
Abstract 

Network alarm triage refers to grouping and 
prioritizing a stream of low-level device health 
information to help operators find and fix problems. 
Today, this process tends to be largely manual 
because existing rule-based tools cannot easily 
evolve with the network. We present CueT, a 
system that uses interactive machine learning to 
constantly learn from the triaging decisions of 
operators. It then uses that learning in novel 
visualizations to help them quickly and accurately 
triage alarms. Unlike prior interactive machine 
learning systems, CueT handles a highly dynamic 
environment where the groups of interest are not 
known a priori and evolve constantly. Our 
evaluations with real operators and data from a large 
network show that CueT significantly improves the 
speed and accuracy of alarm triage. 

1 Introduction 
Network alarm triage refers to grouping and prioritizing a 
stream of low-level device health information (e.g., high link 
utilization and fan failure alarms) to help operators find and 
fix problems in computer networks. It is critical that triage is 
fast and accurate so operators are not misled and problems 
can be identified and resolved quickly. 
 Many automated systems have been developed for the 
alarm triage problem [Gardner and Harle, 1996; Steinder and 
Sethi, 2004], mostly taking the form of expert defined rules 
or models. However, despite years of effort, these systems 
are never fully accurate due to the complexity of the problem. 
Large networks have thousands of diverse devices, each 
generating a different set of alarms. Further, because each 
network is different and the set of devices within a network 
changes over time, it is very challenging to develop systems 
that work across networks. Therefore, to cope with the 
inherent inaccuracy of automated systems, networks 
invariably employ human operators (so called “Tier 1” 
operators) to triage the remaining thousands of alarms per 
day that can be missed by automation. 
 We explore a fundamentally different approach for alarm 
triage, using interactive machine learning to constantly learn 

from operator triage actions and in turn assist them by 
providing recommendations on how to group incoming 
alarms based on the learned model at that instant. Our 
approach is designed for highly dynamic environments 
where the groups are not known a priori and evolve 
constantly. It can also be applied to other scenarios where 
people need help organizing a continuous data stream (e.g., 
RSS feeds, email management, social network updates). 
 We implement our approach in the context of the alarm 
triage problem with a system we call CueT (Figure 1). Our 
simulation experiments with real data from a large, global 
network with approximately 15,000 devices show the 
potential of our constantly-updating machine-learning-based 
approach for improving the alarm triage process. However, 
as with all automation, machine-learning-based systems are 
never perfectly accurate. Therefore, in real-world 
applications of our approach, it is critical that operators 
carefully inspect and compare recommendations before 
deciding how to finally proceed. To this end, CueT includes a 
novel visualization that conveys its recommendation 
confidence to further help operators decide how to triage. 
Our evaluation with human operators shows that CueT’s 
combination of interactive machine learning with novel 
visualizations significantly improves the accuracy and 
reduces the time required for alarm triage. 

2 Related Work 
Most research in network monitoring and alarm correlation 
has focused either on visualizations or automated solutions in 
isolation. Researchers have recently proposed visualization 
systems for network monitoring and diagnosis. For example, 
Visual-I [Fisher et al., 2008] uses visual grouping and 
scatterplots to highlight correlations between multiple 
devices and problems. Our approach combines visualization 
and interactive machine learning in order to further reduce 
the cognitive effort of manually identifying patterns in large 
data sets. Helping automate pattern discovery can increase 
operator efficiency and accuracy, necessary for these time 
critical problems. 

Automated alarm correlation (also related to root cause 
analysis and fault localization) has long been an active area 
of research because of the complexity of the problem and the 
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potential impact on the industry [Gardner and Harle, 1996; 
Steinder and Sethi, 2004]. Most solutions have taken the 
form of expert defined rules or models (e.g., [Gardner and 
Harle, 1996; Jakobson and Weissman, 1993]). Such 
approaches require manual configuration of rules which can 
be difficult to obtain, are not robust to new situations, and 
require frequent maintenance [Gardner and Harle, 1996; 
Steinder and Sethi, 2004]. In contrast, our approach can 
handle general alarm correlations that require alarm grouping 
based on similarity. 

