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Camera calibration has been studied extensively in computer vision and photogrammetry, and
the proposed techniques in the literature include those using 3D apparatus (two or three planes
orthogonal to each other, or a plane undergoing a pure translation, etc.), 2D objects (planar
patterns undergoing unknown motions), and 0D features (self-calibration using unknown scene
points). This paper yet proposes a new calibration technique using 1D objects (points aligned
on a line), thus £lling the missing dimension in calibration. In particular, we show that camera
calibration is not possible with free-moving 1D objects, but can be solved if one point is £xed.
A closed-form solution is developed if six or more observations of such a 1D object are made.
For higher accuracy, a nonlinear technique based on the maximum likelihood criterion is then
used to re£ne the estimate. Besides the theoretical aspect, the proposed technique is also
important in practice especially when calibrating multiple cameras mounted apart from each
other, where the calibration objects are required to be visible simultaneously.
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1 Introduction

Camera calibration is a necessary step in 3D computer vision in order to extract metric information from
2D images. Much work has been done, starting in the photogrammetry community (see [1, 3] to cite a
few), and more recently in computer vision ([8, 7, 19, 6, 21, 20, 14, 5] to cite a few). According to the
dimension of the calibration objects, we can classify those techniques roughly into three categories.

3D reference object based calibration. Camera calibration is performed by observing a calibration ob-
ject whose geometry in 3-D space is known with very good precision. Calibration can be done very
ef£ciently [4]. The calibration object usually consists of two or three planes orthogonal to each other.
Sometimes, a plane undergoing a precisely known translation is also used [19], which equivalently
provides 3D reference points. This approach requires an expensive calibration apparatus and an
elaborate setup.

2D plane based calibration. Techniques in this category requires to observe a planar pattern shown at a
few different orientations [22, 17]. Different from Tsai’s technique [19], the knowledge of the plane
motion is not necessary. Because almost anyone can make such a calibration pattern by him/her-self,
the setup is easier for camera calibration.

Self-calibration. Techniques in this category do not use any calibration object, and can be considered as
0D approach because only image point correspondences are required. Just by moving a camera in
a static scene, the rigidity of the scene provides in general two constraints [14, 13] on the cameras’
internal parameters from one camera displacement by using image information alone. Therefore,
if images are taken by the same camera with £xed internal parameters, correspondences between
three images are suf£cient to recover both the internal and external parameters which allow us to
reconstruct 3-D structure up to a similarity [12, 10]. Although no calibration objects are necessary, a
large number of parameters need to be estimated, resulting in a much harder mathematical problem.

Other techniques exist: vanishing points for orthogonal directions [2, 11], and calibration from pure rota-
tion [9, 16].

To our knowledge, there does not exist any calibration technique reported in the literature which uses
one-dimensional (1D) calibration objects, and this is the topic we will investigate in this paper. In particular,
we will consider 1D objects composed of a set of collinear points. Unlike techniques using 3D reference
objects, other techniques requires taking several snapshots of calibration objects or the environment. This
is the price we pay, although insigni£cant in practice, by using poorer knowledge of the observation. This
is also the case with calibration using 1D objects.

Besides the theoretical aspect of using 1D objects in camera calibration, it is also very important in
practice especially when multi-cameras are involved in the environment. To calibrate the relative geometry
between multiple cameras, it is necessary for all involving cameras to simultaneously observe a number of
points. It is hardly possible to achieve this with 3D or 2D calibration apparatus1 if one camera is mounted
in the front of a room while another in the back. This is not a problem for 1D objects. We can for example
use a string of balls hanging from the ceiling.

The paper is organized as follows. Section 2 examines possible setups with 1D objects for camera cal-
ibration. Section 3 describes in detail how to solve camera calibration with 1D objects. Both closed-form
solution and nonlinear minimization based on maximum likelihood criterion are proposed. Section 4 pro-
vides experimental results with both computer simulated data and real images. Finally, Section 5 concludes
the paper with perspective of this work.

2 Preliminaries

We examine possible setups with 1D objects for camera calibration. We start with the notation used in this
paper.

