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Abstract. There are emerging interests from both computer vision and computer
graphics communities in obtaining photorealistic modeling of a scene or an object
from real images. This paper presents a tentative review of the computer vision
techniques used in such modeling which guarantee the generated views to be ge-
ometrically correct. The topics covered include mosaicking for building environ-
ment maps, CAD-like modeling for building 3D geometric models together with
texture maps extracted from real images, image-based rendering for synthesizing
new views from uncalibrated images, and techniques for modeling the appearance
variation of a scene or an object under different illumination conditions. Major is-
sues and difficulties are addressed.
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1 Introduction
Considerable effort in computer graphics has been devoted, on the one hand, to the de-
velopment of complex computer aided design (CAD) systems which aim at modeling
the geometric and material attributes of the objects in the environment, and on the other
hand, to the development of systems which try to reproduce the light propagation un-
der physical laws in order to generate photorealistic renderings. Unfortunately, besides
it is a labor-intensive process, this traditional approach has difficulty in creating realis-
tic photographs because the geometry of objects found in the real world is very complex
and the subtle light effect is difficult, if impossible, to model.

Computer vision, although it may promise much more, can be considered as an in-
verse process of computer graphics, namely the process of recovering 3D structure from
2D images. Furthermore, real images directly capture the material properties of objects
under real world illumination. Therefore, the combination of computer vision and com-
puter graphics allows us to create, directly from real images, realistic photographs of the
environment from viewpoints different from the original ones. Indeed, there are emerg-
ing interests in applying the computer vision techniques to the interdisciplinary field of
virtual reality, such as human-computer interface, 3D scene/object reconstruction and
image-based rendering.

Both vision and graphics technologies have difficulties in producing complex geo-
metric models in great details, but by appropriately using the visual details contained



in the original images, we can achieve photorealistic modeling without replying on a
complex model. Therefore, compared with the traditional computer graphics modeling,
image-based photorealistic modeling (IBPhM) has a number of advantages including

– a weaker dependency of scene complexity because many details need not to be ex-
plicitly modeled,

– a simpler geometric model because of the previous reason, which also implies the
ease of model acquisition,

– no need of physical simulation because the realism is in the original images,
– less computational requirement because of all previous reasons.

There are two approaches to IBPhM:

CAD-like modeling: A scene is represented by a 3D model together with texture maps
extracted from real images.

Image-based rendering (IBR): A scene is represented as a collection of images. New
images are generated from the original images.

It seems that several researchers prefer IBR to CAD-like modeling, but I argue that it
depends on applications and on the available input information. Among the techniques
reviewed below, those based on camera geometry are usually more appropriate to use
3D models rather than a collection of images. This is for three reasons:

– CAD-like modeling is less memory demanding than IBR, because the data redun-
dancy in the original images are used in building 3D models and are later discarded.

– The conventional rendering pipeline can be used once a CAD-like model is avail-
able, while it is not designed for IBR. One can of course expect that special IBR-
dedicated hardware will be developed in the near future.

– Both approaches require the establishment of feature correspondences between im-
ages. IBR is not easier in this task.

However, IBR does have an advantage over CAD-like modeling at the current stage of
development. That is, uncalibrated images can be used in IBR to generate new views.
Use of uncalibrated images implies that only a 3D projective model can be built. Lack
of metric measures in such models makes it difficult to use the conventional rendering
pipeline.

The well-known Apple QuickTimeVR system [1] creates a series of environment
maps at key locations in the scene. An environment map records the light arriving from
all directions at a point. The user is then able to look around a scene from these fixed lo-
cations. The fixed location constraint can be relaxed in four ways. The first tries to model
the apparent motion of pixels (i.e., optical flow) from one camera location (viewpoint)
to another, which allows a smooth view interpolation [2, 3]. The second goes further by
trying to capture the complete flow of light in a region of the environment [4–6]. In free
space, the light field is a 4D function, and an image is a 2D slice of the 4D light field.
The success of this technique depends on having a high sample rate, which implies to ac-
quire and save (after proper compression) a large number of images. The third approach
relies on the depth value (or disparity) at each pixel [7, 8]. The depth values are usually
obtained with user interaction. Given the depth value, a point can be reprojected from