Some researchers have explored automatically learning 
rules or models from data that can then be used for automated 
alarm correlation and filtering (e.g., [Klementtinen et al., 
1999; Steinder and Sethi, 2004]). However, most of these 
approaches require extensive training periods and must be 
retrained whenever the network topology changes [Steinder 
and Sethi, 2004]. In contrast, our approach is based on a 
dynamically changing model that is constantly learning from 
human guidance. We argue that human input is critical 
during the alarm correlation process because of the 
inherently inconsistent and ambiguous nature of the problem 
[Gardner and Harle, 1996], a key reason why alarm 
correlation is still an open area of research. While today’s 
commercial systems employ some of these previous 
techniques [EMC Ionix 1 ; Yemini et al., 1996], most 
companies still require teams of Tier 1 operators to manually 

                                                 
1 http://www.emc.com/products/family/ionix-family.htm 

triage the thousands of remaining alarms unhandled by 
existing systems.  

Our work is closely aligned with evolving research on 
interactive machine learning, asserting the importance of 
human involvement and proposing interactive systems for 
various applications (e.g., image segmentation [Fails and 
Olsen, 2003], document grouping [Basu et al., 2010], and 
image search [Fogarty et al., 2008]). While previous work 
has focused on pool-based static environments where the 
categories of interest and the pool of unlabeled data are 
known a priori, our work involves a more challenging 
scenario where data is streaming in and out and the set of 
labels is constantly changing over time. 

3 CueT 
CueT consists of two interacting components: (1) an 
interface to assist operators in inspecting triage 
recommendations and feeding operator actions back into the 
learning system and (2) a stream-based interactive machine 
learning engine for making triage recommendations. We will 
refer to the alarm currently being triaged as the “incoming 
alarm,” a group of one or more related alarms that have 
already been triaged as a “ticket,” and the current set of 
tickets that are being used for recommendations (and have 
not been discarded yet) as the “working set of tickets.” 

 
Figure 1. CueT’s interface. Alarms stream in from the network and are displayed on the right. CueT’s triage recommendations for each alarm
appear on the left along with a visualization of CueT’s confidence in those recommendations (far left). Device Names and other information
are blurred for security reasons.  



3.1 CueT Interface 
CueT’s interface (Figure 1) consists of two main views: the 
Alarm View on the right and the Ticket View on the left.  

Alarms are displayed in the Alarm View as they stream in 
from the network. Since operators often miss important 
alarms that appear off of the screen, the Alarm View includes 
an Alarm Overview (far right in Figure 1) that provides 
awareness of all alarms still requiring triage even if they are 
off the screen. Each time an operator clicks on an alarm to 
triage in the Alarm View, CueT generates its ticket 
recommendations for the selected alarm and displays them in 
the Ticket View along with a visualization illustrating its 
confidence in those recommendations with the Ticket 
Distance Overview (far left in Figure 1).  

Tickets are a collection of related alarms. Each ticket has a 
parent alarm, which is manually determined by a human 
operator and typically represents either the most severe or the 
first alarm in the ticket. Immediately below the ticket label 
(at the top of each ticket in the Ticket View) is information 
about the ticket’s parent alarm along with the ticket 
description. Below the parent alarm is the best matching 
alarm within the ticket to the incoming alarm (next to the star 
icons in Figure 1). This serves as an explanation for why 
CueT is recommending that an operator triage an alarm into a 
given ticket. Thus, ticket representations are tailored for each 
alarm. Operators can also click on a ticket to display all the 
alarms currently grouped within the ticket. New ticket 
recommendations are displayed as empty ticket stubs with a 
gray label and text displaying “Start New Ticket.” 

Operators can inspect CueT’s ticket recommendations and 
the Ticket Distance Overview visualization to determine how 
to triage an incoming alarm (i.e., either add it to an existing 
ticket or start a new one). Each bubble in the Ticket Distance 
Overview corresponds to a ticket and its vertical position 
relative to the top of the overview reflects the similarity 
between the alarm being triaged and each ticket within the 
working set. That is, the closer the bubble is to the top, the 
better a match the corresponding ticket is for the alarm 
currently being triaged. Bubbles that are positioned near each 
other are comparable in terms of their similarity to the alarm. 
In this case, the overview should encourage operators to 
inspect all comparable tickets before triaging. 

