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Abstract

Almost all problems in computer vision are related in one form or another to the
problem of estimating parameters from noisy data. In this tutorial, we present what
is probably the most commonly used techniques for parameter estimation. These in-
clude linear least-squares (pseudo-inverse and eigen analysis); orthogonal least-squares;
gradient-weighted least-squares; bias-corrected renormalization; Kalman �ltering; and ro-
bust techniques (clustering, regression diagnostics, M-estimators, least median of squares).
Particular attention has been devoted to discussions about the choice of appropriate mini-
mization criteria and the robustness of the di�erent techniques. Their application to conic
�tting is described.
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1 Introduction

Almost all problems in computer vision are related in one form or another to the problem of
estimating parameters from noisy data. A few examples are line �tting, camera calibration,
image matching, surface reconstruction, pose determination, and motion analysis. A param-
eter estimation problem is usually formulated as an optimization one. Because of di�erent
optimization criteria and because of several possible parameterizations, a given problem can
be solved in many ways. The purpose of this paper is to show the importance of choosing
an appropriate criterion. This will inuence the accuracy of the estimated parameters, the
eÆciency of computation, the robustness to predictable or unpredictable errors. Conic �tting
is used to illustrate these aspects because:

� it is one of the simplest problems in computer vision on one hand;

� it is, on the other hand, a relatively diÆcult problem because of its nonlinear nature.

Needless to say the importance of conics in our daily life and in industry.

2 A Glance over Parameter Estimation in General

Parameter estimation is a discipline that provides tools for the eÆcient use of data for aiding in
mathematically modeling of phenomena and the estimation of constants appearing in these
models [2]. It can thus be visualized as a study of inverse problems. Much of parameter
estimation can be related to four optimization problems:

� criterion: the choice of the best function to optimize (minimize or maximize);

� estimation: the choice of the best method to optimize the chosen function;

� design: optimal implementation of the chosen method to obtain the best parameter esti-
mates;

� modeling: the determination of the mathematical model which best describes the system
from which data are measured, including a model of the error processes.

In this paper we are mainly concerned with the �rst three problems, and we assume the model
is known (a conic in the examples).

Let p be the (state/parameter) vector containing the parameters to be estimated. The
dimension of p, say m, is the number of parameters to be estimated. Let z be the (measure-
ment) vector which is the output of the system to be modeled. The system in noise-free case
is described by a vector function f which relates z to p such that

f(p; z) = 0 :

In practice, observed measurements y are only available for the system output z corrupted
with noise �, i.e.,

y = z+ � :

We usually make a number of measurements for the system, say fyig (i = 1; : : : ; n), and we
want to estimate p using fyig. As the data are noisy, the equation f(p;yi) = 0 is not valid
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anymore. In this case, we write down a function

F(p; y1; : : : ;yn)

which is to be optimized (without loss of generality, we will minimize the function). This
function is usually called the cost function or the objective function.

If there are no constraints on p and the function F has �rst and second partial derivatives
everywhere, necessary conditions for a minimum are

@F
@p

= 0

and
@2F
@p2

> 0 :

By the last, we mean that the m�m-matrix is positive de�nite.

3 Conic Fitting Problem

The problem is to �t a conic section to a set of n points fxig = f(xi; yi)g (i = 1; : : : ; n). A
conic can be described by the following equation:

Q(x; y) = Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0 ; (1)

where A, B and C are not simultaneously zero. In practice, we encounter ellipses, where we
must impose the constraint B2�AC < 0. However, this constraint is usually ignored during
the �tting because

� the constraint is usually satis�ed if data are not all situated in a at section, even the
constraint is not imposed during �tting.

� the computation will be very expensive if this constraint is considered.

As the data are noisy, it is unlikely to �nd a set of parameters (A;B;C;D;E; F ) (except
for the trivial solution A = B = C = D = E = F = 0) such that Q(xi; yi) = 0, 8i. Instead,
we will try to estimate them by minimizing some objective function.

4 Least-Squares Fitting Based on Algebraic Distances

As said before, for noisy data, the system equation, Q(x; y) = 0 in the case of conic �tting, can
hardly hold true. A common practice is to directly minimize the algebraic distance Q(xi; yi),
i.e., to minimize the following function:

F =
nX

i=1

Q2(xi; yi) :

Note that there is no justi�cation for using algebraic distances apart from ease of implemen-
tation.
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Clearly, there exists a trivial solution A = B = C = D = E = F = 0. In order to
avoid it, we should normalize Q(x; y). There are many di�erent normalizations proposed in
the literature. Here we describe three of them. Please note that the comparison of di�erent
normalizations is not the purpose of this section. Our purpose is to present di�erent techniques
to solve linear least-squares problems.

4.1 Normalization with A+ C = 1

Since the trace A + C can never be zero for an ellipse, the arbitrary scale factor in the
coeÆcients of the conic equation can be removed by the normalization A + C = 1. This
normalization has been used by many researchers [26, 30]. All ellipse can then be described
by a 5-vector

p = [A;B;D;E; F ]T ;

and the system equation Q(xi; yi) = 0 becomes:

fi � aTi p� bi = 0 ; (2)

where
ai = [x2i � y2i ; 2xiyi; 2xi; 2yi; 1]T

bi = �y2i :
Given n points, we have the following vector equation:

Ap = b ;

where

A = [a1;an; : : : ;an]
T

b = [b1; b2; : : : ; bn]
T :

The function to minimize becomes

F(p) = (Ap� b)T (Ap� b) :

Obtaining its partial derivative with respect to p and setting it to zero yield:

2AT (Ap� b) = 0 :

The solution is readily given by

p = (ATA)�1ATb : (3)

This method is known as pseudo inverse technique.

4.2 Normalization with A2 +B2 + C2 +D2 + E2 + F 2 = 1

Let p = [A;B;C;D;E; F ]T . As kpk2, i.e., the sum of squared coeÆcients, can never be zero
for a conic, we can set kpk = 1 to remove the arbitrary scale factor in the conic equation.
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The system equation Q(xi; yi) = 0 becomes

aTi p = 0 with kpk = 1 ;

where ai = [x2i ; 2xiyi; y
2
i ; 2xi; 2yi; 1]

T .
Given n points, we have the following vector equation:

Ap = 0 with kpk = 1 ;

where A = [a1;a2; : : : ;an]
T . The function to minimize becomes:

F(p) = (Ap)T (Ap) � pTBp subject to kpk = 1 ; (4)

where B = ATA is a symmetric matrix. The solution is the eigenvector of B corresponding
to the smallest eigenvalue (see below).

Indeed, any m�m symmetric matrix B (m = 6 in our case) can be decomposed as

B = UEUT ; (5)

with
E = diag(v1; v2; : : : ; vm) and U = [e1; e2; : : : ; em] ;

where vi is the i-th eigenvalue, and ei is the corresponding eigenvector. Without loss of
generality, we assume v1 � v2 � � � � � vm. The original problem (4) can now be restated as:

Find q1; q2; : : : ; qm such that pTBp is minimized with p = q1e1+q2e2+� � �+qmem
subject to q21 + q22 + � � � + q2m = 1.

After some simple algebra, we have

pTBp = q21v1 + q22v2 + � � �+ q2mvm :

The problem now becomes to minimize the following unconstrained function:

J = q21v1 + q22v2 + � � �+ q2mvm + �(q21 + q22 + � � � + q2m � 1) ;

where � is the Lagrange multiplier. Setting the derivatives of J with respect to q1 through
qm and � yields:

2q1v1 + 2q1� = 0
2q2v2 + 2q2� = 0
� � � � � �
2qmvm + 2qm� = 0
q21 + q22 + � � �+ q2m � 1 = 0

There exist m solutions. The i-th solution is given by

qi = 1; qj = 0 for j = 1; : : : ;m, except i; � = �vi :

The value of J corresponding to the i-th solution is

Ji = vi :
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Since v1 � v2 � � � � � vm, the �rst solution is the one we need (the least-squares solution),
i.e.,

q1 = 1; qj = 0 for j = 2; : : : ;m:

Thus the solution to the original problem (4) is the eigenvector of B corresponding to the
smallest eigenvalue.

