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Abstract. This paper describes a sound technique that combines the precision
of theorem proving with the loop-invariant inference of abstract interpretation.
The loop-invariant computations are invoked on demand when the need for a
stronger loop invariant arises, which allows a gradual increase in the level of
precision used by the abstract interpreter. The technique generates loop invariants
that are specific to a subset of a program’s executions, achieving a dynamic and
automatic form of value-based trace partitioning. Finally, the technique can be
incorporated into a lemmas-on-demand theorem prover, where the loop-invariant
inference happens after the generation of verification conditions.

0 Introduction

A central problem in reasoning about software is the infinite number of control paths
and data values that a program’s executions may give rise to. The general solution to
this problem is to perform abstractions [9]. Abstractions include, for instance, predi-
cates of interest on the data (as is done in predicate abstraction [20]) and summaries
of the effects of certain control paths (like loop invariants [18, 24]). A trend that has
emerged in the last decade is to start with coarse-grained abstractions and to refine
these when the need arises (as used, for example, in predicate refinement [20, 2, 23],
lemmas-on-demand theorem provers [15, 12, 5, 1, 27], and abstract-interpretation based
verifiers [31]).

In this paper, we describe a technique that refines loop invariants on demand. In
particular, the search for stronger loop invariants is initiated as the need for stronger
loop invariants arises during a theorem prover’s attempt at proving the program. The
technique can generate loop invariants that are specific to a subset of a program’s ex-
ecutions, achieving a dynamic and automatic form of value-based trace partitioning.
Finally, the technique can be incorporated into a lemmas-on-demand theorem prover,
where the loop-invariant inference happens after the generation of verification condi-
tions.

The basic idea is this: Given a program, we generate a verification condition, a logi-
cal formula whose validity implies the correctness of the program. We pass this formula
to an automatic theorem prover that will either prove the correctness of the program or
produce, in essence, a set of candidate program traces that lead to an error. Rather than



z:=0; m:=0;
while (z < N) {

if (.0 { /* check if a new minimum as been found */
m:=2z;
}
r:=xz+1;
}
if (0<N){
assert 0 < m < N ;
}

Fig.0. A running example, showing a correct program whose correctness follows from a dis-
junctive loop invariant. The program is an abstraction of a program that iterates through an array
(not shown) of length N (indexed from 0), recording in m the index of the array’s mimimum
element. The then branch of the if statement after the loop represents some operation that relies
on the fact that m is a proper index into the array.

just giving up and reporting these candidate traces as an error, we invoke an abstract in-
terpreter on the loops along the traces, hoping to find stronger loop invariants that will
allow the theorem prover to make more progress toward a proof. As this process con-
tinues, increasingly more precise analyses and abstract domains may be used with the
abstract interpreter, which allows the scheme of optimistically trying cheaper analyses
first. Each invocation of the abstract interpreter starts from the information available in
the candidate traces. Consequently, the abstract interpreter can confine its analysis to
these traces, thus computing loop invariants that hold along these traces but that may
not hold for all of the program’s executions. Once loop invariants are computed, they
are communicated back to the theorem prover. This process terminates when the the-
orem prover is able to prove the program correct or when the abstract interpreter runs
out of steam, in which case the candidate traces are reported.

As an example, consider the program in Figure 0. The strongest invariant for the
loop is:

(NSOAz=m=0)V(0<z<NAOL<m<N)

Using this loop invariant, one can prove the program to be correct, that is, one can prove
that the assertion near the end of the program never fails. However, because this invari-
ant contains a disjunction, common abstract domains like intervals [9], octagons [32],
and polyhedra [11] would not be able to infer it. The strongest loop invariant that does
not contain a disjunction is:

0<zA0Om

which, disappointingly, is not strong enough to prove the program correct. Disjunctive
completion [10] or loop unrolling can be used to improve the precision of these do-
mains, enough to prove the property. Nevertheless, in practice the cost of disjunctive
completion is prohibitive and in the general case the number of loop unrollings neces-
sary to prove the properties of interest is not known.



Trace partitioning is a well-known technique that provides a good value of the
precision-to-cost ratio for handling disjunctive properties. Our technique performs trace
partitioning dynamically (i.e., during the analysis of the program), automatically, (i.e.,
without requiring interaction from the user), and contextually (i.e., according to the
values of variables and the control flow of the program).

Applying our technique to the example program in Figure 0, the theorem prover
would first produce a set of candidate traces that exit the loop with any values for z
and m, then takes the then branch of the if statement (which implies 0 < N) and
then finds the assertion to be false. Not all such candidate trace are feasible, however.
From the information about the candidate traces, and in particular from 0 < N, the
abstract interpreter (with the octagon or polyhedra domain, for example) infers the loop
invariant:

0<z<NAOLSEmMm<<N

using which the theorem prover can complete the proof.