vantage points. The fourth approach is called image transfer, which uses point corre-
spondences between images to synthesize a new one without explicitly reconstructing
the structure [9, 10]. The last two are however mathematically equivalent. Except the
second approach, all the other three require the establishment of correspondence of pix-
els or feature points between images, which can be a very difficult task and is usually
done manually or semi-manually. The second approach has, however, its own limit. It
requires the acquisition and storage of a large number of images from known camera
viewpoints. It is mainly studied in the computer graphics community, and will not be
reviewed in this paper. In Sect. 2, mosaicking techniques to build environment maps are
reviewed. It is a 3D representation of a 3D scene. In Sect. 3, we describe the multiple-
camera geometry, and how a CAD-like model is built. In Sect. 4, techniques to synthe-
size new views from original images are reviewed. In reviewing these techniques, pixel
or feature point correspondences are assumed to be given. Appendix A will review the
commonly used techniques for solving the correspondence problem.

When creating a dynamic virtual environment, illumination variation must be con-
sidered because it has an important effect on the person navigating in it. This has many
applications including product advertisement on the Web where a user wants to exam-
ine the appearance of the product under various illumination conditions from different
viewpoints. Section 5 reviews techniques which model illumination variations from real
images.

2 Mosaicking
When the scene is a planar surface or when the images are taken from the same point
of view (i.e., the camera undergoes a pure rotation around the optical center), images
are related by a linear projective transformation called a collineation or a homography.
More precisely, if ����� ���	��
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or more compactly, �"!� � �$#%!� (1)

where � is an arbitrary scale factor, and # is a non-singular matrix defined up to a scale
factor. Here, we have used the following notation: for any vector & �'� ( � ��( � �*)+)+)�
,� ,!& �-� ( � �	( � �+)+)*)�� � 
,� (i.e., 1 is added as the last element).

Because of relation (1), images can be stitched or mosaicked into a larger and/or
higher resolution image. A full-view panorama is possible if images cover the whole
viewing space. This is important because the full-view panorama allows us to create an
environment map, which can be used to quickly generate new views within the envi-
ronment. A nice survey of the mosaicking techniques is already available [11]. Several
automatic techniques have recently been developed [12–14].

If one of the conditions mentioned at the beginning of this section is not satisfied,
there will be misregistration caused by motion parallax. Shum and Szeliski [15] have
developed a technique called deghosting, which divides each image into small patches,
estimates patch alignment, and finally warps each image locally.



Another possibility to obtain a panorama is to use special hardware, such as a camera
system with conic mirror [16], hyperboloidal mirror [17], or paraboloidal mirror [18].
However, such a panoramic image is limited by the resolution.

3 CAD-like modeling
Building a CAD-like model from an image sequence consists of the following steps:

Calibration: Recover the external (position and orientation) and internal parameters of
the camera for each image in the sequence.

Shape modeling: Build, usually with manual interaction, a 3D geometric model of the
scene/object, which is usually a polyhedral approximation.

Texture modeling: Build a texture map for each face of the polyhedral model from
original images.

Different calibration techniques will be reviewed shortly. Automatic shape modeling is
difficult, and at the current stage of development, one is usually contented with manual
initialization followed by automatic refinement by computer vision techniques. Tech-
niques for texture modeling follow much the same way as for image mosaicking, as de-
scribed in Sect. 2. A face of the polyhedral model is planar, which is seen in several im-
ages. These image patches are related by a homography. Possibly different parts of each
face are seen from different viewpoints. Mosaicking techniques can therefore be used to
build a complete representation of the appearance of the face. Sometimes, image affine
transformation, as an approximation to homography, can be used.

Regarding the camera calibration problem, there are essentially three paradigms:

Photogrammetry. The calibration of each camera is performed by observing a calibra-
tion object whose geometry in 3-D space is known with a very good precision, and can
be done very efficiently [19]. In the stereo setup, the calibration object should be seen
simultaneously from all cameras, which is quite problematic when we need to capture
a complete view of a scene or an object using many cameras. The solution to this is to
follow the structure-from-motion path, either using only one camera [20–22] or using a
stereo rig [23–25]. The idea is to recover the rigid displacements of the cameras from
visual information by establishing correspondences of features (points, line segments,
lines, curves, etc.).

