Logic Activities in Europe*

Yuri Gurevich?

1 Introduction

During Fall 1992, thanks to ONR, I had an opportunity to visit a fair number of West Eu-
ropean centers of logic research. I tried to learn more about logic investigations and appli-
cations in Europe with the hope that my experience may be useful to American researchers.
This report is concerned only with logic activities related to computer science, and Europe
here means usually Western Furope (one can learn only so much in one semester).

The idea of such a visit may seem ridiculous to some. The modern world is quickly
growing into a global village. There is plenty of communication between Europe and the
US. Many European researchers visit the US, and many American researchers visit Europe.
Neither Americans nor Europeans make secret of their logic research. Quite the opposite
is true. They advertise their research. From ESPRIT reports, the Bulletin of European
Association for Theoretical Computer Science, the Newsletter of Furopean Association for
Computer Science Logics, publications of Furopean Foundation for Logic, Language and
Information, publications of particular European universities, etc., one can get a good idea
of what is going on in Furope and who is doing what. Some European colleagues asked me
jokingly if I was on a reconnaissance mission. Well, sometimes a cow wants to suckle more
than the calf wants to suck (a Hebrew proverb).

It is amazing, however, how different computer science is, especially theoretical com-
puter science, in Europe and the US. American theoretical computer science centers heavily
around complexity theory. The two prime American theoretical conferences — ACM Sym-
posium on Theory of Computing (STOC) and IEEE Foundation of Computer Science Con-
ference (FOCS) — are largely devoted to complexity theory (in a wider sense of the term).
That does not exclude logic. As a matter of fact, important logic results have been published
in those conferences. However, STOC and FOCS logic papers belong, as a rule, to branches
of logic intimately related to complexity. Finite model theory is a good example of that;
see [Fagin 1990, Gurevich 1988] and especially [Immerman 1989]. The difference between
theoretical computer science and the rest of computer science (and computer engineering)
is relatively well delineated in this country.

In Europe, the line between theoretical computer science and the rest of computer
science and engineering is much more blurred, partially because computer science and en-
gineering in general are more theoretical. A much greater proportion of Furopean research
goes into programming language theory, semantics, specification languages, proof systems,
verification methods, etc. For brevity and the lack of a better term, I will use the term
“formal methods” for all of these areas. Europeans put much more faith and efforts into

*ACM SIGACT NEWS 25, No. 2, June 1994, 11-24.
tSupported by ONR grant N00014-91-J-1861. EECS Dept., University of Michigan, Ann Arbor, MI
48109-2122, gurevich@umich.edu



foundational investigation of software and hardware technology and into developing formal
methods for use in software and hardware.

Of course, things are not black and white. For example, the American conference on
Principles of Programming Languages is very theoretical (and European influence can be
easily discerned there), and there are excellent complexity theorists in Europe. Nevertheless
the gap is huge and, to a great extent, it is the gap between the complexity and formal
methods communities. The first is centered heavily in the US; there is a fair number of
reputable complexity theorists in Germany, but your fingers may suffice to count them in
France or Great Britain. The second spreads more evenly but plays a much greater role in
Europe. Only a few people work both in complexity and formal methods. An interesting
example of the European version of the split between the two communities is the Computer
Science Department of Edinburgh University in Scotland. They have two disjoint seminars.
One is their Theory Seminar. It is huge (as theory seminars go) and devoted to semantics
and formal methods in general; it is as good as any formal-methods seminar in the world.
The other one is devoted to complexity theory, also of excellent quality, but tiny. (I spoke
in both seminars and was told that such incidents are rare indeed.)

Too often complexity theorists are not interested at all in semantics and (what we call
here) formal methods, and too often experts in formal methods are not interested in and
do not know modern complexity theory. Furthermore, the formal methods field itself splits
into a number of areas speaking very different languages. Yes, there are numerous visits of
Americans to Furope and FEuropeans to the US, but all too often complexity theorists go to
speak to complexity theorists and formal methods experts go to speak to formal methods
experts in their area even if they all go to the same conference. One meets American
researchers dismissing European computer science as largely irrelevant, pure logic. And
one militant French computer scientist told me that complexity theory is irrelevant pure
mathematics. He is not typical and the phrase was thrown during a heated discussion, but
the sentiment of that phrase is not completely foreign to many in Europe.

I had to decide whether to concentrate on a few carefully chosen areas or to try to
cover European logic activities in general. The latter task seemed frighteningly hard. Logic
permeates all areas of computer science in Furope, and Furopean logic activities are so
intensive and diverse that it would take a large committee and longer time to survey them
properly. On the other hand, particular fields are surveyed from time to time by experts
who know the researchers and the papers and can write surveys without the opportunities
of special learning tours, whereas I didn’t know of any general study of European logic
activities. The opportunity of a learning tour seemed to suggest the more ambitious general
study. After a period of hesitation, I decided to do that, and I spent much of the European
tour learning things I did not know and talking with people with whom I had had little or
no interaction before.

