
Abstract

Network alarm triage refers to grouping and
prioritizing a stream of low-level device health
information to help operators find and fix problems.
Today, this process tends to be largely manual
because existing rule-based tools cannot easily
evolve with the network. We present CueT, a
system that uses interactive machine learning to
constantly learn from the triaging decisions of
operators. It then uses that learning in novel
visualizations to help them quickly and accurately
triage alarms. Unlike prior interactive machine
learning systems, CueT handles a highly dynamic
environment where the groups of interest are not
known a priori and evolve constantly. Our
evaluations with real operators and data from a large
network show that CueT significantly improves the
speed and accuracy of alarm triage.

1 Introduction
Network alarm triage refers to grouping and prioritizing a
stream of low-level device health information (e.g., high link
utilization and fan failure alarms) to help operators find and
fix problems in computer networks. It is critical that triage is
fast and accurate so operators are not misled and problems
can be identified and resolved quickly.
 Many automated systems have been developed for the
alarm triage problem [Gardner and Harle, 1996; Steinder and
Sethi, 2004], mostly taking the form of expert defined rules
or models. However, despite years of effort, these systems
are never fully accurate due to the complexity of the problem.
Large networks have thousands of diverse devices, each
generating a different set of alarms. Further, because each
network is different and the set of devices within a network
changes over time, it is very challenging to develop systems
that work across networks. Therefore, to cope with the
inherent inaccuracy of automated systems, networks
invariably employ human operators (so called “Tier 1”
operators) to triage the remaining thousands of alarms per
day that can be missed by automation.
 We explore a fundamentally different approach for alarm
triage, using interactive machine learning to constantly learn

from operator triage actions and in turn assist them by
providing recommendations on how to group incoming
alarms based on the learned model at that instant. Our
approach is designed for highly dynamic environments
where the groups are not known a priori and evolve
constantly. It can also be applied to other scenarios where
people need help organizing a continuous data stream (e.g.,
RSS feeds, email management, social network updates).
 We implement our approach in the context of the alarm
triage problem with a system we call CueT (Figure 1). Our
simulation experiments with real data from a large, global
network with approximately 15,000 devices show the
potential of our constantly-updating machine-learning-based
approach for improving the alarm triage process. However,
as with all automation, machine-learning-based systems are
never perfectly accurate. Therefore, in real-world
applications of our approach, it is critical that operators
carefully inspect and compare recommendations before
deciding how to finally proceed. To this end, CueT includes a
novel visualization that conveys its recommendation
confidence to further help operators decide how to triage.
Our evaluation with human operators shows that CueT’s
combination of interactive machine learning with novel
visualizations significantly improves the accuracy and
reduces the time required for alarm triage.

2 Related Work
Most research in network monitoring and alarm correlation
has focused either on visualizations or automated solutions in
isolation. Researchers have recently proposed visualization
systems for network monitoring and diagnosis. For example,
Visual-I [Fisher et al., 2008] uses visual grouping and
scatterplots to highlight correlations between multiple
devices and problems. Our approach combines visualization
and interactive machine learning in order to further reduce
the cognitive effort of manually identifying patterns in large
data sets. Helping automate pattern discovery can increase
operator efficiency and accuracy, necessary for these time
critical problems.

Automated alarm correlation (also related to root cause
analysis and fault localization) has long been an active area
of research because of the complexity of the problem and the

Human-Guided Machine Learning for Fast and Accurate Network Alarm Triage

Saleema Amershi
†‡

, Bongshin Lee
†
, Ashish Kapoor

†
, Ratul Mahajan

†
, Blaine Christian

*

†
 Microsoft Research

Redmond, WA
{bongshin, akapoor, ratul}

@microsoft.com

‡
Computer Science & Engineering,
DUB, University of Washington

Seattle, WA
samershi@cs.washington.edu

*
Microsoft Corporation

Redmond, WA
blainech@microsoft.com

potential impact on the industry [Gardner and Harle, 1996;
Steinder and Sethi, 2004]. Most solutions have taken the
form of expert defined rules or models (e.g., [Gardner and
Harle, 1996; Jakobson and Weissman, 1993]). Such
approaches require manual configuration of rules which can
be difficult to obtain, are not robust to new situations, and
require frequent maintenance [Gardner and Harle, 1996;
Steinder and Sethi, 2004]. In contrast, our approach can
handle general alarm correlations that require alarm grouping
based on similarity.