4.3 Normalization with F = 1

Another commonly used normalization is to set F = 1. If we use the same notations as in
the last subsection, the problem becomes to minimize the following function:

F(p) = (Ap)T (Ap) = pTBp subject to p6 = 1 ; (6)

where p6 is the sixth element of vector p, i.e., p6 = F .
Indeed, we seek for a least-squares solution to Ap = 0 under the constraint p6 = 1. The

equation can be rewritten as
A0p0 = �an ;

where A0 is the matrix formed by the �rst (n � 1) columns of A, an is the last column of
A and p0 is the vector [A;B;C;D;E]T . The problem can now be solved by the technique
described in Sect. 4.1.

In the following, we present another technique for solving this kind of problems, i.e.,

Ap = 0 subject to pm = 1

based on eigen analysis, where we consider a general formulation, that is A is a n�m matrix,
p is a m-vector, and pm is the last element of vector p. The function to minimize is

F(p) = (Ap)T (Ap) � pTBp subject to pm = 1 : (7)

As in the last subsection, the symmetric matrix B can be decomposed as in (5), i.e., B =
UEUT . Now if we normalize each eigenvalue and eigenvector by the last element of the
eigenvector, i.e.,

v0i = vie
2
im e0i =

1

eim
ei ;

where eim is the last element of the eigenvector ei, then the last element of the new eigenvector
e0i is equal to one. We now have

B = U0E0U0T ;

where E0 = diag(v01; v
0
2; : : : ; v

0
m) and U

0 = [e01; e
0
2; : : : ; e

0
m]. The original problem (7) becomes:

Find q1; q2; : : : ; qm such that pTBp is minimized with p = q1e
0
1+q2e

0
2+� � �+qme0m

subject to q1 + q2 + � � �+ qm = 1.

After some simple algebra, we have

pTBp = q21v
0
1 + q22v

0
2 + � � �+ q2mv

0
m :

7



The problem now becomes to minimize the following unconstrained function:

J = q21v
0
1 + q22v

0
2 + � � � + q2mv

0
m + �(q1 + q2 + � � �+ qm � 1) ;

where � is the Lagrange multiplier. Setting the derivatives of J with respect to q1 through
qm and � to zero yields:

2q1v
0
1 + � = 0

2q2v
0
2 + � = 0

� � � � � �
2qmv

0
m + � = 0

q1 + q2 + � � �+ qm � 1 = 0

The unique solution to the above equations is given by

qi =
1

v0i
S for i = 1; : : : ;m ;

where S = 1
Æ mX

j=1

1

v0j
. The solution to the problem (7) is given by

p =

mX
i=1

qie
0
i =

 
mX
i=1

1

v0j
e0i

!Æ0@ mX
j=1

1

v0j

1A :

Note that this normalization (F = 1) has singularities for all conics going through the
origin. That is, this method cannot �t such conics because they require to set F = 0. This
might suggest that the other normalizations are superior to the F = 1 normalization with
respect to singularities. However, as shown in [29], the singularity problem can be overcome
by shifting the data so that they are centered on the origin, and better results by setting
F = 1 has been obtained than by setting A+ C = 1.

5 Least-Squares Fitting Based on Euclidean Distances

In the above section, we have described three general techniques for solving linear least-
squares problems, either unconstrained or constrained, based on algebraic distances. In this
section, we describe why such techniques usually do not provide satisfactory results, and then
propose to �t conics using directly Euclidean distances.

5.1 Why are algebraic distances usually not satisfactory ?

The big advantage of use of algebraic distances is the gain in computational eÆciency, be-
cause closed-form solutions can usually be obtained. In general, however, the results are not
satisfactory. There are at least two major reasons.

� The function to minimize is usually not invariant under Euclidean transformations.
For example, the function with normalization F = 1 is not invariant with respect to
translations. This is a feature we dislike, because we usually do not know in practice
where is the best coordinate system to represent the data.
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� A point may contribute di�erently to the parameter estimation depending on its position
on the conic. If a priori all points are corrupted by the same amount of noise, it is
desirable for them to contribute the same way. (The problem with data points corrupted
by di�erent noise will be addressed in section 8.)

O

Q

x

y

i i

ic

di
( )x   , y 

Fig. 1: Normalized conic

To understand the second point, consider a conic in the normalized system (see Fig. 1):

Q(x; y) = Ax2 + Cy2 + F = 0 :

The algebraic distance of a point (xi; yi) to the conic Q is given by [7]:

Q(xi; yi) = Ax2i + Cy2i + F = �F (d2i =c2i � 1) ;

where di is the distance from the point (xi; yi) to the center O of the conic, and ci is the
distance from the conic to its center along the ray from the center to the point (xi; yi). It is
thus clear that a point at the high curvature sections contributes less to the conic �tting than
a point having the same amount of noise but at the low curvature sections. This is because a
point at the high curvature sections has a large ci and its jQ(xi; yi)j2 is small, while a point at
the low curvature sections has a small ci and its jQ(xi; yi)j2 is higher with respect to the same
amount of noise in the data points. Concretely, methods based on algebraic distances tend
to �t better a conic to the points at low curvature sections than to those at high curvature
sections. This problem is usually termed as high curvature bias.

5.2 Orthogonal distance �tting

To overcome the problems with the algebraic distances, it is natural to replace them by the
orthogonal distances which are invariant to transformations in Euclidean space and which do
not exhibit the high curvature bias.

The orthogonal distance di between a point xi = (xi; yi) and a conic Q(x; y) is the smallest
Euclidean distance among all distances between xi and points in the conic. The tangent at
the corresponding point in the conic (denoted by xt = (xti; yti)) is orthogonal to the line
joining xi and xt (see Fig. 2). Given n points xi (i = 1; : : : ; n), the orthogonal distance �tting
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(xi; yi)

di

(xti; yti)

(x0; y0)

Fig. 2: Orthogonal distance of a point (xi; yi) to a conic. Point (xti; yti) is the point on the
conic which is closest to point (xi; yi)

is to estimate the conic Q by minimizing the following function

F(p) =
nX

i=1

d2i : (8)

However, as the expression of di is very complicated (see below), an iterative optimization
procedure must be carried out. Many techniques are readily available, including Gauss-
Newton algorithm, Steepest Gradient Descent, Levenberg-Marquardt procedure, and simplex
method. A software ODRPACK (written in Fortran) for weighted orthogonal distance regression
is public domain and is available from NETLIB (netlib@ornl.gov). Initial guess of the conic
parameters must be supplied, which can be obtained using the techniques described in the
last section.

