE XML DUMP (CONFIGURATION FILE) 323
20.21. CREATING A GUEST VIRTUAL MACHINE FROM A CONFIGURATION FILE 324

Virtualization Deployment and Administration Guide

20.22.
20.23.
20.24.
20.25.
20.26.
20.27.
20.28.
20.29.
20.30.
20.31.
20.32.
20.33.
20.34.
20.35.
20.36.
20.37.
20.38.
20.39.
20.40.
20.41.
20.42.
20.43.
20.44.
20.45.
20.46.

CHAPT
21.1.
21.2.
21.3.
21.4.
21.5.
21.6.
21.7.
21.8.
21.9.
21.10
21.11
21.12
21.13
21.14

CHAPTER 22. GRAPHICAL USER INTERFACE TOOLS FOR GUEST VIRTUAL MACHINE MANAGEMENT

22.1.
22.2.
22.3.

CHAPT
23.1.
23.2.
23.3.
23.4.
23.5.
23.6.

EDITING A GUEST VIRTUAL MACHINE'S XML CONFIGURATION SETTINGS
ADDING MULTIFUNCTION PCI DEVICES TO KVM GUEST VIRTUAL MACHINES
DISPLAYING CPU STATISTICS FOR A SPECIFIED GUEST VIRTUAL MACHINE
TAKING A SCREENSHOT OF THE GUEST CONSOLE

SENDING A KEYSTROKE COMBINATION TO A SPECIFIED GUEST VIRTUAL MACHINE
HOST MACHINE MANAGEMENT

RETRIEVING GUEST VIRTUAL MACHINE INFORMATION

STORAGE POOL COMMANDS

STORAGE VOLUME COMMANDS

DELETING STORAGE VOLUMES

DELETING A STORAGE VOLUME'S CONTENTS

DUMPING STORAGE VOLUME INFORMATION TO AN XML FILE

LISTING VOLUME INFORMATION

RETRIEVING STORAGE VOLUME INFORMATION

DISPLAYING PER-GUEST VIRTUAL MACHINE INFORMATION

MANAGING VIRTUAL NETWORKS

INTERFACE COMMANDS

MANAGING SNAPSHOTS

GUEST VIRTUAL MACHINE CPU MODEL CONFIGURATION

CONFIGURING THE GUEST VIRTUAL MACHINE CPU MODEL

MANAGING RESOURCES FOR GUEST VIRTUAL MACHINES

SETTING SCHEDULE PARAMETERS

DISK I/O THROTTLING

DISPLAY OR SET BLOCK I/O PARAMETERS

CONFIGURING MEMORY TUNING

ER 21. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS

INTRODUCTION

TERMINOLOGY

INSTALLATION

THE GUESTFISH SHELL

OTHER COMMANDS

VIRT-RESCUE: THE RESCUE SHELL

VIRT-DF: MONITORING DISK USAGE

VIRT-RESIZE: RESIZING GUEST VIRTUAL MACHINES OFFLINE
VIRT-INSPECTOR: INSPECTING GUEST VIRTUAL MACHINES

. USING THE API FROM PROGRAMMING LANGUAGES

. VIRT-SYSPREP: RESETTING VIRTUAL MACHINE SETTINGS

. VIRT-CUSTOMIZE: CUSTOMIZING VIRTUAL MACHINE SETTINGS
. VIRT-DIFF: LISTING THE DIFFERENCES BETWEEN VIRTUAL MACHINE FILES
. VIRT-SPARSIFY: RECLAIMING EMPTY DISK SPACE

VIRT-VIEWER
REMOTE-VIEWER
GNOME BOXES

ER 23. MANIPULATING THE DOMAIN XMLt i it e e e naansanrnnns

GENERAL INFORMATION AND METADATA
OPERATING SYSTEM BOOTING

SMBIOS SYSTEM INFORMATION

CPU ALLOCATION

CPU TUNING

MEMORY BACKING

324
324
326
326
327
328
336
337
345
347
347
348
349
349
350
355
361
364
370
373
374
375
376
376
376

378
378
380
380
380
385
386
387
388
390
392
396
399
403
406

411
411
413
415

420
420
421
424
424
425
427

Table of Contents

23.7. MEMORY TUNING 427
23.8. MEMORY ALLOCATION 428
23.9. NUMA NODE TUNING 429
23.10. BLOCK I/O TUNING 430
23.11. RESOURCE PARTITIONING 431
23.12. CPU MODELS AND TOPOLOGY 431
23.13. EVENTS CONFIGURATION 437
23.14. POWER MANAGEMENT 439
23.15. HYPERVISOR FEATURES 440
23.16. TIMEKEEPING 441
23.17. TIMER ELEMENT ATTRIBUTES 444
23.18. DEVICES 445
23.19. STORAGE POOLS 499
23.20. STORAGE VOLUMES 505
23.21. SECURITY LABEL 510
23.22. A SAMPLE CONFIGURATION FILE 512
PART Il APPENDICES ... ittt et a it e e et a s a et e a st aa s anan an anaannnnnnn, 513
APPENDIX A. TROUBLESHOOTING ... ittt ettt ettt e na s aa s aaansannnnnnnnns 514
A.1. DEBUGGING AND TROUBLESHOOQOTING TOOLS 514
A.2. CREATING DUMP FILES 515
A.3. CAPTURING TRACE DATA ON A CONSTANT BASIS USING THE SYSTEMTAP FLIGHT RECORDER
517
A.4. KVM_STAT 518
A.5. TROUBLESHOOTING WITH SERIAL CONSOLES 522
A.6. VIRTUALIZATION LOGS 523
A.7. LOOP DEVICE ERRORS 523
A.8. LIVE MIGRATION ERRORS 524
A.9. ENABLING INTEL VT-X AND AMD-V VIRTUALIZATION HARDWARE EXTENSIONS IN BIOS 524
A.10. SHUTTING DOWN RED HAT ENTERPRISE LINUX 6 GUESTS ON A RED HAT ENTERPRISE LINUX 7
HOST 525
A.11. OPTIONAL WORKAROUND TO ALLOW FOR GRACEFUL SHUTDOWN 527
A.12. KVM NETWORKING PERFORMANCE 530
A.13. WORKAROUND FOR CREATING EXTERNAL SNAPSHOTS WITH LIBVIRT 531
A.14. MISSING CHARACTERS ON GUEST CONSOLE WITH JAPANESE KEYBOARD 532
A.15. GUEST VIRTUAL MACHINE FAILS TO SHUTDOWN 532
A.16. DISABLE SMART DISK MONITORING FOR GUEST VIRTUAL MACHINES 533
A.17. LIBGUESTFS TROUBLESHOOTING 533
A.18. TROUBLESHOOTING SR-I0V 534
A.19. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING 534
APPENDIX B. USING KVM VIRTUALIZATION ON MULTIPLE ARCHITECTUREScvvuvnn, 562
B.1. USING KVM VIRTUALIZATION ON IBM POWER SYSTEMS 562
B.2. USING KVM VIRTUALIZATION ON IBM Z SYSTEMS 564
B.3. USING KVM VIRTUALIZATION ON ARM SYSTEMS 567
APPENDIX C. VIRTUALIZATION RESTRICTIONSt e s et et e e e a e nannns 568
C.1. SYSTEM RESTRICTIONS 568
C.2. FEATURE RESTRICTIONS 568
C.3. APPLICATION RESTRICTIONS 571
C.4. OTHER RESTRICTIONS 571
C.5. STORAGE SUPPORT 571
C.6. USB 3/ XHCI SUPPORT 572

Virtualization Deployment and Administration Guide

APPENDIX D. ADDITIONAL RESOURCESttt ittt a e na s na i aa e a e nannasannnns 573
D.1. ONLINE RESOURCES 573
D.2. INSTALLED DOCUMENTATION 573

APPENDIX E. WORKING WITH IOMMU GROUPS[1] ...ttt ittt et a s insnesnenannnnnnnns 574
E.1. IOMMU OVERVIEW 574
E.2. A DEEP-DIVE INTO IOMMU GROUPS 575
E.3. HOW TO IDENTIFY AND ASSIGN IOMMU GROUPS 576
E.4. IOMMU STRATEGIES AND USE CASES 578

APPENDIX F. REVISION HISTORY . ..ottt et ettt e s a s aa e nca e annannannnnnns 580

Table of Contents

Virtualization Deployment and Administration Guide

PART |. DEPLOYMENT

CHAPTER 1. SYSTEM REQUIREMENTS

CHAPTER 1. SYSTEM REQUIREMENTS

Virtualization is available with the KVM hypervisor for Red Hat Enterprise Linux 7 on the Intel 64 and
AMDG64 architectures. This chapter lists system requirements for running virtual machines, also referred
to as VMs.

For information on installing the virtualization packages, see Chapter 2, Installing the Virtualization
Packages.

1.1. HOST SYSTEM REQUIREMENTS

Minimum host system requirements

e 6 GB free disk space.

e 2 GB RAM.

Recommended system requirements

e One core or thread for each virtualized CPU and one for the host.
e 2 GB of RAM, plus additional RAM for virtual machines.
e 6 GB disk space for the host, plus the required disk space for the virtual machine(s).

Most guest operating systems require at least 6 GB of disk space. Additional storage space for
each guest depends on their workload.

Swap space

Swap space in Linux is used when the amount of physical memory (RAM) is full. If the system
needs more memory resources and the RAM is full, inactive pages in memory are moved to the
swap space. While swap space can help machines with a small amount of RAM, it should not be
considered a replacement for more RAM. Swap space is located on hard drives, which have a
slower access time than physical memory. The size of your swap partition can be calculated
from the physical RAM of the host. The Red Hat Customer Portal contains an article on safely
and efficiently determining the size of the swap patrtition:
https://access.redhat.com/site/solutions/15244.

o When using raw image files, the total disk space required is equal to or greater than the sum
of the space required by the image files, the 6 GB of space required by the host operating
system, and the swap space for the guest.

Equation 1.1. Calculating required space for guest virtual machines using raw images

total for raw format = images + hostspace + swap

For gcow images, you must also calculate the expected maximum storage requirements of
the guest (total for qcow format), as qcow and qcow?2 images are able to grow as
required. To allow for this expansion, first multiply the expected maximum storage
requirements of the guest (expected maximum guest storage) by 1.01, and add to
this the space required by the host (host), and the necessary swap space (swap).

https://access.redhat.com/site/solutions/15244

Virtualization Deployment and Administration Guide

Equation 1.2. Calculating required space for guest virtual machines using qcow
images

total for gcow format = (expected maximum guest storage * 1.01) + host + swap

Guest virtual machine requirements are further outlined in Chapter 7, Overcommitting with KVIM.

1.2. KVM HYPERVISOR REQUIREMENTS

The KVM hypervisor requires:

e an Intel processor with the Intel VT-x and Intel 64 virtualization extensions for x86-based
systems; or

e an AMD processor with the AMD-V and the AMDG64 virtualization extensions.

Virtualization extensions (Intel VT-x or AMD-V) are required for full virtualization. Enter the following
commands to determine whether your system has the hardware virtualization extensions, and that they
are enabled.

Procedure 1.1. Verifying virtualization extensions

1. Verify the CPU virtualization extensions are available
enter the following command to verify the CPU virtualization extensions are available:

I $ grep -E 'svm|vmx' /proc/cpuinfo

2. Analyze the output

o The following example output contains a vmx entry, indicating an Intel processor with the
Intel VT-x extension:

flags : fpu tsc msr pae mce cx8 vmx apic mtrr mca cmov pat
pse36 clflush
dts acpi mmx fxsr sse sse2 ss ht tm syscall 1lm constant_tsc pni

monitor ds_cpl
vmx est tm2 cx16 xtpr lahf_1lm

o The following example output contains an svm entry, indicating an AMD processor with the
AMD-V extensions:

flags : fpu tsc msr pae mce cx8 apic mtrr mca cmov pat pse36

clflush
mmx fxsr sse sse2 ht syscall nx mmxext svm fxsr_opt 1lm 3dnowext

3dnow pni cx16
lahf_1m cmp_legacy svm cr8legacy ts fid vid ttp tm stc

Ifthe grep -E 'svm|vmx' /proc/cpuinfocommand returns any output, the processor
contains the hardware virtualization extensions. In some circumstances, manufacturers disable
the virtualization extensions in the BIOS. If the extensions do not appear, or full virtualization
does not work, see Procedure A.3, “Enabling virtualization extensions in BIOS” for instructions
on enabling the extensions in your BIOS configuration utility.

3. Ensure the KVM kernel modules are loaded

10

CHAPTER 1. SYSTEM REQUIREMENTS

As an additional check, verify that the kvm modules are loaded in the kernel with the following
command:

I # 1lsmod | grep kvm

If the output includes kvm_intel or kvm_amd, the kvm hardware virtualization modules are
loaded.

NOTE

The virsh utility (provided by the libvirt-client package) can output a full list of your
system's virtualization capabilities with the following command:

I # virsh capabilities

1.3. KVM GUEST VIRTUAL MACHINE COMPATIBILITY

Red Hat Enterprise Linux 7 servers have certain support limits.

The following URLs explain the processor and memory amount limitations for Red Hat Enterprise Linux:
e For host systems: hitps://access.redhat.com/articles/rhel-limits
e For the KVM hypervisor: https://access.redhat.com/articles/rhel-kvm-limits

The following URL lists guest operating systems certified to run on a Red Hat Enterprise Linux KVM host:

e https://access.redhat.com/articles/973133

NOTE

For additional information on the KVM hypervisor's restrictions and support limits, see
Appendix C, Virtualization Restrictions.

e

1.4. SUPPORTED GUEST CPU MODELS

Every hypervisor has its own policy for which CPU features the guest will see by default. The set of CPU
features presented to the guest by the hypervisor depends on the CPU model chosen in the guest virtual
machine configuration.

1.4.1. Listing the Guest CPU Models

To view a full list of the CPU models supported for an architecture type, run the virsh cpu-models
architecture command. For example:

$ virsh cpu-models x86_64
486

pentium

pentium?2

pentium3

pentiumpro

coreduo

11

https://access.redhat.com/articles/rhel-limits
https://access.redhat.com/articles/rhel-kvm-limits
https://access.redhat.com/articles/973133

Virtualization Deployment and Administration Guide

n270
core2duo
gemu32
kvin32
cpu64-rhels
cpu64-rhel6
kvm64
gemu64
Conroe
Penryn
Nehalem
Westmere
SandyBridge
Haswell
athlon
phenom
Opteron_G1
Opteron_G2
Opteron_G3
Opteron_G4
Opteron_G5

$ virsh cpu-models ppc64
POWER7

POWER7_v2.1

POWER7_v2.3

POWER7+_v2.1

POWER8_v1.0

The full list of supported CPU models and features is contained in the cpu_map . xm1l file, located in
/usr/share/libvirt/:

I # cat /usr/share/libvirt/cpu_map.xml

A guest's CPU model and features can be changed in the <cpu> section of the domain XML file. See
Section 23.12, “CPU Models and Topology” for more information.

The host model can be configured to use a specified feature set as needed. For more information, see
Section 23.12.1, “Changing the Feature Set for a Specified CPU”.

12

CHAPTER 2. INSTALLING THE VIRTUALIZATION PACKAGES

CHAPTER 2. INSTALLING THE VIRTUALIZATION PACKAGES

To use virtualization, Red Hat virtualization packages must be installed on your computer. Virtualization
packages can be installed when installing Red Hat Enterprise Linux or after installation using the yum
command and Subscription Manager.

The KVM hypervisor uses the default Red Hat Enterprise Linux kernel with the kvm kernel module.

2.1. INSTALLING VIRTUALIZATION PACKAGES DURING A RED HAT
ENTERPRISE LINUX INSTALLATION

This section provides information about installing virtualization packages while installing Red Hat
Enterprise Linux.

NOTE

For detailed information about installing Red Hat Enterprise Linux, see the Red Hat
Enterprise Linux 7 Installation Guide.

IMPORTANT

The Anaconda interface only offers the option to install Red Hat virtualization packages
during the installation of Red Hat Enterprise Linux Server.

When installing a Red Hat Enterprise Linux Workstation, the Red Hat virtualization
packages can only be installed after the workstation installation is complete. See
Section 2.2, “Installing Virtualization Packages on an Existing Red Hat Enterprise Linux
System”

Procedure 2.1. Installing virtualization packages

1. Select software
Follow the installation procedure until the Installation Summary screen.

13

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html

Virtualization Deployment and Administration Guide

INSTALLATION SUMMARY RED HAT ENTERPRISE LINUX 7.3 INSTALLATION

Eus Help!

- redhat

LOCALIZATION
DATE & TIME KEYBOARD
Americas/New York timezone English (US)

LANGUAGE SUPPORT
English (United States)

O

SOFTWARE
INSTALLATION SOURCE SOFTWARE SELECTION
Local media Minimal Install
SYSTEM
0 INSTALLATION DESTINATION KDUMP
‘. Automatic partitioning selected Kdump is enabled
+ NETWORK & HOST NAME SECURITY POLICY
e Not connected No profile selected

Quit

Ly Please complete items marked with this icon before continuing to the next step.

Figure 2.1. The Installation Summary screen

In the Installation Summary screen, click Software Selection. The Software
Selection screen opens.

2. Select the server type and package groups
You can install Red Hat Enterprise Linux 7 with only the basic virtualization packages or with
packages that allow management of guests through a graphical user interface. Do one of the
following:

o Install a minimal virtualization host

Select the Virtualization Host radio button in the Base Environment pane and the
Virtualization Platform check box in the Add-Ons for Selected Environment
pane. This installs a basic virtualization environment which can be run with virsh or
remotely over the network.

14

CHAPTER 2. INSTALLING THE VIRTUALIZATION PACKAGES

SOFTWARE SELECTION RED HAT ENTERPRISE LINUX 7.3 INSTALLATION
Base Environment Add-Ons for Selected Environment
Minimal Install Debugging Tools
Basic functionality Tools for debugging misbehaving applications and diagnosing performance
Infrastructure Server problems.
Server for operating network infrastructure services Network File System Client
File and Print Server Enables the system to attach to network storage
File, print, and storage server for enterprises. Remote Management for Linux
Basic Web Server Remote management interface for Red Hat Enterprise Linux, including

for serving static and dynamic internet content. OpenLMI and SNMP.
Virtualization Host | » Virtualization Platform

Provides an interface for accessing and controlling virtualized quests and

containers

Server with GUI

Server for operating network infrastructure services, with a GUI. Compatibility Libraries

Compatibility libraries for applications built on previous versions of Red
Hat Enterprise Linux.

Development Tools

A basic development environment.

Security Tools

Security tools for integrity and trust verification

Smart Card Support

Support for using smart card authentication.

Figure 2.2. Virtualization Host selected in the Software Selection screen
Install a virtualization host with a graphical user interface

Select the Server with GUI radio button in the Base Environment pane and the
Virtualization Client, Virtualization Hypervisor, andVirtualization
Tools check boxes in the Add-0Ons for Selected Environment pane. This installs a
virtualization environment along with graphical tools for installing and managing guest virtual
machines.

15

Virtualization Deployment and Administration Guide

SOFTWARE SELECTION RED HAT ENTERPRISE LINUX 7.3 INSTALLATION

Base Environment Add-Ons for Selected Environment

) Minimal Install The MariaDB SQL database server, and associated packages.

Basic functionalit
asic functionatity Network File System Clie nt

- Infrastructure Server Enables the system to attach to network storage.

Server for operating network infrastructure services
P 9 Performance Tools
() File and Print Server
File, print, and storage server for enterprises.
! Basic Web Server
Server for serving static and dynamic internet content.

Tools for diagnosing system and application-level performance
problems

Postgre SQL Database Server

The PostgreSQL SQL database server, and associated packages
_ Virtualization Host Print Server

Minimal virtualization host Allows the system to act as a print server,

g =200 i L Remote Management for Linux
Server for operating network infrastructure services, with a GUI. Remote management interface for Red Hat Enterprise Linux, including

OpenLMI and SNMP
v Virtualization Client

Clients for installing and managing virtualization instances.
~ Virtualization Hypervisor

Smallest possible virtualization host installation

& virtualization Tools
Tools for offline virtual image management.

Compatibility Libraries

Compatibility libraries for applications built on previous versions of Red
Hat Enterprise Linux.

Development Tools

A basic development environment.

Security Tools

Security tools for integrity and trust verification.

Smart Card Support

Support for using smart card authentication.

Figure 2.3. Server with GUI selected in the software selection screen

3. Finalize installation
Click Done and continue with the installation.

IMPORTANT

You need a valid Red Hat Enterprise Linux subscription to receive updates for the
virtualization packages.

2.1.1. Installing KVM Packages with Kickstart Files

To use a Kickstart file to install Red Hat Enterprise Linux with the virtualization packages, append the
following package groups in the %packages section of your Kickstart file:

@virtualization-hypervisor
@virtualization-client
@virtualization-platform
@virtualization-tools

For more information about installing with Kickstart files, see the Red Hat Enterprise Linux 7 Installation
Guide.

2.2. INSTALLING VIRTUALIZATION PACKAGES ON AN EXISTING RED
HAT ENTERPRISE LINUX SYSTEM

This section describes the steps for installing the KVM hypervisor on an existing Red Hat Enterprise
Linux 7 system.

16

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/chap-kickstart-installations.html

CHAPTER 2. INSTALLING THE VIRTUALIZATION PACKAGES

To install the packages, your machine must be registered and subscribed to the Red Hat Customer
Portal. To register using Red Hat Subscription Manager, run the subscription-manager register
command and follow the prompts. Alternatively, run the Red Hat Subscription Manager application from
Applications — System Tools on the desktop to register.

If you do not have a valid Red Hat subscription, visit the Red Hat online store to obtain one. For more

information on registering and subscribing a system to the Red Hat Customer Portal, see
https://access.redhat.com/solutions/253273.

2.2.1. Installing Virtualization Packages Manually

To use virtualization on Red Hat Enterprise Linux, at minimum, you need to install the following
packages:

e gemu-kvm: This package provides the user-level KVM emulator and facilitates communication
between hosts and guest virtual machines.

e gemu-img: This package provides disk management for guest virtual machines.

NOTE

2

The gemu-img package is installed as a dependency of the gemu-kvm package.

e libvirt: This package provides the server and host-side libraries for interacting with hypervisors
and host systems, and the 1ibvirtd daemon that handles the library calls, manages virtual
machines, and controls the hypervisor.

To install these packages, enter the following command:
I # yum install gemu-kvm libvirt

Several additional virtualization management packages are also available and are recommended when
using virtualization:

e virt-install: This package provides the virt-install command for creating virtual machines
from the command line.

e libvirt-python: This package contains a module that permits applications written in the Python
programming language to use the interface supplied by the libvirt API.

e virt-manager: This package provides the virt-manager tool, also known as Virtual Machine
Manager. This is a graphical tool for administering virtual machines. It uses the libvirt-client
library as the management API.

e libvirt-client: This package provides the client-side APIs and libraries for accessing libvirt servers.
The libvirt-client package includes the virsh command-line tool to manage and control virtual
machines and hypervisors from the command line or a special virtualization shell.

You can install all of these recommended virtualization packages with the following command:

yum install virt-install libvirt-python virt-manager virt-install
libvirt-client

2.2.2. Installing Virtualization Package Groups

17

https://www.redhat.com/wapps/store/catalog.html
https://access.redhat.com/solutions/253273

Virtualization Deployment and Administration Guide

The virtualization packages can also be installed from package groups. The following table describes the
virtualization package groups and what they provide.

Table 2.1. Virtualization Package Groups

Package Group Description Mandatory Packages Optional Packages
Virtualization Smallest possible libvirt, gemu-kvm, gemu- gemu-kvm-tools
Hypervisor virtualization host img
installation
Virtualization Clients for installing and gnome-boxes, virt-install, virt-top, libguestfs-tools,
Client managing virtualization virt-manager, virt-viewer, libguestfs-tools-c
instances gemu-img
Virtualization Provides an interface for libvirt, libvirt-client, virt- fence-virtd-libvirt, fence-
Platform accessing and who, gemu-img virtd-multicast, fence-
controlling virtual virtd-serial, libvirt-cim,
machines and libvirt-java, libvirt-snmp,
containers perl-Sys-Virt
Virtualization Tools for offline virtual libguestfs, gemu-img libguestfs-java,
Tools image management libguestfs-tools,

libguestfs-tools-c

To install a package group, run the yum groupinstall package_group command. Use the - -
optional option to install the optional packages in the package group. For example, to install the

Virtualization Tools package group with all of its optional packages, run:

I # yum groupinstall "Virtualization Tools" --optional

18

CHAPTER 3. CREATING A VIRTUAL MACHINE

CHAPTER 3. CREATING A VIRTUAL MACHINE

After you have installed the virtualization packages on your Red Hat Enterprise Linux 7 host system, you
can create virtual machines and install guest operating systems using the virt-manager interface.
Alternatively, you can use the virt-install command-line utility by a list of parameters or with a
script. Both methods are covered by this chapter.

3.1. GUEST VIRTUAL MACHINE DEPLOYMENT CONSIDERATIONS

Various factors should be considered before creating any guest virtual machines. The role of a virtual
machine should be evaluated before deployment, but regular monitoring and assessment based on
variable factors (load, amount of clients) should also be performed. The factors include:

Performance

Guest virtual machines should be deployed and configured based on their intended tasks. Some
guest systems (for instance, guests running a database server) may require special performance
considerations. Guests may require more assigned CPUs or memory based on their role and
projected system load.

Input/Output requirements and types of Input/Output

Some guest virtual machines may have a particularly high 1/0O requirement or may require further
considerations or projections based on the type of I/O (for instance, typical disk block size access, or
the amount of clients).

Storage

Some guest virtual machines may require higher priority access to storage or faster disk types, or
may require exclusive access to areas of storage. The amount of storage used by guests should also
be regularly monitored and taken into account when deploying and maintaining storage. Make sure to
read all the considerations outlined in Red Hat Enterprise Linux 7 Virtualization Security Guide. It is
also important to understand that your physical storage may limit your options in your virtual storage.

Networking and network infrastructure

Depending upon your environment, some guest virtual machines could require faster network links
than other guests. Bandwidth or latency are often factors when deploying and maintaining guests,
especially as requirements or load changes.

Request requirements

SCSI requests can only be issued to guest virtual machines on virtio drives if the virtio drives are
backed by whole disks, and the disk device parameter is set to 1un in the domain XML file, as shown
in the following example:

<devices>
<emulator>/usr/libexec/gemu-kvm</emulator>
<disk type='block' device='lun'>

3.2. CREATING GUESTS WITH VIRT-INSTALL

You can use the virt-install command to create virtual machines and install operating system on
those virtual machines from the command line. virt-install can be used either interactively or as

19

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Security_Guide/index.html

Virtualization Deployment and Administration Guide

part of a script to automate the creation of virtual machines. If you are using an interactive graphical
installation, you must have virt-viewer installed before you run virt-install. In addition, you can
start an unattended installation of virtual machine operating systems using virt-install with kickstart
files.

NOTE

You might need root privileges in order for some virt-install commands to complete
successfully.

2

The virt-install utility uses a number of command-line options. However, mostvirt-install
options are not required.

The main required options for virtual guest machine installations are:

- -hame

The name of the virtual machine.

- -memory

The amount of memory (RAM) to allocate to the guest, in MiB.

Guest storage
Use one of the following guest storage options:

e --disk

The storage configuration details for the virtual machine. If you use the - -disk none
option, the virtual machine is created with no disk space.

o --filesystem

The path to the file system for the virtual machine guest.

Installation method
Use one of the following installation methods:

e --location
The location of the installation media.

e --cdrom
The file or device used as a virtual CD-ROM device. It can be path to an ISO image, orto a
CDROM device. It can also be a URL from which to fetch or access a minimal boot 1ISO
image.

e --pxe

Uses the PXE boot protocol to load the initial ramdisk and kernel for starting the guest
installation process.

e --import

20

CHAPTER 3. CREATING A VIRTUAL MACHINE

Skips the OS installation process and builds a guest around an existing disk image. The
device used for booting is the first device specified by the disk or filesystem option.

e --boot

The post-install VM boot configuration. This option allows specifying a boot device order,
permanently booting off kernel and initrd with optional kernel arguments and enabling a BIOS
boot menu.

To see a complete list of options, enter the following command:

I # virt-install --help

To see a complete list of attributes for an option, enter the following command:
I # virt install --option=?

The virt-install man page also documents each command option, important variables, and
examples.

Prior to running virt-install, you may also need to use gemu-1img to configure storage options. For
instructions on using gemu-1img, see Chapter 14, Using gemu-img.

3.2.1. Installing a virtual machine from an ISO image

The following example installs a virtual machine from an ISO image:

virt-install \
--name guestl-rhel7 \
--memory 2048 \
--vcpus 2 \
--disk size=8 \
--cdrom /path/to/rhel7.iso \
--0s-variant rhel?7

The --cdrom /path/to/rhel7.iso option specifies that the virtual machine will be installed from the
CD or DVD image at the specified location.

3.2.2. Importing a virtual machine image

The following example imports a virtual machine from a virtual disk image:

virt-install \
--name guestl-rhel7 \
--memory 2048 \
--vcpus 2 \
--disk /path/to/imported/disk.qgcow \
--import \
--0s-variant rhel?7

The - -import option specifies that the virtual machine will be imported from the virtual disk image
specified by the - -disk /path/to/imported/disk.qcow option.

21

Virtualization Deployment and Administration Guide

3.2.3. Installing a virtual machine from the network

The following example installs a virtual machine from a network location:

virt-install \
--name guestl-rhel7 \
--memory 2048 \
--vcpus 2 \
--disk size=8 \
--location http://example.com/path/to/os \
--0s-variant rhel?7

The --location http://example.com/path/to/os option specifies that the installation tree is at
the specified network location.

3.2.4. Installing a virtual machine using PXE

When installing a virtual machine using the PXE boot protocol, both the - -network option specifying a
bridged network and the - -pxe option must be specified.

The following example installs a virtual machine using PXE:

virt-install \
--name guestl-rhel7 \
--memory 2048 \
--vcpus 2 \
--disk size=8 \
--network=bridge:bro \
--pxe \
--0s-variant rhel?7

3.2.5. Installing a virtual machine with Kickstart

The following example installs a virtual machine using a kickstart file:

virt-install \
--name guestl-rhel7 \
--memory 2048 \
--vcpus 2 \
--disk size=8 \
--location http://example.com/path/to/os \
--os-variant rhel7 \
--initrd-inject /path/to/ks.cfg \
--extra-args="ks=file:/ks.cfg console=tty0® console=ttyS0,115200n8"

The initrd-inject and the extra-args options specify that the virtual machine will be installed
using a Kickstarter file.

3.2.6. Configuring the guest virtual machine network during guest creation

When creating a guest virtual machine, you can specify and configure the network for the virtual
machine. This section provides the options for each of the guest virtual machine main network types.

22

CHAPTER 3. CREATING A VIRTUAL MACHINE

Default network with NAT
The default network uses 1ibvirtd's network address translation (NAT) virtual network switch. For
more information about NAT, see Section 6.1, “Network Address Translation (NAT) with libvirt”.

Before creating a guest virtual machine with the default network with NAT, ensure that the libvirt-
daemon-config-network package is installed.

To configure a NAT network for the guest virtual machine, use the following option for virt-install:

I --network default

NOTE

If no network option is specified, the guest virtual machine is configured with a default
network with NAT.

Bridged network with DHCP

When configured for bridged networking, the guest uses an external DHCP server. This option should be
used if the host has a static networking configuration and the guest requires full inbound and outbound
connectivity with the local area network (LAN). It should be used if live migration will be performed with
the guest virtual machine. To configure a bridged network with DHCP for the guest virtual machine, use
the following option:

I --network bro

NOTE

The bridge must be created separately, prior to running virt-install. For details on
creating a network bridge, see Section 6.4.1, “Configuring Bridged Networking on a Red
Hat Enterprise Linux 7 Host”.

Bridged network with a static IP address
Bridged networking can also be used to configure the guest to use a static IP address. To configure a
bridged network with a static IP address for the guest virtual machine, use the following options:

--network bro \

--extra-args
"ip=192.168.1.2::192.168.1.1:255.255.255.0:test.example.com:eth@:none"

For more information on network booting options, see the Red Hat Enterprise Linux 7 Virtualization
Guide.

No network
To configure a guest virtual machine with no network interface, use the following option:

I --network=none

3.3. CREATING GUESTS WITH VIRT-MANAGER

The Virtual Machine Manager, also known as virt-manager, is a graphical tool for creating and
managing guest virtual machines.

23

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/chap-anaconda-boot-options.html#sect-boot-options-installer

Virtualization Deployment and Administration Guide

This section covers how to install a Red Hat Enterprise Linux 7 guest virtual machine on a Red Hat
Enterprise Linux 7 host using virt-manager.

These procedures assume that the KVM hypervisor and all other required packages are installed and the

host is configured for virtualization. For more information on installing the virtualization packages, see
Chapter 2, Installing the Virtualization Packages.

3.3.1. virt-manager installation overview

The New VM wizard breaks down the virtual machine creation process into five steps:
1. Choosing the hypervisor and installation type

2. Locating and configuring the installation media

w

. Configuring memory and CPU options

i

. Configuring the virtual machine's storage

o

. Configuring virtual machine name, networking, architecture, and other hardware settings

Ensure that virt-manager can access the installation media (whether locally or over the network)
before you continue.

3.3.2. Creating a Red Hat Enterprise Linux 7 Guest with virt-manager

This procedure covers creating a Red Hat Enterprise Linux 7 guest virtual machine with a locally stored
installation DVD or DVD image. Red Hat Enterprise Linux 7 DVD images are available from the Red Hat
Customer Portal.

Procedure 3.1. Creating a Red Hat Enterprise Linux 7 guest virtual machine with virt-manager
using local installation media

1. Optional: Preparation
Prepare the storage environment for the virtual machine. For more information on preparing
storage, see Chapter 13, Managing Storage for Virtual Machines.

IMPORTANT

Various storage types may be used for storing guest virtual machines. However,
for a virtual machine to be able to use migration features, the virtual machine
must be created on networked storage.

Red Hat Enterprise Linux 7 requires at least 1 GB of storage space. However, Red Hat
recommends at least 5 GB of storage space for a Red Hat Enterprise Linux 7 installation and for
the procedures in this guide.

2. Open virt-manager and start the wizard
Open virt-manager by executing the virt-manager command as root or opening
Applications - System Tools — Virtual Machine Manager.

24

https://access.redhat.com/downloads/content/71/ver=/rhel---7/

CHAPTER 3. CREATING A VIRTUAL MACHINE

Virtual Machine Manager X
File Edit View Help
E__-J ElOpen ud |E| 7
Name ¥ CPU usage Host CPU usage
* QEMUSKNVM
rhel511

— Shutoff

- rhel7_3server_ VM
- Shutoff

rhel7 _3workstation_ VM Uﬂw
—— Running —

Figure 3.1. The Virtual Machine Manager window

Optionally, open a remote hypervisor by selecting the hypervisor and clicking the Connect
button.

Click to start the new virtualized guest wizard.
The New VM window opens.

. Specify installation type
Select the installation type:

Local install media (ISO image or CDROM)
This method uses a CD-ROM, DVD, or image of an installation disk (for example, .iso).

Network Install (HTTP, FTP, or NFS)

This method involves the use of a mirrored Red Hat Enterprise Linux or Fedora installation
tree to install a guest. The installation tree must be accessible through either HTTP, FTP, or
NFS.

If you select Network Install, provide the installation URL and also Kernel options, if
required.

Network Boot (PXE)

This method uses a Preboot eXecution Environment (PXE) server to install the guest virtual
machine. Setting up a PXE server is covered in the Red Hat Enterprise Linux 7 Installation
Guide. To install via network boot, the guest must have a routable IP address or shared
network device.

If you select Network Boot, continue to STEP 5. After all steps are completed, a DHCP

request is sent and if a valid PXE server is found the guest virtual machine's installation
processes will start.

25

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/chap-installation-server-setup.html#sect-network-boot-setup-bios

Virtualization Deployment and Administration Guide

Import existing disk image

This method allows you to create a new guest virtual machine and import a disk image
(containing a pre-installed, bootable operating system) to it.

Mew WM

m Create a new virtual machine

Connection: QEMLUJKVM

Choose how you would like to install the operating system
(®) Local install media (ISO image or CDROM)

| Network Install (HTTP, FTP, or NFS)

| Network Boot (PXE)

| Import existing disk image

Cancel | ‘ Back ‘ | Forward

Figure 3.2. Virtual machine installation method
Click Forward to continue.

4. Select the installation source

a. Ifyou selected Local install media (ISO image or CDROM), specify your intended
local installation media.

26

CHAPTER 3. CREATING A VIRTUAL MACHINE

Mew VM

m Create a new virtual machine

Locate your install media

' se COROM or DVD

| Mo device present ™

(e Use |SO image:

| b || Browse...

v Automatically detect operating system based on install media

05 type: -

Version: -

Cancel | | Back | | Forward

Figure 3.3. Local ISO image installation

m If you wish to install from a CD-ROM or DVD, select the Use CDROM or DVD radio
button, and select the appropriate disk drive from the drop-down list of drives available.

m If you wish to install from an ISO image, select Use IS0 image, and then click the
Browse. . . button to open the Locate media volume window.

Select the installation image you wish to use, and click Choose Volume.

If no images are displayed in the Locate media volume window, click the Browse
Local button to browse the host machine for the installation image or DVD drive
containing the installation disk. Select the installation image or DVD drive containing the
installation disk and click Open; the volume is selected for use and you are returned to
the Create a new virtual machine wizard.

27

Virtualization Deployment and Administration Guide

IMPORTANT

For ISO image files and guest storage images, the recommended
location to use is /var/1ib/1ibvirt/images/. Any other location
may require additional configuration by SELinux. See the Red Hat
Enterprise Linux Virtualization Security Guide or the Red Hat Enterprise
Linux SELinux User's and Administrator's Guide for more details on
configuring SELinux.

b. If you selected Network Install, input the URL of the installation source and also the
required Kernel options, if any. The URL must point to the root directory of an installation
tree, which must be accessible through either HTTP, FTP, or NFS.

To perform a kickstart installation, specify the URL of a kickstart file in Kernel options,
starting with ks=

New VM

m Create a new virtual machine

Frovide the operating system install URL

URL: | http:/f12.34.56.789/home/username/RHEL/7.3/x¢ | ~ |

* URL Options

Kernel options: | ks=http:/f12.34.56.789/homefusername/ks. |

| Automatically detect operating system based on install media

05 type: | Generic = |

Version: | Generic -

| Cancel || Back || Forward |

Figure 3.4. Network kickstart installation

28

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Security_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html

CHAPTER 3. CREATING A VIRTUAL MACHINE

NOTE

For a complete list of kernel options, see the Red Hat Enterprise Linux 7
Installation Guide.

Next, configure the OS type and Version of the installation. Ensure that you select the
appropriate operating system type for your virtual machine. This can be specified manually or by
selecting the Automatically detect operating system based on install media
check box.

Click Forward to continue.

. Configure memory (RAM) and virtual CPUs

Specify the number of CPUs and amount of memory (RAM) to allocate to the virtual machine.
The wizard shows the number of CPUs and amount of memory you can allocate; these values
affect the host's and guest's performance.

Virtual machines require sufficient physical memory (RAM) to run efficiently and effectively. Red
Hat supports a minimum of 512MB of RAM for a virtual machine. Red Hat recommends at least
1024MB of RAM for each logical core.

Assign sufficient virtual CPUs for the virtual machine. If the virtual machine runs a multi-threaded
application, assign the number of virtual CPUs the guest virtual machine will require to run
efficiently.

You cannot assign more virtual CPUs than there are physical processors (or hyper-threads)
available on the host system. The number of virtual CPUs available is noted in the Up to X
available field.

29

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/chap-anaconda-boot-options.html

Virtualization Deployment and Administration Guide

Mew WM

m Create a new virtual machine

Choose Memory and CPU settings

Memory (RAM): 1024 — + | MB

Llp to 11547 MIiB available on the host

CPUs: 1 +

Llp to 4 available

| Cancel | ‘ Back ‘ | Forward |

Figure 3.5. Configuring Memory and CPU

After you have configured the memory and CPU settings, click Forward to continue.

NOTE

Memory and virtual CPUs can be overcommitted. For more information on
overcommitting, see Chapter 7, Overcommitting with KVIM.

6. Configure storage
Enable and assign sufficient space for your virtual machine and any applications it requires.
Assign at least 5 GB for a desktop installation or at least 1 GB for a minimal installation.

30

CHAPTER 3. CREATING A VIRTUAL MACHINE

Mew WM

m Create a new virtual machine

'+ Enable storage for this virtual machine

* Create a disk image on the computer's hard drive

200 — + | GB

75.2 GB available in the default location

|:I Allocate entire disk now 4

| Select managed or other existing storage

Browse... ‘ ‘

Cancel | ‘ Back ‘ | Forward |

Figure 3.6. Configuring virtual storage

NOTE

Live and offline migrations require virtual machines to be installed on shared
network storage. For information on setting up shared storage for virtual
machines, see Section 15.4, “Shared Storage Example: NFS for a Simple
Migration”.

a. With the default local storage
Selectthe Create a disk image on the computer's hard drive radio button to
create a file-based image in the default storage pool, the /var/1ib/1libvirt/images/
directory. Enter the size of the disk image to be created. If the Allocate entire disk
now check box is selected, a disk image of the size specified will be created immediately. If
not, the disk image will grow as it becomes filled.

31

Virtualization Deployment and Administration Guide

NOTE

m Ext4 =~ 16 TB (using 4 KB block size)

m XFS = ~8 Exabytes

Although the storage pool is a virtual container it is limited by two factors:
maximum size allowed to it by gemu-kvm and the size of the disk on the host
physical machine. Storage pools may not exceed the size of the disk on the
host physical machine. The maximum sizes are as follows:

m virtio-blk = 2"63 bytes or 8 Exabytes(using raw files or disk)

m gcow?2 and host file systems keep their own metadata and scalability
should be evaluated/tuned when trying very large image sizes. Using raw
disks means fewer layers that could affect scalability or max size.

Click Forward to create a disk image on the local hard drive. Alternatively, select Select
managed or other existing storage, then select Browse to configure managed

storage.

b. With a storage pool

If you select Select managed or other existing storage to use a storage pool,
click Browse to open the Locate or create storage volume window.

Filesystem Directory

Choose Storage Volume

default Size: 75.16 GiB Free / 23.14 GB In Use

Location: [home/yzimmerm/VirtualMachines

E2EIC)

23% D.cwnLoadET Volumes
Filesystem Directory
23% RHEL7_2 Volumes

Filesy=stam Diractory

23y VirtualMachines

’ . RHEL7_2
Filesystam Directory

rhel7.2.qcow?2

¥ Size Format

0.00 MiB

Q.00 MiB dir
9,00 GIB qeow?2

+| |

®

Browse Local

‘ Cancel ‘ Choose Volume

Figure 3.7. The Choose Storage Volume window

i. Select a storage pool from the Storage Pools list.

ii. Optional: CIick| + ‘to create a new storage volume. The Add a Storage Volume
screen will appear. Enter the name of the new storage volume.

32

CHAPTER 3. CREATING A VIRTUAL MACHINE

Choose a format option from the Format drop-down menu. Format options include raw,
gcow2, and ged. Adjust other fields as needed. Note that the gcow2 version used here
is version 3. To change the qcow version see Section 23.20.2, “Setting Target Elements”

Add a Storage Volume

Create storage volume

Create a storage unit to be used directly by a virtual machine.

Mame: ‘ | .qcow?2

Format: ‘ qcc:uw..? - ‘

P Backing store

Storage Volume Guota
default's available space: 75.16 GiB

Max Capacity: | 8.0 - | + |GiE

‘ Cancel ‘ | Finish

Figure 3.8. The Add a Storage Volume window

Select the new volume and click Choose volume. Next, click Finish to return to the New VM
wizard. Click Forward to continue.

. Name and final configuration

Name the virtual machine. Virtual machine names can contain letters, numbers and the following
characters: underscores (_), periods (.), and hyphens (-). Virtual machine names must be
unique for migration and cannot consist only of numbers.

By default, the virtual machine will be created with network address translation (NAT) for a
network called 'default’ . To change the network selection, click Network selection and

select a host device and source mode.

Verify the settings of the virtual machine and click Finish when you are satisfied; this will create
the virtual machine with specified networking settings, virtualization type, and architecture.

33

Virtualization Deployment and Administration Guide

Mew WM

m Create a new virtual machine

Ready to begin the installation

Mame:

generic-2

05: Generic
Install: Local COROM/ISO
Memory: 1024 MIB
CPUs: 1
Storage: 9.0 GIB /home/yzimmerm/VirtualMachines/rhel...

|| Customize configuration before install

P Metwork selection

Cancel | ‘ Back ‘ | Finish

Figure 3.9. Verifying the configuration

Or, to further configure the virtual machine's hardware, check the Customize configuration
before install check box to change the guest's storage or network devices, to use the
paravirtualized (virtio) drivers or to add additional devices. This opens another wizard that will
allow you to add, remove, and configure the virtual machine's hardware settings.

NOTE

Red Hat Enterprise Linux 4 or Red Hat Enterprise Linux 5 guest virtual machines
cannot be installed using graphical mode. As such, you must select "Cirrus”
instead of "QXL" as a video card.

-

After configuring the virtual machine's hardware, click Apply. virt-manager will then create
the virtual machine with your specified hardware settings.

34

CHAPTER 3. CREATING A VIRTUAL MACHINE

'g WARNING
When installing a Red Hat Enterprise Linux 7 guest virtual machine from a

remote medium but without a configured TCP/IP connection, the installation
fails. However, when installing a guest virtual machine of Red Hat
Enterprise Linux 5 or 6 in such circumstances, the installer opens a
"Configure TCP/IP" interface.

For further information about this difference, see the related knowledgebase
article.

Click Finish to continue into the Red Hat Enterprise Linux installation sequence. For more
information on installing Red Hat Enterprise Linux 7, see the Red Hat Enterprise Linux 7
Installation Guide.

A Red Hat Enterprise Linux 7 guest virtual machine is now created from an ISO installation disk image.

3.4. COMPARISON OF VIRT-INSTALL AND VIRT-MANAGER
INSTALLATION OPTIONS

This table provides a quick reference to compare equivalent virt-install and virt-manager
installation options for when installing a virtual machine.

Most virt-install options are not required. The minimum requirements are - -name, - -memory,
guest storage (- -disk, --filesystemor - -disk none), and an install method (--location, - -
cdrom, - -pxe, - -import, or boot). These options are further specified with arguments; to see a
complete list of command options and related arguments, enter the following command:

I # virt-install --help

In virt-manager, at minimum, a name, installation method, memory (RAM), vCPUs, storage are
required.

Table 3.1. virt-install and virt-manager configuration comparison for guest installations

Configuration on virtual virt-install option virt-manager installation wizard
machine label and step number

Virtual machine name --name, -n Name (step 5)

RAM to allocate (MiB) --ram, -r Memory (RAM) (step 3)

Storage - specify storage media --disk Enable storage for this virtual

machine — Create a disk image

on the computer's hard drive, or

Select managed or other existing
storage (step 4)

35

https://access.redhat.com/solutions/511263
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html

Virtualization Deployment and Administration Guide

Configuration on virtual
machine

virt-install option

virt-manager installation wizard
label and step number

36

Storage - export a host directory
to the guest

Storage - configure no local disk
storage on the guest

Installation media location (local
install)

Installation via distribution tree
(network install)

Install guest with PXE

Number of vCPUs

Host network

Operating system variant/version

Graphical display method

--filesystem

--nodisks

--file

--location

--pxe

--vCpus

--network

--os-variant

--graphics, --nographics

Enable storage for this virtual
machine — Select managed or
other existing storage (step 4)

Deselect the Enable storage for
this virtual machine check box
(step 4)

Local install media — Locate your
install media (steps 1-2)

Network install — URL (steps 1-2)

Network boot (step 1)

CPUs (step 3)

Advanced options drop-down
menu (step 5)

Version (step 2)

* virt-manager provides GU!
installation only

CHAPTER 4. CLONING VIRTUAL MACHINES

CHAPTER 4. CLONING VIRTUAL MACHINES

There are two types of guest virtual machine instances used in creating guest copies:

e Clones are instances of a single virtual machine. Clones can be used to set up a network of
identical virtual machines, and they can also be distributed to other destinations.

e Templates are instances of a virtual machine that are designed to be used as a source for
cloning. You can create multiple clones from a template and make minor modifications to each
clone. This is useful in seeing the effects of these changes on the system.

Both clones and templates are virtual machine instances. The difference between them is in how they
are used.

For the created clone to work properly, information and configurations unique to the virtual machine that
is being cloned usually has to be removed before cloning. The information that needs to be removed
differs, based on how the clones will be used.

The information and configurations to be removed may be on any of the following levels:
e Platform level information and configurations include anything assigned to the virtual machine by
the virtualization solution. Examples include the number of Network Interface Cards (NICs) and

their MAC addresses.

e Guest operating system level information and configurations include anything configured within
the virtual machine. Examples include SSH keys.

e Application level information and configurations include anything configured by an application
installed on the virtual machine. Examples include activation codes and registration information.

NOTE

This chapter does not include information about removing the application level,
because the information and approach is specific to each application.

As a result, some of the information and configurations must be removed from within the virtual machine,
while other information and configurations must be removed from the virtual machine using the
virtualization environment (for example, Virtual Machine Manager or VMware).

NOTE

For information on cloning storage volumes, see Section 13.3.2.1, “Creating Storage
Volumes with virsh”.

4.1. PREPARING VIRTUAL MACHINES FOR CLONING

Before cloning a virtual machine, it must be prepared by running the virt-sysprep utility on its disk image,
or by using the following steps:

Procedure 4.1. Preparing a virtual machine for cloning
1. Setup the virtual machine

a. Build the virtual machine that is to be used for the clone or template.

37

Virtualization Deployment and Administration Guide

m Install any software needed on the clone.
m Configure any non-unique settings for the operating system.
m Configure any non-unique application settings.

2. Remove the network configuration

a. Remove any persistent udev rules using the following command:

I # rm -f /etc/udev/rules.d/70-persistent-net.rules

NOTE

If udev rules are not removed, the name of the first NIC may be eth1 instead
of ethO.

b. Remove unique network details from ifcfg scripts by making the following edits to
/etc/sysconfig/network-scripts/ifcfg-eth[x]:

i. Remove the HWADDR and Static lines

NOTE

If the HWADDR does not match the new guest's MAC address, the ifcfg
will be ignored. Therefore, it is important to remove the HWADDR from
the file.

DEVICE=eth[x]
BOOTPROTO=none

ONBOOT=yes
#NETWORK=10.0.1.0 <- REMOVE

#NETMASK=255.255.255.0 <- REMOVE

#IPADDR=10.0.1.20 <- REMOVE

H#HWADDR=XX : XX :XX:XX:XX <- REMOVE

#USERCTL=no <- REMOVE

Remove any other *unique* or non-desired settings, such as
UUID.

ii. Ensure that a DHCP configuration remains that does not include a HWADDR or any
unique information.

DEVICE=eth[x]
BOOTPROTO=dhcp
ONBOOT=yes

iii. Ensure that the file includes the following lines:

DEVICE=eth[x]
ONBOOT=yes

c. If the following files exist, ensure that they contain the same content:

38

CHAPTER 4. CLONING VIRTUAL MACHINES

m /etc/sysconfig/networking/devices/ifcfg-eth[x]

m /etc/sysconfig/networking/profiles/default/ifcfg-eth[x]

NOTE

If NetworkManager or any special settings were used with the virtual
machine, ensure that any additional unique information is removed from the
ifcfg scripts.

3. Remove registration details

a. Remove registration details using one of the following:

m For Red Hat Network (RHN) registered guest virtual machines, run the following
command:

I # rm /etc/sysconfig/rhn/systemid

m For Red Hat Subscription Manager (RHSM) registered guest virtual machines:

m [f the original virtual machine will not be used, run the following commands:

subscription-manager unsubscribe --all
subscription-manager unregister
subscription-manager clean

m [f the original virtual machine will be used, run only the following command:

I # subscription-manager clean

NOTE

The original RHSM profile remains in the portal.

4. Removing other unique details

a. Remove any sshd public/private key pairs using the following command:

I # rm -rf /etc/ssh/ssh_host_*

NOTE

Removing ssh keys prevents problems with ssh clients not trusting these
hosts.

b. Remove any other application-specific identifiers or configurations that may cause conflicts if
running on multiple machines.

