
Camdoop: Exploiting In-network Aggregation for Big Data Applications

Paolo Costa†‡ Austin Donnelly† Antony Rowstron† Greg O’Shea†

†Microsoft Research Cambridge ‡Imperial College London

Abstract
Large companies like Facebook, Google, and Microsoft as
well as a number of small and medium enterprises daily
process massive amounts of data in batch jobs and in real
time applications. This generates high network traffic,
which is hard to support using traditional, oversubscribed,
network infrastructures. To address this issue, several
novel network topologies have been proposed, aiming at
increasing the bandwidth available in enterprise clusters.

We observe that in many of the commonly used work-
loads, data is aggregated during the process and the output
size is a fraction of the input size. This motivated us to ex-
plore a different point in the design space. Instead of in-
creasing the bandwidth, we focus on decreasing the traffic
by pushing aggregation from the edge into the network.

We built Camdoop, a MapReduce-like system running
on CamCube, a cluster design that uses a direct-connect
network topology with servers directly linked to other
servers. Camdoop exploits the property that CamCube
servers forward traffic to perform in-network aggrega-
tion of data during the shuffle phase. Camdoop supports
the same functions used in MapReduce and is compati-
ble with existing MapReduce applications. We demon-
strate that, in common cases, Camdoop significantly re-
duces the network traffic and provides high performance
increase over a version of Camdoop running over a
switch and against two production systems, Hadoop and
Dryad/DryadLINQ.

1 Introduction
“Big Data” generally refers to a heterogeneous class of
business applications that operate on large amounts of
data. These include traditional batch-oriented jobs such
as data mining, building search indices and log collection
and analysis [2,5,41], as well as real time stream process-
ing, web search and advertisement selection [3, 4, 7, 17].

To achieve high scalability, these applications usually
adopt the partition/aggregate model [13]. In this model,
which underpins systems like MapReduce [1, 21] and
Dryad/DryadLINQ [30, 48], there is a large input data set

distributed over many servers. Each server processes its
share of the data, and generates a local intermediate result.
The set of intermediate results contained on all the servers
is then aggregated to generate the final result. Often the
intermediate data is large so it is divided across multiple
servers which perform aggregation on a subset of the data
to generate the final result. If there are N servers in the
cluster, then using all N servers to perform the aggregation
provides the highest parallelism and it is often the default
choice. In some cases there is less choice. For instance,
selecting the top k items of a collection requires that the
final results be generated by a single server. Another ex-
ample is a distributed user query, which requires the result
at a single server to enable low latency responses [7, 13].

The aggregation comprises a shuffle phase, where the
intermediate data is transferred between the servers, and
a reduce phase where that data is then locally aggregated
on the servers. In the common configuration where all
servers participate in the reduce phase, the shuffle phase
has an all-to-all traffic pattern with O(N2) flows. This is
challenging for current, oversubscribed, data center clus-
ters. A bandwidth oversubscription of 1:x means that the
bisection bandwidth of the data center is reduced by a fac-
tor x, so the data transfer rate during the shuffle phase is
constrained. In current data center clusters, an oversub-
scription ratio of 1:5 between the rack and the aggregation
switch is often the norm [14]. At core routers oversub-
scription is normally much higher, 1:20 is not unusual [15]
and can be as high as 1:240 [26]. If few servers (possibly
just one) participate in the reduce phase, the servers’ net-
work links are the bottleneck. Further, the small buffers on
commodity top-of-rack switches combined with the large
number of correlated flows cause TCP throughput collaps-
ing as buffers are overrun (the incast problem) [13,44,45].

These issues have led to proposals for new network
topologies for data center clusters [11, 26, 27, 40], which
aim at increasing the bandwidth available by removing
network oversubscription. However, these approaches
only partly mitigate the problem. Fate sharing of links
means that the full bisection bandwidth cannot be easily

1

achieved [12]. If the number of servers participating in
the reduce phase is small, having more bandwidth in the
core of the network does not help since the server links
are the bottleneck. Finally, non-oversubscribed designs
largely increase wiring complexity and overall costs [31].

In this paper, we follow a different approach to increase
network performance: we reduce the amount of traffic in
the shuffle phase. Systems like MapReduce already ex-
ploit the fact that most reduce functions are commuta-
tive and associative, and allow aggregation of intermediate
data generated at a server using a combiner function [21].
It has also been shown that in oversubscribed clusters, per-
formance can be further improved by performing a second
stage of partial aggregation at a rack-level [47]. However,
in [47] it is shown that at scale performing rack-level ag-
gregation has a small impact on performance. One of the
reasons is that the network link of the aggregating server
is fair-shared across all the other servers in the rack and
becomes a bottleneck.

We have been exploring the benefit of pushing aggrega-
tion into the core network, rather than performing it just at
the edge. According to [21], the average final output size
in Google jobs is 40.3% of the intermediate data set sizes.
In the Facebook and Yahoo jobs analyzed in [18], the re-
duction in size between the intermediate and the output
data is even more pronounced: in 81.7% of the Facebook
jobs with a reduce phase, the final output data size is only
5.4% of the intermediate data size (resp. 8.2% in 90.5% of
the Yahoo jobs). This demonstrates that there is opportu-
nity to aggregate data during the shuffle phase and, hence,
to significantly reduce the traffic.

We use a platform called CamCube [9,20], which, rather
than using dedicated switches, distributes the switch func-
tionality across the servers. It uses a direct-connect topol-
ogy with servers directly connected to other servers. It has
the property that, at each hop, packets can be intercepted
and modified, making it an ideal platform to experiment
with moving functionality into the network.

We have implemented Camdoop, a MapReduce-like
system running on CamCube that supports full on-path
aggregation of data streams. Camdoop builds aggrega-
tion trees with the sources of the intermediate data as the
children and roots at the servers executing the final reduc-
tion. A convergecast [46] is performed, where all on-path
servers aggregate the data (using a combiner function) as
it is forwarded towards the root. Depending on how many
keys are in common across the servers’ intermediate data
sets, this reduces network traffic because, at each hop,
only a fraction of the data received is forwarded.

This has several benefits beyond simply reducing the
data being transferred. It enables the number of reduce
tasks to be a function of the expected output data size,
rather than a function of the intermediate data set size, as
is normally the case. All servers that forward traffic will
effectively participate in the reduce phase, distributing the

computational load. This is important in workloads where
the output size is often much smaller than the intermedi-
ate data size (e.g., in distributed log data aggregation) or
where there is a requirement to generate the result at a
single server (e.g., in a top-k job).

We present a detailed description of Camdoop, and
demonstrate that it can provide significant performance
gains, up to two orders of magnitude, when associative
and commutative reduce functions are used and common
keys exist across the intermediate data. We describe how
Camdoop handles server failures, and how we ensure that
each entry in the intermediate data is included exactly
once in the final output in the presence of failures. We
also show that even when the reduce function is not as-
sociative and commutative, on-path aggregation still pro-
vides benefits: Camdoop distributes the sort load across
all servers and enables parallelizing the shuffle with the
reduce phase, which further reduces the total job time. Fi-
nally, Camdoop leverages a custom transport layer that by
exploiting application-level knowledge allows a content-
based priority scheduling of packets. Even when aggrega-
tion is not performed, this helps ensure that reduce tasks
are less likely to stall because of lack of data to process.

Camdoop supports the same set of functions originally
used in MapReduce [21] and then in Hadoop [1]. It is
designed to be a plug-in replacement for Hadoop and
be compatible with the existing MapReduce jobs. We
chose MapReduce as the programming model due to its
wide applicability and popularity. However, our approach
could also be extended to other platforms that use a parti-
tion/aggregate model, e.g., Dryad [30] or Storm [7].

2 MapReduce
A MapReduce program consists of four functions: map,
reduce, combiner, and partition. The input data is
split into C chunks and, assuming N servers, approxi-
mately C/N chunks are stored per server. Usually a chunk
is no larger than S MB, e.g. S = 64, to increase parallelism
and improve performance if tasks need be rerun.

Each job comprises M map tasks, where normally M =C
and C � N. These execute locally on each server process-
ing a chunk of input data. Each map task produces an in-
termediate data set consisting of (key, value) pairs, stored
on the server, sorted by key. If the the reduce function
is associative and commutative, a combiner function can
be used to locally aggregate the set of intermediate results
generated by a map task. The combiner function often
just coincides with the reduce function.

The intermediate data is then processed by R reduce

tasks. Each task is responsible for a unique range of keys.
For each key, it takes the set of all values associated with
that key and outputs a (key, values) pair. Each server can
run one or more reduce tasks. The reduce tasks require all
the intermediate data consisting of all keys (with the asso-
ciated values) they are responsible for. Hence, each server

2

2

Figure 1: A 3-ary 3-cube
(or 3D torus).

1

Figure 2: The CamCube
network topology.

takes the sorted local intermediate data and splits it into R
blocks, with each block containing all keys in a range re-
quired by a single reduce task. The blocks are transferred
to the server running the reduce task responsible in the
shuffle phase. If R≥N then an all-to-all traffic pattern is
generated, with each server sending 1/Nth of the locally
stored intermediate data to N −1 servers.