Let us now proceed to compute the orthogonal distance di. The subscript i will be omitted
for clarity. Refer again to Fig. 2. The conic is assumed to be described by

Q(x; y) = A(x� xo)2 + 2B(x� xo)(y � yo) + C(y � yo)2 � 1 = 0 :

Point xt = (xt; yt) must satisfy the following two equations:

A(xt � xo)2 + 2B(xt � xo)(yt � yo) +C(yt � yo)2 � 1 = 0 (9)

(y � yt) @
@x
Q(xt; yt) = (x� xt) @

@y
Q(xt; yt) (10)

Equation (9) merely says the point xt is on the conic, while (10) says that the tangent at xt
is orthogonal to the vector x� xt.
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Let �x = xt � xo and �y = yt � yo. From (9),

�y =
�B�x � �

C
; (11)

where �2 = B2�2
x � C(A�2

x � 1) = (B2 �AC)�2
x + C. From (10),

(A�x +B�y)(y � yo ��y) = (C�y +B�x)(x� xo ��x) :

Substituting the value of �y (11) in the above equation leads to the following equation:

e1�
2
x + e2�x + e3 = (e4�x + e5)� ; (12)

where

e0 = B2 �AC
e1 = 2Be0

e2 = Ce0(y � y0)
e3 = BC

e4 = B2 + C2 + e0

e5 = C[B(y � y0)� C(x� x0)] :

Squaring the above equation, we have

(e1�
2
x + e2�x + e3)

2 = (e4�x + e5)
2(e0�

2
x + 4C) :

Rearranging the terms, we obtain an equation of degree four in �x:

f4�
4
x + f3�

3
x + f2�

2
x + f1�x + f0 = 0 ; (13)

where

f4 = e21 � e0e24
f3 = 2e1e2 � 2e0e4e5

f2 = e22 + 2e1e3 � e0e25 � 4e24C

f1 = 2e2e3 � 8e4e5C

f0 = e23 � 4e25C :

The two or four real roots of (13) can be found in closed form. For one solution �x, we can
obtain � from (12), i.e.:

� = (e1�
2
x + e2�x + e3)=(e4�x + e5) :

Thus, �y is computed from (11). Eventually comes the orthogonal distance d, which is given
by

d =
q
(x� xo ��x)2 + (y � yo ��y)2 :

Note that we possibly have four solutions. Only the one which gives the smallest distance is
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the one we are seeking for.

6 Gradient Weighted Least-Squares Fitting

The least-squares method described in the last sections is usually called ordinary least-squares
estimator (OLS). Formally, we are given n equations:

fi � AT
i p� bi = "i ;

where "i is the additive error in the i-th equation with mean zero: E("i) = 0, and variance
�"i = �2i . Writing down in matrix form yields

Ap� b = e :

where

A =

264 AT
1
...
AT
n

375 ; b =

264 b1
...
bn

375 ; and e =

264 "1
...
"n

375 :

The OLS estimator tries to estimate p by minimizing the following sum of squared errors:

F = eTe = (Ap� b)T (Ap� b) ;

which gives, as we have already seen, the solution as

p = (ATA)�1ATb :

It can be shown (see, e.g., [2]) that the OLS estimator produces the optimal estimate of
p, \optimal" in terms of minimum covariance of p, if the errors "i are uncorrelated (i.e.,
E("i"j) = �2i Æij) and their variances are constant (i.e., �"i = �2 8i 2 [1; : : : ; n]).

Now let us examine whether the above assumptions are valid or not for conic �tting.
Data points are provided by some signal processing algorithm such as edge detection. It is
reasonable to assume that errors are independent from one point to another, because when
detecting a point we usually do not use any information from other points. It is also reasonable
to assume the errors are constant for all points because we use the same algorithm for edge
detection. However, we must note that we are talking about the errors in the points, but
not those in the equations (i.e., "i). Let the error in a point xi = [xi; yi]

T be Gaussian with
mean zero and covariance �x = �2I2, where I2 is the 2�2 identity matrix. That is, the error
distribution is assumed to be equal in both directions (�2x = �2y = �2, �xy = 0). In Sect. 8, we
will consider the case where each point may have di�erent noise distribution. Refer to Eq. (2).
We now compute the variance �"i of function fi from point (xi; yi) and its uncertainty. Let
(x̂i; ŷi) be the true position of the point, we have certainly

f̂i = (x̂2i � ŷ2i )A+ 2x̂iŷiB + 2x̂iD + 2ŷiE + F + ŷ2i = 0 :

We now expand fi into Taylor series at x = x̂i and y = ŷi, i.e.,

fi = f̂i +
@fi
@xi

(xi � x̂i) + @fi
@yi

(yi � ŷi) +O
�
(xi � x̂i)2

�
+O

�
(yi � ŷi)2

�
;
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where the derivatives are evaluated at (x̂i; ŷi). Ignoring the high order terms, we can now
compute the variance of fi, i.e.,

�"i = E(fi � f̂i)2 =
�
@fi
@xi

�2

E(xi � x̂i)2 +
�
@fi
@yi

�2

E(yi � ŷi)2

=

"�
@fi
@xi

�2

+

�
@fi
@yi

�2
#
�2 � krfik2�2 ;

where rfi is just the gradient of fi with respect to xi and yi, and

@fi
@xi

= 2Axi + 2Byi + 2D
@fi
@yi

= �2Ayi + 2Bxi + 2E + 2yi :
(14)

It is now clear that the variance of each equation is not the same, and thus the OLS estimator
does not yield an optimal solution.

In order to obtain a constant variance function, it is suÆcient to divide the original
function by its gradient, i.e.,

f 0i = fi=rfi ;
then f 0i has the constant variance �

2. We can now try to �nd the parameters p by minimizing
the following function:

F =
X

f 0i
2
=
X

f2i =krfik2 = (Ap� b)TW�1(Ap� b) ;

whereW = diag(krf1k2; krf2k2; : : : ; krfnk2). This method is thus calledGradient Weighted

Least-Squares, and the solution can be easily obtained by setting @F
@p

= 2ATW�1(Ap�b) = 0,
which yields

p = (ATW�1A)�1ATW�1b : (15)

Note that the gradient-weighted LS is in general a nonlinear minimization problem and
a closed-form solution does not exist. In the above, we gave a closed-form solution because
we have ignored the dependence of W on p in computing @F

@p
. In reality, W does depend

on p, as can be seen in Eq. (14). Therefore, the above solution is only an approximation. In
practice, we run the following iterative procedure:

step 1: k = 0. Compute p(0) using OLS, Eq. (3);

step 2: Compute the weight matrix W(k) at the current conic esti-
mate and measurements;

step 3: Compute p(k) using Gradient Weighted LS, Eq. (15);

step 4: If p(k) is very close to p(k�1), then stop;
otherwise go to step 2.

In the above, the superscript (k) denotes the iteration number.

7 Bias-Corrected Renormalization Fitting

Consider the quadratic representation of an ellipse:

Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0 :
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Given n noisy points xi = (xi; yi) (i = 1; : : : ; n), we want to estimate the coeÆcients of the
ellipse: p = [A; B; C; D; E; F ]T . Due to the homogeneity, we set kpk = 1.

For each point xi, we thus have one scalar equation:

fi =MT
i p = 0 ;

where
Mi = [x2i ; 2xiyi; y

2
i ; 2xi; 2yi; 1]

T :

Hence, p can be estimated by minimizing the following objective function (weighted least-
squares optimization)

F = �n
i=1wi(M

T
i p)

2 ; (16)

where wi's are positive weights. It can be rewritten as

F = pT
�
�n
i=1 wiMiM

T
i

�
p ;

which is a quadratic form in unit vector p, if we ignore the possible dependence of wi's on p.
Let

N = �n
i=1 wiMiM

T
i :

The solution is the eigenvector of N associated to the smallest eigenvalue.
Assume that each point has the same error distribution with mean zero and covariance

�xi =
h
�2 0
0 �2

i
. The covariance of fi is then given by

�fi =

�
@fi
@xi

@fi
@yi

�
�xi

�
@fi
@xi

@fi
@yi

�T
;

where
@fi
@xi

= 2(Axi +Byi +D)
@fi
@yi

= 2(Bxi + Cyi +E) :

Thus we have

�fi = 4�2[(A2 +B2)x2i + (B2 + C2)y2i
+2B(A+ C)xiyi + 2(AD +BE)xi + 2(BD + CE)yi + (D2 +E2)] :