5. Configure the virtual machine to run configuration wizards on the next boot

39

Virtualization Deployment and Administration Guide

a. Configure the virtual machine to run the relevant configuration wizards the next time it is
booted by doing one of the following:

m For Red Hat Enterprise Linux 6 and below, create an empty file on the root file system
called .unconfigured using the following command:

I # touch /.unconfigured

m For Red Hat Enterprise Linux 7, enable the first boot and initial-setup wizards by running
the following commands:

sed -ie 's/RUN_FIRSTBOOT=NO/RUN_FIRSTBOOT=YES/'
/etc/sysconfig/firstboot

systemctl enable firstboot-graphical

systemctl enable initial-setup-graphical

-

NOTE
The wizards that run on the next boot depend on the configurations that have

been removed from the virtual machine. In addition, on the first boot of the
clone, it is recommended that you change the hostname.

4.2. CLONING A VIRTUAL MACHINE

Before proceeding with cloning, shut down the virtual machine. You can clone the virtual machine using
virt-clone or virt-manager.

4.2.1. Cloning Guests with virt-clone

You can use virt-clone to clone virtual machines from the command line.

Note that you need root privileges for virt-clone to complete successfully.

The virt-clone command provides a number of options that can be passed on the command line.
These include general options, storage configuration options, networking configuration options, and

miscellaneous options. Only the - -original is required. To see a complete list of options, enter the
following command:

I # virt-clone --help

The virt-clone man page also documents each command option, important variables, and examples.

The following example shows how to clone a guest virtual machine called "demo" on the default
connection, automatically generating a new name and disk clone path.

Example 4.1. Using virt-clone to clone a guest

I # virt-clone --original demo --auto-clone

The following example shows how to clone a QEMU guest virtual machine called "demo" with multiple
disks.

40

CHAPTER 4. CLONING VIRTUAL MACHINES

Example 4.2. Using virt-clone to clone a guest

file /var/lib/libvirt/images/newdemo.img --file

virt-clone --connect gemu:///system --original demo --name newdemo - -
/var/1lib/1libvirt/images/newdata.img

4.2.2. Cloning Guests with virt-manager

This procedure describes cloning a guest virtual machine using the virt-manager utility.

Procedure 4.2. Cloning a Virtual Machine with virt-manager

1. Open virt-manager
Start virt-manager. Launch the Virtual Machine Manager application from the Applications
menu and System Tools submenu. Alternatively, run the virt-manager command as root.

Select the guest virtual machine you want to clone from the list of guest virtual machines in
Virtual Machine Manager.

Right-click the guest virtual machine you want to clone and select Clone. The Clone Virtual
Machine window opens.

41

Virtualization Deployment and Administration Guide

Clone Virtual Machine

[Clone virtual machine

Create clone based on: rhel?.2

Mame: rhel?.2-clone

Networking: AT (52:54:00:05:8b:01) ‘ Details...

Storage: El rhel7.2.qcow2

‘ Clone this disk (9.0 GiB) * ‘

lJ Download_dir.qcowZ

‘ Clone this disk (8.0 GIB) * ‘

@ - (Removable, Read Only)

‘ Share disk with rhely.2 ¥ ‘

Mothing to clone.

& Cloning creates a new, independent copy of the original disk. Sharing
uses the existing disk image far both the original and the new machine.

,& Cloning does not alter the guest 05 contents. If you need to do things
like change passwords or static |Ps, please see the virt-sysprep(l) tool.

‘ Cancel ‘ ‘ Clone ‘

Figure 4.1. Clone Virtual Machine window

2. Configure the clone

o To change the name of the clone, enter a new name for the clone.

42

CHAPTER 4. CLONING VIRTUAL MACHINES

o To change the networking configuration, click Details.
Enter a new MAC address for the clone.

Click OK.

Change MAC address

g Type: NAT
MAC: 52:54:00:05:8b:01

Mew MALC: ‘ 52:54:00:79:89: 2¢ ‘

‘ Cancel H (8]14 ‘

Figure 4.2. Change MAC Address window
o For each disk in the cloned guest virtual machine, select one of the following options:
m Clone this disk - The disk will be cloned for the cloned guest virtual machine

m Share disk with guest virtual machine name - The disk will be shared by
the guest virtual machine that will be cloned and its clone

m Details - Opens the Change storage path window, which enables selecting a new
path for the disk

Change storage path

Existing disk

Path: ../yzimmerm/VirtualMachines/rhel7.2.qcow2

if' =) Target: wvda

Sizer 9.0 GE

IE‘T Create a new disk (clone) for the virtual machine

M ew Path:| alMachines/rhel?.2 clone. gcow? | Browse... |
| Cancel || oK ‘

Figure 4.3. Change storage path window

3. Clone the guest virtual machine
Click Clone.

43

Virtualization Deployment and Administration Guide

CHAPTER 5. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

Paravirtualized drivers enhance the performance of guests, decreasing guest I/O latency and increasing
throughput almost to bare-metal levels. It is recommended to use the paravirtualized drivers for fully
virtualized guests running 1/0-heavy tasks and applications.

Virtio drivers are KVM's paravirtualized device drivers, available for guest virtual machines running on
KVM hosts. These drivers are included in the virtio package. The virtio package supports block
(storage) devices and network interface controllers.

NOTE

PCI devices are limited by the virtualized system architecture. See Chapter 16, Guest
Virtual Machine Device Configuration for additional limitations when using assigned
devices.

5.1. USING KVM VIRTIO DRIVERS FOR EXISTING STORAGE DEVICES

You can modify an existing hard disk device attached to the guest to use the virtio driver instead of
the virtualized IDE driver. The example shown in this section edits libvirt configuration files. Note that the
guest virtual machine does not need to be shut down to perform these steps, however the change will not
be applied until the guest is completely shut down and rebooted.

Procedure 5.1. Using KVM virtio drivers for existing devices

1. Ensure that you have installed the appropriate driver (viostor), before continuing with this
procedure.

2. Runthe virsh edit guestname command as root to edit the XML configuration file for your
device. For example, virsh edit guestl. The configuration files are located in the
/etc/1libvirt/qemu/ directory.

3. Below is a file-based block device using the virtualized IDE driver. This is a typical entry for a
virtual machine not using the virtio drivers.

<disk type='file' device='disk'>

<source file='/var/lib/libvirt/images/disk1.img'/>
<target dev='hda' bus='ide'/>
<address type='pci' domain='0Ox0000' bus='0x00' slot='0x07'
function="0x0'/>
</disk>

4. Change the entry to use the virtio device by modifying the bus= entry to virtio. Note that if the
disk was previously IDE, it has a target similar to hda, hdb, or hdc. When changing to
bus=virtio the target needs to be changed tovda, vdb, or vdc accordingly.

<disk type='file' device='disk'>

<source file='/var/lib/libvirt/images/disk1.img'/>
<target dev='vda' bus='virtio'/>

44

CHAPTER 5. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

<address type='pci' domain='0Ox0000' bus='0x00' slot='0x07'
function="0x0'/>
</disk>

5. Remove the address tag inside the disk tags. This must be done for this procedure to work.
Libvirt will regenerate the address tag appropriately the next time the virtual machine is started.

Alternatively, virt-manager, virsh attach-disk or virsh attach-interface can add a new
device using the virtio drivers.

See the libvirt website for more details on using Virtio: http://www.linux-kvm.org/page/Virtio

5.2. USING KVM VIRTIO DRIVERS FOR NEW STORAGE DEVICES

This procedure covers creating new storage devices using the KVM virtio drivers with virt-manager.

Alternatively, the virsh attach-disk or virsh attach-interface commands can be used to
attach devices using the virtio drivers.

IMPORTANT

Ensure the drivers have been installed on the guest before proceeding to install new
devices. If the drivers are unavailable the device will not be recognized and will not work.

Procedure 5.2. Adding a storage device using the virtio storage driver

1. Open the guest virtual machine by double clicking the name of the guest in virt-manager.

2. Open the Show virtual hardware details tab by clicking =
3. Inthe Show virtual hardware details tab, click the Add Hardware button.

4. Select hardware type
Select Storage as the Hardware type.

45

http://www.linux-kvm.org/page/Virtio

Virtualization Deployment and Administration Guide

Add New Virtual Hardware x
B Controller]
Network (®) Create a disk image for the virtual machine
® Input 200 = <+ |GiB
B Graphics 24.5 (iB available in the default location
P
B Sound () Select or create custom storage
=8 Serial
| Manaqe...
=¢| Parallel -
=& Console . . .
Device type: = || Disk device -
=2| Channel
#5 USB Host Device Bus type: IDE ~
s PCl Host Device
 Video » Advanced options
B Watchdog
1 Filesystem
& Smartcard
@ USB Redirection
o TPM
RMNG
Panic Notifier
Cancel Finish

Figure 5.1. The Add new virtual hardware wizard

5. Select the storage device and driver
Create a new disk image or select a storage pool volume.

Set the Device type to Disk device andthe Bus type to VirtIO to use the virtio drivers.

46

CHAPTER 5. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

Add New Virtual Hardware x

B Controller]
Network (®) Create a disk image for the virtual machine
B Graphics 24.5 GiB available in the default location
B Sound () Select or create custom storage
=£| Serial
| Manaqe...
=¢| Parallel :
=&| Console . . .
Device type: = || Disk device -
=2| Channel
USB Host Device Bus type: VirtlO -
PCl Host Device
E Video » Advanced options
B Watchdog
1 Filesystem
&= Smartcard
@ USB Redirection
o TPM
RNG
Panic Notifier
Cancel Finish

Figure 5.2. The Add New Virtual Hardware wizard

Click Finish to complete the procedure.

Procedure 5.3. Adding a network device using the virtio network driver
1. Open the guest virtual machine by double clicking the name of the guest in virt-manager.
2. Openthe Show virtual hardware details tab by clicking =

3. Inthe Show virtual hardware details tab, click the Add Hardware button.

4. Select hardware type
Select Network as the Hardware type.

47

Virtualization Deployment and Administration Guide

48

= Storage
m Controller

W Input
L] Graphics
B sound
'55| Serial
= Parallel
<& Console
=2l Channel

:ﬁ% USE Host Device
@é_ﬁj FCl Host Device
B video

m Watchdog

E Filesystem

&5 Smartcard

@ UsB Redirection
& TPMm

&% RNG

:ﬁ% Panic Motifier

Add Mew Virtual Hardware

Metwork

Metwaork source:

Virtual network ‘default’ : NAT = |

MAC address: E"T ‘ 52:54:00 a3 7f.ch

Device model: ‘ Hypervisor default

- ‘

‘ Cancel ‘ ‘ Einish ‘

Figure 5.3. The Add new virtual hardware wizard

5. Select the network device and driver

Set the Device model to virtio to use the virtio drivers. Choose the required Host device.

CHAPTER 5. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

Add Mew Virtual Hardware

m Controller

W Input
L] Graphics
B sound
4| Serial
=4 Parallel
<& Console
=2l Channel

¢ USE Host Device

Virtual network ‘default’ : NAT = |

MAC address: E"T ‘ 52:54:00 a3 7f.ch ‘

Device model:

wirtio - ‘

¢ PCl Host Device
B video
m Watchdeog

G Filesystem

=1 Smartcard
@ UsB Redirection
3 TeMm

S5 RNG

¢ Panic Motifier

Cancel ‘ ‘ Finish

Figure 5.4. The Add new virtual hardware wizard
Click Finish to complete the procedure.

Once all new devices are added, reboot the virtual machine. Virtual machines may not recognize the
devices until the guest is rebooted.

5.3. USING KVM VIRTIO DRIVERS FOR NETWORK INTERFACE
DEVICES

When network interfaces use KVM virtio drivers, KVM does not emulate networking hardware which
removes processing overhead and can increase the guest performance. In Red Hat Enterprise Linux 7,
virtio is used as the default network interface type. However, if this is configured differently on your
system, you can use the following procedures:

e To attach a virtio network device to a guest, use the virsh attach-interface command
with the model --virtio option.

49

Virtualization Deployment and Administration Guide

Alternatively, in the virt-manager interface, navigate to the guest's Virtual hardware
details screen and click Add Hardware. Inthe Add New Virtual Hardware screen,
select Network, and change Device model to virtio:

Add New Virtual Hardware x

B Controller

& Input B
B Graphics MAC address: (v 52:54:00:17:d6:1a

B Sound Device model: | virtio v
=i Serial

=&| Parallel

| Console

=i Channel

e To change the type of an existing interface to virtio, use the virsh edit command to edit
the XML configuration of the intended guest, and change the model type attribute to virtio,
for example as follows:

<devices>
<interface type='network'>
<source network='default'/>
<target dev='vnetl'/>
<model type='virtio'/>
<driver name='vhost' txmode='iothread' ioeventfd='on'
event_idx="'off'/>
</interface>
</devices>

Alternatively, in the virt-manager interface, navigate to the guest's Virtual hardware
details screen, select the NIC item, and change Model type tovirtio:
File Virtual Machine Miew Send Key

IDE Disk 1
IDE CDROM 1
NIC :65:29:21

= |G n @ - @

g Overview Virtual Network Interface

Performance Network source: | virtual network ‘default : NAT =
L} crus

== Memory Device model: | virtio ;

@«f} Boot Options MAC address: 52:54:00:65:29:21

i (e

50

CHAPTER 5. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

NOTE
If the naming of network interfaces inside the guest is not consistent across reboots,

ensure all interfaces presented to the guest are of the same device model, preferably
virtio-net. For details, see the Red Hat KnowledgeBase.

51

https://access.redhat.com/solutions/3219091

Virtualization Deployment and Administration Guide

CHAPTER 6. NETWORK CONFIGURATION

This chapter provides an introduction to the common networking configurations used by libvirt-based
guest virtual machines.

Red Hat Enterprise Linux 7 supports the following networking setups for virtualization:
e virtual networks using Network Address Translation (NAT)
e directly allocated physical devices using PCI device assignment
e directly allocated virtual functions using PCle SR-IOV
e bridged networks

You must enable NAT, network bridging or directly assign a PCl device to allow external hosts access to
network services on guest virtual machines.

6.1. NETWORK ADDRESS TRANSLATION (NAT) WITH LIBVIRT

One of the most common methods for sharing network connections is to use Network Address
Translation (NAT) forwarding (also known as virtual networks).

Host Configuration

Every standard 1ibvirt installation provides NAT-based connectivity to virtual machines as the default
virtual network. Verify that it is available with the virsh net-1list --all command.

virsh net-1list --all
Name State Autostart

default active yes

If it is missing, the following can be used in the XML configuration file (such as
/etc/libvirtd/gemu/myguest.xml) for the guest:

11 /etc/libvirt/gemu/

total 12

drwx------ . 3 root root 4096 Nov 7 23:02 networks
-TW------- . 1 root root 2205 Nov 20 01:20 r6.4.xml
-rTW------- . 1 root root 2208 Nov 8 03:19 r6.xml

The default network is defined from /etc/1libvirt/qemu/networks/default.xml

Mark the default network to automatically start:

virsh net-autostart default
Network default marked as autostarted

Start the default network:

virsh net-start default
Network default started

52

CHAPTER 6. NETWORK CONFIGURATION

Once the 1libvirt default network is running, you will see an isolated bridge device. This device does
not have any physical interfaces added. The new device uses NAT and IP forwarding to connect to the
physical network. Do not add new interfaces.

brctl show
bridge name bridge id STP enabled interfaces
virbro 8000.000000000000 yes

libvirt adds iptables rules which allow traffic to and from guest virtual machines attached to the
virbro0 device in the INPUT, FORWARD, OUTPUT and POSTROUTING chains. 1ibvirt then attempts to
enable the ip_forward parameter. Some other applications may disable ip_forward, so the best
option is to add the following to /etc/sysctl.conf.

I net.ipv4.ip_forward = 1

Guest Virtual Machine Configuration

Once the host configuration is complete, a guest virtual machine can be connected to the virtual network
based on its name. To connect a guest to the 'default’ virtual network, the following can be used in the
XML configuration file (such as /etc/1ibvirtd/qemu/myguest.xml) for the guest:

<interface type='network'>
<source network='default'/>
</interface>

NOTE

Defining a MAC address is optional. If you do not define one, a MAC address is
automatically generated and used as the MAC address of the bridge device used by the
network. Manually setting the MAC address may be useful to maintain consistency or
easy reference throughout your environment, or to avoid the very small chance of a
conflict.

<interface type='network'>

<source network='default'/>

<mac address='00:16:3e:1a:b3:4a'/>
</interface>

6.2. DISABLING VHOST-NET

The vhost -net module is a kernel-level back end for virtio networking that reduces virtualization
overhead by moving virtio packet processing tasks out of user space (the QEMU process) and into the
kernel (the vhost -net driver). vhost-net is only available for virtio network interfaces. If the vhost-net
kernel module is loaded, it is enabled by default for all virtio interfaces, but can be disabled in the
interface configuration if a particular workload experiences a degradation in performance when vhost-net
is in use.

Specifically, when UDP traffic is sent from a host machine to a guest virtual machine on that host,
performance degradation can occur if the guest virtual machine processes incoming data at a rate
slower than the host machine sends it. In this situation, enabling vhost -net causes the UDP socket's
receive buffer to overflow more quickly, which results in greater packet loss. It is therefore better to
disable vhost -net in this situation to slow the traffic, and improve overall performance.

53

Virtualization Deployment and Administration Guide

To disable vhost - net, edit the <interface> sub-element in the guest virtual machine's XML
configuration file and define the network as follows:

<interface type="network">

<model type="virtio"/>
<driver name="gemu"/>

</interface>

Setting the driver name to gemu forces packet processing into QEMU user space, effectively disabling
vhost-net for that interface.

6.3. ENABLING VHOST-NET ZERO-COPY

In Red Hat Enterprise Linux 7, vhost-net zero-copy is disabled by default. To enable this action on a
permanent basis, add a new file vhost -net.conf to /etc/modprobe. d with the following content:

I options vhost_net experimental_zcopytx=1
If you want to disable this again, you can run the following:

I modprobe -r vhost_net

I modprobe vhost_net experimental_zcopytx=0

The first command removes the old file, the second one makes a new file (like above) and disables zero-
copy. You can use this to enable as well but the change will not be permanent.

To confirm that this has taken effect, check the output of cat
/sys/module/vhost_net/parameters/experimental_zcopytx. It should show:

I $ cat /sys/module/vhost_net/parameters/experimental_zcopytx
(C]

6.4. BRIDGED NETWORKING

Bridged networking (also known as network bridging or virtual network switching) is used to place virtual
machine network interfaces on the same network as the physical interface. Bridges require minimal
configuration and make a virtual machine appear on an existing network, which reduces management
overhead and network complexity. As bridges contain few components and configuration variables, they
provide a transparent setup which is straightforward to understand and troubleshoot, if required.

Bridging can be configured in a virtualized environment using standard Red Hat Enterprise Linux tools,
virt-manager, or libvirt, and is described in the following sections.

However, even in a virtualized environment, bridges may be more easily created using the host
operating system's networking tools. More information about this bridge creation method can be found in
the Red Hat Enterprise Linux 7 Networking Guide.

6.4.1. Configuring Bridged Networking on a Red Hat Enterprise Linux 7 Host

54

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_Network_Bridging.html

CHAPTER 6. NETWORK CONFIGURATION

Bridged networking can be configured for virtual machines on a Red Hat Enterprise Linux host,
independent of the virtualization management tools. This configuration is mainly recommended when the
virtualization bridge is the host's only network interface, or is the host's management network interface.

For instructions on configuring network bridging without using virtualization tools, see the Red Hat
Enterprise Linux 7 Networking Guide.

6.4.2. Bridged Networking with Virtual Machine Manager

This section provides instructions on creating a bridge from a host machine's interface to a guest virtual
machine using virt-manager.

NOTE

Depending on your environment, setting up a bridge with libvirt tools in Red Hat
Enterprise Linux 7 may require disabling Network Manager, which is not recommended by
Red Hat. A bridge created with libvirt also requires libvirtd to be running for the bridge to
maintain network connectivity.

It is recommended to configure bridged networking on the physical Red Hat Enterprise
Linux host as described in the Red Hat Enterprise Linux 7 Networking Guide, while using
libvirt after bridge creation to add virtual machine interfaces to the bridges.

Procedure 6.1. Creating a bridge with virt-manager

1. From the virt-manager main menu, click Edit = Connection Details to open the Connection
Details window.

2. Click the Network Interfaces tab.
3. Click the + at the bottom of the window to configure a new network interface.

4. In the Interface type drop-down menu, select Bridge, and then click Forward to continue.

55

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_Network_Bridging.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_Network_Bridging.html

Virtualization Deployment and Administration Guide

56

5.

Configure network interface

‘ | Configure network interface

e
4oy
F =

e —

Interface type: |Bridge st

Select the interface type you would like to configure.

Cancel | | Back | | Forward

Figure 6.1. Adding a bridge

a.

b.

In the Name field, enter a name for the bridge, such as br0.
Select a Start mode from the drop-down menu. Choose from one of the following:
m none - deactivates the bridge
m onboot - activates the bridge on the next guest virtual machine reboot
m hotplug - activates the bridge even if the guest virtual machine is running
Check the Activate now check box to activate the bridge immediately.
To configure either the IP settings or Bridge settings, click the appropriate Configure
button. A separate window will open to specify the required settings. Make any necessary

changes and click OK when done.

Select the physical interface to connect to your virtual machines. If the interface is currently
in use by another guest virtual machine, you will receive a warning message.

CHAPTER 6. NETWORK CONFIGURATION

6. Click Finish and the wizard closes, taking you back to the Connections menu.

Configure network interface

.::'aﬂﬁgure network interface

Mame: ‘ brl ‘
Start mode: none ¥ ‘
Activate now: ||
IP settings: IPvd: DHCP ‘ Configure ‘
Bridge settings: 5TP on, delay 0.00 sec | Configure ‘
Choose interface(s) to bridge:

* MName Type In use by

1o ethernet

| wlp4s0 ethernet

| enp0s25 ethernet

| wvirbrO-nic ethernet

| wirbrl-nic ethernet

‘ Cancel ‘ ‘ Back ‘ ‘ Finish

Figure 6.2. Adding a bridge

Select the bridge to use, and click Apply to exit the wizard.

To stop the interface, click the Stop Interface key. Once the bridge is stopped, to delete the

interface, click the Delete Interface key.

6.4.3. Bridged Networking with libvirt

Depending on your environment, setting up a bridge with libvirt in

Red Hat Enterprise Linux 7 may

require disabling Network Manager, which is not recommended by Red Hat. This also requires libvirtd to

be running for the bridge to operate.

57

Virtualization Deployment and Administration Guide

It is recommended to configure bridged networking on the physical Red Hat Enterprise Linux host as
described in the Red Hat Enterprise Linux 7 Networking Guide.

58

IMPORTANT

libvirt is now able to take advantage of new kernel tunable parameters to manage host
bridge forwarding database (FDB) entries, thus potentially improving system network
performance when bridging multiple virtual machines. Set the macTableManager
attribute of a network's <bridge> elementto '1libvirt' in the host's XML configuration
file:

I <bridge name='br@' macTableManager='libvirt'/>

This will turn off learning (flood) mode on all bridge ports, and libvirt will add or remove
entries to the FDB as necessary. Along with removing the overhead of learning the proper
forwarding ports for MAC addresses, this also allows the kernel to disable promiscuous
mode on the physical device that connects the bridge to the network, which further
reduces overhead.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_Network_Bridging.html

CHAPTER 7. OVERCOMMITTING WITH KVM

CHAPTER 7. OVERCOMMITTING WITH KVM

7.1. INTRODUCTION

The KVM hypervisor automatically overcommits CPUs and memory. This means that more virtualized
CPUs and memory can be allocated to virtual machines than there are physical resources on the system.
This is possible because most processes do not access 100% of their allocated resources all the time.

As a result, under-utilized virtualized servers or desktops can run on fewer hosts, which saves a number
of system resources, with the net effect of less power, cooling, and investment in server hardware.

7.2. OVERCOMMITTING MEMORY

Guest virtual machines running on a KVM hypervisor do not have dedicated blocks of physical RAM
assigned to them. Instead, each guest virtual machine functions as a Linux process where the host
physical machine's Linux kernel allocates memory only when requested. In addition the host's memory
manager can move the guest virtual machine's memory between its own physical memory and swap
space.

Overcommitting requires allotting sufficient swap space on the host physical machine to accommodate
all guest virtual machines as well as enough memory for the host physical machine's processes. As a
basic rule, the host physical machine's operating system requires a maximum of 4GB of memory along
with a minimum of 4GB of swap space. For advanced instructions on determining an appropriate size for
the swap partition, see the Red Hat KnowledgeBase.

IMPORTANT

Overcommitting is not an ideal solution for general memory issues. The recommended
methods to deal with memory shortage are to allocate less memory per guest, add more
physical memory to the host, or utilize swap space.

A virtual machine will run slower if it is swapped frequently. In addition, overcommitting
can cause the system to run out of memory (OOM), which may lead to the Linux kernel
shutting down important system processes. If you decide to overcommit memory, ensure
sufficient testing is performed. Contact Red Hat support for assistance with
overcommitting.

Overcommitting does not work with all virtual machines, but has been found to work in a desktop
virtualization setup with minimal intensive usage or running several identical guests with KSM. For more
information on KSM and overcommitting, see the Red Hat Enterprise Linux 7 Virtualization Tuning and
Optimization Guide.

IMPORTANT

When device assignment is in use, all virtual machine memory must be statically pre-
allocated to enable direct memory access (DMA) with the assigned device. Memory
overcommit is therefore not supported with device assignment.

7.3. OVERCOMMITTING VIRTUALIZED CPUS

The KVM hypervisor supports overcommitting virtualized CPUs (vCPUs). Virtualized CPUs can be
overcommitted as far as load limits of guest virtual machines allow. Use caution when overcommitting
vCPUs, as loads near 100% may cause dropped requests or unusable response times.

59

https://access.redhat.com/site/solutions/15244
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Tuning_and_Optimization_Guide/chap-KSM.html

Virtualization Deployment and Administration Guide

In Red Hat Enterprise Linux 7, it is possible to overcommit guests with more than one vCPU, known as
symmetric multiprocessing (SMP) virtual machines. However, you may experience performance
deterioration when running more cores on the virtual machine than are present on your physical CPU.

For example, a virtual machine with four vCPUs should not be run on a host machine with a dual core
processor, but on a quad core host. Overcommitting SMP virtual machines beyond the physical number
of processing cores causes significant performance degradation, due to programs getting less CPU time
than required. In addition, it is not recommended to have more than 10 total allocated vCPUs per
physical processor core.

With SMP guests, some processing overhead is inherent. CPU overcommitting can increase the SMP
overhead, because using time-slicing to allocate resources to guests can make inter-CPU
communication inside a guest slower. This overhead increases with guests that have a larger number of
vCPUs, or a larger overcommit ratio.

Virtualized CPUs are overcommitted best when when a single host has multiple guests, and each guest
has a small number of vCPUs, compared to the number of host CPUs. KVM should safely support
guests with loads under 100% at a ratio of five vCPUs (on 5 virtual machines) to one physical CPU on
one single host. The KVM hypervisor will switch between all of the virtual machines, making sure that the
load is balanced.

For best performance, Red Hat recommends assigning guests only as many vCPUs as are required to
run the programs that are inside each guest.

IMPORTANT

Applications that use 100% of memory or processing resources may become unstable in
overcommitted environments. Do not overcommit memory or CPUs in a production
environment without extensive testing, as the CPU overcommit ratio and the amount of
SMP are workload-dependent.

60

CHAPTER 8. KVM GUEST TIMING MANAGEMENT

CHAPTER 8. KVM GUEST TIMING MANAGEMENT

Virtualization involves several challenges for time keeping in guest virtual machines.

e Interrupts cannot always be delivered simultaneously and instantaneously to all guest virtual
machines. This is because interrupts in virtual machines are not true interrupts. Instead, they are
injected into the guest virtual machine by the host machine.

e The host may be running another guest virtual machine, or a different process. Therefore, the
precise timing typically required by interrupts may not always be possible.

Guest virtual machines without accurate time keeping may experience issues with network applications
and processes, as session validity, migration, and other network activities rely on timestamps to remain
correct.

KVM avoids these issues by providing guest virtual machines with a paravirtualized clock (kvm-clock).
However, it is still important to test timing before attempting activities that may be affected by time
keeping inaccuracies, such as guest migration.

IMPORTANT

To avoid the problems described above, the Network Time Protocol (NTP) should be
configured on the host and the guest virtual machines. On guests using Red Hat
Enterprise Linux 6 and earlier, NTP is implemented by the ntpd service. For more
information, see the Red Hat Enterprise 6 Deployment Guide.

On systems using Red Hat Enterprise Linux 7, NTP time synchronization service can be
provided by ntpd or by the chronyd service. Note that Chrony has some advantages on
virtual machines. For more information, see the Configuring NTP Using the chrony Suite
and Configuring NTP Using ntpd sections in the Red Hat Enterprise Linux 7 System
Administrator's Guide.

The mechanics of guest virtual machine time synchronization

By default, the guest synchronizes its time with the hypervisor as follows:

e When the guest system boots, the guest reads the time from the emulated Real Time Clock
(RTC).

e When the NTP protocol is initiated, it automatically synchronizes the guest clock. Afterwards,
during normal guest operation, NTP performs clock adjustments in the guest.

e When a guest is resumed after a pause or a restoration process, a command to synchronize the
guest clock to a specified value should be issued by the management software (such as virt-
manager). This synchronization works only if the QEMU guest agent is installed in the guest and
supports the feature. The value to which the guest clock synchronizes is usually the host clock
value.

Constant Time Stamp Counter (TSC)

Modern Intel and AMD CPUs provide a constant Time Stamp Counter (TSC). The count frequency of the
constant TSC does not vary when the CPU core itself changes frequency, for example to comply with a
power-saving policy. A CPU with a constant TSC frequency is necessary in order to use the TSC as a
clock source for KVM guests.

61

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/ch-Configuring_NTP_Using_ntpd.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Configuring_NTP_Using_the_chrony_Suite.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Configuring_NTP_Using_ntpd.html

Virtualization Deployment and Administration Guide

Your CPU has a constant Time Stamp Counter if the constant_tsc flag is present. To determine if
your CPU has the constant_tsc flag enter the following command:

I $ cat /proc/cpuinfo | grep constant_tsc

If any output is given, your CPU has the constant_tsc bit. If no output is given, follow the instructions
below.
Configuring Hosts without a Constant Time Stamp Counter

Systems without a constant TSC frequency cannot use the TSC as a clock source for virtual machines,
and require additional configuration. Power management features interfere with accurate time keeping
and must be disabled for guest virtual machines to accurately keep time with KVM.

IMPORTANT

These instructions are for AMD revision F CPUs only.

If the CPU lacks the constant_tsc bit, disable all power management features . Each system has
several timers it uses to keep time. The TSC is not stable on the host, which is sometimes caused by
cpufreq changes, deep C state, or migration to a host with a faster TSC. Deep C sleep states can stop
the TSC. To prevent the kernel using deep C states append processor .max_cstate=1 to the kernel
boot. To make this change persistent, edit values of the GRUB_CMDLINE_LINUX key in the
/etc/default/grubfile. For example. if you want to enable emergency mode for each boot, edit the
entry as follows:

I GRUB_CMDLINE_LINUX="emergency"

Note that you can specify multiple parameters for the GRUB_CMDLINE_LINUX key, similarly to adding
the parameters in the GRUB 2 boot menu.

To disable cpufreq (only necessary on hosts without the constant_tsc), install kernel-tools and
enable the cpupower .service (systemctl enable cpupower.service). If you want to disable
this service every time the guest virtual machine boots, change the configuration file in
/etc/sysconfig/cpupower and change the CPUPOWER_START_OPTS and
CPUPOWER_STOP_OPTS. Valid limits can be found in the
/sys/devices/system/cpu/cpuid/cpufreq/scaling_available_governors files. For more
information on this package or on power management and governors, see the Red Hat Enterprise Linux
7 Power Management Guide.

8.1. HOST-WIDE TIME SYNCHRONIZATION

Virtual network devices in KVM guests do not support hardware timestamping, which means it is difficult
to synchronize the clocks of guests that use a network protocol like NTP or PTP with better accuracy
than tens of microseconds.

When a more accurate synchronization of the guests is required, it is recommended to synchronize the
clock of the host using NTP or PTP with hardware timestamping, and to synchronize the guests to the
host directly. Red Hat Enterprise Linux 7.5 and later provide a virtual PTP hardware clock (PHC), which
enables the guests to synchronize to the host with a sub-microsecond accuracy.

To enable the PHC device, do the following:

1. Set the ptp_kvm module to load after reboot.

62

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Power_Management_Guide/index.html

CHAPTER 8. KVM GUEST TIMING MANAGEMENT

I # echo ptp_kvm > /etc/modules-load.d/ptp_kvm.conf
2. Add the /dev/ptp0 clock as a reference to the chrony configuration:

I # echo "refclock PHC /dev/ptp® poll 2" >> /etc/chrony.conf
3. Restart the chrony daemon:

I # systemctl restart chronyd

4. To verify the host-guest time synchronization has been configured correctly, use the chronyc
sources command on a guest. The output should look similar to the following:

chronyc sources
210 Number of sources = 1
MS Name/IP address Stratum Poll Reach LastRx Last sample

#* PHCO 0 2 377 4 -6ns|[-
6ns] +/- 726ns

8.2. REQUIRED TIME MANAGEMENT PARAMETERS FOR RED HAT
ENTERPRISE LINUX GUESTS

For certain Red Hat Enterprise Linux guest virtual machines, additional kernel parameters are required
for their system time to be synchronised correctly. These parameters can be set by appending them to
the end of the /kernel line in the /etc/grub2. cfg file of the guest virtual machine.

NOTE

Red Hat Enterprise Linux 5.5 and later, Red Hat Enterprise Linux 6.0 and later, and Red
Hat Enterprise Linux 7 use kvm-clock as their default clock source. Running kvm-clock
avoids the need for additional kernel parameters, and is recommended by Red Hat.

The table below lists versions of Red Hat Enterprise Linux and the parameters required on the specified
systems.

Table 8.1. Kernel parameter requirements

Red Hat Enterprise Linux version Additional guest kernel parameters
7.0 and later on AMD64 and Intel 64 systems with Additional parameters are not required
kvm-clock
6.1 and later on AMD64 and Intel 64 systems with Additional parameters are not required
kvm-clock
6.0 on AMD64 and Intel 64 systems with kvm-clock Additional parameters are not required

63

Virtualization Deployment and Administration Guide

Red Hat Enterprise Linux version Additional guest kernel parameters
6.0 on AMD64 and Intel 64 systems without kvm- notsc Ipj=n
clock

NOTE

The 1pj parameter requires a numeric value equal to the loops per jiffy value of the

specific CPU on which the guest virtual machine runs. If you do not know this value, do
not set the 1pj parameter.

-

8.3. STEAL TIME ACCOUNTING

Steal time is the amount of CPU time needed by a guest virtual machine that is not provided by the host.
Steal time occurs when the host allocates these resources elsewhere: for example, to another guest.

Steal time is reported in the CPU time fields in /proc/stat. It is automatically reported by utilities such
as top and vmstat. It is displayed as "%st", or in the "st" column. Note that it cannot be switched off.

Large amounts of steal time indicate CPU contention, which can reduce guest performance. To relieve
CPU contention, increase the guest's CPU priority or CPU quota, or run fewer guests on the host.

64

CHAPTER 9. NETWORK BOOTING WITH LIBVIRT

CHAPTER 9. NETWORK BOOTING WITH LIBVIRT

Guest virtual machines can be booted with PXE enabled. PXE allows guest virtual machines to boot and
load their configuration off the network itself. This section demonstrates some basic configuration steps
to configure PXE guests with libvirt.

This section does not cover the creation of boot images or PXE servers. It is used to explain how to
configure libvirt, in a private or bridged network, to boot a guest virtual machine with PXE booting
enabled.

! WARNING
These procedures are provided only as an example. Ensure that you have sufficient

backups before proceeding.

9.1. PREPARING THE BOOT SERVER

To perform the steps in this chapter you will need:

e A PXE Server (DHCP and TFTP) - This can be a libvirt internal server, manually-configured
dhcpd and tftpd, dnsmasq, a server configured by Cobbler, or some other server.

e Boot images - for example, PXELINUX configured manually or by Cobbler.

9.1.1. Setting up a PXE Boot Server on a Private libvirt Network

This example uses the default network. Perform the following steps:

Procedure 9.1. Configuring the PXE boot server

1. Place the PXE boot images and configuration in /var/1ib/tftpboot.

2. enter the following commands:

virsh net-destroy default
virsh net-edit default

3. Edit the <ip> element in the configuration file for the default network to include the appropriate
address, network mask, DHCP address range, and boot file, where BOOT_FILENAME
represents the file name you are using to boot the guest virtual machine.

<ip address='192.168.122.1"' netmask='255.255.255.0"'>
<tftp root='/var/lib/tftpboot' />
<dhcp>
<range start='192.168.122.2' end='192.168.122.254"' />
<bootp file='BOOT_FILENAME' />
</dhcp>
</ip>

65

Virtualization Deployment and Administration Guide

4. Run:

I # virsh net-start default

5. Boot the guest using PXE (refer to Section 9.2, “Booting a Guest Using PXE”).

9.2. BOOTING A GUEST USING PXE

This section demonstrates how to boot a guest virtual machine with PXE.

9.2.1. Using bridged networking

Procedure 9.2. Booting a guest using PXE and bridged networking

1. Ensure bridging is enabled such that the PXE boot server is available on the network.

2. Boot a guest virtual machine with PXE booting enabled. You can use the virt-install
command to create a new virtual machine with PXE booting enabled, as shown in the following
example command:

I virt-install --pxe --network bridge=breth® --prompt

Alternatively, ensure that the guest network is configured to use your bridged network, and that
the XML guest configuration file has a <boot dev="'network'/>element inside the <os>
element, as shown in the following example:

<0S>
<type arch='x86_64"' machine='pc-1440fx-rhel7.0.0'>hvm</type>
<boot dev='network'/>
<boot dev='hd'/>
</0s>
<interface type='bridge'>
<mac address='52:54:00:5a:ad:cb'/>
<source bridge='bretho'/>
<target dev='vneto'/>
<alias name='net0'/>
<address type='pci' domain='0Ox0000' bus='Ox00' slot='0Ox03'
function="0x0'/>
</interface>

9.2.2. Using a Private libvirt Network

Procedure 9.3. Using a private libvirt network

1. Configure PXE booting on libvirt as shown in Section 9.1.1, “Setting up a PXE Boot Server on a
Private libvirt Network”.

2. Boot a guest virtual machine using libvirt with PXE booting enabled. You can use the virt-
install command to create/install a new virtual machine using PXE:

I virt-install --pxe --network network=default --prompt

66

CHAPTER 9. NETWORK BOOTING WITH LIBVIRT

Alternatively, ensure that the guest network is configured to use your private libvirt network, and that the
XML guest configuration file has a <boot dev="'network' /> element inside the <os> element, as
shown in the following example:

<0S>
<type arch='x86_64"' machine='pc-i440fx-rhel7.0.0'>hvm</type>
<boot dev='network'/>
<boot dev='hd'/>

</0s>

Also ensure that the guest virtual machine is connected to the private network:

<interface type='network'>

<mac address='52:54:00:66:79:14"'/>

<source network='default'/>

<target dev='vneto'/>

<alias name='net0'/>

<address type='pci' domain='Ox0000' bus='Ox00' slot='0Ox03'
function="0x0'/>
</interface>

67

Virtualization Deployment and Administration Guide

CHAPTER 10. REGISTERING THE HYPERVISOR AND VIRTUAL
MACHINE

Red Hat Enterprise Linux 6 and 7 require that every guest virtual machine is mapped to a specific
hypervisor in order to ensure that every guest is allocated the same level of subscription service. To do
this you need to install a subscription agent that automatically detects all guest Virtual Machines (VMs)
on each KVM hypervisor that is installed and registered, which in turn will create a mapping file that sits
on the host. This mapping file ensures that all guest VMs receive the following benefits:

e Subscriptions specific to virtual systems are readily available and can be applied to all of the
associated guest VMs.

e All subscription benefits that can be inherited from the hypervisor are readily available and can
be applied to all of the associated guest VMs.

NOTE

The information provided in this chapter is specific to Red Hat Enterprise Linux
subscriptions only. If you also have a Red Hat Virtualization subscription, or a Red Hat
Satellite subscription, you should also consult the virt-who information provided with those
subscriptions. More information on Red Hat Subscription Management can also be found
in the Red Hat Subscription Management Guide found on the customer portal.

10.1. INSTALLING VIRT-WHO ON THE HOST PHYSICAL MACHINE

1. Register the KVM hypervisor
Register the KVM Hypervisor by running the subscription-manager register
[options] command in a terminal as the root user on the host physical machine. More options
are available using the # subscription-manager register --help menu. In cases where
you are using a user name and password, use the credentials that are known to the subscription
manager. If this is your very first time subscribing and you do not have a user account, contact
customer support. For example to register the VM as 'admin’ with 'secret' as a password, you
would send the following command:

[root@rhel-server ~]# subscription-manager register --username=admin
--password=secret --auto-attach --type=hypervisor

2. Install the virt-who packages
Install the virt-who packages, by running the following command on the host physical machine:

I # yum install virt-who

3. Create a virt-who configuration file
For each hypervisor, add a configuration file in the /etc/virt-who.d/ directory. At a
minimum, the file must contain the following snippet:

[libvirt]
type=libvirt

For more detailed information on configuring virt-who, see Section 10.1.1, “Configuring
virt-who”.

68

https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/1/html/RHSM/index.html

CHAPTER 10. REGISTERING THE HYPERVISOR AND VIRTUAL MACHINE

4. Start the virt-who service
Start the virt-who service by running the following command on the host physical machine:

systemctl start virt-who.service
systemctl enable virt-who.service

5. Confirm virt-who service is receiving guest information
At this point, the virt-who service will start collecting a list of domains from the host. Check the
/var/log/rhsm/rhsm. log file on the host physical machine to confirm that the file contains a
list of the guest VMs. For example:

2015-05-28 12:33:31,424 DEBUG: Libvirt domains found: [{'guestId':
'58d59128-cfbb-4f2c-93de-230307db2ced', 'attributes': {'active': 0,
'virtWhoType': 'libvirt', 'hypervisorType': 'QEMU'}, 'state': 5}]

Procedure 10.1. Managing the subscription on the customer portal

1. Subscribing the hypervisor
As the virtual machines will be receiving the same subscription benefits as the hypervisor, it is
important that the hypervisor has a valid subscription and that the subscription is available for
the VMs to use.

a. Login to the customer portal
Login to the Red Hat customer portal https://access.redhat.com/ and click the
Subscriptions button at the top of the page.

b. Click the Systems link
In the Subscriber Inventory section (towards the bottom of the page), click Systems
link.

c. Select the hypervisor
On the Systems page, there is a table of all subscribed systems. Click the name of the
hypervisor (localhost.localdomain for example). In the details page that opens, click Attach
a subscription and select all the subscriptions listed. Click Attach Selected. This
will attach the host's physical subscription to the hypervisor so that the guests can benefit
from the subscription.

2. Subscribing the guest virtual machines - first time use
This step is for those who have a new subscription and have never subscribed a guest virtual
machine before. If you are adding virtual machines, skip this step. To consume the subscription
assigned to the hypervisor profile on the machine running the virt-who service, auto subscribe by
running the following command in a terminal, on the guest virtual machine as root.

I [root@virt-who ~]# subscription-manager attach --auto

3. Subscribing additional guest virtual machines
If you just subscribed a for the first time, skip this step. If you are adding additional virtual
machines, note that running this command will not necessarily re-attach the same subscriptions
to the guest virtual machine. This is because removing all subscriptions then allowing auto-
attach to resolve what is necessary for a given guest virtual machine may result in different
subscriptions consumed than before. This may not have any effect on your system, but it is
something you should be aware about. If you used a manual attachment procedure to attach the
virtual machine, which is not described below, you will need to re-attach those virtual machines

69

https://access.redhat.com/

Virtualization Deployment and Administration Guide

70

manually as the auto-attach will not work. Use the following command to first remove the

subscriptions for the old guests, and then use the auto-attach to attach subscriptions to all the

guests. Run these commands on the guest virtual machine.

[root@virt-who ~]# subscription-manager remove --all
[root@virt-who ~]# subscription-manager attach --auto

4. Confirm subscriptions are attached

Confirm that the subscription is attached to the hypervisor by running the following command on

the guest virtual machine:
I [root@virt-who ~]# subscription-manager list --consumed

Output similar to the following will be displayed. Pay attention to the Subscription Details. It
should say 'Subscription is current'.

[root@virt-who ~]# subscription-manager list --consumed

Subscription Name: Awesome 0S with unlimited virtual guests
Provides: Awesome 0S Server Bits

SKU: awesomeos-virt-unlimited

Contract: 0

Account: HAHH#AHAS YOUur account number ###H##

Serial: #H#HAA#HHA Your serial number ####HH#H

Pool ID: XYZ123

Provides Management: No

Active: True

Quantity Used: 1

Service Level:

Service Type:

Status Details: Subscription is current

Subscription Type:
Starts: 01/01/2015
Ends: 12/31/2015
System Type: Virtual

o The ID for the subscription to attach to the system is displayed here. You will need this ID if you

need to attach the subscription manually.

e Indicates if your subscription is current. If your subscription is not current, an error message

appears. One example is Guest has not been reported on any host and is using a temporary
unmapped guest subscription. In this case the guest needs to be subscribed. In other cases, use
the information as indicated in Section 10.5.2, “| have subscription status errors, what do | do?” .

5. Register additional guests

CHAPTER 10. REGISTERING THE HYPERVISOR AND VIRTUAL MACHINE

When you install new guest VMs on the hypervisor, you must register the new VM and use the
subscription attached to the hypervisor, by running the following commands on the guest virtual
machine:

subscription-manager register
subscription-manager attach --auto
subscription-manager list --consumed

10.1.1. Configuring virt-who
The virt-who service is configured using the following files:

e /etc/virt-who.conf - Contains general configuration information including the interval for
checking connected hypervisors for changes.

e /etc/virt-who.d/hypervisor_name.conf - Contains configuration information for a
specific hypervisor.

A web-based wizard is provided to generate hypervisor configuration files and the snippets required for
virt-who.conf. To run the wizard, browse to Red Hat Virtualization Agent (virt-who) Configuration
Helper on the Customer Portal.

On the second page of the wizard, select the following options:
e Where does your virt-who report to?: Subscription Asset Manager
e Hypervisor Type: 1ibvirt

Follow the wizard to complete the configuration. If the configuration is performed correctly, virt-who
will automatically provide the selected subscriptions to existing and future guests on the specified
hypervisor.

For more information on hypervisor configuration files, see the virt-who-config man page.

10.2. REGISTERING A NEW GUEST VIRTUAL MACHINE

In cases where a new guest virtual machine is to be created on a host that is already registered and
running, the virt-who service must also be running. This ensures that the virt-who service maps the guest
to a hypervisor, so the system is properly registered as a virtual system. To register the virtual machine,
enter the following command:

[root@virt-server ~]# subscription-manager register --username=admin --
password=secret --auto-attach

10.3. REMOVING A GUEST VIRTUAL MACHINE ENTRY

If the guest virtual machine is running, unregister the system, by running the following command in a
terminal window as root on the guest:

I [root@virt-guest ~]# subscription-manager unregister

ral

https://access.redhat.com/labs/virtwhoconfig/

Virtualization Deployment and Administration Guide

If the system has been deleted, however, the virtual service cannot tell whether the service is deleted or
paused. In that case, you must manually remove the system from the server side, using the following
steps:

1. Login to the Subscription Manager
The Subscription Manager is located on the Red Hat Customer Portal. Login to the Customer
Portal using your user name and password, by clicking the login icon at the top of the screen.

2. Click the Subscriptions tab
Click the Subscriptions tab.

3. Click the Systems link
Scroll down the page and click the Systems link.

4. Delete the system
To delete the system profile, locate the specified system's profile in the table, select the check
box beside its name and click Delete.

10.4. INSTALLING VIRT-WHO MANUALLY

This section will describe how to manually attach the subscription provided by the hypervisor.

Procedure 10.2. How to attach a subscription manually

1. List subscription information and find the Pool ID
First you need to list the available subscriptions which are of the virtual type. Enter the following
command:

[root@serverl ~]# subscription-manager list --avail --match-
installed | grep 'Virtual' -B12
Subscription Name: Red Hat Enterprise Linux ES (Basic for

Virtualization)

Provides: Red Hat Beta
Oracle Java (for RHEL Server)
Red Hat Enterprise Linux Server

SKU: --e----

Pool 1ID: XYZ123

Available: 40

Suggested: 1

Service Level: Basic

Service Type: L1-L3

Multi-Entitlement: No

Ends: 01/02/2017

System Type: Virtual

Note the Pool ID displayed. Copy this ID as you will need it in the next step.

2. Attach the subscription with the Pool ID
Using the Pool ID you copied in the previous step run the attach command. Replace the Pool ID
XYZ123 with the Pool ID you retrieved. Enter the following command:

[root@serverl ~]# subscription-manager attach --pool=XYZ123

Successfully attached a subscription for: Red Hat Enterprise Linux
ES (Basic for Virtualization)

72

https://access.redhat.com/

CHAPTER 10. REGISTERING THE HYPERVISOR AND VIRTUAL MACHINE

10.5. TROUBLESHOOTING VIRT-WHO

10.5.1. Why is the hypervisor status red?

Scenario: On the server side, you deploy a guest on a hypervisor that does not have a subscription. 24
hours later, the hypervisor displays its status as red. To remedy this situation you must get a subscription
for that hypervisor. Or, permanently migrate the guest to a hypervisor with a subscription.

10.5.2. | have subscription status errors, what do | do?

Scenario: Any of the following error messages display:
e System not properly subscribed
e Status unknown
e Late binding of a guest to a hypervisor through virt-who (host/guest mapping)

To find the reason for the error open the virt-who log file, named rhsm. log, located in the
/var/log/rhsm/ directory.

73

Virtualization Deployment and Administration Guide

CHAPTER 11. ENHANCING VIRTUALIZATION WITH THE QEMU
GUEST AGENT AND SPICE AGENT

Agents in Red Hat Enterprise Linux such as the QEMU guest agent and the SPICE agent can be
deployed to help the virtualization tools run more optimally on your system. These agents are described
in this chapter.

NOTE

To further optimize and tune host and guest performance, see the Red Hat Enterprise
Linux 7 Virtualization Tuning and Optimization Guide.

11.1. QEMU GUEST AGENT

The QEMU guest agent runs inside the guest and allows the host machine to issue commands to the
guest operating system using libvirt, helping with functions such as freezing and thawing filesystems.
The guest operating system then responds to those commands asynchronously. The QEMU guest agent
package, gemu-guest-agent, is installed by default in Red Hat Enterprise Linux 7.

This section covers the libvirt commands and options available to the guest agent.

IMPORTANT

Note that it is only safe to rely on the QEMU guest agent when run by trusted guests. An
untrusted guest may maliciously ignore or abuse the guest agent protocol, and although
built-in safeguards exist to prevent a denial of service attack on the host, the host requires
guest co-operation for operations to run as expected.

Note that QEMU guest agent can be used to enable and disable virtual CPUs (vCPUs) while the guest is
running, thus adjusting the number of vCPUs without using the hot plug and hot unplug features. For
more information, see Section 20.36.6, “Configuring Virtual CPU Count”.

11.1.1. Setting up Communication between the QEMU Guest Agent and Host

The host machine communicates with the QEMU guest agent through a VirtlO serial connection
between the host and guest machines. A VirtlO serial channel is connected to the host via a character
device driver (typically a Unix socket), and the guest listens on this serial channel.

NOTE

The gemu-guest-agent does not detect if the host is listening to the VirtlO serial channel.
However, as the current use for this channel is to listen for host-to-guest events, the
probability of a guest virtual machine running into problems by writing to the channel with
no listener is very low. Additionally, the gemu-guest-agent protocol includes
synchronization markers that allow the host physical machine to force a guest virtual
machine back into sync when issuing a command, and libvirt already uses these markers,
so that guest virtual machines are able to safely discard any earlier pending undelivered
responses.

11.1.1.1. Configuring the QEMU Guest Agent on a Linux Guest

74

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Tuning_and_Optimization_Guide/index.html

CHAPTER 11. ENHANCING VIRTUALIZATION WITH THE QEMU GUEST AGENT AND SPICE AGENT

The QEMU guest agent can be configured on a running or shut down virtual machine. If configured on a
running guest, the guest will start using the guest agent immediately. If the guest is shut down, the
QEMU guest agent will be enabled at next boot.