1An exception is when those apparatus are made transparent; then the cost would be much higher.
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2.1 Notation

A 2D point is denoted by m = [u, v]T . A 3D point is denoted by M = [X,Y,Z]T . We use x̃ to denote the
augmented vector by adding 1 as the last element: m̃ = [u, v, 1]T and M̃ = [X,Y,Z, 1]T . A camera is mod-
eled by the usual pinhole: the relationship between a 3D point M and its image projection m (perspective
projection) is given by

sm̃ = A
[
R t

]
M̃ , with A =


α γ u0

0 β v0

0 0 1


 (1)

where s is an arbitrary scale factor, (R, t), called the extrinsic parameters, is the rotation and translation
which relates the world coordinate system to the camera coordinate system, and A is called the camera
intrinsic matrix, with (u0, v0) the coordinates of the principal point, α and β the scale factors in image u
and v axes, and γ the parameter describing the skew of the two image axes. The task of camera calibration
is to determine these £ve intrinsic parameters.

We use the abbreviation A−T for (A−1)T or (AT )−1.

2.2 Setups With Free-Moving 1D Calibration Objects

We now examine possible setups with 1D objects for camera calibration. As already mentioned in the
introduction, we need to have several observations of the 1D objects. Without loss of generality, we choose
the camera coordinate system to de£ne the 1D objects; therefore, R = I and t = 0 in (1).

Two points with known distance. This could be the two endpoints of a stick, and we take a number
of images while waving freely the stick. Let A and B be the two 3D points, and a and b be the observed
image points. Because the distance between A and B is known, we only need 5 parameters to de£ne A and
B. For example, we need 3 parameters to specify the coordinates of A in the camera coordinate system,
and 2 parameters to de£ne the orientation of the line AB. On the other hand, each image point provides
two equations according to (1), giving in total 4 equations. Given N observations of the stick, we have
5 intrinsic parameters and 5N parameters for the point positions to estimate, i.e., the total number of
unknowns is 5 + 5N . However, we only have 4N equations. Camera calibration is thus impossible.

Three collinear points with known distances. By adding an additional point, say C, the number of
unknowns for the point positions still remains the same, i.e., 5 + 5N , because of known distances of C to
A and B. For each observation, we have three image points, yielding in total 6N equations. Calibration
seems to be plausible, but is in fact not. This is because the three image points for each observation must
be collinear. Collinearity is preserved by perspective projection. We therefore only have 5 independent
equations for each observation. The total number of independent equations, 5N , is always smaller than the
number of unknowns. Camera calibration is still impossible.

Four or more collinear points with known distances. As seen above, when the number of points in-
creases from two to three, the number of independent equations (constraints) increases by one for each
observation. If we have a fourth point, will we have in total 6N independent equations? If so, we would
be able to solve the problem because the number of unknowns remains the same, i.e., 5 + 5N , and we
would have more than enough constraints if N ≥ 5. The reality is that the addition of the fourth point or
even more points does not increase the number of independent equations. It will always be 5N for any
four or more collinear points. This is because the cross ratio is preserved under perspective projection.
With known cross ratios and three collinear points, whether they are in space or in images, other points are
determined exactly.

2.3 Setups With 1D Calibration Objects Moving Around a £xed Point

From the above discussion, calibration is impossible with a free moving 1D calibration object, no matter
how many points on the object. Now let us examine what happens if one point is £xed. In the sequel,
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without loss of generality, point A is the £xed point, and a is the corresponding image point. We need 3
parameters, which are unknown, to specify the coordinates of A in the camera coordinate system, while
image point a provides two scalar equations according to (1).

Two points with known distance. They could be the endpoints of a stick, and we move the stick around
the endpoint that is £xed. Let B be the free endpoint and b, its corresponding image point. For each
observation, we need 2 parameters to de£ne the orientation of the line AB and therefore the position of B
because the distance between A and B is known. Given N observations of the stick, we have 5 intrinsic
parameters, 3 parameters for A and 2N parameters for the free endpoint positions to estimate, i.e., the total
number of unknowns is 8 + 2N . However, each observation of b provides two equations, so together with
a we only have in total 2 + 2N equations. Camera calibration is thus impossible.