The Ticket View initially displays only the tickets closest 
to the alarm being triaged (where ‘closest’ is determined by 
our simulations discussed in the following sections) as this 
helps to balance operator load and the probability of these 
tickets containing the correct recommendation. However, 
CueT allows operators to reveal more tickets to inspect using 
the Ticket Distance Overview.  

Operators triage an alarm by dragging and dropping it onto 
the appropriate ticket in the Ticket View. CueT’s interface 
also contains a Search View (bottom left in Figure 1) through 
which operators can search for existing tickets by entering a 
search string as they do with their current system for triaging 
alarms. Operators can add alarms to tickets appearing in the 
Search View just as in the Ticket View. 

3.2 Stream-Based Interactive Machine Learning 
We tackle the challenges due to the highly dynamic 
environment and ever-evolving set of classes (i.e., the 
working set of tickets and the alarms within those tickets) by 
building on nearest neighbor classification. CueT provides 
triage recommendations for an incoming alarm by ordering 
the working set of tickets by their similarity to that alarm. 
Similarity is measured using a distance function that adapts 
based on operator actions. We extend classification to 
include a mechanism for recommending when an incoming 
alarm should spawn a new ticket. 

Recommending Existing Tickets 
CueT makes recommendations by ordering the working set 
of tickets by the average distance between the incoming 
alarm and each alarm in the ticket. Distance between alarms 
is measured using 17 individual string-based distance 
metrics, each of which represents similarity along an alarm 
attribute. Our simulations described later show that these 
string-based distance metrics effectively capture operators’ 
practice of visually comparing the attribute values of alarms. 
The attributes operators typically inspect are: Device Name 
(e.g., ab1-cd2-ef3-gh4), Device Type (e.g., Router, Switch), 
Element Type (device part needing attention, e.g., Port), 
Name (includes Device Name and information about the 
Element needing attention, e.g., Port-ab1-cd2-ef3-gh4), 
Severity (from 1 to 5 representing highest to lowest priority, 
respectively), and Event Name (e.g., High Utilization).  

For alarm attributes Device Name, Name, Event Name, and 
the four standard components of the Device Name (e.g., 
ab1-cd2-ef3-gh4  ab1, cd2, ef3, and gh4), CueT computes 
two string-based distance metrics (amounting to fourteen 
total metrics): the edit distance and the longest common 
substring (LCS) converted to a distance according to: 

di,j = maxlength (i, j) − si,j 
where si,j is the length of the LCS between strings i and j. We 
include both edit distance and LCS because they have 
complementary strengths. For example, LCS is a good 
measure for strings that encode location. Devices “ab1*” and 
“ac1*” are likely in different locations. For these, LCS 
distance (which is 2) better captures that these are different 
than edit distance (which is 1). As described below, our 
method of learning the combination of these individual 
metrics will reduce the effect of any irrelevant metric (edit 
distance in this case). 

For alarm attributes Device Type, Element Type, and 
Severity, CueT computes one string matching distance metric 
each (amounting to three metrics in total). This distance 
metric returns 0 if the attribute values are the same or 1 if 
they are different. 

We combine these 17 distance metrics using Mahalanobis 
distance, which parameterizes distance between any alarms u 
and v, represented as d dimensional feature vectors, by a d×d 
positive definite covariance matrix A: 

Distance (u, v) = (u - v)T A (u - v) 
This function effectively weights the 17 distances by the 

matrix A, which encodes their relative importance for alarm 
classification and the correlations between them. 



We learn the parameters of the matrix A from operator 
actions, extending an online metric learning algorithm [Jain 
et al., 2008] originally derived for static environments to 
dynamic scenarios where both the number and type of classes 
are varying. In particular, given a stream of alarms, each 
labeled with the ticket it was triaged into, we incrementally 
update the matrix A by encoding the labels as constraints 
indicating that the incoming alarm and each alarm in the 
target ticket should be near each other. When an alarm 
spawns a new ticket, no update is made to the matrix A 
(however, this changes the working set of tickets). To learn 
the parameters of A, we initialize it to the identity matrix 
(setting the regularization parameter η to .001) and then 
update the parameters as we observe triage actions. We 
continue this process for N alarms, where N is determined 
empirically from our simulations described below, and then 
fix the distance function. The final covariance matrix AN is 
used in making recommendations for the remaining data. 