Some researchers have explored automatically learning
rules or models from data that can then be used for automated
alarm correlation and filtering (e.g., [Klementtinen et al.,
1999; Steinder and Sethi, 2004]). However, most of these
approaches require extensive training periods and must be
retrained whenever the network topology changes [Steinder
and Sethi, 2004]. In contrast, our approach is based on a
dynamically changing model that is constantly learning from
human guidance. We argue that human input is critical
during the alarm correlation process because of the
inherently inconsistent and ambiguous nature of the problem
[Gardner and Harle, 1996], a key reason why alarm
correlation is still an open area of research. While today’s
commercial systems employ some of these previous
techniques [EMC Ionix 1 ; Yemini et al., 1996], most
companies still require teams of Tier 1 operators to manually

1 http://www.emc.com/products/family/ionix-family.htm

triage the thousands of remaining alarms unhandled by
existing systems.

Our work is closely aligned with evolving research on
interactive machine learning, asserting the importance of
human involvement and proposing interactive systems for
various applications (e.g., image segmentation [Fails and
Olsen, 2003], document grouping [Basu et al., 2010], and
image search [Fogarty et al., 2008]). While previous work
has focused on pool-based static environments where the
categories of interest and the pool of unlabeled data are
known a priori, our work involves a more challenging
scenario where data is streaming in and out and the set of
labels is constantly changing over time.

3 CueT
CueT consists of two interacting components: (1) an
interface to assist operators in inspecting triage
recommendations and feeding operator actions back into the
learning system and (2) a stream-based interactive machine
learning engine for making triage recommendations. We will
refer to the alarm currently being triaged as the “incoming
alarm,” a group of one or more related alarms that have
already been triaged as a “ticket,” and the current set of
tickets that are being used for recommendations (and have
not been discarded yet) as the “working set of tickets.”

Figure 1. CueT’s interface. Alarms stream in from the network and are displayed on the right. CueT’s triage recommendations for each alarm
appear on the left along with a visualization of CueT’s confidence in those recommendations (far left). Device Names and other information
are blurred for security reasons.

3.1 CueT Interface
CueT’s interface (Figure 1) consists of two main views: the
Alarm View on the right and the Ticket View on the left.

Alarms are displayed in the Alarm View as they stream in
from the network. Since operators often miss important
alarms that appear off of the screen, the Alarm View includes
an Alarm Overview (far right in Figure 1) that provides
awareness of all alarms still requiring triage even if they are
off the screen. Each time an operator clicks on an alarm to
triage in the Alarm View, CueT generates its ticket
recommendations for the selected alarm and displays them in
the Ticket View along with a visualization illustrating its
confidence in those recommendations with the Ticket
Distance Overview (far left in Figure 1).

Tickets are a collection of related alarms. Each ticket has a
parent alarm, which is manually determined by a human
operator and typically represents either the most severe or the
first alarm in the ticket. Immediately below the ticket label
(at the top of each ticket in the Ticket View) is information
about the ticket’s parent alarm along with the ticket
description. Below the parent alarm is the best matching
alarm within the ticket to the incoming alarm (next to the star
icons in Figure 1). This serves as an explanation for why
CueT is recommending that an operator triage an alarm into a
given ticket. Thus, ticket representations are tailored for each
alarm. Operators can also click on a ticket to display all the
alarms currently grouped within the ticket. New ticket
recommendations are displayed as empty ticket stubs with a
gray label and text displaying “Start New Ticket.”

Operators can inspect CueT’s ticket recommendations and
the Ticket Distance Overview visualization to determine how
to triage an incoming alarm (i.e., either add it to an existing
ticket or start a new one). Each bubble in the Ticket Distance
Overview corresponds to a ticket and its vertical position
relative to the top of the overview reflects the similarity
between the alarm being triaged and each ticket within the
working set. That is, the closer the bubble is to the top, the
better a match the corresponding ticket is for the alarm
currently being triaged. Bubbles that are positioned near each
other are comparable in terms of their similarity to the alarm.
In this case, the overview should encourage operators to
inspect all comparable tickets before triaging.

The Ticket View initially displays only the tickets closest
to the alarm being triaged (where ‘closest’ is determined by
our simulations discussed in the following sections) as this
helps to balance operator load and the probability of these
tickets containing the correct recommendation. However,
CueT allows operators to reveal more tickets to inspect using
the Ticket Distance Overview.

Operators triage an alarm by dragging and dropping it onto
the appropriate ticket in the Ticket View. CueT’s interface
also contains a Search View (bottom left in Figure 1) through
which operators can search for existing tickets by entering a
search string as they do with their current system for triaging
alarms. Operators can add alarms to tickets appearing in the
Search View just as in the Ticket View.