The weights can then be chosen to the inverse proportion of the variances. Since multiplica-
tion by a constant does not a�ect the result of the estimation, we set

wi = 4�2=�fi = 1=[(A2 +B2)x2i + (B2 + C2)y2i
+2B(A+ C)xiyi + 2(AD +BE)xi + 2(BD + CE)yi + (D2 +E2)] :

We now show that the estimate obtained by the above method is biased. If each point
xi = (xi; yi) is perturbed by noise of �xi = (�xi;�yi) with

E[�xi] = 0 ; and ��xi = E[�xi�x
T
i ] =

�
�2

�2

�
;

the matrix N is perturbed accordingly: N = �N+�N, where �N is the unperturbed matrix.
If E[�N] = 0, then the estimate is statistically unbiased ; otherwise, it is statistically biased ,
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because, following the perturbation theorem [17], the bias of p is equal to E[�p] = O(E[�N]).
Let Ni =MiM

T
i , then N = �n

i=1 wiNi. We have

Ni =

26666664

x4i 2x3i yi x2i y
2
i 2x3i 2x2i yi x2i

2x3i yi 4x2i y
2
i 2xiy

3
i 4x2i yi 4xiy

2
i 2xiyi

x2i y
2
i 2xiy

3
i y4i 2xiy

2
i 2y3i y2i

2x3i 4x2i yi 2xiy
2
i 4x2i 4xiyi 2xi

2x2i yi 4xiy
2
i 2y3i 4xiyi 4y2i 2yi

x2i 2xiyi y2i 2xi 2yi 1

37777775 :

If we carry out the Taylor development and ignore quantities of order higher than 2, it can
be shown that the expectation of �N is given by

E[�Ni] = �2

26666664

6x2i 6xiyi x2i + y2i 6xi 2yi 1
6xiyi 4(x2i + y2i ) 6xiyi 4yi 4xi 0
x2i + y2i 6xiyi 6y2i 2xi 6yi 1
6xi 4yi 2xi 4 0 0
2yi 4xi 6yi 0 4 0
1 0 1 0 0 0

37777775 � cBi :

It is clear that if we de�ne

bN = �n
i=1 wi [Ni �E[�Ni]] = �n

i=1 wi[Ni � cBi] ;

then bN is unbiased, i.e., E[ bN] = �N, and hence the unit eigenvector p of bN associated to the
smallest eigenvalue is an unbiased estimate of the exact solution �p.

Ideally, the constant c should be chosen so that E[ bN] = �N, but this is impossible unless
image noise characteristics are known. On the other hand, if E[ bN] = �N, we have

E[�pT bN�p] = �pTE[ bN]�p = �pT �N�p = 0 ;

because F = pTNp takes its absolute minimum 0 for the exact solution �p in the absence of
noise. This suggests that we require that pTNp = 0 at each iteration. If for the current c
and p, pT bNp = �min 6= 0, we can update c by �c such that

pT�n
i=1 [wiNi � cwiBi]p� pT�n

i=1 �cwiBi p = 0 :

That is,

�c =
�min

pT�n
i=1 wiBi p :

To summarize, the renormalization procedure can be described as:

1. Let c = 0, wi = 1 for i = 1; : : : ; n.

2. Compute the unit eigenvector p of

bN = �n
i=1 wi[Ni � cBi]

associated to the smallest eigenvalue, which is denoted by �min.
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3. Update c as

c c+
�min

pT�n
i=1 wiBi p

and recompute wi using the new p.

4. Return p if the update has converged; go back to step 2 otherwise.

Remark 1: This implementation is di�erent from that described in the paper of Kanatani [16].
This is because in his implementation, he uses the N-vectors to represent the 2-D points. In
the derivation of the bias, he assumes that the perturbation in each N-vector, i.e., �m� in
his notations, has the same magnitude ~" =

p
E(k�m2

�k). This is an unrealistic assumption.

In fact, to the �rst order, �m� = 1p
x2�+y2�+f2

24�x��y�
0

35 ; thus k�m2
�k2 = �x2�+�y2�

x2�+y2�+f2
. Hence,

E(k�m2
�k) = 2�2

x2�+y2�+f2
, where we assume the perturbation in the image plane is the same

for each point (with mean zero and standard deviation �).
Remark 2: This method is optimal only in the sense of unbiasness. Another criterion

of optimality, namely the minimum variance of estimation, is not addressed in this method.
See [9] for a discussion.

Remark 3: This method is based on statistical analysis of data points. It is thus not
useful if the size of data set is small (say, less than 30 data points).

8 Kalman Filtering Technique

Kalman �ltering, as pointed out by Lowe [20], is likely to have applications throughout Com-
puter Vision as a general method for integrating noisy measurements. The reader is referred
to [34] for an introduction of the Kalman �lter and its applications to 3D computer vision,
and to [15, 22, 8] for more theoretical studies. The following subsection collects the Kalman
�lter formulas for simpler reference.

8.1 Kalman Filter

If we denote the state vector by s and denote the measurement vector by x, a linear dynamic
system (in discrete-time form) can be described by

si+1 = Hisi + ni ; i = 0; 1; � � � ; (17)

xi = Fisi + �i; i = 0; 1; � � � : (18)

In (17), ni is the vector of random disturbance of the dynamic system and is usually modeled
as white noise:

E[ni] = 0 and E[nin
T
i ] = Qi :

In practice, the system noise covariance Qi is usually determined on the basis of experience
and intuition (i.e., it is guessed). In (18), we assume the measurement system is disturbed
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by additive white noise �i, i.e.,

E[�i] = 0 ;

E[�i�
T
j ] =

�
��i for i = j ;
0 for i 6= j :

The measurement noise covariance ��i is either provided by some signal processing algorithm
or guessed in the same manner as the system noise. In general, these noise levels are deter-
mined independently. We assume then there is no correlation between the noise process of
the system and that of the observation, that is

E[�in
T
j ] = 0 for every i and j.

The standard Kalman �lter (KF) is then described by the following steps:

� Prediction of states: ŝiji�1 = Hi�1ŝi�1
� Prediction of the state covariance matrix: Piji�1 = Hi�1Pi�1H

T
i�1 + Qi�1

� Kalman gain matrix: Ki = Piji�1F
T
i (FiPiji�1F

T
i +��i)

�1

� Update of the state estimation: ŝi = ŝiji�1 +Ki(xi � Fiŝiji�1)
� Update of the covariance matrix of states: Pi = (I�KiFi)Piji�1
� Initialization: P0j0 = �s0 , ŝ0j0 = E[s0]

Fi Hi�1 Delay

Ki
j j- - - -

���

6 6

+

{

+

+

xi ri

ŝiji�1 ŝi�1

ŝi

Fig. 3: Kalman �lter block diagram

Figure 3 is a block diagram for the Kalman �lter. At time ti, the system model inherently
in the �lter structure generates ŝiji�1, the best prediction of the state, using the previous state
estimate ŝi�1. The previous state covariance matrix Pi�1 is extrapolated to the predicted state
covariance matrix Piji�1. Piji�1 is then used to compute the Kalman gain matrix Ki and to
update the covariance matrix Pi. The system model generates also Fiŝiji�1 which is the best
prediction of what the measurement at time ti will be. The real measurement xi is then read
in, and the measurement residual (also called innovation)

ri = xi � Fiŝiji�1
is computed. Finally, the residual ri is weighted by the Kalman gain matrix Ki to generate
a correction term and is added to ŝiji�1 to obtain the updated state ŝi.