The partition function encodes how the key ranges
are split across the reduce tasks. Often, just a default hash-
ing function is used. However, if some additional prop-
erties are required (e.g., ensuring that concatenating the
output files produced by the reduce tasks generates a cor-
rect total ordering of keys), a more complex partition

function can be used.
The parameter M is simply a function of the input data

size and the number of servers N. However, setting the
value R is a little more complex and it can have significant
performance impact. R has to be set as a function of the
intermediate data set size, because 1/Rth of the interme-
diate data set is processed by each reduce task. Obviously,
the input data set size is fixed and, provided all the func-
tions are deterministic, the output data set size will simply
be a function of the input data set size. However, the in-
termediate data set size is a function of the input data set
size, N, M, and the ratio of input data to output data for
the map and combiner functions.

In some scenarios, for example in web search queries or
top-k jobs, there is a need to have R = 1. In others, for
example in multi-round MapReduce jobs, storing the out-
put on a smaller set of servers can be beneficial. Camdoop
enables selecting R based on the output data set size, but
still allows all servers to contribute resources to perform
the aggregation, even when R = 1.

3 CamCube overview
CamCube [9, 20] is a prototype cluster designed using
commodity hardware to experiment with alternative ap-
proaches to implementing services running in data cen-
ters. CamCube uses a direct-connect topology, in which
servers are directly connected to each other using 1 Gbps
Ethernet cross-over cables, creating a 3D torus [37] (also
known as a k-ary 3-cube), like the one shown in Figure 1.
This topology, popular in high performance computing,

e.g. IBM BlueGene/L and Cray XT3/Red Storm, provides
multiple paths between any source and destination, mak-
ing it resilient to both link and server failure, and efficient
wiring using only short cables is possible [10]. Figure 2
shows an example of a CamCube with 27 servers. Servers
are responsible for routing all the intra-CamCube traffic
through the direct-connect network. Switches are only
used to connect CamCube servers to the external networks
but are not used to route internal traffic. Therefore, not all
servers need be connected to the switch-based network, as
shown in Figure 2.

CamCube uses a novel networking stack, which sup-
ports a key-based routing functionality, inspired by the
one used in structured overlays. Each server is automat-
ically assigned a 3D coordinate (x,y,z), which is used as
the address of the server. This defines a 3D coordinate
space similar to the one used in the Content-addressable
Network (CAN) [38], and the key-space management ser-
vice exploits the fact that the physical topology is the same
as the virtual topology. In CamCube, keys are encoded us-
ing 160-bit identifiers and each server is responsible for a
subset of them. Keys are assigned to servers as follows.
The most significant k bits are used to generate an (x,y,z)
coordinate. If the server with this coordinate is reachable,
then the identifier is mapped to this server. If the server is
unreachable, the identifier is mapped to one of its neigh-
bors. The remaining (160− k) bits are used to determine
the coordinate of this neighbor, or of another server if all
neighbors also failed. This deterministic mapping is con-
sistent across all servers, and handles cascading failures.

The main benefit of CamCube is that by using a direct-
connect topology and letting servers handle packet for-
warding, it completely removes the distinction between
the logical and the physical network. This enables ser-
vices to easily implement custom-routing protocols (e.g.,
multicast or anycast) as well as efficient in-network ser-
vices (e.g., caching or in-network aggregation), without
incurring the typical overhead (path stretch, link sharing,
etc.) and development complexity introduced by overlays.

The CamCube software stack comprises a kernel driver
to send and receive raw Ethernet frames. In our prototype,
the packets are transferred to a user-space runtime, written
in C#. The runtime implements the CamCube API, which
provides low-level functionality to send and receive pack-
ets to/from the six one-hop physical neighbors. All further
functionality, such as key-based routing and failure detec-
tion as well as higher-level services (e.g., a key-value store
or a graph-processing engine) are implemented in user-
space on top of the runtime. The runtime manages the
transmission of packets and each service is provided with
a service-specific queue for outbound packets. The run-
time polls these queues in a round-robin fashion, achiev-
ing fair sharing of the outbound links across the services.

Experiments with our prototype show that the overhead
of distributing the routing across the servers and of mak-

3

ing them participate in packet forwarding is tolerable:
servers are able to sustain 12 Gpbs of throughput (i.e., all 6
links running at full capacity) using 21% of the CPU [20].

To fully achieve the performance benefits of CamCube,
services should be designed so as to exploit the network
topology and server forwarding. For instance, Camdoop
obtains high performance by adopting a custom routing
and transport protocol, and performing in-network aggre-
gation. Yet, legacy applications can still benefit from
CamCube due to its high bisection bandwidth. We im-
plemented a TCP/IP service, which enables running un-
modified TCP/IP applications on CamCube. To evaluate
the performance that these applications could achieve in
CamCube, we ran an experiment on our 27-server testbed
(described in Section 5) in which every server simulta-
neously transferred 1 GB of data to each of the other 26
servers using TCP. This creates an all-to-all traffic pattern.
We obtained a median aggregate TCP inbound through-
put of 1.49 Gbps per server, which is higher than the
maximum throughput achievable in a conventional cluster
where servers have 1 Gbps uplinks to the switch. We also
measured the average RTT, using a simple ping service,
obtaining a value of 0.13 ms per each hop. In an 8x8x8
CamCube (512 servers), this would lead to a worst-case
RTT of 1.56 ms (the average-case would be 0.78 ms).

4 Camdoop
Camdoop is a CamCube service to run MapReduce-like
jobs. It exploits the ability of custom forwarding and pro-
cessing of packets on path to perform in-network aggrega-
tion, which improves the performance of the shuffle and
reduce phase. An instance of the Camdoop service runs
on all CamCube servers. Any CamCube server connected
to the switch-based network can act as a front-end and re-
ceive jobs from servers external to the CamCube. A job
description includes a jobId, the code for map, reduce and
any other functions required, such as the combiner and
partition function, as well as a description of the input data
and other runtime data such as the value of R. Camdoop
assumes that all the functions are deterministic, which is
the normal case in MapReduce jobs. The input data set is
stored in a distributed file system implemented on top of
a key-value store running on CamCube, as with GFS [25]
or HDFS [1]. It is split into multiple chunks, each with a
160-bit identifier (chunkId). When a data set is inserted,
the chunkIds are generated to ensure that chunks are, ap-
proximately, uniformly distributed. The chunkId deter-
mines the servers that will store a file replica (by default
a chunk is replicated three times). The final output can be
written to local disk, inserted into the distributed file sys-
tem or inserted as key-value pairs into a key-value store.
If the distributed file system is used, at job submission,
the identifiers of the chunks comprising the output file can
be generated so the server running the reduce task would
be the primary replica for these chunks. This is done by

setting the top k bits of the chunk identifiers to be the co-
ordinate of the desired server. Without failures, the two
replicas are stored on one-hop neighbors of the primary
replica and a different network link is used for each one.

When a job request is received by a front-end server, it is
broadcast to all the other servers using the intra-CamCube
network. When a server receives the broadcast request it
determines if, for any of the input chunks, it is the primary
replica and if so initiates a map task to process the locally
stored file. However, any server can run a map task on
any file, even though it is not storing a replica of the file.
This is required, for example, to handle stragglers. The
intermediate data generated by the map task is not stored
in the distributed store but is sorted and written to a lo-
cal disk, as with MapReduce and Hadoop. Each output is
tagged with a 160-bit identifier, mapTaskId, that is equal
to the chunkId of the input chunk processed by that task.
If multiple map tasks run on the same server then multi-
ple intermediate data files will be produced, each with a
different mapTaskId. Once all the intermediate data has
been written to disk the map phase has completed, and
the shuffle and reduce phase commences. Camdoop sup-
ports both a synchronous start of the shuffle phase using
an explicit message from a controller (to perform cluster
wide scheduling) but also allows servers to independently
asynchronously initiate the shuffle phase.

4.1 On-path aggregation
Camdoop pushes aggregation into the network and par-
allelizes the shuffle and reduce phases. To achieve this,
it uses a custom transport service that provides reliable
communication, application-specific scheduling of pack-
ets and packet aggregation across streams.

Conceptually, for each reduce task, the transport service
forms a spanning tree that connects all servers, with the
root being the server running the reduce task. This is
similar to how overlay trees are used for performing con-
vergecast [46]. This is hard to implement in traditional
switched-based networks because servers have a single
link to the switch; forwarding traffic through a server,
even in the same rack, saturates the inbound link to the
server [47]. It only makes sense when bandwidth over-
subscription rates are very high.