3.2 Stream-Based Interactive Machine Learning
We tackle the challenges due to the highly dynamic
environment and ever-evolving set of classes (i.e., the
working set of tickets and the alarms within those tickets) by
building on nearest neighbor classification. CueT provides
triage recommendations for an incoming alarm by ordering
the working set of tickets by their similarity to that alarm.
Similarity is measured using a distance function that adapts
based on operator actions. We extend classification to
include a mechanism for recommending when an incoming
alarm should spawn a new ticket.

Recommending Existing Tickets
CueT makes recommendations by ordering the working set
of tickets by the average distance between the incoming
alarm and each alarm in the ticket. Distance between alarms
is measured using 17 individual string-based distance
metrics, each of which represents similarity along an alarm
attribute. Our simulations described later show that these
string-based distance metrics effectively capture operators’
practice of visually comparing the attribute values of alarms.
The attributes operators typically inspect are: Device Name
(e.g., ab1-cd2-ef3-gh4), Device Type (e.g., Router, Switch),
Element Type (device part needing attention, e.g., Port),
Name (includes Device Name and information about the
Element needing attention, e.g., Port-ab1-cd2-ef3-gh4),
Severity (from 1 to 5 representing highest to lowest priority,
respectively), and Event Name (e.g., High Utilization).

For alarm attributes Device Name, Name, Event Name, and
the four standard components of the Device Name (e.g.,
ab1-cd2-ef3-gh4 ab1, cd2, ef3, and gh4), CueT computes
two string-based distance metrics (amounting to fourteen
total metrics): the edit distance and the longest common
substring (LCS) converted to a distance according to:

di,j = maxlength (i, j) − si,j
where si,j is the length of the LCS between strings i and j. We
include both edit distance and LCS because they have
complementary strengths. For example, LCS is a good
measure for strings that encode location. Devices “ab1*” and
“ac1*” are likely in different locations. For these, LCS
distance (which is 2) better captures that these are different
than edit distance (which is 1). As described below, our
method of learning the combination of these individual
metrics will reduce the effect of any irrelevant metric (edit
distance in this case).

For alarm attributes Device Type, Element Type, and
Severity, CueT computes one string matching distance metric
each (amounting to three metrics in total). This distance
metric returns 0 if the attribute values are the same or 1 if
they are different.

We combine these 17 distance metrics using Mahalanobis
distance, which parameterizes distance between any alarms u
and v, represented as d dimensional feature vectors, by a d×d
positive definite covariance matrix A:

Distance (u, v) = (u - v)T A (u - v)
This function effectively weights the 17 distances by the

matrix A, which encodes their relative importance for alarm
classification and the correlations between them.

We learn the parameters of the matrix A from operator
actions, extending an online metric learning algorithm [Jain
et al., 2008] originally derived for static environments to
dynamic scenarios where both the number and type of classes
are varying. In particular, given a stream of alarms, each
labeled with the ticket it was triaged into, we incrementally
update the matrix A by encoding the labels as constraints
indicating that the incoming alarm and each alarm in the
target ticket should be near each other. When an alarm
spawns a new ticket, no update is made to the matrix A
(however, this changes the working set of tickets). To learn
the parameters of A, we initialize it to the identity matrix
(setting the regularization parameter η to .001) and then
update the parameters as we observe triage actions. We
continue this process for N alarms, where N is determined
empirically from our simulations described below, and then
fix the distance function. The final covariance matrix AN is
used in making recommendations for the remaining data.

Intuitively, the parameters learned for the matrix A reflect
the importance of and correlations among the individual
distance metrics to best explain the human operator’s actions.
The advantage of learning the matrix A from data is that it
does not require expert tuning, which can be difficult to
obtain and does not evolve with the network [Gardner and
Harle, 1996; Steinder and Sethi, 2004].

Recommending Starting a New Ticket
CueT maintains a threshold distance for starting a new ticket
based on information about when operators spawn new
tickets. When an operator spawns a new ticket for an
incoming alarm, the distance between this alarm and the
nearest ticket in the working set is stored. We experimented
with several strategies for computing the threshold distance
from these stored distances including taking the minimum
and average of the most recently stored distances or of all the
distances. We found that taking the minimum within the five
most recently stored distances performs best.

For each incoming alarm, CueT computes the latest
threshold distance using the strategy above and inserts a
“Start New Ticket” recommendation into its ordered list of
recommendations according to this distance.