If the system equation is not linear, e.g., described by si+1 = hi(si)+ni, then the prediction
of states is based on

ŝiji�1 = hi(ŝi�1)
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and the prediction of the covariance matrix of states is based on

Piji�1 =
@hi
@si

Pi�1
@hi
@si

T

+ Qi�1 :

If the measurement equation is nonlinear, we assume that it is described by

fi(x
0
i; si) = 0 ;

where x0i is the ideal measurement. The real measurement xi is assumed to be corrupted
by additive noise �i, i.e., xi = x0i + �i. We expand fi(x

0
i; si) into a Taylor series about

(xi; ŝiji�1):

fi(x
0
i; si) = fi(xi; ŝiji�1) +

@fi(xi; ŝiji�1)

@x0i
(x0i � xi) +

@fi(xi; ŝiji�1)

@si
(si � ŝiji�1)

+O((x0i � xi)2) +O((si � ŝiji�1)2) : (19)

By ignoring the second order terms, we get a linearized measurement equation:

yi = Misi + �i ; (20)

where yi is the new measurement vector, �i is the noise vector of the new measurement, and
Mi is the linearized transformation matrix. They are given by

Mi =
@fi(xi; ŝiji�1)

@si
;

yi = �fi(xi; ŝiji�1) +
@fi(xi; ŝiji�1)

@si
ŝiji�1 ;

�i =
@fi(xi; ŝiji�1)

@x0i
(x0i � xi) = �

@fi(xi; ŝiji�1)

@x0i
�i :

Clearly, we have E[�i] = 0, and E[�i�
T
i ] =

@fi(xi;ŝiji�1)

@x0i
��i

@fi(xi;ŝiji�1)

@x0i

T

� ��i . The KF can
then be applied to the above linearized equation. This is known as the extended Kalman
�lter (EKF).

8.2 Application to Conic Fitting

Let us choose the normalization with A+ C = 1 (see Sect.4.1). The state vector can now be
de�ned as:

s = [A;B;D;E; F ]T :

The measurement vector is: xi = [xi; yi]
T . As the conic parameters are the same for all

points, we have the following simple system equation:

si+1 = si ;

and the noise term ni is zero. The observation function is

fi(xi; s) = (x2i � y2i )A+ 2xiyiB + 2xiD + 2yiE + F + y2i :
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In order to apply the extended Kalman �lter, we need to compute the derivative of fi(xi; s)
with respect to s and that with respect to xi, which are given by

@fi(xi; s)

@s
= [x2i � y2i ; 2xiyi; 2xi; 2yi ; 1] (21)

@fi(xi; s)

@xi
= 2[xiA+ yiB +D; �yiA+ xiB +E + yi] : (22)

Note that the Kalman �ltering technique is usually applied to a temporal sequence. Here,
it is applied to a spatial sequence. Due to its recursive nature, it is more suitable to problems
where the measurements are available in a serial manner. Otherwise, i.e., if all measurements
are available { or could be made available at no serious overhead { at the same time, it
is advantageous to exploit them in a single joint evaluation, as described in the previous
sections (which are sometimes known as batch processing). This is because the Kalman
�ltering technique is equivalent to the least-squares technique only if the system is linear. For
nonlinear problems, the EKF will yield di�erent results depending on the order of processing
the measurements one after the other, and may run the risk of being trapped into a false
minimum.

9 Robust Estimation

9.1 Introduction

As has been stated before, least-squares estimators assume that the noise corrupting the data
is of zero mean, which yields an unbiased parameter estimate. If the noise variance is known,
an minimum-variance parameter estimate can be obtained by choosing appropriate weights
on the data. Furthermore, least-squares estimators implicitly assume that the entire set of
data can be interpreted by only one parameter vector of a given model. Numerous studies
have been conducted, which clearly show that least-squares estimators are vulnerable to the
violation of these assumptions. Sometimes even when the data contains only one bad datum,
least-squares estimates may be completely perturbed. During the last three decades, many
robust techniques have been proposed, which are not very sensitive to departure from the
assumptions on which they depend.

Hampel [12] gives some justi�cations to the use of robustness (quoted in [27]):

What are the reasons for using robust procedures? There are mainly two observa-
tions which combined give an answer. Often in statistics one is using a parametric
model implying a very limited set of probability distributions thought possible,
such as the common model of normally distributed errors, or that of exponentially
distributed observations. Classical (parametric) statistics derives results under the
assumption that these models were strictly true. However, apart from some sim-
ple discrete models perhaps, such models are never exactly true. We may try to
distinguish three main reasons for the derivations: (i) rounding and grouping and
other \local inaccuracies"; (ii) the occurrence of \gross errors" such as blunders
in measuring, wrong decimal points, errors in copying, inadvertent measurement
of a member of a di�erent population, or just \something went wrong"; (iii) the
model may have been conceived only as an approximation anyway, e.g. by virtue
of the central limit theorem.

19



If we have some a priori knowledge about the parameters to be estimated, techniques,
e.g. the Kalman �ltering technique, based on the test of Mahalanobis distance can be used
to yield a robust estimate [34].

In the following, we describe four major approaches to robust estimation.

9.2 Clustering or Hough Transform

One of the oldest robust methods used in image analysis and computer vision is the Hough
transform [3, 14]. The idea is to map data into the parameter space, which is appropriately
quantized, and then seek for the most likely parameter values to interpret data through
clustering. A classical example is the detection of straight lines given a set of edge points. In
the following, we take the example of estimating plane rigid motion from two sets of points.

Given p 2D points in the �rst set, noted fmig, and q 2D points in the second set, noted
fm0

jg, we must �nd a rigid transformation between the two sets. The pairing between fmig
and fm0

jg is assumed not to be known. A rigid transformation can be uniquely decomposed
into a rotation around the origin and a translation, in that order. The corresponding pa-
rameter space is three-dimensional: one parameter for the rotation angle � and two for the
translation vector t = [tx; ty]

T . More precisely, if mi is paired to m0
j, then

m0
j = Rmi + t with R =

�
cos � � sin �
sin � cos �

�
:

It is clear that at least two pairings are necessary for a unique estimate of rigid transformation.
The three-dimensional parameter space is quantized as many levels as necessary according to
the required precision. The rotation angle � ranges from 0 to 2�. We can �x the quantization
interval for the rotation angle at, say, �=6, and we have N� = 12 units. The translation is not
bounded theoretically, but it is in practice. We can assume for example that the translation
between two images cannot exceed 200 pixels in each direction (i.e. tx; ty 2 [�200; 200]). If
we choose an interval of 20 pixels, then we have Ntx = Nty = 20 units in each direction.
The quantized space can then be considered as a three-dimensional accumulator of N =
N�NtxNty = 4800 cells. Each cell is initialized to zero.

Since one pairing of points does not entirely constrain the motion, it is diÆcult to update
the accumulator because the constraint on motion is not simple. Instead, we use n point
matches, where n is the smallest number such that matching n points in the �rst set to n
points in the second set completely determines the motion (in our case, n = 2). Let (zk; z

0
l)

be one set of such matches, where zk and z
0
l are both vectors of dimension 2n, each composed

of n points in the �rst and second set, respectively. Then the number of sets to be considered
is of order of pnqn (of course, we do not need to consider all sets in our particular problem,
because the distance invariance between a pair of points under rigid transformation can be
used to discard the infeasible sets). For each such set, we compute the motion parameters,
and the corresponding accumulator cell is increased by 1. After all sets have been considered,
peaks in the accumulator indicate the best candidates for the motion parameters.

In general, if the size of data is not suÆcient large compared to the number of unknowns,
then the maximum peak is not much higher than other peaks, and it may not be the correct
one because of data noise and because of parameter space quantization. The Hough transform
is thus highly suitable for problems having enough data to support the expected solution.

Because of noise in the measurements, the peak in the accumulator corresponding to the
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correct solution may be very blurred and thus not easily detectable. The accuracy in the
localization with the above simple implementation may be poor. There are several ways to
improve it.

� Instead of selecting just the maximum peak, we can �t a quadratic hyper-surface. The
position of its maximum gives a better localization in the parameter space, and the
curvature can be used as an indication of the uncertainty of the estimation.