We start by describing a simplified version of the pro-
tocol used in Camdoop, assuming R = 1 and no failures,
and then remove these assumptions.
Tree-building protocol Camdoop uses a tree topology
similar to the one in Figure 3(a). In principle, any tree
topology could be used but, for reasons that we will ex-
plain later, this (perhaps surprising) topology maximizes
network throughput and load distribution. The internal
vertices are associated with a 160-bit identifier, called ver-
texId. The leaves represent the outputs of the map tasks
and are associated to the corresponding mapTaskId.

Each job uses N vertexIds. To ensure that each vertexId

4

MapTaskId
VertexId

(a) Logical view. (b) Physical view.

Figure 3: Logical and physical view of the tree topology
used in Camdoop on a 3x3x3 CamCube.

is mapped to a different server, a different coordinate is
used for the top k bits of each vertexId. For the remaining
bits, a hash of the jobId is used. The vertexId of the server
selected to run the reduce task is denoted as rootId.

Servers use the function getParent to compute the tree
topology. It takes as input the rootId and an identifier i
(either a mapTaskId or a vertexId) and returns the iden-
tifier of the parent of i, or a null value if i = rootId. To
achieve high throughput, the implementation of this func-
tion must ensure high locality. When getParent receives
as input a mapTaskId, it looks at the coordinate generated
from its top k bits and returns the vertexId that generates
the same coordinate. Instead, when a vertexId v is passed
to getParent, it always returns a vertexId p such that the
coordinate of v is a one-hop neighbor of the coordinate of
p in the 3D space. These conditions ensure that, in the
absence of failures, map outputs are always read from the
local disk (rather than from the network) and parents and
children of the internal vertices are one-hop neighbors.

Figure 3(b) illustrates how the logical topology in Fig-
ure 3(a) is mapped onto a 3x3x3 CamCube using the
mechanism just described (mapTaskIds omitted for clar-
ity). This can be trivially extended to handle larger scales.
Shuffle and reduce phase When a server receives the
job specification, it locally computes the list of the vertex-
Ids of the job and identifies the subset that are mapped to
itself. In the absence of failures, exactly one vertexId is
mapped to a server. Then, by using the above function it
computes the identifiers of its parent and children.

During the shuffle phase, the leaves of the tree (i.e., the
mapTaskIds) just greedily send the sorted intermediate
data to their parent identifiers, using the CamCube key-
based routing. Every internal vertex merges and aggre-
gates the data received by its children. To perform this
efficiently, per child, a small packet buffer is maintained
with a pointer to the next value in the packet to be ag-
gregated. When at least one packet is buffered from each
child, the server starts aggregating the (key,value) pairs
across the packets using the combiner function. The ag-
gregate (key,value) pairs are then sent to the parent. At the
root, the results are aggregated using the reduce function
and the results stored.

Figure 4: The six disjoint trees.

If a child and a parent identifier are mapped to the same
physical server, a loopback fast-path is used. Otherwise,
the transport service used in Camdoop provides a reliable
in-order delivery of packets at the parent. Camdoop uses
a window-based flow-control protocol and window update
packets are sent between a parent and a child.
Load balancing and bandwidth utilization The de-
scribed approach does not evenly distribute load across
the tree, as some vertices have higher in-degree than oth-
ers. Further, it is not able to exploit all six outbound links,
as each server has only one parent to which it sends pack-
ets over a single link. To address these issues, Camdoop
creates six independent disjoint spanning trees, all shar-
ing the same root. The trees are constructed such that
every vertexId, except the root, has a parent vertexId on
a distinct one-hop server for each of the six trees. Con-
ceptually, this can be achieved by taking the topology in
Figure 3(b) and rotating it along the Y and Z axis. The
resulting trees are shown in Figure 4. This explains the
choice of the topology used in Figure 3(a) as it enables
the use of six disjoint trees.

This ensures that, except for the outbound links of the
root (which are not used at all), each physical link is used
by exactly one (parent, child) pair in each direction. This
enables the on-path aggregation to potentially exploit the
6 Gbps of inbound and outbound bandwidth per server.
It also improves load balancing; the resources contributed
are more uniformly distributed across servers. The state
shared across trees is minimal and they perform the aggre-
gation in parallel, which further improves performance.

When using multiple trees, the intermediate data stored
at each server is striped across the trees. This requires that
i) the keys remain ordered within each stripe and that ii)
the mapping between key and stripe be performed con-
sistently across all servers, so that the same keys are al-
ways forwarded through the same stripe. Camdoop ap-
plies a hash function to the keys so as to roughly distribute
them uniformly across the six stripes. In general, order-
preserving hash functions cannot be used, because the key
distribution might be skewed. Therefore, at the root, the
six streams and the local map output need to be merged to-

5

gether to provide the final output. If the key distribution is
known in advance, a more efficient solution is to split the
keyspace in six partitions of equal size such that the order
of the keys is preserved across partitions and assign each
partition to a different tree. In this way, the root just needs
to merge the stream of each tree with the local map out-
put data (which would have also been partitioned accord-
ingly) and then concatenate the resulting streams, without
requiring a global merge. However, since this approach is
not always applicable, in all the experiments presented in
the next section, the hash-based approach is used.

A drawback of using six disjoint trees is that this in-
creases the packet hop count compared to using a single
shortest-path tree. As we will see in Section 5.2, when
R is very large and there is little opportunity for aggre-
gating packets, this negatively impacts the performance.
In the design of Camdoop, we preferred to optimize to-
wards scenarios characterized by high aggregation and/or
low number of reduce tasks and this motivates our choice
of using six trees. However, if needed, a different tree
topology could be employed to obtain different tradeoffs.
Multiple reduce tasks and multiple jobs Handling R >
1 is straightforward: each reduce task is run indepen-
dently, and hence six disjoint trees are created per reduce
task. This means that, in the absence of failures, each link
is shared by R trees, i.e., one per reduce task. Each tree
uses a different packet queue and the CamCube queuing
mechanism ensures fair sharing of the links across trees.
The same mechanism is also used to handle multiple jobs.
Each job uses a different set of queues and the bandwidth
is fair-shared across jobs.

Packet queue sizes are controlled by an adaptive pro-
tocol that evenly partitions the buffer space between the
multiple reduce tasks and jobs. This ensures that the ag-
gregate memory used by Camdoop to store packets is con-
stant, regardless the number of tasks running. In the ex-
periments presented in Section 5, the aggregate memory
used by the packet queues was 440 MB per server.

4.2 Incorporating fault-tolerance
A key challenge in the design of on-path aggregation is
to make it failure tolerant, and in particular to ensure that
during failures we do not double count (key,value) pairs.
We first describe how we handle link failures and then we
discuss how we deal with server failures.

Handling link failures is easy. To route packets from
children to parents, we use the CamCube key-based rout-
ing service, which uses a simple link-state routing proto-
col and shortest-paths. In case of link failures, it recom-
putes the shortest path and reroutes packets along the new
path. While this introduces a path stretch (parents and
children may not be one-hop neighbors any longer), due
to the redundancy of paths offered by the CamCube topol-
ogy, this has low impact on performance, as we show in
Section 5.4. Our reliable transmission layer recovers any

packets lost during the routing reconfiguration.
We now focus on server failures. The CamCube API

guarantees that, in case of server failures, vertices are
remapped to other servers in close proximity to the failed
server. The API also notifies all servers that a server has
crashed and that its vertex has been remapped. When the
parent of the vertex v that was mapped to the failed server
receives the notification, it sends a control packet to the
server that has now become responsible for v. This packet
contains the last key received from the failed server. Next,
each child of v is instructed to re-send all the (key,value)
pairs from the specified last key onwards. Since keys are
ordered, this ensures that the aggregation function can
proceed correctly. If the root of the tree fails, then all
(key,value) pairs need to be re-sent, and the new vertex
simply requests each child to resend from the start.

Of course, as in all implementations of MapReduce
where the intermediate data is not replicated, if the failed
server stored intermediate data, it will need to be regen-
erated. Some of the children of the failed vertex repre-
sent the map tasks that originally ran on the failed server,
each identified by a different mapTaskId. On a failure, the
CamCube API ensures that these identifiers are remapped
to active servers. When these servers receive the control
packet containing the last key processed by the parent of
the failed vertex, they start a new map task using the map-
TaskId to select the correct input chunk (recall that the
chunkId is equal to the mapTaskId). If the distributed
file system is used, the server to which the mapTaskId is
remapped is also a secondary replica for that chunk. This
ensures that, even in case of failure, the map tasks can
read data locally. As the map function is deterministic,
the sequence of keys generated would be the same as the
one generated by the failed server, so the map task does
not re-send (key,value) pairs before the last key known to
have been incorporated.

4.3 Non commutative / associative functions
Although Camdoop has been designed to exploit on-path
aggregation, it is also beneficial when aggregation cannot
be used, i.e., when the reduce function is not commutative
and associative (e.g., computing the median of a set of
values). In these cases, Camdoop vertices only merge the
streams received from their children, without performing
any partial aggregation. Although this does not reduce the
total amount of data routed, it distributes the sort load.
In traditional MapReduce implementations, each reduce
task receives and processes N −1 streams of data plus the
locally stored data. In Camdoop, instead, each reduce task
only merges 6 streams, and the local data. Even when
R < N all servers participate in the merge process.