Self-calibration. Techniques in this category do not use any calibration object. Just by
moving a camera in a static scene, the rigidity provides in general two constraints [26,
27] on the cameras’ internal parameters from one camera displacement by using image
information alone (image point or line correspondences). Therefore, if images are taken
by the same camera with constant internal parameters, point correspondences between
three images are sufficient to recover both the internal and external parameters which
allow us to reconstruct 3-D structure up to a similarity [28, 29]. Self-calibration can also
be done for uncalibrated stereo rig, where the internal parameters and the relative ori-
entation of the cameras and the motion of the stereo rig are all unknown [30–32]. More
knowledge about the camera internal parameters and camera motion will simplify the
computation, and more precise and robust results can be obtained.

Domain knowledge. If there is no constraint at all on either the internal parameters or the
external parameters of different cameras, we can only achieve a projective reconstruc-
tion of the scene [33–35]. This is not enough for many applications which require 3D



Euclidean modeling. However, we usually have domain knowledge of the imaged scene.
Such knowledge includes Euclidean location of a point, parallelism, distances between
two points, angles between two lines, ratios of distances, etc. This allows us to compute
the projective transformation which brings the projective structure back to a Euclidean
coordinate system [36–38].

4 Image-based rendering
As mentioned in the introduction, I do not consider here techniques based on interpola-
tion from dense image sequences. Furthermore, I do not consider the case where cam-
eras’ internal parameters are known, because I believe that CAD-like modeling is usu-
ally more appropriate than IBR. We consider here only the case of uncalibrated images
without using explicit 3D models. The main steps in image-based rendering with uncal-
ibrated images are listed below:

1. Establish point correspondences between images
2. Estimate the epipolar geometry between images
3. Build a representation of the scene using matched points
4. Specify the desired position of the new image
5. Transfer the scene representation into the new image
6. Map textures (colors) from the original images to the new images

The most crucial and difficult part is Step 1 and Step 2. Step 1 will be reviewed in Ap-
pendix A. The second step consists in estimating the fundamental matrix between two
images [39], the trifocal tensor between three images [40], or the

�
-matrices (camera

projection matrices) between � images [41]. A complete review of techniques for esti-
mating the fundamental matrix and projective reconstruction is done by Zhang [42]. A
good technique for estimating the trifocal tensor is developed in [43]. The PhD thesis of
Laveau [44] addresses the issues of estimating

�
-matrices between � images.

The representation of the scene depends on the number of matched points. If full
pixel correspondences are available, the scene is probably better to be represented by
the original images, and the later texture mapping step can use linear or bilinear interpo-
lation to find the color of a point in the new image. If only a sparse set of point matches
are available, we can divide each image into a set of triangular patches using points as
vertices. Texture mapping can then be realized through affine transformation or even
better through plane projective transformation (homography).

Given a set of point/pixel correspondences and the epipolar geometry, we have im-
plicitly a 3D projective description of the scene with respect to a projective coordinate
system. Step 4 is then to specify the desired position of the new image (i.e., its

�
-matrix

with respect to the projective coordinate system). There are 15 degrees of freedom, and
one can imagine how difficult the task is. This really limits the usefulness of uncalibrated
images. There are two possibilities to get around this difficulty: use a reference image if
it is available for the desired position; use domain knowledge to obtain a quasi-Euclidean
structure [38].

Image transfer is simply a shortcut of 3D reconstruction followed by projection onto
the new image according to the

�
-matrix. There are however a number of problems in

practice, the occlusion problem in particular. There are probably several points which
are transfered to the same location of the new image. One should decide which point is



visible. If the structure is Euclidean, � -buffer technique can be used. This is however
not useful for uncalibrated images, because a 3D point is projective and defined up to a
scale factor. The solution is to use oriented projective geometry [44].

The transfered point in the new image is in general a nonlinear function of the points
in the original images. It is, however, linear if affine camera model (including ortho-
graphic, weak-perspective and paraperspective projections) is used. Another case where
the transfer is linear is the following: if the original views have parallel optical axis
which is orthogonal to the line joining the optical centers, then a new view on the same
line with parallel optical axis is a linear combination of the original views. The view
morphing technique described in [10] is based on this observation. It first rectifies the
original images to have aligned scan lines, then produces an intermediate rectified im-
age through linear interpolation, and finally postwarps it to obtain the desired image.
With this technique, one is able to generate an image sequence corresponding to a cam-
era moving along a line joining the optical centers of the two original images. However,
if postwarping is not chosen appropriately, there will be a significant projective distor-
tion in the generated views.