� Statistical clustering techniques [10] can be used to discriminate di�erent candidates of
the solution.

� Instead of using an integer accumulator, the uncertainty of data can be taken into
account and propagated to the parameter estimation, which would considerably increase
the performance.

The Hough transform technique actually follows the principle of maximum likelihood esti-

mation. Let p be the parameter vector (p = [�; tx; ty]
T in the above example). Let xm be one

datum (xm = [zTk ; z
0
l
T ]T in the above example). Under the assumption that the data fxmg

represent the complete sample of the probability density function of p, fp(p), we have

L(p) = fp(p) =
X
m

fp(pjxm) Pr(xm)

by using the law of total probability. The maximum of fp(p) is considered as the estimation
of p. The Hough transform described above can thus be considered as a discretized version
of a Maximum likelihood estimation process.

Because of its nature of global search, the Hough transform technique is rather robust,
even when there is a high percentage of gross errors in the data. For better accuracy in
the localization of solution, we can increase the number of samples in each dimension of the
quantized parameter space. The size of the accumulator increases rapidly with the required
accuracy and the number of unknowns. This technique is rarely applied to solve problems
having more than three unknowns, and is not suitable for conic �tting.

9.3 Regression Diagnostics

Another old robust method is the so-called regression diagnostics [5]. It tries to iteratively
detect possibly wrong data and reject them through analysis of globally �tted model. The
classical approach works as follows:

1. Determine an initial �t to the whole set of data through least squares.

2. Compute the residual for each datum.

3. Reject all data whose residuals exceed a predetermined threshold; if no data has been
removed, then stop.

4. Determine a new �t to the remaining data, and goto step 2.

Clearly, the success of this method depends tightly upon the quality of the initial �t.
If the initial �t is very poor, then the computed residuals based on it are meaningless; so
is the diagnostics of them for outlier rejection. As pointed out by Barnett and Lewis [6],
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with least-squares techniques, even one or two outliers in a large set can wreak havoc! This
technique thus does not guarantee a correct solution. However, experiences have shown that
this technique works well for problems with a moderate percentage of outliers and more
importantly outliers only having gross errors less than the size of good data.

The threshold on residuals can be chosen by experiences using for example graphical
methods (plotting residuals in di�erent scales). It is better to use a priori statistical noise
model of data and a chosen con�dence level. Let ri be the residual of the i

th data, and �i
be the predicted variance of the ith residual based on the characteristics of the data nose
and the �t, the standard test statistics ei = ri=�i can be used. If ei is not acceptable, the
corresponding datum should be rejected.

One improvement to the above technique uses inuence measures to pinpoint potential
outliers. These measures asses the extent to which a particular datum inuences the �t by
determining the change in the solution when that datum is omitted. The re�ned technique
works as follows:

1. Determine an initial �t to the whole set of data through least squares.

2. Conduct a statistic test whether the measure of �t f (e.g. sum of square residuals) is
acceptable; if it is, then stop.

3. For each datum I, delete it from the data set and determine the new �t, each giving
a measure of �t denoted by fi. Hence determine the change in the measure of �t, i.e.
�fi = f � fi, when datum i is deleted.

4. Delete datum i for which �fi is the largest, and goto step 2.

It can be shown [32] that the above two techniques agrees with each other at the �rst order
approximation, i.e. the datum with the largest residual is also that datum inducing maximum
change in the measure of �t. However, if the second (and higher) order terms are considered,
the two techniques do not give the same result in general. Their di�erence is that whereas
the former simply rejects the datum that deviates most from the current �t, the latter rejects
the point whose exclusion will result in the best �t on the next iteration. In other words,
the second technique looks ahead to the next �t to see what improvements will actually
materialize, which is usually preferred.

As can be remarked, the regression diagnostics approach depends heavily on a priori
knowledge in choosing the thresholds for outlier rejection.

9.4 M-estimators

One popular robust technique is the so-called M-estimators. Let ri be the residual of the
ith datum, i.e. the di�erence between the ith observation and its �tted value. The standard
least-squares method tries to minimize

P
i r

2
i , which is unstable if there are outliers present in

the data. Outlying data give an e�ect so strong in the minimization that the parameters thus
estimated are distorted. The M-estimators try to reduce the e�ect of outliers by replacing
the squared residuals r2i by another function of the residuals, yielding

min
X
i

�(ri) ; (23)
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where � is a symmetric, positive-de�nite function with a unique minimum at zero, and is
chosen to be less increasing than square. Instead of solving directly this problem, we can
implement it as an iterated reweighted least-squares one. Now let us see how.

Let p = [p1; : : : ; pm]
T be the parameter vector to be estimated. The M-estimator of p

based on the function �(ri) is the vector p which is the solution of the following m equations:X
i

 (ri)
@ri
@pj

= 0 ; for j = 1; : : : ;m, (24)

where the derivative  (x) = d�(x)=dx is called the inuence function. If now we de�ne a
weight function

w(x) =
 (x)

x
; (25)

then Equation (24) becomesX
i

w(ri)ri
@ri
@pj

= 0 ; for j = 1; : : : ;m. (26)

This is exactly the system of equations that we obtain if we solve the following iterated
reweighted least-squares problem

min
X
i

w(r
(k�1)
i )r2i ; (27)

where the superscript (k) indicates the iteration number. The weight w(r
(k�1)
i ) should be

recomputed after each iteration in order to be used in the next iteration.
The inuence function  (x) measures the inuence of a datum on the value of the pa-

rameter estimate. For example, for the least-squares with �(x) = x2=2, the inuence function
is  (x) = x, that is, the inuence of a datum on the estimate increases linearly with the
size of its error, which con�rms the non-robusteness of the least-squares estimate. When an
estimator is robust, it may be inferred that the inuence of any single observation (datum)
is insuÆcient to yield any signi�cant o�set [27]. There are several constraints that a robust
M -estimator should meet:

� The �rst is of course to have a bounded inuence function.

� The second is naturally the requirement of the robust estimator to be unique. This
implies that the objective function of parameter vector p to be minimized should have
a unique minimum. This requires that the individual �-function is convex in variable

p. This is necessary because only requiring a �-function to have a unique minimum
is not suÆcient. This is the case with maxima when considering mixture distribution;
the sum of unimodal probability distributions is very often multi-modal. The convexity

constraint is equivalent to imposing that @2�(:)
@p2

is non-negative de�nite.

� The third one is a practical requirement. Whenever @2�(:)
@p2

is singular, the objective

should have a gradient, i.e. @�(:)
@p
6= 0. This avoids having to search through the

complete parameter space.
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Table 1 lists a few commonly used inuence functions. They are graphically depicted in Fig. 4.
Note that not all these functions satisfy the above requirements.

Table 1: A few commonly used M-estimators
type �(x)  (x) w(x)

L2 x2=2 x 1

L1 jxj sgn(x)
1

jxj

L1 � L2 2(
p
1 + x2=2� 1)

xp
1 + x2=2

1p
1 + x2=2

Lp
jxj�
�

sgn(x)jxj��1 jxj��2

\Fair" c2[
jxj
c
� log(1 +

jxj
c
)]

x

1 + jxj=c
1

1 + jxj=c

Huber

(
if jxj � k
if jxj � k

(
x2=2

k(jxj � k=2)

(
x

k sgn(x)

(
1

k=jxj

Cauchy
c2

2
log(1 + (x=c)2)

x

1 + (x=c)2
1

1 + (x=c)2

Geman-McClure
x2=2

1 + x2
x

(1 + x2)2
1

(1 + x2)2

Welsch
c2

2
[1� exp(�(x=c)2)] x exp(�(x=c)2) exp(�(x=c)2))

Tukey

(
if jxj � c
if jxj > c

8<:
c2

6

�
1� [1� (x=c)2]3

�
[0:2cm](c2=6)

(
x[1� (x=c)2]2

0

(
[1� (x=c)2]2

0

Before proceeding further, we de�ne a measure called asymptotic eÆciency on the standard

normal distribution. This is the ratio of the variance-covariance matrix of a given estimator
to that of the least-squares in the presence of Gaussian noise in the data. If there is no
outliers and the data is only corrupted by Gaussian noise, we may expect the estimator to
have an approximately normal distribution. Now, we briey give a few indications of the
above mentioned functions:

� L2 (i.e. least-squares) estimators are not robust because their inuence function is not
bounded.