In this report, I am not going to catalog who is doing what in Europe. It makes no sense
for one person to attempt to compile a comprehensive survey of European logic activities
in few months. As I mentioned earlier, it would take more people and more time to write a
comprehensive survey. Moreover, such a survey has been published recently: [van Leewen
1990, volumes A and B]. But, to illustrate how much is going on in Europe, British logic
activities are sketched in Section 2. Why British? Well, my division of computer science
into European and American is not strictly geographic. I am trying to discern typical and
distinguishing Furopean tendencies, and Great Britain is very European in that sense. If
you want to know how it feels to bring coals to Newcastle, give a formal methods talk in UK.
That is how I felt in March 1992 at the 8th British Colloquium for Theoretical Computer



Science in ... Newcastle upon Tyne, England. It is somewhat surprising that theoretical
computer science is so different in the UK and the US; after all, we share roughly the
same language. But theoretical computer science is not the only field where British hold
their own; British TV is another such field. Another reason for concentrating on UK is
that Wilfrid Hodges volunteered to write that sketch for me. In fact, I spent more time in
France with its own rich logic culture.

Section 3 is devoted to positive sides of the Furopean way of doing things; there are
things for us to learn. Section 4 is devoted to other comments.

The learning tour in Fall 1992 affected me a great deal even though I had visited Europe
many times before and was familiar with European computer science and many prominent
European computer scientists. The tour and the report have been hard work, but I enjoyed
it. The tour gave me a wider perspective. I was especially impressed by European boldness
in promoting formal methods. That boldness is contagious. In spite of the criticism that I
have for Furopean ways of doing things, the tour gave me more confidence that a logician
may be of great help to software engineers and even himself/herself may be a successful
software engineer.

Acknowledgments. It is a pleasure to thank ONR for the support and for trust-
ing my judgment and not micromanaging the tour; to thank INRIA Roquencourt for the
excellent condition for my work in Paris; to thank my Furopean colleagues for invitations,
explanations and for being so generous with their time; to thank Wilfrid Hodges for the sur-
vey of British logic activities; to thank my colleagues Krzysztof Apt, Andreas Blass, Egon
Boérger, Thierry Coquand, Gordon Plotkon, Dean Rosenzweig, Victor Vianu and Moshe
Vardi for comments on earlier versions of the report. I shamelessly used some of the com-
ments.

2 Logic activities in Great Britain

By Wilfrid Hodges, Dean, Queen Mary College, London, England, especially for this report.

2.1 Organisation

There is a huge amount of activity in Britain on the frontier between logic and computer
science. Most of the research and development is still taking place in the universities and
polytechnics, and a few major centres (Cambridge, Edinburgh, Imperial College London,
Manchester, Oxford) account for a high proportion of it. But there are an increasing number
of good logicians employed in public or private industry (British Telecom, ICL, Hewlett-
Packard) or software houses (Adelard, Logica, Praxis). This makes for fragmentation.

Also the field develops very quickly. A typical example is the specification language
7, based on set theory, which was developed at Oxford in the early 1980s. By early 1991
the subject had already accumulated 200 published papers and an e-mail forum with 150
subscribers, and undergraduate courses on it were being taught at 33 British universities
and polytechnics. Industrial pressure certainly helped this along.

There have been no serious attempts to bring together the various researchers in logic
and computer science; probably it is too late now. A major journal, the Journal of Logic and
Computation (Oxford University Press), was founded in 1990. But it is an international
effort with editors in Texas, Paris and Kyoto. Another recent journal in the same area,



Formal Aspects of Computing, was founded by a specialist group of the British Computer
Society in 1989; it is also international and restricts itself to formal methods.

In fact most of the unifying ventures that involve Britain are international. Probably
the broadest in its aims is the Furopean Association for Computer Science Logic, founded
in 1992 on the initiative of Egon Borger. The Secretary is Karl Meinke from Swansea, and
British members of the Scientific Council are Abramsky and Hodges, both in London; its
1993 meeting is at Swansea. Another umbrella organisation is the Furopean Foundation
for Logic, Language and Information (FoLLI), led by Johan van Benthem in Amsterdam,
which has logic and computer science components but is slanted towards linguistics; it held
its 1992 summer school at the University of Essex. About seven years ago the Centre
for Theoretical Computer Science at Leeds (led by Tucker and Wainer) instituted annual
conferences in Theoretical Computer Science; these are largely a forum for British logicians
and mathematicians who have moved into computer science.