Three collinear points with known distances. As already explained in the last subsection, by adding an
additional point, say C, the number of unknowns for the point positions still remains the same, i.e., 8+2N .
For each observation, b provides two equations, but c only provides one additional equation because of the
collinearity of a, b and c. Thus, the total number of equations is 2 + 3N for N observations. By counting
the numbers, we see that if we have 6 or more observations, we should be able to solve camera calibration,
and this is the case as we shall show in the next section.

Four or more collinear points with known distances. Again, as already explained in the last subsection,
The number of unknowns and the number of independent equations remain the same because of invariance
of cross-ratios. This said, the more collinear points we have, the more accurate camera calibration will be
in practice because data redundancy can combat the noise in image data.

3 Solving Camera Calibration With 1D Objects

In this section, we describe in detail how to solve the camera calibration problem from a number of obser-
vations of a 1D object consisting of 3 collinear points moving around one of them. We only consider this
minimal con£guration, but it is straightforward to extend the result if a calibration object has four or more
collinear points.

3.1 Basic Equations

Refer to Figure 1. Point A is the £xed point in space, and the stick AB moves around A. The length of the
stick AB is known to be L, i.e.,

‖B− A‖ = L . (2)

The position of point C is also known with respect to A and B, and therefore

C = λAA + λBB , (3)

where λA and λB are known. If C is the midpoint of AB, then λA = λB = 0.5. Points a, b and c on the
image plane are projection of space points A, B and C, respectively.

Without loss of generality, we choose the camera coordinate system to de£ne the 1D objects; therefore,
R = I and t = 0 in (1). Let the unknown depths for A, B and C be zA, zB and zC , respectively. According
to (1), we have

A = zAA−1ã (4)

B = zBA−1b̃ (5)

C = zCA−1c̃ . (6)

Substituting them into (3) yields
zC c̃ = zAλAã + zBλBb̃ (7)
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Figure 1: Illustration of 1D calibration objects

after eliminating A−1 from both sides. By performing cross-product on both sides of the above equation
with c̃, we have

zAλA(ã × c̃) + zBλB(b̃ × c̃) = 0 .

In turn, we obtain

zB = −zA
λA(ã × c̃) · (b̃ × c̃)

λB(b̃ × c̃) · (b̃ × c̃)
. (8)

From (2), we have
‖A−1(zBb̃ − zAã)‖ = L .

Substituting zB by (8) gives

zA‖A−1
(
ã +

λA(ã × c̃) · (b̃ × c̃)

λB(b̃ × c̃) · (b̃ × c̃)
b̃
)‖ = L .

This is equivalent to
z2
AhT A−T A−1h = L2 (9)

with

h = ã +
λA(ã × c̃) · (b̃ × c̃)

λB(b̃ × c̃) · (b̃ × c̃)
b̃ . (10)

Equation (9) contains the unknown intrinsic parameters A and the unknown depth, zA, of the £xed point A.
It is the basic constraint for camera calibration with 1D objects. Vector h, given by (10), can be computed
from image points and known λA and λB . Since the total number of unknowns is 6, we need at least six
observations of the 1D object for calibration. Note that A−T A actually describes the image of the absolute
conic [12].
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3.2 Closed-Form Solution

Let

B = A−T A−1 ≡

B11 B12 B13

B12 B22 B23

B13 B23 B33


 (11)

=




1
α2 − γ

α2β
v0γ−u0β

α2β

− γ
α2β

γ2

α2β2 + 1
β2 −γ(v0γ−u0β)

α2β2 − v0
β2

v0γ−u0β
α2β −γ(v0γ−u0β)

α2β2 − v0
β2

(v0γ−u0β)2

α2β2 + v2
0

β2 +1


 . (12)

Note that B is symmetric, and can be de£ned by a 6D vector

b = [B11, B12, B22, B13, B23, B33]T . (13)

Let h = [h1, h2, h3]T , and x = z2
Ab, then equation (9) becomes

vT x = L2 (14)

with
v = [h2

1, 2h1h2, h
2
2, 2h1h3, 2h2h3, h

2
3]

T .