Also, in Camdoop the computation of the reduction
phase has been parallelized with the shuffle phase. Since
all the streams are ordered by key, as soon as the root re-
ceives at least one packet from each of its six children, it

6

can immediately start the reduce task without waiting for
all packets. This also implies that there is no need to write
to disk the intermediate data received by the reduce task,
which further helps performance. Beside reducing over-
all job time, maximizing concurrency between the shuf-
fle and reduce phase helps pipelining performance where
the final output is generated as the result of a sequence
of MapReduce jobs. As the reduce tasks produce pairs,
the next map function can be immediately applied to the
generated pair.

5 Evaluation
We evaluate the performance of Camdoop using a proto-
type 27-server CamCube and a packet-level simulator to
demonstrate scaling properties.
Testbed The 27 servers form a 3x3x3 direct-connect net-
work. Each server is a Dell Precision T3500 with a quad-
core Intel Xeon 5520 2.27 GHz processor and 12 GB
RAM, running an unmodified version of Windows Server
2008 R2. Each server has one 1 Gbps Intel PRO/1000 PT
Quadport NIC and two 1 Gbps Intel PRO/1000 PT Dual-
port NICs, in PCIe slots. We are upgrading the platform to
use 6-port Silicom PE2G6i cards, but currently only have
them in sample quantities, so in all our experiments we
used the Intel cards. One port of the four port card is con-
nected to a dedicated 48-port 1 Gbps NetGear GS748Tv3
switch (which uses store-and-forward as opposed to cut-
through routing). Six of the remaining ports, two per mul-
tiport NIC, are used for the direct-connect network.

The Intel NICs support jumbo Ethernet frames of 9,014
bytes (including the 14 byte Ethernet header). In Cam-
Cube experiments we use jumbo frames and use default
settings for all other parameters on the Ethernet cards,
including interrupt moderation. We analyzed the perfor-
mance of the switch using jumbo frames and found that
the performance was significantly worse than using the
traditional 1,514 byte Ethernet frames so all switch-based
experiments use this size.

Each of the servers was equipped with a single stan-
dard SATA disk, and during early experiments we found
that the I/O throughput of the disk subsystem was the per-
formance bottleneck. We therefore equipped each server
with an Intel X25-E 32 GB Solid State Drive (SSD). These
drives achieve significantly higher throughput than the
mechanical disks. We used these disks to store all input,
intermediate and output data used in the experiments.
Simulator Our codebase can be compiled to run either on
the CamCube runtime or on a packet-level discrete event
simulator. The simulator accurately models link proper-
ties, using 1 Gbps links and jumbo frames. The simu-
lator assumes no computation overhead. We ran simula-
tions with 512 servers, representing an 8x8x8 CamCube.
This is the same order of magnitude as the average num-
ber of servers used per MapReduce job at Google, which
are 157, 268 and 394 respectively for the three samples

reported in [21]. Also, anecdotally, the majority of or-
ganizations using Hadoop use clusters smaller than a few
hundred servers [5].
Baselines Compared to existing solutions, Camdoop dif-
fers in two ways. First, it uses the CamCube direct-
connect topology, running an application specific routing
and transport protocol. Second, it exploits on-path ag-
gregation to distribute the aggregation load and to reduce
the traffic. To quantify these benefits separately, we im-
plemented two variants of Camdoop, TCP Camdoop and
Camdoop (no agg.), which we use as baselines. Both vari-
ants run the same code as Camdoop for the map and re-
duce phase, including the ability to overlap the shuffle and
reduce phase but they do not aggregate packets on path.
The difference between the two baselines lies in the net-
work infrastructure and protocols used. TCP Camdoop
transfers packets over the switch using TCP/IP. The Cam-
doop (no agg.) baseline, instead, runs on top of CamCube
and it uses the same tree-based routing and transport pro-
tocol used by Camdoop. It also partially sorts the streams
of data on-path but it does not aggregate them.

By comparing the performance of Camdoop (no agg.)
against TCP Camdoop, we can quantify the benefit of
running over CamCube and using custom network pro-
tocols. This also shows the benefits of Camdoop when
on-path aggregation cannot be used as discussed in Sec-
tion 4.3. The comparison between Camdoop and Cam-
doop (no agg.) shows the impact of on-path aggregation.

In our experiments, across a wide range of workloads
and configuration parameters, Camdoop significantly out-
performed the other two implementations. To demon-
strate that the performance of the switch-based imple-
mentation is good, we also compared its performance
against two production systems: Apache Hadoop [1] and
Dryad/DryadLINQ [30, 48]. As we show next, all Cam-
doop versions, including the one running over the switch,
outperform them.

5.1 Sort and Wordcount
We evaluate all the three versions of Camdoop against
Hadoop and Dryad/DryadLINQ running over the switch.
We use two different jobs: Sort and Wordcount, cho-
sen as they are standard tutorial examples included in the
Hadoop and DryadLINQ distributions and they are of-
ten used to benchmark different MapReduce implemen-
tations. For Sort, we used the ’Indy’ variant of the sort
benchmark [6] in which the input data consists of ran-
domly distributed records, comprising a 10 byte key and
90 bytes of data. Each key is unique and the aim of the
Sort is to generate a set of output files such that concate-
nating the files generates a total ordering of the records
based on the key values. In Wordcount the aim is to count
the frequency with which words appear in a data set

These represent very different workloads. In Sort the in-
put, intermediate and output data sizes are the same: there

7

Sort Wordcount

R=1 R=27 R=1 R=27
Hadoop 242.23 34.67 311.63 199.61
Dryad n/a 16.14 n/a 10.57
TCP Camdoop 49.24 6.68 3.82 0.68
Camdoop (no agg.) 13.59 1.42 2.79 0.34
Camdoop 14.08 1.54 1.67 0.21

Table 1: Sort and Wordcount shuffle and reduce time (s).

is no aggregation of data across phases. In contrast, in
Wordcount there is significant aggregation due to multiple
occurrences of the same word in the original document
corpus and in the intermediate data. From the statistics
reported in [18, 21], we expect most workloads to have
aggregation statistics closer to Wordcount.

We used Hadoop version 0.20.2 with default settings.
We configured it so that all 27 servers could be used for
map and reduce tasks, with one server running both the
HDFS master and MapReduce job tracker. We increased
the block size of HDFS to 128 MB because this yielded
higher performance.

We used Dryad/DryadLINQ with default settings.
DryadLINQ generates a Dryad dataflow graph which con-
trols the number of instances of each type of process;
therefore we could not vary this configuration parameters
for the Dryad results. Further, in Dryad the master node
cannot be used to run tasks. We therefore selected one
server as the master and used the other 26 servers as work-
ers. The impact of this is that there were fewer resources
to be used to process the jobs. Therefore, to be conser-
vative we automatically scaled the input data sets to be
26/27ths of the data set used for Camdoop and Hadoop.
This effectively reduces the amount of work needed to be
performed by Dryad by the load sustained on one server
in the other implementations. In order to facilitate com-
parisons, in all Camdoop-based implementations we write
the results of the reduce task directly to the local disk and
we use no replication in Hadoop and Dryad/DryadLINQ
so that results are also written only to the local disk. In all
experiments, we measure the job time, which we define
as the time from when the job is submitted to when the
final results are stored on disk, and the shuffle and reduce
time, which is the time from when all map tasks have com-
pleted till the final results are stored on disk. The results in
Table 1 show the shuffle and reduce time for all the imple-
mentations using R=1 and R=27 reduce tasks. For Dryad,
we show only one result using the default data flow graph
produced by DryadLINQ.

The Sort input data consists of 56,623,104 records. For
Hadoop, these are randomly distributed in files stored in
HDFS based on the block size. For Dryad and Camdoop
we created files of approximately 200 MB and distributed
them across the 27 servers (resp. 26 servers for Dryad). In
this job, Camdoop and Camdoop (no agg.) demonstrate
similar performance as there is no possibility to perform

aggregation. For TCP Camdoop the 1 Gbps link to the
switch for the server running the reduce task is the bottle-
neck and limits performance. When running with R=27,
the TCP Camdoop version does not fully exploit the server
bandwidth due to the overhead of managing multiple con-
current TCP flows. We will demonstrate this in more de-
tail later. The versions running on CamCube are able to
exploit the higher bandwidth available, and therefore per-
form better than TCP Camdoop but are constrained by the
SSD disk bandwidth.