Spawning New Tickets and Discarding Old Tickets
When an operator determines that an incoming alarm is part
of a new problem, a new ticket is created and added to the
working set. CueT also automatically discards old tickets,
simulating the resolution of problems. We use a windowing
mechanism to discard old tickets. In particular, we fix the
window size to N, which is the number of alarms used for
learning our covariance matrix. Any time the number of
unique alarms in the working set of tickets exceeds N we
remove the oldest ticket in the set. Spawning new tickets and
discarding old ones means that the working set of tickets used
for machine-learning-based recommendations is continually
evolving as an operator interacts with CueT.

3.3 Simulation Experiments
For our experiments simulating human interaction with
CueT’s interactive machine learning component, we

obtained alarm triage data from a network operations center
at a large organization that monitors a network with
approximately 15,000 devices. This data was labeled by Tier
1 operators through their manual triage process. To evaluate
CueT’s interactive machine learning component over a long
period, we use data spread across several months: from the
first day of each month between January and August 2010
(inclusive) except for May and July when the network had
recording problems. This data set contains 338,218 alarms, of
which 8,719 are unique (as devices typically generate
duplicate alarms when problems occur) and are mapped to
1,281 unique tickets.

To simulate human interaction and compute the accuracy
of CueT’s learning, we processed alarms in the data in the
order in which they occurred. For each alarm, we first
compute an ordered list of recommendations that we use to
measure accuracy. Then, we obtain the actual label for the
alarm and either add the alarm to an existing ticket or create a
new ticket. If we add the incoming alarm to an existing ticket
and we have observed fewer than N alarms, we update AN as
described previously. If we start a new ticket, we update the
threshold distance for starting new tickets and update the
working set of tickets. Finally, if we determine that the
working set has exceeded the window size of N alarms, we
discard the oldest ticket in the set.

We measure recommendation accuracy for each incoming
alarm by comparing the recommendations to the ground truth
(all of the alarm triage data observed before reaching the
incoming alarm, without discarding any tickets due to our
fixed window size N). Note that the nature of the problem we
are dealing with requires that we operate in a moving window.
Therefore, some of our errors may be the result of discarding
tickets (e.g., recommending a new ticket when the correct
ticket is in the ground truth but no longer exists in the
working set).

Because multiple tickets may be the same distance away
from an incoming alarm, we compute recommendation
accuracy as whether or not the alarm’s actual label appeared
within the set of ticket recommendations a given distance
away from the alarm or closer. For example, if CueT predicts
two different tickets as being equally closest to the incoming
alarm (“Top 1 distance” away) and if the correct label is one
of the two tickets, then we consider this a correct
recommendation at the Top 1 distance. We experimented
with accuracy within the Top 1, 2, 3, and 4 distances from the
incoming alarm.

We ran ten simulations over our data, varying the number
of alarms N used in both learning the distance function
parameters AN as well as in the window size for discarding
old tickets. Figure 2 (left) illustrates CueT’s accuracy within
the set of tickets recommended at the Top 1, 2, 3, and 4
distances from incoming alarms averaged over all the
simulation trials. Figure 2 (middle and right) shows the
average number and percentage of tickets (out of N)
presented at each of the Top 1 to 4 distances. From these
results it appears that presenting tickets within the Top 3
distances achieves a good balance between relatively high
accuracy and a small number of tickets being presented.

Therefore, for our user study described later, we fix CueT to
recommend tickets for an incoming alarm (in the
TicketView) within the Top 3 distances from that alarm.

CueT’s accuracy at the Top 3 distances over the various
values of N that we experimented with (10, 20, 30, 40, 50,
100, 150, 200, 250, and 300) appears to peak at an N value of
30 alarms (Figure 3). Therefore, for our user study, we set
N=30 in our interactive machine learning engine.

4 User Study
We conducted a user study to examine the effectiveness of
CueT for alarm triage as compared to the traditional method
of manually ticketing alarms. For the Traditional condition,
we replicated the commercial system used by our network
operators. For our study we used part of the data that we used
for our simulation experiments (January 1, 2010 data). We
ran it as a within-subjects study, with each participant
performing alarm triage using both CueT and the Traditional
method. To avoid a learning effect, we counterbalanced the
presentation order of the two interfaces. We recruited eleven
people (two female, ages 28 to 44) plus one male pilot from
the network operations team. Each participant worked on an
identical dual-core Windows 7 machine attached to a 20.1’’
monitor at a resolution of 1200x1600 (i.e., in a portrait
orientation). We measured accuracy, speed, and user
preference. For more details about the study design and
results refer to [Amershi et al., 2011].