Intuitively, the parameters learned for the matrix A reflect 
the importance of and correlations among the individual 
distance metrics to best explain the human operator’s actions. 
The advantage of learning the matrix A from data is that it 
does not require expert tuning, which can be difficult to 
obtain and does not evolve with the network [Gardner and 
Harle, 1996; Steinder and Sethi, 2004]. 

Recommending Starting a New Ticket 
CueT maintains a threshold distance for starting a new ticket 
based on information about when operators spawn new 
tickets. When an operator spawns a new ticket for an 
incoming alarm, the distance between this alarm and the 
nearest ticket in the working set is stored. We experimented 
with several strategies for computing the threshold distance 
from these stored distances including taking the minimum 
and average of the most recently stored distances or of all the 
distances. We found that taking the minimum within the five 
most recently stored distances performs best.  

For each incoming alarm, CueT computes the latest 
threshold distance using the strategy above and inserts a 
“Start New Ticket” recommendation into its ordered list of 
recommendations according to this distance. 

Spawning New Tickets and Discarding Old Tickets 
When an operator determines that an incoming alarm is part 
of a new problem, a new ticket is created and added to the 
working set. CueT also automatically discards old tickets, 
simulating the resolution of problems. We use a windowing 
mechanism to discard old tickets. In particular, we fix the 
window size to N, which is the number of alarms used for 
learning our covariance matrix. Any time the number of 
unique alarms in the working set of tickets exceeds N we 
remove the oldest ticket in the set. Spawning new tickets and 
discarding old ones means that the working set of tickets used 
for machine-learning-based recommendations is continually 
evolving as an operator interacts with CueT. 

3.3 Simulation Experiments 
For our experiments simulating human interaction with 
CueT’s interactive machine learning component, we 

obtained alarm triage data from a network operations center 
at a large organization that monitors a network with 
approximately 15,000 devices. This data was labeled by Tier 
1 operators through their manual triage process. To evaluate 
CueT’s interactive machine learning component over a long 
period, we use data spread across several months: from the 
first day of each month between January and August 2010 
(inclusive) except for May and July when the network had 
recording problems. This data set contains 338,218 alarms, of 
which 8,719 are unique (as devices typically generate 
duplicate alarms when problems occur) and are mapped to 
1,281 unique tickets. 

To simulate human interaction and compute the accuracy 
of CueT’s learning, we processed alarms in the data in the 
order in which they occurred. For each alarm, we first 
compute an ordered list of recommendations that we use to 
measure accuracy. Then, we obtain the actual label for the 
alarm and either add the alarm to an existing ticket or create a 
new ticket. If we add the incoming alarm to an existing ticket 
and we have observed fewer than N alarms, we update AN as 
described previously. If we start a new ticket, we update the 
threshold distance for starting new tickets and update the 
working set of tickets. Finally, if we determine that the 
working set has exceeded the window size of N alarms, we 
discard the oldest ticket in the set. 

We measure recommendation accuracy for each incoming 
alarm by comparing the recommendations to the ground truth 
(all of the alarm triage data observed before reaching the 
incoming alarm, without discarding any tickets due to our 
fixed window size N). Note that the nature of the problem we 
are dealing with requires that we operate in a moving window. 
Therefore, some of our errors may be the result of discarding 
tickets (e.g., recommending a new ticket when the correct 
ticket is in the ground truth but no longer exists in the 
working set). 

Because multiple tickets may be the same distance away 
from an incoming alarm, we compute recommendation 
accuracy as whether or not the alarm’s actual label appeared 
within the set of ticket recommendations a given distance 
away from the alarm or closer. For example, if CueT predicts 
two different tickets as being equally closest to the incoming 
alarm (“Top 1 distance” away) and if the correct label is one 
of the two tickets, then we consider this a correct 
recommendation at the Top 1 distance. We experimented 
with accuracy within the Top 1, 2, 3, and 4 distances from the 
incoming alarm. 