The results in Table 1 show that all Camdoop versions,
including TCP Camdoop, outperform Hadoop and Dryad.
Part of the performance gains is due to the design choices
of Camdoop, most prominently the ability of overlapping
the shuffle and the reduce phase (Section 4.3), which also
reduces disk IO. We also finely optimized our implemen-
tations to further improve the performance. In particular,
Camdoop mostly utilizes unmanaged memory and stati-
cally allocated packet buffers to reduce the pressure on the
garbage collector, it exploits the support of C# for pointer
operations to compare MapReduce keys eight bytes at a
time rather than byte-by-byte, and, finally, it leverages
an efficient, multi-threaded, binary merge-sort to aggre-
gate streams. However, we also note that our versions
are prototype implementations, omitting some functional-
ity found in a full production system. This can also partly
explain the difference in the results. Finally, we made no
effort to tune Hadoop and Dryad but we used the default
configurations. We show the data point simply to validate
that the performance of TCP Camdoop is reasonable and
we consider it as our main baseline.

For the Wordcount job the input data is the complete
dump of the English language Wikipedia pages from 30th

January 2010, and consists of 22.7 GB of uncompressed
data. For Dryad and Camdoop implementations we split
the file into 859 MB files and distributed one to each of
the 27 servers (resp. 26 for Dryad). For Hadoop we stored
these in HDFS using the modified block size. We also use
map-side combiners in both Hadoop and Dryad. In this
case, the intermediate data for the Wordcount can be ag-
gregated. As in Sort, in Table 1 we show the shuffle and
reduce time for all implementations, including the data
points for Hadoop and Dryad to validate that the perfor-
mance of TCP Camdoop is reasonable. In the Wordcount
job the interesting comparison is between Camdoop and
Camdoop (no agg.). Regardless the value of R, Camdoop
is using all the servers to help perform the aggregation,
which results in less data and reduce overhead at the server
running the reduce task. This yields a factor of 1.67 (R=1)
and 1.62 (R=27) reduction in shuffle and reduce time.

5.2 Impact of aggregation
In order to conduct experiments across varying configu-
ration parameters we created a synthetic job, inspired by
the Wordcount example. We chose this type of job be-

8

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

T
im

e
(s

)
lo

g
sc

al
e

Output ratio (S)

TCP Camdoop
Camdoop (no agg.)

Camdoop

(a) R=1 reduce task.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

T
im

e
(s

)
lo

g
sc

al
e

Output ratio (S)

Switch 1 Gbps (bound)
Switch 6 Gbps (bound)

Camdoop

(b) R=1 reduce task (bounds).

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

T
im

e
(s

)
lo

g
sc

al
e

Output ratio (S)

TCP Camdoop
Camdoop (no agg.)

Camdoop

(c) R=27 reduce tasks.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

T
im

e
(s

)
lo

g
sc

al
e

Output ratio (S)

Switch 1 Gbps (bound)
Switch 6 Gbps (bound)

Camdoop

(d) R=27 reduce tasks (bounds).

Figure 5: Varying the output ratio using R=1 and R=27 reduce tasks on the 27-server testbed (log-scale).

cause, despite its simplicity, it is representative of many,
more complex, jobs in which aggregation functions typi-
cally consist of simple additive or multiplicative integer or
floating point operations, e.g., data mining or recommen-
dation engines. The input data consists of 22.2 GB of data
partitioned into 27 files, each 843 MB in size. The data
consists of strings, generated randomly with a length uni-
formly selected at random from 4 and 28 characters. The
job uses a map function that takes each key and gener-
ates a key value pair of (key, 1). There is no compression
of input data to intermediate data, and the intermediate
data will add a four-byte counter to each key. The reduc-
tion function sums the set of counts associated with a key,
and can also be used as the combiner function. For ex-
periments on the simulator, to allow us to scale, we use a
smaller data set file size of 2 MB per server, which in our
512-server setup yields a total input data size of 1 GB.

To explore the parameter space we generate input data
set files by specifying an output ratio, S. We define S as
the ratio of the output data set size to the intermediate data
set size. If there are N input files the lower bound on S is
1/N and the maximum value is S=1. For clarity, we adopt
the notation that S=0 means S = 1/N. When S=1 there
is no similarity between the input files, meaning that each
key across all data files is unique, and there is no opportu-
nity to perform on-path aggregation. Subsequently, at the
end of the reduction phase the size of the output files will
be the union of all keys in the input files, with each key
assigned the value 1. For 27 servers this will result in an
output data set size of approximately 28.3 GB (including
the four-byte counters for each key). This represents the
worst-case for Camdoop because no aggregation can be
performed. When S=0 each key is common to all input
files, meaning that the output file will be approximately
1.1 GB with each key having the value 27. This represents
workloads where we can obtain maximum benefit from on
path aggregation. As a point of comparison the Sort rep-
resented a workload where S=1, and the Wordcount repre-

sented a workload with S = 0.56. A top-k query as used in
search engines represents an example where S=0 because
all map tasks generate a sorted list of k pairs and the out-
put result is also a list of k pairs. By varying S, we are able
to model different workloads, which result into different
traffic savings and, hence, different performance gains.

In the results we do not consider the time taken by map
tasks. Map times are independent of the shuffle and re-
duce phase. They can vary significantly based on imple-
mentation, and factors like the source of the input data,
e.g. reading from an unstructured text data file as op-
posed to reading from (semi-)structured sources, such as
BigTable or using binary formats [22].

In the previous experiments the output data was stored
to SSDs. Profiling Camdoop showed that for some data
points the performance of reduce tasks was impacted by
the SSD throughput by as much as a factor of two. We
consider this a function of provisioning of the servers, and
it would be very feasible to add a second SSD to increase
the throughput so it would not impact performance. How-
ever, as we were unable to do this, in these experiments
we do not write the final output to disk. We do read all
intermediate data from disk.
Impact of output ratio First we examine the impact of
varying the output ratio S from S=0 to 1 on the testbed and
on the simulator. When S=0, full aggregation is possible,
and when S=1 no aggregation is possible. We use two val-
ues of R, R=1 and R=N, i.e., the lower and upper bounds
on R assuming we have at most one reduce task per server.

Figure 5 shows the shuffle and reduce time on the
testbed as we vary S, using a log-scale y-axis. We com-
pare Camdoop against Camdoop (no agg.) and TCP Cam-
doop. Figure 5(a) shows the results for R=1 and Fig-
ure 5(c) shows the results for R=27. In running the ex-
periments for TCP Camdoop, we observed that the TCP
throughput dropped for large values of R. We were able
to replicate the same behavior when generating all-to-all
traffic using ttcp. Hence, this is not an artifact of our

9

TCP Camdoop implementation. We speculate that this is
due to a combination of the small switch buffers [13] and
the performance issues of TCP when many flows share the
same bottleneck [34]. Potentially, this overhead could be
partly reduced with a fine-tuned implementation and us-
ing a high-end switch. For completeness, in Figure 5(b)
and 5(d) we report the lower bound of the time that would
be required by any switch-based implementation. This
is computed by dividing the data size to be shuffled by
the server link rate (1 Gbps). This therefore assumes
full-bisection bandwidth and it does not include reduce
time. As a further point of comparison, we also include
the lower bound for a switch-based configuration with six
1 Gbps links teamed together per server. Although the
number of links per server is identical to CamCube, this
configuration offers much higher bandwidth because in
CamCube the server links are also used to forward traffic.
Also, it would increase costs as it requires more switches
and with higher fanout. We refer to the two lower bounds
as Switch (1 Gbps) and Switch (6 Gbps).

The first important result in Figure 5(a) and 5(c) is
the difference between TCP Camdoop and Camdoop (no
agg.). Camdoop (no agg.) achieves significantly higher
performance across all values of S, both for R=1 and
R=27. This is significant because it shows the base per-
formance gain Camdoop achieves by using CamCube and
a custom transport and routing protocol. In general, for
Camdoop (no agg.) and TCP Camdoop the time taken is
independent of S since the size of data transferred is con-
stant across all values of S.

We now turn our attention to the comparison of Cam-
doop and Camdoop (no agg.). As expected, when S=1
the performance of Camdoop and Camdoop (no agg.) is
the same, because there is no opportunity to aggregate
packets on-path. As S decreases, the benefit of aggrega-
tion increases, reducing the number of packets forwarded,
increasing the available bandwidth and reducing load at
each reduce task. This is clearly seen in Figures 5(a) and
Figure 5(c) for Camdoop for R=1 and R=27. When S=0,
Camdoop achieves a speedup of 12.67 for R=1 and 3.93
for R=27 over Camdoop (no agg.) (resp. 67.5 and 15.71
over TCP Camdoop).

Figure 5(b) and 5(d) show that, at this scale, Camdoop
always achieves a lower shuffle and reduce time than
Switch (1 Gbps). When R=1, for low values of S Cam-
doop also outperforms Switch (6 Gbps), but for large val-
ues of S, Camdoop performance is bottlenecked on the
rate at which the reduce task is able to process incoming
data. In our implementation the throughput of the reduce
code path varies approximately from 2.41 Gbps when S=0
to 3.15 Gbps when S=1). In a real implementation, the
performance of Switch (6 Gbps) would suffer from the
same constraint. When R=27, the shuffle and reduce time
of Camdoop is always higher than Switch (6 Gbps) due to
the lower bandwidth available in CamCube.