There are also a number of important British-Furopean collaborations in more specific
areas, with FEC funding. Thus there are ESPRIT projects on Categorical Logic in Com-
puter Science and on Types and Proofs, and a Human Capital and Mobility project on
Lambda Calculus, and so on.

Probably the one activity in Britain that did bring together people from the whole field
was the Logic for Information Technology Initiative (LogFIT) of the Science and Engineer-
ing Research Council. For several years this very valuable initiative funded instructional
conferences in aspects of mathematics - mainly logic - which are needed for computer sci-
ence. It also funded research students and paid for retraining of mathematicians. In 1991
the Initiative started to run into financial problems, and a closing conference was held in
early 1993. As the number of Computer Science graduates and PhDs increases, it becomes
harder to persuade an engineering committee that money is needed for what are largely
conversion activities. Nevertheless several leading British computer scientists (for example
Abramsky) are publicising the need for a mathematical logic input into theoretical computer
science.

It may be worth mentioning that although a number of philosophical and mathematical
logicians in Britain have converted to computer science, the pressure to do this has been
noticeably less in Britain than in some European countries (for example Germany).

2.2 Particular areas

One area on the logic/CS frontier where Britain has had a distinctive voice for some two
decades is the theory of concurrency. I put this first because of its importance, though I
am not sure how close its ties are with logic. Certainly work in this area does sometimes
invoke logical methods. Robin Milner in Edinburgh recently won the Turing award for his
work on parallelism and concurrency; his formal system CCS and Tony Hoare’s comparable
system CSP are still paradigms for much of the research being done. Britain has a number
of people working in this field, or in the related Dutch paradigm of process algebras. They
include Hennessy at Sussex, Stirling in Edinburgh, Kwiatkowska and Ambler at Leicester.
A London-Cambridge study group around Abramsky works on game-theoretic approaches
to concurrency; their field takes in the semantics of linear logic too.

Concurrency is about the interaction of systems in time. Several logicians at Imperial
College London (Gabbay, Hodkinson, Richards) study temporal logic directly, its axioma-
tisations and expressive power. Maibaum at Imperial College and Barringer in Manchester
apply temporal logic to formal specification.



Turning to specification for a moment, Goguen in Oxford continues to work on the
fundamentals, for example the theory of modularisation. Britain is strong in set-theoretic
specification (Cliff Jones in Manchester with VDM, Hayes and Spivey at Oxford with Z,
Schuman and Pitt at Surrey). Current research includes comparisons between these lan-
guages, and development of a better semantics for Z. Tucker and Meinke at Swansea work
on several aspects of specification, for example higher-order datatypes and the logic of
hardware specification.

One can find various other logical languages being developed for special purposes, for
example causal logics for the control of robots (e.g. Bell at QMW, London) or logics of
belief for use in expert systems (e.g. Jeff Paris in Manchester). But in Britain it is widely
felt that computer science needs broad settings in which various logical systems can be
represented and compared. Thus a number of people are using the Edinburgh Logical
Framework LF (due to Harper, Honsell and Plotkin) as a general setting for defining logics.
Aczel at Manchester asks what logical notions a general framework might usefully include,
and has offered a number of suggestions including some novel forms of set theory. Gabbay’s
‘labelled deductive systems’ are another move towards generality.

Turning to constructive logics, Hindley at Swansea is a leading authority on lambda
calculus. Ray Turner in Essex is one of several people working on constructive logics as
a foundation for functional programming. In Cambridge, Pitts works on categorical logic,
while Hyland is involved in several category-theoretical aspects of formal methods.

Links between recursion theory and computer science are not very active in Britain at the
moment. But one should mention the work on termination by Ursula Martin and her term-
rewriting group (recently moved to St Andrews); work by Wainer in Leeds on translating
proofs into algorithms; and work of Simmons in Manchester on the classification of primitive
recursive functions. lain Stewart (recently moved to Swansea) is active in complexity theory
and related areas of finite model theory.

During the 1980s there was a good deal of activity in Britain, largely among philoso-
phers, in computerised logic teaching. For example my textbook [Hodges 1977] was turned
into programs in Manchester, Leicester and Oxford. This activity has largely died out, 1
suspect because the philosophers realised they couldn’t compete with American high tech-
nology. One of the main journals of the field, the Computerised Logic Teaching Bulletin,
was run by Read at St Andrews, but closed down about two years ago. Some interest
continues but in different forms. For example a cognitive science group in Edinburgh is
conducting experiments to find out the effectiveness of the semantic approach to teaching
elementary logic found in the computer packages ‘Tarski’s world” and ‘Hyperproof” (which
were produced at Stanford by Barwise and Etchemendy).