Either virsh or virt-manager can be used to configure communication between the guest and the

QEMU guest agent. The following instructions describe how to configure the QEMU guest agent on a
Linux guest.

Procedure 11.1. Setting up communication between guest agent and host withvirsh on a shut
down Linux guest

1. Shut down the virtual machine
Ensure the virtual machine (named rhel7 in this example) is shut down before configuring the
QEMU guest agent:

I # virsh shutdown rhel?7

2. Add the QEMU guest agent channel to the guest XML configuration
Edit the guest's XML file to add the QEMU guest agent details:

I # virsh edit rhel7
Add the following to the guest's XML file and save the changes:

<channel type='unix'>
<target type='virtio' name='org.gemu.guest_agent.0'/>
</channel>

3. Start the virtual machine

I # virsh start rhel7?

4. Install the QEMU guest agent on the guest
Install the QEMU guest agent if not yet installed in the guest virtual machine:

I # yum install gemu-guest-agent

5. Start the QEMU guest agent in the guest
Start the QEMU guest agent service in the guest:

I # systemctl start gemu-guest-agent
Alternatively, the QEMU guest agent can be configured on a running guest with the following steps:

Procedure 11.2. Setting up communication between guest agent and host on a running Linux
guest

1. Create an XML file for the QEMU guest agent
cat agent.xml

<channel type='unix'>
<target type='virtio' name='org.gemu.guest_agent.0'/>

75

Virtualization Deployment and Administration Guide

I </channel>

2. Attach the QEMU guest agent to the virtual machine
Attach the QEMU guest agent to the running virtual machine (named rhel7 in this example) with
this command:

I # virsh attach-device rhel7 agent.xml

3. Install the QEMU guest agent on the guest
Install the QEMU guest agent if not yet installed in the guest virtual machine:

I # yum install gemu-guest-agent

4. Start the QEMU guest agent in the guest
Start the QEMU guest agent service in the guest:

I # systemctl start gemu-guest-agent

Procedure 11.3. Setting up communication between the QEMU guest agent and host withvirt-
manager

1. Shut down the virtual machine
Ensure the virtual machine is shut down before configuring the QEMU guest agent.

To shut down the virtual machine, select it from the list of virtual machines in Virtual Machine
Manager, then click the light switch icon from the menu bar.

2. Add the QEMU guest agent channel to the guest
Open the virtual machine's hardware details by clicking the lightbulb icon at the top of the guest
window.

Click the Add Hardware button to open the Add New Virtual Hardware window, and
select Channel.

Select the QEMU guest agent from the Name drop-down list and click Finish:

76

CHAPTER 11. ENHANCING VIRTUALIZATION WITH THE QEMU GUEST AGENT AND SPICE AGENT

Add Mew Virtual Hardware

8 storage Channel Device
H] Controller
B Network Mame:
h'_] Input

L] Graphics —
HF Sound Auto socket: [vf
'=E| Serial

"E| Farallel
"-'E| Console
":" Channel

¢ LSE Host Device

org.qemu.guest_agent.0 e |

Device Type: | Unix socket (unix] - ‘

¢ PCl Host Device
B vVideo
m Watchdog

D Filesystem

=1 Smartcard

@ UsB Redirection
o TPM

45 RNG

¢ Panic M otifier

Cancel ‘ ‘ Finish

Figure 11.1. Selecting the QEMU guest agent channel device

3. Start the virtual machine
To start the virtual machine, select it from the list of virtual machines in Virtual Machine

. L
Manager, then click on the menu bar.

4. Install the QEMU guest agent on the guest
Open the guest with virt-manager and install the QEMU guest agent if not yet installed in the
guest virtual machine:

I # yum install gemu-guest-agent

5. Start the QEMU guest agent in the guest
Start the QEMU guest agent service in the guest:

I # systemctl start gemu-guest-agent

The QEMU guest agent is now configured on the rhel7 virtual machine.

77

Virtualization Deployment and Administration Guide

11.2. USING THE QEMU GUEST AGENT WITH LIBVIRT

Installing the QEMU guest agent allows various libvirt commands to become more powerful. The guest
agent enhances the following virsh commands:

virsh shutdown --mode=agent - This shutdown method is more reliable than virsh
shutdown --mode=acpi, as virsh shutdown used with the QEMU guest agent is
guaranteed to shut down a cooperative guest in a clean state. If the agent is not present, libvirt
must instead rely on injecting an ACPI shutdown event, but some guests ignore that event and
thus will not shut down.

Can be used with the same syntax for virsh reboot.

virsh snapshot-create --quiesce - Allows the guest to flush its I/O into a stable state
before the snapshot is created, which allows use of the snapshot without having to perform a
fsck or losing partial database transactions. The guest agent allows a high level of disk contents
stability by providing guest co-operation.

virsh domfsfreeze and virsh domfsthaw - Quiesces the guest filesystem in isolation.
virsh domfstrim - Instructs the guest to trim its filesystem.

virsh domtime - Queries or sets the guest's clock.

virsh setvcpus --guest - Instructs the guest to take CPUs offline.

virsh domifaddr --source agent - Queries the guest operating system's IP address via
the guest agent.

virsh domfsinfo - Shows a list of mounted filesystems within the running guest.

virsh set-user-password - Sets the password for a user account in the guest.

11.2.1. Creating a Guest Disk Backup

libvirt can communicate with gemu-guest-agent to ensure that snapshots of guest virtual machine file
systems are consistent internally and ready to use as needed. Guest system administrators can write
and install application-specific freeze/thaw hook scripts. Before freezing the filesystems, the gemu-guest-
agent invokes the main hook script (included in the gemu-guest-agent package). The freezing process
temporarily deactivates all guest virtual machine applications.

The snapshot process is comprised of the following steps:

78

File system applications / databases flush working buffers to the virtual disk and stop accepting
client connections

Applications bring their data files into a consistent state

Main hook script returns

gemu-guest-agent freezes the filesystems and the management stack takes a snapshot
Snapshot is confirmed

Filesystem function resumes

CHAPTER 11. ENHANCING VIRTUALIZATION WITH THE QEMU GUEST AGENT AND SPICE AGENT

Thawing happens in reverse order.

To create a snapshot of the guest's file system, run the virsh snapshot-create --quiesce --
disk-only command (alternatively, runvirsh snapshot-create-as guest_name --quiesce

- -disk-only, explained in further detail in Section 20.39.2, “Creating a Snapshot for the Current Guest
Virtual Machine”).

NOTE

An application-specific hook script might need various SELinux permissions in order to
run correctly, as is done when the script needs to connect to a socket in order to talk to a
database. In general, local SELinux policies should be developed and installed for such
purposes. Accessing file system nodes should work out of the box, after issuing the
restorecon -FvvR command listed in Table 11.1, “QEMU guest agent package
contents” in the table row labeled /etc/qgemu-ga/fsfreeze-hook.d/.

The gemu-guest-agent binary RPM includes the following files:

Table 11.1. QEMU guest agent package contents

File name Description

/usr/lib/systemd/system/qgemu-guest- Service control script (start/stop) for the QEMU guest

agent.service agent.

/etc/sysconfig/gemu-ga Configuration file for the QEMU guest agent, as it is
read by the

/usr/lib/systemd/system/qgemu-guest-
agent . service control script. The settings are
documented in the file with shell script comments.

/usr/bin/gemu-ga QEMU guest agent binary file.

/etc/qemu-ga Root directory for hook scripts.
/etc/qgemu-ga/fsfreeze-hook Main hook script. No modifications are needed here.
/etc/qgemu-ga/fsfreeze-hook.d Directory for individual, application-specific hook

scripts. The guest system administrator should copy
hook scripts manually into this directory, ensure
proper file mode bits for them, and then run
restorecon -FvVvR on this directory.

/usr/share/qemu-kvm/qemu-ga/ Directory with sample scripts (for example purposes
only). The scripts contained here are not executed.

The main hook script, /etc/qemu-ga/fsfreeze-hook logs its own messages, as well as the
application-specific script's standard output and error messages, in the following log file:
/var/log/gemu-ga/fsfreeze-hook.log. For more information, see the libvirt upstream website.

79

http://wiki.libvirt.org/page/Qemu_guest_agent

Virtualization Deployment and Administration Guide

11.3. SPICE AGENT

The SPICE agent helps run graphical applications such as virt-manager more smoothly, by helping
integrate the guest operating system with the SPICE client.

For example, when resizing a window in virt-manager, the SPICE agent allows for automatic X session
resolution adjustment to the client resolution. The SPICE agent also provides support for copy and paste
between the host and guest, and prevents mouse cursor lag.

For system-specific information on the SPICE agent's capabilities, see the spice-vdagent package's
README file.

11.3.1. Setting up Communication between the SPICE Agent and Host

The SPICE agent can be configured on a running or shut down virtual machine. If configured on a
running guest, the guest will start using the guest agent immediately. If the guest is shut down, the
SPICE agent will be enabled at next boot.

Either virsh or virt-manager can be used to configure communication between the guest and the
SPICE agent. The following instructions describe how to configure the SPICE agent on a Linux guest.

Procedure 11.4. Setting up communication between guest agent and host withvirsh on a Linux
guest

1. Shut down the virtual machine
Ensure the virtual machine (named rhel7 in this example) is shut down before configuring the
SPICE agent:

I # virsh shutdown rhel?7

2. Add the SPICE agent channel to the guest XML configuration
Edit the guest's XML file to add the SPICE agent details:

I # virsh edit rhel7
Add the following to the guest's XML file and save the changes:

<channel type='spicevmc'>
<target type='virtio' name='com.redhat.spice.0'/>
</channel>

3. Start the virtual machine

I # virsh start rhel7?

4. Install the SPICE agent on the guest
Install the SPICE agent if not yet installed in the guest virtual machine:

I # yum install spice-vdagent

5. Start the SPICE agent in the guest
Start the SPICE agent service in the guest:

80

CHAPTER 11. ENHANCING VIRTUALIZATION WITH THE QEMU GUEST AGENT AND SPICE AGENT

I # systemctl start spice-vdagent
Alternatively, the SPICE agent can be configured on a running guest with the following steps:

Procedure 11.5. Setting up communication between SPICE agent and host on a running Linux
guest

1. Create an XML file for the SPICE agent

cat agent.xml
<channel type='spicevmc'>

<target type='virtio' name='com.redhat.spice.0'/>
</channel>

2. Attach the SPICE agent to the virtual machine
Attach the SPICE agent to the running virtual machine (named rhel7 in this example) with this
command:

I # virsh attach-device rhel7 agent.xml

3. Install the SPICE agent on the guest
Install the SPICE agent if not yet installed in the guest virtual machine:

I # yum install spice-vdagent

4. Start the SPICE agent in the guest
Start the SPICE agent service in the guest:

I # systemctl start spice-vdagent

Procedure 11.6. Setting up communication between the SPICE agent and host withvirt-
manager

1. Shut down the virtual machine
Ensure the virtual machine is shut down before configuring the SPICE agent.

To shut down the virtual machine, select it from the list of virtual machines in Virtual Machine
Manager, then click the light switch icon from the menu bar.

2. Add the SPICE agent channel to the guest
Open the virtual machine's hardware details by clicking the lightbulb icon at the top of the guest
window.

Click the Add Hardware button to open the Add New Virtual Hardware window, and
select Channel.

Select the SPICE agent from the Name drop-down list, edit the channel address, and click
Finish:

81

Virtualization Deployment and Administration Guide

Add New Virtual Hardware X

] Storage Channel Device
B Controller
= Network MName: org.spice-space.webdav.! | =

@ Input
= Graphics
B Sound Channel: org.spice-space.webdav.0
=| Serial

=¢| Parallel

=| Console

Device Type: = Spice port (spiceport) v

a
(]
=
£u
=]
=]
m

USB Host Device
PCl Host Device
Video

Watchdog

Filesystem

O3 W& %

Smartcard

USB Redirection
TPM

RNG

Panic Motifier

B O@10

Cancel Finish

Figure 11.2. Selecting the SPICE agent channel device

3. Start the virtual machine
To start the virtual machine, select it from the list of virtual machines in Virtual Machine

, -
Manager, then click on the menu bar.

4. Install the SPICE agent on the guest
Open the guest with virt-manager and install the SPICE agent if not yet installed in the guest
virtual machine:

I # yum install spice-vdagent

5. Start the SPICE agent in the guest
Start the SPICE agent service in the guest:

I # systemctl start spice-vdagent

The SPICE agent is now configured on the rhel7 virtual machine.

82

CHAPTER 12. NESTED VIRTUALIZATION

CHAPTER 12. NESTED VIRTUALIZATION

12.1. OVERVIEW

As of Red Hat Enterprise Linux 7.5, nested virtualization is available as a Technology Preview for KVM
guest virtual machines. With this feature, a guest virtual machine (also referred to as level 1 or L1) that
runs on a physical host (level 0 or L0) can act as a hypervisor, and create its own guest virtual machines
(L2).

Nested virtualization is useful in a variety of scenarios, such as debugging hypervisors in a constrained
environment and testing larger virtual deployments on a limited amount of physical resources. However,
note that nested virtualization is not supported or recommended in production user environments, and is
primarily intended for development and testing.

Nested virtualization relies on host virtualization extensions to function, and it should not to be confused

with running guests in a virtual environment using the QEMU Tiny Code Generator (TCG) emulation,
which is not supported in Red Hat Enterprise Linux.

12.2. SETUP

Follow these steps to enable, configure, and start using nested virtualization:

1. Enable: The feature is disabled by default. To enable it, use the following procedure on the L0
host physical machine.

For Intel:

1. Check whether nested virtualization is available on your host system.

I $ cat /sys/module/kvm_intel/parameters/nested

If this command returns Y or 1, the feature is enabled.
If the command returns 0 or N, use steps band c.

2. Unload the kvm_intel module:
I # modprobe -r kvm_intel
3. Activate the nesting feature:
I # modprobe kvm_intel nested=1

4. The nesting feature is now enabled only until the next reboot of the LO host. To enable it
permanently, add the following line to the /etc/modprobe.d/kvm. conf file:

I options kvm_intel nested=1

For AMD:

1. Check whether nested virtualization is available on your system:

83

Virtualization Deployment and Administration Guide

I $ cat /sys/module/kvm_amd/parameters/nested

If this command returns Y or 1, the feature is enabled.
If the command returns 0 or N, use steps band c.

2. Unload the kvm_amd module
I # modprobe -r kvm_amd
3. Activate the nesting feature
I # modprobe kvm_amd nested=1

4. The nesting feature is now enabled only until the next reboot of the LO host. To enable it
permanently, add the following line to the /etc/modprobe.d/kvm. conf file:

I options kvm_amd nested=1

2. Configure your L1 virtual machine for nested virtualization using one of the following methods:
virt-manager
1. Open the GUI of the intended guest and click the Show Virtual Hardware Details icon.

2. Select the Processor menu, and in the Configuration section, type host -passthrough
in the Model field (do not use the drop-down selection), and click Apply.

rhel?.2 on GEM

Eile Virtual Machine Miew Send Key

=y - 0@~

'-ﬂ

5t Boot Options

g Overview CPUs
Performance Logical host CPUs: 4
1. CPUs Current allocation: | 2 = + |
(=] Memory
Maximum allocation: | 2 = + |

[VirtlO Disk 1 Configuration
':\;/" IDE CDROM 1 || Copy host CPU configuration

gﬁ' NIC :3c:4e:58 Model: | host-passthrough - |
|#| Tablet

L: Mouse } Topology

| | == Kevboard

Domain XML
Add the following line to the domain XML file of the guest:

84

CHAPTER 12. NESTED VIRTUALIZATION

I <cpu mode='host-passthrough'/>

If the guest's XML configuration file already contains a <cpu> element, rewrite it.

3. To start using nested virtualization, install an L2 guest within the L1 guest. To do this, follow the
same procedure as when installing the L1 guest - see Chapter 3, Creating a Virtual Machine for
more information.

12.3. RESTRICTIONS AND LIMITATIONS

e |tis strongly recommended to run Red Hat Enterprise Linux 7.2 or later in the LO host and the L1
guests. L2 guests can contain any guest system supported by Red Hat.

e Itis not supported to migrate L1 or L2 guests.
e Use of L2 guests as hypervisors and creating L3 guests is not supported.

e Not all features available on the host are available to be utilized by the L1 hypervisor. For
instance, IOMMU/VT-d or APICv cannot be used by the L1 hypervisor.

e To use nested virtualization, the host CPU must have the necessary feature flags. To determine
if the LO and L1 hypervisors are set up correctly, use the cat /proc/cpuinfo command on
both LO and L1, and make sure that the following flags are listed for the respective CPUs on both
hypervisors:

o For Intel - vmx (Hardware Virtualization) and ept (Extended Page Tables)

o For AMD - svm (equivalent to vmx) and npt (equivalent to ept)

85

Virtualization Deployment and Administration Guide

PART Il. ADMINISTRATION

86

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL
MACHINES

This chapter provides information about storage for virtual machines. Virtual storage is abstracted from
the physical storage allocated to a virtual machine connection. The storage is attached to the virtual
machine using paravirtualized or emulated block device drivers.

13.1. STORAGE CONCEPTS

A storage pool is a quantity of storage set aside for use by guest virtual machines. Storage pools are
divided into storage volumes. Each storage volume is assigned to a guest virtual machine as a block
device on a guest bus.

Storage pools and volumes are managed using libvirt. With libvirt's remote protocol, it is possible to
manage all aspects of a guest virtual machine's life cycle, as well as the configuration of the resources
required by the guest virtual machine. These operations can be performed on a remote host. As a result,
a management application, such as the Virtual Machine Manager, using libvirt can enable a user to
perform all the required tasks for configuring the host physical machine for a guest virtual machine.
These include allocating resources, running the guest virtual machine, shutting it down, and de-allocating
the resources, without requiring shell access or any other control channel.

The libvirt API can be used to query the list of volumes in the storage pool or to get information regarding

the capacity, allocation, and available storage in the storage pool. A storage volume in the storage pool
may be queried to get information such as allocation and capacity, which may differ for sparse volumes.

NOTE

For more information about sparse volumes, see the Virtualization Getting Started Guide.

For storage pools that support it, the libvirt APl can be used to create, clone, resize, and delete storage
volumes. The APIs can also be used to upload data to storage volumes, download data from storage
volumes, or wipe data from storage volumes.

Once a storage pool is started, a storage volume can be assigned to a guest using the storage pool
name and storage volume name instead of the host path to the volume in the domain XML.

NOTE

For more information about the domain XML, see Chapter 23, Manipulating the Domain
XML.

Storage pools can be stopped (destroyed). This removes the abstraction of the data, but keeps the data
intact.

For example, an NFS server that uses mount -t nfs nfs.example.com:/path/to/share
/path/to/data. A storage administrator responsible could define an NFS Storage Pool on the
virtualization host to describe the exported server path and the client target path. This will allow libvirt to
perform the mount either automatically when libvirt is started or as needed while libvirt is running. Files
with the NFS Server exported directory are listed as storage volumes within the NFS storage pool.

When the storage volume is added to the guest, the administrator does not need to add the target path to

the volume. He just needs to add the storage pool and storage volume by name. Therefore, if the target
client path changes, it does not affect the virtual machine.

87

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_getting_started_guide.html#sec-Virtualization_Getting_Started-Products-Storage-Host-Devices

Virtualization Deployment and Administration Guide

When the storage pool is started, libvirt mounts the share on the specified directory, just as if the system
administrator logged in and executed mount nfs.example.com:/path/to/share /vmdata. If the
storage pool is configured to autostart, libvirt ensures that the NFS shared disk is mounted on the
directory specified when libvirt is started.

Once the storage pool is started, the files in the NFS shared disk are reported as storage volumes, and
the storage volumes' paths may be queried using the libvirt API. The storage volumes' paths can then be
copied into the section of a guest virtual machine's XML definition that describes the source storage for
the guest virtual machine's block devices. In the case of NFS, an application that uses the libvirt API can
create and delete storage volumes in the storage pool (files in the NFS share) up to the limit of the size
of the pool (the storage capacity of the share).

Not all storage pool types support creating and deleting volumes. Stopping the storage pool (pool-
destroy) undoes the start operation, in this case, unmounting the NFS share. The data on the share is
not modified by the destroy operation, despite what the name of the command suggests. For more
details, see man virsh.

Procedure 13.1. Creating and Assigning Storage

This procedure provides a high-level understanding of the steps needed to create and assign storage for
virtual machine guests.

1. Create storage pools
Create one or more storage pools from available storage media. For more information, see
Section 13.2, “Using Storage Pools”.

2. Create storage volumes
Create one or more storage volumes from the available storage pools. For more information, see
Section 13.3, “Using Storage Volumes”.

3. Assign storage devices to a virtual machine.
Assign one or more storage devices abstracted from storage volumes to a guest virtual machine.
For more information, see Section 13.3.6, “Adding Storage Devices to Guests”.

13.2. USING STORAGE POOLS

This section provides information about using storage pools with virtual machines. It provides conceptual
information, as well as detailed instructions on creating, configuring, and deleting storage pools using
virsh commands and the Virtual Machine Manager.

13.2.1. Storage Pool Concepts

A storage pool is a file, directory, or storage device, managed by libvirt to provide storage to virtual
machines. Storage pools are divided into storage volumes that store virtual machine images or are
attached to virtual machines as additional storage. Multiple guests can share the same storage pool,
allowing for better allocation of storage resources.

Storage pools can be either local or network-based (shared):

Local storage pools

Local storage pools are attached directly to the host server. They include local directories, directly
attached disks, physical partitions, and Logical Volume Management (LVM) volume groups on local
devices. Local storage pools are useful for development, testing, and small deployments that do not
require migration or large numbers of virtual machines. Local storage pools may not be suitable for
many production environments, because they cannot be used for live migration.

88

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

Networked (shared) storage pools

Networked storage pools include storage devices shared over a network using standard protocols.
Networked storage is required when migrating virtual machines between hosts with virt-manager,
but is optional when migrating with virsh.

For more information on migrating virtual machines, see Chapter 15, KVM Migration.

The following is a list of storage pool types supported by Red Hat Enterprise Linux:
e Directory-based storage pools
e Disk-based storage pools
e Partition-based storage pools
e GlusterFS storage pools
e iSCSI-based storage pools
e LVM-based storage pools
o NFS-based storage pools
e VHBA-based storage pools with SCSI devices
The following is a list of 1ibvirt storage pool types that are not supported by Red Hat Enterprise Linux:
e Multipath-based storage pool
e RBD-based storage pool
e Sheepdog-based storage pool
e V/storage-based storage pool

e ZFS-based storage pool

NOTE

Some of the unsupported storage pool types appear in the Virtual Machine Manager
interface. However, they should not be used.

13.2.2. Creating Storage Pools

This section provides general instructions for creating storage pools using virsh and the Virtual
Machine Manager. Using virsh enables you to specify all parameters, whereas using Virtual Machine
Manager provides a graphic method for creating simpler storage pools.

13.2.2.1. Creating Storage Pools with virsh

NOTE

This section shows the creation of a partition-based storage pool as an example.

89

Virtualization Deployment and Administration Guide

Procedure 13.2. Creating Storage Pools with virsh

90

1. Read recommendations and ensure that all prerequisites are met
For some storage pools, this guide recommends that you follow certain practices. In addition,
there are prerequisites for some types of storage pools. To see the recommendations and
prerequisites, if any, see Section 13.2.3, “Storage Pool Specifics”.

2. Define the storage pool

Storage pools can be persistent or transient. A persistent storage pool survives a system restart
of the host machine. A transient storage pool only exists until the host reboots.

Do one of the following:
o Define the storage pool using an XML file.

a. Create a temporary XML file containing the storage pool information required for the new
device.

The XML file must contain specific fields, based on the storage pool type. For more
information, see Section 13.2.3, “Storage Pool Specifics”.

The following shows an example a storage pool definition XML file. In this example, the file
is saved to ~/guest_images.xml

<pool type='fs'>
<name>guest_images_fs</name>
<source>
<device path='/dev/sdcl'/>
</source>
<target>
<path>/guest_images</path>
</target>
</pool>

b. Use the virsh pool-define command to create a persistent storage pool or the
virsh pool-create command to create and start a transient storage pool.

virsh pool-define ~/guest_images.xml
Pool defined from guest_images_fs

or

virsh pool-create ~/guest_images.xml
Pool created from guest_images_fs

c. Delete the XML file created in step a.

o Usethe virsh pool-define-as command to create a persistent storage pool or the
virsh pool-create-as command to create a transient storage pool.

The following examples create a persistent and then a transient filesystem-based storage
pool mapped to /dev/sdc1 from the /guest_images directory.

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

virsh pool-define-as guest_images_fs fs - - /dev/sdcl -
"/guest_images"
Pool guest_images_fs defined
or
virsh pool-create-as guest_images_fs fs - - /dev/sdcl -

"/guest_images"
Pool guest_images_fs created

NOTE

When using the virsh interface, option names in the commands are

optional. If option names are not used, use dashes for fields that do not need

to be specified.

3. Verify that the pool was created
List all existing storage pools using the virsh pool-list --all.

virsh pool-list --all

Name State Autostart
default active yes
guest_images_fs inactive no

4. Define the storage pool target path

Use the virsh pool-build command to create a storage pool target path for a pre-formatted
file system storage pool, initialize the storage source device, and define the format of the data.

Then use the virsh pool-list command to ensure that the storage pool is listed.

virsh pool-build guest_images_fs

Pool guest_images_fs built

1ls -la /guest_images

total 8

drwx------ . 2 root root 4096 May 31 19:38
dr-xr-xr-x. 25 root root 4096 May 31 19:38
virsh pool-list --all

Name State Autostart
default active yes
guest_images_fs inactive no

NOTE

Building the target path is only necessary for disk-based, file system-based, and
logical storage pools. If libvirt detects that the source storage device's data format
differs from the selected storage pool type, the build fails, unless the overwrite
option is specified.

5. Start the storage pool

Use the virsh pool-start command to prepare the source device for usage.

91

Virtualization Deployment and Administration Guide

The action taken depends on the storage pool type. For example, for a file system-based
storage pool, the virsh pool-start command mounts the file system. For an LVM-based
storage pool, the virsh pool-start command activates the volume group usng the
vgchange command.

Then use the virsh pool-list command to ensure that the storage pool is active.

virsh pool-start guest_images_fs
Pool guest_images_fs started
virsh pool-list --all

Name State Autostart
default active yes
guest_images_fs active no

NOTE

The virsh pool-start command is only necessary for persistent storage
pools. Transient storage pools are automatically started when they are created.

6. Turn on autostart (optional)
By default, a storage pool defined with virsh is not set to automatically start each time
libvirtd starts. You can configure the storage pool to start automatically using the virsh
pool-autostart command.

virsh pool-autostart guest_images_fs
Pool guest_images_fs marked as autostarted

virsh pool-list --all

Name State Autostart
default active yes
guest_images_fs active yes

The storage pool is now automatically started each time 1ibvirtd starts.

7. Verify the storage pool
Verify that the storage pool was created correctly, the sizes reported are as expected, and the
state is reported as running. Verify there is a "lost+found" directory in the target path on the file
system, indicating that the device is mounted.

virsh pool-info guest_images_fs

Name: guest_images_fs

UUID: C7466869-e82a-a66c-2187-dc9d6f0877d0
State: running

Persistent: yes

Autostart: yes

Capacity: 458.39 GB

Allocation: 197.91 MB

Available: 458.20 GB

mount | grep /guest_images
/dev/sdcl on /guest_images type ext4d (rw)
1ls -la /guest_images

92

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

total 24

drwxr-xr-x. 3 root root 4096 May 31 19:47
dr-xr-xr-x. 25 root root 4096 May 31 19:38

drwx------ . 2 root root 16384 May 31 14:18 lost+found

13.2.2.2. Creating storage pools with Virtual Machine Manager

NOTE

This section shows the creation of a disk-based storage pool as an example.

Procedure 13.3. Creating Storage Pools with Virtual Machine Manager

1. Prepare the medium on which the storage pool will be created
This will differ for different types of storage pools. For details, see Section 13.2.3, “Storage Pool
Specifics”.

In this example, you may need to relabel the disk with a GUID Partition Table.

2. Open the storage settings

a. In Virtual Machine Manager, select the host connection you want to configure.
Open the Edit menu and select Connection Details.

b. Click the Storage tab in the Connection Details window.

QEMU/KVM Connection Details - o x
Eile
Overview Virtual Networks Storage Metwork Interfaces
3% default Mame: ‘ guest_images_dir
Filesystem Directory
Size: 75.15 GIB Free / 23.15 GiB In Use
23% Downloads
Filesystem Diractory Location: fhome/VirtualMachines/guest_images_dir
guest_images_dir State: @Active
Filesystam Diractol _
- u Autostart: ¥ On Boot
53y RHEL7_2
Filesystem Diractory \.-'olumes| & | @ | ®
53y VirtualMachines -~ i
Filesystem Directory Volumes Size Format
EE0C (i

Figure 13.1. Storage tab

3. Create a new storage pool

93

Virtualization Deployment and Administration Guide

NOTE

Using Virtual Machine Manager, you can only create persistent storage pools.
Transient storage pools can only be created using virsh.

a. Add a new storage pool (part 1)

Click the| + |button at the bottom of the window. The Add a New Storage Pool
wizard appears.

Enter a Name for the storage pool. This example uses the name guest images fs.

Select a storage pool type to create from the Type drop-down list. This example uses fs:
Pre-Formatted Block Device.

Add a Mew Storage Pool

Create storage poo

Select the storage pool type you would like to configure.

Mame:

guest_images_fs ‘

Type: | fs: Pre-Formatted Block Device st |

Cancel | | Back | | Forward

Figure 13.2. Storage pool name and type
Click the Forward button to continue.

b. Add a new pool (part 2)

94

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

Add a Mew Storage Pool

Create storage poo

Target Path: ‘ fheme/VirtualMachines - ‘ ‘ Browse ‘
Source Path: ‘ fdevisdcl v ‘ ‘ Browse ‘
‘ Cancel ‘ ‘ Back ‘ ‘ Finish ‘

Figure 13.3. Storage pool path

Configure the storage pool with the relevant parameters. For information on the parameters
for each type of storage pool, see Section 13.2.3, “Storage Pool Specifics”.

For some types of storage pools, a Build Pool check box appears in the dialog. If you
want to build the storage pool from the storage, check the Build Pool check box.

Verify the details and click the Finish button to create the storage pool.

13.2.3. Storage Pool Specifics

This section provides information specific to each type of storage pool, including prerequisites,
parameters, and additional information. It includes the following topics:

e Section 13.2.3.1, “Directory-based storage pools”
e Section 13.2.3.2, “Disk-based storage pools”

e Section 13.2.3.3, “Filesystem-based storage pools”
e Section 13.2.3.4, “GlusterFS-based storage pools”
e Section 13.2.3.5, “iSCSI-based storage pools”

e Section 13.2.3.6, “LVM-based storage pools”

95

Virtualization Deployment and Administration Guide

e Section 13.2.3.7, “NFS-based storage pools”

e Section 13.2.3.8, “vHBA-based storage pools using SCSI devices”

13.2.3.1. Directory-based storage pools

Parameters
The following table provides a list of required parameters for the XML file, the virsh pool-define-as
command, and the Virtual Machine Manager application, for creating a directory-based storage pool.

Table 13.1. Directory-based storage pool parameters

Description pool- Virtual
define-as Machine
Manager
The type of storage pool <pool type='dir'> [type] dir:
directory Filesystem
Directory
The name of the storage pool <name>name</name> [name] Name
name
The path specifying the target. This will be <target> target Target Path
the path used for the storage pool. <path>target_path</path> path_to_po
</target> ol

If you are using virsh to create the storage pool, continue by verifying that the pool was created.

Examples
The following is an example of an XML file for a storage pool based on the /guest_images directory:

<pool type='dir'>
<name>dirpool</name>
<target>
<path>/guest_images</path>
</target>
</pool>

The following is an example of a command for creating a storage pool based on the /guest_images
directory:

virsh pool-define-as dirpool dir --target "/guest_images"
Pool FS_directory defined

The following images show an example of the Virtual Machine Manager Add a New Storage Pool
dialog boxes for creating a storage pool based on the /guest_images directory:

96

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

Add a New Storage Pool x Add a New Storage Pool x

‘I- Create storage pool ‘I— Create storage pool

Select the storage pool type you would like to configure. Target Path: | fguest_images| - EramEs
Name: | pooldir |
Type: | dir: Filesystem Directory b

Cancel Back Forward Cancel Back Finish

Figure 13.4. Add a new directory-based storage pool example

13.2.3.2. Disk-based storage pools

Recommendations
Be aware of the following before creating a disk-based storage pool:

e Depending on the version of libvirt being used, dedicating a disk to a storage pool may reformat
and erase all data currently stored on the disk device. It is strongly recommended that you back
up the data on the storage device before creating a storage pool.

e Guests should not be given write access to whole disks or block devices (for example,
/dev/sdb). Use partitions (for example, /dev/sdb1) or LVM volumes.

If you pass an entire block device to the guest, the guest will likely partition it or create its own
LVM groups on it. This can cause the host physical machine to detect these partitions or LVM
groups and cause errors.

Prerequisites

NOTE

The steps in this section are only required if you do not run the virsh pool-build
command.

Before a disk-based storage pool can be created on a host disk, the disk must be relabeled with a GUID
Partition Table (GPT) disk label. GPT disk labels allow for creating up to 128 partitions on each device.

parted /dev/sdb

GNU Parted 2.1

Using /dev/sdb

Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) mklabel

New disk label type? gpt

(parted) quit

Information: You may need to update /etc/fstab.

#

After relabeling the disk, continue creating the storage pool with defining the storage pool.

Parameters

97

Virtualization Deployment and Administration Guide

The following table provides a list of required parameters for the XML file, the virsh pool-define-as
command, and the Virtual Machine Manager application, for creating a disk-based storage pool.

Table 13.2. Disk-based storage pool parameters

Description pool- Virtual
define-as Machine
Manager
The type of storage pool <pool type='disk'> [type] disk disk:
Physical
Disk Device
The name of the storage pool <name>name</name> [name] Name
name
The path specifying the storage device. For <source> source-dev Source
example, /dev/sdb <device path=/dev/sdb/> path_to dis Path
<source> Kk
The path specifying the target. This will be <target> target Target Path
the path used for the storage pool. <path>/path_to_pool</path path _to po
> ol
</target>

If you are using virsh to create the storage pool, continue with defining the storage pool.

Examples
The following is an example of an XML file for a disk-based storage pool:

<pool type='disk'>
<name>phy_disk</name>
<source>
<device path='/dev/sdb'/>
<format type='gpt'/>
</source>
<target>
<path>/dev</path>
</target>
</pool>

The following is an example of a command for creating a disk-based storage pool:

virsh pool-define-as phy_disk disk gpt --source-dev=/dev/sdb --target
/dev
Pool phy_disk defined

The following images show an example of the the virtual machine XML configurationVirtual Machine
Manager Add a New Storage Pool dialog boxes for creating a disk-based storage pool:

98

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

Add a New Storage Pool x Add a New Storage Pool x
"_ Create storage pool ‘I- Create storage pool
Select the storage pool type you would like to configure. Target Path: | /dev - e
Name: phy_disk
Source Path: | /dev/sdb - Browse
Type: | disk: Physical Disk Device > Build Pool: []

Cancel Back Forward Cancel Back Finish

Figure 13.5. Add a new disk-based storage pool example

13.2.3.3. Filesystem-based storage pools

Recommendations

Do not use the procedures in this section to assign an entire disk as a storage pool (for example,
/dev/sdb). Guests should not be given write access to whole disks or block devices. This method
should only be used to assign partitions (for example, /dev/sdb1) to storage pools.

Prerequisites

NOTE

This is only required if you do not run the virsh pool-build command.

To create a storage pool from a partition, format the file system to ext4.
I # mkfs.ext4 /dev/sdcl

After formatting the file system, continue creating the storage pool with defining the storage pool.

Parameters

The following table provides a list of required parameters for the XML file, the virsh pool-define-as
command, and the Virtual Machine Manager application, for creating a filesystem-based storage pool
from a partition.

Table 13.3. Filesystem-based storage pool parameters

Description pool- Virtual
define-as Machine
Manager
The type of storage pool <pool type='fs'> [type] fs fs: Pre-
Formatted
Block
Device
The name of the storage pool <name>name</name> [name] Name
name

99

Virtualization Deployment and Administration Guide

Description pool- Virtual
define-as Machine
Manager
The path specifying the partition. For <source> [source] Source
example, /dev/sdc1 <device path='source_path' path to par Path
/> tition
The filesystem type, for example ext4 <format type='fs_type' /> [source N/A
</source> format] FS-
format
The path specifying the target. This will be <target> [target] Target Path
the path used for the storage pool. <path>/path_to_pool</path path to po
> ol
</target>

If you are using virsh to create the storage pool, continue with verifying that the storage pool was
created.

Examples
The following is an example of an XML file for a filesystem-based storage pool:

<pool type='fs'>
<name>guest_images_fs</name>
<source>
<device path='/dev/sdcl'/>
<format type='auto'/>
</source>
<target>
<path>/guest_images</path>
</target>
</pool>

The following is an example of a command for creating a partition-based storage pool:

virsh pool-define-as guest_images_fs fs --source-dev /dev/sdcl --target
/guest_images
Pool guest_images_fs defined

The following images show an example of the the virtual machine XML configurationVirtual Machine
Manager Add a New Storage Pool dialog boxes for creating a filesystem-based storage pool:

100

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

Add a New Storage Pool x Add a New Storage Pool x
"_ Create storage pool ‘I- Create storage pool
Select the storage pool type you would like to configure. Target Path: | /quest_images_fs - e
Name: guest_images_fs
Source Path: | /dew/sdcl - Browse
Type: fs: Pre-Formatted Block Device -

Cancel Back Forward Cancel Back Finish

Figure 13.6. Add a new filesystem-based storage pool example

13.2.3.4. GlusterFS-based storage pools

Recommendations
GlusterFS is a user space file system that uses File System in Userspace (FUSE).

Prerequisites
Before a GlusterFS-based storage pool can be created on a host, a Gluster server must be prepared.

Procedure 13.4. Preparing a Gluster server

1. Obtain the IP address of the Gluster server by listing its status with the following command:

gluster volume status
Status of volume: gluster-voll
Gluster process Port Online Pid

Brick 222.111.222.111:/gluster-voll 49155 Y 18634

Task Status of Volume gluster-voll

There are no active volume tasks

2. If not installed, install the glusterfs-fuse package.

3. If not enabled, enable the virt_use_fusefs boolean. Check that it is enabled.

setsebool virt_use_fusefs on
getsebool virt_use_fusefs
virt_use_fusefs --> on

After ensuring that the required packages are installed and enabled, continue creating the storage pool
continue creating the storage pool with defining the storage pool.

Parameters
The following table provides a list of required parameters for the XML file, the virsh pool-define-as
command, and the Virtual Machine Manager application, for creating a GlusterFS-based storage pool.

101

Virtualization Deployment and Administration Guide

Table 13.4. GlusterFS-based storage pool parameters

Description

The type of storage pool

The name of the storage pool

The hostname or IP address of the Gluster
server

The name of the Gluster server

The path on the Gluster server used for the
storage pool

<pool type='gluster'>

<name>name</name>

<source>
<hostname='hostname' />

<name='Gluster-name' />

<dir path="Gluster-path' />
</source>

pool-
define-as

[type]
gluster

[name]
name

source-host
hostname

source-
name
Gluster-
name

source-path
Gluster-
path

Virtual
Machine
Manager

Gluster:
Gluster
Filesystem

Name

Host Name

Source
Name

Source
Path

If you are using virsh to create the storage pool, continue with verifying that the storage pool was

created.

Examples

The following is an example of an XML file for a GlusterFS-based storage pool:

<pool type='gluster'>
<name>Gluster_pool</name>
<source>

<host name='111.222.111.222"'/>

<dir path='/'/>

<name>gluster-volil</name>

</source>
</pool>

The following is an example of a command for creating a GlusterFS-based storage pool:

pool-define-as --name Gluster_pool --type gluster --source-host

111.222.111.222 --source-name gluster-voll --source-path /

Pool Gluster_pool defined

The following images show an example of the the virtual machine XML configurationVirtual Machine
Manager Add a New Storage Pool dialog boxes for creating a GlusterFS-based storage pool:

102

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

Add a New Storage Pool x Add a New Storage Pool x

‘I— Create storage pool ‘I- Create storage pool

Select the storage pool type you would like to configure.

Host Name: | 111.222.111.222

Mame: | Gluster_pool
Source Name: | gluster-voll

Type: luster: Gluster Filesystem -
P : L Source Path: | / - Browse

Cancel Back Forward Cancel Back Finish

Figure 13.7. Add a new GlusterFS-based storage pool example

13.2.3.5. iSCSI-based storage pools

Recommendations

Internet Small Computer System Interface (iISCSI) is a network protocol for sharing storage devices.
iISCSI connects initiators (storage clients) to targets (storage servers) using SCSI instructions over the IP
layer.

Using iISCSI-based devices to store guest virtual machines allows for more flexible storage options, such
as using iSCSI as a block storage device. The iISCSI devices use a Linux-10 (LIO) target. This is a multi-
protocol SCSI target for Linux. In addition to iISCSI, LIO also supports Fibre Channel and Fibre Channel
over Ethernet (FCoE).

Prerequisites

Before an iISCSI-based storage pool can be created, iSCSI targets must be created. iISCSI targets are

created with the targetcli package, which provides a command set for creating software-backed iSCSI
targets.

Procedure 13.5. Creating an iSCSI target

1. Install the targetcli package

I # yum install targetcli

2. Launch the targetcli command set

I # targetcli

3. Create storage objects
Create three storage objects, using a storage pool.

a. Create a block storage object
i. Navigate to the /backstores/block directory.

ii. Runthe create command.
I # create [block-name][filepath]

For example:

103

Virtualization Deployment and Administration Guide

I # create blockl dev=/dev/sdb1l

b. Create a fileio object
i. Navigate to the /fileio directory.

ii. Runthe create command.
I # create [fileio-name][image-name] [image-size]
For example:

I # create fileiol /foo.img 50M

c. Create a ramdisk object
i. Navigate to the /ramdisk directory.

ii. Runthe create command.
I # create [ramdisk-name] [ramdisk-size]
For example:
I # create ramdiskl 1M

d. Make note of the names of the disks created in this step. They will be used later.

4. Create an iSCSI target

a. Navigate to the /iscsi directory.
b. Create the target in one of two ways:
m Run the create command with no parameters.
The iSCSI qualified name (IQN) is generated automatically.

m Run the create command specifying the IQN and the server. For example:
I # create ign.2010-05.com.example.serverl:iscsirhel7guest

5. Define the portal IP address
To export the block storage over iISCSI, the portal, LUNs, and access control lists ACLs must
first be configured.

The portal includes the IP address and TCP that the target monitors, and the initiators to which it
connects. iISCSI uses port 3260. This port is configured by default.

To connect to port 3260:

a. Navigate to the /tpg directory.

104

b.

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

Run the following:
I # portals/ create

This command makes all available IP addresses listening to port 2360.

If you want only a single IP address to listen to port 3260, add the IP address to the end of
the command. For example:

I # portals/ create 143.22.16.33

6. Configure the LUNs and assign storage objects to the fabric
This step uses the storage objects created in creating storage objects.

a.

Navigate to the luns directory for the TPG created in defining the portal IP address For
example:

I # iscsi>ign.iqn.2010-05.com.example.serverl:iscsirhel7guest
Assign the first LUN to the ramdisk. For example:

I # create /backstores/ramdisk/ramdisk1

Assign the second LUN to the block disk. For example:

I # create /backstores/block/block1l

Assign the third LUN to the fileio disk. For example:

I # create /backstores/fileio/fileiol

List the resulting LUNs.

/iscsi/iqgn.20...csirhel7guest 1s

| 0= dUNZ. . e
[fileio/filel (foo.img)]

0_
POrtalS . ottt e e e e e
...[1 Portal]

105

Virtualization Deployment and Administration Guide

o- IP-
ADDRESS 13260 . 4 4 vttt sttt et ettt e e e
... [0K]

7. Create ACLs for each initiator

Enable authentication when the initiator connects. You can also resrict specified LUNs to
specified intiators. Targets and initiators have unique names. iISCSI initiators use IQNs.

a. Find the IQN of the iSCSI initiator, using the initiator name. For example:

cat /etc/iscsi/initiator2.iscsi
InitiatorName=create iqn.2010-
05.com.example.serverl:iscsirhel7guest

This IQN is used to create the ACLs.
b. Navigate to the acls directory.
c. Create ACLs by doing one of the following:

m Create ACLS for all LUNs and initiators by running the create command with no
parameters.

I # create

m Create an ACL for a specific LUN and initiator, run the create command specifying the
IQN of the iISCSI intiator. For example:

I # create iqn.2010-05.com.example.serverl:888

m Configure the kernel target to use a single user ID and password for all initiators.

set auth userid=user_ID

set auth password=password

set attribute authentication=1

set attribute generate_node_acls=1

H H HF H

After completing this procedure, continue by securing the storage pool.

8. Save the configuration
Make the configuration persistent by overwriting the previous boot settings.

I # saveconfig

9. Enable the service
To apply the saved settings on the next boot, enable the service.

I # systemctl enable target.service

Optional procedures
There are a number of optional procedures that you can perform with the iISCSI targets before creating
the iISCSI-based storage pool.

106

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

Procedure 13.6. Configuring a logical volume on a RAID array

1. Create a RAID5 array

For information on creating a RAID5 array, see the Red Hat Enterprise Linux 7 Storage
Administration Guide.

2. Create an LVM logical volume on the RAID5 array

For information on creating an LVM logical volume on a RAID5 array, see the Red Hat Enterprise
Linux 7 Logical Volume Manager Administration Guide.

Procedure 13.7. Testing discoverability

e Ensure that the new iSCSI device is discoverable.

iscsiadm --mode discovery --type sendtargets --portal
serverl.example.com
143.22.16.33:3260,1 ign.2010-05.com.example.serverl:iscsirhel7guest

Procedure 13.8. Testing device attachment

1. Attach the new iSCSI device

Attach the new device (iqn.2010-05.com.example.server1i:iscsirhel7guest) to determine whether
the device can be attached.

iscsiadm -d2 -m node --login
scsiadm: Max file limits 1024 1024

Logging in to [iface: default, target: ign.2010-
05.com.example.serverl:iscsirhel7guest, portal: 143.22.16.33,3260]
Login to [iface: default, target: ign.2010-
05.com.example.serverl:iscsirhel7guest, portal: 143.22.16.33,3260]
successful.

2. Detach the device

iscsiadm -d2 -m node --logout
scsiadm: Max file limits 1024 1024

Logging out of session [sid: 2, target: ign.2010-
05.com.example.serverl:iscsirhel7guest, portal: 143.22.16.33,3260
Logout of [sid: 2, target: ign.2010-

05.com.example.serverl:iscsirhel7guest, portal: 143.22.16.33,3260]
successful.

Procedure 13.9. Using libvirt secrets for an iSCSI storage pool

NOTE

This procedure is required if a user_ID and password were defined when creating an
iSCSI target.

107

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-raid.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/logical_volume_manager_administration/LV#raid_volume_create

Virtualization Deployment and Administration Guide

User name and password parameters can be configured with virsh to secure an iSCSI storage pool.
This can be configured before or after the pool is defined, but the pool must be started for the
authentication settings to take effect.

108

1. Create a libvirt secret file

Create a libvirt secret file with a challenge-handshake authentication protocol (CHAP) user
name. For example:

<secret ephemeral='no' private='yes'>
<description>Passphrase for the iSCSI example.com
server</description>
<usage type='iscsi'>
<target>iscsirhel7secret</target>
</usage>
</secret>

2. Define the secret

I # virsh secret-define secret.xml

3. Verify the UUID

virsh secret-list
UUID Usage

2d7891af-20be-4e5e-af83-190e8a922360 iscsi iscsirhel7secret

4. Assign a secret to the UID

Use the following commands to assign a secret to the UUID in the output of the previous step.
This ensures that the CHAP username and password are in a libvirt-controlled secret list.

MYSECRET= printf %s "passwordl23" | base64’
virsh secret-set-value 2d7891af-20be-4e5e-ar83-190e8a922360
$MYSECRET

. Add an authentication entry to the storage pool

Modify the <source> entry in the storage pool's XML file using virsh edit, and add an
<auth> element, specifying authentication type, username, and secret usage.

For example:

<pool type='iscsi'>
<name>iscsirhel7pool</name>
<source>
<host name='192.168.122.1"'/>
<device path='ign.2010-
05.com.example.serverl:iscsirhel7guest'/>
<auth type='chap' username='redhat'>
<secret usage='iscsirhel7secret'/>
</auth>
</source>
<target>

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

<path>/dev/disk/by-path</path>
</target>
</pool>

NOTE

RBD disk is a property of the disk.

<auth username='redhat'>

</auth>

6. Activate the changes
The storage pool must be started to activate these changes.

The <auth> sub-element exists in different locations within the guest XML's
<pool> and <disk> elements. For a <pool>, <auth> is specified within the
<source> element, as this describes where to find the pool sources, since
authentication is a property of some pool sources (iISCSI and RBD). For a
<disk>, which is a sub-element of a domain, the authentication to the iISCSI or

In addition, the <auth> sub-element for a disk differs from that of a storage pool.

<secret type='iscsi' usage='iscsirhel7secret'/>

o If the storage pool has not yet been started, follow the steps in Creating Storage Pools with

virsh to define and start the storage pool.

o If the pool has already been started, enter the following commands to stop and restart the

storage pool:

virsh pool-destroy iscsirhel7pool
virsh pool-start iscsirhel7pool

Parameters

The following table provides a list of required parameters for the XML file, the virsh pool-define-as
command, and the Virtual Machine Manager application, for creating an iSCSI-based storage pool.

Table 13.5. iSCSI-based storage pool parameters

Description pool-

define-as

The type of storage pool <pool type='iscsi'> [type] iscsi
The name of the storage pool <name>name</name> [name]
name
The name of the host. <source> source-host
<host name="hostname' /> hostname

Virtual
Machine
Manager

iscsi: iISCSI
Target

Name

Host Name

109

Virtualization Deployment and Administration Guide

Description pool- Virtual
define-as Machine
Manager
The iSCSI IQN. device path="iSCSI_IQN" /> source-dev Source IQN
</source> iSCSI_IQN
The path specifying the target. This will be <target> target Target Path
the path used for the storage pool. <path>/dev/disk/by- path_to_po
path</path> ol
</target>
(Optional) The IQN of the iISCSI initiator. This <initiator> See the Initiator IQN
is only needed when the ACL restricts the <ign name='initiator0' /> note below.
</initiator>

LUN to a particular initiator.

NOTE

The IQN of the iISCSI initiator can be determined using the virsh find-storage-
pool-sources-as iscsicommand.

If you are using virsh to create the storage pool, continue with verifying that the storage pool was
created.

Examples
The following is an example of an XML file for an iISCSI-based storage pool:

<pool type='iscsi'>
<name>iSCSI_pool</name>
<source>
<host name='serverl.example.com'/>
<device path='ign.2010-05.com.example.serverl:iscsirhel7guest'/>
</source>
<target>
<path>/dev/disk/by-path</path>
</target>
</pool>

The following is an example of a command for creating an iISCSI-based storage pool:

virsh pool-define-as --name iSCSI_pool --type iscsi --source-host
serverl.example.com --source-dev ign.2010-
05.com.example.serverl:iscsirhel7guest --target /dev/disk/by-path
Pool iSCSI_pool defined

The following images show an example of the the virtual machine XML configurationVirtual Machine
Manager Add a New Storage Pool dialog boxes for creating an iSCSI-based storage pool:

110

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

Add a Mew Storage Pool x Add a New Storage Pool x

‘_ Create storage pool

‘_ Create storage pool

Select the storage pool type you would like to configure. Target Path: | /dev/disk/by-path - B

Name: iSCSI_pool
Host Name: | serverl.example.com

Type: | iscsi: iISCSI Target -
--- Source IGN: | ign.2010-05.com.example.servt | = Browse

Initiator IQN: [

Cancel Back Forward Cancel Back Finish

Figure 13.8. Add a new iSCSI-based storage pool example

13.2.3.6. LVM-based storage pools

Recommendations
Be aware of the following before creating an LVM-based storage pool:

e LVM-based storage pools do not provide the full flexibility of LVM.
e libvirt supports thin logical volumes, but does not provide the features of thin storage pools.

e LVM-based storage pools are volume groups. You can create volume groups using Logical
Volume Manager commands or virsh commands. To manage volume groups using the virsh
interface, use the virsh commands to create volume groups.