5 Modeling the illumination variation
All the techniques described up to now assume a static scene with fixed illumination. Il-
lumination variation must be considered when creating a dynamic virtual environment
because it has an important effect on the person navigating in it. Traditionally, techniques
based on some reflectance models such as ray tracing are used. The most widely used
model is the Lambertian where surface radiance depends only on the irradiance of the
surface and not on the observer’s viewpoint. One usually observes a significant devi-
ation of this model from reality. Recently, there is an important effort on the estima-
tion of surface reflectance of natural materials using more general functions including
the BRDF (Bidirectional Reflection Distribution Function) [45–47]. The state-of-the-
art, however, does not yet allow us to estimate the BRDF reliably enough to be used in
practice. Within computer vision, researchers follow a different approach to model the il-
lumination variation for object recognition. The idea is to capture illumination and object
reflectance directly from real images. For Lambertian surfaces of arbitrary texture with-
out self-occlusion and self-shadows, three images taken with non-collinear light sources
are enough to completely determine the structure of the illumination manifold [48, 49].
In other cases, more (but usually only a few) images are required [50–52]. The Karhunen-
Loéve transform or Singular-Value Decomposition (SVD) [53] is typically used to com-
pute the basis images which capture the essential information relevant to the reflectance
and illumination variations. Finally, we observe that, except Shashua’s work [48], all
other works do not consider 3D geometric information. Shashua represents 3D geome-
try of an object as a linear combination of two images because an approximate (affine)
camera model is used, and uses only three images taken under different illumination con-
ditions to represent the photometric property. However, three images are usually not suf-
ficient to represent the photometric property of a complex object. Recently, Zhang [54]
developed a system which uses full perspective camera model and as many images un-
der different illumination conditions as possible. The scene/object is represented by a
3D geometric model together with a set of basis images which capture the essential pho-
tometric property of the scene/object under different illumination condition. He is then



able to generate photorealistic views simulating both changes in point of view and in
illumination condition.

Instead of recovering shape from 2D images, Sato et al. [55] use a light-stripe range
finder and a color CCD camera to acquire a sequence of range images and a sequence of
color images of an object. Range images are merged to reconstruct the surface shape of
the object. The reconstructed shape and the color images are then used to determine the
surface reflectance properties of the object. Finally, they are able to synthesize images
with realistic shading effects under arbitrary illumination conditions.

6 Concluding remarks
There are emerging interests from both computer vision and computer graphics com-
munities in obtaining photorealistic modeling of a scene or an object from real images.
This paper has presented a tentative review of the computer vision techniques used in
such modeling which guarantee the generated views to be geometrically correct. The
topics covered include mosaicking for building environment maps, CAD-like modeling
for building 3D geometric models together with texture maps extracted from real im-
ages, image-based rendering for synthesizing new views from uncalibrated images, and
techniques for modeling the appearance variation of a scene or an object under different
illumination conditions.

There are a number of open issues:

– What is the difference in rendering mechanism between CAD-like modeling and
IBR? Which one is more efficient? There is probably no universal answer, and it
is likely task-dependent (processing time, hardware accelerators, memory require-
ment, field of view of the scene to be modeled, etc).

– How to obtain a coherent representation of a large scale scene from a large number
of images? Geometric reasoning should play a fundamental role in this regard.

– The intensity/color is almost always different from one image to another because
of dynamic change in camera gain, even if images are perfectly aligned. How to
fuse different observations in order to avoid intensity/color discontinuity in the final
texture maps? This is known as image blending.

– How to compute the reflectance properties of a complex scene from real images?
– Matching, the eternal problem in computer vision, although alleviated in IBPhM

through user interaction, still needs considerable work. Before having a perfect im-
age matching, we need to answer the following question: How to tolerate false matches
in generating photorealistic views?

And there are many more.

A Image matching techniques
When the epipolar geometry is unknown, there are mainly two categories of techniques.
The first is optical-flow based. The representative work is the pyramidal hierarchical mo-
tion estimation framework proposed by Bergen et al. [56]. The second is feature-based.
The representative work is the robust image matching technique through the recovery
of the unknown epipolar geometry proposed by Zhang et al. [57].

When the epipolar geometry is known or recovered, there are many stereo match-
ing techniques available, such as correlation, relaxation and dynamic programming.See,
e.g., textbook [19] for a general discussion.
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44. S. Laveau, Géométrie d’un système de
�
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