At the same time there are a range of activities in computerised proof systems. An
important example is Gordon’s HOL, a computerised proof system for higher order logic.
Paulson’s theorem prover Isabelle, developed in Cambridge, is ‘generic’ in the sense that it
allows the user to specify a proof system; thus recent work in Manchester studied how to
implement the theory of constructions and several type theories in Isabelle. Another generic
theorem prover is currently being designed by Bornat and Sufrin (QMW and Oxford) for
teaching purposes.

Bundy and his group in Edinburgh continue to work on the artificial intelligence project
of making computers carry out logical and mathematical reasoning. Kowalski at Imperial
College is working on aspects of the formalisation of reasoning.

In logic programming the most striking recent development is the creation of a new logic
programming language, Godel, by Hill in Leeds and Lloyd in Bristol. It has about the same



expressive power as Prolog but seems to be much cleaner from the point of view of logic.
Since Strand became available commercially in 1989, activity in developing new parallel
versions of Prolog seems to have quietened down. Pym in Birmingham and Wallen in Oxford
continue to study theoretical aspects of proof search for various calculi of computational
interest. Dyckhoff in St Andrews studies intuitionist logic from a computational point of
view.

3 Positive sides of European experience

In this section, I list some positive sides of European logic activities. Hopefully, we can
benefit from Furopean experience. Describing any of the positive sides, I do not intend to
imply that the American situation is the direct opposite of the European one.

3.1 Realization of foundational crisis

“What crisis?” may say the optimist. “We are in the middle of a successful computer
revolution and will grow out of whatever seems like a crisis to you.”

Well publicized software failures indicate that there is a problem, however. A recent
article in Scientific American gives some examples [Littlewood and Strigini 1992]. Software
bugs caused the series of large-scale outages of telephone service in the US. A software
problem may have prevented the Patriot missile system from tracking the Iraqgi Scud missile
that killed 28 American soldiers during the Gulf War. A single incorrect character in the
specification of a control program for an Atlas rocket, carrying the first US interplanetary
spacecraft, Mariner 1, ultimately caused the vehicle to veer off course. Both rocket and
spacecraft had to be destroyed shortly after launch. After a long and interesting discussion
of inherent limits on testing, the authors of the Scientific American article arrive at the
conclusion that “an inherent uncertainty in reliability may mean limiting a computer’s role,
especially in systems where software is critical for safety.” 1 do not buy that pessimistic
conclusion but it is certainly not obvious that we will simply grow out of the reliability
problem.

The reliability problem is not overlooked in this country. See in this connection the
regular column “Risks to the Public in Computers and Related Systems,” edited by Peter
Neimann in Communications of ACM. (Association for Computing Machinery is largely an
American institution.) The reliability problem raises foundational questions in complexity
theory and formal methods. Complexity questions related to testing are addressed by the
American theoretical-computer-science community seriously. Two developments come to
mind. One is the progress achieved recently by Manuel Blum of Berkeley and his students;
see [Blum and Kannan 1989] for example. It turns out that, in many cases, one can
exploit the structure of the given problem and, using some mathematics, reduce relevant
instances to random instances. It is usually much easier to test random instances. The
second development may be relevant to the nasty problem of one wrong bit messing up the
whole program. According to recent advances in complexity theory, a formal proof can be
rewritten in such a way that it becomes a little longer but every error is spread all over
the place [Babai et al. 1991]. A similar approach may possibly be useful in safety-critical
software.

However the testing is necessarily one-sided. It may catch errors, but it does not show
the absence of errors directly. That is where verification comes in. What can be verified?
What are inherent limitations on verification? Whereas testing belongs to a greater extent



to the complexity-theoretic half of theoretical computer science, the verification problem
belongs to a greater extent to formal methods.

Verification is only one of the foundational problems related to formal methods. One
other problem is that of specification. Specifications are usually written in English in this
country and often are interpreted differently by different people, e.g., by software developers
and their clients, or by software developers and their marketing people. All too often the
precise task of the product is not clear. Moreover, it may be not clear how to make that
task clear.

Still another though related foundational problem is that of semantics. Even program-
ming languages with their precise syntax may be open to interpretation. Sometimes, people
are surprised to learn that the same program (say in C) may give different results being run
in different places (using different compilers). As a matter of fact, different compilers usu-
ally give somewhat different interpretations to the same language. Sometimes the intended
meaning of a phrase in the language is not clear at all.

One example of the current lack of proper foundation is the modern Babel tower of
programming languages. Why these hundreds and hundreds of languages? Aren’t there
languages to be discovered rather than invented?

In general, there is a greater realization in Europe that computer engineering is running
ahead of computer science, that computer science does not provide a firm scientific foun-
dation for computer engineering. This contributes to the greater role of formal methods in
European computer science. “Formal methods are more relevant than complexity theory,”
insist some of my Furopean colleagues.