When N images of the 1D object are observed, by stacking n such equations as (14) we have

Vx = L21 , (15)

where V = [v1, . . . ,vN ]T and 1 = [1, . . . , 1]T . The least-squares solution is then given by

x = L2(VT V)−1VT 1 . (16)

Once x is estimated, we can compute all the unknowns based on x = z2
Ab. Let x = [x1, x2, . . . , x6]T .

Without dif£culty, we can uniquely extract the intrinsic parameters and the depth zA as

v0 = (x2x4 − x1x5)/(x1x3 − x2
2)

zA =
√

x6 − [x2
4 + v0(x2x4 − x1x5)]/x1

α =
√

zA/x1

β =
√

zAx1/(x1x3 − x2
2)

γ = −x2α
2β/zA

u0 = γv0/β − x4α
2/zA .

At this point, we can compute zB according to (8), so points A and B can be computed from (4) and (5),
while point C can be computed according to (3).

3.3 Nonlinear Optimization

The above solution is obtained through minimizing an algebraic distance which is not physically meaning-
ful. We can re£ne it through maximum likelihood inference.

We are given N images of the 1D calibration object and there are 3 points on the object. Point A is
£xed, and points B and C moves around A. Assume that the image points are corrupted by independent
and identically distributed noise. The maximum likelihood estimate can be obtained by minimizing the
following functional:

N∑
i=1

(‖ai − φ(A, A)‖2 + ‖bi − φ(A, Bi)‖2 + ‖ci − φ(A, Ci)‖2
)

, (17)
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where φ(A, M) (M ∈ {A, Bi, Ci}) is the projection of point M onto the image, according to equations (4) to
(6). More precisely, φ(A, M) = 1

zM
AM, where zM is the z-component of M.

The unknowns to be estimated are:

• 5 camera intrinsic parameters α, β, γ, u0 and v0 that de£ne matrix A;
• 3 parameters for the coordinates of the £xed point A;
• 2N additional parameters to de£ne points Bi and Ci at each instant (see below for more details).

Therefore, we have in total 8 + 2N unknowns. Regarding the parameterization for B and C, we use the
spherical coordinates φ and θ to de£ne the direction of the 1D calibration object, and point B is then given
by

B = A + L


sin θ cos φ

sin θ sin φ
cos θ




where L is the known distance between A and B. In turn, point C is computed according to (3). We therefore
only need 2 additional parameters for each observation.

Minimizing (17) is a nonlinear minimization problem, which is solved with the Levenberg-Marquardt
Algorithm as implemented in Minpack [15]. It requires an initial guess of A, A, {Bi, Ci|i = 1..N} which
can be obtained using the technique described in the last subsection.

4 Experimental Results

The proposed algorithm has been tested on both computer simulated data and real data.

4.1 Computer Simulations

The simulated camera has the following property: α = 1000, β = 1000, γ = 0, u0 = 320, and v0 = 240.
The image resolution is 640 × 480. A stick of 70 cm is simulated with the £xed point A at [0, 35, 150]T .
The other endpoint of the stick is B, and C is located at the half way between A and B. We have generated
100 random orientations of the stick by sampling θ in [π/6, 5π/6] and φ in [π, 2π] according to uniform
distribution. Points A, B, and C are then projected onto the image.

Gaussian noise with 0 mean and σ standard deviation is added to the projected image points a, b and
c. The estimated camera parameters are compared with the ground truth, and we measure their relative
errors with respect to the focal length α. Note that we measure the relative errors in (u0, v0) with respect
to α, as proposed by Triggs in [18]. He pointed out that the absolute errors in (u0, v0) is not geometrically
meaningful, while computing the relative error is equivalent to measuring the angle between the true optical
axis and the estimated one.

We vary the noise level from 0.1 pixels to 1 pixel. For each noise level, we perform 120 independent
trials, and the results shown in Fig. 2 are the average. Figure 2a displays the relative errors of the closed-
form solution while Figure 2b displays those of the nonlinear minimization result. Errors increase almost
linearly with the noise level. The nonlinear minimization re£nes the closed-form solution, and produces
signi£cantly better result (with 50% less errors). At 1 pixel noise level, the errors for the closed-form
solution are about 12%, while those for the nonlinear minimization are about 6%.