We ran ten simulations over our data, varying the number 
of alarms N used in both learning the distance function 
parameters AN as well as in the window size for discarding 
old tickets. Figure 2 (left) illustrates CueT’s accuracy within 
the set of tickets recommended at the Top 1, 2, 3, and 4 
distances from incoming alarms averaged over all the 
simulation trials. Figure 2 (middle and right) shows the 
average number and percentage of tickets (out of N) 
presented at each of the Top 1 to 4 distances. From these 
results it appears that presenting tickets within the Top 3 
distances achieves a good balance between relatively high 
accuracy and a small number of tickets being presented. 



Therefore, for our user study described later, we fix CueT to 
recommend tickets for an incoming alarm (in the 
TicketView) within the Top 3 distances from that alarm. 

CueT’s accuracy at the Top 3 distances over the various 
values of N that we experimented with (10, 20, 30, 40, 50, 
100, 150, 200, 250, and 300) appears to peak at an N value of 
30 alarms (Figure 3). Therefore, for our user study, we set 
N=30 in our interactive machine learning engine. 

4 User Study  
We conducted a user study to examine the effectiveness of 
CueT for alarm triage as compared to the traditional method 
of manually ticketing alarms. For the Traditional condition, 
we replicated the commercial system used by our network 
operators. For our study we used part of the data that we used 
for our simulation experiments (January 1, 2010 data). We 
ran it as a within-subjects study, with each participant 
performing alarm triage using both CueT and the Traditional 
method. To avoid a learning effect, we counterbalanced the 
presentation order of the two interfaces. We recruited eleven 
people (two female, ages 28 to 44) plus one male pilot from 
the network operations team. Each participant worked on an 
identical dual-core Windows 7 machine attached to a 20.1’’ 
monitor at a resolution of 1200x1600 (i.e., in a portrait 
orientation). We measured accuracy, speed, and user 
preference. For more details about the study design and 
results refer to [Amershi et al., 2011]. 

4.1 Results 
Accuracy is computed as the percentage of alarms correctly 
triaged out of the total presented. Correctness of participant 
labels is measured against the ground truth labels. 

We compute two measures for speed: Time on Screen and 
Time to Ticket. The former is the time between when an 
alarm appeared on screen and when the participant triaged 

that alarm. Along with Accuracy, it is a key measure of triage 
performance and is used to formulate service level 
agreements (SLAs) that the monitoring team offers. For 
instance, a possible guarantee may be that for 95% of alarms, 
Time on Screen will be under 5 minutes. Since operators 
need not triage alarms in the order in which they appear on 
screen, Time on Screen is affected by the order in which an 
operator decides to triage alarms. Therefore, we also study 
Time to Ticket, which is the time between successive triage 
actions regardless of order.  

For Accuracy, Time on Screen, and Time to Ticket, we 
perform paired-samples t tests and our analyses showed that 
participants were able to triage alarms faster with CueT than 
with the Traditional interface while maintaining the same 
level of accuracy. Participants were significantly faster with 
CueT than Traditional in terms of Time on Screen 
(M=107.7s, SD=127.7s vs. M=277.8s, SD=168.5s, 
t(10)=4.43, p=.001) and Time to Ticket (M=10.1s, SD=2.69s 
vs. M=12.9s, SD=3.79s, t(10)=3.26, p=.009). There was no 
significant difference in terms of accuracy (M=71.8%, 
SD=17% vs. M=76.4%, SD=8%).  

Our data included a type of alarm that required special 
handling. Operators are usually instructed to always create a 
new ticket for each such alarm, regardless of similarity to 
other alarms. Only a few participants asked us how to triage 
these alarms, to which we responded that they should triage 
as normal. The logged data shows that these alarms were 
handled unevenly by participants. Some rapidly created new 
tickets without inspecting recommendations (in CueT) or 
searching related tickets (in the CueT or Traditional 
condition), while others triaged based on similarity. These 
alarms reduce CueT’s accuracy because its model does not 
handle exceptional cases. Despite this, our results show that 
CueT’s accuracy is no worse and its speed is much better.  