Academia cannot compete with industry in producing computer products, but academics
can sit back and think and analyze and try to build a solid foundation for our science.

3.2 Faith in formal methods

In spite of the fact that the US leads the software revolution, gloom and doom are typical
in this country when it comes to formal methods. Formal specifications are rare in indus-
try. Verification is often pronounced impossible. “Formal methods,” you hear, “had their
chance and failed.” That attitude toward formal methods is known in Europe as well. The
Scientific American article, mentioned above, is written by two Europeans. In the article,
the possibility of verified software is dismissed without any arguments; the non-verifiability
is treated as an obvious and well-known fact. “Perfect software is a practical impossibility.”

It is not true that formal methods had their chance and failed. It is true that particular
approaches had their chance and failed. And the criticism of formal methods is justified
to a great extent. Indeed, certain approaches were oversold. I believe, for example, that
denotational semantics was oversold as a practical tool. T am far from trying to declare
denotational semantics useless. It was a great advance in our understanding of computing
and it is playing an important role in theoretical computer science, but it is not a practical
tool.

Computers are a relatively recent artifact, and computer science is a relatively young
science. Naming something a science does not make it a science. (Some people joke that
only bad sciences have “science” in their names. Mathematics, physics, chemistry don’t.) I
believe though that computer science is a science ... in the making. It seems that more ideas
flow from computer applications to computer science than the other way round. I believe
this will eventually change. Computer science will emerge as a real hard core science and
will drive applications.



That kind of optimism is typical in Europe. People working in formal methods of-
ten view themselves on the front line of computer science. This positive attitude toward
formal methods is not restricted to academia. Some industry and even some government
organizations seem to share it to some extent. I was told at Orsay University in Paris
that, in connection to some passenger-security problems in the Metro system, the French
government required the bidders to provide formally verified solutions. The winner, Jean
Raymond Abrial, indeed provided such a verified solution.

Of course I am not saying that there are no successful applications of formal methods
in this country. Furthermore, I am not saying that there are more successful applications
in Furope than in the US. I am saying is that formal methods play more more central role
in European computer science and in European computer science curricula. This brings us
to the issue of education.

3.3 Education

British, French, German, etc. high schools give better mathematical training than American
high schools do. For example, in France, in order to enter an elite engineering school, one
goes through thorough examinations based mostly on mathematics. The undergraduate
mathematical training of US computer-science graduates is in general inferior in comparison
with European universities.

In addition, we lag behind, very substantially so, in teaching formal methods. All
British universities, at least all visible British universities, teach specification and verifica-
tion methods. For years and years, British CS departments produce graduates that know
formal specification methods, trust them and are willing to use them. This is a tremendous
advantage.

3.4 The incredible breadth of European foundational research

European activity in foundations of computer science is amazing in its scope and depth.
There is a tremendous amount of experimentation with formal methods going on in Europe.
It is a playground of ideas. The two volumes [van Leewen 1990] give plenty of evidence.

In this connection, let me mention the field of operational semantics and related spec-
ification methods which is close to my interests. Probably, the most popular specification
language today is 7, originated by Frenchman Jean Raymond Abrial and developed in Ox-
ford, England. I mentioned above that all British universities teach specification languages;
choice number one is 7. 7 is not that popular outside the UK, but it is used here and there
in Germany, other Furopean countries and also in the US. An annotated bibliography on 7
can be found in the [Stepney and Barden 1993]. One of the earliest operational semantics,
Vienna Definition Method (VDM), is still alive and used [Jones 1990]. VDM originated in
the 1960s in the Vienna Lab of IBM under the name of Vienna Definition Language and
was used to specify programming language PL1 formally. Structured Operational Seman-
tics was developed by Gordon Plotkin in Edinburgh, Scotland [Plotkin 1981]. All of these
methods not only originated in Furope but were developed there as well. A relatively new
approach, Evolving Algebras, originated in Michigan but most of the work has been done
in Europe (by Egon Boérger of Pisa, Italy, and Dean Rosenzweig of Zagreb, Croatia, and
their collaborators and students) [Gurevich 1993].

Functional Programming, logic programming, automata and formal language theory are
more popular in Europe.



3.5 ESPRIT

To overcome the fragmentation of the Furopean research by countries, Furopean Commu-
nity funds ESPRIT, Furopean Strategic Program for Research and Development in Infor-
mation Technology. ESPRIT projects invariably involve researchers from several countries,
and the approach works well in general.

What has all this to do with us? The USA is one country. It looks like we don’t the
problems of integration. But we do have it in a somewhat different way. Various regions
of the country differ greatly in research and funding. Maybe, there is room for supporting
inter-regional cooperation and coordination.

