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Overview of the Talk

• BCI research

◦ introduction

◦ invasive, dependent, evoked potential BCIs

◦ operant conditioning vs. detection of cognitive states

• Can ML help BCI research?

• The Berlin BCI project

◦ BBCI system design

◦ recent developments



2
Brain-Computer Interfacing
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BCI: Translation of human intentions into a technical control signal
without using activity of muscles or peripheral nerves



3
Different Ways to Do It

invasive non-invasive
implanted sensors (electrode array,
needle electrodes, subdural ECoG)

without penetrating the scalp, mostly
EEG

dependent independent
on non CNS activity, e.g., controlled
eye movement

from peripheral muscles and nerves,
using only CNS activity

evoked potentials unstimulated brain signals
require stimuli, users modulate (auto-
matic or voluntarily) brain responses

users can voluntarily produce the re-
quired signals

synchronous asynchronous
commands can only be emitted syn-
chronously with an external pace

the system detectes when the user
wants to emit a command

operant conditioning detection of mental states
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Invasive BCIs, e.g., Nicolelis et al.

Brain activity of monkeys
is measures from implanted
electrodes.

After training an algorithm
on the firing rates while
performing real movements,
the monkey can control a
robotic arm by brain activity
alone.

Figure taken from [Nicolelis et al,
2000]

[Laubach et al., 2000,
Kennedy et al., 2000,
Reina et al., 2001,
Levine et al., 2000]
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BCI using SSVEP

Regarding a stimulus blinking at a frequency between 7 and 30 Hz
evokes a rhythm of the same frequency in the visual cortex.
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6 7 85

1
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In the Beijing setup each button flashes at
an individual frequency. By spectral analysis
of the EEG the regarded button can be de-
tected from 1 s windows.

[dependent, asynchronous, evoked poten-
tials]

[Middendorf et al., 2000, Cheng et al., 2002]
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BCI using the P300 Component

An awaited infrequent stimulus (deviant) in a series of standard
stimuli elicits a P300 component at central scalp position.

In the Donchin setup the subject
concentrates on a letter of a 6×6
symbol matrix. Rows and columns are
highlighted several times in random
order.

P300 components are most strongly
elicited when the row resp. column is
flashed which contains the selected
letter.

[independent?, synchronous, evoked
potentials]

[Farwell and Donchin, 1988,
Meinicke et al., 2003]
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Opposing BCI Approaches

In the following only non-invasive, independent, unstimulated BCIs will be considered.

Operant Conditioning.

• subjects learn to voluntary con-
trol changes of particular compo-
nents/features of the EEG.

procedure:

• provide feedback of a specific EEG
feature, e.g. as cursor movement;

• subjects concentrate on moving the
cursor to a given target.

• typically some parameters are dy-
namically adapted, but the bulk of
the learning load is on the user.

Detection of Mental States.

• machines learn to recognize the specific
mental states of the particular user.

procedure:

• a set of mental states is chosen (discrim-
inability, appropriateness for application).

• in a controlled measurement subjects pro-
duce brain signals according to requested
mental states.

• after training a classifier the natural men-
tal states of the subject can be recognized
without subject training.
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Operant Conditioning: the Tübingen Group

The slow cortical potentals (SCPs) at central scalp position can be voluntary
controlled. But this learning process might require many training sessions.

The yellow ball travels at a constant speed
from left to right, vertically controlled by
SCPs. When the ball reaches the right
border one of the targets gets selected.

When an acceptable accuracy is reached
after some training sessions, subjects are
switched to a language support program.

base-
line

feed-
back

0 2 4-10
time [s]

[Birbaumer et al., 2000, Hinterberger et al., 2004]
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Operant Conditioning: the Albany Group

The µ rhythm in sensorimotor cortex is known to be susceptible to conditioning.
However, learning the voluntary control takes several training seesions.

The blue ball travels at a constant speed
from left to right. Vertical movement
is determined by a linear equation from
spontaneous µ and/or β power at 1 to
3 Laplace filtered electrodes.

[Wolpaw et al., 2003, McFarland et al., 2000]
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Detection of Mental States: the Graz Group

Motor related mental states are
characterized by a modulation
(ERD) of the µ-rhythm.

This can be used for BCI systems that do not
require extensive training time. In the teletennis
game below the racket can be controlled by left
vs. right hand imagery.

[Pfurtscheller et al., 2003,
Peters et al., 2001]
other groups, e.g., [Sykacek et al., 2003, Millán et al., 2002, Parra et al., 2002]
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Challenges in BCI Research

At present, the applicability of such a system is severely limited by

• high subject variability in performance

• low detection rates of mental states

• slow command speed

• low number of possible decisions per command

• slow response times

• cumbersome preparation

When those limitations are overcome to a sufficient degree, a whole range of new user
interface applications might emerge.
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Why a Machine Learning Approach?

• The neurophysiology of the mental states that are used in BCIs are well-known.

• For example, the intention for a hand movement is reflected by the so called
lateralized readiness potential (LRP): a negative shift of the brain potentials
contralateral to the hand.
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➤ It seems possible to extract simple features that very well distinguish between the
mental states.