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.2 0.4 0.6 0.8 1

T
im

e
(s

)
lo

g
sc

al
e

Output ratio (S)

Switch 1 Gbps,1:4 oversub (bound)
Switch 1 Gbps (bound)

Camdoop (no agg.)
Switch 6 Gbps (bound)

Camdoop

(a) R=1 reduce task.

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.2 0.4 0.6 0.8 1

T
im

e
(s

)
lo

g
sc

al
e

Output ratio (S)

Switch 1 Gbps,1:4 oversub (bound)
Switch 1 Gbps (bound)

Camdoop (no agg.)
Switch 6 Gbps (bound)

Camdoop

(b) R=512 reduce tasks.

Figure 6: Varying the output ratio using R=1 and R=512
reduce tasks in the 512-server simulation (log-scale).

Figure 6 shows the simulation results. Due to the com-
plexity of accurately simulating TCP at large scale, we
only plot the values for the switch lower bounds. Building
a full-bisection cluster at scale is expensive and most de-
ployed clusters exhibit some degree of oversubscription,
ranging from 1:4 up to 1:100 and higher. To account for
this, we also compute the lower bound for a 512-server
cluster assuming 40 servers per rack and 1:4 oversubscrip-
tion between racks: Switch (1 Gbps, 1:4 oversub).

The simulated results confirm what we observed on the
testbed. When R=1, Camdoop always achieves the low-
est shuffle and reduce time across all values of S. The
simulation does not model computation time, which ex-
plains why Camdoop outperforms Switch (6 Gbps) even
for higher values of S. When R=512, Switch (6 Gbps)
always yields the lowest time due to the higher bisec-
tion bandwidth. More interesting is the comparison be-
tween Camdoop and Switch (1 Gbps) when R=512. Rout-
ing packets using six disjoint trees increases the path hop
count, thus consuming more bandwidth. This explains
why when R=512, for most values of S, Switch (1 Gbps)
performs better than Camdoop. Using a single shortest-
path tree would enable Camdoop, in this scenario, to
achieve higher performance than Switch (1 Gbps) across
all values of S. As discussed in Section 4.1, we decided
to optimize Camdoop for scenarios with low R or low S.
However, even with this suboptimal configuration, Cam-
doop is always better than Switch (1 Gbps, 1:4 oversub).
Impact of the number of reduce tasks In the previous
experiment we discussed the impact of varying S when
R=1 and R = N. In Figure 7, instead, we show the shuffle
and reduce time on the testbed and on the simulator as we
vary the number of reduce tasks, with and without aggre-
gation. In these experiments, we used two data sets with

10

 1

 10

 100

 1000

 0 5 10 15 20 25 30
T
im

e
(s

)
lo

g
sc

al
e

reduce tasks (R)

TCP Camdoop
Camdoop (no agg.)

Camdoop

(a) S=1 (27-server testbed).

 1

 10

 100

 1000

 0 5 10 15 20 25 30

T
im

e
(s

)
lo

g
sc

al
e

reduce tasks (R)

TCP Camdoop
Camdoop (no agg.)

Camdoop

(b) S=0 (27-server testbed).

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512

T
im

e
(s

)
lo

g
sc

al
e

reduce tasks (R)

Switch 1 Gbps,1:4 oversub (bound)
Switch 1 Gbps (bound)

Camdoop (no agg.)
Switch 6 Gbps (bound)

Camdoop

(c) S=1 (512-server simulation).

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512

T
im

e
(s

)
lo

g
sc

al
e

reduce tasks (R)

Switch 1 Gbps,1:4 oversub (bound)
Switch 1 Gbps (bound)

Camdoop (no agg.)
Switch 6 Gbps (bound)

Camdoop

(d) S=0 (512-server simulation).

Figure 7: Varying the number of reduce tasks using S=0 and S=1 workloads (log-scale).

S=0 and S=1, representing the two ends of the spectrum
for potential aggregation.

As already shown in the previous experiments, in Fig-
ure 7(a) when S=1 the performance of Camdoop and Cam-
doop (no agg.) is the same. They both benefit from higher
values of R, as expected since the size of data received
and processed by each reduce task decreases. They also
outperform TCP Camdoop across all values of R due to
the higher bandwidth provided by CamCube and the cus-
tom network protocols used. Similar trends are also visi-
ble in the simulation results for S=1 in Figure 7(c). Cam-
doop and Camdoop (no agg.) always outperform Switch
(1 Gbps, 1:4 oversub) for all values of R. They also exhibit
higher performance than Switch (1 Gbps) for most values
of R, although for the reasons discussed above, with high
values of R and S, using six trees is less beneficial.

Figure 7(b) shows the results for S=0. We already ob-
served that the performance of Camdoop (no agg.) and
TCP Camdoop is generally unaffected by the value of S
while Camdoop significantly improves performance when
S=0. However, the important observation here is that in
this configuration the shuffle and reduce time for Cam-
doop is largely independent of R as shown in both Fig-
ure 7(b) and 7(d). This is because, regardless the value
of R, all servers participate in aggregation and the load
is evenly distributed. This can be observed by looking at
the distribution of bytes aggregated by each server. For
instance, when R=1, the minimum and maximum values
of the distribution are within the 1% of the median value.
This means that the shuffle and reduce time becomes a
function of the output data size rather than the value of R.
R just specifies the number of servers that store the final
output. This is significant because it allows us to generate
only few output files (possibly just one) while still utiliz-
ing all resources in the cluster. This property is important
for multi-stage jobs and real time user queries.

The reason why in Figure 7(b) the shuffle and reduce
time of Camdoop in the testbed with R=1 is higher than
for R >1 is because the performance is bottlenecked by
the computation rate of the reduce task. When R is higher,
the size of the data aggregated by each reduce task is lower
and, hence, the reduce task is not the bottleneck anymore.
This effect is not visible in the simulation results because
the simulator does not model computation time.

Finally, we note that in the simulation results in Fig-
ure 7(d), Camdoop outperforms even Switch (6 Gbps) for
most values of R. This demonstrates that although Cam-
Cube provides less bandwidth than Switch (6 Gbps), by
leveraging on-path aggregation, Camdoop is able to de-
crease the network traffic and, hence, to better use the
bandwidth available and reduce the shuffle time.

The results show the benefits of using CamCube instead
of a switch and also the benefits of on-path aggregation.
We have so far shown results for experiments where only
one job was running. However, often users run multiple
jobs concurrently. In the next set of experiments we eval-
uate the performance of Camdoop with such workloads.

5.3 Partitioning
The next experiment evaluates the impact of running mul-
tiple jobs. We examine how this scales when using two
different strategies for running multiple jobs, horizontal
and vertical partitioning. In horizontal partitioning, we
run multiple jobs by co-locating them. Hence, all servers
run an instance of the map task for each job. In vertical
partitioning, we divide the set of servers into disjoint parti-
tions and run only the map tasks of any job on the servers
assigned to it. In the horizontal partitioning, we run be-
tween 1 and N reduce tasks, but the tasks are scheduled
such to minimize the load skew across all servers. In ver-
tical partitioning reduce tasks are only scheduled on the
servers assigned to that job. Note that in vertical partition-
ing servers in each partition contribute resources to both

11

0
0.5

1
1.5

2
2.5

R=1 R=27 R=1 R=13

Horizontal Vertical

Ti
m

e
 n

o
rm

al
iz

e
d

 t
o

si

n
gl

e
 jo

b

Job #1
Job #2

Figure 8: Effect of running multiple
jobs.

1
1.2
1.4
1.6
1.8

2

R=1
(random)

R=1
(neighbor)

R=1
(root)

R=27
(random)

Ti
m

e
(n

o
rm

al
iz

ed
)

Failure after 0.25T
Failure after 0.5T
Failure after 0.75T

Figure 9: Increase in shuffle and re-
duce time caused by server failure.

0

20

40

60

20 KB 200 KB

Ti
m

e
(m

s)

Input data size / server

TCP Camdoop
Camdoop (no agg)
Camdoop

Figure 10: Shuffle and reduce time
for small input data sizes.

jobs, as all servers forward and aggregate packets on-path.
Our experiments run two identical jobs concurrently.

We start both jobs at the same time and we use S=1, which
is the worst case. For horizontal partitioning we set R=1
and R=27, and have all servers run instances of the map
task. In vertical partitioning we randomly assign thirteen
servers to each job, leaving one server unassigned.

Figure 8 shows the normalized shuffle and reduce time
for multiple jobs using horizontal and vertical partition-
ing. For horizontal partitioning the values are normalized
with respect to running a single job on all 27 servers with
R=1 or R=27, as appropriate. For vertical partitioning the
values are normalized with respect to running a single job
on 13 servers with R=1 or R = 13, as appropriate.

The first important observation is that in all configura-
tions, the time taken by the two jobs is approximately the
same. This demonstrates the ability of CamCube to fair-
share the bandwidth between two jobs by using separate
outbound packet queues, as described in Section 4.1.