3.6 Conference centers

German International Conference and Research Center for Computer Science hosts weekly
workshops in its Dagstuhl Castle; every week there is another workshop. Dagstuhl follows
the tradition set by the older Center for Mathematical Conferences in Oberwolfach, Ger-
many. Participants are provided with all the necessities. This and the isolated location and
attentive stuff create a fruitful working atmosphere.

International Center for Mathematical Conferences in Luminy, France (near Marseille)
hosts a continuing series of Logic in Computer Science conferences. The nature is dra-
matically different, Mediterranean fiords instead of mid European forest, but the scientific
atmosphere is similar. International Center of Mechanical Sciences in Udine, Italy hosts
computer science schools from time to time.

I do not know whether the Dagstuhl model would work in this country. It certainly
makes the organization of meetings much easier.

3.7 Disparate remarks

National barriers are a problem in Europe, but maybe because of that problem Europeans
succeeded in creating strong, unifying and active organizations. The organizations most
relevant to logic are: European Association for Theoretical Computer Science, Furopean
Association for Computer Science Logics, and European Foundation for Logic, Language
and Information. In spite of national divisions, there is a stronger sense of community in
European logic.

There are many female computer scientists in France and Italy although the situation
in most other countries, e.g. Germany or the UK, is closer to that in the US.

4 Other comments

I was asked to be subjective and critical. Well, the following comments are critical to various
degrees (although in some cases I intended just to pose questions), and they range from
more objective and general (at the beginning) to subjective and technical (at the end).

There are of course problems with criticizing scientific directions or even scientific or-
ganization. A perceived weakness may unexpectedly turn out to be a strength, impractical
may turn out to be practical, and irrelevant may turn out to be very important and rel-
evant. I remember vaguely reading somewhere that, in his student years, Albert Einstein
ignored lectures on modern “fancy” geometries. He was interested in physics rather than
pure mathematics. But later he needed those geometries for his relativity theories.



Let me recall also the difference between plain truth and profound truth. Plain truth
is a kind of truth you deal with in mathematics. In particular, a statement contradicting a
plainly true statement is plainly false. For example, 2 x 2 = 4 is plainly true, and 2 x 2 =5
is plainly false. Profound truth is different. A button on my friend’s refrigerator says, “Life
is more complicated that you think it is, stupid.” Profoundly true, isn’t it? Once in a while,
the friend turns the button around. The other side says, “Life is simpler that you think it
is, stupid.” Profoundly true again. We deal more with profound rather than plain truth
here.

4.1 Scientific organization

In many European countries, for example in Germany, universities are less independent
than American universities. Ministries have final words in hiring professors and even in
curriculum matters. That makes the system more conservative. It is possible that there
are positive sides to such government intervention (guarantees of certain standards, for
example); I failed to find colleagues willing to defend it.

The level of government bureaucracy varies from one country to another and usually
exceeds the American level. A student of bureaucracy will be interested in France and
exhilarated with Italy. “It is the same system in both countries, set by Napoleon by the
way,” says a colleague with much Italian and French experience, “the difference is only that
what takes a month in France, takes a year in Italy.”

The emerging Furopean Community structure is not devoid of bureaucracy either. FEven
ESPRIT, rightfully praised for putting money into research and bridging between countries,
is criticized by some beneficiaries for endless meetings and report writing, and a somewhat
mysterious decision-making process. “I think NSF runs a leaner operation that is more
merit-based,” says a colleague with both American and Furopean experience.

There is a substantial fragmentation of effort related to the division of Europe into still
very independent countries. For example, the Z specification method, so popular in the UK
is virtually unknown in France, even in Paris where Abrial, the originator of 7, lives.

Finally, let me mention the greater importance and influence of scientific schools in
Europe. In the US, even the most successful Ph.D. students usually have to leave their
nests and look for jobs elsewhere. In Furope, the best Ph.D. graduates often stay in the
home institutions. This helps to create strong scientific schools in single locations. The
atmosphere of such a school may be conducive for young insiders to grow. On the other
hand, you may hear complaints from outsiders trying to develop alternative approaches.

4.2 Gap between academia and industry

There is, in general, a greater gap between academia and industry in Europe as far as logic
research is concerned. Sometimes this is expressed with “They are more theoretical,” which
is true too but does not mean the same thing. Theoretical should not be the opposite of
practical. Sound theory may be very practical (modern cryptography is a good example),
and of course lousy theory may be impractical.