For more information about volume groups, see the Red Hat Enterprise Linux Logical Volume
Manager Administration Guide.

e LVM-based storage pools require a full disk partition. If activating a new partition or device with
these procedures, the partition will be formatted and all data will be erased. If using the host's
existing Volume Group (VG) nothing will be erased. It is recommended to back up the storage
device before commencing the following procedure.

For information on creating LVM volume groups, see the Red Hat Enterprise Linux Logical
Volume Manager Administration Guide.

e If you create an LVM-based storage pool on an existing VG, you should not run the pool-
build command.

After ensuring that the VG is prepared, continue creating the storage pool with defining the storage pool.
Parameters
The following table provides a list of required parameters for the XML file, the virsh pool-define-as

command, and the Virtual Machine Manager application, for creating an LVM-based storage pool.

Table 13.6. LVM-based storage pool parameters

111

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/logical_volume_manager_administration/volume_group_overview
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Logical_Volume_Manager_Administration/index.html#VG_create

Virtualization Deployment and Administration Guide

Description pool- Virtual
define-as Machine
Manager
The type of storage pool <pool type='logical'> [type] logical: LVM
logical Volume
Group
The name of the storage pool <name>name</name> [name] Name
name
The path to the device for the storage pool <source> source-dev Source
<device path='device path' device path Path
/>
The name of the volume group <name='VG-name' /> source- Source
name VG- Path
name
The virtual group format <format type="lvm2' /> source- N/A
</source> format lvm2
The target path <target> target Target Path
<path="target-path' /> target-path

NOTE

<source>

</source>

</target>

<device path='/dev/sdal'/>
<device path='/dev/sdb3'/>
<device path='/dev/sdc2'/>

If the logical volume group is made of multiple disk partitions, there may be multiple
source devices listed. For example:

If you are using virsh to create the storage pool, continue with verifying that the storage pool was

created.

Examples

The following is an example of an XML file for an LVM-based storage pool:

<pool type='logical'>
<name>guest_images_lvm</name>
<source>
<device path='/dev/sdc'/>
<pame>libvirt_lvm</name>

112

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

<format type='lvm2'/>
</source>
<target>
<path>/dev/libvirt_lvm</path>
</target>
</pool>

The following is an example of a command for creating an LVM-based storage pool:

virsh pool-define-as guest_images_lvm logical --source-dev=/dev/sdc --
source-name libvirt_lvm --target /dev/libvirt_lvm
Pool guest_images_1lvm defined

The following images show an example of the the virtual machine XML configurationVirtual Machine
Manager Add a New Storage Pool dialog boxes for creating an LVM-based storage pool:

Add a New Storage Pool x Add a New Storage Pool x
‘I— Create storage pool ‘I- Create storage pool
Select the storage pool type you would like to configure. Target Path: | /dev/libvirt_lvm - EranEs
Mame: guest_images_lvm
Source Path: | /dev/sdc - Browse
Type: | logical: LWVM Volume Group - Build Pool: [

Cancel Back Forward Cancel Back Finish

Figure 13.9. Add a new LVM-based storage pool example

13.2.3.7. NFS-based storage pools

Prerequisites

To create an Network File System (NFS)-based storage pool, an NFS Server should already be
configured to be used by the host machine. For more information about NFS, see the Red Hat Enterprise
Linux Storage Administration Guide.

After ensuring that the NFS Server is properly configured, continue creating the storage pool with
defining the storage pool.

Parameters
The following table provides a list of required parameters for the XML file, the virsh pool-define-as
command, and the Virtual Machine Manager application, for creating an NFS-based storage pool.

Table 13.7. NFS-based storage pool parameters

Description pool- Virtual

define-as Machine
Manager

113

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/ch-nfs

Virtualization Deployment and Administration Guide

Description pool- Virtual
define-as Machine
Manager
The type of storage pool <pool type="netfs'> [type] netfs netfs:
Network
Exported
Directory
The name of the storage pool <name>name</name> [name] Name
name
The hostname of the NFS server where the <source> source-host Host Name
mount point is located. This can be a <host name="host_name' /> host name

hostname or an IP address.

The directory used on the NFS server <dir path="source _path' /> source-path Source
</source> source_pat Path
h
The path specifying the target. This will be <target> target Target Path
the path used for the storage pool. <path>/target_path</path> target _path
</target>

If you are using virsh to create the storage pool, continue with verifying that the storage pool was
created.

Examples
The following is an example of an XML file for an NFS-based storage pool:

<pool type='netfs'>
<name>nfspool</name>
<source>
<host name='localhost'/>
<dir path='/home/net_mount'/>
</source>
<target>
<path>/var/lib/libvirt/images/nfspool</path>
</target>
</pool>

The following is an example of a command for creating an NFS-based storage pool:

virsh pool-define-as nfspool netfs --source-host localhost --source-path
/home/net_mount --target /var/lib/libvirt/images/nfspool
Pool nfspool defined

The following images show an example of the the virtual machine XML configurationVirtual Machine
Manager Add a New Storage Pool dialog boxes for creating an NFS-based storage pool:

114

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

Add a New Storage Pool x Add a New Storage Pool x

E Create storage pool

Target Path: | /var/lib/libvirt/images/nfspool - Browse

‘I— Create storage pool

Select the storage pool type you would like to configure.
Mame: | nfspool
Host Name: | localhost

Type: netfs: Network Exported Directory -
Source Path: | /home/net_mount - Browse

Cancel Back Forward Cancel Back Finish

Figure 13.10. Add a new NFS-based storage pool example
13.2.3.8. vHBA-based storage pools using SCSI devices

NOTE

You cannot use Virtual Machine Manager to create vHBA-based storage pools using
SCSI devices.

Recommendations

N_Port ID Virtualization (NPIV) is a software technology that allows sharing of a single physical Fibre
Channel host bus adapter (HBA). This allows multiple guests to see the same storage from multiple
physical hosts, and thus allows for easier migration paths for the storage. As a result, there is no need
for the migration to create or copy storage, as long as the correct storage path is specified.

In virtualization, the virtual host bus adapter, or vHBA, controls the Logical Unit Numbers (LUNSs) for
virtual machines. For a host to share one Fibre Channel device path between multiple KVM guests, a
vHBA must be created for each virtual machine. A single vHBA must not be used by multiple KVM
guests.

Each vHBA for NPIV is identified by its parent HBA and its own World Wide Node Name (WWNN) and

World Wide Port Name (WWPN). The path to the storage is determined by the WWNN and WWPN
values. The parent HBA can be defined as scsi_host# or as a WWNN/WWPN pair.

NOTE

If a parent HBA is defined as scsi_host# and hardware is added to the host machine,
the scsi_host# assignment may change. Therefore, it is recommended that you define
a parent HBA using a WWNN/WWPN pair.

It is recommended that you define a libvirt storage pool based on the vHBA, because this preserves the
vHBA configuration.

Using a libvirt storage pool has two primary advantages:
e The libvirt code can easily find the LUN's path via virsh command output.
e Virtual machine migration requires only defining and starting a storage pool with the same vHBA

name on the target machine. To do this, the vHBA LUN, libvirt storage pool and volume name
must be specified in the virtual machine's XML configuration. Refer to Section 13.2.3.8, “vHBA-

115

Virtualization Deployment and Administration Guide

based storage pools using SCSI devices” for an example.

NOTE

Before creating a VHBA, it is recommended that you configure storage array (SAN)-side
zoning in the host LUN to provide isolation between guests and prevent the possibility of
data corruption.

To create a persistent vHBA configuration, first create a libvirt 'scsi' storage pool XML file using the
format below. When creating a single vHBA that uses a storage pool on the same physical HBA, it is
recommended to use a stable location for the <path> value, such as one of the /dev/disk/by-
{path]|id]|uuid|label} locations on your system.

When creating multiple vHBAs that use storage pools on the same physical HBA, the value of the
<path> field must be only /dev/, otherwise storage pool volumes are visible only to one of the vHBAs,
and devices from the host cannot be exposed to multiple guests with the NPIV configuration.

For more information on <path> and the elements in <target>, see upstream libvirt documentation.

Prerequisites
Before creating a vHBA-based storage pools with SCSI devices, create a vHBA:

Procedure 13.10. Creating a vHBA

1. Locate HBAs on the host system
To locate the HBAs on your host system, use the virsh nodedev-list --cap vports
command.

The following example shows a host that has two HBAs that support vHBA:

virsh nodedev-list --cap vports
scsi_host3
scsi_host4

2. Check the HBA's details
Use the virsh nodedev-dumpxml HBA_device command to see the HBA's details.

I # virsh nodedev-dumpxml scsi_host3

The output from the command lists the <name>, <wwnn>, and <wwpn> fields, which are used to
create a VHBA. <max_vports> shows the maximum number of supported vHBAs. For
example:

<device>
<name>scsi_host3</name>

<path>/sys/devices/pcif000:00/0000:00:04.0/0000:10:00.0/host3</path>
<parent>pci_0000_10_00_0</parent>
<capability type='scsi_host'>
<host>3</host>
<unique_id>0</unique_id>
<capability type='fc_host'>
<wwnn>20000000c9848140</wwnn>

116

http://libvirt.org/formatstorage.html#StoragePoolTarget

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

<wwpn>10000000c9848140</wwpn>
<fabric_wwn>2002000573de9a81</fabric_wwn>

</capability>

<capability type='vport_ops'>
<max_vports>127</max_vports>
<vports>0</vports>

</capability>

</capability>
</device>

In this example, the <max_vports> value shows there are a total 127 virtual ports available for
use in the HBA configuration. The <vports> value shows the number of virtual ports currently
being used. These values update after creating a vHBA.

3. Create a VHBA host device
Create an XML file similar to one of the following for the vHBA host. In this examples, the file is
named vhba host3.xml.

This example uses scsi_host3 to describe the parent vHBA.

cat vhba_host3.xml
<device>
<parent>scsi_host3</parent>
<capability type='scsi_host'>
<capability type='fc_host'>
</capability>
</capability>
</device>

This example uses a WWNN/WWPN pair to describe the parent vHBA.

cat vhba_host3.xml
<device>
<name>vhba</name>
<parent wwnn='20000000c9848140' wwpn='10000000c9848140'/>
<capability type='scsi_host'>
<capability type='fc_host'>
</capability>
</capability>
</device>

NOTE

The WWNN and WWPN values must match those in the HBA details seen in
Procedure 13.10, “Creating a vHBA”.

The <parent> field specifies the HBA device to associate with this vHBA device. The details in
the <device> tag are used in the next step to create a new vHBA device for the host. For more
information on the nodedev XML format, see the libvirt upstream pages.

4. Create a new VHBA on the VvHBA host device
To create a vHBA on the basis of vhba _host3, use the virsh nodedev-create command:

117

http://libvirt.org/formatnode.html

Virtualization Deployment and Administration Guide

virsh nodedev-create vhba_host3.xml
Node device scsi_host5 created from vhba_host3.xml

5. Verify the vHBA

Verify the new vHBA's details (scsi_host5) with the virsh nodedev-dumpxml command:

virsh nodedev-dumpxml scsi_host5

<device>

<name>scsi_host5</name>

<path>/sys/devices/pcif000:00/0000:00:04.0/0000:10:00.0/host3/vport-

3:0-0/host5</path>

<parent>scsi_host3</parent>
<capability type='scsi_host'>

<host>5</host>

<unique_id>2</unique_id>

<capability type='fc_host'>
<wwnn>5001a4a93526d0al</wwnn>
<wwpn>500l1lad4ace3ee047d</wwpn>
<fabric_wwn>2002000573de9a81</fabric_wwn>

</capability>
</capability>
</device>

After verifying the vHBA, continue creating the storage pool with defining the storage pool.

Parameters

The following table provides a list of required parameters for the XML file, the virsh pool-define-as
command, and the Virtual Machine Manager application, for creating a vHBA-based storage pool.

Table 13.8. vHBA-based storage pool parameters

Description

The type of storage pool

The name of the storage pool

The identifier of the vHBA. The
parent attribute is optional.

The path specifying the target. This will
be the path used for the storage pool.

118

XML

<pool type='scsi'>

<name>name</name>

<source>
<adapter type="fc_host'
[parent=parent _scsi_device]
wwnn="WWNN
wwpn="WWPN />
</source>

<target>
<path>target path</path>
</target>

pool-define-as

Scsi

--adapter-name name

[--adapter-parent parent]
--adapter-wwnn wwnn
--adapter-wpnn wwpn

target path_to_pool

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

IMPORTANT

When the <path> field is /dev/, libvirt generates a unique short device path for the
volume device path. For example, /dev/sdc. Otherwise, the physical host path is used.
For example, /dev/disk/by-path/pci-0000:10:00.0-fc-
0x5006016044602198-1un-0. The unique short device path allows the same volume to
be listed in multiple guests by multiple storage pools. If the physical host path is used by
multiple guests, duplicate device type warnings may occur.

NOTE

The parent attribute can be used in the <adapter> field to identify the physical HBA
parent from which the NPIV LUNs by varying paths can be used. This field, scsi_hosthN,
is combined with the vports and max_vports attributes to complete the parent
identification. The parent, parent_wwnn, parent_wwpn, or parent_fabric_wwn
attributes provide varying degrees of assurance that after the host reboots the same HBA
is used.

e If no parent is specified, libvirt uses the first scsi_hostN adapter that supports
NPIV.

e |[f only the parent is specified, problems can arise if additional SCSI host
adapters are added to the configuration.

e [f parent_wwnn or parent_wwpn is specified, after the host reboots the same
HBA is used.

e If parent_fabric_wwn is used, after the host reboots an HBA on the same
fabric is selected, regardless of the scsi_hostN used.

If you are using virsh to create the storage pool, continue with verifying that the storage pool was
created.

Examples

The following are examples of XML files for vHBA-based storage pools. The first example is for an
example of a storage pool that is the only storage pool on the HBA. The second example is for a storage
pool that is one of several storage pools that use a single vHBA and uses the parent attribute to identify

the SCSI host device.

<pool type='scsi'>
<name>vhbapool_host3</name>
<source>
<adapter type='fc_host' wwnn='5001a4a93526d0al'
wwpn="'5001ad4ace3ee047d' />
</source>
<target>
<path>/dev/disk/by-path</path>
</target>
</pool>

<pool type='scsi'>
<name>vhbapool_host3</name>
<source>
<adapter type='fc_host' parent='scsi_host3' wwnn='5001a4a93526d0al'

119

Virtualization Deployment and Administration Guide

wwpn="'5001ad4ace3ee047d' />
</source>
<target>
<path>/dev/disk/by-path</path>
</target>
</pool>

The following is an example of a command for creating a vHBA-based storage pool:

virsh pool-define-as vhbapool_host3 scsi --adapter-parent scsi_host3 --
adapter-wwnn 5001a4a93526d0al --adapter-wwpn 500l1adace3ee@47d --target
/dev/disk/by-path

Pool vhbapool_host3 defined

NOTE

The virsh command does not provide a way to define the parent_wwnn,
parent_wwpn, or parent_fabric_wwn attributes.

e

Configuring a virtual machine to use a vHBA LUN
After a storage pool is created for a vHBA, the vHBA LUN must be added to the virtual machine
configuration.

1. Create a disk volume on the virtual machine in the virtual machine's XML.
2. Specify the storage pool and the storage volume in the <source> parameter.

The following shows an example:

<disk type='volume' device='disk'>
<driver name='gemu' type='raw'/>
<source pool='vhbapool_host3' volume='unit:0:4:0'/>
<target dev='hda' bus='ide'/>

</disk>

To specify a 1un device instead of a disk, see the following example:

<disk type='volume' device='lun' sgio='unfiltered'>
<driver name='gemu' type='raw'/>
<source pool='vhbapool_host3' volume='unit:0:4:0' mode='host'/>
<target dev='sda' bus='scsi'/>
<shareable />
</disk>

For XML configuration examples of adding SCSI LUN-based storage to a guest, see Section 13.3.6.3,
“Adding SCSI LUN-based Storage to a Guest”.

Note that to ensure successful reconnection to a LUN in case of a hardware failure, it is recommended
that you edit the fast_io_fail tmo and dev_loss_tmo options. For more information, see
Reconnecting to an exposed LUN after a hardware failure.

13.2.4. Deleting Storage Pools

120

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

You can delete storage pools using virsh or the Virtual Machine Manager.

13.2.4.1. Prerequisites for deleting a storage pool

To avoid negatively affecting other guest virtual machines that use the storage pool you want to delete, it
is recommended that you stop the storage pool and release any resources being used by it.

13.2.4.2. Deleting storage pools using virsh

1. List the defined storage pools:

virsh pool-list --all

Name State Autostart
default active yes
guest_images_pool active yes

2. Stop the storage pool you want to delete.

I # virsh pool-destroy guest_images_disk

3. (Optional) For some types of storage pools, you can optionally remove the directory where the
storage pool resides:

I # virsh pool-delete guest_images_disk
4. Remove the storage pool's definition.

I # virsh pool-undefine guest_images_disk
5. Confirm the pool is undefined:

virsh pool-list --all
Name State Autostart

default active yes

13.2.4.3. Deleting storage pools using Virtual Machine Manager

1. Select the storage pool you want to delete in the storage pool list in the Storage tab of the
Connection Details window.

| @
2. Click at the bottom of the Storage window. This stops the storage pool and releases any
resources in use by it.

3. Click @ .

121

Virtualization Deployment and Administration Guide

NOTE

The icon is only enabled if the storage pool is stopped.

The storage pool is deleted.

13.3. USING STORAGE VOLUMES

This section provides information about using storage volumes. It provides conceptual information, as
well as detailed instructions on creating, configuring, and deleting storage volumes using virsh
commands and the Virtual Machine Manager.

13.3.1. Storage Volume Concepts

Storage pools are divided into storage volumes. Storage volumes are abstractions of physical partitions,
LVM logical volumes, file-based disk images, and other storage types handled by libvirt. Storage
volumes are presented to guest virtual machines as local storage devices regardless of the underlying
hardware.

NOTE

The sections below do not contain all of the possible commands and arguments that virsh
provides for managing storage volumes> For more information, see Section 20.30,
“Storage Volume Commands”.

On the host machine, a storage volume is referred to by its name and an identifier for the storage pool
from which it derives. On the virsh command line, this takes the form - -pool storage pool
volume_name.

For example, a volume named firstimage in the guest_images pool.

virsh vol-info --pool guest_images firstimage

Name: firstimage
Type: block
Capacity: 20.00 GB
Allocation: 20.00 GB

For additional parameters and arguments, see Section 20.34, “Listing Volume Information”.

13.3.2. Creating Storage Volumes

This section provides general instructions for creating storage volumes from storage pools using virsh
and the Virtual Machine Manager. After creating storage volumes, you can add storage devices to
guests.

13.3.2.1. Creating Storage Volumes with virsh

Do one of the following:

e Define the storage volume using an XML file.

122

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

a. Create a temporary XML file containing the storage volume information required for the new
device.

The XML file must contain specific fields including the following:
o hame - The name of the storage volume.
o allocation - The total storage allocation for the storage volume.

o capacity - The logical capacity of the storage volume. If the volume is sparse, this value
can differ from the allocation value.

o target - The path to the storage volume on the host system and optionally its permissions
and label.

The following shows an example a storage volume definition XML file. In this example, the file is
saved to ~/guest_volume.xml

<volume>
<name>volumel</name>
<allocation>0</allocation>
<capacity>20G</capacity>
<target>

<path>/var/lib/virt/images/sparse.img</path>

</target>

</volume>

b. Use the virsh vol-create command to create the storage volume based on the XML file.

virsh vol-create guest_images_dir ~/guest_volume.xml
Vol volumel created

c. Delete the XML file created in step a.

e Usethe virsh vol-create-as command to create the storage volume.
I # virsh vol-create-as guest_images_dir volumel 20GB --allocation 0

e Clone an existing storage volume using the virsh vol-clone command. The virsh vol-
clone command must specify the storage pool that contains the storage volume to clone and
the name of the newly created storage volume.

I # virsh vol-clone --pool guest_images_dir volumel clonel

13.3.2.2. Creating storage volumes with Virtual Machine Manager

Procedure 13.11. Creating Storage Volumes with Virtual Machine Manager
1. Open the storage settings

a. In the Virtual Machine Manager, open the Edit menu and select Connection Details.

b. Click the Storage tab in the Connection Details window.

123

Virtualization Deployment and Administration Guide

124

QEMU/KVM Connection Details o X
Eile

Overview Virtual Networks Storage Metwork Interfaces
3% default Mame: ‘ guest_images_dir

Filesystem Directory

Size: 75.15 GiB Free f 23.15 GB In Use

23% Downloads

Filesystem Diractory Location: fhome/VirtualMachines/guest_images_dir

guest_image State: @Active

Filesystam Dirsctory -

- - Autostart: ¥ On Boot

53y RHEL7_2

Filesystem Directory Volumes | 9P @1 (:)
33y VirtualMachines -~ i

Filesystem Directory Volumes Size Format

| | L | @ ‘ Apply ‘

Figure 13.11. Storage tab

The pane on the left of the Connection Details window shows a list of storage pools.

3. Add a new storage volume

2. Select the storage pool in which you want to create a storage volume
In the list of storage pools, click the storage pool in which you want to create the storage volume.

Any storage volumes configured on the selected storage pool appear in the Volumes pane at
the bottom of the window.

Click thel + ‘button above the Volumes list. The Add a Storage Volume dialog appears.

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

Add a Storage Volume X

+ Create storage volume

Create a storage unit to be used directly by a virtual machine.

Name: .qcow?

Format: qcowl =

» Backing store

Storage Volume Quota
default's available space: 12.93 GIB

Max Capacity: = 20.0 - + GIiB

Cancel Finish

Figure 13.12. Create storage volume

4. Configure the storage volume
Configure the storage volume with the following parameters:

o Enter a name for the storage pool in the Name field.
o Select a format for the storage volume from the Format list.
o Enter the maximum size for the storage volume in the Max Capacity field.

5. Finish the creation
Click Finish. The Add a Storage Volume dialog closes, and the storage volume appears in
the Volumes list.

13.3.3. Viewing Storage Volumes

You can create multiple storage volumes from a storage pool. You can also use the virsh vol-list
command to list the storage volumes in a storage pool. In the following example, the guest images_disk
contains three volumes.

virsh vol-create-as guest_images_disk volumel 8G
Vol volumel created

125

Virtualization Deployment and Administration Guide

virsh vol-create-as guest_images_disk volume2 8G
Vol volume2 created

virsh vol-create-as guest_images_disk volume3 8G
Vol volume3 created

virsh vol-list guest_images_disk

Name Path

volumel /home/VirtualMachines/guest_images_dir/volumel
volume2 /home/VirtualMachines/guest_images_dir/volume2
volume3 /home/VirtualMachines/guest_images_dir/volume3

13.3.4. Managing Data

This section provides information about managing the data on storage volumes.

NOTE

Some types of storage volumes do not support all of the data management commands.
For specific information, see the sections below.

13.3.4.1. Wiping Storage Volumes

To ensure that data on a storage volume cannot be accessed, a storage volume can be wiped using the
virsh vol-wipe command.

Use the virsh vol-wipe command to wipe a storage volume:
I # virsh vol-wipe new-vol vdisk

By default, the data is overwritten by zeroes. However, there are a number of different methods that can
be specified for wiping the storage volume. For detailed information about all of the options for the
virsh vol-wipe command, refer to Section 20.32, “Deleting a Storage Volume's Contents”.

13.3.4.2. Uploading Data to a Storage Volume

You can upload data from a specified local file to a storage volume using the virsh vol-upload
command.

virsh vol-upload --pool pool-or-uuid --offset bytes --length bytes vol-
name-or-key-or-path local-file

The following are the main virsh vol-upload options:
e --pool pool-or-uuid - The name or UUID of the storage pool the volume is in.
e vol-name-or-key-or-path - The name or key or path of the volume to upload.
e --offset bytes The position in the storage volume at which to start writing the data.

e --length length - An upper limit for the amount of data to be uploaded.

126

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

NOTE

An error will occur if local-file is greater than the specified - -1ength.

Example 13.1. Uploading data to a storage volume

I # virsh vol-upload sdel /tmp/data500m.empty disk-pool

In this example sdel is a volume in the disk-pool storage pool. The data in
/tmp/data500m.empty is copied to sdel.

13.3.4.3. Downloading Data to a Storage Volume

You can download data from a storage volume to a specified local file using the virsh vol-download
command.

vol-download --pool pool-or-uuid --offset bytes --length bytes vol-name-
or-key-or-path local-file

The following are the main virsh vol-download options:
e --pool pool-or-uuid - The name or UUID of the storage pool that the volume is in.
e vol-name-or-key-or-path - The name, key, or path of the volume to download.
e --offset - The position in the storage volume at which to start reading the data.

e --length length - An upper limit for the amount of data to be downloaded.

Example 13.2. Downloading data from a storage volume

I # virsh vol-download sdel /tmp/data-sdel.tmp disk-pool

In this example sdel is a volume in the disk-pool storage pool. The data in sdel is downloaded to
/tmp/data-sdel. tmp.

13.3.4.4. Resizing Storage Volumes

You can resize the capacity of a specified storage volume using the vol-resize command.

virsh vol-resize --pool pool-or-uuid vol-name-or-path pool-or-uuid
capacity --allocate --delta --shrink
The capacity is expressed in bytes. The command requires - -pool pool-or-uuid which is the name

or UUID of the storage pool the volume is in. This command also requires vol-name-or-key-or-path, the
name, key, or path of the volume to resize.

The new capacity might be sparse unless - -allocate is specified. Normally, capacity is the new size,
but if - -delta is present, then it is added to the existing size. Attempts to shrink the volume will fail
unless - -shrink is present.

127

Virtualization Deployment and Administration Guide

Note that capacity cannot be negative unless - -shrink is provided and a negative sign is not
necessary. capacity is a scaled integer which defaults to bytes if there is no suffix. In addition, note that
this command is only safe for storage volumes not in use by an active guest. Refer to Section 20.13.3,
“Changing the Size of a Guest Virtual Machine's Block Device” for live resizing.

Example 13.3. Resizing a storage volume

For example, if you created a 50M storage volume, you can resize it to 100M with the following
command:

I # virsh vol-resize --pool disk-pool sdel 106M

13.3.5. Deleting Storage Volumes

You can delete storage volumes using virsh or the Virtual Machine Manager.

NOTE

To avoid negatively affecting guest virtual machines that use the storage volume you want
to delete, it is recommended that you release any resources using it.

13.3.5.1. Deleting storage volumes using virsh

Delete a storage volume using the virsh vol-delete command. The command must specify the
name or path of the storage volume and the storage pool from which the storage volume is abstracted.

The following example deletes the volume_name storage volume from the guest images_dir storage
pool:

virsh vol-delete volume_name --pool guest_images_dir
vol volume_name deleted

13.3.5.2. Deleting storage volumes using Virtual Machine Manager

Procedure 13.12. Deleting Storage Volumes with Virtual Machine Manager
1. Open the storage settings

a. In the Virtual Machine Manager, open the Edit menu and select Connection Details.

b. Click the Storage tab in the Connection Details window.

128

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

QEMU/KVM Connection Details - o X
Eile
Overview Virtual Networks Storage Metwork Interfaces
5 33 default MName: ‘ guest_images_dir
Filesystem Directory
Size: 75.15 GIB Free / 23.15 GiB In Use
23% Downloads
Filesystem Diractory Location: fhome/VirtualMachines/guest_images_dir
guest_images_dir State: @Active
Filesystam Diractol _
- - Autostart: ¥ On Boot
53y RHEL7_2
Filesystem Diractory \.-'olumes| & | @ | ®
33y VirtualMachines -~ i
Filesystem Directory Volumes Size Format
| - | | ® o | Apply

Figure 13.13. Storage tab
The pane on the left of the Connection Details window shows a list of storage pools.

2. Select the storage volume you want to delete

a. Inthe list of storage pools, click the storage pool from which the storage volume is
abstracted.

A list of storage volumes configured on the selected storage pool appear in the Volumes
pane at the bottom of the window.

b. Select the storage volume you want to delete.

3. Delete the storage volume

a. Click the button (above the Volumes list). A confirmation dialog appears.

b. Click Yes. The selected storage volume is deleted.

13.3.6. Adding Storage Devices to Guests

You can add storage devices to guest virtual machines using virsh or Virtual Machine Manager.

13.3.6.1. Adding Storage Devices to Guests Using virsh

To add storage devices to a guest virtual machine, use the attach-disk command. The arguments
that contain information about the disk to add can be specified in an XML file or on the command line.

The following is a sample XML file with the definition of the storage.

129

Virtualization Deployment and Administration Guide

<disk type='file'
<driver name='gemu'

device="'disk>"'>

type='raw' cache='none'/>

<source file='/var/lib/libvirt/images/FileName.img'/>
<target dev='vdb' bus='virtio'/>
</disk>

The following command attaches a disk to Guest1 using an XML file called NewStorage . xml.
I # virsh attach-disk --config Guestl ~/NewStorage.xml
The following command attaches a disk to Guest1 without using an xml file.

virsh attach-disk --config Guestl --source
/var/lib/libvirt/images/FileName.img --target vdb

13.3.6.2. Adding Storage Devices to Guests Using Virtual Machine Manager

You can add a storage volume to a guest virtual machine or create and add a default storage device to a

guest virtual machine.

13.3.6.2.1. Adding a storage volume to a guest

To add a storage volume to a guest virtual machine:

1. Open Virtual Machine Manager to the virtual machine hardware details window
Open virt-manager by executing the virt-manager command as root or opening
Applications - System Tools - Virtual Machine Manager.

Virtual Machine Manager

File View Help

E-J El Open i}

MName o

Edit

=l
‘

CPU usage
* QEMUSKNVM

rhel5.11
— Shutoff

rhel7_3server_ VM
- Shutoff

Host CPU usage

rhel7_3workstation_VM Iﬁl
== Running LU TR W —

Figure 13.14. The Virtual Machine Manager window
Select the guest virtual machine to which you want to add a storage volume.

Click open. The Virtual Machine window opens.

130

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

Click = .The hardware details window appears.

fedora2? on GEMU/KVM - o X

File Virtual Machine View Send Key
- moE - S &
L Overview Basic Details
Performance Name: fedora27
ﬁ CPUs UuID: 388af059-f2ac-40aa-98c9-67dd6dc0d5f5

M _
iﬂ emery Status: |53/ Running (Unpaused)
Boot Options
£, VirtlO Disk 1 Title:
(5) IDECDROM 1 Description:
B NIC :7c:2b:29
|L/| Tablet
) Mouse
== Keyboard Hypervisor Details
@ Display Spice Hypervisor: KVM
m} Sound ich6 Architecture: x86_64
= Serial 1 Emulator: fusr/bin/qe mu-kvm

Firmware: ~ BIOS
Chipset: i440FX

&= Channel gemu-ga

= Channel spice

B video QXL

B controller UsB 0

B8 controllerpcio

B8 controller IDE O

B8 controller virtiO Serial 0
@ usB Redirector 1

@ usB Redirector 2

5% RNG /deviurandom

Add Hardware Cancel Apply

Figure 13.15. The Hardware Details window

2. Open the Add New Virtual Hardware window
Click Add Hardware. The Add New Virtual Hardware window appears.

Ensure that Storage is selected in the hardware type pane.

131

Virtualization Deployment and Administration Guide

Add New Virtual Hardware x

B Controller]
Network (#) Create a disk image for the virtual machine
® Input 200 - <+ | GiB
M Graphics 24.5 (iB available in the default location

P
B Sound () Select or create custom storage
=5 Serial

| Manage...
=2 Parallel -
=¢| Console
Device type: = |_] Disk device -
=2| Channel
s4 USB Host Device Bus type: IDE ~
=% PCl Host Device
H Video » Advanced options
M Watchdog
] Filesystem
& Smartcard
@@ USB Redirection
1 TPM
RNG
2 Panic Notifier
Cancel Finish

Figure 13.16. The Add New Virtual Hardware window

3. View a list of storage volumes
Select the Select or create custom storage option button.

Click Manage. The Choose Storage Volume dialog appears.

132

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

Choose Storage Volume x

Size: 12.23 GiB Free / 22.10 GiB In Use
Filesystem Directory Location: /fvar/lib/libvirt/images

default_storage_pool .
D% If [x--'-
Filesystem Directory Volumes < g e

5% Downloads Volumes

: Filesystem Directory
volume l.qcow?2

% @ ® Browse Local || Cancel | | Choose Volume

Figure 13.17. The Select Storage Volume window

4. Select a storage volume
Select a storage pool from the list on the left side of the Select Storage Volume window. A list of
storage volumes in the selected storage pool appears in the Volumes list.

. NOTE
You can create a storage pool from the Select Storage Volume window. For
. more information, see Section 13.2.2.2, “Creating storage pools with Virtual

Machine Manager”.

Select a storage volume from the Volumes list.

NOTE

You can create a storage volume from the Select Storage Volume window. For

' more information, see Section 13.3.2.2, “Creating storage volumes with Virtual
Machine Manager”.

Click choose Volume. The Select Storage Volume window closes.

5. Configure the storage volume
Select a device type from the Device type list. Available types are: Disk device, CDROM
device, Floppy device, LUN Passthrough

Select a bus type from the Bus type list. The available bus types are dependent on the
selected device type.

133

Virtualization Deployment and Administration Guide

Select a cache mode from the Cache mode list. Available cache modes are: Hypervisor default,
none, writethrough, writeback, directsync, unsafe

Click Finish. The Add New Virtual Hardware window closes.

13.3.6.2.2. Adding default storage to a guest
The default storage pool is a file-based image in /var/1ib/1libvirt/images/ directory.
To add default storage to a guest virtual machine:

1. Open Virtual Machine Manager to the virtual machine hardware details window
Open virt-manager by executing the virt-manager command as root or opening
Applications - System Tools - Virtual Machine Manager.

Virtual Machine Manager x
File Edit View Help
E_-j IEl Open |] |£| -
Name ¥ CPU usage Host CPU usage
* QEMUSKNVM
rhel5.11

— Shutoff

rhel7_3server_ VM
- Shutoff

rhel7 _3workstation_ VM vﬂw
—— Running —

Figure 13.18. The Virtual Machine Manager window
Select the guest virtual machine to which you want to add a storage volume.

Click open. The Virtual Machine window opens.

Click = .The hardware details window appears.

134

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

fedora27 on GEMU/KVM - o x
File Virtual Machine View Send Key
EI & Ll |£| M @I c:o
L Overview Basic Details
Performance Name: fedora27
ﬁ CPUs uuID: 388af059-f2ac-40aa-98c9-67dd6dc0d5f5
M _—
iﬂ emery Status: |53/ Running (Unpaused)
Boot Options
£, VirtlO Disk 1 Title:
(5) IDECDROM 1 Description:
B NIC :7c:2b:29
|L/| Tablet
) Mouse
== Keyboard Hypervisor Details
@ Display Spice Hypervisor: KVM
m} Sound ich6 Architecture: x86_64
= Serial 1 Emulator: /usr/bin/qemu-kvm

Firmware: ~ BIOS
Chipset: i440FX

&= Channel gemu-ga

= Channel spice

B video QXL

B controller UsB 0

B8 controllerpcio

B8 controller IDE O

B8 controller virtiO Serial 0
@ usB Redirector 1

@ usB Redirector 2

5% RNG /deviurandom

Add Hardware Cancel Apply

Figure 13.19. The Hardware Details window

2. Open the Add New Virtual Hardware window
Click Add Hardware. The Add New Virtual Hardware window appears.

Ensure that Storage is selected in the hardware type pane.

135

Virtualization Deployment and Administration Guide

Add New Virtual Hardware x
B Controller]
& Network (#) Create a disk image for the virtual machine
§ Input 200 - + |GiB
raphics .5 GiB available in the default location
= Graphi 24.5 GiB available in the default | '
Bf Sound () Select or create custom storage
= Serial
Manage...
=2 Parallel :
=& Console . . .
Device type: = |_] Disk device -
=2| Channel
USB Host Device Bus type: IDE
PCl Host Device
H Video » Advanced options
M Watchdog
] Filesystem
== Smartcard
@@ USB Redirection
o TPM
RNG
Panic Notifier
Cancel Finish

Figure 13.20. The Add New Virtual Hardware window

3. Create a disk for the guest
Ensure that the Create a disk image for the virtual machine option.

Enter the size of the disk to create in the textbox below the Create a disk image for the
virtual machine option button.

Click Finish. The Add New Virtual Hardware window closes.

13.3.6.3. Adding SCSI LUN-based Storage to a Guest

There are multiple ways to expose a host SCSI LUN entirely to the guest. Exposing the SCSI LUN to the
guest provides the capability to execute SCSI commands directly to the LUN on the guest. This is useful
as a means to share a LUN between guests, as well as to share Fibre Channel storage between hosts.

136

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

For more information on SCSI LUN-based storage, see vHBA-based storage pools using SCSI devices.

IMPORTANT

The optional sgio attribute controls whether unprivileged SCSI Generical I/0 (SG_lO)
commands are filtered for a device="1lun' disk. The sgio attribute can be specified as
'filtered' or 'unfiltered', but must be setto 'unfiltered' to allow SG_|O
ioctl commands to be passed through on the guest in a persistent reservation.

In addition to setting sgio="unfiltered', the <shareable> element must be set to
share a LUN between guests. The sgio attribute defaults to ' filtered' if not specified.

The <disk> XML attribute device="'1lun" is valid for the following guest disk configurations:

e type='block' for <source dev='/dev/disk/by-{path|id|uuid]|label}"'/>

<disk type='block' device='lun' sgio='unfiltered'>
<driver name='gemu' type='raw'/>
<source dev='/dev/disk/by-path/pci-0000\:04\:00.1-fc-
0x203400a0b85ad1d7-1un-0'/>
<target dev='sda' bus='scsi'/>
<shareable/>
</disk>

NOTE

The backslashes prior to the colons in the <source> device name are required.

e type='network' for <source protocol='iscsi'... />

<disk type='network' device='lun' sgio='unfiltered'>
<driver name='gemu' type='raw'/>
<source protocol='iscsi' name='ign.2013-07.com.example:iscsi-net-
pool/1'>
<host name='example.com' port='3260"'/>
<auth username='myuser'>
<secret type='iscsi' usage='libvirtiscsi'/>
</auth>
</source>
<target dev='sda' bus='scsi'/>
<shareable/>
</disk>

e type='volume' when using an iSCSI or a NPIV/VHBA source pool as the SCSI source pool.

The following example XML shows a guest using an iSCSI source pool (hamed iscsi-net-pool)
as the SCSI source pool:

<disk type='volume' device='lun' sgio='unfiltered'>
<driver name='gemu' type='raw'/>
<source pool='iscsi-net-pool' volume='unit:0:0:1' mode='host'/>

137

Virtualization Deployment and Administration Guide

<target dev='sda' bus='scsi'/>
<shareable/>
</disk>

NOTE

The mode= option within the <source> tag is optional, but if used, it must be set
to "host' and not 'direct'. When setto '"host', libvirt will find the path to
the device on the local host. When setto 'direct’, libvirt will generate the path
to the device using the source pool's source host data.

The iSCSI pool (iscsi-net-pool) in the example above will have a similar configuration to the
following:

virsh pool-dumpxml iscsi-net-pool
<pool type='iscsi'>
<name>iscsi-net-pool</name>
<capacity unit='bytes'>11274289152</capacity>
<allocation unit='bytes'>11274289152</allocation>
<available unit='bytes'>0</available>
<source>
<host name='192.168.122.1"' port='3260"'/>
<device path='ign.2013-12.com.example:iscsi-chap-netpool'/>
<auth type='chap' username='redhat'>
<secret usage='libvirtiscsi'/>
</auth>
</source>
<target>
<path>/dev/disk/by-path</path>
<permissions>
<mode>0755</mode>
</permissions>
</target>
</pool>

To verify the details of the available LUNs in the iSCSI source pool, enter the following
command:

virsh vol-list iscsi-net-pool

Name Path

unit:0:0:1 /dev/disk/by-path/ip-192.168.122.1:3260-iscsi-
ign.2013-12.com.example:iscsi-chap-netpool-lun-1

unit:0:0:2 /dev/disk/by-path/ip-192.168.122.1:3260-iscsi-

ign.2013-12.com.example:iscsi-chap-netpool-1lun-2

e type='volume' when using a NPIV/VHBA source pool as the SCSI source pool.

The following example XML shows a guest using a NPIV/VHBA source pool (named
vhbapool!_host3) as the SCSI source pool:

<disk type='volume' device='lun' sgio='unfiltered'>
<driver name='gemu' type='raw'/>

138

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

<source pool='vhbapool_host3' volume='unit:0:1:0'/>
<target dev='sda' bus='scsi'/>
<shareable/>

</disk>

The NPIV/VHBA pool (vhbapool_host3) in the example above will have a similar configuration
to:

virsh pool-dumpxml vhbapool_host3
<pool type='scsi'>
<name>vhbapool_host3</name>
<capacity unit='bytes'>0</capacity>
<allocation unit='bytes'>0</allocation>
<available unit='bytes'>0</available>
<source>
<adapter type='fc_host' parent='scsi_host3' managed='yes'
wwnn="'5001a4a93526d0al' wwpn='5001ad4ace3ee045d'/>
</source>
<target>
<path>/dev/disk/by-path</path>
<permissions>
<mode>0700</mode>
<owner>0</owner>
<group>0</group>
</permissions>
</target>
</pool>

To verify the details of the available LUNs on the vHBA, enter the following command:

virsh vol-1list vhbapool_host3

Name Path
unit:0:0:0 /dev/disk/by-path/pci-0000:10:00.0-fc-
0x5006016044602198-1un-0
unit:0:1:0 /dev/disk/by-path/pci-0000:10:00.0-fc-

0x5006016844602198-1un-0

For more information on using a NPIV vHBA with SCSI devices, see Section 13.2.3.8, “vHBA-
based storage pools using SCSI devices”.

The following procedure shows an example of adding a SCSI LUN-based storage device to a guest. Any
of the above <disk device="'1lun'> guest disk configurations can be attached with this method.
Substitute configurations according to your environment.

Procedure 13.13. Attaching SCSI LUN-based storage to a guest

1. Create the device file by writing a <disk> element in a new file, and save this file with an XML

extension (in this example, sda.xml):

cat sda.xml

<disk type='volume' device='lun' sgio='unfiltered'>
<driver name='gemu' type='raw'/>
<source pool='vhbapool_host3' volume='unit:0:1:0'/>

139

Virtualization Deployment and Administration Guide

<target dev='sda' bus='scsi'/>
<shareable/>
</disk>

2. Associate the device created in sda.xml with your guest virtual machine (Guest1, for example):

I # virsh attach-device --config Guestl ~/sda.xml

NOTE

Running the virsh attach-device command with the - -config option
requires a guest reboot to add the device permanently to the guest. Alternatively,
the - -persistent option can be used instead of - -config, which can also be
used to hotplug the device to a guest.

Alternatively, the SCSI LUN-based storage can be attached or configured on the guest using virt-
manager. To configure this using virt-manager, click the Add Hardware button and add a virtual disk
with the required parameters, or change the settings of an existing SCSI LUN device from this window.
In Red Hat Enterprise Linux 7.2 and above, the SGIO value can also be configured in virt-manager:

rhel7-2-quest Virtual Machine o o x

File Virtual Machine View Send Key
- ol v | @
B 5yerview Virtual Disk
Performance Source path: /dev/sda
{:} Processor Device type: SCSILun 1
B2 Memory Storage size: Unknown
[Readonly:
Boot Options eadonty

Shareable:
B scSilunl
gﬂ NIC :05:d7:b6 ¥ Advanced options
[#] Tablet Disk bus: | SCSI -
(& Mouse Serial number:
== Keyboard

SGIO: filtered -
@ Display Spice unmtere
m} Sound: ich6 Storage format: | raw -
=) Seral 1 b Performance options
&y Channel gemu-ga } 10 Tuning
@i Channel spice
B video @XL
m Controller USB
m Controller PCI
B controler scsi
Add Hardware Remove Cancel Apply

Figure 13.21. Configuring SCSI LUN storage with virt-manager

Reconnecting to an exposed LUN after a hardware failure

If the connection to an exposed Fiber Channel (FC) LUN is lost due to a failure of hardware (such as the
host bus adapter), the exposed LUNs on the guest may continue to appear as failed even after the
hardware failure is fixed. To prevent this, edit the dev_loss_tmo and fast_io_fail tmo kernel
options:

140

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

e dev_loss_tmo controls how long the SCSI layer waits after a SCSI device fails before marking
it as failed. To prevent a timeout, it is recommended to set the option to the maximum value,
which is 2147483647.

e fast_io_fail_tmo controls how long the SCSI layer waits after a SCSI device fails before
failing back to the I/0O. To ensure that dev_loss_tmo is not ignored by the kernel, set this
option's value to any number lower than the value of dev_loss_tmo.

To modify the value of dev_loss_tmo and fast_io_fail, do one of the following:

e Editthe /etc/multipath. conf file, and set the values in the defaults section:

defaults {

fast_io_fail_tmo 20
dev_loss_tmo infinity

}

e Setdev_loss_tmo and fast_io_fail on the level of the FC host or remote port, for example
as follows:

echo 20 >
/sys/devices/pciO000:00/0000:00:06.0/0000:13:00.0/host1/rport-1:0-
0/fc_remote_ports/rport-1:0-0/fast_io_fail tmo

echo 2147483647 >
/sys/devices/pciO000:00/0000:00:06.0/0000:13:00.0/host1/rport-1:0-
0/fc_remote_ports/rport-1:0-0/dev_loss_tmo

To verify that the new values of dev_loss_tmo and fast_io_fail are active, use the following
command:

I # find /sys -name dev_loss_tmo -print -exec cat {} \;

If the parameters have been set correctly, the output will look similar to this, with the appropriate device
or devices instead of pci0000:00/0000:00:06.0/0000:13:00.0/host1/rport-1:0-
0/fc_remote_ports/rport-1:0-0:

find /sys -name dev_loss_tmo -print -exec cat {} \;
/sys/devices/pcifOO0O:00/0000:00:06.0/0000:13:00.0/hostl/rport-1:0-

0/fc_remote_ports/rport-1:0-0/dev_loss_tmo
2147483647

13.3.6.4. Managing Storage Controllers in a Guest Virtual Machine

Unlike virtio disks, SCSI devices require the presence of a controller in the guest virtual machine. This
section details the necessary steps to create a virtual SCSI controller (also known as "Host Bus
Adapter", or HBA), and to add SCSI storage to the guest virtual machine.

Procedure 13.14. Creating a virtual SCSI controller

141

Virtualization Deployment and Administration Guide

1. Display the configuration of the guest virtual machine (Guest1) and look for a pre-existing SCSI
controller:

I # virsh dumpxml Guestl | grep controller.*scsi

If a device controller is present, the command will output one or more lines similar to the
following:

I <controller type='scsi' model='virtio-scsi' index='0Q'/>

2. If the previous step did not show a device controller, create the description for one in a new file
and add it to the virtual machine, using the following steps:

a. Create the device controller by writing a <controller> element in a new file and save this
file with an XML extension. virtio-scsi-controller.xml, for example.

I <controller type='scsi' model='virtio-scsi'/>

b. Associate the device controller you just created in virtio-scsi-controller.xml with
your guest virtual machine (Guest1, for example):

virsh attach-device --config Guestl ~/virtio-scsi-
controller.xml

In this example the - -config option behaves the same as it does for disks. See
Section 13.3.6, “Adding Storage Devices to Guests”for more information.

3. Add a new SCSI disk or CD-ROM. The new disk can be added using the methods in
Section 13.3.6, “Adding Storage Devices to Guests”. In order to create a SCSI disk, specify a
target device name that starts with sd.

NOTE

The supported limit for each controller is 1024 virtio-scsi disks, but it is possible
that other available resources in the host (such as file descriptors) are exhausted
with fewer disks.

For more information, see the following Red Hat Enterprise Linux 6 whitepaper: The next-
generation storage interface for the Red Hat Enterprise Linux Kernel Virtual Machine: virtio-scsi.

virsh attach-disk Guestl /var/lib/libvirt/images/FileName.img sdb
--cache none

Depending on the version of the driver in the guest virtual machine, the new disk may not be
detected immediately by a running guest virtual machine. Follow the steps in the Red Hat
Enterprise Linux Storage Administration Guide.

13.3.7. Removing Storage Devices from Guests

You can remove storage device from virtual guest machines using virsh or Virtual Machine Manager.
13.3.7.1. Removing Storage from a Virtual Machine with virsh

142

http://www.redhat.com/en/resources/rhel-next-gen-storage-for-rhel-kernel-vm
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/index.html

CHAPTER 13. MANAGING STORAGE FOR VIRTUAL MACHINES

The following example removes the vdb storage volume from the Guest1 virtual machine:

I # virsh detach-disk Guestl vdb

13.3.7.2. Removing Storage from a Virtual Machine with Virtual Machine Manager

Procedure 13.15. Removing storage from a virtual machine with Virtual Machine Manager

To remove storage from a guest virtual machine using Virtual Machine Manager:

1. Open Virtual Machine Manager to the virtual machine hardware details window
Open virt-manager by executing the virt-manager command as root or opening
Applications - System Tools - Virtual Machine Manager.

Select the guest virtual machine from which you want to remove a storage device.

Click open. The Virtual Machine window opens.

Click = . The hardware details window appears.

2. Remove the storage from the guest virtual machine
Select the storage device from the list of hardware on the left side of the hardware details pane.

Click Remove. A confirmation dialog appears.

Click Yes. The storage is removed from the guest virtual machine.

143

Virtualization Deployment and Administration Guide

CHAPTER 14. USING QEMU-IMG

The gemu-img command-line tool is used for formatting, modifying, and verifying various file systems
used by KVM. gemu-img options and usages are highlighted in the sections that follow.

g WARNING
Never use gemu-img to modify images in use by a running virtual machine or any

other process. This may destroy the image. Also, be aware that querying an image
that is being modified by another process may encounter inconsistent state.

14.1. CHECKING THE DISK IMAGE

To perform a consistency check on a disk image with the file name imgname.

I # gemu-img check [-f format] imgname

NOTE

Only a selected group of formats support consistency checks. These include qgcow?2, vdi,
vhdx, vmdk, and ged.

Lo~

14.2. COMMITTING CHANGES TO AN IMAGE

Commit any changes recorded in the specified image file (imgname) to the file's base image with the
gemu-img commit command. Optionally, specify the file's format type (fmi).

I # qgemu-img commit [-f fmt] [-t cache] imgname

14.3. COMPARING IMAGES

Compare the contents of two specified image files (imgname1 and imgname2) with the gemu-img
compare command. Optionally, specify the files' format types (fmf). The images can have different
formats and settings.

By default, images with different sizes are considered identical if the larger image contains only
unallocated or zeroed sectors in the area after the end of the other image. In addition, if any sector is not
allocated in one image and contains only zero bytes in the other one, it is evaluated as equal. If you

specify the -s option, the images are not considered identical if the image sizes differ or a sector is
allocated in one image and is not allocated in the second one.

I # gemu-img compare [-f fmt] [-F fmt] [-p] [-s] [-q] imgnamel imgnameZ2
The qemu-img compare command exits with one of the following exit codes:

e 0 - The images are identical

144

CHAPTER 14. USING QEMU-IMG

e 1 - The images are different
e 2 - There was an error opening one of the images
e 3 - There was an error checking a sector allocation

e 4 - There was an error reading the data

14.4. MAPPING AN IMAGE

Using the gqemu-img map command, your can dump the metadata of the specified image file (mgname)
and its backing file chain. The dump shows the allocation state of every sector in the (imgname) with the
topmost file that allocates it in the backing file chain. Optionally, specify the file's format type (fmi).

I # gemu-img map [-f fmt] [--output=fmt] imgname
There are two output formats, the human format and the json format:

14.4.1. The human Format

The default format (human) only dumps non-zero, allocated parts of the file. The output identifies a file
from where data can be read and the offset in the file. Each line includes four fields. The following shows
an example of an output:

Offset Length Mapped to File
0 0Xx20000 0x50000 /tmp/overlay.qcow2
0x100000 0x10000 0x95380000 /tmp/backing.qgcow2

The first line means that 9x20000 (131072) bytes starting at offset 0 in the image are available in
tmp/overlay.qcow2 (opened in raw format) starting at offset @x50000 (327680). Data that is
compressed, encrypted, or otherwise not available in raw format causes an error if human format is
specified.

NOTE

File names can include newline characters. Therefore, it is not safe to parse output in
“ human format in scripts.

14.4.2. The json Format

If the j son option is specified, the output returns an array of dictionaries in JSON format. In addition to
the information provided in the human option, the output includes the following information:

e data - A Boolean field that shows whether or not the sectors contain data
e zero - A Boolean field that shows whether or not the data is known to read as zero

e depth - The depth of the backing file of filename

NOTE

When the json option is specified, the of fset field is optional.