4.1 Results
Accuracy is computed as the percentage of alarms correctly
triaged out of the total presented. Correctness of participant
labels is measured against the ground truth labels.

We compute two measures for speed: Time on Screen and
Time to Ticket. The former is the time between when an
alarm appeared on screen and when the participant triaged

that alarm. Along with Accuracy, it is a key measure of triage
performance and is used to formulate service level
agreements (SLAs) that the monitoring team offers. For
instance, a possible guarantee may be that for 95% of alarms,
Time on Screen will be under 5 minutes. Since operators
need not triage alarms in the order in which they appear on
screen, Time on Screen is affected by the order in which an
operator decides to triage alarms. Therefore, we also study
Time to Ticket, which is the time between successive triage
actions regardless of order.

For Accuracy, Time on Screen, and Time to Ticket, we
perform paired-samples t tests and our analyses showed that
participants were able to triage alarms faster with CueT than
with the Traditional interface while maintaining the same
level of accuracy. Participants were significantly faster with
CueT than Traditional in terms of Time on Screen
(M=107.7s, SD=127.7s vs. M=277.8s, SD=168.5s,
t(10)=4.43, p=.001) and Time to Ticket (M=10.1s, SD=2.69s
vs. M=12.9s, SD=3.79s, t(10)=3.26, p=.009). There was no
significant difference in terms of accuracy (M=71.8%,
SD=17% vs. M=76.4%, SD=8%).

Our data included a type of alarm that required special
handling. Operators are usually instructed to always create a
new ticket for each such alarm, regardless of similarity to
other alarms. Only a few participants asked us how to triage
these alarms, to which we responded that they should triage
as normal. The logged data shows that these alarms were
handled unevenly by participants. Some rapidly created new
tickets without inspecting recommendations (in CueT) or
searching related tickets (in the CueT or Traditional
condition), while others triaged based on similarity. These
alarms reduce CueT’s accuracy because its model does not
handle exceptional cases. Despite this, our results show that
CueT’s accuracy is no worse and its speed is much better.

We re-did our analysis after removing 39 of these
exceptional alarms to evaluate CueT’s performance in the
absence of special cases. Our corrected analyses show that
participants were still faster with CueT but also more
accurate than with Traditional (M=81.3%, SD=6% vs.
M=72.4%, SD=12%, t(10)=2.29, p=.045) (Figure 4). They
were significantly faster with CueT at triaging in terms of
both Time on Screen (M=86.9s, SD=69.2s vs. M=176.2s,
SD=85.2s, t(10)=4.63, p=.001) and Time to Ticket (M=9.9s,
SD=3.1s vs. M=15.7s, SD=4.6s, t(10)=6.52, p<.001).

We analyze our user preference questionnaires using
Friedman Chi-Square tests. CueT was favored significantly
more than Traditional in terms of overall satisfaction

Figure 2. CueT’s accuracy (left), number (middle), and % of
tickets presented (right) within Top 1, 2, 3, 4 distances from each
incoming alarm, averaged over all simulation trials.

Figure 3. CueT’s accuracy at the Top 3 distances for various
window sizes N. N=30 achieves peak performance.

Figure 4. Accuracy (left), Time on Screen (middle), and Time to
Ticket (right) comparisons. All differences are significant. Error
bars represent standard error.

(χ2(1,N=11)=9.0, p=.003), how much participants liked using
the system (χ2(1,N=11)=11.0, p=.001), whether they felt that
they could efficiently ticket alarms with the system
(χ2(1,N=11)=6.4, p=.011), and whether they felt the system
was easy to use (χ2(1,N=11)=11.0, p=.001).

Regarding CueT-specific features, participants tended to
agree with the statements “The ticket recommendations were
useful” (5.81 avg. on a 7-point Likert scale, 7 being the
highest level of agreement) and “The Distance Overview was
useful” (5.36 avg.). In addition, all of our participants chose
CueT as their preferred system for alarm triage.

5 Discussion and Conclusion
Our results show that network operators can triage alarms
significantly faster with CueT than with their traditional
method. When considering general alarms as well as
exceptional cases, CueT reduces the Time on Screen of
alarms by 61.2% on average. When excluding exceptional
cases the savings are 50.7%. Savings are lower without
exceptional cases because these require an action that can be
performed quickly and without deliberation (e.g., rapidly
creating new tickets without looking for similar tickets).