4.2 Real Data

For the experiment with real data, I used three toy beads from my kids and strung them together with a
stick. The beads are approximately 14 cm apart (i.e., L = 28). I then moves the stick around while trying
to £x one end with the aid of a book. A video of 150 frames was recorded, and four sample images are
shown in Fig. 3. A bead in the image is modeled as a Gaussian blob in the RGB space, and the centroid of
each detected blob is the image point we use for camera calibration. The proposed algorithm is therefore
applied to the 150 observations of the beads, and the estimated camera parameters are provided in Table 1.
The £rst row is the estimation from the closed-form solution, while the second row is the re£ned result after
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(a) Closed-form solution

(b) Nonlinear optimization

Figure 2: Calibration errors with respect to the noise level of the image points.
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Table 1: Calibration results with real data.

Solution α β γ u0 v0

Closed-form 889.49 818.59 -0.1651 (90.01◦) 297.47 234.33
Nonlinear 838.49 799.36 4.1921 (89.72◦) 286.74 219.89
Plane-based 828.92 813.33 -0.0903 (90.01◦) 305.23 235.17
Relative difference 1.15% 1.69% 0.52% (0.29◦) 2.23% 1.84%

Frame 10 Frame 60

Frame 90 Frame 140

Figure 3: Sample images of a 1D object used for camera calibration.
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Figure 4: A sample image of the planar pattern used for camera calibration.

nonlinear minimization. For the image skew parameter γ, we also provide the angle between the image
axes in parenthesis (it should be very close to 90◦).

For comparison, we also used the plane-based calibration technique described in [22] to calibrate the
same camera. Five images of a planar pattern were taken, and one of them is shown in Fig. 4. The calibra-
tion result is shown in the third row of Table 1. The fourth row displays the relative difference between the
plane-based result and the nonlinear solution with respect to the focal length (we use 828.92). As we can
observe, the difference is about 2%.

There are several sources contributing to this difference. Besides obviously the image noise and impre-
cision of the extracted data points, one source is our current rudimentary experimental setup:

• The supposed-to-be £xed point was not £xed. It slipped around on the surface.
• The positioning of the beads was done with a ruler using eye inspection.

Considering all the factors, the proposed algorithm is very encouraging.

5 Conclusion

In this paper, we have investigated the possibility of camera calibration using one-dimensional objects.
One-dimensional calibration objects consist of three or more collinear points with known relative position-
ing. In particular, we have shown that camera calibration is not possible with free-moving 1D objects, but
can be solved if one point is £xed. A closed-form solution has been developed if six or more observations
of such a 1D object are made. For higher accuracy, a nonlinear technique based on the maximum likelihood
criterion is used to re£ne the estimate. Both computer simulation and real data have been used to test the
proposed algorithm, and very encouraging results have been obtained.

Camera calibration has been studied extensively in computer vision and photogrammetry, and the pro-
posed techniques in the literature include those using 3D apparatus (two or three planes orthogonal to each
other, or a plane undergoing a pure translation, etc.), 2D objects (planar patterns undergoing unknown mo-
tions), and 0D features (self-calibration using unknown scene points). This proposed calibration technique
uses 1D objects (points aligned on a line), thus £lling the missing dimension in calibration. Besides the
theoretical aspect, the proposed technique is also important in practice especially when calibrating multiple
cameras mounted apart from each other, where the calibration objects are required to be visible simultane-
ously.

Currently, we are planning to work on the following two problems:

• This paper has only examined the minimal con£guration, that is, 1D object with three points. With
four or more points on a line, although we do not gain any theoretical constraints, we should be able
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to obtain more accurate calibration results because of data redundancy in combating noise in image
points.

• The proposed algorithm assumes that the £xed point is visible by the camera. It would be more
¤exible for camera calibration if the £xed point could be invisible. In that case, we can for example
hang a string of small balls from the ceiling, and calibrate multiple cameras in the room by swinging
the string.

For the second point, as suggested by one of the reviewers, the solution is relatively straightforward. The
£xed point can be estimated by intersecting lines from different images. Alternatively, if more than three
points are visible in each image, the £xed point can be determined from the known cross ratio.
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