We re-did our analysis after removing 39 of these 
exceptional alarms to evaluate CueT’s performance in the 
absence of special cases. Our corrected analyses show that 
participants were still faster with CueT but also more 
accurate than with Traditional (M=81.3%, SD=6% vs. 
M=72.4%, SD=12%, t(10)=2.29, p=.045) (Figure 4). They 
were significantly faster with CueT at triaging in terms of 
both Time on Screen (M=86.9s, SD=69.2s vs. M=176.2s, 
SD=85.2s, t(10)=4.63, p=.001) and Time to Ticket (M=9.9s, 
SD=3.1s vs. M=15.7s, SD=4.6s, t(10)=6.52, p<.001). 

We analyze our user preference questionnaires using 
Friedman Chi-Square tests. CueT was favored significantly 
more than Traditional in terms of overall satisfaction 

 
Figure 2. CueT’s accuracy (left), number (middle), and % of 
tickets presented (right) within Top 1, 2, 3, 4 distances from each 
incoming alarm, averaged over all simulation trials. 

  
Figure 3. CueT’s accuracy at the Top 3 distances for various 
window sizes N. N=30 achieves peak performance. 

Figure 4. Accuracy (left), Time on Screen (middle), and Time to 
Ticket (right) comparisons. All differences are significant. Error 
bars represent standard error. 



(χ2(1,N=11)=9.0, p=.003), how much participants liked using 
the system (χ2(1,N=11)=11.0, p=.001), whether they felt that 
they could efficiently ticket alarms with the system 
(χ2(1,N=11)=6.4, p=.011), and whether they felt the system 
was easy to use (χ2(1,N=11)=11.0, p=.001).  

Regarding CueT-specific features, participants tended to 
agree with the statements “The ticket recommendations were 
useful” (5.81 avg. on a 7-point Likert scale, 7 being the 
highest level of agreement) and “The Distance Overview was 
useful” (5.36 avg.). In addition, all of our participants chose 
CueT as their preferred system for alarm triage. 

5 Discussion and Conclusion  
Our results show that network operators can triage alarms 
significantly faster with CueT than with their traditional 
method. When considering general alarms as well as 
exceptional cases, CueT reduces the Time on Screen of 
alarms by 61.2% on average. When excluding exceptional 
cases the savings are 50.7%. Savings are lower without 
exceptional cases because these require an action that can be 
performed quickly and without deliberation (e.g., rapidly 
creating new tickets without looking for similar tickets).  

For Time to Ticket, CueT enables a savings of 21.6% 
when considering general and exceptional alarms, and a 
savings of 36.8% when considering only the general alarms 
that CueT is designed for. To put this in perspective, 
assuming 10K alarms per day and a time savings of 5.8s per 
alarm (36.8%), the estimated cumulative time savings using 
this measure amounts to about 20 operator days per month. 

CueT currently cannot automatically exclude exceptional 
cases from its dynamically changing model. Remarkably, 
when considering general alarms along with exceptional 
cases, no significant decrease in overall accuracy is observed. 
This suggests that CueT does not adversely affect operator 
ability to deal with exceptional cases. Furthermore, although 
including exceptional cases in CueT’s dynamic model may 
cause interference in recommendation accuracy, CueT still 
performed significantly better than the traditional method for 
the general case, by 9%. This points at the robustness of 
using triage recommendations from human-guided 
interactive machine learning based models. As interference 
can negatively affect CueT’s recommendation accuracy, it is 
fair to regard CueT’s performance results as a lower bound 
on its potential for improving alarm triage.  

We believe CueT’s tight integration of interactive machine 
learning and visualization is key to its success. As with other 
distance-based recommendation systems, multiple tickets in 
CueT can be equally distant from an alarm. Presenting 
recommendations as a traditional list would therefore require 
arbitrarily ordering tickets which would likely mislead 
operators. To ensure high accuracy, the Ticket Distance 
Overview was designed to illustrate recommendation quality 
and encourage operators to inspect comparable tickets. 
Further, the coupling between machine learning and 
visualization makes it easy for operators to provide feedback 
and keep the model up-to-date.  

CueT demonstrates the importance of human involvement 
to complement and improve automated systems that are 

never fully accurate due to the complexity of the problem. 
While CueT is designed for triaging alarms, we believe that 
the lessons learned readily extend to other scenarios where 
humans need to organize continuous streams of data. 
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