The results for horizontal partitioning in Figure 8 show
that when R=1 the time taken for two jobs is approxi-
mately at most 1.07 times longer than to complete a single
job. When R=1 the bottleneck is the rate at which the re-
duce task is able to process incoming data. In our testbed,
the reduce code path can sustain a throughput of approxi-
mately 3.15 Gbps. The available bandwidth is 6 Gbps, and
hence, in general, the CamCube links are under-utilized.
The links into the server running the reduce task have the
highest utilization rate at 50.8%. Running multiple jobs
allows the extra capacity to be utilized, and explains why
the time to run two jobs is only less than 1.1 times longer
than running a single job. In contrast, when R=27, all links
are fully utilized. Adding the second job causes the time
to double because the links need be shared between jobs.

When using vertical partitioning and R=1, the two jobs
take approximately as long as running a single job using
13 servers, as expected because the single experiment uses
50% of the CamCube resources. When R=13, intuitively
you would expect the same, with the two jobs executing
in the same time as the single task. However, in this case
where R=13 there is higher link utilization, and adding a
second job increases job time up to a factor of 1.47.

The non-normalized figures show that the maximum
time for two jobs when R = 13 is comparable to one job
with R=27, as would be expected. This demonstrates that
there is no performance difference between running jobs

horizontally or vertically partitioned. The achieved results
are simply a function of the intermediate data set size and
number of reduce tasks. This is important, because we
envisage in many scenarios where the input data is stored
in a key-value store that distributes input records across
all servers in the CamCube cluster. Hence, running with
horizontal partitioning will likely be the norm.

5.4 Failures
We now consider the impact of server failures on the per-
formance of Camdoop. Camdoop uses a tree mapped
onto the CamCube which, without failures, ensures that
an edge in the tree is a single one-hop link in the Cam-
Cube and each vertex is mapped to a different server. The
failure of a server breaks this assumption. A single edge in
the tree becomes a multi-hop path in the CamCube. Also,
the load on other servers increases as they need to perform
the aggregation on behalf of the failed server. This persists
until the server is replaced, assuming it is replaced. Also,
if the failure occurs during the shuffle phase, data that has
been lost needs to be re-sent.

In this experiment, we want to measure the efficiency
of the recovery protocol detailed in Section 4.2 and the
increase in the job execution time due to a server fail-
ing during the shuffle phase. We test this on the testbed
as the simulator does not model computational overhead.
We fail a server after the shuffle phase has started and re-
port the total shuffle and reduce time (including the time
elapsed before the failure occurred) normalized by the
time T taken in a run with no failures. To evaluate the
impact of the time at which a server fails, we repeated the
experiment by failing the server respectively after 0.25 ·T
seconds, 0.5 · T seconds, and 0.75 · T seconds. We use
S=1 as this is the worst case. When R=1 we consider the
impact of i) failing the root of the tree (i.e., the server run-
ning the reduce task), ii) failing a neighbor of the root, and
iii) a random server that is neither the root nor a neighbor
of the root. When R=27, since all servers run reduce tasks,
failing a random server will fail the root of one tree and a
neighbor of six other roots.

As explained in Section 4.2, when a server fails, all
the map tasks that it was responsible for need to be re-
executed elsewhere because their outputs have been lost
(recall that as in MapReduce the output of the map tasks
is not replicated). The time taken to re-run the map tasks
can mask the actual performance of the recovery protocol.

12

To avoid this effect, in these experiments we configured
the job with only 26 map tasks and ensured that no map
task is assigned to the failing server.

Figure 9 shows the shuffle and reduce time normalized
against T . When R=1 the bottleneck is the rate at which
the reduce task can aggregate data on the 6 inbound links.
As with the multi-job scenario, under-utilized links mean
the impact of failing a random server is minimal. The load
of the failed server is distributed across multiple servers,
as the vertexes that were running on the failed server are
automatically mapped to different servers. Also, by lever-
aging the knowledge of the last key received by the parent
of the failed vertex, only few extra packets need be re-sent.

Failing a neighbor server of the root has higher impact
because the incoming bandwidth to the root is reduced,
but it is still low as the reduction in bandwidth to the root
server is 1/6th. The earlier the failure occurs, the lower
bandwidth will be available in the rest of the phase. This
explain why the time stretch is higher when a failure occur
at 0.25 ·T rather than later.

When the root fails, the time significantly increases be-
cause all data transferred before the failure occurred have
been lost and, hence, the shuffle phase needs to restart
from the beginning. Unlike the neighbor failure experi-
ment, the time stretch when a root fails is higher when the
failure occurs towards the end of the shuffle phase rather
than at the beginning. The reason is that the amount of
work that has been wasted and must be repeated is lin-
early proportional to the time at which the failure occurs.
This is confirmed by the results in Figure 9. For instance,
failing the root after 0.25 ·T increases the shuffle and re-
duce time by a factor of 1.36 while if the root fails after
0.75 · T the time increases by 1.83. For similar reasons
when R=27 the stretch is proportional to the failure time,
although its impact is limited because a server will be the
root only for one tree and a neighbor for only 6 trees.

5.5 Impact of small input data size
In the last experiment, we want to evaluate the perfor-
mance of Camdoop when the input data size is small. This
is important for real time applications like search engines
in which the responses of each server are of the order of
a few tens to hundreds of kilobytes [13]. We ran an ex-
periment similar to the ones in Section 5.2 but, instead of
843 MB, we used smaller file sizes of 20 KB and 200 KB
respectively. We chose a workload with S=0 because, as
already observed, typically the size of the output of each
map task is equal to the size of the final results. Finally,
we set R=1 as required by these applications.

Figure 10 shows the results for the three Camdoop im-
plementations. For both input sizes, Camdoop outper-
forms Camdoop (no agg.) and TCP Camdoop, respec-
tively by a factor of 13.42 and 14.33 (20 KB) and 9.05
and 17.23 (200 KB). These results demonstrate the feasi-
bility of Camdoop even for applications characterized by

small input data size and low latency requirements.

6 Related work
Aggregation has always been exploited in MapReduce,
through the combiner function, to help reduce both net-
work load and job execution time [21]. More recently, it
was noted that, in bandwidth oversubscribed clusters, per-
formance can be improved by performing partial aggre-
gation at a rack-level [47]. However, at scale rack-level
aggregation has a small impact on intermediate data size,
so that high values of R are still required. Further, even
at rack-level the 1 Gbps link for the aggregation server is
a bottleneck. Camdoop builds on this work, and demon-
strates that if you have a cluster architecture that enables
in-network aggregation, e.g. the direct-connect topology
of CamCube, it provides benefit at rack-scale and larger.

Recently, several extensions and optimizations to the
MapReduce model have been proposed, including support
for iterative jobs [35], incremental computations [16], and
pipelining of the map and reduce phase [19]. These are
not currently supported by our Camdoop prototype. How-
ever, these extensions are complementary to the ideas pre-
sented here and, like the standard MapReduce model, they
would also benefit from in-network aggregation and could
be integrated in Camdoop.

There have also been several proposals to improve the
network topologies in data centers, including switch-
based topologies [11, 26, 28, 40] and direct-connect (or
hybrid) topologies [9, 27, 39]. Camdoop’s design explic-
itly targets the CamCube topology and its key-based API.
In principle, however, our approach could also be ap-
plied to other topologies in which servers can directly
control routing and packet processing. This naturally in-
cludes direct-connect topologies, e.g., [39]. If traditional,
hardware-based, routers were to be replaced by software
routers [24, 32] or NetFPGAs [36], it could be possible
to perform in-network aggregation also in switch-based
topologies. This would require a considerable protocol
re-engineering though, due to the higher node in-degree.

In-network aggregation has been successfully used in
other fields, including sensor networks [29, 33], pub-
lish/subscribe systems [23, 43], distributed stream pro-
cessing systems [8], and overlay networks [42, 46]. In-
spired by these approaches, Camdoop leverages the abil-
ity of CamCube to process packets on path to reduce net-
work traffic (and, hence, improve performance), without
incurring the overhead and path stretch, typical of overlay-
based approaches.

7 Conclusions
We have described Camdoop, a MapReduce-like system
that exploits CamCube’s unique properties to achieve high
performance. We have shown, using a small prototype,
that Camdoop running on CamCube outperforms Cam-
doop running over a traditional switch. We have also

13

shown, using simulations, that these properties still hold
at scale. Even if current clusters achieved full bisection
bandwidth, Camdoop on CamCube would still outperform
them in most scenarios, due to the ability of significantly
reducing network traffic by aggregating packets on-path.

Acknowledgements We thank the reviewers, and in par-
ticular our shepherd, Emin Gün Sirer, who provided valu-
able feedback and advice.