• What the hack do we need ML for?
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Subject-Specificity

• Traditional neurophysiology shows you only the ›average brain‹.
• In BCIs we need to classify single-brain single-trials.
• Even averages of single brains’ signals show a great diversity:

aa: left tap  [−200 −100] ms aa: right tap  [−200 −100] ms af: left tap  [−200 −100] ms af: right tap  [−200 −100] ms aj: left tap  [−200 −100] ms aj: right tap  [−200 −100] ms

ak: left tap  [−200 −100] ms ak: right tap  [−200 −100] ms al: left tap  [−200 −100] ms al: right tap  [−200 −100] ms an: left tap  [−200 −100] ms an: right tap  [−200 −100] ms

• Above are intra-subject averages of the pre-movement period -200 to -100ms prior
to a left resp. right hand finger tap.
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BBCI towards Patient Applications
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BBCI towards Gaming Applications
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• So far, for online feedback we used only the CSP features.
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Common Spatial Patterns (CSP) for Two Classes

Original data: Each class has a specific spatial extension.
Let Σ1 and Σ2 be the covariance matrices of the two classes.
The blue cross visualizes the covarianz matrix of Σ1 + Σ2.

Make a whitening of Σ1 + Σ2, i.e., determine matrix P such that
P (Σ1 + Σ2)P> = I (possible due to positive definiteness of Σ1 + Σ2).
➤ Principal axis of the classes are perpendicular. Define: Σ̂i = PΣiP

>.

Calculate orthogonal matrix R and diagonal maxtrix D by spectral theory
such that Σ̂>1 = RDR>. Therefore Σ̂>2 = R(1−D)R> since Σ̂1+Σ̂2 = I.
➤ Variance along the axis of input space is complementatory with respect
to the two classes.

Essential idea for multi-class extension:
CSP is based on the simultaneous diagonalization of two covariance
matrices with corresponding eigenvalues summing up to 1.
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Extension of CSP to Multi-Class Problems

Find matrix R and diagonal (Di)i=1,...N with elements in [0, 1], such that

RΣiR
> = Di for all i = 1, ..., N and

∑N
i=1 Di = I.

For N > 2 only approximate solutions exist. Choose patterns corresponding to the
highest eigenvalue score defined by score(λ) := max(λ, 1−λ

1−λ+λ(N−1)2
).

CSPs of band-pass filtered EEG signals reflect ERD/ERS effects.
As features vectors variances of the projected signals are calculated. Then use your
favorite multi-class classifier. [Dornhege et al., 2004a, Dornhege et al., 2004b]
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Combination of EEG features

Some mental activities or states are reflected by different neurophysiological features.
Motor related brain activity (actual movement, imagery, intentions) is reflected by
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➤ long persisting dis-
tinction between the
signals of left and
right trials.

➤ As seen from the time courses, the LRP and the ERD seem to reflect independent
cortical processes. [Dornhege et al., 2003, Dornhege et al., 2004a]
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Combination of EEG features

LRP ERD
When different EEG features provide complementary
information, a suitable feature combination is likely to
boost classification rates.

The covariance matrix of a concatenated feature vector
(LRP and ERD features) reveals only little inter-feature
correlation. ➤ independence might be a valid model
assumption.

Furthermore combined features have the potential of being more robust against
artifacts, since

• oscillatory features, as ERD, are susceptible to EMG artifacts, while

• slow potential features, as LRPs, are susceptible to EOG and drift artifacts.
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Feature Combination Based on Independence

Goal: find the Bayes optimal classifier under the assumption that the features are
normally distributed with equal covariance matrices and independent.

Let Xi for i ∈ F , e.g., F = {LRP, ERD}, be random variables for the features and
Y ∈ L, e.g., L = {L, R, F} for the labels. Assume

• (Xi|Y = y) ∼ N (µi,y,Σi) for all i ∈ F, y ∈ L and

• (Xi|Y )i∈F are independent.

This leads to the following decision rule for observed xi:

Decide for class argmaxy∈L

∑
i∈F

w>i,yxi + bi,y

with wi,y := Σ−1
i µi,y and bi,y = −0.5µ>i,ywi,y for i ∈ F, y ∈ L
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Different Quality of LRP and ERD Features

based on ERD features
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Multi-Class Feature Combination Results
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Information Transfer Rate
[bits per decision] for 6
subjects in an imagery ex-
periment with up to 6
mental states. Black top-
pings shows the gain ob-
tained by feature combi-
nation.

➤ To use more than 2 classes in all but one case useful. In both experiments with
more than 3 classes the best result is achieved with 4 classes.

➤ Our feature combination method essentially improve classification performance.
Note that without this methods best results are at 3 not at 4 classes.
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Conclusion

• ML adapts BCIs to the brain of the particular user.

• ML can decrease the learning load imposed on the user.

• feature combination can boost classification accuracies and combine the merits of
the single features.

Ongoing Research in the Berlin BCI project

• improve on 2-D cursor control

• feedback experiments with feature combination

• further feedback applications including mental typewriter

• online adaptve CSP version to account for EEG non-stationarity

• detection of movement intentions regarding phantom limbs in amputees
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