Computer science attracts mathematically talented logicians, which is wonderful all
by itself; there are plenty of foundational and practical problems where such talents can
be used. But the gap between academia and industry is so big that too often logicians
spend their time doing things whose practicality, even in the long run, seems doubtful.
(Another side of that situation is that industry leaves solving various logic questions to
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people with no appropriate logic training or adequate time. No wonder that the solutions
are so often too ad-hoc-ish. But this is a different story.) Too often toy examples are not
only the beginning but also the end of a story. Looking recently for a text for my class on
Principles of Programming Languages, I saw books where a version of A calculus is the main
programming language. The field of logic programming seems to be another good source of
examples of such over-theoretical work.

4.3 Pure functional programming

I move from more general comments to more subjective and technical ones. In this subsec-
tion, my goal is to raise a question.

Functional programming is a very active field involving enormous programming effort
and much theoretical work. It is also an application field for type theory, denotational
semantics, etc. The idea of functional programming isn’t new. It inspired McCarthy to
create Lisp, one of the first programming languages. Lisp is far from the ideal of pure
functional language which is supposed to have no assignments or any side effects whatsoever.
Numerous other functional languages acquired some imperative features on the way. A good
example is that of ML which acquired assignments and pointers (sorry, references) and thus
became impure. Historically these languages are pure functional languages that went a
sinful way of imperative programming, but one can see them as imperative languages with
extensive functional components. The current pure functional languages like Miranda and
Haskell are not sufficiently efficient yet.

Functional programming inspired people on both sides of Atlantic. In this connection,
see the passionate Turing Award Lecture by John Backus [Backus 1977]. But the idea of
all-purpose pure functional programming is more popular in Europe. A skeptic may wonder
if there are objective limitations to the efficiency of pure functional languages. It is true
that A calculus suffices to program all computable functions, but this does not say that
much. It is true that the functional programming paradigm is closer to mathematics as we
know it, but the development of mathematics has been driven by different applications. We
philosophized on that subject before [Gurevich 1988], so let us jump to the conclusion. It is
not impossible that the price for avoiding explicit states is too high, that indeed there exist
objective limitations on the efficiency of pure functional languages. The usual reaction to
my raising these questions was criticism of imperative languages, usually quite valid. Of
course the progress of functional programming is most welcome. There are numerous tasks
for which functional programming is just right, and functional programs may be easier
to verify. Still, it is worth examining possible limitations. Functional programming may
never replace imperative programming completely. Maybe, a right mixture of imperative
and functional programming is needed, an imperative language with a clean and powerful
functional component.

4.4 Pure logic programming

Similarly to the previous question, one may raise a question of objective limitations on
the efficiency of pure logic programming. Again, there are numerous tasks for which logic
programming is just right and logic programs may be easier to verify than the corresponding
imperative programs. In this case too the languages in wide use are “dirty” and a more
pragmatic ideal may be that of the right mixture of logic and imperative programming.
The gap between pure logic programming of theoretical papers on one side, and Prolog

11



and other existing logic programming languages on the other side is troubling. Prolog has
become a more accepted language through its very efficient implementations and its success
as a software engineering tool coincided with developing a programming style drifting away
from the logic programming paradigm. “The theoretical logic programming community
loses interest in Prolog; Prolog acquires the same status that Lisp has in the functional
programming community,” say Egon Borger and Dean Rosenzweig, whose paper [Borger
and Rosenzweig 1992a], addressing the practical issues of Prolog, will appear in The Science
of Computer Programming rather than in a logic programming journal.

There are plenty of papers in logic programming, often related to default and other
non-monotonic logics, whose relevance to programming escapes me. And default logic
itself, which started with a promise of simplified reasoning, turned out to be less practical
than classical logic.

4.5 Proofs as programs

A proof of a specification in constructive (intuitionistic) logic yields (e.g. via classical
Kleene’s realizability or more modern type-theoretical modified realizability) a program
which is a provably correct implementation of the specification. This idea inspired many;
in particular it is an inspiration for the proof system Coq, one of the best known and in-
fluential proof system, developed in Inria Roquencourt near Paris. This idea conveniently
separates two concerns — proofs and programs — which some find an improvement over
the predicate transformer technique (involving weakest preconditions) championed by Eds-
ger Dijkstra [Dijkstra 1976]. The following paragraph is a little more technical and can be
skipped if you are not interested in technical details.

In certain cases, proofs and programs correspond very closely to each other. Consider
the typed combinatory calculus with constants Kzy = 2 and Szyz = (22)(yz). It is easy
to see that the type of K is

Y

where « is the type of z and 3 is the type of y, and the type of 5 is

(@ = (B =7)=(a=p5)—=(a—=7))

where the types of z,y,2 are a,a — 3 and o — ( — 7) respectively. The two displayed
types happen to be the two axioms for the minimal constructive logic of implication. The
only derivation rule of that logic, modus ponens, corresponds naturally to the composition
of functions: if X is of type o and Y is of type a — 3, then Y (X) is of type 5. Any proof
of a formula ¢ in the logic gives a unique program (that is, a constant in the combinatory
calculus) of type ¢, and the other way around. This is a special case of the so-called
Curry-Howard correspondence described for example in [Simmons 1993]. This beautiful
correspondence between programs and proofs has been extended somewhat but nowhere
near real-life programming languages.