For Time to Ticket, CueT enables a savings of 21.6%
when considering general and exceptional alarms, and a
savings of 36.8% when considering only the general alarms
that CueT is designed for. To put this in perspective,
assuming 10K alarms per day and a time savings of 5.8s per
alarm (36.8%), the estimated cumulative time savings using
this measure amounts to about 20 operator days per month.

CueT currently cannot automatically exclude exceptional
cases from its dynamically changing model. Remarkably,
when considering general alarms along with exceptional
cases, no significant decrease in overall accuracy is observed.
This suggests that CueT does not adversely affect operator
ability to deal with exceptional cases. Furthermore, although
including exceptional cases in CueT’s dynamic model may
cause interference in recommendation accuracy, CueT still
performed significantly better than the traditional method for
the general case, by 9%. This points at the robustness of
using triage recommendations from human-guided
interactive machine learning based models. As interference
can negatively affect CueT’s recommendation accuracy, it is
fair to regard CueT’s performance results as a lower bound
on its potential for improving alarm triage.

We believe CueT’s tight integration of interactive machine
learning and visualization is key to its success. As with other
distance-based recommendation systems, multiple tickets in
CueT can be equally distant from an alarm. Presenting
recommendations as a traditional list would therefore require
arbitrarily ordering tickets which would likely mislead
operators. To ensure high accuracy, the Ticket Distance
Overview was designed to illustrate recommendation quality
and encourage operators to inspect comparable tickets.
Further, the coupling between machine learning and
visualization makes it easy for operators to provide feedback
and keep the model up-to-date.

CueT demonstrates the importance of human involvement
to complement and improve automated systems that are

never fully accurate due to the complexity of the problem.
While CueT is designed for triaging alarms, we believe that
the lessons learned readily extend to other scenarios where
humans need to organize continuous streams of data.

Acknowledgments
We thank the staff at the network operations center and our
study participants for their time and feedback.

References
[Amershi et al., 2011] Saleema Amershi, Bongshin Lee,

Ashish Kapoor, Ratul Mahajan, and Blaine Christian.
CueT: Human-Guided Fast and Accurate Network Alarm
Triage. To appear in Proc. CHI 2011.

[Basu et al., 2010] Sumit Basu, Danyel Fisher, Steven M.
Drucker, and Hao Lu. Assisting Users with Clustering
Tasks by Combining Metric Learning and Classification.
Proc. AAAI 2010.

[Fails and Olsen, 2003] Jerry Alan Fails and Dan R. Olsen,
Jr. Interactive Machine Learning. Proc. IUI 2003, pages
39-45.

[Fisher et al., 2008] Danyel Fisher, David A. Maltz, Albert
Greenberg, Xiaoyu Wang, Heather Warncke, Geroge
Robertson, and Mary Czerwinski. Using Visualization to
Support Network and Application Management in a Data
Center. Proc. INM 2008, pages 1-6.

[Fogarty et al., 2008] James Fogarty, Desney Tan, Ashish
Kapoor, and Simon Winder. CueFlik: Interactive Concept
Learning in Image Search. Proc. CHI 2008, pages 29-38.

[Gardner and Harle, 1996] Robert D. Gardner and David A.
Harle. Methods and Systems for Alarm Correlation. Proc.
GLOBECOM 1996, pages 136-140.

[Jain et al., 2008] Prateek Jain, Brian Kulis, Inderjit S.
Dhillon, and Kristen Grauman. Online Metric Learning
and Fast Similarity Search. Proc. NIPS 2008, pages
761-768.

[Jakobson and Weissman, 1993] Gabriel Jakobson and Mark
D. Weissman. Alarm Correlation: Correlating multiple
network alarms improves telecommunications network
surveillance and fault management. IEEE Network, 7(6):
52-59, 1993.

[Klementtinen et al., 1999] Mika Klemettinen, Heikki
Mannila, and Hannu Toivonen. Rule Discovery in
Telecommunication Alarm Data. J. Network and Systems
Management, 7(4): 395-423, 1999.

[Steinder and Sethi, 2004] Malgorzata Steinder and
Adarshpal S. Sethi. A Survey of Fault Localization
Techniques in Computer Networks. Science of Computer
Programming, 53(2): 165-194, 2004.

[Yemini et al., 1996] Shaula Alexander Yemini, Shmuel
Kliger, Eyal Mozes, Yechiam Yemini, and David Ohsie.
High Speed and Robust Event Correlation. IEEE
Communications Magazine, 34(5): 82-90, 1996.