145

Virtualization Deployment and Administration Guide

For more information about the qemu-img map command and additional options, see the relevant man
page.

14.5. AMENDING AN IMAGE

Amend the image format-specific options for the image file. Optionally, specify the file's format type (fmi).

I # gemu-img amend [-p] [-f fmt] [-t cache] -o options filename

NOTE

This operation is only supported for the qcow?2 file format.

14.6. CONVERTING AN EXISTING IMAGE TO ANOTHER FORMAT

The convert option is used to convert one recognized image format to another image format. For a list
of accepted formats, see Section 14.12, “Supported gemu-img Formats”.
gemu-img convert [-c] [-p] [-f fmt] [-t cache] [-0 output_fmt] [-0
options] [-S sparse_size] filename output_filename
The -p parameter shows the progress of the command (optional and not for every command) and -S
flag allows for the creation of a sparse file, which is included within the disk image. Sparse files in all
purposes function like a standard file, except that the physical blocks that only contain zeros (that is,
nothing). When the Operating System sees this file, it treats it as it exists and takes up actual disk space,
even though in reality it does not take any. This is particularly helpful when creating a disk for a guest
virtual machine as this gives the appearance that the disk has taken much more disk space than it has.

For example, if you set -S to 50Gb on a disk image that is 10Gb, then your 10Gb of disk space will
appear to be 60Gb in size even though only 10Gb is actually being used.

Convert the disk image filename to disk image output_filename using format output_format.
The disk image can be optionally compressed with the -c¢ option, or encrypted with the -o option by
setting -0 encryption. Note that the options available with the -o parameter differ with the selected
format.

Only the qcow2 and qcow2 format supports encryption or compression. gcow2 encryption uses the AES
format with secure 128-bit keys. gcow2 compression is read-only, so if a compressed sector is
converted from gcow2 format, it is written to the new format as uncompressed data.

Image conversion is also useful to get a smaller image when using a format which can grow, such as
gcow or cow. The empty sectors are detected and suppressed from the destination image.

14.7. CREATING AND FORMATTING NEW IMAGES OR DEVICES

Create the new disk image filename of size size and format format.
I # gemu-img create [-f format] [-o options] filename [size]
If a base image is specified with -o backing_file=filename, the image will only record differences

between itself and the base image. The backing file will not be modified unless you use the commit
command. No size needs to be specified in this case.

146

CHAPTER 14. USING QEMU-IMG

14.8. DISPLAYING IMAGE INFORMATION

The info parameter displays information about a disk image filename. The format for the info option is
as follows:

I # gemu-img info [-f format] filename

This command is often used to discover the size reserved on disk which can be different from the
displayed size. If snapshots are stored in the disk image, they are displayed also. This command will
show for example, how much space is being taken by a qcow2 image on a block device. This is done by
running the qemu-img. You can check that the image in use is the one that matches the output of the
gemu-img info command with the qemu-img check command.

gemu-img info /dev/vg-90.100-sluo/1v-90-100-sluo
image: /dev/vg-90.100-sluo/1v-90-100-sluo

file format: gcow2

virtual size: 20G (21474836480 bytes)

disk size: 0

cluster_size: 65536

14.9. REBASING A BACKING FILE OF AN IMAGE

The gemu-img rebase changes the backing file of an image.

gemu-img rebase [-f fmt] [-t cache] [-p] [-u] -b backing file [-F
backing_fmt] filename

The backing file is changed to backing file and (if the format of filename supports the feature), the
backing file format is changed to backing_format.

NOTE

Only the gcowZ format supports changing the backing file (rebase).

There are two different modes in which rebase can operate: safe and unsafe.

safe mode is used by default and performs a real rebase operation. The new backing file may differ
from the old one and the gemu-img rebase command will take care of keeping the guest virtual
machine-visible content of filename unchanged. In order to achieve this, any clusters that differ between
backing_file and old backing file of filename are merged into filename before making any changes to the
backing file.

Note that safe mode is an expensive operation, comparable to converting an image. The old backing file
is required for it to complete successfully.

unsafe mode is used if the -u option is passed to gemu-img rebase. In this mode, only the backing
file name and format of filename is changed, without any checks taking place on the file contents. Make
sure the new backing file is specified correctly or the guest-visible content of the image will be corrupted.

This mode is useful for renaming or moving the backing file. It can be used without an accessible old

backing file. For instance, it can be used to fix an image whose backing file has already been moved or
renamed.

147

Virtualization Deployment and Administration Guide

14.10. RE-SIZING THE DISK IMAGE
Change the disk image filename as if it had been created with size size. Only images in raw format can
be resized in both directions, whereas qcow?2 version 2 or gcow2 version 3 images can be grown but

cannot be shrunk.

Use the following to set the size of the disk image filename to size bytes:
I # gemu-img resize filename size

You can also resize relative to the current size of the disk image. To give a size relative to the current
size, prefix the number of bytes with + to grow, or - to reduce the size of the disk image by that number
of bytes. Adding a unit suffix allows you to set the image size in kilobytes (K), megabytes (M), gigabytes
(G) or terabytes (T).

I # gemu-img resize filename [+]|-]size[K|M|G|T]

g WARNING
Before using this command to shrink a disk image, you must use file system and

partitioning tools inside the VM itself to reduce allocated file systems and partition
sizes accordingly. Failure to do so will result in data loss.

After using this command to grow a disk image, you must use file system and
partitioning tools inside the VM to actually begin using the new space on the device.

14.11. LISTING, CREATING, APPLYING, AND DELETING A SNAPSHOT

Using different parameters from the qemu-img snapshot command you can list, apply, create, or
delete an existing snapshot (snapshot) of specified image (filename).

gemu-img snapshot [-1 | -a snapshot | -c snapshot | -d snapshot]
filename

The accepted arguments are as follows:
e -1lists all snapshots associated with the specified disk image.

e The apply option, -a, reverts the disk image (filename) to the state of a previously saved
snapshot.

e -c creates a snapshot (snapshot) of an image (filename).

e -d deletes the specified snapshot.

14.12. SUPPORTED QEMU-IMG FORMATS

When a format is specified in any of the gemu-img commands, the following format types may be used:

148

CHAPTER 14. USING QEMU-IMG

e raw - Raw disk image format (default). This can be the fastest file-based format. If your file
system supports holes (for example in ext2 or ext3), then only the written sectors will reserve
space. Use gemu-img info to obtain the real size used by the image or 1s -1s on
Unix/Linux. Although Raw images give optimal performance, only very basic features are
available with a Raw image. For example, no snapshots are available.

e (qcow2 - QEMU image format, the most versatile format with the best feature set. Use it to have
optional AES encryption, zlib-based compression, support of multiple VM snapshots, and smaller
images, which are useful on file systems that do not support holes . Note that this expansive
feature set comes at the cost of performance.

Although only the formats above can be used to run on a guest virtual machine or host physical
machine, gemu-img also recognizes and supports the following formats in order to convert from
them into either raw , or qcow2 format. The format of an image is usually detected
automatically. In addition to converting these formats into raw or qcow2 , they can be converted
back from raw or qcow2 to the original format. Note that the qcow2 version supplied with

Red Hat Enterprise Linux 7 is 1.1. The format that is supplied with previous versions of Red Hat
Enterprise Linux will be 0.10. You can revert image files to previous versions of gcow2. To know
which version you are using, run gemu-img info qcow2 [imagefilename.img]
command. To change the gcow version see Section 23.20.2, “Setting Target Elements”.

e bochs - Bochs disk image format.

e cloop - Linux Compressed Loop image, useful only to reuse directly compressed CD-ROM
images present for example in the Knoppix CD-ROMs.

e cow - User Mode Linux Copy On Write image format. The cow format is included only for
compatibility with previous versions.

e dmg - Mac disk image format.

e nbd - Network block device.

e parallels - Parallels virtualization disk image format.

e ¢cow - Old QEMU image format. Only included for compatibility with older versions.
e ¢ed - Old QEMU image format. Only included for compatibility with older versions.
e vdi - Oracle VM VirtualBox hard disk image format.

e vhdx - Microsoft Hyper-V virtual hard disk-X disk image format.

e vmdk - VMware 3 and 4 compatible image format.

e vvfat - Virtual VFAT disk image format.

149

Virtualization Deployment and Administration Guide

CHAPTER 15. KVM MIGRATION

This chapter covers the migration guest virtual machines from one host physical machine that runs the
KVM hypervisor to another. Migrating guests is possible because virtual machines run in a virtualized
environment instead of directly on the hardware.

15.1. MIGRATION DEFINITION AND BENEFITS

Migration works by sending the state of the guest virtual machine's memory and any virtualized devices
to a destination host physical machine. It is recommended to use shared, networked storage to store the
guest's images to be migrated. It is also recommended to use libvirt-managed storage pools for shared
storage when migrating virtual machines.

Migrations can be performed both with /ive (running) and non-live (shut-down) guests.

In a live migration, the guest virtual machine continues to run on the source host machine, while the
guest's memory pages are transferred to the destination host machine. During migration, KVM monitors
the source for any changes in pages it has already transferred, and begins to transfer these changes
when all of the initial pages have been transferred. KVM also estimates transfer speed during migration,
so when the remaining amount of data to transfer will reaches a certain configurable period of time
(10ms by default), KVM suspends the original guest virtual machine, transfers the remaining data, and
resumes the same guest virtual machine on the destination host physical machine.

In contrast, a non-live migration (offline migration) suspends the guest virtual machine and then copies
the guest's memory to the destination host machine. The guest is then resumed on the destination host
machine and the memory the guest used on the source host machine is freed. The time it takes to
complete such a migration only depends on network bandwidth and latency. If the network is
experiencing heavy use or low bandwidth, the migration will take much longer. Note that if the original
guest virtual machine modifies pages faster than KVM can transfer them to the destination host physical
machine, offline migration must be used, as live migration would never complete.

Migration is useful for:

Load balancing

Guest virtual machines can be moved to host physical machines with lower usage if their host
machine becomes overloaded, or if another host machine is under-utilized.

Hardware independence

When you need to upgrade, add, or remove hardware devices on the host physical machine, you can
safely relocate guest virtual machines to other host physical machines. This means that guest virtual
machines do not experience any downtime for hardware improvements.

Energy saving
Virtual machines can be redistributed to other host physical machines, and the unloaded host
systems can thus be powered off to save energy and cut costs in low usage periods.
Geographic migration

Virtual machines can be moved to another location for lower latency or when required by other
reasons.

15.2. MIGRATION REQUIREMENTS AND LIMITATIONS

150

CHAPTER 15. KVM MIGRATION

Before using KVM migration, make sure that your system fulfills the migration's requirements, and that
you are aware of its limitations.

Migration requirements

e A guest virtual machine installed on shared storage using one of the following protocols:
o Fibre Channel-based LUNs
o iSCSI
o NFS
o GFS2

o SCSI RDMA protocols (SCSI RCP): the block export protocol used in Infiniband and 10GbE
iIWARP adapters

e Make sure that the 1ibvirtd service is enabled and running.

systemctl enable libvirtd.service
systemctl restart libvirtd.service

e The ability to migrate effectively is dependant on the parameter setting in the
/etc/1libvirt/libvirtd. conf file. To edit this file, use the following procedure:
Procedure 15.1. Configuring libvirtd.conf

1. Opening the 1ibvirtd.conf requires running the command as root:
I # vim /etc/libvirt/libvirtd.conf

2. Change the parameters as needed and save the file.

3. Restart the 1ibvirtd service:
I # systemctl restart libvirtd

e The migration platforms and versions should be checked against Table 15.1, “Live Migration
Compatibility”

e Use a separate system exporting the shared storage medium. Storage should not reside on
either of the two host physical machines used for the migration.

e Shared storage must mount at the same location on source and destination systems. The
mounted directory names must be identical. Although it is possible to keep the images using
different paths, it is not recommended. Note that, if you intend to use virt-manager to perform the
migration, the path names must be identical. If you intend to use virsh to perform the migration,
different network configurations and mount directories can be used with the help of - -xml
option or pre-hooks . For more information on pre-hooks, see the libvirt upstream
documentation, and for more information on the XML option, see Chapter 23, Manipulating the
Domain XML.

151

http://www.libvirt.org/hooks.html

Virtualization Deployment and Administration Guide

e When migration is attempted on an existing guest virtual machine in a public bridge+tap
network, the source and destination host machines must be located on the same network.
Otherwise, the guest virtual machine network will not operate after migration.

Migration Limitations

e Guest virtual machine migration has the following limitations when used on Red Hat Enterprise
Linux with virtualization technology based on KVM:

o Point to point migration — must be done manually to designate destination hypervisor from
originating hypervisor

o No validation or roll-back is available
o Determination of target may only be done manually
o Storage migration cannot be performed live on Red Hat Enterprise Linux 7, but you can

migrate storage while the guest virtual machine is powered down. Live storage migration is
available on Red Hat Virtualization. Call your service representative for details.

NOTE

If you are migrating a guest machine that has virtio devices on it, make sure to set the
number of vectors on any virtio device on either platform to 32 or fewer. For detailed
information, see Section 23.18, “Devices”.

15.3. LIVE MIGRATION AND RED HAT ENTERPRISE LINUX VERSION
COMPATIBILITY

Live Migration is supported as shown in Table 15.1, “Live Migration Compatibility”:

Table 15.1. Live Migration Compatibility

Migration Method Release Type Example Live Migration

Support

Forward Major release 6.5+ - 7. Fully supported Any issues should
be reported
Backward Major release 7xX - 6.y Not supported
Forward Minor release 7x -7y (7.0 - Fully supported Any issues should
7.1) be reported
Backward Minor release 7y - 7x (71 - Fully supported Any issues should

7.0)

Troubleshooting problems with migration

be reported

e Issues with the migration protocol — If backward migration ends with "unknown section
error", repeating the migration process can repair the issue as it may be a transient error. If not,

report the problem.

152

CHAPTER 15. KVM MIGRATION

e Issues with audio devices — When migrating from Red Hat Enterprise Linux 6.x to Red Hat
Enterprise Linux 7.y, note that the es1370 audio card is no longer supported. Use the ac97 audio
card instead.

e Issues with network cards — When migrating from Red Hat Enterprise Linux 6.x to Red Hat
Enterprise Linux 7.y, note that the pcnet and ne2k_pci network cards are no longer supported.
Use the virtio-net network device instead.

Configuring Network Storage

Configure shared storage and install a guest virtual machine on the shared storage.

Alternatively, use the NFS example in Section 15.4, “Shared Storage Example: NFS for a Simple
Migration”

15.4. SHARED STORAGE EXAMPLE: NFS FOR A SIMPLE MIGRATION

IMPORTANT

This example uses NFS to share guest virtual machine images with other KVM host
physical machines. Although not practical for large installations, it is presented to
demonstrate migration techniques only. Do not use this example for migrating or running
more than a few guest virtual machines. In addition, it is required that the synch
parameter is enabled. This is required for proper export of the NFS storage.

iISCSI storage is a better choice for large deployments. For configuration details, see
Section 13.2.3.5, “iSCSI-based storage pools”.

For detailed information on configuring NFS, opening IP tables, and configuring the firewall, see Red Hat
Linux Storage Administration Guide.

Make sure that NFS file locking is not used as it is not supported in KVM.
1. Export your libvirt image directory
Migration requires storage to reside on a system that is separate to the migration target systems.

On this separate system, export the storage by adding the default image directory to the
/etc/exports file:

I /var/lib/libvirt/images *.example.com(rw,no_root_squash, sync)

Change the hostname parameter as required for your environment.

2. Start NFS

a. Install the NFS packages if they are not yet installed:

I # yum install nfs-utils

b. Make sure that the ports for NFS in iptables (2049, for example) are opened and add
NFS to the /etc/hosts.allow file.

c. Start the NFS service:

I # systemctl start nfs-server

153

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-nfs.html

Virtualization Deployment and Administration Guide

3. Mount the shared storage on the source and the destination
On the migration source and the destination systems, mount the /var/1ib/1libvirt/images
directory:

I # mount storage_host:/var/lib/libvirt/images /var/lib/libvirt/images

! WARNING
Whichever directory is chosen for the source host physical machine must be

exactly the same as that on the destination host physical machine. This
applies to all types of shared storage. The directory must be the same or the
migration with virt-manager will fail.

15.5. LIVE KVM MIGRATION WITH VIRSH

A guest virtual machine can be migrated to another host physical machine with the virsh command.
The migrate command accepts parameters in the following format:

I # virsh migrate --live GuestName DestinationURL

Note that the --live option may be eliminated when live migration is not required. Additional options are
listed in Section 15.5.2, “Additional Options for the virsh migrate Command”.

The GuestName parameter represents the name of the guest virtual machine which you want to migrate.

The DestinationURL parameter is the connection URL of the destination host physical machine. The
destination system must run the same version of Red Hat Enterprise Linux, be using the same hypervisor
and have libvirt running.

NOTE

The DestinationURL parameter for normal migration and peer2peer migration has
different semantics:

e normal migration: the DestinationURL is the URL of the target host physical
machine as seen from the source guest virtual machine.

e peer2peer migration: DestinationURL is the URL of the target host physical
machine as seen from the source host physical machine.

Once the command is entered, you will be prompted for the root password of the destination system.

IMPORTANT

Name resolution must be working on both sides (source and destination) in order for
migration to succeed. Each side must be able to find the other. Make sure that you can
ping one side to the other to check that the name resolution is working.

154

CHAPTER 15. KVM MIGRATION

Example: live migration with virsh

This example migrates from host1.example.comto host2.example.com. Change the host physical
machine names for your environment. This example migrates a virtual machine named guest1-
rhel6-64.

This example assumes you have fully configured shared storage and meet all the prerequisites (listed
here: Migration requirements).

1. Verify the guest virtual machine is running
From the source system, host1.example.com, verify guest1-rhel6-64 is running:

[root@hostl ~]# virsh list
Id Name State

10 guestl-rhel6-64 running

2. Migrate the guest virtual machine
Execute the following command to live migrate the guest virtual machine to the destination,
host2.example.com. Append /system to the end of the destination URL to tell libvirt that you
need full access.

virsh migrate --live guesti-rhel7-64
gemu+ssh://host2.example.com/system

Once the command is entered you will be prompted for the root password of the destination
system.

3. Wait
The migration may take some time depending on load and the size of the guest virtual machine.
virsh only reports errors. The guest virtual machine continues to run on the source host
physical machine until fully migrated.

4. Verify the guest virtual machine has arrived at the destination host
From the destination system, host2.example.com, verify guest1-rhel7-64 is running:

[root@host2 ~]# virsh list
Id Name State

10 guestl-rhel7-64 running
The live migration is now complete.

NOTE

libvirt supports a variety of networking methods including TLS/SSL, UNIX sockets, SSH,
and unencrypted TCP. For more information on using other methods, see Chapter 18,
Remote Management of Guests.

L

155

Virtualization Deployment and Administration Guide

NOTE
Non-running guest virtual machines can be migrated using the following command:

I # virsh migrate --offline --persistent

15.5.1. Additional Tips for Migration with virsh

It is possible to perform multiple, concurrent live migrations where each migration runs in a separate
command shell. However, this should be done with caution and should involve careful calculations as
each migration instance uses one MAX_CLIENT from each side (source and target). As the default
setting is 20, there is enough to run 10 instances without changing the settings. Should you need to
change the settings, see the procedure Procedure 15.1, “Configuring libvirtd.conf”.

1. Open the libvirtd.conf file as described in Procedure 15.1, “Configuring libvirtd.conf”.

2. Look for the Processing controls section.

HHHHHHHHHHHHHBR AR BB BB BB BB HHH PR R B R R R BB BB
#

Processing controls

#

The maximum number of concurrent client connections to allow
over all sockets combined.
#max_clients = 5000

The maximum length of queue of connections waiting to be

accepted by the daemon. Note, that some protocols supporting
retransmission may obey this so that a later reattempt at

connection succeeds.

#max_queued_clients = 1000

The minimum limit sets the number of workers to start up
initially. If the number of active clients exceeds this,
then more threads are spawned, upto max_workers limit.
Typically you'd want max_workers to equal maximum number
of clients allowed

#min_workers = 5

#max_workers = 20

H oH F OH H*

The number of priority workers. If all workers from above
pool will stuck, some calls marked as high priority

(notably domainDestroy) can be executed in this pool.
#prio_workers = 5

Total global limit on concurrent RPC calls. Should be

at least as large as max_workers. Beyond this, RPC requests
will be read into memory and queued. This directly impact
memory usage, currently each request requires 256 KB of
memory. So by default upto 5 MB of memory is used

XXX this isn't actually enforced yet, only the per-client
limit is used so far

HOHHFH HHH K

156

CHAPTER 15. KVM MIGRATION

#max_requests = 20

Limit on concurrent requests from a single client

connection. To avoid one client monopolizing the server

this should be a small fraction of the global max_requests
and max_workers parameter

#max_client_requests = 5

HEHHBHHHBHAHHHA R HHH A B HH R AR A AR A R AR

3. Change the max_clients and max_workers parameters settings. It is recommended that the
number be the same in both parameters. The max_clients will use 2 clients per migration
(one per side) and max_workers will use 1 worker on the source and 0 workers on the
destination during the perform phase and 1 worker on the destination during the finish phase.

IMPORTANT

The max_clients and max_workers parameters settings are affected by all
guest virtual machine connections to the libvirtd service. This means that any
user that is using the same guest virtual machine and is performing a migration at
the same time will also beholden to the limits set in the max_clients and
max_workers parameters settings. This is why the maximum value needs to be
considered carefully before performing a concurrent live migration.

IMPORTANT

The max_clients parameter controls how many clients are allowed to connect
to libvirt. When a large number of containers are started at once, this limit can be
easily reached and exceeded. The value of the max_clients parameter could
be increased to avoid this, but doing so can leave the system more vulnerable to
denial of service (DoS) attacks against instances. To alleviate this problem, a new
max_anonymous_clients setting has been introduced in Red Hat Enterprise
Linux 7.0 that specifies a limit of connections which are accepted but not yet
authenticated. You can implement a combination of max_clients and
max_anonymous_clients to suit your workload.

4. Save the file and restart the service.

NOTE

There may be cases where a migration connection drops because there are too
many ssh sessions that have been started, but not yet authenticated. By default,
sshd allows only 10 sessions to be in a "pre-authenticated state" at any time.
This setting is controlled by the MaxStartups parameter in the sshd
configuration file (located here: /etc/ssh/sshd_config), which may require
some adjustment. Adjusting this parameter should be done with caution as the
limitation is put in place to prevent DoS attacks (and over-use of resources in
general). Setting this value too high will negate its purpose. To change this
parameter, edit the file /etc/ssh/sshd_config, remove the # from the
beginning of the MaxStartups line, and change the 10 (default value) to a
higher number. Remember to save the file and restart the sshd service. For more
information, see the sshd_config man page.

157

Virtualization Deployment and Administration Guide

15.5.2. Additional Options for the virsh migrate Command

In addition to - -1ive, virsh migrate accepts the following options:

158

--direct - used for direct migration
- -p2p - used for peer-to-peer migration
- -tunneled - used for tunneled migration

- -offline - migrates domain definition without starting the domain on destination and without
stopping it on source host. Offline migration may be used with inactive domains and it must be
used with the - -persistent option.

- -persistent - leaves the domain persistent on destination host physical machine
- -undefinesource - undefines the domain on the source host physical machine
- -suspend - leaves the domain paused on the destination host physical machine

--change-protection - enforces that no incompatible configuration changes will be made to
the domain while the migration is underway; this flag is implicitly enabled when supported by the
hypervisor, but can be explicitly used to reject the migration if the hypervisor lacks change
protection support.

- -unsafe - forces the migration to occur, ignoring all safety procedures.

- -verbose - displays the progress of migration as it is occurring

- -compressed - activates compression of memory pages that have to be transferred
repeatedly during live migration.

--abort-on-error - cancels the migration if a soft error (for example 1/O error) happens
during the migration.

--domain [name] - sets the domain name, id or uuid.

--desturi [URI] - connection URI of the destination host as seen from the client (normal
migration) or source (p2p migration).

--migrateuri [URI] - the migration URI, which can usually be omitted.
--graphicsuri [URI] - graphics URI to be used for seamless graphics migration.

--listen-address [address] - sets the listen address that the hypervisor on the
destination side should bind to for incoming migration.

--timeout [seconds] - forces a guest virtual machine to suspend when the live migration
counter exceeds N seconds. It can only be used with a live migration. Once the timeout is
initiated, the migration continues on the suspended guest virtual machine.

--dname [newname] - is used for renaming the domain during migration, which also usually
can be omitted

--xml [filename] - the filename indicated can be used to supply an alternative XML file for
use on the destination to supply a larger set of changes to any host-specific portions of the

CHAPTER 15. KVM MIGRATION

domain XML, such as accounting for naming differences between source and destination in
accessing underlying storage. This option is usually omitted.

e --migrate-disks [disk identifiers] - this option can be used to select which disks
are copied during the migration. This allows for more efficient live migration when copying
certain disks is undesirable, such as when they already exist on the destination, or when they
are no longer useful. [disk_identifiers] should be replaced by a comma-separated list of disks to
be migrated, identified by their arguments found in the <target dev= /> line of the Domain
XML file.

In addition, the following commands may help as well:

e virsh migrate-setmaxdowntime [domain] [downtime] - will set a maximum tolerable
downtime for a domain which is being live-migrated to another host. The specified downtime is in
milliseconds. The domain specified must be the same domain that is being migrated.

e virsh migrate-compcache [domain] --size - will set and or get the size of the cache in
bytes which is used for compressing repeatedly transferred memory pages during a live
migration. When the - -size is not used the command displays the current size of the
compression cache. When - -size is used, and specified in bytes, the hypervisor is asked to
change compression to match the indicated size, following which the current size is displayed.
The - -size argument is supposed to be used while the domain is being live migrated as a

reaction to the migration progress and increasing number of compression cache misses obtained
from the domjobinfo.

e virsh migrate-setspeed [domain] [bandwidth] - sets the migration bandwidth in
Mib/sec for the specified domain which is being migrated to another host.

e virsh migrate-getspeed [domain] - gets the maximum migration bandwidth that is
available in Mib/sec for the specified domain.

For more information, see Migration Limitations or the virsh man page.

15.6. MIGRATING WITH VIRT-MANAGER

This section covers migrating a KVM guest virtual machine with virt-manager from one host physical
machine to another.

1. Connect to the target host physical machine
In the virt-manager interface, connect to the target host physical machine by selecting the File
menu, then click Add Connection.

2. Add connection
The Add Connection window appears.

159

Virtualization Deployment and Administration Guide

Add Connection

Hypervisor: QEMU/KVM v

'+ Connect to remote host

Method: SSH -

Username: | root

Hostname: | 10.34.57.165 -

Autoconnect: ||

Generated URI: gemu+ssh://root@10.34.57...

‘ Cancel H Connect ‘

Figure 15.1. Adding a connection to the target host physical machine
Enter the following details:

o Hypervisor: Select QEMU/KVM.

o Method: Select the connection method.

o Username: Enter the user name for the remote host physical machine.

o Hostname: Enter the host name for the remote host physical machine.

NOTE

For more information on the connection options, see Section 19.5, “Adding a
Remote Connection”.

Click connect. An SSH connection is used in this example, so the specified user's password
must be entered in the next step.

160

CHAPTER 15. KVM MIGRATION

OpenssH

/\ root@10.34.57.165's password:

\ %4
]

Passphrase length hidden intentionally

Cancel OK

Figure 15.2. Enter password

3. Configure shared storage
Ensure that both the source and the target host are sharing storage, for example using NFS.

4. Migrate guest virtual machines
Right-click the guest that is to be migrated, and click Migrate.

In the New Host field, use the drop-down list to select the host physical machine you wish to
migrate the guest virtual machine to and click Migrate.

161

Virtualization Deployment and Administration Guide

162

Migrate the virtual machine

[Migrate rhel7.3workstation_VM'

Migrating VM: rhel?7.3workstation_VM
Criginal host: dhep-4-125.brg.redhat.com (QEMU/KVM)

Mew host: ‘ QEMU/KVM: 10.34.57.165 -
Connectivity
Mode: | Direct b ‘

Address: [| Let libvirt decide

Paort: || Let libvirt decide

P Advanced options

Cancel H Migrate

Figure 15.3. Choosing the destination host physical machine and starting the migration
process

A progress window appears.

Migrating VM 'rhel7.3workstation_-VM'

Migrating VM ‘rhel7. 3workstation_VM' to QEMU/KVM:
10.34.57.165 tcp:dell-r330-8.gsslab.brg.redhat.com: 49152, This
~ may take a while.

Migrating domain

‘ Cancel ‘

Figure 15.4. Progress window

If the migration finishes without any problems, virt-manager displays the newly migrated guest
virtual machine running in the destination host.

CHAPTER 15. KVM MIGRATION

Virtual Machine Manager x
Eile Edit View Help
E @ Open | [@ -
Name ¥ CPU usage Host CPU usage
w QEMUJIKVM

rhel5.11
—=.—| Shutoff

rhel? 3server_VM
2 shutof

* QEMUJKVM: 10.34.57.165

E rhel7 _3workstation_ VM
Running f\/—’ o .

Figure 15.5. Migrated guest virtual machine running in the destination host physical
machine

163

Virtualization Deployment and Administration Guide

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE
CONFIGURATION

Red Hat Enterprise Linux 7 supports three classes of devices for guest virtual machines:

e Emulated devices are purely virtual devices that mimic real hardware, allowing unmodified
guest operating systems to work with them using their standard in-box drivers.

e Virtio devices (also known as paravirtualized) are purely virtual devices designed to work
optimally in a virtual machine. Virtio devices are similar to emulated devices, but non-Linux
virtual machines do not include the drivers they require by default. Virtualization management
software like the Virtual Machine Manager (virt-manager) and the Red Hat Virtualization
Hypervisor install these drivers automatically for supported non-Linux guest operating systems.
Red Hat Enterprise Linux 7 supports up to 216 virtio devices. For more information, see
Chapter 5, KVM Paravirtualized (virtio) Drivers.

e Assigned devices are physical devices that are exposed to the virtual machine. This method is
also known as passthrough. Device assignment allows virtual machines exclusive access to PCI
devices for a range of tasks, and allows PCI devices to appear and behave as if they were
physically attached to the guest operating system. Red Hat Enterprise Linux 7 supports up to 32
assigned devices per virtual machine.

Device assignment is supported on PCle devices, including select graphics devices. Parallel PCI
devices may be supported as assigned devices, but they have severe limitations due to security
and system configuration conflicts.

Red Hat Enterprise Linux 7 supports PCI hot plug of devices exposed as single-function slots to the
virtual machine. Single-function host devices and individual functions of multi-function host devices may
be configured to enable this. Configurations exposing devices as multi-function PCI slots to the virtual
machine are recommended only for non-hotplug applications.

For more information on specific devices and related limitations, see Section 23.18, “Devices”.

NOTE

Platform support for interrupt remapping is required to fully isolate a guest with assigned
devices from the host. Without such support, the host may be vulnerable to interrupt
injection attacks from a malicious guest. In an environment where guests are trusted, the
admin may opt-in to still allow PCI device assignment using the
allow_unsafe_interrupts option to the vfio_iommu_typel module. This may
either be done persistently by adding a .conf file (for example local. conf) to
/etc/modprobe.d containing the following:

I options vfio_iommu_typel allow_unsafe_interrupts=1

or dynamically using the sysfs entry to do the same:

echo 1 >
/sys/module/vfio_iommu_typel/parameters/allow_unsafe_interrupts

16.1. PCI DEVICES

164

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

PCI device assignment is only available on hardware platforms supporting either Intel VT-d or AMD
IOMMU. These Intel VT-d or AMD IOMMU specifications must be enabled in the host BIOS for PCI
device assignment to function.

Procedure 16.1. Preparing an Intel system for PCl device assignment

1. Enable the Intel VT-d specifications
The Intel VT-d specifications provide hardware support for directly assigning a physical device to
a virtual machine. These specifications are required to use PCl device assignment with Red Hat
Enterprise Linux.

The Intel VT-d specifications must be enabled in the BIOS. Some system manufacturers disable
these specifications by default. The terms used to see these specifications can differ between
manufacturers; consult your system manufacturer's documentation for the appropriate terms.

2. Activate Intel VT-d in the kernel
Activate Intel VT-d in the kernel by adding the intel_iommu=on and iommu=pt parameters to
the end of the GRUB_CMDLINX_LINUX line, within the quotes, in the /etc/sysconfig/grub
file.

The example below is a modified grub file with Intel VT-d activated.

GRUB_CMDLINE_LINUX="rd.lvm.1lv=vg_VolGroup00/LogVolol
vconsole.font=latarcyrheb-sun16 rd.lvm.lv=vg_VolGroup_1/root
vconsole.keymap=us $([-Xx /usr/sbin/rhcrashkernel-param] &&
/usr/sbin/

rhcrashkernel-param || :) rhgb quiet intel_iommu=on iommu=pt"

3. Regenerate config file
Regenerate /etc/grub2.cfg by running:

I grub2-mkconfig -o /etc/grub2.cfg

Note that if you are using a UEFI-based host, the target file should be /etc/grub2-efi.cfg.

4. Ready to use

Reboot the system to enable the changes. Your system is now capable of PCI device
assignment.

Procedure 16.2. Preparing an AMD system for PCI device assighment

1. Enable the AMD IOMMU specifications
The AMD IOMMU specifications are required to use PCI device assignment in Red Hat
Enterprise Linux. These specifications must be enabled in the BIOS. Some system
manufacturers disable these specifications by default.

2. Enable IOMMU kernel support
Append amd_iommu=pt to the end of the GRUB_CMDLINX_LINUX line, within the quotes, in
/etc/sysconfig/grub so that AMD IOMMU specifications are enabled at boot.

3. Regenerate config file
Regenerate /etc/grub2.cfg by running:

I grub2-mkconfig -o /etc/grub2.cfg

165

Virtualization Deployment and Administration Guide

Note that if you are using a UEFI-based host, the target file should be /etc/grub2-efi.cfg.

4. Ready to use

Reboot the system to enable the changes. Your system is now capable of PCI device
assignment.

NOTE

For further information on IOMMU, see Appendix E, Working with IOMMU Groups.

16.1.1. Assigning a PCI Device with virsh

These steps cover assigning a PCl device to a virtual machine on a KVM hypervisor.

This example uses a PCle network controller with the PCI identifier code, pci_0000_01_0060_0, and a
fully virtualized guest machine named guest1-rhel7-64.

Procedure 16.3. Assignhing a PCl device to a guest virtual machine with virsh

166

1. Identify the device

First, identify the PCI device designated for device assignment to the virtual machine. Use the
1spci command to list the available PCI devices. You can refine the output of 1spci with

grep.

This example uses the Ethernet controller highlighted in the following output:

lspci | grep Ethernet

00:19.0 Ethernet controller: Intel Corporation 82567LM-2 Gigabit
Network Connection

01:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection (rev 01)

01:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection (rev 01)

This Ethernet controller is shown with the short identifier 00:19.0. We need to find out the full
identifier used by virsh in order to assign this PCI device to a virtual machine.

To do so, use the virsh nodedev-1ist command to list all devices of a particular type (pci)
that are attached to the host machine. Then look at the output for the string that maps to the
short identifier of the device you wish to use.

This example shows the string that maps to the Ethernet controller with the short identifier
00:19.0. Note that the : and . characters are replaced with underscores in the full identifier.

virsh nodedev-list --cap pci
pci_0000_00_00_0
pci_0000_00_01_0
pci_0000_00_03_0
pci_0000_00_07_0
pci_0000_00_10_0
pci_0000_00_10_1
pci_0000_00_14_0
pci_0000_00_14_1
pci_0000_00_14_2

pci_0000_00_14 3
pci_0000_00_19 0
pci_0000_00_1a 0
pci_0000_00_1a 1
pci_0000_00_1a_2
pci_0000_00_1a_7
pci_0000_00_1b_0
pci_0000_00_1c_0
pci_06000_00_1c_1
pci_0000_00_1c_4
pci_0000_0060_1d_0
pci_0000_00_1d_1
pci_0000_00_1d_2
pci_0000_00_1d_7
pci_0000_00_1e 0
pci_0000_00_1f_0
pci_0000_00_1f_2
pci_0000_00_1f_3
pci_0000_01_00_0
pci_06000_01_00_1
pci_0000_02_00_0
pci_06000_02_00_1
pci_0000_06_00_0
pci_0000_07_02_0
pci_0000_07_03_0

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

Record the PCI device number that maps to the device you want to use; this is required in other

steps.

. Review device information

Information on the domain, bus, and function are available from output of the virsh nodedev-

dumpxml command:

167

Virtualization Deployment and Administration Guide

168

virsh nodedev-dumpxml pci_0000_00_19_0
<device>
<name>pci_0000_00_19_0</name>
<parent>computer</parent>
<driver>
<name>el000e</name>
</driver>
<capability type='pci'>
<domain>0</domain>
<bus>0</bus>
<slot>25</slot>
<function>0</function>
<product id='0x1502'>82579LM Gigabit Network
Connection</product>
<vendor 1d='0Ox8086'>Intel Corporation</vendor>
<iommuGroup number='7"'>
<address domain='0x0000' bus='0x00' slot='0x19'
function='0x0"'/>
</iommuGroup>
</capability>
</device>

Figure 16.1. Dump contents

NOTE

An IOMMU group is determined based on the visibility and isolation of devices
from the perspective of the IOMMU. Each IOMMU group may contain one or more
devices. When multiple devices are present, all endpoints within the IOMMU
group must be claimed for any device within the group to be assigned to a guest.
This can be accomplished either by also assigning the extra endpoints to the
guest or by detaching them from the host driver using virsh nodedev -
detach. Devices contained within a single group may not be split between
multiple guests or split between host and guest. Non-endpoint devices such as
PCle root ports, switch ports, and bridges should not be detached from the host
drivers and will not interfere with assignment of endpoints.

Devices within an IOMMU group can be determined using the iommuGroup
section of the virsh nodedev-dumpxml output. Each member of the group is

provided via a separate "address" field. This information may also be found in
sysfs using the following:

$ 1s
I /sys/bus/pci/devices/0000:01:00.0/iommu_group/devices/
An example of the output from this would be:
I 0000:01:00.0 0000:01:00.1

To assign only 0000.01.00.0 to the guest, the unused endpoint should be
detached from the host before starting the guest:

I $ virsh nodedev-detach pci_060600_01_006_1

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

3. Determine required configuration details
See the output from the virsh nodedev-dumpxml pci_06000_00_19_0 command for the
values required for the configuration file.

The example device has the following values: bus = 0, slot = 25 and function = 0. The decimal
configuration uses those three values:

bus='0"'
slot="'25"
function='0"

4. Add configuration details
Run virsh edit, specifying the virtual machine name, and add a device entry in the
<source> section to assign the PCl device to the guest virtual machine.

I # virsh edit guestl-rhel7-64

<hostdev mode='subsystem' type='pci' managed='yes'>
<source>
<address domain='Q' bus='Q®' slot='25"' function='0Q'/>
</source>
</hostdev>

Figure 16.2. Add PCI device

Alternately, run virsh attach-device, specifying the virtual machine name and the guest's
XML file:

I virsh attach-device guestl-rhel7-64 file.xml

5. Start the virtual machine

I # virsh start guesti-rhel7-64

The PCI device should now be successfully assigned to the virtual machine, and accessible to the guest
operating system.
16.1.2. Assigning a PCI Device with virt-manager

PCI devices can be added to guest virtual machines using the graphical virt-manager tool. The
following procedure adds a Gigabit Ethernet controller to a guest virtual machine.

Procedure 16.4. Assigning a PCl device to a guest virtual machine using virt-manager

1. Open the hardware settings
Open the guest virtual machine and click the Add Hardware button to add a new device to the
virtual machine.

169

Virtualization Deployment and Administration Guide

rhel7.2 on QEMU/KVM - o »

File Wirtual Machine View Send Key

FIEE R &

- Overview Basic Details

W

i

Hypervisor: KVM
Display Spice
Architecture: x86_64
Sound: ich6 .
Emulator: fusrflibexec/qemu-kvm
Serial 1 Firmware: BIOS

Channel qemu-ga Chipset: i440FX

Performance Name: rhel7.2 |
{3 crus uuID: cd07cd96-a03e-2405-a7cc-0a8528952b68
= Memory .
- Status: IE' Running (Unpaused)
& Boot Options
N Title: | |
) VirtlO Disk 1
(@) Description:
(2) IDE CDROM 1
B NIC i3c4e:58
[#] Tablet
=
) Mouse
= Hypervisor Details
== Keyboard
=
=}
=]

Channel spice

B vigeo oxL

MP Controller USB

MF Controller FCI

MF Controller IDE

MP Controller VirtlO Serial
@ USB Redirector 1

@ USB Redirector 2

| Add Hardware | | Cancel | | Apply |

Figure 16.3. The virtual machine hardware information window

2. Select a PCI device
Select PCI Host Device from the Hardware list on the left.

Select an unused PCI device. Note that selecting PCI devices presently in use by another guest

causes errors. In this example, a spare audio controller is used. Click Finish to complete
setup.

170

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

Add Mew Virtual Hardware
L storage PCI Device
m Controller
Network Host Device:
‘Lij Input 0000 00:00:0 Intel Corporation Haswell-ULT DRAM Controller
= Graphics 0000:00:02:0 Intel Corperation Haswell-ULT Integrated Graphics Controller
B sound 0000:00:03:0 Intel Corporation Haswell-ULT HD Audio Controller
,;@| Serial 0000 00:14:0 Intel Corporation 8 Series USB xHCI HC
,;@| Parallel 0000:00:16:0 Intel Corporation 8 Series HEC| #0
=@ Console 0000:00:16:3 Intel Corporation 8 Series HECI KT
= Channel 0000:00:19:0 Intel Corporation Ethernet Connection 1218-LM (Interface enp0s25)
¢ USE Host Device 0000 00:1B:0 Intel Corporation 8 Series HD Audio Controller
0000:00:1C: 0 Intel Corporation 8 Series PCI Express Root Port 6
E] Video 0000 00:1C: 1 Intel Corpeoration 8 Series PCl Express Root Port 3
m Watchdog 0000:00:1D:0 Intel Corporation 8 Series USB EHCI #1
£ Filesystem 0000:00:1F: 0 Intel Corporation 8 Series LPC Controller
& Smartcard 0000: 00:1F:2 Intel Corporation & Series SATA Controller 1 [AHCI mode]
@ USB Redirection 0000 Q0:1F: 3 Intel Corporation B Series SMBus Controller
3 TPMm 0000 02:00:0 Realtek Semiconductor Co,, Ltd. RT55227 PC| Express Card Reader
&5 RNG 0000:03:00:0 Intel Corporation Wireless 7260
¢ Panic Motifier

| Cancel ‘ ‘ Finish ‘

Figure 16.4. The Add new virtual hardware wizard

3. Add the new device
The setup is complete and the guest virtual machine now has direct access to the PCI device.

171

Virtualization Deployment and Administration Guide

rhel7.2 Virtual Machine o o »

File Virtual Machine View Send Key

SISl - |
O [=]

NI\

Overview Physical PCl Device

Device: 0000:00:1B:0 Intel Corporation 8 Series HD Audio Controller
Performance

CPUS ROM BAR: (¥
Memory

Boot Options
Virt!O Disk 1
Virt|O Disk 2
IDE CDROM 1
NIC :05:8b:01
Tablet

Mouse

Keyboard

Rl ONBGoD Db I CHE

Display Spice

m Sound: ich6

G Serial 1

=a Channel gemu-ga
0 Channel spice

| P oooci0oi1b.0

B vigeo axt

m Controller USB
m Controller IDE

Add Hardware Remove Cancel Apply

Figure 16.5. The virtual machine hardware information window

NOTE

If device assignment fails, there may be other endpoints in the same IOMMU group that
are still attached to the host. There is no way to retrieve group information using virt-
manager, but virsh commands can be used to analyze the bounds of the IOMMU group
and if necessary sequester devices.

See the Note in Section 16.1.1, “Assigning a PCI Device with virsh” for more information
on IOMMU groups and how to detach endpoint devices using virsh.

16.1.3. PCI Device Assignment with virt-install

It is possible to assign a PCI device when installing a guest using the virt-install command. To do this,
use the - -host-device parameter.

Procedure 16.5. Assignhing a PCl device to a virtual machine with virt-install

1. Identify the device
Identify the PCI device designated for device assignment to the guest virtual machine.

lspci | grep Ethernet

00:19.0 Ethernet controller: Intel Corporation 82567LM-2 Gigabit
Network Connection

01:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection (rev 01)

01:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection (rev 01)

172

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

The virsh nodedev-1list command lists all devices attached to the system, and identifies
each PCI device with a string. To limit output to only PCI devices, enter the following command:

virsh nodedev-list --cap pci

pci_0000_00_00_0
pci_0000_00_01_0
pci_0000_00_03_0
pci_0000_00_07_0
pci_0000_00_10_0
pci_0000_00_10_1
pci_0000_00_14 0
pci_0000_00_14 1
pci_0000_00_14_2
pci_0000_00_14 3
pci_0000_00_19 0
pci_0000_00_1a 0
pci_0000_00_1a_ 1
pci_0000_00_1a_2
pci_0000_00_1a_ 7
pci_0000_00_1b_0
pci_0000_00_1c_0
pci_06000_00_1c_1
pci_0000_00_1c_4
pci_0000_0060_1d_0
pci_0000_00_1d_1
pci_0000_00_1d_2
pci_0000_00_1d_7
pci_0000_00_1e 0
pci_0000_00_1f_0
pci_0000_00_1f_2
pci_0000_00_1f_3
pci_0000_01_00_0
pci_06000_01_00_1
pci_0000_02_00_0
pci_06000_02_00_1
pci_0000_06_00_0
pci_0000_07_02_0
pci_0000_07_03_0

Record the PCI device number; the number is needed in other steps.

Information on the domain, bus and function are available from output of the virsh nodedev-

dumpxml command:

I # virsh nodedev-dumpxml pci_0000_01_00_0

173

Virtualization Deployment and Administration Guide

<device>
<name>pci_0000_01_00_0</name>
<parent>pci_0000_00_01_0</parent>
<driver>
<name>igh</name>
</driver>
<capability type='pci'>
<domain>0</domain>
<bus>1</bus>
<slot>0</slot>
<function>0</function>
<product id='0x10c9'>82576 Gigabit Network Connection</product>
<vendor 1d='0x8086'>Intel Corporation</vendor>
<iommuGroup number='7"'>
<address domain='0x0000' bus='0x00' slot='0x19'
function='0x0"'/>
</iommuGroup>
</capability>
</device>

Figure 16.6. PCI device file contents

NOTE
If there are multiple endpoints in the IOMMU group and not all of them are
assigned to the guest, you will need to manually detach the other endpoint(s) from

the host by running the following command before you start the guest:

I $ virsh nodedev-detach pci_060600_060_19 1

See the Note in Section 16.1.1, “Assigning a PCI Device with virsh” for more
information on IOMMU groups.

2. Add the device
Use the PCI identifier output from the virsh nodedev command as the value for the - -host -
device parameter.

virt-install \

--name=guestl-rhel7-64 \

--disk path=/var/lib/libvirt/images/guestl-rhel7-64.1img,size=8 \
--VCpus=2 --ram=2048 \
--location=http://examplel.com/installation_tree/RHEL7.0-Server -
x86_64/0s \

--nonetworks \

--os-type=linux \

--0s-variant=rhel?7

--host-device=pci_0000_01_006_0

3. Complete the installation
Complete the guest installation. The PCI device should be attached to the guest.

16.1.4. Detaching an Assigned PCI Device

174

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

When a host PCI device has been assigned to a guest machine, the host can no longer use the device.
If the PCI device is in managed mode (configured using the managed="'yes"' parameter in the domain
XML file), it attaches to the guest machine and detaches from the guest machine and re-attaches to the
host machine as necessary. If the PCI device is not in managed mode, you can detach the PCI device

from the guest machine and re-attach it using virsh or virt-manager.

Procedure 16.6. Detaching a PCI device from a guest with virsh

1. Detach the device

Use the following command to detach the PCI device from the guest by removing it in the guest's
XML file:

I # virsh detach-device name_of_guest file.xml

2. Re-attach the device to the host (optional)
If the device is in managed mode, skip this step. The device will be returned to the host
automatically.

If the device is not using managed mode, use the following command to re-attach the PCI device
to the host machine:

I # virsh nodedev-reattach device
For example, to re-attach the pci_0000_01_00_0 device to the host:
I # virsh nodedev-reattach pci_0000_01_00_0

The device is now available for host use.

Procedure 16.7. Detaching a PCI Device from a guest with virt-manager

1. Open the virtual hardware details screen
In virt-manager, double-click the virtual machine that contains the device. Select the Show
virtual hardware details button to display a list of virtual hardware.

File Wirtual N

=

Figure 16.7. The virtual hardware details button

2. Select and remove the device
Select the PCI device to be detached from the list of virtual devices in the left panel.

175

Virtualization Deployment and Administration Guide

File Virtual Machine View Send Key
-yl e
el ' -

Overview Physical PCl Device
Performance Device: 00:10:0 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #1

CPUs
Memory
Boot Options
VirtlO Disk 1
NIC :f4:28:82

NgDwhoENm

Tablet
Mouse
Display Spice
Sound: ich®
Serial 1

Channel

e B R EC

Video
MF Controller USB
m Controller Virtio Serial

|. Add Hardware ‘ . Remove

Figure 16.8. Selecting the PCI device to be detached

Click the Remove button to confirm. The device is now available for host use.

16.1.5. Creating PCI Bridges

Peripheral Component Interconnects (PCI) bridges are used to attach to devices such as network cards,
modems and sound cards. Just like their physical counterparts, virtual devices can also be attached to a
PCI Bridge. In the past, only 31 PCI devices could be added to any guest virtual machine. Now, when a
31st PCI device is added, a PCI bridge is automatically placed in the 31st slot moving the additional PCI
device to the PCI bridge. Each PCI bridge has 31 slots for 31 additional devices, all of which can be
bridges. In this manner, over 900 devices can be available for guest virtual machines. Note that this
action cannot be performed when the guest virtual machine is running. You must add the PCI device on
a guest virtual machine that is shutdown.

16.1.5.1. PCI Bridge hot plug/hot unplug Support

PCI Bridge hot plug/hot unplug is supported on the following device types:
e virtio-net-pci
e virtio-scsi-pci
e 1000
e rtl8139

e virtio-serial-pci

176

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

e virtio-balloon-pci

16.1.6. PCI Device Assignment Restrictions

PCI device assignment (attaching PCI devices to virtual machines) requires host systems to have AMD
IOMMU or Intel VT-d support to enable device assignment of PCle devices.

Red Hat Enterprise Linux 7 has limited PCl configuration space access by guest device drivers. This
limitation could cause drivers that are dependent on device capabilities or features present in the
extended PCI configuration space, to fail configuration.

There is a limit of 32 total assigned devices per Red Hat Enterprise Linux 7 virtual machine. This
translates to 32 total PCI functions, regardless of the number of PCI bridges present in the virtual
machine or how those functions are combined to create multi-function slots.

Platform support for interrupt remapping is required to fully isolate a guest with assigned devices from
the host. Without such support, the host may be vulnerable to interrupt injection attacks from a malicious
guest. In an environment where guests are trusted, the administrator may opt-in to still allow PCI device
assignment using the allow_unsafe_interrupts option to the vfio_iommu_typel module. This
may either be done persistently by adding a .conf file (for example 1local.conf) to /etc/modprobe.d
containing the following:

I options vfio_iommu_typel allow_unsafe_interrupts=1

or dynamically using the sysfs entry to do the same:

I # echo 1 > /sys/module/vfio_iommu_typel/parameters/allow_unsafe_interrupts

16.2. PCI DEVICE ASSIGNMENT WITH SR-IOV DEVICES

A PCI network device (specified in the domain XML by the <source> element) can be directly
connected to the guest using direct device assignment (sometimes referred to as passthrough). Due to
limitations in standard single-port PCI ethernet card driver design, only Single Root I/O Virtualization
(SR-10V) virtual function (VF) devices can be assigned in this manner; to assign a standard single-port
PClI or PCle Ethernet card to a guest, use the traditional <hostdev> device definition.