People working in the field tell me that there are problems with the implementation of
the idea. The program extracted from the proof is often very slow. One reason for the
slowness is that the program verifies not only the final result but also various intermediate
results. It isn’t obvious how to free the program from unnecessary verification. In fact,
people do a bit of reverse engineering analyzing faster programs to see which proofs can
generate something similar. Sometimes this analysis is revealing. Jean-Louis Krivine was
explaining to me a simple proof theoretic meaning of some relatively obscure feature of the
C programming language [Krivine 1993].
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But so far, this intercourse between logic and programming was more important to logic
than programming. The combinatory calculus mentioned above isn’t a real programming
language; it is another logical calculus. Krivine does work with a real programming language
but he has, I understand, a long way to go. I wonder how would a logic tailored to C
programming language look like. (We were recently looking at C [Gurevich and Huggins
1993].) I would like to see a critical examination of the idea; may be there are some objective
limitations out there. It is possible that the proofs-as-programs approach will play a role
in software engineering. It is important to understand what that role should be.

4.6 Mathematics and pedantics

I know, I know, there is no such word “pedantics”. But I need a new term. Let me
explain. The rigor of classical mathematics may not suffice in the verification area. Good
mathematical papers happen to have errors. You may see that the proof of a lemma is
not quite correct but it is clear how to fix it. The lemma itself may be incorrect as stated
but again it is clear what the intention is, how the lemma is used and how to fix it. Such
freedom to deal with “inessential” details may not exist in verification business. Imagine
yourself flying on an airplane for which you verified the autopilot. (This example is “stolen”
from somewhere but for the life of me I do not remember from where.) The weather is bad
and the control is given to the autopilot that you had designed and proved correct. You
realize suddenly that you forgot to check a case or two out of a great many cases. Your
proof is correct in principle and the autopilot is fine ... modulo some “inessential” details,
but somehow this does not bring the desired comfort.

Many draw the conclusion that verification in general should be carried out within some
formal system. To an extent, this explains the popularity of temporal logic and other
formalisms and the proliferation of reasoning systems.

It seems to me we should distinguish better between formal and precise. Precise math-
ematical proofs are rarely carried out within formal systems though they are formalizable.
(Thanks to the foundational revolution in the beginning of this century, usual mathematical
proofs can be rewritten in, e.g., ZFC (the first-order Zermelo-Fraenkel Set Theory with the
Axiom of Choice); in many cases, Peano Arithmetic is sufficient.) And in practice proofs
carried out within formal systems are not necessarily precise.

Why don’t “normal” mathematicians prove their theorems within formal systems? The
following argument occurred to me 10 or so years ago in a discussion with proof theorist
Jonathan Stavi. When you search for a proof, you don’t want to restrict your logic in any
way. You want to free your imagination. You search for arguments first and worry about
their logic complexity later. This is not to say that proof theory is unnecessary, not at
all. It just serves a different purpose. In particular, if and when you find your proof, you
may subject it to a revealing proof-theoretic analysis; see [Simpson 1986] in this connection.
Excessive formalization makes proofs harder to find and comprehend.

I believe that we should clearly separate concerns and distinguish between mathematical
proofs, like those in mathematical literature, and what I propose to call pedantic proofs,
that is, proofs written in all details and verified by computer. First find a mathematical
proof and then — if necessary — convert it into a pedantic one. The term “pedantic” is
positive in this context. As we saw above, in that autopilot example, pedantic proofs are
necessary and important. And the science of converting mathematical proofs to pedantical
ones is not trivial by any means.

The obvious objection to “normal” mathematical proofs in verification is that verifica-

13



tion proofs are much different from normal mathematical proofs. That they are plain and
boring, like checking and checking and checking numerous cases. That computers do that
kind of work better and one may want some formal system to guide the computer. I buy
that. Indeed the whole task reduces in many cases to pedantics, and computers are better
in many aspects of pedantics than humans, and a formal system may be most useful. It
is not true, however, that all verification proofs are like that. There may be an interesting
mathematical structure behind the plenitude of boring details, in which case mathematical
analysis may be useful. One example, close to my research interests, is the correctness proof
for compiling Prolong to Warren Abstact Machine (the standard implementation of Prolog)
in [Bérger and Rosenzweig 1992b].
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