� L1 (i.e. absolute value) estimators are not stable because the �-function jxj is not strictly
convex in x. Indeed, the second derivative at x = 0 is unbounded, and an indeterminant
solution may result.

� L1 estimators reduce the inuence of large errors, but they still have an inuence because
the inuence function has no cut o� point.
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Fig. 4: Graphic representations of a few common M-estimators
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� L1�L2 estimators take both the advantage of the L1 estimators to reduce the inuence
of large errors and that of L2 estimators to be convex. They behave like L2 for small x
and like L1 for large x, hence the name of this type of estimators.

� The Lp (least-powers) function represents a family of functions. It is L2 with � = 2 and
L1 with � = 1. The smaller �, the smaller is the incidence of large errors in the estimate
p. It appears that � must be fairly moderate to provide a relatively robust estimator
or, in other words, to provide an estimator scarcely perturbed by outlying data. The
selection of an optimal � has been investigated, and for � around 1.2, a good estimate
may be expected [27]. However, many diÆculties are encountered in the computation
when parameter � is in the range of interest 1 < � < 2, because zero residuals are
troublesome.

� The function \Fair" is among the possibilities o�ered by the Roepack package (see [27]).
It has everywhere de�ned continuous derivatives of �rst three orders, and yields a unique
solution. The 95% asymptotic eÆciency on the standard normal distribution is obtained
with the tuning constant c = 1:3998.

� Huber's function [13] is a parabola in the vicinity of zero, and increases linearly at a
given level jxj > k. The 95% asymptotic eÆciency on the standard normal distribution is
obtained with the tuning constant k = 1:345. This estimator is so satisfactory that it has
been recommended for almost all situations; very rarely it has been found to be inferior
to some other �-function. However, from time to time, diÆculties are encountered, which
may be due to the lack of stability in the gradient values of the �-function because of
its discontinuous second derivative:

d2�(x)

dx2
=

(
1 if jxj � k,
0 if jxj � k.

The modi�cation proposed in [27] is the following

�(x) =

(
c2[1� cos(x=c)] if jxj=c � �=2,
cjxj+ c2(1� �=2) if jxj=c � �=2.

The 95% asymptotic eÆciency on the standard normal distribution is obtained with the
tuning constant c = 1:2107.

� Cauchy's function, also known as the Lorentzian function, does not guarantee a unique
solution. With a descending �rst derivative, such a function has a tendency to yield
erroneous solutions in a way which cannot be observed. The 95% asymptotic eÆciency
on the standard normal distribution is obtained with the tuning constant c = 2:3849.

� The other remaining functions have the same problem as the Cauchy function. As can
be seen from the inuence function, the inuence of large errors only decreases linearly
with their size. The Geman-McClure and Welsh functions try to further reduce the
e�ect of large errors, and the Tukey's biweight function even suppress the outliers. The
95% asymptotic eÆciency on the standard normal distribution of the Tukey's biweight
function is obtained with the tuning constant c = 4:6851; that of the Welsch function,
with c = 2:9846.
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There still exist many other �-functions, such as Andrew's cosine wave function. Another
commonly used function is the following tri-weight one:

wi =

8><>:
1 jrij � �
�=jrij � < jrij � 3�

0 3� < jrij ;

where � is some estimated standard deviation of errors.
It seems diÆcult to select a �-function for general use without being rather arbitrary.

Following Rey [27], for the location (or regression) problems, the best choice is the Lp in
spite of its theoretical non-robustness: they are quasi-robust. However, it su�ers from its
computational diÆculties. The second best function is \Fair", which can yield nicely con-
verging computational procedures. Eventually comes the Huber's function (either original or
modi�ed form). All these functions do not eliminate completely the inuence of large gross
errors.

The four last functions do not guarantee unicity, but reduce considerably, or even eliminate
completely, the inuence of large gross errors. As proposed by Huber [13], one can start the
iteration process with a convex �-function, iterate until convergence, and then apply a few
iterations with one of those non-convex functions to eliminate the e�ect of large errors.

Inherent in the di�erent M-estimators is the simultaneous estimation of �, the standard
deviation of the residual errors. If we can make a good estimate of the standard deviation
of the errors of good data (inliers), then datas whose error is larger than a certain number
of standard deviations can be considered as outliers. Thus, the estimation of � itself should
be robust. The results of the M-estimators will depend on the method used to compute it.
The robust standard deviation estimate is related to the median of the absolute values of the
residuals, and is given by

�̂ = 1:4826[1 + 5=(n� p)] median
i
jrij : (28)

The constant 1.4826 is a coeÆcient to achieve the same eÆciency as a least-squares in the
presence of only Gaussian noise (actually, the median of the absolute values of random num-
bers sampled from the Gaussian normal distribution N(0; 1) is equal to ��1(34) � 1=1:4826);
5=(n� p) (where n is the size of the data set and p is the dimension of the parameter vector)
is to compensate the e�ect of a small set of data. The reader is referred to [31, page 202] for
the details of these magic numbers.

9.5 Least Median of Squares

The least-median-of-squares (LMedS) method estimates the parameters by solving the non-
linear minimization problem:

min median
i

r2i :

That is, the estimator must yield the smallest value for the median of squared residuals
computed for the entire data set. It turns out that this method is very robust to false matches
as well as outliers due to bad localization. Unlike the M-estimators, however, the LMedS
problem cannot be reduced to a weighted least-squares problem. It is probably impossible to
write down a straightforward formula for the LMedS estimator. It must be solved by a search

27



in the space of possible estimates generated from the data. Since this space is too large, only
a randomly chosen subset of data can be analyzed. The algorithm which we describe below
for robustly estimating a conic follows that structured in [31, Chap. 5], as outlined below.

Given n points: fmi = [xi; yi]
T g.

1. A Monte Carlo type technique is used to draw m random subsamples of p di�erent
points. For the problem at hand, we select �ve (i.e. p = 5) points because we need at
least �ve points to de�ne a conic.

2. For each subsample, indexed by J , we use any of the techniques described in Sect.4 to
compute the conic parameters pJ . (Which technique is used is not important because
an exact solution is possible for �ve di�erent points.)

3. For each pJ , we can determine the median of the squared residuals, denoted by MJ ,
with respect to the whole set of points, i.e.

MJ = median
i=1;:::;n

r2i (pJ ;mi) :

Here, we have a number of choices for ri(pJ ;mi), the residual of the ith point with
respect to the conic pJ . Depending on the demanding precision, computation require-
ment, etc., one can use the algebraic distance, the Euclidean distance, or the gradient
weighted distance.

4. We retain the estimate pJ for which MJ is minimal among all m MJ 's.

The question now is: How do we determine m? A subsample is \good" if it consists of p good
data points. Assuming that the whole set of points may contain up to a fraction " of outliers,
the probability that at least one of the m subsamples is good is given by

P = 1� [1� (1� ")p]m : (29)

By requiring that P must be near 1, one can determine m for given values of p and ":

m =
log(1� P )

log[1� (1� ")p] :

In our implementation, we assume " = 40% and require P = 0:99, thus m = 57. Note that
the algorithm can be speeded up considerably by means of parallel computing, because the
processing for each subsample can be done independently.