References
[1] Apache Hadoop. http://hadoop.apache.org/.
[2] Big Data @ Foursquare . http://goo.gl/FAmpz.
[3] Big Data in Real Time at LinkedIn. http://goo.gl/6OzCN.
[4] Google Tree Distribution of Requests . http://goo.gl/RpB45.
[5] Hadoop Wiki: PoweredBy. http://goo.gl/Bbfu.
[6] Sort Benchmark Homepage. http://sortbenchmark.org/.
[7] Twitter Storm. http://goo.gl/Y1AcL.
[8] ABADI, D. J., AHMAD, Y., BALAZINSKA, M., CHERNIACK,

M., HYON HWANG, J., LINDNER, W., MASKEY, A. S., RASIN,
E., RYVKINA, E., TATBUL, N., XING, Y., AND ZDONIK, S.
The Design of the Borealis Stream Processing Engine. In CIDR
(2005).

[9] ABU-LIBDEH, H., COSTA, P., ROWSTRON, A., O’SHEA, G.,
AND DONNELLY, A. Symbiotic Routing in Future Data Centers.
In SIGCOMM (2010).

[10] ADIGA, N. R., BLUMRICH, M. A., CHEN, D., COTEUS, P.,
GARA, A., GIAMPAPA, M. E., HEIDELBERGER, P., SINGH, S.,
STEINMACHER-BUROW, B. D., TAKKEN, T., TSAO, M., AND
VRANAS, P. Blue Gene/L Torus Interconnection Network. IBM
Journal of Research and Development 49, 2 (2005).

[11] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A Scalable,
Commodity Data center Network Architecture. In SIGCOMM
(2008).

[12] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B.,
HUANG, N., AND VAHDAT, A. Hedera: Dynamic Flow Schedul-
ing for Data Center Networks. In NSDI (2010).

[13] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE,
J., PATEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHA-
RAN, M. Data center TCP (DCTCP). In SIGCOMM (2010).

[14] BARROSO, L. A., AND HÖLZLE, U. The Datacenter as a Com-
puter: An Introduction to the Design of Warehouse-Scale Ma-
chines. Morgan & Claypool Publishers, 2009.

[15] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network Traffic
Characteristics of Data Centers in the Wild. In IMC (2010).

[16] BHATOTIA, P., WIEDER, A., RODRIGUES, R., ACAR, U. A.,
AND PASQUIN, R. Incoop: MapReduce for Incremental Compu-
tations. In SOCC (2011).

[17] BORTHAKUR, D., GRAY, J., SARMA, J. S., MUTHUKKARUP-
PAN, K., SPIEGELBERG, N., KUANG, H., RANGANATHAN,
K., MOLKOV, D., MENON, A., RASH, S., SCHMIDT, R., AND
AIYER, A. Apache Hadoop Goes Realtime at Facebook. In SIG-
MOD (2011).

[18] CHEN, Y., GANAPATHI, A., R.GRIFFITH, AND KATZ, R. The
Case for Evaluating MapReduce Performance Using Workload
Suites. In MASCOTS (2011).

[19] CONDIE, T., CONWAY, N., ALVARO, P., HELLERSTEIN, J. M.,
ELMELEEGY, K., AND SEARS, R. MapReduce Online. In NSDI
(2010).

[20] COSTA, P., DONNELLY, A., O’SHEA, G., AND ROWSTRON, A.
CamCube: A Key-based Data Center. Tech. rep., MSR, 2010.

[21] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data
Processing on Large Clusters. Comm. of ACM 51, 1 (2008).

[22] DEAN, J., AND GHEMAWAT, S. MapReduce: A Flexible Data
Processing Tool. Comm, of ACM 53, 1 (2010).

[23] DEMERS, A., GEHRKE, J., HONG, M., PANDA, B., RIEDE-
WALD, M., SHARMA, V., AND WHITE, W. Cayuga: A General
Purpose Event Monitoring System. In CIDR (2007).

[24] DOBRESCU, M., EGI, N., ARGYRAKI, K., CHUN, B.-G.,

FALL, K., IANNACCONE, G., KNIES, A., MANESH, M., AND
RATNASAMY, S. RouteBricks: Exploiting Parallelism To Scale
Software Routers. In SOSP (2009).

[25] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google
File System. In SOSP (2003).

[26] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA, S.,
KIM, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND SEN-
GUPTA, S. VL2: A Scalable and Flexible Data Center Network.
In SIGCOMM (2009).

[27] GUO, C., LU, G., LI, D., WU, H., ZHANG, X., SHI, Y., TIAN,
C., ZHANG, Y., AND LU, S. BCube: A High Performance,
Server-centric Network Architecture for Modular Data Centers.
In SIGCOMM (2009).

[28] GYARMATI, L., AND TRINH, T. A. Scafida: A Scale-Free Net-
work Inspired Data Center Architecture. SIGCOMM Computer
Communication Review 40 (2010).

[29] INTANAGONWIWAT, C., GOVINDAN, R., ESTRIN, D., HEIDE-
MANN, J., AND SILVA, F. Directed Diffusion for Wireless Sensor
Networking. IEEE/ACM TON 11, 1 (2003).

[30] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FETTERLY,
D. Dryad: Distributed Data-parallel Programs from Sequential
Building Blocks. In EuroSys (2007).

[31] KANDULA, S., PADHYE, J., AND BAHL, P. Flyways To De-
Congest Data Center Networks. In HotNets (2009).

[32] LU, G., GUO, C., LI, Y., ZHOU, Z., YUAN, T., WU, H.,
XIONG, Y., GAO, R., AND ZHANG, Y. ServerSwitch: A Pro-
grammable and High Performance Platform for Data Center Net-
works. In NSDI (2011).

[33] MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND
HONG, W. TAG: a Tiny AGgregation Service for Ad-hoc Sensor
Networks. In OSDI (2002).

[34] MORRIS, R. TCP Behavior with Many Flows. In ICNP (1997).
[35] MURRAY, D. G., SCHWARZKOPF, M., SMOWTON, C., SMITH,

S., MADHAVAPEDDY, A., AND HAND, S. CIEL: A Universal
Execution Engine for Distributed Data-Flow Computing. In NSDI
(2011).

[36] NAOUS, J., GIBB, G., BOLOUKI, S., AND MCKEOWN, N.
NetFPGA: Reusable Router Architecture for Experimental Re-
search. In PRESTO (2008).

[37] PARHAMI, B. Introduction to Parallel Processing: Algorithms
and Architectures. Kluwer Academic Publishers, 1999.

[38] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND
SHENKER, S. A Scalable Content-addressable Network. In SIG-
COMM (2001).

[39] SHIN, J.-Y., WONG, B., AND SIRER, E. G. Small-world Data-
centers. In ACM SOCC (2011).

[40] SINGLA, A., HONG, C.-Y., POPA, L., AND GODFREY, P. B.
Jellyfish: Networking Data Centers Randomly. In NSDI (2012).

[41] THUSOO, A., SHAO, Z., ANTHONY, S., BORTHAKUR, D.,
JAIN, N., SEN SARMA, J., MURTHY, R., AND LIU, H. Data
Warehousing and Analytics Infrastructure at Facebook. In SIG-
MOD (2010).

[42] VAN RENESSE, R., BIRMAN, K. P., AND VOGELS, W. Astro-
labe: A Robust and Scalable Technology for Distributed System
Monitoring, Management, and Data Mining. TOCS 21, 2 (2003).

[43] VAN RENESSE, R., AND BOZDOG, A. Willow: DHT, Aggrega-
tion, and Publish/Subscribe in One Protocol. In IPTPS (2004).

[44] VASUDEVAN, V., PHANISHAYEE, A., SHAH, H., KREVAT, E.,
ANDERSEN, D. G., GANGER, G. R., GIBSON, G. A., AND
MUELLER, B. Safe and Effective Fine-grained TCP Retransmis-
sions for Datacenter Communication. In SIGCOMM (2009).

[45] WU, H., FENG, Z., GUO, C., AND ZHANG, Y. ICTCP: In-
cast Congestion Control for TCP in Data Center Networks. In
CoNEXT (2010).

[46] YALAGANDULA, P., AND DAHLIN, M. A Scalable Distributed
Information Management System. In SIGCOMM (Aug. 2004).

[47] YU, Y., GUNDA, P. K., AND ISARD, M. Distributed Aggregation
for Data-Parallel Computing: Interfaces and Implementations. In
SOSP (2009).

[48] YU, Y., ISARD, M., FETTERLY, D., BUDIU, M., LFAR ER-
LINGSSON, GUNDA, P. K., AND CURREY, J. DryadLINQ: A
System for General-Purpose Distributed Data-Parallel Comput-
ing Using a High-Level Language. In OSDI (2008).

14

http://hadoop.apache.org/
http://goo.gl/FAmpz
http://goo.gl/6OzCN
http://goo.gl/RpB45
http://goo.gl/Bbfu
http://sortbenchmark.org/
http://goo.gl/Y1AcL

	Introduction
	MapReduce
	CamCube overview
	Camdoop
	On-path aggregation
	Incorporating fault-tolerance
	Non commutative / associative functions

	Evaluation
	Sort and Wordcount
	Impact of aggregation
	Partitioning
	Failures
	Impact of small input data size

	Related work
	Conclusions