<devices>
<interface type='hostdev'>
<driver name='vfio'/>
<source>
<address type='pci' domain='0Ox0000' bus='0Ox00' slot='0x07'
function='0x0"'/>
</source>
<mac address='52:54:00:6d:90:02"'>
<virtualport type='802.1Qbh'>
<parameters profileid='finance'/>
</virtualport>
</interface>
</devices>

Figure 16.9. XML example for PCI device assignment

177

Virtualization Deployment and Administration Guide

Developed by the PCI-SIG (PCI Special Interest Group), the Single Root I/O Virtualization (SR-10V)
specification is a standard for a type of PCI device assignment that can share a single device to multiple
virtual machines. SR-IOV improves device performance for virtual machines.

HOST

HYPERVISOR VIRTUAL MACHINE 1

Guest OS

1/0 MMU (INTEL VT-d OR AMD IOMMU) —

SR-10V PCI DEVICE (NIC) VIRTUAL MACHINE 2

physical function

Guest OS

Figure 16.10. How SR-IOV works

SR-I0OV enables a Single Root Function (for example, a single Ethernet port), to appear as multiple,
separate, physical devices. A physical device with SR-IOV capabilities can be configured to appear in
the PCI configuration space as multiple functions. Each device has its own configuration space complete
with Base Address Registers (BARs).

SR-I0V uses two PCI functions:

e Physical Functions (PFs) are full PCle devices that include the SR-IOV capabilities. Physical
Functions are discovered, managed, and configured as normal PCI devices. Physical Functions
configure and manage the SR-IOV functionality by assigning Virtual Functions.

e Virtual Functions (VFs) are simple PCle functions that only process I/O. Each Virtual Function is
derived from a Physical Function. The number of Virtual Functions a device may have is limited
by the device hardware. A single Ethernet port, the Physical Device, may map to many Virtual
Functions that can be shared to virtual machines.

The hypervisor can assign one or more Virtual Functions to a virtual machine. The Virtual Function's
configuration space is then assigned to the configuration space presented to the guest.

Each Virtual Function can only be assigned to a single guest at a time, as Virtual Functions require real
hardware resources. A virtual machine can have multiple Virtual Functions. A Virtual Function appears
as a network card in the same way as a normal network card would appear to an operating system.

The SR-IOV drivers are implemented in the kernel. The core implementation is contained in the PCI
subsystem, but there must also be driver support for both the Physical Function (PF) and Virtual Function
(VF) devices. An SR-IOV capable device can allocate VFs from a PF. The VFs appear as PCI devices
which are backed on the physical PCI device by resources such as queues and register sets.

178

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

16.2.1. Advantages of SR-IOV

SR-IOV devices can share a single physical port with multiple virtual machines.

When an SR-IOV VF is assigned to a virtual machine, it can be configured to (transparently to the virtual
machine) place all network traffic leaving the VF onto a particular VLAN. The virtual machine cannot
detect that its traffic is being tagged for a VLAN, and will be unable to change or eliminate this tagging.

Virtual Functions have near-native performance and provide better performance than paravirtualized
drivers and emulated access. Virtual Functions provide data protection between virtual machines on the
same physical server as the data is managed and controlled by the hardware.

These features allow for increased virtual machine density on hosts within a data center.

SR-I0V is better able to utilize the bandwidth of devices with multiple guests.

16.2.2. Using SR-IOV

This section covers the use of PCI passthrough to assign a Virtual Function of an SR-IOV capable
multiport network card to a virtual machine as a network device.

SR-IOV Virtual Functions (VFs) can be assigned to virtual machines by adding a device entry in
<hostdev> with the virsh edit or virsh attach-device command. However, this can be
problematic because unlike a regular network device, an SR-IOV VF network device does not have a
permanent unigue MAC address, and is assigned a new MAC address each time the host is rebooted.
Because of this, even if the guest is assigned the same VF after a reboot, when the host is rebooted the
guest determines its network adapter to have a new MAC address. As a result, the guest believes there
is new hardware connected each time, and will usually require re-configuration of the guest's network
settings.

libvirt contains the <interface type='hostdev '> interface device. Using this interface device,
libvirt will first perform any network-specific hardware/switch initialization indicated (such as setting the
MAC address, VLAN tag, or 802.1Qbh virtualport parameters), then perform the PCI device assignment
to the guest.
Using the <interface type='hostdev'> interface device requires:

e an SR-IOV-capable network card,

e host hardware that supports either the Intel VT-d or the AMD IOMMU extensions

e the PCI address of the VF to be assigned.

IMPORTANT

Assignment of an SR-IOV device to a virtual machine requires that the host hardware
supports the Intel VT-d or the AMD IOMMU specification.

To attach an SR-IOV network device on an Intel or an AMD system, follow this procedure:

Procedure 16.8. Attach an SR-IOV network device on an Intel or AMD system

1. Enable Intel VT-d or the AMD IOMMU specifications in the BIOS and kernel

179

Virtualization Deployment and Administration Guide

180

On an Intel system, enable Intel VT-d in the BIOS if it is not enabled already. See
Procedure 16.1, “Preparing an Intel system for PCI device assignment” for procedural help on
enabling Intel VT-d in the BIOS and kernel.

Skip this step if Intel VT-d is already enabled and working.
On an AMD system, enable the AMD IOMMU specifications in the BIOS if they are not enabled

already. See Procedure 16.2, “Preparing an AMD system for PCI device assignment” for
procedural help on enabling IOMMU in the BIOS.

. Verify support

Verify if the PCI device with SR-IOV capabilities is detected. This example lists an Intel 82576
network interface card which supports SR-IOV. Use the 1spci command to verify whether the
device was detected.

lspci

03:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection (rev 01)

03:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection (rev 01)

Note that the output has been modified to remove all other devices.

. Activate Virtual Functions

Run the following command:

I # echo ${num_vfs} > /sys/class/net/enpl4s0f0/device/sriov_numvfs

. Make the Virtual Functions persistent

To make the Virtual Functions persistent across reboots, use the editor of your choice to create
an udev rule similar to the following, where you specify the intended number of VFs (in this
example, 2), up to the limit supported by the network interface card. In the following example,
replace enp14s0f0 with the PF network device name(s) and adjust the value of
ENV{ID_NET_DRIVER} to match the driver in use:

I # vim /etc/udev/rules.d/enpl4s0f0.rules

ACTION=="add", SUBSYSTEM=='"net", ENV{ID_NET_DRIVER}=="ixgbe",
ATTR{device/sriov_numvfs}="2"

This will ensure the feature is enabled at boot-time.

. Inspect the new Virtual Functions

Using the 1spci command, list the newly added Virtual Functions attached to the Intel 82576
network device. (Alternatively, use grep to search for Virtual Function, to search for
devices that support Virtual Functions.)

lspci | grep 82576

0b:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection (rev 01)

0b:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection (rev 01)

0b:10.0 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

0b:10.1 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:10.2 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:10.3 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:10.4 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:10.5 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:10.6 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:10.7 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
Ob:11.0 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
Ob:11.1 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
Ob:11.2 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
Ob:11.3 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
Ob:11.4 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
Ob:11.5 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)

The identifier for the PCI device is found with the -n parameter of the 1spci command. The
Physical Functions correspond to 0b:00.0 and 0b:00. 1. All Virtual Functions have Virtual
Function in the description.

. Verify devices exist with virsh

The 1libvirt service must recognize the device before adding a device to a virtual machine.
libvirt uses a similar notation to the 1spci output. All punctuation characters, : and ., in
1spci output are changed to underscores (_).

Use the virsh nodedev-1list command and the grep command to filter the Intel 82576
network device from the list of available host devices. 0b is the filter for the Intel 82576 network
devices in this example. This may vary for your system and may result in additional devices.

virsh nodedev-list | grep 0b
pci_0000_0b_00_0
pci_0000_0b_00_1
pci_0000_0b_10_0
pci_0000_0b_10_1
pci_0000_0b_10_2
pci_0000_0b_10_3
pci_0000_0b_10_4
pci_0000_0b_10_5
pci_0000_0b_10_6
pci_0000_6b_11 7
pci_0000_06b_11 1
pci_0000_0b_11 2

181

Virtualization Deployment and Administration Guide

pci_0000_6b_11 3
pci_0000_06b_11 4
pci _06000_06b_11 5

The PCI addresses for the Virtual Functions and Physical Functions should be in the list.

7. Get device details with virsh
The pci_0000_06b_00_0 is one of the Physical Functions and pci_0000_0b_106_0 is the first
corresponding Virtual Function for that Physical Function. Use the virsh nodedev-dumpxml
command to get device details for both devices.

virsh nodedev-dumpxml pci_0000_03_00_0
<device>
<name>pci_0000_03_00_0</name>
<path>/sys/devices/pci0000:00/0000:00:01.0/0000:03:00.0</path>
<parent>pci_0000_00_01_0</parent>
<driver>
<name>igb</name>
</driver>
<capability type='pci'>
<domain>0</domain>
<bus>3</bus>
<slot>0</slot>
<function>0</function>
<product id='0x10c9'>82576 Gigabit Network Connection</product>
<vendor 1d='0x8086'>Intel Corporation</vendor>
<capability type='virt_functions'>
<address domain='0x0000' bus='0x03' slot='0x10'
function='0x0"'/>
<address domain='0x0000' bus='0x03' slot='0x10'
function='0x2'/>
<address domain='0x0000' bus='0x03' slot='0x10'
function='0x4"'/>
<address domain='0x0000' bus='0x03' slot='0x10'
function='0x6"'/>
<address domain='0x0000' bus='0Ox03' slot='0Ox11'
function='0x0"'/>
<address domain='0x0000' bus='0x03' slot='0Ox11'
function='0x2'/>
<address domain='0x0000' bus='0Ox03' slot='0Ox11'
function='0x4"'/>
</capability>
<iommuGroup number='14"'>
<address domain='0x0000' bus='0x03' slot='0Ox00'
function='0x0"'/>
<address domain='0x0000' bus='0x03' slot='0Ox00'
function='0x1'/>
</iommuGroup>
</capability>
</device>

virsh nodedev-dumpxml pci_0000_03_11_5

<device>
<name>pci_0000_03_11_5</name>
<path>/sys/devices/pci0000:00/0000:00:01.0/0000:03:11.5</path>

182

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

<parent>pci_0000_00_01_0</parent>
<driver>
<name>igbvf</name>
</driver>
<capability type='pci'>
<domain>0</domain>
<bus>3</bus>
<slot>17</slot>
<function>5</function>
<product id='0Ox10ca'>82576 Virtual Function</product>
<vendor 1d='0x8086'>Intel Corporation</vendor>
<capability type='phys_function'>
<address domain='0Ox0000' bus='0x03' slot='0Ox00'
function="0x1'/>
</capability>
<iommuGroup number='35"'>
<address domain='0Ox0000' bus='0x03' slot='Ox11'
function="0x5"'/>
</iommuGroup>
</capability>
</device>

This example adds the Virtual Function pci_0000_03_10_2 to the virtual machine in Step 8.
Note the bus, slot and function parameters of the Virtual Function: these are required for
adding the device

Copy these parameters into a temporary XML file, such as /tmp/new-interface.xml for
example.

<interface type='hostdev' managed='yes'>
<source>
<address type='pci' domain='0Ox0000' bus='0x03' slot='0x10'
function='0x2"'/>
</source>
</interface>

183

Virtualization Deployment and Administration Guide

NOTE

When the virtual machine starts, it should see a network device of the type
provided by the physical adapter, with the configured MAC address. This MAC
address will remain unchanged across host and guest reboots.

The following <interface> example shows the syntax for the optional <mac
address>, <virtualport>, and <vlan> elements. In practice, use either the
<vlan> or <virtualport> element, not both simultaneously as shown in the
example:

<devices>

<interface type='hostdev' managed='yes'>
<source>
<address type='pci' domain='0Q' bus='11' slot='16"'
function="0"'/>

</source>
<mac address='52:54:00:6d:90:02'>
<vlan>
<tag id='42'/>
</vlan>

<virtualport type='802.1Qbh'>
<parameters profileid='finance'/>
</virtualport>
</interface>

</devices>

If you do not specify a MAC address, one will be automatically generated. The
<virtualport> element is only used when connecting to an 802.11Qbh
hardware switch. The <vlan> element will transparently put the guest's device
on the VLAN tagged 42.

8. Add the Virtual Function to the virtual machine
Add the Virtual Function to the virtual machine using the following command with the temporary
file created in the previous step. This attaches the new device immediately and saves it for
subsequent guest restarts.

I virsh attach-device MyGuest /tmp/new-interface.xml --live --config

Specifying the
running guest.
guest restarts.

- -1live option with virsh attach-device attaches the new device to the
Using the - -config option ensures the new device is available after future

NOTE

The - -1ive option is only accepted when the guest is running. virsh will return
an error if the - -1ive option is used on a non-running guest.

The virtual machine detects a new network interface card. This new card is the Virtual Function of the

SR-I0V device.

184

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

16.2.3. Configuring PCI Assignment with SR-IOV Devices

SR-IOV network cards provide multiple VFs that can each be individually assigned to a guest virtual
machines using PCI device assignment. Once assigned, each behaves as a full physical network device.
This permits many guest virtual machines to gain the performance advantage of direct PCI device
assignment, while only using a single slot on the host physical machine.

These VFs can be assigned to guest virtual machines in the traditional manner using the <hostdev>
element. However, SR-IOV VF network devices do not have permanent unique MAC addresses, which
causes problems where the guest virtual machine's network settings need to be re-configured each time
the host physical machine is rebooted. To fix this, you need to set the MAC address prior to assigning the
VF to the host physical machine after every boot of the guest virtual machine. In order to assign this
MAC address, as well as other options, see the following procedure:

Procedure 16.9. Configuring MAC addresses, VLAN, and virtual ports for assigning PCI devices
on SR-IOV

The <hostdev> element cannot be used for function-specific items like MAC address assignment, vLAN
tag ID assignment, or virtual port assignment, because the <mac>, <vlan>, and <virtualport>
elements are not valid children for <hostdev>. Instead, these elements can be used with the hostdev
interface type: <interface type='hostdev'>. This device type behaves as a hybrid of an
<interface> and <hostdev>. Thus, before assigning the PCI device to the guest virtual machine,
libvirt initializes the network-specific hardware/switch that is indicated (such as setting the MAC address,
setting a VLAN tag, or associating with an 802.1Qbh switch) in the guest virtual machine's XML
configuration file. For information on setting the vLAN tag, see Section 17.16, “Setting vLAN Tags”.

1. Gather information
In order to use <interface type='hostdev'>, you must have an SR-IOV-capable network
card, host physical machine hardware that supports either the Intel VT-d or AMD IOMMU
extensions, and you must know the PCI address of the VF that you wish to assign.

2. Shut down the guest virtual machine
Using virsh shutdown command, shut down the guest virtual machine (here named
guestVM).

I # virsh shutdown guestVvM

3. Open the XML file for editing
Run the virsh save-image-edit command to open the XML file for editing (refer to
Section 20.7.5, “Editing the Guest Virtual Machine Configuration” for more information) with the
- -running option. The name of the configuration file in this example is guestVM.xml.

I # virsh save-image-edit guestVM.xml --running

The guestVM.xmlopens in your default editor.

4. Edit the XML file
Update the configuration file (guestVM.xml) to have a <devices> entry similar to the following:

185

Virtualization Deployment and Administration Guide

<devices>

<interface type='hostdev' managed='yes'>
<source>
<address type='pci' domain='0x0' bus='0x00' slot='0x07'
function='0x0'/> <!/--these values can be decimal as well-->
</source>
<mac address='52:54:00:6d:90:02"'/>
<!--sets the mac address-->
<virtualport type='802.1Qbh'>
<!--sets the virtual port for the 802.1Qbh switch-->
<parameters profileid='finance'/>
</virtualport>
<vlan>
<!--sets the vlan tag-->
<tag id='42'/>
</vlan>
</interface>

</devices>

Figure 16.11. Sample domain XML for hostdev interface type

Note that if you do not provide a MAC address, one will be automatically generated, just as with
any other type of interface device. In addition, the <virtualport> element is only used if you
are connecting to an 802.11Qgh hardware switch. 802.11Qbg (also known as "VEPA") switches
are currently not supported.

5. Restart the guest virtual machine
Run the virsh start command to restart the guest virtual machine you shut down in step 2.
See Section 20.6, “Starting, Resuming, and Restoring a Virtual Machine” for more information.

I # virsh start guestvM

When the guest virtual machine starts, it sees the network device provided to it by the physical
host machine's adapter, with the configured MAC address. This MAC address remains
unchanged across guest virtual machine and host physical machine reboots.

16.2.4. Setting PCI device assignment from a pool of SR-IOV virtual functions

Hard coding the PCI addresses of particular Virtual Functions (VFs) into a guest's configuration has two
serious limitations:

e The specified VF must be available any time the guest virtual machine is started. Therefore, the
administrator must permanently assign each VF to a single guest virtual machine (or modify the
configuration file for every guest virtual machine to specify a currently unused VF's PCl address
each time every guest virtual machine is started).

e [f the guest virtual machine is moved to another host physical machine, that host physical
machine must have exactly the same hardware in the same location on the PCI bus (or the
guest virtual machine configuration must be modified prior to start).

It is possible to avoid both of these problems by creating a libvirt network with a device pool containing

186

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

all the VFs of an SR-IOV device. Once that is done, configure the guest virtual machine to reference this
network. Each time the guest is started, a single VF will be allocated from the pool and assigned to the
guest virtual machine. When the guest virtual machine is stopped, the VF will be returned to the pool for
use by another guest virtual machine.

Procedure 16.10. Creating a device pool

1. Shut down the guest virtual machine
Using virsh shutdown command, shut down the guest virtual machine, here named guestVM.

I # virsh shutdown guestVvM

2. Create a configuration file
Using your editor of choice, create an XML file (named passthrough.xml, for example) in the
/tmp directory. Make sure to replace pf dev='eth3' with the netdev name of your own SR-
IOV device's Physical Function (PF).

The following is an example network definition that will make available a pool of all VFs for the
SR-I0V adapter with its PF at "eth3' on the host physical machine:

<network>

<name>passthrough</name> </-- This is the name of the file you
created -->

<forward mode='hostdev' managed='yes'>

<pf dev='myNetDevName'/> <!/-- Use the netdev name of your SR-
IOV devices PF here -->
</forward>
</network>

Figure 16.12. Sample network definition domain XML

3. Load the new XML file

Enter the following command, replacing /tmp/passthrough.xml with the name and location of
your XML file you created in the previous step:

I # virsh net-define /tmp/passthrough.xml

4. Restarting the guest
Run the following, replacing passthrough.xml with the name of your XML file you created in the
previous step:

I # virsh net-autostart passthrough # virsh net-start passthrough

5. Re-start the guest virtual machine
Run the virsh start command to restart the guest virtual machine you shutdown in the first

step (example uses guestVM as the guest virtual machine's domain name). See Section 20.6,
“Starting, Resuming, and Restoring a Virtual Machine” for more information.

I # virsh start guestvM

187

Virtualization Deployment and Administration Guide

6. Initiating passthrough for devices
Although only a single device is shown, libvirt will automatically derive the list of all VFs
associated with that PF the first time a guest virtual machine is started with an interface
definition in its domain XML like the following:

<interface type='network'>
<source network='passthrough'>
</interface>

Figure 16.13. Sample domain XML for interface network definition

7. Verification
You can verify this by running virsh net-dumpxml passthrough command after starting
the first guest that uses the network; you will get output similar to the following:

<network connections='1'>
<name>passthrough</name>
<uuid>a6b49429-d353-d7ad-3185-4451cc786437</uuid>
<forward mode='hostdev' managed='yes'>
<pf dev='eth3'/>
<address type='pci' domain='0Ox0000' bus='0x02' slot='0x10'
function='0x1"'/>
<address type='pci' domain='0Ox0000' bus='0x02' slot='0x10'
function='0x3"'/>
<address type='pci' domain='0Ox0000' bus='0x02' slot='0x10'
function='0x5"'/>
<address type='pci' domain='0Ox0000' bus='0x02' slot='0x10'
function="'0x7"'/>
<address type='pci' domain='0Ox0000' bus='0x02' slot='0Gx11'
function='0x1"'/>
<address type='pci' domain='0Ox0000' bus='0x02' slot='0GOx11'
function='0x3"'/>
<address type='pci' domain='0Ox0000' bus='0x02' slot='0Gx11'
function='0x5"'/>
</forward>
</network>

Figure 16.14. XML dump file passthrough contents

16.2.5. SR-IOV Restrictions

SR-I0V is only thoroughly tested with the following devices:
e Intel® 82576NS Gigabit Ethernet Controller (igb driver)
e Intel® 82576EB Gigabit Ethernet Controller (igb driver)

e Intel® 82599ES 10 Gigabit Ethernet Controller (ixgbe driver)

188

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

e Intel® 82599EB 10 Gigabit Ethernet Controller (ixgbe driver)

Other SR-IOV devices may work but have not been tested at the time of release

16.3. USB DEVICES

This section gives the commands required for handling USB devices.

16.3.1. Assigning USB Devices to Guest Virtual Machines

Most devices such as web cameras, card readers, disk drives, keyboards, mice are connected to a
computer using a USB port and cable. There are two ways to pass such devices to a guest virtual
machine:

e Using USB passthrough - this requires the device to be physically connected to the host physical
machine that is hosting the guest virtual machine. SPICE is not needed in this case. USB
devices on the host can be passed to the guest via the command line or virt-manager. See
Section 19.3.2, “Attaching USB Devices to a Guest Virtual Machine”for virt manager directions.
Note that the virt-manager directions are not suitable for hot plugging or hot unplugging
devices. If you want to hot plug/or hot unplug a USB device, see Procedure 20.4, “Hot plugging
USB devices for use by the guest virtual machine”.

e Using USB re-direction - USB re-direction is best used in cases where there is a host physical
machine that is running in a data center. The user connects to his/her guest virtual machine from
a local machine or thin client. On this local machine there is a SPICE client. The user can attach
any USB device to the thin client and the SPICE client will redirect the device to the host
physical machine on the data center so it can be used by the guest virtual machine that is
running on the thin client. For instructions via the virt-manager see Section 19.3.3, “USB
Redirection”.

16.3.2. Setting a Limit on USB Device Redirection

To filter out certain devices from redirection, pass the filter property to -device usb-redir. The filter
property takes a string consisting of filter rules, the format for a rule is:

I <class>:<vendor>:<product>:<version>:<allow>

Use the value -1 to designate it to accept any value for a particular field. You may use multiple rules
on the same command line using | as a separator. Note that if a device matches none of the passed in
rules, redirecting it will not be allowed!

1. Prepare a guest virtual machine.

2. Add the following code excerpt to the guest virtual machine's' domain XML file:

<alias name='redirQ@'/>
<address type='usb' bus='0' port='3'/>
</redirdev>
<redirfilter>
<usbdev class='0x08' vendor='0x1234"' product='OXBEEF'

Example 16.1. An example of limiting redirection with a guest virtual machine
version='2.0"' allow='yes'/>

‘ <redirdev bus='usb' type='spicevmc'>

189

Virtualization Deployment and Administration Guide

<usbdev class='-1' vendor='-1' product='-1' version='-1'
allow="'no'/>
</redirfilter>

3. Start the guest virtual machine and confirm the setting changes by running the following:

I #ps -ef | grep $guest_name

-device usb-redir,chardev=charredir®, id=rediro, /
filter=0x08:0x1234:0xBEEF:0x0200:1|-1:-1:-1:-1:0, bus=usb.0, port=3

4. Plug a USB device into a host physical machine, and use virt-manager to connect to the

guest virtual machine.

5. Click USB device selection in the menu, which will produce the following message: "Some

USB devices are blocked by host policy". Click OK to confirm and continue.

The filter takes effect.

6. To make sure that the filter captures properly check the USB device vendor and product,

then make the following changes in the host physical machine's domain XML to allow for
USB redirection.

<redirfilter>
<usbdev class='0x08"' vendor='0x0951' product='0x1625"
version='2.0' allow='yes'/>
<usbdev allow='no'/>
</redirfilter>

7. Restart the guest virtual machine, then use virt-viewer to connect to the guest virtual

machine. The USB device will now redirect traffic to the guest virtual machine.

16.4. CONFIGURING DEVICE CONTROLLERS

Depending on the guest virtual machine architecture, some device buses can appear more than once,
with a group of virtual devices tied to a virtual controller. Normally, libvirt can automatically infer such
controllers without requiring explicit XML markup, but in some cases it is better to explicitly set a virtual
controller element.

190

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

<devices>
<controller type='ide' index='0Q'/>
<controller type='virtio-serial' index='Q' ports='16"' vectors='4'/>
<controller type='virtio-serial' index='1"'>
<address type='pci' domain='0Ox0000' bus='0Ox00' slot='Gx0a'
function='0x0"'/>
</controller>

</devices>

Figure 16.15. Domain XML example for virtual controllers
Each controller has a mandatory attribute <controller type>, which must be one of:
e ide
e fdc
® SCSi
e sata
® usb
e ccid
e virtio-serial
e pCi

The <controller> element has a mandatory attribute <controller index> which is the decimal
integer describing in which order the bus controller is encountered (for use in controller attributes of
<address> elements). When <controller type ='virtio-serial'> there are two additional
optional attributes (named ports and vectors), which control how many devices can be connected
through the controller.

When <controller type ='scsi'>, thereis an optional attribute model model, which can have the
following values:

e auto

e buslogic
e ibmvscsi
e Isilogic

e |sisas1068
e |Isisas1078
e virtio-scsi

® vmpvscsi

191

Virtualization Deployment and Administration Guide

When <controller type ='usb'>, there is an optional attribute model model, which can have the
following values:

e piix3-uhci

piix4-uhci

e ehci

e ich9-ehcit

e ich9-uhcit

e ich9-uhci2

e ich9-uhci3

e Vvi82c686b-uhci
e pci-ohci

e nec-xhci

Note that if the USB bus needs to be explicitly disabled for the guest virtual machine, <model="'none'>
may be used. .

For controllers that are themselves devices on a PCI or USB bus, an optional sub-element <address>
can specify the exact relationship of the controller to its master bus, with semantics as shown in
Section 16.5, “Setting Addresses for Devices”.

An optional sub-element <driver> can specify the driver-specific options. Currently, it only supports
attribute queues, which specifies the number of queues for the controller. For best performance, it is
recommended to specify a value matching the number of vCPUs.

USB companion controllers have an optional sub-element <master> to specify the exact relationship of
the companion to its master controller. A companion controller is on the same bus as its master, so the

companion index value should be equal.

An example XML which can be used is as follows:

192

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

<devices>
<controller type='usb' index='0Q' model='ich9-ehcil'>
<address type='pci' domain='0' bus='0' slot='4' function='7'/>
</controller>
<controller type='usb' index='0' model='ich9-uhcil'>
<master startport='0'/>
<address type='pci' domain='0' bus='0' slot='4"' function='0'
multifunction='on'/>
</controller>

</devices>

Figure 16.16. Domain XML example for USB controllers
PCI controllers have an optional model attribute with the following possible values:
e pci-root
e pcie-root
e [pci-bridge
e dmi-to-pci-bridge

For machine types which provide an implicit PCI bus, the pci-root controller with index="'0" is auto-
added and required to use PCI devices. pci-root has no address. PCI bridges are auto-added if there are
too many devices to fit on the one bus provided by model="'pci-root', or a PCl bus number greater
than zero was specified. PCI bridges can also be specified manually, but their addresses should only see
PCI buses provided by already specified PCI controllers. Leaving gaps in the PCI controller indexes
might lead to an invalid configuration. The following XML example can be added to the <devices>
section:

<devices>
<controller type='pci' index='0O' model='pci-root'/>
<controller type='pci' index='1l' model='pci-bridge'>
<address type='pci' domain='0' bus='0' slot='5"' function='0'
multifunction="'off'/>
</controller>
</devices>

Figure 16.17. Domain XML example for PCI bridge

For machine types which provide an implicit PCl Express (PCle) bus (for example, the machine types
based on the Q35 chipset), the pcie-root controller with index="'0" is auto-added to the domain's
configuration. pcie-root has also no address, but provides 31 slots (numbered 1-31) and can only be
used to attach PCle devices. In order to connect standard PCI devices on a system which has a pcie-
root controller, a pci controller with model="dmi-to-pci-bridge' is automatically added. A dmi-to-

193

Virtualization Deployment and Administration Guide

pci-bridge controller plugs into a PCle slot (as provided by pcie-root), and itself provides 31 standard PCI
slots (which are not hot-pluggable). In order to have hot-pluggable PCI slots in the guest system, a pci-
bridge controller will also be automatically created and connected to one of the slots of the auto-created
dmi-to-pci-bridge controller; all guest devices with PCl addresses that are auto-determined by libvirt will
be placed on this pci-bridge device.

<devices>
<controller type='pci' index='0' model='pcie-root'/>
<controller type='pci' index='1l' model='dmi-to-pci-bridge'>
<address type='pci' domain='Q' bus='0' slot='Oxe' function='0'/>
</controller>
<controller type='pci' index='2' model='pci-bridge'>
<address type='pci' domain='0' bus='1' slot='1' function='0'/>
</controller>
</devices>

Figure 16.18. Domain XML example for PCle (PCI express)

The following XML configuration is used for USB 3.0 / xHCI emulation:

<devices>
<controller type='usb' index='3' model='nec-xhci'>
<address type='pci' domain='0Ox0000' bus='0x00' slot='Ox0Of'
function='0x0"'/>
</controller>
</devices>

Figure 16.19. Domain XML example for USB3/xHCI devices

16.5. SETTING ADDRESSES FOR DEVICES

Many devices have an optional <address> sub-element which is used to describe where the device is
placed on the virtual bus presented to the guest virtual machine. If an address (or any optional attribute
within an address) is omitted on input, libvirt will generate an appropriate address; but an explicit address
is required if more control over layout is required. For domain XML device examples that include an
<address> element, see Figure 16.9, “XML example for PCI device assignment”.

Every address has a mandatory attribute type that describes which bus the device is on. The choice of
which address to use for a given device is constrained in part by the device and the architecture of the
guest virtual machine. For example, a <disk> device uses type="'drive', while a <console> device
would use type="pci' on i686 or x86_64 guest virtual machine architectures. Each address type has
further optional attributes that control where on the bus the device will be placed as described in the
table:

Table 16.1. Supported device address types

194

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

Address type Description

type="pci'

type='drive'

type='virtio-serial’

type='ccid'

PCI addresses have the following additional
attributes:

e domain (a 2-byte hex integer, not currently
used by gemu)

e bus (a hex value between 0 and 0xff,
inclusive)

e slot (a hex value between 0x0 and 0x1f,
inclusive)

e function (a value between 0 and 7, inclusive)

e multifunction controls turning on the
multifunction bit for a particular slot/function
in the PCI control register By default it is set
to 'off', but should be set to 'on' for function 0

of a slot that will have multiple functions
used.

Drive addresses have the following additional
attributes:

e controller (a 2-digit controller number)
e bus (a 2-digit bus number
e target (a 2-digit bus number)

e unit (a 2-digit unit number on the bus)

Each virtio-serial address has the following additional
attributes:

e controller (a 2-digit controller number)
e bus (a 2-digit bus number)

e slot (a 2-digit slot within the bus)

A CCID address, for smart-cards, has the following
additional attributes:

e bus (a 2-digit bus number)

e slot attribute (a 2-digit slot within the bus)

195

Virtualization Deployment and Administration Guide

Address type Description

type="usb’ USB addresses have the following additional
attributes:

e bus (a hex value between 0 and 0xfff,
inclusive)

e port (a dotted notation of up to four octets,
such as 1.2 or 2.1.3.1)

type='"isa’ ISA addresses have the following additional
attributes:

e iobase

e irq

16.6. RANDOM NUMBER GENERATOR DEVICE

Random number generators are very important for operating system security. For securing virtual
operating systems, Red Hat Enterprise Linux 7 includes virtio-rng, a virtual hardware random
number generator device that can provide the guest with fresh entropy on request.

On the host physical machine, the hardware RNG interface creates a chardev at /dev/hwrng, which
can be opened and then read to fetch entropy from the host physical machine. In co-operation with the
rngd daemon, the entropy from the host physical machine can be routed to the guest virtual machine's
/dev/random, which is the primary source of randomness.

Using a random number generator is particularly useful when a device such as a keyboard, mouse, and
other inputs are not enough to generate sufficient entropy on the guest virtual machine. The virtual
random number generator device allows the host physical machine to pass through entropy to guest
virtual machine operating systems. This procedure can be performed using either the command line or
the virt-manager interface. For more information aboutvirtio-rng, see Red Hat Enterprise Linux
Virtual Machines: Access to Random Numbers Made Easy.

Procedure 16.11. Implementing virtio-rng using the Virtual Machine Manager

1. Shut down the guest virtual machine.

2. Select the guest virtual machine and from the Edit menu, select Virtual Machine Details, to
open the Details window for the specified guest virtual machine.

3. Click the Add Hardware button.

4. In the Add New Virtual Hardware window, select RNG to open the Random Number
Generator window.

196

http://rhelblog.redhat.com/2015/03/09/red-hat-enterprise-linux-virtual-machines-access-to-random-numbers-made-easy/

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

Add Mew Virtual Hardware

] storage Random Number Generator
m Controller
Metwork Type: ‘ Random - |
Ilij Input

= Graphics

B Sound

Fﬁl Serial

Fil Parallel

Fil Console

Fﬁl Channel

USE Host Device
¢ PCl Host Device
H video

m} Watchdog

£ Filesystem

& Smartcard

@ USE Redirection

o TPM™

¢ Panic Motifier

Dewvice: | fdewfrandom |

‘ Cancel ‘ | Finish |

Figure 16.20. Random Number Generator window

Enter the intended parameters and click Finish when done. The parameters are explained in
virtio-rng elements.

Procedure 16.12. Implementing virtio-rng using command-line tools

1. Shut down the guest virtual machine.

2. Using the virsh edit domain-name command, open the XML file for the intended guest
virtual machine.

3. Edit the <devices> element to include the following:

197

Virtualization Deployment and Administration Guide

<devices>
<rng model='virtio'>
<rate period='2000' bytes='1234'/>
<backend model='random'>/dev/random</backend>
<!/-- OR -->
<backend model='egd' type='udp'>
<source mode='bind' service='1234'/>
<source mode='connect' host='1.2.3.4' service='1234"'/>
</backend>
</rng>
</devices>

Figure 16.21. Random number generator device

The random number generator device allows the following XML attributes and elements:

virtio-rng elements

o <model> - The required model attribute specifies what type of RNG device is provided.

o <backend model> - The <backend> element specifies the source of entropy to be used
for the guest. The source model is configured using the model attribute. Supported source
models include 'random' and 'egd' .

m <backend model='random'> - This <backend> type expects a non-blocking
character device as input. Examples of such devices are /dev/random and
/dev/urandom. The file name is specified as contents of the <backend> element.
When no file name is specified the hypervisor default is used.

m <backend model="'egd'> - This back end connects to a source using the EGD
protocol. The source is specified as a character device. See character device host
physical machine interface for more information.

16.7. ASSIGNING GPU DEVICES

To assign a GPU to a guest, use one of the following method:

e GPU PCI Device Assignment - Using this method, it is possible to remove a GPU device from
the host and assign it to a single guest.

e NVIDIA vGPU Assignment - This method makes it possible to create multiple mediated devices
from a physical GPU, and assign these devices as virtual GPUs to multiple guests. This is only
supported on selected NVIDIA GPUs, and only one mediated device can be assigned to a single
guest.

16.7.1. GPU PCI Device Assignment

Red Hat Enterprise Linux 7 supports PCI device assignment of the following PCle-based GPU devices
as non-VGA graphics devices:

e NVIDIA Quadro K-Series, M-Series, and P-Series (models 2000 series or higher)

198

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

e NVIDIA GRID K-Series
e NVIDIA Tesla K-Series and M-Series

Currently, up to two GPUs may be attached to the virtual machine, in addition to one of the standard
emulated VGA interfaces. The emulated VGA is used for pre-boot and installation and the NVIDIA GPU
takes over when the NVIDIA graphics drivers are loaded.

To assign a GPU to a guest virtual machine, you must enable the I/O Memory Management Unit
(IOMMU) on the host machine, identify the GPU device by using the 1spci command, detach the device
from host, attach it to the guest, and configure Xorg on the guest - as described in the following
procedures:

Procedure 16.13. Enable IOMMU support in the host machine kernel

1. Edit the kernel command line
For an Intel VT-d system, IOMMU is activated by adding the intel_iommu=on and iommu=pt
parameters to the kernel command line. For an AMD-Vi system, the option needed is
amd_iommu=pt. To enable this option, edit or add the GRUB_CMDLINX_LINUX line to the
/etc/sysconfig/grub configuration file as follows:

GRUB_CMDLINE_LINUX="rd.lvm.1lv=vg_VolGroup00/LogVolol
vconsole.font=latarcyrheb-sun16 rd.lvm.lv=vg_VolGroup_1/root
vconsole.keymap=us $([-Xx /usr/sbin/rhcrashkernel-param] &&
/usr/sbin/rhcrashkernel-param || :) rhgb quiet intel_iommu=on
iommu=pt"

NOTE

For further information on IOMMU, see Appendix E, Working with IOMMU
Groups.

2. Regenerate the boot loader configuration
For the changes to the kernel command line to apply, regenerate the boot loader configuration
using the grub2-mkconfig command:

I # grub2-mkconfig -o /etc/grub2.cfg

Note that if you are using a UEFI-based host, the target file should be /etc/grub2-efi.cfg.

3. Reboot the host
For the changes to take effect, reboot the host machine:

I # reboot

Procedure 16.14. Excluding the GPU device from binding to the host physical machine driver

For GPU assignment, it is recommended to exclude the device from binding to host drivers, as these
drivers often do not support dynamic unbinding of the device.

1. Identify the PCl bus address
To identify the PCI bus address and IDs of the device, run the following 1spci command. In this
example, a VGA controller such as an NVIDIA Quadro or GRID card is used:

199

Virtualization Deployment and Administration Guide

lspci -Dnn | grep VGA
0000:02:00.0 VGA compatible controller [0300]: NVIDIA Corporation
GK106GL [Quadro K4000] [10de:11fa] (rev a1l)

The resulting search reveals that the PCI bus address of this device is 0000:02:00.0 and the PCI
IDs for the device are 10de:11fa.

. Prevent the native host machine driver from using the GPU device

To prevent the native host machine driver from using the GPU device, you can use a PCI ID
with the pci-stub driver. To do this, append the pci-stub.ids option, with the PCI IDs as its
value, to the GRUB_CMDLINX_LINUX line located in the /etc/sysconfig/grub configuration
file, for example as follows:

GRUB_CMDLINE_LINUX="rd.lvm.lv=vg_VolGroup00/LogVolol
vconsole.font=latarcyrheb-sun16 rd.lvm.lv=vg_VolGroup_1/root
vconsole.keymap=us $([-Xx /usr/sbin/rhcrashkernel-param] &&
/usr/sbin/rhcrashkernel-param || :) rhgb quiet intel_iommu=on
iommu=pt pci-stub.ids=10de:11fa"

To add additional PCI IDs for pci-stub, separate them with a comma.

. Regenerate the boot loader configuration

Regenerate the boot loader configuration using the grub2-mkconfig to include this option:
I # grub2-mkconfig -o /etc/grub2.cfg

Note that if you are using a UEFI-based host, the target file should be /etc/grub2-efi.cfg.

. Reboot the host machine

In order for the changes to take effect, reboot the host machine:

I # reboot

Procedure 16.15. Optional: Editing the GPU IOMMU configuration

Prior to attaching the GPU device, editing its IOMMU configuration may be needed for the GPU to work
properly on the guest.

200

1. Display the XML information of the GPU

To display the settings of the GPU in XML form, you first need to convert its PCI bus address to
libvirt-compatible format by appending pci_ and converting delimiters to underscores. In this
example, the GPU PCI device identified with the 0000:02:00.0 bus address (as obtained in the
previous procedure) becomes pci_0000_02_00_0. Use the libvirt address of the device with
the virsh nodedev-dumpxml to display its XML configuration:

I # virsh nodedev-dumpxml pci_0000_02_00_0

<device>
<name>pci_0000_02_00_0</name>
<path>/sys/devices/pcif000:00/0000:00:03.0/0000:02:00.0</path>
<parent>pci_0000_00_03_0</parent>
<driver>

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

<name>pci-stub</name>

</driver>

<capability type='pci'>
<domain>0</domain>
<bus>2</bus>
<slot>0</slot>

<function>0</function>
<product id='Ox11fa'>GK106GL [Quadro K4000]</product>
<vendor id='0x10de'>NVIDIA Corporation</vendor>
<!-- pay attention to the following lines -->
<iommuGroup number='13'>
<address domain='0x0000' bus='0x02' slot='0x00"' function='0x0'/>
<address domain='0x0000' bus='0x02' slot='0x00"' function='Ox1'/>
</iommuGroup>
<pci-express>
<link validity='cap' port='0"' speed='8' width='16"'/>
<link validity='sta' speed='2.5"' width='16"'/>
</pci-express>
</capability>
</device>

Note the <iommuGroup> element of the XML. The iommuGroup indicates a set of devices that
are considered isolated from other devices due to IOMMU capabilities and PCI bus topologies.
All of the endpoint devices within the iommuGroup (meaning devices that are not PCle root
ports, bridges, or switch ports) need to be unbound from the native host drivers in order to be
assigned to a guest. In the example above, the group is composed of the GPU device
(0000:02:00.0) as well as the companion audio device (0000:02:00.1). For more information,
see Appendix E, Working with IOMMU Groups.

2. Adjust IOMMU settings
In this example, assignment of NVIDIA audio functions is not supported due to hardware issues
with legacy interrupt support. In addition, the GPU audio function is generally not useful without
the GPU itself. Therefore, in order to assign the GPU to a guest, the audio function must first be
detached from native host drivers. This can be done using one of the following:

o Detect the PCI ID for the device and append it to the pci-stub.ids option in the
/etc/sysconfig/grub file, as detailed in Procedure 16.14, “Excluding the GPU device
from binding to the host physical machine driver”

o Use the virsh nodedev-detach command, for example as follows:

virsh nodedev-detach pci_0000_02_00_1
Device pci_0000_02_00_1 detached

Procedure 16.16. Attaching the GPU

The GPU can be attached to the guest using any of the following methods:

1. Using the Virtual Machine Manager interface. For details, see Section 16.1.2, “Assigning a PCI
Device with virt-manager”.

2. Creating an XML configuration fragment for the GPU and attaching it with the virsh attach-
device:

1. Create an XML for the device, similar to the following:

201

Virtualization Deployment and Administration Guide

<hostdev mode='subsystem' type='pci' managed='yes'>
<driver name='vfio'/>
<source>
<address domain='0x0000' bus='0x02' slot='0Ox00'
function="'0x0"'/>
</source>
</hostdev>

2. Save thisto a file and run virsh attach-device [domain] [file] --persistent
to include the XML in the guest configuration. Note that the assigned GPU is added in
addition to the existing emulated graphics device in the guest machine. The assigned GPU
is handled as a secondary graphics device in the virtual machine. Assignment as a primary
graphics device is not supported and emulated graphics devices in the guest's XML should
not be removed.

3. Editing the guest XML configuration using the virsh edit command and adding the
appropriate XML segment manually.

Procedure 16.17. Modifying the Xorg configuration on the guest

The GPU's PCI bus address on the guest will be different than on the host. To enable the host to use the
GPU properly, configure the guest's Xorg display server to use the assigned GPU address:

1. In the guest, use the 1spci command to determine the PCI bus adress of the GPU:

lspci | grep VGA

00:02.0 VGA compatible controller: Device 1234:111

00:09.0 VGA compatible controller: NVIDIA Corporation GK106GL
[Quadro K4000] (rev al)

In this example, the bus address is 00:09.0.

2. Inthe /etc/X11/xorg. conf file on the guest, add a BusID option with the detected address
adjusted as follows:

Section "Device"

Identifier "Device0"
Driver "nvidia"
VendorName "NVIDIA Corporation"
BusID "PCI:0:9:0"
EndSection
IMPORTANT

If the bus address detected in Step 1 is hexadecimal, you need to convert the
values between delimiters to the decimal system. For example, 00:0a.0 should be
converted into PCI:0:10:0.

202

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

NOTE

When using an assigned NVIDIA GPU in the guest, only the NVIDIA drivers are
supported. Other drivers may not work and may generate errors. For a Red Hat
Enterprise Linux 7 guest, the nouveau driver can be blacklisted using the option
modprobe.blacklist=nouveau on the kernel command line during install. For
information on other guest virtual machines, see the operating system's specific
documentation.

Depending on the guest operating system, with the NVIDIA drivers loaded, the guest may
support using both the emulated graphics and assigned graphics simultaneously or may
disable the emulated graphics. Note that access to the assigned graphics framebuffer is
not provided by applications such as virt-manager. If the assigned GPU is not connected
to a physical display, guest-based remoting solutions may be necessary to access the
GPU desktop. As with all PCI device assignment, migration of a guest with an assigned
GPU is not supported and each GPU is owned exclusively by a single guest. Depending
on the guest operating system, hot plug support of GPUs may be available.

16.7.2. NVIDIA vGPU Assignment

The NVIDIA vGPU feature makes it possible to divide a physical GPU device into multiple virtual devices
referred to as mediated devices. These mediated devices can then be assigned to multiple guests as
virtual GPUs. As a result, these guests share the performance of a single physical GPU.

IMPORTANT

This feature is only available on a limited set of NVIDIA GPUs. For an up-to-date list of
these devices, see the NVIDIA GPU Software Documentation.

NVIDIA vGPU Setup
To set up the vGPU feature, you first need to obtain NVIDIA vGPU drivers for your GPU device, then
create mediated devices, and assign them to the intended guest machines:

1. Obtain the NVIDIA vGPU drivers and install them on your system. For instructions, see the
NVIDIA documentation.

2. If the NVIDIA software installer did not create the /etc/modprobe.d/nvidia-installer-
disable-nouveau.conf file, create a . conf file (of any name) in the /etc/modprobe.d/
directory. Add the following lines in the file:

blacklist nouveau
options nouveau modeset=0

3. Regenerate the initial ramdisk for the current kernel, then reboot:

dracut --force
reboot

If you need to use a prior supported kernel version with mediated devices, regenerate the initial
ramdisk for all installed kernel versions:

dracut --regenerate-all --force
reboot

203

https://docs.nvidia.com/grid/latest/grid-vgpu-release-notes-red-hat-el-kvm/index.html#validated-platforms
http://docs.nvidia.com/grid/latest/grid-software-quick-start-guide/index.html#getting-your-nvidia-grid-software

Virtualization Deployment and Administration Guide

4. Check that the nvidia_vgpu_vfio module has been loaded by the kernel and that the

nvidia-vgpu-mgr.service service is running.

lsmod | grep nvidia_vgpu_vfio
nvidia_vgpu_vfio 45011 0
nvidia 14333621 10 nvidia_vgpu_vfio
mdev 20414 2 vfio_mdev,nvidia_vgpu_vfio
vfio 32695 3 vfio_mdev,nvidia_vgpu_vfio,vfio_iommu_typel
systemctl status nvidia-vgpu-mgr.service
nvidia-vgpu-mgr.service - NVIDIA vGPU Manager Daemon
Loaded: loaded (/usr/lib/systemd/system/nvidia-vgpu-mgr.service;
enabled; vendor preset: disabled)
Active: active (running) since Fri 2018-03-16 10:17:36 CET; 5h
8min ago
Main PID: 1553 (nvidia-vgpu-mgr)
[...]

5. Write a device UUID to

/sys/class/mdev_bus/pci_dev/mdev_supported_types/type-id/create, where
pci_dev is the PCI address of the host GPU, and type-id is an ID of the host GPU type.

The following example shows how to create a mediated device of hvidia-63 vGPU type on an
NVIDIA Tesla P4 card:

uuidgen

30820a6f-bla5-4503-91ca-0c1l0ba58692a

echo "30820a6f-bla5-4503-91ca-0cl1l0ba58692a" >
/sys/class/mdev_bus/0000:01:00.0/mdev_supported_types/nvidia-
63/create

For type-id values for specific devices, see section 1.3.1. Virtual GPU Types in Virtual GPU
software documentation. Note that only Q-series NVIDIA vGPUs, such as GRID P4-2Q, are
supported as mediated device GPU types on Linux guests.

. Add the following lines to the <devices/> sections in XML configurations of guests that you want

to share the vGPU resources. Use the UUID value generated by the uuidgen command in the
previous step. Each UUID can only be assigned to one guest at a time.

<hostdev mode='subsystem' type='mdev' managed='no' model='vfio-pci'>
<source>
<address uuid='30820a6f-bla5-4503-91ca-0cl0ba58692a'/>
</source>
</hostdev>

IMPORTANT

For the vGPU mediated devices to work properly on the assigned guests, NVIDIA
vGPU guest software licensing needs to be set up for the guests. For further
information and instructions, see the NVIDIA virtual GPU software
documentation.

Removing NVIDIA vGPU Devices

204

 https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#virtual-gpu-types-grid
https://docs.nvidia.com/grid/latest/index.html#virtual-gpu-licensing

CHAPTER 16. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

To remove a mediated vGPU device, use the following command when the device is inactive, and
replace uuid with the UUID of the device, for example 30820a6f-b1a5-4503-91ca-0c10ba58692a

I # echo 1 > /sys/bus/mdev/devices/uuid/remove

Note that attempting to remove a vGPU device that is currently in use by a guest triggers the following
error:

I echo: write error: Device or resource busy

Querying NVIDIA vGPU Capabilities

To obtain additional information about the mediated devices on your system, such as how many
mediated devices of a given type can be created, use the virsh nodedev-1list --cap
mdev_types and virsh nodedev-dumpxml commands. For example, the following displays available
vGPU types on a Tesla P4 card:

$ virsh nodedev-list --cap mdev_types
pci_0000_01_00_0
$ virsh nodedev-dumpxml pci_0000_01_00_0
<...>
<capability type='mdev_types'>
<type id='nvidia-70'>
<name>GRID P4-8A</name>
<deviceAPI>vfio-pci</deviceAPI>
<availableInstances>1</availableInstances>
</type>
<type id='nvidia-69'>
<name>GRID P4-4A</name>
<deviceAPI>vfio-pci</deviceAPI>
<availableInstances>2</availableInstances>
</type>
<type id='nvidia-67'>
<name>GRID P4-1A</name>
<deviceAPI>vfio-pci</deviceAPI>
<availableInstances>8</availableInstances>
</type>
<type id='nvidia-65'>
<name>GRID P4-4Q</name>
<deviceAPI>vfio-pci</deviceAPI>
<availableInstances>2</availableInstances>
</type>
<type id='nvidia-63'>
<name>GRID P4-1Q</name>
<deviceAPI>vfio-pci</deviceAPI>
<availableInstances>8</availableInstances>
</type>
<type id='nvidia-71'>
<name>GRID P4-1B</name>
<deviceAPI>vfio-pci</deviceAPI>
<availableInstances>8</availableInstances>
</type>
<type id='nvidia-68'>
<name>GRID P4-2A</name>
<deviceAPI>vfio-pci</deviceAPI>

205

Virtualization Deployment and Administration Guide

<availableInstances>4</availableInstances>

</type>

<type id='nvidia-66"'>
<name>GRID P4-8Q</name>
<deviceAPI>vfio-pci</deviceAPI>
<availableInstances>1</availableInstances>

</type>

<type id='nvidia-64'>
<name>GRID P4-2Q</name>
<deviceAPI>vfio-pci</deviceAPI>
<availableInstances>4</availableInstances>

</type>

</capability>
</...>

Remote Desktop Streaming Services for NVIDIA vGPU
The following remote desktop streaming services have been successfully tested for use with the NVIDIA

vGPU feature on Red Hat Enterprise Linux 7:
e HP-RGS

e Mechdyne TGX - It is currently not possible to use Mechdyne TGX with Windows Server 2016
guests.

e NICE DCV - When using this streaming service, Red Hat recommends using fixed resolution
settings, as using dynamic resolution in some cases results in a black screen.

206

CHAPTER 17. VIRTUAL NETWORKING

CHAPTER 17. VIRTUAL NETWORKING

This chapter introduces the concepts needed to create, start, stop, remove, and modify virtual networks
with libvirt.

Additional information can be found in the libvirt reference chapter

17.1. VIRTUAL NETWORK SWITCHES

Libvirt virtual networking uses the concept of a virtual network switch. A virtual network switch is a
software construct that operates on a host physical machine server, to which virtual machines (guests)
connect. The network traffic for a guest is directed through this switch:

HosT .
| H
Virtual Machine
:'— ooooo H
> 4—» | 58858 of!
1
Network Virtual Network Switch

.............