Actually, the LMedS is philosophically very similar to RANSAC (RANdom SAmple Con-
sensus) advocated by Bolles and Fischler [4]. The reader is referred to [24] for a discussion of
their di�erence. A major one is that RANSAC requires a pre�xed threshold to be supplied
by the user in order to decide whether an estimated set of parameters is good enough to be
accepted and end further random sampling.

As noted in [31], the LMedS eÆciency is poor in the presence of Gaussian noise. The
eÆciency of a method is de�ned as the ratio between the lowest achievable variance for the
estimated parameters and the actual variance provided by the given method. To compensate
for this de�ciency, we further carry out a weighted least-squares procedure. The robust
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standard deviation estimate is given by (28), that is,

�̂ = 1:4826[1 + 5=(n� p)]
p
MJ ;

whereMJ is the minimal median. Based on �̂, we can assign a weight for each correspondence:

wi =

(
1 if r2i � (2:5�̂)2

0 otherwise ;

where ri is the residual of the ith point with respect to the conic p. The correspondences
having wi = 0 are outliers and should not be further taken into account. The conic p is �nally
estimated by solving the weighted least-squares problem:

min
p

X
i

wir
2
i

using one of the numerous techniques described before. We have thus robustly estimated the
conic because outliers have been detected and discarded by the LMedS method.

As said previously, computational eÆciency of the LMedS method can be achieved by ap-
plying a Monte-Carlo type technique. However, the �ve points of a subsample thus generated
may be very close to each other. Such a situation should be avoided because the estimation
of the conic from such points is highly instable and the result is useless. It is a waste of time
to evaluate such a subsample. In order to achieve higher stability and eÆciency, we develop
a regularly random selection method based on bucketing techniques [33]. The idea is not to
select more than one point for a given neighborhood. The procedure of generating random
numbers should be modi�ed accordingly.

We have applied this technique to matching between two uncalibrated images [33]. Given
two uncalibrated images, the only available geometric constraint is the epipolar constraint.
The idea underlying our approach is to use classical techniques (correlation and relaxation
methods in our particular implementation) to �nd an initial set of matches, and then use the
Least Median of Squares (LMedS) to discard false matches in this set. The epipolar geometry
can then be accurately estimated using a meaningful image criterion. More matches are
eventually found, as in stereo matching, by using the recovered epipolar geometry.

10 Two Examples

This section provides two examples of conic estimation in oder to give the reader an idea of
the performance of each technique.

10.1 Noisy data without outliers

The ideal ellipse used in our experiment has the following parameters: the long axis is equal
to 100 pixels, the short axis is equal to 50 pixels, the center is at (250; 250), and the angle
between the long axis and the horizontal axis is 0Æ. The left half section of the ellipse is used
and is sampled by 181 points. Finally, a Gaussian noise with 2 pixels of standard deviation
is added to each sample points, as shown by black dots in Fig. 5 and Fig. 6, where the ideal
ellipse is also shown in solid lines.
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The linear least-squares technique, the renormalization technique, and the technique based
on orthogonal distances between points and ellipse are applied to the noisy data. A visual
comparison of the results is shown in Fig. 5 and Fig. 6. A quantitative comparison of the
estimated parameters is described in Table 2. As can be observed, the linear technique
introduces a signi�cant bias (this is more prominent if a shorter section of ellipse is used). The
renormalization technique corrects the bias and improves considerably the result (however,
because of the underlying statistical assumption, this technique does not work as well if only
a small set of data is available). The technique based on the minimization of orthogonal
distances de�nitely gives the best result.

LS

Renorm

ideal

Fig. 5: Comparison between Linear Least-Squares (LS, in dotted lines) and Renormalization
technique (Renorm, in dashed lines)

LS

Ortho

ideal

Fig. 6: Comparison between Linear Least-Squares (LS ) and Orthogonal Regression (Ortho)

Table 3 shows roughly the computation time required for each method. Eigen least-squares
yields similar result to that of Linear least-squares. Weighted least-squares improves the result
a little bit, but not as much as Renormalization for this set of data. Extended Kalman �lter

or Iterated EKF requires a quite good initial estimate.

10.2 Noisy data with outliers

We now introduce outliers in the above set of noisy data points. The outliers are generated
by a uniform distributed noise in an rectangle whose lower left corner is at (140, 195) and
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Table 2: Comparison of the estimated parameters by di�erent techniques
Technique Long axis Short axis Center position Orientation

(ideal) 100.00 50.00 (250.00, 250.00) 0.00

Least-squares 94.08 49.96 (244.26, 250.25) �0.05
Renormalization 98.15 50.10 (248.23, 250.25) 0.04

Orthogonal 99.76 50.26 (249.37, 249.92) �0.37

Table 3: Comparison of computation time of di�erent techniques: real time on a SUN Sparc
20 workstation (in seconds)

Technique time

Linear least-squares 0.006
Eigen least-squares 0.005

Weighted least-squares 0.059
Renormalization 0.029

Extended Kalman �lter 0.018
Iterated EKF (5 iterations) 0.066

Orthogonal 3.009

whose upper right corner is at (250, 305). The complete set of data points are shown as black
dots in Fig. 7.

LS

LMedS

ideal

LMedS−complete

Fig. 7: Comparison of di�erent techniques in the presence of outliers in data

In Fig. 7, we show the ellipse estimated by the linear least-squares without outliers rejection
(LS ) (shown in dotted lines) which is de�nitely very bad, the ellipse estimated by the least-
median-squares without re�nement using the weighted least-squares (LMedS ) (shown in thin
dashed lines) which is quite reasonable, and the ellipse estimated by the least-median-squares
continued by the weighted least-squares based on orthogonal distances (LMedS-complete)
(shown in thick dashed lines) which is very close to the ideal ellipse. The ellipse parameters
estimated by these techniques are compared in Table 4.
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Table 4: Comparison of the estimated parameters by non-robust and robust techniques
Technique Long axis Short axis Center position Orientation

(ideal) 100.00 50.00 (250.00, 250.00) 0.00

Least-squares 53.92 45.98 (205.75, 250.33) 12.65

LMedS 88.84 50.85 (238.60, 248.88) �1.07
LMedS-complete 97.89 50.31 (247.40, 250.15) �0.33

The computation time on a Sun Sparc 20 workstation is respectively 0.008 seconds, 2.56
seconds, and 6.93 seconds for linear least-square, LMedS and LMedS-complete. Please bear
in mind that the time given here is only for illustration since I did not try to do any code
optimization. The most time-consuming part is the computation of the orthogonal distance
between each point and the ellipse.

11 Conclusions

In this tutorial, I have presented what is probably the most commonly used techniques for
parameter estimation in computer vision. Particular attention has been devoted to discussions
about the choice of appropriate minimization criteria and the robustness of the di�erent
techniques. Use of algebraic distances usually leads to a closed-form solution, but there is
no justi�cation from either physical viewpoint or statistical one. Orthogonal least-squares
has a much sounder basis, but is usually diÆcult to implement. Gradient weighted least-
squares provides a nice approximation to orthogonal least-squares. If the size of data set is
large, renormalization techniques can be used to correct the bias in the estimate. If data
are available in a serial manner, Kalman �ltering technique can be applied, which has an
advantage to take explicitly the data uncertainty into account. If there are outliers in the
data set, robust techniques must be used: if the number of parameters to be estimated is
small, clustering or Hough transform can be used; if the number of outliers is small and they
do not deviate signi�cantly from the true estimate, diagnostics or M-estimators are useful;
otherwise, the least-median-of-squares technique is probably the best we can recommend.

Another technique, which I consider to be very important and becomes popular now in
Computer Vision, is the Minimum Description Length (MDL) principle. However, since I
have not yet myself applied it to solve any problem, I am not in a position to present it. The
reader is referred to [28, 18, 19].
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