Virtual Machine

Figure 17.1. Virtual network switch with two guests

Linux host physical machine servers represent a virtual network switch as a network interface. When the
libvirtd daemon (1ibvirtd) is first installed and started, the default network interface representing the
virtual network switch is virbreo.

This virbro interface can be viewed with the ip command like any other interface:

$ ip addr show virbre
3: virbr@®: <BROADCAST,MULTICAST,UP, LOWER_UP> mtu 1500 gdisc noqueue state
UNKNOWN

link/ether 1b:c4:94:cf:fd:17 brd ff:ff:ff.ff:.ff:ff

inet 192.168.122.1/24 brd 192.168.122.255 scope global virbro

17.2. BRIDGED MODE

When using Bridged mode, all of the guest virtual machines appear within the same subnet as the host
physical machine. All other physical machines on the same physical network are aware of the virtual
machines, and can access the virtual machines. Bridging operates on Layer 2 of the OSI networking
model.

207

Virtualization Deployment and Administration Guide

nfesr o e

Virtual Machine

R ——— 101010.4
' '

.............

Network Virtual Network Switch
in BRIDGED MODE eommmmmmaal
10.10.10.0/24 ! f —— \l
1010.10190 | m :
e H
Virtual Machine
10.10.10.5

Figure 17.2. Virtual network switch in bridged mode

It is possible to use multiple physical interfaces on the hypervisor by joining them together with a bond.
The bond is then added to a bridge and then guest virtual machines are added onto the bridge as well.
However, the bonding driver has several modes of operation, and only a few of these modes work with a
bridge where virtual guest machines are in use.

g WARNING
When using bridged mode, the only bonding modes that should be used with a

guest virtual machine are Mode 1, Mode 2, and Mode 4. Using modes 0, 3, 5, or 6 is
likely to cause the connection to fail. Also note that Media-Independent Interface
(MII) monitoring should be used to monitor bonding modes, as Address Resolution
Protocol (ARP) monitoring does not work.

For more information on bonding modes, see related Knowledgebase article, or the
Red Hat Enterprise Linux 7 Networking Guide.

For a detailed explanation of bridge_opts parameters, used to configure bridged networking mode, see
the Red Hat Virtualization Administration Guide.

17.3. NETWORK ADDRESS TRANSLATION

By default, virtual network switches operate in NAT mode. They use IP masquerading rather than
Source-NAT (SNAT) or Destination-NAT (DNAT). IP masquerading enables connected guests to use the
host physical machine IP address for communication to any external network. By default, computers that
are placed externally to the host physical machine cannot communicate to the guests inside when the
virtual network switch is operating in NAT mode, as shown in the following diagram:

208

https://access.redhat.com/solutions/67546
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_Network_Bonding.html
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.1/html/administration_guide/appe-custom_network_properties#Explanation_of_bridge_opts_Parameters

H OST 10.10.10.190

Falla

Network
10.10.10.0/24

Figure 17.3. Virtual network switch using NAT with two guests

< m LINUX NETWORK STACK
(NAT IS APPLIED HERE)

...........

CHAPTER 17. VIRTUAL NETWORKING

..........

Virtual Machine
192.168.122.210

..........

WARNING

Virtual Network Switch
in NAT MODE

192.168.122.1/24

.............

Virtual Machine
192.168.122.220

Virtual network switches use NAT configured by iptables rules. Editing these rules
while the switch is running is not recommended, as incorrect rules may result in the
switch being unable to communicate.

If the switch is not running, you can set the public IP range for forward mode NAT in order to create a
port masquerading range by running:

I # iptables -j SNAT --to-source [start]-[end]

17.4. DNS AND DHCP

IP information can be assigned to guests via DHCP. A pool of addresses can be assigned to a virtual
network switch for this purpose. Libvirt uses the dnsmasq program for this. An instance of dnsmasq is
automatically configured and started by libvirt for each virtual network switch that needs it.

209

Virtualization Deployment and Administration Guide

HOST
=
—— [l
DNS AND DHCP SERVER (DNSMASQ) Virtual Machine
192.168.122.2 - 192.168.122.254 192.168.122.210

..........

Virtual Machine
192.168.122.220

Virtual Network Switch

Figure 17.4. Virtual network switch running dnsmasq

17.5. ROUTED MODE

When using Routed mode, the virtual switch connects to the physical LAN connected to the host physical
machine, passing traffic back and forth without the use of NAT. The virtual switch can examine all traffic
and use the information contained within the network packets to make routing decisions. When using this
mode, all of the virtual machines are in their own subnet, routed through a virtual switch. This situation is
not always ideal as no other host physical machines on the physical network are aware of the virtual
machines without manual physical router configuration, and cannot access the virtual machines. Routed
mode operates at Layer 3 of the OSI networking model.

HOST 101010190

-~

P — 1

\ — [s

9 ctho | '-'

ﬁ - oo 1o amec o rtuat o ’

virhro (ROUTING IS APPLIED HERE) Virtual Machine
o 192.168.122.210

Network
10.10.10.0/24

..........

'
1|_Sooos ol
Virtual Network Switch Virtual Machine
in ROUTED MODE 192.168.122.220
192.168.122.1/24

Figure 17.5. Virtual network switch in routed mode

17.6. ISOLATED MODE

When using Isolated mode, guests connected to the virtual switch can communicate with each other, and
with the host physical machine, but their traffic will not pass outside of the host physical machine, and
they cannot receive traffic from outside the host physical machine. Using dnsmasq in this mode is

210

CHAPTER 17. VIRTUAL NETWORKING

required for basic functionality such as DHCP. However, even if this network is isolated from any
physical network, DNS names are still resolved. Therefore, a situation can arise when DNS names
resolve but ICMP echo request (ping) commands fail.

HOST e -
: et ‘I
— i~);
N e emsasmaamme ’
Virtual Machine
et 3 192.168.122.210
ﬁ—’ B O ism
3 L}
Virtual Network Switch
Network in ISOLATED MODE Lozzmmoemeo s
e —— *
192.168.122.1/24 L 4 :
. L]
. L

Virtual Machine
192.168.122.220

Figure 17.6. Virtual network switch in isolated mode

17.7. THE DEFAULT CONFIGURATION

When the libvirtd daemon (1ibvirtd) is first installed, it contains an initial virtual network switch
configuration in NAT mode. This configuration is used so that installed guests can communicate to the
external network, through the host physical machine. The following image demonstrates this default
configuration for 1ibvirtd:

HOST

...........

< PRy 1 e——
@ LINUX NETWORK STACK

Network

< .-\-.
=S X
-+
c
(A
=
v
(2]
=
3 et

DNS AND DHCP SERVER
(DNSMAQ)

...................

P e—— Y 1 — '\'
'l ooooo H . '
1| ooooo al; " "
) ! \ ’

..........................

Virtual Network Switch Virtual Machine
in NAT MODE

Figure 17.7. Default libvirt network configuration

211

Virtualization Deployment and Administration Guide

NOTE

A virtual network can be restricted to a specific physical interface. This may be useful on a
physical system that has several interfaces (for example, eth0, eth1 and eth2). This is
only useful in routed and NAT modes, and can be defined in the dev=<interface>
option, or in virt-manager when creating a new virtual network.

17.8. EXAMPLES OF COMMON SCENARIOS

This section demonstrates different virtual networking modes and provides some example scenarios.

17.8.1. Bridged Mode

Bridged mode operates on Layer 2 of the OSI model. When used, all of the guest virtual machines will
appear on the same subnet as the host physical machine. The most common use cases for bridged
mode include:

e Deploying guest virtual machines in an existing network alongside host physical machines
making the difference between virtual and physical machines transparent to the end user.

e Deploying guest virtual machines without making any changes to existing physical network
configuration settings.

e Deploying guest virtual machines which must be easily accessible to an existing physical
network. Placing guest virtual machines on a physical network where they must access services
within an existing broadcast domain, such as DHCP.

e Connecting guest virtual machines to an exsting network where VLANs are used.

17.8.2. Routed Mode

DMZ

Consider a network where one or more nodes are placed in a controlled sub-network for security
reasons. The deployment of a special sub-network such as this is a common practice, and the sub-
network is known as a DMZ. See the following diagram for more details on this layout:

& HOST

Wide Area Network :‘.
I ——[_l;

.............

[.
FIREWALL €—> —>: :
\ 'I
Virtual Network Switch
inROUTEDMODE | _ezzz====== ~

P e—— 0}

1

— |

@ Virtual Machine

Local Area Network

Figure 17.8. Sample DMZ configuration

212

CHAPTER 17. VIRTUAL NETWORKING

Host physical machines in a DMZ typically provide services to WAN (external) host physical machines
as well as LAN (internal) host physical machines. As this requires them to be accessible from multiple
locations, and considering that these locations are controlled and operated in different ways based on
their security and trust level, routed mode is the best configuration for this environment.

Virtual Server Hosting

Consider a virtual server hosting company that has several host physical machines, each with two
physical network connections. One interface is used for management and accounting, the other is for the
virtual machines to connect through. Each guest has its own public IP address, but the host physical
machines use private IP address as management of the guests can only be performed by internal
administrators. See the following diagram to understand this scenario:

HOST 11010490 e

.............

—Pp] Virtual Machine
P & Public IP

1
— [+
Local Area Network L]

10.10.10.0/24

.............

Virtual Network Switch
in BRIDGED MODE cooTCTore

[—

V 1

— '

< nl
\, L

.............

Virtual Machine
Wide Area Network Public IP
Public IP Range

Figure 17.9. Virtual server hosting sample configuration

17.8.3. NAT Mode

NAT (Network Address Translation) mode is the default mode. It can be used for testing when there is no
need for direct network visibility.

17.8.4. Isolated Mode

Isolated mode allows virtual machines to communicate with each other only. They are unable to interact
with the physical network.

17.9. MANAGING A VIRTUAL NETWORK
To configure a virtual network on your system:
1. From the Edit menu, select Connection Details.

2. This will open the Connection Details menu. Click the Virtual Networks tab.

213

Virtualization Deployment and Administration Guide

QEMU/KVM Connection Details X

File

Overview Virtual Networks Storage Network Interfaces

Neme: network

Device: wirbrl
Stater M| Active
Autostart: [+ On Boot

Domain: networkl
» IPv4 configuration

» QoS configuration

s ® ® Apply

Figure 17.10. Virtual network configuration

3. All available virtual networks are listed on the left of the menu. You can edit the configuration of
a virtual network by selecting it from this box and editing as you see fit.

17.10. CREATING A VIRTUAL NETWORK

To create a virtual network on your system using the Virtual Machine Manager (virt-manager):

1. Open the Virtual Networks tab from within the Connection Details menu. Click the Add
Network button, identified by a plus sign (+) icon. For more information, see Section 17.9,
“Managing a Virtual Network”.

214

CHAPTER 17. VIRTUAL NETWORKING

QEMU/KVM Connection Details X

File

Overview Virtual Networks Storage Network Interfaces

Name: | networkl

Device: wirbrl
Stater M| Active
Autostart: [+ On Boot

Domain: networkl
» IPv4 configuration

» QoS configuration

BEon]

Figure 17.11. Virtual network configuration

This will open the Create a new virtual network window. Click Forward to continue.

215

Virtualization Deployment and Administration Guide

Create a new virtual network

LS

" | Create virtual network

F =

e —

Choose a name for your virtual networl:

Metwork Mame: | networkl

& Euarnple: network 1

‘ Cancel ‘ ‘ Back ‘ ‘ Forward ‘

Figure 17.12. Naming your new virtual network

2. Enter an appropriate name for your virtual network and click Forward.

216

CHAPTER 17. VIRTUAL NETWORKING

Create a new virtual network x

' | Create virtual network

Choose IPv4 address space for the virtual network:
|+ Enable IPv4 network address space definition

Metwork: 192.168.100.0/24

; Hint: The network should be chosen from one of the
IPv4 private address ranges. eg 10.0.0.0/8 or
192.168.0.0/16

Gateway: 192.168.102.1
Type: Private

|+ Enable DHCPv4
Start: | 192.168.100.128

End: 192.168.100.254
| | Enable Static Route Definition

Cancel Back _ Forward

Figure 17.13. Choosing an IPv4 address space

. Check the Enable IPv4 network address space definition check box.
Enter an IPv4 address space for your virtual network in the Network field.

Check the Enable DHCPv4 check box.

Define the DHCP range for your virtual network by specifying a Start and End range of IP
addresses.

217

Virtualization Deployment and Administration Guide

Create a new virtual network

LS

F =

e —

" | Create virtual network

Choose IPv& address space for the virtual network:

'+ Enable IPv4 network address space definition

Metwork: | 192.168.100.0/24

i Hint: The network should be chosen from one of the [Pvd
private address ranges. eg 10.0.0.0/8 or 192.168.0.0/16

Gateway: 192.168.100.1
Type: 7

'+ Enable DHCPv4

Start: ‘ 192.168.100.128 ‘

End: ‘ 192.168.100.2 54 ‘

|| Enable Static Route Definition

‘ Cancel ‘ ‘ Back ‘ ‘ Forward ‘

Figure 17.14. Choosing an IPv4 address space
Click Forward to continue.

4. If you want to enable IPv6, check the Enable IPv6 network address space
definition.

218

CHAPTER 17. VIRTUAL NETWORKING

Create a new virtual network

LS

" | Create virtual network

F =

e —

Choose IPv6 address space for the virtual network:

| | Enable IPv6 network address space definition

‘ Cancel ‘ ‘ Back

H Forward ‘

Figure 17.15. Enabling IPv6

Additional fields appear in the Create a new virtual network window.

219

Virtualization Deployment and Administration Guide

Create a new virtual network

‘ | Create virtual network

LS
—
F =

e —

Choose IPv6 address space for the virtual network:

'+ Enable IPv6 network address space definition

MNetworlk:

4 MNote: The network could be chosen from one of the IPvG
private address ranges. eg FCOO::/7. The prefix must be 64,
A typical IPvG network address will look something like:
fdOO:e81d:abd/:55::/64

Gateway: fd00:100::1
Type: 7

|| Enable DHCPvE

|| Enable Static Route Definition

Cancel | | Back | | Forward

Figure 17.16. Configuring IPv6
Enter an IPv6 address in the Network field.
5. If you want to enable DHCPv6, check the Enable DHCPv6 check box.

Additional fields appear in the Create a new virtual network window.

220

CHAPTER 17. VIRTUAL NETWORKING

Create a new virtual network

‘ | Create virtual network

=

e —

Choose IPv6 address space for the virtual network:

'+ Enable IPv6 network address space definition

Metwork: | fdOO:dcac:faad: 34::./64

4 MNote: The network could be chosen from one of the IPvG
private address ranges. eg FCOO::/7. The prefix must be 64,
A typical IPvG network address will look something like:
fdOO:dead:beef: 55::/64

Gateway:
Type: Private

'+ Enable DHCPvE

Start: | fdO:dcac:faad: 34:: 100 |

End: | fdO:dcac:faad: 34 1ff |

|| Enable Static Route Definition

Cancel | | Back | | Forward

Figure 17.17. Configuring DHCPv6
(Optional) Edit the start and end of the DHCPv6 range.

6. If you want to enable static route definitions, check the Enable Static Route Definition
check box.

Additional fields appear in the Create a new virtual network window.

221

Virtualization Deployment and Administration Guide

Create a new virtual network

" | Create virtual network

=

e —

Choose IPv6 address space for the virtual network:

'+ Enable IPv6 network address space definition

Metwork: | fdOO:dcac:faad: 34::./64

4 MNote: The network could be chosen from one of the IPvG
private address ranges. eg FCOO::/7. The prefix must be 64,
A typical IPvG network address will look something like:
fdOO:dead:beef: 55::/64

Gateway:
Type: Private

'+ Enable DHCPvE

Start: ‘ fdO:dcac:faad: 34:: 100 ‘

End: ‘ fdO:dcac:faad: 34 1ff ‘

'+ Enable Static Route Definition

to Metworl: ‘ ‘

via Gateway: ‘ ‘

‘ Cancel ‘ ‘ Back ‘ ‘ Forward ‘

Figure 17.18. Defining static routes

Enter a network address and the gateway that will be used for the route to the network in the
appropriate fields.

Click Forward.

7. Select how the virtual network should connect to the physical network.

222

CHAPTER 17. VIRTUAL NETWORKING

Create a new virtual network

‘ | Create virtual network

LS

F =

e —

Connected to a ph'-,.rsi::al networl:
(®) Isolated virtual network

| Forwarding to physical netwaork

Destination: | Any physical device - |

Mode: | MAT v |

| | Enable IPvE internal routing/networking

If an IPv6 network address is not specified, this will enable IPvE
internal routing between virtual machines. By default, IPvd

internal routing is enabled.

ODMS Domain Mame: | networkl

Cancel | | Back | | Finish

Figure 17.19. Connecting to the physical network

If you want the virtual network to be isolated, ensure that the Isolated virtual network
radio button is selected.

If you want the virtual network to connect to a physical network, select Forwarding to
physical network, and choose whether the Destination should be Any physical
device or a specific physical device. Also select whether the Mode should be NAT or Routed.

If you want to enable IPv6 routing within the virtual network, check the Enable IPv6
internal routing/networking check box.

223

Virtualization Deployment and Administration Guide

Enter a DNS domain name for the virtual network.

Click Finish to create the virtual network.

8. The new virtual network is now available in the Virtual Networks tab of the Connection

Details window.

17.11. ATTACHING A VIRTUAL NETWORK TO A GUEST

To attach a virtual network to a guest:

1. Inthe Virtual Machine Manager window, highlight the guest that will have the network

assigned.

Virtual Machine Manager

File Edit Wiew Help

E_IJ IE' Open |~ a] -

MName
w QEMUSKVM

generic

— Shutoff

g rhel7 2
Shutoff

¥ CPU usage

Figure 17.20. Selecting a virtual machine to display

2. From the Virtual Machine Manager Edit menu, select Virtual Machine Details.

3. Click the Add Hardware button on the Virtual Machine Details window.

4. Inthe Add new virtual hardware window, select Network from the left pane, and select
your network name (network1 in this example) from the Network source menu. Modify the

MAC address, if necessary, and select a Device model. Click Finish.

224

CHAPTER 17. VIRTUAL NETWORKING

Add Mew Virtual Hardware

] Storage Network
m Controller

& Input

= Graphics

B sound

=’E| Serial

l‘-’i| Farallel

'4| Console

"E| Channel

=% USB Host Device
:ﬁ% PCl Haost Device
B video

m] Watchdog

B3 Filesystem

=N Smartcard

MAC address: E'T ‘ 52:54:00:04:99:57 ‘

Device model: ‘ Hypervisor default ot ‘

@0 UsB Redirection
o TPM
2 RNG

:@@ Fanic Motifier

‘ Cancel | | Finish ‘

Figure 17.21. Select your network from the Add new virtual hardware window

5. The new network is now displayed as a virtual network interface that will be presented to the
guest upon launch.

225

Virtualization Deployment and Administration Guide

rhel7.2 Virtual Machine - o x
File Virtual Machine View Send Key
|;=-r| (3] a - Iﬁ‘
() VirtlO Disk 1 Virtual Network Interface
L VirtlO Disk 2 Network source: | Virtual network 'networkl' : NAT ¥
(©) IDE CDROM 1
Device model: | rtl8139 b

B N|C:05:8b:01

=

MAC address: 52:54:00:b2:d5:0a

Iz NIC :b2:d5:0a

M Tablet
") Mouse

== Keyboard
IEI Display Spice

m} Sound: ich6

Gy Serial 1

(&) Channel gemu-ga
a1 Channel spice
M PCl 0000:00:1b.0
I;I Video QXL

m Controller USB
m Controller IDE

Bl controller Virti Serial

M Controller PCI
‘é}‘ USE Redirector 1

@ USBE Redirector 2

Add Hardware Remove Cancel Apply
Figure 17.22. New network shown in guest hardware list

17.12. ATTACHING A VIRTUAL NIC DIRECTLY TO A PHYSICAL
INTERFACE

As an alternative to the default NAT connection, you can use the macvtap driver to attach the guest's
NIC directly to a specified physical interface of the host machine. This is not to be confused with device
assignment (also known as passthrough). Macvtap connection has the following modes, each with
different benefits and usecases:

Physical interface delivery modes

VEPA

In virtual ethernet port aggregator (VEPA) mode, all packets from the guests are sent to the external
switch. This enables the user to force guest traffic through the switch. For VEPA mode to work
correctly, the external switch must also support hairpin mode, which ensures that packets whose
destination is a guest on the same host machine as their source guest are sent back to the host by
the external switch.

226

VM 1

ethO PPEEEEd macvtapO *

macvtapl

\ 4

ooooo
ooooo o

VM 2 Switch

ethO

VM TO VM

Figure 17.23. VEPA mode

bridge

CHAPTER 17. VIRTUAL NETWORKING

VM1

macvtapO

macvtapl

VM 2 Switch

ethO

VM TO EXTERNAL

Packets whose destination is on the same host machine as their source guest are directly delivered
to the target macvtap device. Both the source device and the destination device need to be in bridge
mode for direct delivery to succeed. If either one of the devices is in VEPA mode, a hairpin-capable

external switch is required.

VM 1

ethO PPEEEEEd macvtapO

VM 2

VM TO VM

Figure 17.24. Bridge mode

private

VM1

macvtapO

macvtapl

VM 2 Switch

ethO

VM TO EXTERNAL

All packets are sent to the external switch and will only be delivered to a target guest on the same
host machine if they are sent through an external router or gateway and these send them back to the
host. Private mode can be used to prevent the individual guests on the single host from
communicating with each other. This procedure is followed if either the source or destination device

is in private mode.

227

Virtualization Deployment and Administration Guide

VM1 VM1

ethO macvtapO g Xx

macvtapO

macvtapl macvtapl
2 Switch 2 Switch
VM TO VM VM TO EXTERNAL

Figure 17.25. Private mode

passthrough

This feature attaches a physical interface device or a SR-IOV Virtual Function (VF) directly to a guest
without losing the migration capability. All packets are sent directly to the designated network device.
Note that a single network device can only be passed through to a single guest, as a network device

cannot be shared between guests in passthrough mode.

VM1 VM1
ethO macvtapO ethO macvtapO
mciap
VM 2 - % Switch VM 2 - % Switch

- I - I

VM TO VM VM TO EXTERNAL

Figure 17.26. Passthrough mode

Macvtap can be configured by changing the domain XML file or by using the virt-manager interface.

17.12.1. Configuring macvtap using domain XML

Open the domain XML file of the guest and modify the <devices> element as follows:
<devices>
<interface type='direct'>
<source dev='eth®' mode='vepa'/>

</interface>
</devices>

The network access of direct attached guest virtual machines can be managed by the hardware switch
to which the physical interface of the host physical machine is connected.

228

CHAPTER 17. VIRTUAL NETWORKING

The interface can have additional parameters as shown below, if the switch is conforming to the IEEE
802.1Qbg standard. The parameters of the virtualport element are documented in more detail in the
IEEE 802.1Qbg standard. The values are network specific and should be provided by the network
administrator. In 802.1Qbg terms, the Virtual Station Interface (VSI) represents the virtual interface of a
virtual machine. Also note that IEEE 802.1Qbg requires a non-zero value for the VLAN ID.

Virtual Station Interface types

managerid

The VSI Manager ID identifies the database containing the VSI type and instance definitions. This is
an integer value and the value 0 is reserved.

typeid

The VSI Type ID identifies a VSI type characterizing the network access. VSI types are typically
managed by network administrator. This is an integer value.

typeidversion
The VSI Type Version allows multiple versions of a VSI Type. This is an integer value.

instanceid

The VSI Instance ID is generated when a VSl instance (a virtual interface of a virtual machine) is
created. This is a globally unique identifier.

profileid

The profile ID contains the name of the port profile that is to be applied onto this interface. This name
is resolved by the port profile database into the network parameters from the port profile, and those
network parameters will be applied to this interface.

Each of the four types is configured by changing the domain XML file. Once this file is opened, change
the mode setting as shown:

<devices>

<interface type='direct'>
<source dev='eth0.2' mode='vepa'/>
<virtualport type="802.1Qbg">
<parameters managerid="11" typeid="1193047" typeidversion="2"
instanceid="09b11c53-8b5c-4eeb-8f00-d84eaabaaadf" />
</virtualport>
</interface>
</devices>

The profile ID is shown here:

<devices>

<interface type='direct'>

<source dev='eth®' mode='private'/>
<virtualport type='802.1Qbh'>
<parameters profileid='finance'/>
</virtualport>

</interface>

229

Virtualization Deployment and Administration Guide

I </devices>

17.12.2. Configuring macvtap using virt-manager

Open the virtual hardware details window = select NIC in the menu = for Network source, select host

device name: macvtap = select the intended Source mode.

The virtual station interface types can then be set up in the Virtual port submenu.

rhel7.3server_VM on GEMU/KVM

File Virtual Machine View SendKey

[l i il - IEI
|§| Overview Virtual Network Interface
Performance Network source: | Host device wlp4s0: macvtap ¥
3 crus
Source mode: | Bridge
== Memory a
Boot Options A Ln most configurations, ma-:vtapl dov.les not work for
ost to guest network communication.
(L VirtlO Disk 1
— Device model: | virtio hd
=) IDE CDRCM 1
L2 NIC :d3:50:0e MAC address: 52:54:00:d3:50:0e
IL/I Tablet ¥ Virtual port
i Mouse Type:
== Keyboard . y
anagerid:

— Displa ice
[] Display Spi
m} Sound: ich6 Typeid:
G Serial 1 Typeid version:
t& Channel gemu-ga

. Instance id:
G Channel spice
B video QXL
m Controller USB
m Controller PCI

Add Hardware Remove Cancel Apply

Figure 17.27. Configuring macvtap in virt-manager

17.13. DYNAMICALLY CHANGING A HOST PHYSICAL MACHINE OR A
NETWORK BRIDGE THAT IS ATTACHED TO A VIRTUAL NIC

This section demonstrates how to move the vNIC of a guest virtual machine from one bridge to another
while the guest virtual machine is running without compromising the guest virtual machine

1. Prepare guest virtual machine with a configuration similar to the following:

<interface type='bridge'>
<mac address='52:54:00:4a:c9:5e'/>
<source bridge='virbro'/>

230

CHAPTER 17. VIRTUAL NETWORKING

<model type='virtio'/>
</interface>

2. Prepare an XML file for interface update:

I # cat bri.xml

<interface type='bridge'>
<mac address='52:54:00:4a:c9:5e'/>
<source bridge='virbri'/>
<model type='virtio'/>
</interface>

3. Start the guest virtual machine, confirm the guest virtual machine's network functionality, and
check that the guest virtual machine's vnetX is connected to the bridge you indicated.

brctl show

bridge name bridge id STP enabled interfaces
virbro 8000.5254007da9f2 yes

virbr@-nic

vneto

virbri 8000.525400682996 yes
virbril-nic

4. Update the guest virtual machine's network with the new interface parameters with the following
command:

virsh update-device testl bri.xml

Device updated successfully

5. On the guest virtual machine, run service network restart. The guest virtual machine
gets a new IP address for virbri. Check the guest virtual machine's vnet0 is connected to the
new bridge(virbr1)

brctl show

bridge name bridge id STP enabled interfaces
virbro 8000.5254007da9f2 yes virbrO-nic
virbri 8000.525400682996 yes virbril-nic
vneto

17.14. APPLYING NETWORK FILTERING

This section provides an introduction to libvirt's network filters, their goals, concepts and XML format.

17.14.1. Introduction

The goal of the network filtering, is to enable administrators of a virtualized system to configure and
enforce network traffic filtering rules on virtual machines and manage the parameters of network traffic
that virtual machines are allowed to send or receive. The network traffic filtering rules are applied on the

231

Virtualization Deployment and Administration Guide

host physical machine when a virtual machine is started. Since the filtering rules cannot be circumvented
from within the virtual machine, it makes them mandatory from the point of view of a virtual machine user.

From the point of view of the guest virtual machine, the network filtering system allows each virtual
machine's network traffic filtering rules to be configured individually on a per interface basis. These rules
are applied on the host physical machine when the virtual machine is started and can be modified while
the virtual machine is running. The latter can be achieved by modifying the XML description of a network
filter.

Multiple virtual machines can make use of the same generic network filter. When such a filter is
modified, the network traffic filtering rules of all running virtual machines that reference this filter are
updated. The machines that are not running will update on start.

As previously mentioned, applying network traffic filtering rules can be done on individual network
interfaces that are configured for certain types of network configurations. Supported network types
include:

e network
e ethernet -- must be used in bridging mode

e bridge

Example 17.1. An example of network filtering

The interface XML is used to reference a top-level filter. In the following example, the interface
description references the filter clean-traffic.

<devices>
<interface type='bridge'>
<mac address='00:16:3e:5d:c7:9e'/>
<filterref filter='clean-traffic'/>
</interface>
</devices>

Network filters are written in XML and may either contain: references to other filters, rules for traffic
filtering, or hold a combination of both. The above referenced filter clean-traffic is a filter that only
contains references to other filters and no actual filtering rules. Since references to other filters can be
used, a tree of filters can be built. The clean-traffic filter can be viewed using the command: # virsh
nwfilter-dumpxml clean-traffic.

As previously mentioned, a single network filter can be referenced by multiple virtual machines. Since
interfaces will typically have individual parameters associated with their respective traffic filtering
rules, the rules described in a filter's XML can be generalized using variables. In this case, the
variable name is used in the filter XML and the name and value are provided at the place where the
filter is referenced.

Example 17.2. Description extended

In the following example, the interface description has been extended with the parameter IP and a
dotted IP address as a value.

<devices>
<interface type='bridge'>
<mac address='00:16:3e:5d:c7:9e'/>

232

CHAPTER 17. VIRTUAL NETWORKING

<filterref filter='clean-traffic'>
<parameter name='IP' value='10.0.0.1'/>
</filterref>
</interface>
</devices>

In this particular example, the clean-traffic network traffic filter will be represented with the IP address
parameter 10.0.0.1 and as per the rule dictates that all traffic from this interface will always be using
10.0.0.1 as the source IP address, which is one of the purpose of this particular filter.

17.14.2. Filtering Chains

Filtering rules are organized in filter chains. These chains can be thought of as having a tree structure
with packet filtering rules as entries in individual chains (branches).

Packets start their filter evaluation in the root chain and can then continue their evaluation in other
chains, return from those chains back into the root chain or be dropped or accepted by a filtering rule in
one of the traversed chains.
Libvirt's network filtering system automatically creates individual root chains for every virtual machine's
network interface on which the user chooses to activate traffic filtering. The user may write filtering rules
that are either directly instantiated in the root chain or may create protocol-specific filtering chains for
efficient evaluation of protocol-specific rules.
The following chains exist:

e root

e mac

e stp (spanning tree protocol)

e vian

e arpandrarp

e ipv4

e ipv6

Multiple chains evaluating the mac, stp, vlan, arp, rarp, ipv4, or ipv6 protocol can be created using the
protocol name only as a prefix in the chain's name.

Example 17.3. ARP traffic filtering

This example allows chains with names arp-xyz or arp-test to be specified and have their ARP
protocol packets evaluated in those chains.

The following filter XML shows an example of filtering ARP traffic in the arp chain.

<filter name='no-arp-spoofing' chain='arp' priority='-500"'>
<uuid>f88f1932-debf-4aal-9fbe-f10d3aadbc95</uuid>
<rule action='drop' direction='out' priority='300'>
<mac match='no' srcmacaddr="'$MAC'/>
</rule>

233

Virtualization Deployment and Administration Guide

<rule action='drop' direction='out' priority='350"'>
<arp match='no' arpsrcmacaddr="'$MAC'/>

</rule>

<rule action='drop' direction='out' priority='400"'>
<arp match='no' arpsrcipaddr='$IP'/>

</rule>

<rule action='drop' direction='in' priority='450"'>
<arp opcode='Reply'/>
<arp match='no' arpdstmacaddr="'$MAC'/>

</rule>

<rule action='drop' direction='in' priority='500"'>
<arp match='no' arpdstipaddr='$IP'/>

</rule>

<rule action='accept' direction='inout' priority='600"'>
<arp opcode='Request'/>

</rule>

<rule action='accept' direction='inout' priority='650"'>
<arp opcode='Reply'/>

</rule>

<rule action='drop' direction='inout' priority='1000'/>

</filter>

The consequence of putting ARP-specific rules in the arp chain, rather than for example in the root
chain, is that packets protocols other than ARP do not need to be evaluated by ARP protocol-specific
rules. This improves the efficiency of the traffic filtering. However, one must then pay attention to only
putting filtering rules for the given protocol into the chain since other rules will not be evaluated. For
example, an IPv4 rule will not be evaluated in the ARP chain since IPv4 protocol packets will not
traverse the ARP chain.

17.14.3. Filtering Chain Priorities

As previously mentioned, when creating a filtering rule, all chains are connected to the root chain. The
order in which those chains are accessed is influenced by the priority of the chain. The following table
shows the chains that can be assigned a priority and their default priorities.

Table 17.1. Filtering chain default priorities values

Chain (prefix) Default priority

stp -810
mac -800
vlan -750
ipv4 -700
ipv6 -600
arp -500

234

CHAPTER 17. VIRTUAL NETWORKING

Chain (prefix) Default priority

rarp -400

NOTE

A chain with a lower priority value is accessed before one with a higher value.

The chains listed in Table 17.1, “Filtering chain default priorities values” can be also be
assigned custom priorities by writing a value in the range [-1000 to 1000] into the priority
(XML) attribute in the filter node. Section 17.14.2, “Filtering Chains’filter shows the default
priority of -500 for arp chains, for example.

17.14.4. Usage of Variables in Filters

There are two variables that have been reserved for usage by the network traffic filtering subsystem:
MAC and IP.

MAC is designated for the MAC address of the network interface. A filtering rule that references this
variable will automatically be replaced with the MAC address of the interface. This works without the user
having to explicitly provide the MAC parameter. Even though it is possible to specify the MAC parameter
similar to the IP parameter above, it is discouraged since libvirt knows what MAC address an interface
will be using.

The parameter IP represents the IP address that the operating system inside the virtual machine is
expected to use on the given interface. The IP parameter is special in so far as the libvirt daemon will try
to determine the IP address (and thus the IP parameter's value) that is being used on an interface if the
parameter is not explicitly provided but referenced. For current limitations on IP address detection,
consult the section on limitations Section 17.14.12, “Limitations” on how to use this feature and what to
expect when using it. The XML file shown in Section 17.14.2, “Filtering Chains” contains the filter no-
arp-spoofing, which is an example of using a network filter XML to reference the MAC and IP
variables.

Note that referenced variables are always prefixed with the character $. The format of the value of a
variable must be of the type expected by the filter attribute identified in the XML. In the above example,
the IP parameter must hold a legal IP address in standard format. Failure to provide the correct structure
will result in the filter variable not being replaced with a value and will prevent a virtual machine from
starting or will prevent an interface from attaching when hot plugging is being used. Some of the types
that are expected for each XML attribute are shown in the example Example 17.4, “Sample variable
types”.

Example 17.4. Sample variable types

As variables can contain lists of elements, (the variable IP can contain multiple IP addresses that are
valid on a particular interface, for example), the notation for providing multiple elements for the IP
variable is:

<devices>
<interface type='bridge'>
<mac address='00:16:3e:5d:c7:9e'/>
<filterref filter='clean-traffic'>
<parameter name='IP' value='10.0.0.1'
<parameter name='IP' value='10.0.0.2'

>

/
/>

235

Virtualization Deployment and Administration Guide

236

<parameter name='IP' value='10.0.0.3'/>
</filterref>
</interface>
</devices>

This XML file creates filters to enable multiple IP addresses per interface. Each of the IP addresses
will result in a separate filtering rule. Therefore, using the XML above and the following rule, three
individual filtering rules (one for each IP address) will be created:

<rule action='accept' direction='in' priority='500"'>
<tcp srpipaddr='$IP'/>
</rule>

As it is possible to access individual elements of a variable holding a list of elements, a filtering rule
like the following accesses the 2nd element of the variable DSTPORTS.

<rule action='accept' direction='in' priority='500"'>
<udp dstportstart='$DSTPORTS[1]'/>
</rule>

Example 17.5. Using a variety of variables

As it is possible to create filtering rules that represent all of the permissible rules from different lists
using the notation $VARIABLE[@<iterator id="x">]. The following rule allows a virtual machine
to receive traffic on a set of ports, which are specified in DSTPORTS, from the set of source IP
address specified in SRCIPADDRESSES. The rule generates all combinations of elements of the
variable DSTPORTS with those of SRCIPADDRESSES by using two independent iterators to access
their elements.

<rule action='accept' direction='in' priority='500"'>
<ip srcipaddr='$SRCIPADDRESSES[@1]' dstportstart='$DSTPORTS[@2]'/>
</rule>

Assign concrete values to SRCIPADDRESSES and DSTPORTS as shown:

SRCIPADDRESSES = [10.0.0.1, 11.1.2.3]
DSTPORTS = [80, 8080]

Assigning values to the variables using $SRCIPADDRESSES[@1] and $DSTPORTS[@2] would then
result in all variants of addresses and ports being created as shown:

e 10.0.0.1, 80
e 10.0.0.1, 8080
e 11.1.2.3,80
e 11.1.2.3,8080

Accessing the same variables using a single iterator, for example by using the notation
$SRCIPADDRESSES[@1] and $DSTPORTS[@1], would result in parallel access to both lists and
result in the following combination:

CHAPTER 17. VIRTUAL NETWORKING

e 10.0.0.1, 80

e 11.1.2.3,8080

NOTE

L
-

$VARIABLE is short-hand for $VARIABLE[@0]. The former notation always assumes the
role of iterator with iterator id="0" added as shown in the opening paragraph at the
A top of this section.

17.14.5. Automatic IP Address Detection and DHCP Snooping

This section provides information about automatic IP address detection and DHCP snooping.

17.14.5.1. Introduction

The detection of IP addresses used on a virtual machine's interface is automatically activated if the
variable IP is referenced but no value has been assigned to it. The variable CTRL_IP_LEARNING can be
used to specify the IP address learning method to use. Valid values include: any, dhcp, or none.

The value any instructs libvirt to use any packet to determine the address in use by a virtual machine,
which is the default setting if the variable CTRL_IP_LEARNING is not set. This method will only detect a
single IP address per interface. Once a guest virtual machine's IP address has been detected, its IP
network traffic will be locked to that address, if for example, IP address spoofing is prevented by one of
its filters. In that case, the user of the VM will not be able to change the IP address on the interface inside
the guest virtual machine, which would be considered IP address spoofing. When a guest virtual
machine is migrated to another host physical machine or resumed after a suspend operation, the first
packet sent by the guest virtual machine will again determine the IP address that the guest virtual
machine can use on a particular interface.

The value of dhcp instructs libvirt to only honor DHCP server-assigned addresses with valid leases. This
method supports the detection and usage of multiple IP address per interface. When a guest virtual
machine resumes after a suspend operation, any valid IP address leases are applied to its filters.
Otherwise the guest virtual machine is expected to use DHCP to obtain a new IP addresses. When a
guest virtual machine migrates to another physical host physical machine, the guest virtual machine is
required to re-run the DHCP protocol.

If CTRL_IP_LEARNING is set to none, libvirt does not do IP address learning and referencing IP without
assigning it an explicit value is an error.

17.14.5.2. DHCP Snooping

CTRL_IP_LEARNING=dhcp (DHCP snooping) provides additional anti-spoofing security, especially
when combined with a filter allowing only trusted DHCP servers to assign IP addresses. To enable this,
set the variable DHCPSERVER to the IP address of a valid DHCP server and provide filters that use this
variable to filter incoming DHCP responses.

When DHCP snooping is enabled and the DHCP lease expires, the guest virtual machine will no longer
be able to use the IP address until it acquires a new, valid lease from a DHCP server. If the guest virtual
machine is migrated, it must get a new valid DHCP lease to use an IP address (for example by bringing
the VM interface down and up again).

237

Virtualization Deployment and Administration Guide

NOTE

Automatic DHCP detection listens to the DHCP traffic the guest virtual machine
exchanges with the DHCP server of the infrastructure. To avoid denial-of-service attacks
on libvirt, the evaluation of those packets is rate-limited, meaning that a guest virtual
machine sending an excessive number of DHCP packets per second on an interface will
not have all of those packets evaluated and thus filters may not get adapted. Normal
DHCP client behavior is assumed to send a low number of DHCP packets per second.
Further, it is important to setup appropriate filters on all guest virtual machines in the
infrastructure to avoid them being able to send DHCP packets. Therefore, guest virtual
machines must either be prevented from sending UDP and TCP traffic from port 67 to port
68 or the DHCPSERVER variable should be used on all guest virtual machines to restrict
DHCP server messages to only be allowed to originate from trusted DHCP servers. At the
same time anti-spoofing prevention must be enabled on all guest virtual machines in the
subnet.

Example 17.6. Activating IPs for DHCP snooping

The following XML provides an example for the activation of IP address learning using the DHCP
snooping method:

<interface type='bridge'>
<source bridge='virbro'/>
<filterref filter='clean-traffic'>
<parameter name='CTRL_IP_LEARNING' value='dhcp'/>
</filterref>
</interface>

17.14.6. Reserved Variables

Table 17.2, “Reserved variables” shows the variables that are considered reserved and are used by
libvirt:

Table 17.2. Reserved variables

Variable Name Definition

MAC The MAC address of the interface
IP The list of IP addresses in use by an interface
IPV6 Not currently implemented: the list of IPV6 addresses

in use by an interface

DHCPSERVER The list of IP addresses of trusted DHCP servers

DHCPSERVERV6 Not currently implemented: The list of IPv6
addresses of trusted DHCP servers

CTRL_IP_LEARNING The choice of the IP address detection mode

238

CHAPTER 17. VIRTUAL NETWORKING

17.14.7. Element and Attribute Overview

The root element required for all network filters is named <filter> with two possible attributes. The
name attribute provides a unique name of the given filter. The chain attribute is optional but allows
certain filters to be better organized for more efficient processing by the firewall subsystem of the
underlying host physical machine. Currently, the system only supports the following chains: root, ipv4,
ipv6, arp and rarp.

17.14.8. References to Other Filters

Any filter may hold references to other filters. Individual filters may be referenced multiple times in a filter
tree but references between filters must not introduce loops.

Example 17.7. An Example of a clean traffic filter

The following shows the XML of the clean-traffic network filter referencing several other filters.

<uuid>6ef53069-ba34-94a0-d33d-17751b9b8cbi</uuid>
<filterref filter='no-mac-spoofing'/>

<filterref filter='no-ip-spoofing'/>

<filterref filter='allow-incoming-ipv4'/>
<filterref filter='no-arp-spoofing'/>

<filterref filter='no-other-12-traffic'/>
<filterref filter='gemu-announce-self'/>

<filter name='clean-traffic'>
</filter>

To reference another filter, the XML node <filterref> needs to be provided inside a filter node.
This node must have the attribute filter whose value contains the name of the filter to be referenced.

New network filters can be defined at any time and may contain references to network filters that are not
known to libvirt, yet. However, once a virtual machine is started or a network interface referencing a filter
is to be hot-plugged, all network filters in the filter tree must be available. Otherwise the virtual machine
will not start or the network interface cannot be attached.

17.14.9. Filter Rules

The following XML shows a simple example of a network traffic filter implementing a rule to drop traffic if
the IP address (provided through the value of the variable IP) in an outgoing IP packet is not the
expected one, thus preventing IP address spoofing by the VM.

<uuid>fce8ae33-e69e-83bf-262e-30786c1f8072</uuid>

<rule action='drop' direction='out' priority='500"'>
<ip match='no' srcipaddr='$IP'/>

</rule>

<filter name='no-ip-spoofing' chain="'ipv4'>
</filter>

| Example 17.8. Example of network traffic filtering

239

Virtualization Deployment and Administration Guide

The traffic filtering rule starts with the rule node. This node may contain up to three of the following
attributes:

e action is mandatory can have the following values:
o drop (matching the rule silently discards the packet with no further analysis)
o reject (matching the rule generates an ICMP reject message with no further analysis)
o accept (matching the rule accepts the packet with no further analysis)

o return (matching the rule passes this filter, but returns control to the calling filter for further
analysis)

o continue (matching the rule goes on to the next rule for further analysis)
e direction is mandatory can have the following values:
o in for incoming traffic
o out for outgoing traffic
o inout for incoming and outgoing traffic
e priority is optional. The priority of the rule controls the order in which the rule will be instantiated
relative to other rules. Rules with lower values will be instantiated before rules with higher
values. Valid values are in the range of -1000 to 1000. If this attribute is not provided, priority 500
will be assigned by default. Note that filtering rules in the root chain are sorted with filters

connected to the root chain following their priorities. This allows to interleave filtering rules with
access to filter chains. See Section 17.14.3, “Filtering Chain Priorities” for more information.

e statematch is optional. Possible values are '0' or 'false’ to turn the underlying connection state
matching off. The default setting is 'true’ or 1

For more information, see Section 17.14.11, “Advanced Filter Configuration Topics”.

The above example Example 17.7, “An Example of a clean traffic filter” indicates that the traffic of type ip
will be associated with the chain jpv4 and the rule will have priority=500. If for example another filter
is referenced whose traffic of type ip is also associated with the chain jpv4 then that filter's rules will be
ordered relative to the priority=500 of the shown rule.

A rule may contain a single rule for filtering of traffic. The above example shows that traffic of type ip is to
be filtered.
17.14.10. Supported Protocols

The following sections list and give some details about the protocols that are supported by the network
filtering subsystem. This type of traffic rule is provided in the rule node as a nested node. Depending on
the traffic type a rule is filtering, the attributes are different. The above example showed the single
attribute srcipaddr that is valid inside the ip traffic filtering node. The following sections show what
attributes are valid and what type of data they are expecting. The following datatypes are available:

e UINTS : 8 bit integer; range 0-255
e UINT16: 16 bit integer; range 0-65535

e MAC_ADDR: MAC address in dotted decimal format, for example 00:11:22:33:44:55

240

CHAPTER 17. VIRTUAL NETWORKING

o MAC_MASK: MAC address mask in MAC address format, for instance, FF:FF:FF:FC:00:00
e |P_ADDR: IP address in dotted decimal format, for example 10.1.2.3

e |P_MASK: IP address mask in either dotted decimal format (255.255.248.0) or CIDR mask (0-
32)

e |PV6_ADDR: IPv6 address in numbers format, for example FFFF::1

e |PV6_MASK: IPv6 mask in numbers format (FFFF:FFFF:FCO00::) or CIDR mask (0-128)
e STRING: A string

e BOOLEAN: 'true', 'yes', '1' or 'false’, 'no’, '0'

e |IPSETFLAGS: The source and destination flags of the ipset described by up to 6 'src' or 'dst'
elements selecting features from either the source or destination part of the packet header;
example: src,src,dst. The number of 'selectors' to provide here depends on the type of ipset that
is referenced

Every attribute except for those of type IP_MASK or IPV6_MASK can be negated using the match
attribute with value no. Multiple negated attributes may be grouped together. The following XML
fragment shows such an example using abstract attributes.

[...]
<rule action='drop' direction='in'>
<protocol match='no' attributel='valuel' attribute2='value2'/>
<protocol attribute3='value3'/>
</rule>

[...]

Rules behave evaluate the rule as well as look at it logically within the boundaries of the given protocol
attributes. Thus, if a single attribute's value does not match the one given in the rule, the whole rule will
be skipped during the evaluation process. Therefore, in the above example incoming traffic will only be
dropped if: the protocol property attributel does not match both valuel and the protocol property
attribute2 does not match value2 and the protocol property attribute3 matches value3.

17.14.10.1. MAC (Ethernet)

Protocol ID: mac

Rules of this type should go into the root chain.

Table 17.3. MAC protocol types

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to MAC address of
sender

dstmacaddr MAC_ADDR MAC address of destination

241

Virtualization Deployment and Administration Guide

Attribute Name Datatype Definition

dstmacmask MAC_MASK Mask applied to MAC address of
destination

protocolid UINT16 (0x600-0xffff), STRING Layer 3 protocol ID. Valid strings

include [arp, rarp, ipv4, ipv6]

comment STRING text string up to 256 characters

The filter can be written as such:

[...]
<mac match='no' srcmacaddr='$MAC'/>
[...]

17.14.10.2. VLAN (802.1Q)

Protocol ID: vlan

Rules of this type should go either into the root or vlan chain.

Table 17.4. VLAN protocol types

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to MAC address of
sender

dstmacaddr MAC_ADDR MAC address of destination

dstmacmask MAC_MASK Mask applied to MAC address of
destination

vlan-id UINT16 (0x0-0xfff, 0 - 4095) VLAN ID

encap-protocol UINT16 (0x03c-0xfff), String Encapsulated layer 3 protocol ID,

valid strings are arp, ipv4, ipv6

comment STRING text string up to 256 characters

17.14.10.3. STP (Spanning Tree Protocol)

Protocol ID: stp

Rules of this type should go either into the root or stp chain.

242

Table 17.5. STP protocol types

Attribute Name

Datatype

CHAPTER 17. VIRTUAL NETWORKING

Definition

srcmacaddr

srcmacmask

type

flags

root-priority

root-priority-hi

root-address

root-address-mask

roor-cost

root-cost-hi

sender-priority-hi

sender-address

sender-address-mask

port

port_hi

msg-age

msg-age-hi

max-age-hi

hello-time

hello-time-hi

forward-delay

MAC_ADDR

MAC_MASK

UINT8

UINT8

UINT16

UINT16 (0x0-Oxfff, O - 4095)

MAC _ADDRESS

MAC _MASK

UINT32

UINT32

UINT16

MAC_ADDRESS

MAC_MASK

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

MAC address of sender

Mask applied to MAC address of
sender

Bridge Protocol Data Unit (BPDU)
type

BPDU flagdstmacmask

Root priority range start

Root priority range end

root MAC Address

root MAC Address mask

Root path cost (range start)

Root path cost range end

Sender priority range end

BPDU sender MAC address

BPDU sender MAC address mask

Port identifier (range start)

Port identifier range end

Message age timer (range start)

Message age timer range end

Maximum age time range end

Hello time timer (range start)

Hello time timer range end

Forward delay (range start)

243

Virtualization Deployment and Administration Guide

Attribute Name Datatype Definition
forward-delay-hi UINT16 Forward delay range end
comment STRING text string up to 256 characters

17.14.10.4. ARP/RARP

Protocol ID: arp or rarp
Rules of this type should either go into the root or arp/rarp chain.

Table 17.6. ARP and RARP protocol types

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to MAC address of
sender

dstmacaddr MAC_ADDR MAC address of destination

dstmacmask MAC_MASK Mask applied to MAC address of
destination

hwtype UINT16 Hardware type

protocoltype UINT16 Protocol type

opcode UINT16, STRING Opcode valid strings are: Request,

Reply, Request_Reverse,
Reply_Reverse,
DRARP_Request, DRARP_Reply,
DRARP_Error, INARP_Request,
ARP_NAK

arpsrcmacaddr MAC_ADDR Source MAC address in
ARP/RARP packet

arpdstmacaddr MAC ADDR Destination MAC address in
ARP/RARP packet

arpsrcipaddr IP_ADDR Source IP address in ARP/RARP
packet
arpdstipaddr IP_ADDR Destination IP address in

ARP/RARP packet

244

Attribute Name

gratuitous

comment

17.14.10.5. IPv4

Protocol ID: ip
Rules of this type should either go into the root or ipv4 chain.

Table 17.7. IPv4 protocol types

Attribute Name

srcmacaddr

srcmacmask

dstmacaddr

dstmacmask

srcipaddr

srcipmask

dstipaddr

dstipmask

protocol

srcportstart

srcportend

dstportstart

Datatype

BOOLEAN

STRING

Datatype

MAC_ADDR

MAC_MASK

MAC_ADDR

MAC_MASK

IP_ADDR

IP_MASK

IP_ADDR

IP_MASK

UINT8, STRING

UINT16

UINT16

UNIT16

CHAPTER 17. VIRTUAL NETWORKING

Definition

Boolean indicating whether to

check for a gratuitous ARP packet

text string up to 256 characters

Definition

MAC address of sender

Mask applied to MAC address of
sender

MAC address of destination

Mask applied to MAC address of
destination

Source IP address

Mask applied to source IP address

Destination IP address

Mask applied to destination IP
address

Layer 4 protocol identifier. Valid
strings for protocol are: tcp, udp,
udplite, esp, ah, icmp, igmp, sctp

Start of range of valid source
ports; requires protocol

End of range of valid source ports;

requires protocol

Start of range of valid destination
ports; requires protocol

245

Virtualization Deployment and Administration Guide

Attribute Name Datatype Definition

dstportend UNIT16 End of range of valid destination

ports; requires protocol

comment STRING text string up to 256 characters

17.14.10.6. IPv6

Protocol ID: ipv6
Rules of this type should either go into the root or ipv6 chain.

Table 17.8. IPv6 protocol types

Attribute Name Datatype Definition

srcmacaddr

MAC_ADDR

MAC address of sender

srcmacmask MAC_MASK Mask applied to MAC address of
sender

dstmacaddr MAC_ADDR MAC address of destination

dstmacmask MAC_MASK Mask applied to MAC address of
destination

srcipaddr IP_ADDR Source |IP address

srcipmask IP_MASK Mask applied to source IP address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP
address

protocol UINT8, STRING Layer 4 protocol identifier. Valid
strings for protocol are: tcp, udp,
udplite, esp, ah, icmpv6, sctp

scrportstart UNIT16 Start of range of valid source
ports; requires protocol

srcportend UINT16 End of range of valid source ports;
requires protocol

dstportstart UNIT16 Start of range of valid destination

ports; requires protocol

246

CHAPTER 17. VIRTUAL NETWORKING

Attribute Name Datatype Definition

dstportend UNIT16 End of range of valid destination
ports; requires protocol

comment STRING text string up to 256 characters

17.14.10.7. TCP/UDP/SCTP

Protocol ID: tcp, udp, sctp
The chain parameter is ignored for this type of traffic and should either be omitted or set to root.

Table 17.9. TCP/UDP/SCTP protocol types

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP
address

scripto IP_ADDR Start of range of source IP
address

srcipfrom IP_ADDR End of range of source IP address

dstipfrom IP_ADDR Start of range of destination IP
address

dstipto IP_ADDR End of range of destination IP
address

scrportstart UNIT16 Start of range of valid source

ports; requires protocol

srcportend UINT16 End of range of valid source ports;
requires protocol

dstportstart UNIT16 Start of range of valid destination
ports; requires protocol

247

Virtualization Deployment and Administration Guide

Attribute Name

dstportend

comment

state

flags

ipset

ipsetflags

17.14.10.8. ICMP

Protocol ID: icmp

Datatype

UNIT16

STRING

STRING

STRING

STRING

IPSETFLAGS

Definition

End of range of valid destination
ports; requires protocol

text string up to 256 characters

comma separated list of
NEW,ESTABLISHED,RELATED,I
NVALID or NONE

TCP-only: format of mask/flags
with mask and flags each being a
comma separated list of
SYN,ACK,URG,PSH,FIN,RST or
NONE or ALL

The name of an IPSet managed
outside of libvirt

flags for the IPSet; requires ipset
attribute

Note: The chain parameter is ignored for this type of traffic and should either be omitted or set to root.

Table 17.10. ICMP protocol types

Attribute Name

srcmacaddr

srcmacmask

dstmacaddr

dstmacmask

srcipaddr

srcipmask

dstipaddr

248

Datatype

MAC_ADDR

MAC_MASK

MAD_ADDR

MAC_MASK

IP_ADDR

IP_MASK

IP_ADDR

Definition

MAC address of sender

Mask applied to the MAC address
of the sender

MAC address of the destination

Mask applied to the MAC address
of the destination

Source IP address

Mask applied to source IP address

Destination IP address

CHAPTER 17. VIRTUAL NETWORKING

Attribute Name Datatype Definition

dstipmask IP_MASK Mask applied to destination IP
address

srcipfrom IP_ADDR start of range of source IP address

scripto IP_ADDR end of range of source IP address

dstipfrom IP_ADDR Start of range of destination IP
address

dstipto IP_ADDR End of range of destination IP
address

type UNIT16 ICMP type

code UNIT16 ICMP code

comment STRING text string up to 256 characters

state STRING comma separated list of

NEW,ESTABLISHED,RELATED,|
NVALID or NONE

ipset STRING The name of an IPSet managed
outside of libvirt

ipsetflags IPSETFLAGS flags for the IPSet; requires ipset
attribute

17.14.10.9. IGMP, ESP, AH, UDPLITE, 'ALL’
Protocol ID: igmp, esp, ah, udplite, all
The chain parameter is ignored for this type of traffic and should either be omitted or set to root.

Table 17.11. IGMP, ESP, AH, UDPLITE, 'ALL’

Attribute Name Datatype Definition
srcmacaddr MAC_ADDR MAC address of sender
srcmacmask MAC_MASK Mask applied to the MAC address

of the sender

dstmacaddr MAD_ADDR MAC address of the destination

249

Virtualization Deployment and Administration Guide

Attribute Name Datatype Definition

dstmacmask MAC_MASK Mask applied to the MAC address
of the destination

srcipaddr IP_ADDR Source |IP address

srcipmask IP_MASK Mask applied to source IP address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP
address

srcipfrom IP_ADDR start of range of source IP address

scripto IP_ADDR end of range of source IP address

dstipfrom IP_ADDR Start of range of destination IP
address

dstipto IP_ADDR End of range of destination IP
address

comment STRING text string up to 256 characters

state STRING comma separated list of

NEW,ESTABLISHED,RELATED,|
NVALID or NONE

ipset STRING The name of an IPSet managed
outside of libvirt

ipsetflags IPSETFLAGS flags for the IPSet; requires ipset
attribute

17.14.10.10. TCP/UDP/SCTP over IPV6
Protocol ID: tcp-ipv6, udp-ipv6, sctp-ipv6
The chain parameter is ignored for this type of traffic and should either be omitted or set to root.

Table 17.12. TCP, UDP, SCTP over IPv6 protocol types

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

250

CHAPTER 17. VIRTUAL NETWORKING

Attribute Name Datatype Definition

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP
address

srcipfrom IP_ADDR start of range of source IP address

scripto IP_ADDR end of range of source IP address

dstipfrom IP_ADDR Start of range of destination IP
address

dstipto IP_ADDR End of range of destination IP
address

srcportstart UINT16 Start of range of valid source ports

srcportend UINT16 End of range of valid source ports

dstportstart UINT16 Start of range of valid destination
ports

dstportend UINT16 End of range of valid destination
ports

comment STRING text string up to 256 characters

state STRING comma separated list of

NEW,ESTABLISHED,RELATED,|
NVALID or NONE

ipset STRING The name of an IPSet managed
outside of libvirt

ipsetflags IPSETFLAGS flags for the IPSet; requires ipset
attribute

17.14.10.11. ICMPv6

Protocol ID: icmpv6

The chain parameter is ignored for this type of traffic and should either be omitted or set to root.

251

Virtualization Deployment and Administration Guide

Table 17.13. ICMPv6 protocol types

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP
address

srcipfrom IP_ADDR start of range of source IP address

scripto IP_ADDR end of range of source IP address

dstipfrom IP_ADDR Start of range of destination IP
address

dstipto IP_ADDR End of range of destination IP
address

type UINT16 ICMPV6 type

code UINT16 ICMPv6 code

comment STRING text string up to 256 characters

state STRING comma separated list of

NEW,ESTABLISHED,RELATED,|
NVALID or NONE

ipset STRING The name of an IPSet managed
outside of libvirt

ipsetflags IPSETFLAGS flags for the IPSet; requires ipset
attribute

17.14.10.12. IGMP, ESP, AH, UDPLITE, 'ALL' over IPv6
Protocol ID: igmp-ipv6, esp-ipv6, ah-ipv6, udplite-ipv6, all-ipve
The chain parameter is ignored for this type of traffic and should either be omitted or set to root.

Table 17.14. IGMP, ESP, AH, UDPLITE, 'ALL' over IPv6 protocol types

252

CHAPTER 17. VIRTUAL NETWORKING

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP
address

srcipfrom IP_ADDR start of range of source IP address

scripto IP_ADDR end of range of source IP address

dstipfrom IP_ADDR Start of range of destination IP
address

dstipto IP_ADDR End of range of destination IP
address

comment STRING text string up to 256 characters

state STRING comma separated list of

NEW,ESTABLISHED,RELATED,|
NVALID or NONE

ipset STRING The name of an IPSet managed
outside of libvirt

ipsetflags IPSETFLAGS flags for the IPSet; requires ipset
attribute

17.14.11. Advanced Filter Configuration Topics

The following sections discuss advanced filter configuration topics.

17.14.11.1. Connection tracking

The network filtering subsystem (on Linux) makes use of the connection tracking support of IP tables.
This helps in enforcing the direction of the network traffic (state match) as well as counting and limiting
the number of simultaneous connections towards a guest virtual machine. As an example, if a guest
virtual machine has TCP port 8080 open as a server, clients may connect to the guest virtual machine on
port 8080. Connection tracking and enforcement of the direction and then prevents the guest virtual
machine from initiating a connection from (TCP client) port 8080 to the host physical machine back to a
remote host physical machine. More importantly, tracking helps to prevent remote attackers from
establishing a connection back to a guest virtual machine. For example, if the user inside the guest

253

Virtualization Deployment and Administration Guide

virtual machine established a connection to port 80 on an attacker site, the attacker will not be able to
initiate a connection from TCP port 80 back towards the guest virtual machine. By default the connection
state match that enables connection tracking and then enforcement of the direction of traffic is turned on.

Example 17.9. XML example for turning off connections to the TCP port

The following shows an example XML fragment where this feature has been turned off for incoming
connections to TCP port 12345.

[...]

<rule direction='in' action='accept' statematch='false'>
<cp dstportstart='12345"'/>
</rule>

[...]

This now allows incoming traffic to TCP port 12345, but would also enable the initiation from (client)
TCP port 12345 within the VM, which may or may not be desirable.

17.14.11.2. Limiting number of connections

To limit the number of connections a guest virtual machine may establish, a rule must be provided that
sets a limit of connections for a given type of traffic. If for example a VM is supposed to be allowed to
only ping one other IP address at a time and is supposed to have only one active incoming ssh
connection at a time.

254

Example 17.10. XML sample file that sets limits to connections

The following XML fragment can be used to limit connections

[...]
<rule action='drop' direction='in' priority='400"'>
<tcp connlimit-above='1"'/>

</rule>

<rule action='accept' direction='in' priority='500"'>
<tcp dstportstart='22"'/>

</rule>

<rule action='drop' direction='out' priority='400"'>
<icmp connlimit-above='1'/>

</rule>

<rule action='accept' direction='out' priority='500"'>
<icmp/>

</rule>

<rule action='accept' direction='out' priority='500"'>
<udp dstportstart='53'/>

</rule>

<rule action='drop' direction='inout' priority='1000'>
<all/>

</rule>

[...]

Lol
3%

+)_

XK

CHAPTER 17. VIRTUAL NETWORKING

NOTE

Limitation rules must be listed in the XML prior to the rules for accepting traffic. According
to the XML file in Example 17.10, “XML sample file that sets limits to connections’, an
additional rule for allowing DNS traffic sent to port 22 go out the guest virtual machine,
has been added to avoid ssh sessions not getting established for reasons related to DNS
lookup failures by the ssh daemon. Leaving this rule out may result in the ssh client
hanging unexpectedly as it tries to connect. Additional caution should be used in regards
to handling timeouts related to tracking of traffic. An ICMP ping that the user may have
terminated inside the guest virtual machine may have a long timeout in the host physical
machine's connection tracking system and will therefore not allow another ICMP ping to
go through.

The best solution is to tune the timeout in the host physical machine's sysfs with the
following command:# echo 3 >
/proc/sys/net/netfilter/nf_conntrack_icmp_timeout. This command sets
the ICMP connection tracking timeout to 3 seconds. The effect of this is that once one
ping is terminated, another one can start after 3 seconds.

If for any reason the guest virtual machine has not properly closed its TCP connection,
the connection to be held open for a longer period of time, especially if the TCP timeout
value was set for a large amount of time on the host physical machine. In addition, any
idle connection may result in a timeout in the connection tracking system which can be re-
activated once packets are exchanged.

However, if the limit is set too low, newly initiated connections may force an idle
connection into TCP backoff. Therefore, the limit of connections should be set rather high
so that fluctuations in new TCP connections do not cause odd traffic behavior in relation
to idle connections.

17.14.11.3. Command-line tools

virsh has been extended with life-cycle support for network filters. All commands related to the network
filtering subsystem start with the prefix nwfilter. The following commands are available:

nwfilter-1list : lists UUIDs and names of all network filters

nwfilter-define : defines a new network filter or updates an existing one (must supply a
nwfilter-undefine : deletes a specified network filter (must supply a name). Do not delete a
network filter currently in use.

nwfilter-dumpxml : displays a specified network filter (must supply a name)

nwfilter-edit : edits a specified network filter (must supply a name)

17.14.11.4. Pre-existing network filters

The following is a list of example network filters that are automatically installed with libvirt:

Table 17.15. ICMPv6 protocol types

255

Virtualization Deployment and Administration Guide

Protocol Name Description

allow-arp Accepts all incoming and outgoing Address
Resolution Protocol (ARP) traffic to a guest virtual
machine.

no-arp-spoofing, no-arp-mac-spoofing, These filters prevent a guest virtual machine from

and no-arp-ip-spoofing spoofing ARP traffic. In addition, they only allows

ARP request and reply messages, and enforce that
those packets contain:

e no-arp-spoofing - the MAC and IP
addresses of the guest

e no-arp-mac-spoofing - the MAC address of
the guest

e no-arp-ip-spoofing - the IP address of the
guest

low-dhcp Allows a guest virtual machine to request an IP
address via DHCP (from any DHCP server).

low-dhcp-server Allows a guest virtual machine to request an IP
address from a specified DHCP server. The dotted
decimal IP address of the DHCP server must be
provided in a reference to this filter. The name of the
variable must be DHCPSERVER.

low-ipv4 Accepts all incoming and outgoing IPv4 traffic to a
virtual machine.

low-incoming-ipv4 Accepts only incoming IPv4 traffic to a virtual
machine. This filter is a part of the clean-
traffic filter.

no-ip-spoofing Prevents a guest virtual machine from sending IP
packets with a source IP address different from the
one inside the packet. This filter is a part of the
clean-traffic filter.

no-ip-multicast Prevents a guest virtual machine from sending IP
multicast packets.

no-mac-broadcast Prevents outgoing IPv4 traffic to a specified MAC
address. This filter is a part of the clean-traffic
filter.

no-other-12-traffic Prevents all layer 2 networking traffic except traffic

specified by other filters used by the network. This
filter is a part of the clean-traffic filter.

256

CHAPTER 17. VIRTUAL NETWORKING

Protocol Name Description

no-other-rarp-traffic, gemu-announce- These filters allow QEMU's self-announce Reverse

self, gemu-announce-self-rarp Address Resolution Protocol (RARP) packets, but
prevent all other RARP traffic. All of them are also
included in the clean-traffic filter.

clean-traffic Prevents MAC, IP and ARP spoofing. This filter
references several other filters as building blocks.

These filters are only building blocks and require a combination with other filters to provide useful
network traffic filtering. The most used one in the above list is the clean-traffic filter. This filter itself can
for example be combined with the no-ip-multicast filter to prevent virtual machines from sending IP
multicast traffic on top of the prevention of packet spoofing.

17.14.11.5. Writing your own filters

Since libvirt only provides a couple of example networking filters, you may consider writing your own.
When planning on doing so there are a couple of things you may need to know regarding the network
filtering subsystem and how it works internally. Certainly you also have to know and understand the
protocols very well that you want to be filtering on so that no further traffic than what you want can pass
and that in fact the traffic you want to allow does pass.

The network filtering subsystem is currently only available on Linux host physical machines and only
works for QEMU and KVM type of virtual machines. On Linux, it builds upon the support for ebtables,
iptables and ip6tables and makes use of their features. Considering the list found in Section 17.14.10,
“Supported Protocols” the following protocols can be implemented using ebtables:

e mac

e stp (spanning tree protocol)

e vian (802.1Q)

e arp, rarp

e ipv4

e ipv6

Any protocol that runs over IPv4 is supported using iptables, those over IPv6 are implemented using
ip6tables.

Using a Linux host physical machine, all traffic filtering rules created by libvirt's network filtering
subsystem first passes through the filtering support implemented by ebtables and only afterwards
through iptables or ip6tables filters. If a filter tree has rules with the protocols including: mac, stp, vian
arp, rarp, ipv4, or ipv6; the ebtable rules and values listed will automatically be used first.

Multiple chains for the same protocol can be created. The name of the chain must have a prefix of one of
the previously enumerated protocols. To create an additional chain for handling of ARP traffic, a chain
with name arp-test, can for example be specified.

As an example, it is possible to filter on UDP traffic by source and destination ports using the ip protocol
filter and specifying attributes for the protocol, source and destination IP addresses and ports of UDP

257

Virtualization Deployment and Administration Guide

packets that are to be accepted. This allows early filtering of UDP traffic with ebtables. However, once an
IP or IPv6 packet, such as a UDP packet, has passed the ebtables layer and there is at least one rule in
a filter tree that instantiates iptables or ip6tables rules, a rule to let the UDP packet pass will also be
necessary to be provided for those filtering layers. This can be achieved with a rule containing an
appropriate udp or udp-ipv6 traffic filtering node.

Example 17.11. Creating a custom filter

Suppose a filter is needed to fulfill the following list of requirements:
e prevents a VM's interface from MAC, IP and ARP spoofing
e opens only TCP ports 22 and 80 of a VM's interface

e allows the VM to send ping traffic from an interface but not let the VM be pinged on the
interface

e allows the VM to do DNS lookups (UDP towards port 53)

The requirement to prevent spoofing is fulfilled by the existing clean-traffic network filter, thus
the way to do this is to reference it from a custom filter.

To enable traffic for TCP ports 22 and 80, two rules are added to enable this type of traffic. To allow
the guest virtual machine to send ping traffic a rule is added for ICMP traffic. For simplicity reasons,
general ICMP traffic will be allowed to be initiated from the guest virtual machine, and will not be
specified to ICMP echo request and response messages. All other traffic will be prevented to reach or
be initiated by the guest virtual machine. To do this a rule will be added that drops all other traffic.
Assuming the guest virtual machine is called test and the interface to associate our filter with is
called etho, a filter is created named test-etho.

The result of these considerations is the following network filter XML:

<filter name='test-eth0'>

<!- - This rule references the clean traffic filter to prevent MAC, IP
and ARP spoofing. By not providing an IP address parameter, libvirt will
detect the IP address the guest virtual machine is using. - ->

<filterref filter='clean-traffic'/>

<!- - This rule enables TCP ports 22 (ssh) and 80 (http) to be
reachable - ->
<rule action='accept' direction='in'>
<tcp dstportstart='22"'/>
</rule>

<rule action='accept' direction='in'>
<tcp dstportstart='80'/>

</rule>
<!- - This rule enables general ICMP traffic to be initiated by the
guest virtual machine including ping traffic - ->
<rule action='accept' direction='out'>
<icmp/>
</rule>>
<!- - This rule enables outgoing DNS lookups using UDP - ->

<rule action='accept' direction='out'>

258

CHAPTER 17. VIRTUAL NETWORKING

<udp dstportstart='53'/>
</rule>
<!- - This rule drops all other traffic - ->

<rule action='drop' direction='inout'>
<all/>
</rule>

</filter>

17.14.11.6. Sample custom filter

Although one of the rules in the above XML contains the IP address of the guest virtual machine as
either a source or a destination address, the filtering of the traffic works correctly. The reason is that
whereas the rule's evaluation occurs internally on a per-interface basis, the rules are additionally
evaluated based on which (tap) interface has sent or will receive the packet, rather than what their
source or destination IP address may be.

Example 17.12. Sample XML for network interface descriptions

An XML fragment for a possible network interface description inside the domain XML of the test guest
virtual machine could then look like this:

[...]
<interface type='bridge'>
<source bridge='mybridge'/>
<filterref filter='test-etho'/>
</interface>

[...]

To more strictly control the ICMP traffic and enforce that only ICMP echo requests can be sent from
the guest virtual machine and only ICMP echo responses be received by the guest virtual machine,
the above ICMP rule can be replaced with the following two rules:

<!- - enable outgoing ICMP echo requests- ->
<rule action='accept' direction='out'>

<icmp type='8'/>
</rule>

<!- - enable incoming ICMP echo replies- ->
<rule action='accept' direction='in'>

<icmp type='0Q'/>
</rule>

Example 17.13. Second example custom filter

This example demonstrates how to build a similar filter as in the example above, but extends the list
of requirements with an ftp server located inside the guest virtual machine. The requirements for this
filter are:

e prevents a guest virtual machine's interface from MAC, IP, and ARP spoofing

259

Virtualization Deployment and Administration Guide

260

e opens only TCP ports 22 and 80 in a guest virtual machine's interface

e allows the guest virtual machine to send ping traffic from an interface but does not allow the
guest virtual machine to be pinged on the interface

e allows the guest virtual machine to do DNS lookups (UDP towards port 53)
e enables the ftp server (in active mode) so it can run inside the guest virtual machine

The additional requirement of allowing an FTP server to be run inside the guest virtual machine maps
into the requirement of allowing port 21 to be reachable for FTP control traffic as well as enabling the
guest virtual machine to establish an outgoing TCP connection originating from the guest virtual
machine's TCP port 20 back to the FTP client (FTP active mode). There are several ways of how this
filter can be written and two possible solutions are included in this example.

The first solution makes use of the state attribute of the TCP protocol that provides a hook into the
connection tracking framework of the Linux host physical machine. For the guest virtual machine-
initiated FTP data connection (FTP active mode) the RELATED state is used to enable detection that
the guest virtual machine-initiated FTP data connection is a consequence of (or 'has a relationship
with') an existing FTP control connection, thereby allowing it to pass packets through the firewall.
The RELATED state, however, is only valid for the very first packet of the outgoing TCP connection
for the FTP data path. Afterwards, the state is ESTABLISHED, which then applies equally to the
incoming and outgoing direction. All this is related to the FTP data traffic originating from TCP port 20
of the guest virtual machine. This then leads to the following solution:

<filter name='test-eth0'>

<!- - This filter (eth@®) references the clean traffic filter to
prevent MAC, IP, and ARP spoofing. By not providing an IP address
parameter, libvirt will detect the IP address the guest virtual machine
is using. - ->

<filterref filter='clean-traffic'/>

<!- - This rule enables TCP port 21 (FTP-control) to be reachable - ->
<rule action='accept' direction='in'>

<tcp dstportstart='21'/>
</rule>

<!- - This rule enables TCP port 20 for guest virtual machine-
initiated FTP data connection related to an existing FTP control
connection - ->
<rule action='accept' direction='out'>
<tcp srcportstart='20"' state='RELATED,ESTABLISHED'/>

</rule>
<!- - This rule accepts all packets from a client on the FTP data
connection - ->

<rule action='accept' direction='in'>
<tcp dstportstart='20' state='ESTABLISHED'/>
</rule>

<!- - This rule enables TCP port 22 (SSH) to be reachable - ->
<rule action='accept' direction='in'>

<tcp dstportstart='22"'/>
</rule>

<!- -This rule enables TCP port 80 (HTTP) to be reachable - ->

CHAPTER 17. VIRTUAL NETWORKING

<rule action='accept' direction='in'>
<tcp dstportstart='80'/>

</rule>
<!- - This rule enables general ICMP traffic to be initiated by the
guest virtual machine, including ping traffic - ->
<rule action='accept' direction='out'>
<icmp/>
</rule>
<!- - This rule enables outgoing DNS lookups using UDP - ->

<rule action='accept' direction='out'>
<udp dstportstart='53'/>
</rule>

<!- - This rule drops all other traffic - ->

<rule action='drop' direction='inout'>
<all/>

</rule>

</filter>

Before trying out a filter using the RELATED state, you have to make sure that the appropriate
connection tracking module has been loaded into the host physical machine's kernel. Depending on
the version of the kernel, you must run either one of the following two commands before the FTP
connection with the guest virtual machine is established:

e #modprobe nf_conntrack_ftp - where available OR
e #modprobe ip_conntrack_ftp if above is not available

If protocols other than FTP are used in conjunction with the RELATED state, their corresponding
module must be loaded. Modules are available for the protocols: ftp, tftp, irc, sip, sctp, and amanda.

The second solution makes use of the state flags of connections more than the previous solution did.
This solution takes advantage of the fact that the NEW state of a connection is valid when the very
first packet of a traffic flow is detected. Subsequently, if the very first packet of a flow is accepted, the
flow becomes a connection and thus enters into the ESTABLISHED state. Therefore, a general rule
can be written for allowing packets of ESTABLISHED connections to reach the guest virtual machine
or be sent by the guest virtual machine. This is done writing specific rules for the very first packets
identified by the NEW state and dictates the ports that the data is acceptable. All packets meant for
ports that are not explicitly accepted are dropped, thus not reaching an ESTABLISHED state. Any
subsequent packets sent from that port are dropped as well.

<filter name='test-eth0'>

<!- - This filter references the clean traffic filter to prevent MAC,
IP and ARP spoofing. By not providing and IP address parameter, libvirt
will detect the IP address the VM is using. - ->

<filterref filter='clean-traffic'/>

<!- - This rule allows the packets of all previously accepted
connections to reach the guest virtual machine - ->
<rule action='accept' direction='in'>
<all state='ESTABLISHED'/>
</rule>

261

Virtualization Deployment and Administration Guide

<!- - This rule allows the packets of all previously accepted and
related connections be sent from the guest virtual machine - ->
<rule action='accept' direction='out'>
<all state='ESTABLISHED, RRELATED'/>
</rule>
<!- - This rule enables traffic towards port 21 (FTP) and port 22
(SSH)- ->
<rule action='accept' direction='in'>
<tcp dstportstart='21"' dstportend='22"' state='NEW'/>
</rule>
<!- - This rule enables traffic towards port 80 (HTTP) - ->
<rule action='accept' direction='in'>
<tcp dstportstart='80' state='NEW'/>
</rule>
<!- - This rule enables general ICMP traffic to be initiated by the
guest virtual machine, including ping traffic - ->
<rule action='accept' direction='out'>
<icmp state='NEW'/>
</rule>
<!- - This rule enables outgoing DNS lookups using UDP - ->
<rule action='accept' direction='out'>
<udp dstportstart='53"' state='NEW'/>
</rule>
<!- - This rule drops all other traffic - ->
<rule action='drop' direction='inout'>
<all/>
</rule>
</filter>

17.14.12. Limitations

The following is a list of the currently known limitations of the network filtering subsystem.

e VM migration is only supported if the whole filter tree that is referenced by a guest virtual
machine's top level filter is also available on the target host physical machine. The network filter
clean-traffic for example should be available on all libvirt installations and thus enable
migration of guest virtual machines that reference this filter. To assure version compatibility is not
a problem make sure you are using the most current version of libvirt by updating the package
regularly.

e Migration must occur between libvirt insallations of version 0.8.1 or later in order not to lose the
network traffic filters associated with an interface.

e VLAN (802.1Q) packets, if sent by a guest virtual machine, cannot be filtered with rules for
protocol IDs arp, rarp, ipv4 and ipv6. They can only be filtered with protocol IDs, MAC and
VLAN. Therefore, the example filter clean-traffic Example 17.1, “An example of network filtering”
will not work as expected.

262

CHAPTER 17. VIRTUAL NETWORKING

17.15. CREATING TUNNELS

This section will demonstrate how to implement different tunneling scenarios.

17.15.1. Creating Multicast Tunnels

A multicast group is setup to represent a virtual network. Any guest virtual machines whose network
devices are in the same multicast group can talk to each other even across host physical machines. This
mode is also available to unprivileged users. There is no default DNS or DHCP support and no outgoing
network access. To provide outgoing network access, one of the guest virtual machines should have a
second NIC which is connected to one of the first four network types thus providing appropriate routing.
The multicast protocol is compatible the guest virtual machine user mode. Note that the source address
that you provide must be from the address used for the multicast address block.

To create a multicast tunnel place the following XML details into the <devices> element:

<devices>
<interface type='mcast'>
<mac address='52:54:00:6d:90:01"'>
<source address='230.0.0.1' port='5558"'/>
</interface>
</devices>

Figure 17.28. Multicast tunnel domain XMI example

17.15.2. Creating TCP Tunnels

A TCP client-server architecture provides a virtual network. In this configuration, one guest virtual
machine provides the server end of the network while all other guest virtual machines are configured as
clients. All network traffic is routed between the guest virtual machine clients via the guest virtual
machine server. This mode is also available for unprivileged users. Note that this mode does not provide
default DNS or DHCP support and it does not provide outgoing network access. To provide outgoing
network access, one of the guest virtual machines should have a second NIC which is connected to one
of the first four network types thus providing appropriate routing.

To create a TCP tunnel place the following XML details into the <devices> element:

263

Virtualization Deployment and Administration Guide

<devices>
<interface type='server'>
<mac address='52:54:00:22:¢c9:42"'>
<source address='192.168.0.1"' port='5558"'/>
</interface>

<interface type='client'>
<mac address='52:54:00:8b:c9:51"'>
<source address='192.168.0.1' port='5558"'/>
</interface>
</devices>

Figure 17.29. TCP tunnel domain XMl example

17.16. SETTING VLAN TAGS

virtual local area network (vLAN)tags are added using the virsh net-edit command. This tag can
also be used with PCI device assignment with SR-IOV devices. For more information, see
Section 16.2.3, “Configuring PCI Assignment with SR-IOV Devices”.

<network>
<name>ovs-net</name>
<forward mode='bridge'/>
<bridge name='ovsbro'/>
<virtualport type='openvswitch'>
<parameters interfaceid='09bl11c53-8b5c-4eeb-8f00-d84eaabaaadf'/>
</virtualport>
<vlan trunk='yes'>
<tag id='42' nativeMode='untagged'/>
<tag id='47'/>
</vlan>
<portgroup name='dontpanic'>
<vlan>
<tag id='42'/>
</vlan>
</portgroup>
</network>

Figure 17.30. vSetting VLAN tag (on supported network types only)

If (and only if) the network type supports vlan tagging transparent to the guest, an optional <vlan>
element can specify one or more vlan tags to apply to the traffic of all guests using this network.
(openvswitch and type="hostdev' SR-IOV networks do support transparent vlan tagging of guest traffic;
everything else, including standard linux bridges and libvirt's own virtual networks, do not support it.
802.1Qbh (vn-link) and 802.1Qbg (VEPA) switches provide their own way (outside of libvirt) to tag guest
traffic onto specific vlans.) As expected, the tag attribute specifies which vlan tag to use. If a network has

264

CHAPTER 17. VIRTUAL NETWORKING

more than one <vlan> element defined, it is assumed that the user wants to do VLAN trunking using all
the specified tags. If vlan trunking with a single tag is required, the optional attribute trunk="yes' can be
added to the vlan element.

For network connections using openvswitch it is possible to configure the 'native-tagged' and 'native-
untagged' vlan modes. This uses the optional nativeMode attribute on the <tag> element: nativeMode
may be set to 'tagged' or 'untagged'. The id attribute of the element sets the native vian.

<vlan> elements can also be specified in a <portgroup> element, as well as directly in a domain's
<interface> element. If a vlan tag is specified in multiple locations, the setting in<interface> takes
precedence, followed by the setting in the <portgroup> selected by the interface config. The <vlan>
in <network> will be selected only if none is given in<portgroup> or <interface>.

17.17. APPLYING QOS TO YOUR VIRTUAL NETWORK

Quality of Service (QoS) refers to the resource control systems that guarantees an optimal experience for
all users on a network, making sure that there is no delay, jitter, or packet loss. QoS can be application
specific or user / group specific. See Section 23.18.9.14, “Quality of service (QoS)” for more information.

265

Virtualization Deployment and Administration Guide

CHAPTER 18. REMOTE MANAGEMENT OF GUESTS

This section explains how to remotely manage your guests.

18.1. TRANSPORT MODES

For remote management, 1ibvirt supports the following transport modes:

Transport Layer Security (TLS)

Transport Layer Security TLS 1.0 (SSL 3.1) authenticated and encrypted TCP/IP socket, usually listening
on a public port number. To use this, you will need to generate client and server certificates. The
standard port is 16514. For detailed instructions, see Section 18.3, “Remote Management over TLS and
SSL”.

SSH

Transported over a Secure Shell protocol (SSH) connection. The libvirt daemon (1ibvirtd) must be
running on the remote machine. Port 22 must be open for SSH access. You should use some sort of
SSH key management (for example, the ssh-agent utility) or you will be prompted for a password. For
detailed instructions, see Section 18.2, “Remote Management with SSH”.

UNIX Sockets

UNIX domain sockets are only accessible on the local machine. Sockets are not encrypted, and use
UNIX permissions or SELinux for authentication. The standard socket names are
/var/run/libvirt/libvirt-sock and /var/run/libvirt/1libvirt-sock-ro (for read-only
connections).

ext

The ext parameter is used for any external program which can make a connection to the remote
machine by means outside the scope of libvirt. This parameter is unsupported.

TCP

Unencrypted TCP/IP socket. Not recommended for production use, this is normally disabled, but an
administrator can enable it for testing or use over a trusted network. The default port is 16509.

The default transport, if no other is specified, is TLS.

Remote URIs

A Uniform Resource ldentifier (URI) is used by virsh and libvirt to connect to a remote host. URIs can
also be used with the - -connect parameter for the virsh command to execute single commands or
migrations on remote hosts. Remote URIs are formed by taking ordinary local URIs and adding a host
name or a transport name, or both. As a special case, using a URI scheme of 'remote’ will tell the remote
libvirtd server to probe for the optimal hypervisor driver. This is equivalent to passing a NULL URI for a
local connection

libvirt URIs take the general form (content in square brackets, "[]", represents optional functions):
I driver[+transport]://[username@][hostname][:port]/path[?extraparameters]

Note that if the hypervisor (driver) is QEMU, the path is mandatory.

The following are examples of valid remote URlIs:

266

CHAPTER 18. REMOTE MANAGEMENT OF GUESTS

e gemu://hostname/

The transport method or the host name must be provided to target an external location. For more
information, see the libvirt upstream documentation.

Examples of remote management parameters

e Connect to a remote KVM host named host2, using SSH transport and the SSH user name
virtuser. The connect command for each is connect [URI] [--readonly]. For more
information about the virsh connect command, see Section 20.4, “Connecting to the
Hypervisor with virsh Connect”

I gemu+ssh://virtuser@host2/
e Connect to a remote KVM hypervisor on the host named host2 using TLS.

I gemu://host2/

Testing examples

e Connect to the local KVM hypervisor with a non-standard UNIX socket. The full path to the UNIX
socket is supplied explicitly in this case.

I gemu+unix:///system?socket=/opt/libvirt/run/libvirt/libvirt-sock

e Connect to the libvirt daemon with an non-encrypted TCP/IP connection to the server with the IP
address 10.1.1.10 on port 5000. This uses the test driver with default settings.

I test+tcp://10.1.1.10:5000/default

Extra URI Parameters

Extra parameters can be appended to remote URIs. The table below covers the recognized parameters.
All other parameters are ignored. Note that parameter values must be URI-escaped (that is, a question
mark (?) is appended before the parameter and special characters are converted into the URI format).

Table 18.1. Extra URI parameters

Name Transport mode Description Example usage

267

http://libvirt.org/guide/html/Application_Development_Guide-Architecture-Remote_URIs.html

Virtualization Deployment and Administration Guide

Name

name

command

socket

no_verify

no_tty

268

Transport mode

all modes

ssh and ext

unix and ssh

tls

ssh

Description

The name passed to the
remote
virConnectOpen
function. The name is
normally formed by
removing transport,
hostname, port
number, username,
and extra parameters
from the remote URI,
but in certain very
complex cases it may be
better to supply the
name explicitly.

The external command.
For ext transport this is
required. For ssh the
default is ssh. The PATH
is searched for the
command.

The path to the UNIX
domain socket, which
overrides the default.
For ssh transport, this is
passed to the remote
netcat command (see
netcat).

If set to a non-zero
value, this disables client
checks of the server's
certificate. Note that to
disable server checks of
the client's certificate or
IP address you must
change the libvirtd
configuration.

If set to a non-zero
value, this stops ssh
from asking for a
password if it cannot log
in to the remote
machine automatically .
Use this when you do
not have access to a
terminal.

Example usage

name=gemu:///system

command=/opt/openssh/
bin/ssh

socket=/opt/libvirt/run/lib

virt/libvirt-sock

no_verify=1

no_tty=1

CHAPTER 18. REMOTE MANAGEMENT OF GUESTS

18.2. REMOTE MANAGEMENT WITH SSH

The ssh package provides an encrypted network protocol that can securely send management functions
to remote virtualization servers. The method described below uses the 1ibvirt management
connection, securely tunneled over an SSH connection, to manage the remote machines. All the
authentication is done using SSH public key cryptography and passwords or passphrases gathered by
your local SSH agent. In addition, the VNC console for each guest is tunneled over SSH.
When using using SSH for remotely managing your virtual machines, be aware of the following problems:
e You require root log in access to the remote machine for managing virtual machines.
e The initial connection setup process may be slow.

e There is no standard or trivial way to revoke a user's key on all hosts or guests.

e SSH does not scale well with larger numbers of remote machines.

NOTE

Red Hat Virtualization enables remote management of large numbers of virtual machines.
For further details, see the Red Hat Virtualization documentation.

The following packages are required for SSH access:
e openssh
e openssh-askpass
e openssh-clients
e openssh-server

Configuring Password-less or Password-managed SSH Access for virt-manager

The following instructions assume you are starting from scratch and do not already have SSH keys set
up. If you have SSH keys set up and copied to the other systems, you can skip this procedure.

IMPORTANT

SSH keys are user-dependent and may only be used by their owners. A key's owner is
the user who generated it. Keys may not be shared across different users.

virt-manager must be run by the user who owns the keys to connect to the remote
host. That means, if the remote systems are managed by a non-root user, virt-
manager must be run in unprivileged mode. If the remote systems are managed by the
local root user, then the SSH keys must be owned and created by root.

You cannot manage the local host as an unprivileged user with virt-manager.

1. Optional: Changing user
Change user, if required. This example uses the local root user for remotely managing the other
hosts and the local host.

I$su—

269

https://access.redhat.com/documentation/en/red-hat-enterprise-virtualization/

Virtualization Deployment and Administration Guide

2. Generating the SSH key pair

Generate a public key pair on the machine where virt-manager is used. This example uses
the default key location, in the ~/ . ssh/ directory.

I # ssh-keygen -t rsa

. Copying the keys to the remote hosts

Remote login without a password, or with a pass-phrase, requires an SSH key to be distributed
to the systems being managed. Use the ssh-copy-id command to copy the key to root user at
the system address provided (in the example, root@host2. example.com).

ssh-copy-id -i ~/.ssh/id_rsa.pub root@host2.example.com
root@host2.example.com's password:

Afterwards, try logging into the machine and check the . ssh/authorized_keys file to make
sure unexpected keys have not been added:

I ssh root@host2.example.com

Repeat for other systems, as required.

. Optional: Add the passphrase to the ssh-agent

Add the pass-phrase for the SSH key to the ssh-agent, if required. On the local host, use the
following command to add the pass-phrase (if there was one) to enable password-less login.

I # ssh-add ~/.ssh/id_rsa

This command will fail to run if the ssh-agent is not running. To avoid errors or conflicts, make
sure that your SSH parameters are set correctly. See the Red Hat Enterprise System
Administration Guide for more information.

The libvirt daemon (1libvirtd)

The 1ibvirt daemon provides an interface for managing virtual machines. You must have the
libvirtd daemon installed and running on every remote host that you intend to manage this way.

$ ssh root@somehost
systemctl enable libvirtd.service
systemctl start libvirtd.service

After 1ibvirtd and SSH are configured, you should be able to remotely access and manage your
virtual machines. You should also be able to access your guests with VNC at this point.

Accessing Remote Hosts with virt-manager

Remote hosts can be managed with the virt-manager GUI tool. SSH keys must belong to the user
executing virt-manager for password-less login to work.

270

1. Start virt-manager.

2. Open the File = Add Connection menu.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-ssh-configuration.html

CHAPTER 18. REMOTE MANAGEMENT OF GUESTS

Add Connection

Hypervisor: QEMU/KVM st

Connect to remote host

Method: S55H v
sername: root
Hostname: v

Autoconnect: ol

Generated URIl: gemu:///system

Cancel Connect

Figure 18.1. Add connection menu

3. Use the drop down menu to select hypervisor type, and click the Connect to remote host check
box to open the Connection Method (in this case Remote tunnel over SSH), enter theUser
name and Hostname, then click Connect.

18.3. REMOTE MANAGEMENT OVER TLS AND SSL

You can manage virtual machines using the TLS and SSL protocols. TLS and SSL provides greater
scalability but is more complicated than SSH (refer to Section 18.2, “Remote Management with SSH”).
TLS and SSL is the same technology used by web browsers for secure connections. The 1ibvirt
management connection opens a TCP port for incoming connections, which is securely encrypted and
authenticated based on x509 certificates. The following procedures provide instructions on creating and
deploying authentication certificates for TLS and SSL management.

Procedure 18.1. Creating a certificate authority (CA) key for TLS management

1. Before you begin, confirm that gnutls-utils is installed. If not, install it:
I # yum install gnutls-utils

2. Generate a private key, using the following command:
I # certtool --generate-privkey > cakey.pem

3. After the key is generated, create a signature file so the key can be self-signed. To do this,
create a file with signature details and name it ca.info. This file should contain the following:

I cn = Name of your organization

271

Virtualization Deployment and Administration Guide

ca
cert_signing_key

4. Generate the self-signed key with the following command:

certtool --generate-self-signed --load-privkey cakey.pem --
I template ca.info --outfile cacert.pem

After the file is generated, the ca. info file can be deleted using the rm command. The file that
results from the generation process is named cacert . pem. This file is the public key
(certificate). The loaded file cakey . pem is the private key. For security purposes, this file should
be kept private, and not reside in a shared space.

5. Install the cacert . pem CA certificate file on all clients and servers in the
/etc/pki/CA/cacert.pem directory to let them know that the certificate issued by your CA
can be trusted. To view the contents of this file, run:

I # certtool -i --infile cacert.pem

This is all that is required to set up your CA. Keep the CA's private key safe, as you will need it in
order to issue certificates for your clients and servers.

Procedure 18.2. Issuing a server certificate

This procedure demonstrates how to issue a certificate with the X.509 Common Name (CN) field set to
the host name of the server. The CN must match the host name which clients will be using to connect to
the server. In this example, clients will be connecting to the server using the URI:

gemu: //mycommonname/system, so the CN field should be identical, for this example
"mycommoname".

1. Create a private key for the server.

I # certtool --generate-privkey > serverkey.pem

2. Generate a signature for the CA's private key by first creating a template file called
server.info. Make sure that the CN is set to be the same as the server's host name:

organization = Name of your organization
ch = mycommonname

tls_www_server

encryption_key

signing_key

3. Create the certificate:

certtool --generate-certificate --load-privkey serverkey.pem --
load-ca-certificate cacert.pem --load-ca-privkey cakey.pem \ --
template server.info --outfile servercert.pem

This results in two files being generated:

o serverkey.pem - The server's private key

272

CHAPTER 18. REMOTE MANAGEMENT OF GUESTS

o servercert.pem - The server's public key

4. Make sure to keep the location of the private key secret. To view the contents of the file, use the
following command:

I # certtool -i --infile servercert.pem

When opening this file, the CN= parameter should be the same as the CN that you set earlier.
For example, mycommonname.

5. Install the two files in the following locations:

o serverkey.pem - the server's private key. Place this file in the following location:
/etc/pki/libvirt/private/serverkey.pem

o servercert.pem - the server's certificate. Install it in the following location on the server:
/etc/pki/libvirt/servercert.pem

Procedure 18.3. Issuing a client certificate

1. For every client (that is to say any program linked with libvirt, such as virt-manager), you need
to issue a certificate with the X.509 Distinguished Name (DN) field set to a suitable name. This
needs to be decided on a corporate level.

For example purposes, the following information will be used:
I C=USA, ST=North Carolina, L=Raleigh, O=Red Hat, CN=name_of_client
2. Create a private key:

I # certtool --generate-privkey > clientkey.pem

3. Generate a signature for the CA's private key by first creating a template file called
client.info. The file should contain the following (fields should be customized to reflect your
region/location):

country = USA

state = North Carolina
locality = Raleigh
organization = Red Hat
cn = client1l
tls_www_client
encryption_key
signing_key

4. Sign the certificate with the following command:

certtool --generate-certificate --load-privkey clientkey.pem --
load-ca-certificate cacert.pem \ --load-ca-privkey cakey.pem --
template client.info --outfile clientcert.pem

5. Install the certificates on the client machine:

273

Virtualization Deployment and Administration Guide

cp clientkey.pem /etc/pki/libvirt/private/clientkey.pem
cp clientcert.pem /etc/pki/libvirt/clientcert.pem

18.4. CONFIGURING A VNC SERVER

To set up graphical desktop sharing between the host and the guest machine using Virtual Network
Computing (VNC), a VNC server has to be configured on the guest you wish to connect to. To do this,
VNC has to be specified as a graphics type in the devices element of the guest's XML file. For further
information, see Section 23.18.12, “Graphical Framebuffers”.

To connect to a VNC server, use the virt-viewer utility or the virt-manager interface.

18.5. ENHANCING REMOTE MANAGEMENT OF VIRTUAL MACHINES
WITH NSS

In Red Hat Enterprise Linux 7.3 and later, you can use the libvirt Network Security Services (NSS)
module to make it easier to connect to guests with SSH, TLS, SSL, as well as other remote login
services. In addition, the module also benefits utilities that use host name translation, such as ping.

To be able to use this functionality, install the libvirt-nss package:

I # yum install libvirt-nss

R

NOTE

If installing libvirt-nss fails, make sure that the Optional repository for Red Hat
Enterprise Linux is enabled. For instructions, see the System Administrator's Guide.

Finally, enable the module by adding 1ibvirt to the hosts line of the /etc/nsswitch. conf file, for
example as follows:

passwd: compat
shadow: compat
group: compat
hosts: files libvirt dns

The order in which modules are listed on the hosts line determines the order in which these modules
are consulted to find the specified remote guest. As a result, libvirt's NSS module is added to modules
that translate host domain names to IP addresses. This for example enables connecting to a remote
guest in NAT mode without setting a static IP address and only using the guest's hostname value:

ssh root@guest-hostname

root@guest-hostname's password:

Last login: Thu Aug 10 09:12:31 2017 from 192.168.122.1
[root@guestl-rhel7 ~]#

274

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sec-Configuring_Yum_and_Yum_Repositories.html#sec-Setting_repository_Options

CHAPTER 18. REMOTE MANAGEMENT OF GUESTS

NOTE
The guest's hostname may differ from the guest name displayed for example by virsh

1list. To display or configure the hostname on the guest, use the hostnamectl
commands.

275

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec_Configuring_Host_Names_Using_hostnamectl.html

Virtualization Deployment and Administration Guide

CHAPTER 19. MANAGING GUESTS WITH THE VIRTUAL
MACHINE MANAGER (VIRT-MANAGER)

This chapter describes the Virtual Machine Manager (virt-manager) windows, dialog boxes, and
various GUI controls.

virt-manager provides a graphical view of hypervisors and guests on your host system and on remote
host systems. virt-manager can perform virtualization management tasks, including:

e defining and creating guests,

e assigning memory,

e assigning virtual CPUs,

e monitoring operational performance,

e saving and restoring, pausing and resuming, and shutting down and starting guests,
e links to the textual and graphical consoles, and

e live and offline migrations.

IMPORTANT

It is important to note which user you are using. If you create a guest virtual machine with
one user, you will not be able to retrieve information about it using another user. This is
especially important when you create a virtual machine in virt-manager. The default user
is root in that case unless otherwise specified. Should you have a case where you cannot
list the virtual machine using the virsh list --all command, itis most likely due to
you running the command using a different user than you used to create the virtual
machine.

19.1. STARTING VIRT-MANAGER

To start virt-manager session open the Applications menu, then the System Tools menu and select
Virtual Machine Manager (virt-manager).

The virt-manager main window appears.

276

CHAPTER 19. MANAGING GUESTS WITH THE VIRTUAL MACHINE MANAGER (VIRT-MANAGER)

Virtual Machine Manager

File Edit View Help

E_-J | Ei]pen . B w

Name v CPU usage

Figure 19.1. Starting virt-manager

Alternatively, virt-manager can be started remotely using ssh as demonstrated in the following
command:

ssh -X host's address
[remotehost]# virt-manager

Using ssh to manage virtual machines and hosts is discussed further in Section 18.2, “Remote
Management with SSH”.

19.2. THE VIRTUAL MACHINE MANAGER MAIN WINDOW

277

Virtualization Deployment and Administration Guide

This main window displays all the running guests and resources used by guests. Select a guest by
double clicking the guest's name.

Virtual Machine Manager = o | X

File Edit View Help

E[___-j | E]Gpen > B w

Name v CPU usage

* localhost (QEMU)

rhely
Shutoff

D test-vm
— Shutoff

Figure 19.2. Virtual Machine Manager main window

19.3. THE VIRTUAL HARDWARE DETAILS WINDOW

The virtual hardware details window displays information about the virtual hardware configured for the
guest. Virtual hardware resources can be added, removed and modified in this window. To access the
virtual hardware details window, click the icon in the toolbar.

278

CHAPTER 19. MANAGING GUESTS WITH THE VIRTUAL MACHINE MANAGER (VIRT-MANAGER)

File Virtual Machine View SendKey

Show virtual hardware details

Figure 19.3. The virtual hardware details icon

Clicking the icon displays the virtual hardware details window.

rhel7.2 on GEMU/KVM - o x

Eile Virtual Machine View Send Key

- o o- @

Performance Name: rhel?.2

&3 crus uuID: cd07cd96-a03e-440a-a7cc-0a8b28952b68
fﬁ Memory Status: Runmng (Unpaused)
Boot Options

X Title:

() VirtlO Disk 1

,é/‘ |DE COROM 1 Description:

B NIC :3ci4e:58

|L/| Tablet

"_.'\:'. Mouse

- Hypervisor Details

== Keyboard

Hypervisor: KVM

Ij Display Spice

. Architecture: xB6_64

m Sound: ich6 .

Emulator: fusrflibexec/qemu-kvm

e Serial 1 Firmware: BIOS

&) Channel qemu-ga Chipset: i440FX

1 Channel spice

E vigeo ax.

!F Controller USB

m Controller PCI

m Controller IDE

EF Controller Virt!O Serial

‘é}' USE Redirector 1

@' USE Redirector 2

Add Hardware Cancel Apply

Figure 19.4. The virtual hardware details window

19.3.1. Applying Boot Options to Guest Virtual Machines

Using virt-manager you can select how the guest virtual machine will act on boot. The boot options will
not take effect until the guest virtual machine reboots. You can either power down the virtual machine
before making any changes, or you can reboot the machine afterwards. If you do not do either of these
options, the changes will happen the next time the guest reboots.

Procedure 19.1. Configuring boot options

279

Virtualization Deployment and Administration Guide

1. From the Virtual Machine Manager Edit menu, select Virtual Machine Details.

2. From the side panel, select Boot Options and then complete any or all of the following optional
steps:

a. To indicate that this guest virtual machine should start each time the host physical machine
boots, select the Autostart check box.

b. To indicate the order in which guest virtual machine should boot, click the Enable boot
menu check box. After this is checked, you can then check the devices you want to boot
from and using the arrow keys change the order that the guest virtual machine will use when
booting.

c. If you want to boot directly from the Linux kernel, expand the Direct kernel boot menu. Fill
in the Kernel path, Initrd path, and the Kernel arguments that you want to use.

3. Click Apply.

rhel7.2 on QEMU/KVM - a =

File Virtual Machine View Send Key
5 w (8 -~ &

B oyerview Autostart
=

Performance Start virtual machine on host boot up

Boot device order

o Enable boot menu
g Boot Options

L Virtlo Disk 1 ¥ [virtlo Disk 1

‘<__>/' |DE COROM 1 \=)IDE CDROM 1

B NIC :3c4e:58
@ Tablet

=N
() Mouse

== Keyboard
L;l Display Spice

m} Sound: iché

Caan Serial 1

¥ Direct kernel boot

Enable direct kernel boot
Kernel path Browse

& Channel gemu-ga Initrd path Eraiorcs
(i Channel spice
B video ax1

m Controller USB
m} Controller PCI
m Controller IDE

m Controller VirtlO Serial

Kernel args

@ USE Redirector 1
'@ USE Redirector 2

Add Hardware Cancel Apply

Figure 19.5. Configuring boot options

19.3.2. Attaching USB Devices to a Guest Virtual Machine

280

CHAPTER 19. MANAGING GUESTS WITH THE VIRTUAL MACHINE MANAGER (VIRT-MANAGER)

NOTE

In order to attach the USB device to the guest virtual machine, you first must attach it to
the host physical machine and confirm that the device is working. If the guest is running,
you need to shut it down before proceeding.

Procedure 19.2. Attaching