In Section 1, we present a toy imperative language and define an abstract interpre-
tation for it, parameterized by any abstract domain. We also prescribe for this language
the generation of verification conditions. In Section 2, we present the basic interface
of the theorem prover and define our technique as a “fact generator” for the theorem
prover. Throughout, we apply what we say to the running example shown in Figure 0.
We relate our technique to previous work in Section 3 and conclude the paper in Sec-
tion 4.

1 Animperative language and its semantics

In this section, we define a while language, its abstract semantics, and its associated
verification conditions. We also show an example program whose analysis benefits from
the combination of an abstract interpreter and a theorem prover.

1.0 Grammar

We consider the source language whose grammar is given in Figure 1. The source lan-
guage includes support for specifications via the assert F statement: if the expression
E evaluates to false, then the program fails. The assignment statement z:= E sets
the variable z to the value of the expression E. The havoc statement havoc z non-
deterministically assigns a value to z. Sequential composition, conditionals, and loops
are the usual ones. Note that we assume that loops are uniquely determined by labels ¢
taken from a set WW: Given a label ¢, the function LookupWhile(¢) returns the while
loop associated with such a label.

For example, Figure 2 shows the program in Figure O written in the notation of our
source language. Note the use of havoc b; followed by a use of b in a conditional,
which encodes an arbitrary choice between the two branches of the conditional.



Stmt ::= assert Expr; (assertion)
| z:= Expr; (assignment)
| havoc z; (set z to an arbitrary value)
| Stmt Stmt (composition)
| if (Ezpr) {Stmt} else {Stmt¢}  (conditional)
| while® (Expr) {Stmt} (loop)
Fig. 1. The grammar of the source language.
z:=0; m:=0;

while! (z < N) {
havoc b; if (b) {m:= z;} else {assert true; }
r=z+ 1

if (0 < N) {assert 0 < m < N;} else {assert true; }

Fig. 2. The program of Figure 0 encoded in the source language.

1.1 Abstract semantics

The abstract semantics c[-] is defined by structural induction in Figure 3. It is param-
eterized by an abstract domain D, which includes a join operator (L!), a meet oper-
ator (M), a projection operator (eliminate), and a primitive to handle the assignment
(assign). The pointwise extension of the join is denoted L.

The abstract semantics for expressions is given by a function b[-] € L(Ezpr) —
D — D . Intuitively, b[E](d) overapproximates the subset of the concrete states ~(d)
that make the expression E true. For lack of space, we omit here its definition and refer
the interested reader to, e.g., [8]-

The input of the abstract semantics is an abstract state representing the initial condi-
tions. The output is a pair consisting of an approximation of the output states and a map
from (the label of) each loop sub-statement to an approximation of its loop invariant.
The rules in Figure 3 are described as follows. The assert statement retains the part
of the input state that satisfies the asserted expression. The effects of an assignment are
handled by the abstract domain through the primitive assign. In the concrete, havoc z
sets the variable z to any value, so in the abstract we handle it by simply projecting
out the variable z from the abstract state. Stated differently, we set the value of z to
T. Sequential composition, conditional, and loops are defined as usual. In particular,
the semantics of a loop is given by a least fixpoint on the abstract domain D. Such
a fixpoint can be computed iteratively, and if the abstract domain does not satisfy the
ascending chain condition then the convergence (to a post-fixpoint) of the iterations is
enforced through the use of a widening operator. The abstract state just after the loop
is given by the loop invariant restrainted by the negation of the guard. Notice that the
abstract semantics for the loop also records in the output map the loop invariant for ¢.



c[-] € L(Stmt) - D — D x (W — D)
classert E;](d) = (b[E](d), 0)
clz:=E;](d) = (d.assign(z,E), 0)
c[havoc z;](d) = (d.eliminate(z), 0)
(B[[S() Slﬂ(d) = let (do,fo) = (B[[Soﬂ(d) in
let (d17f1) = (B[[Sﬂ](do) in
(di, foU f)
c[if (E) {So} else {S1}](d) = let (do, fo) = c[So](B[E](d)) in
let (d17f1) = (B[[Sl]](lb[[—'Eﬂ(d)) in
(do U da, foU fr)
c[while’ (E) {S}](d) =
let (d*,f*)=1p(AX,Y e (d,0) U c[S](B[E](X)) ) in
(b[-E[(d"), f*[t — d7])

Fig. 3. The generic abstract semantics for the source language.

Cmd ::= assert Fxpr (assert)
| assume Ezpr (assume)
| Cmd; Cmd  (sequence)
| CmdO Cmd (non-deterministic choice)

Fig. 4. The intermediate language.

1.2 Verification conditions

To define the verification conditions for programs written in our source language, we
first translate them into an intermediate language and then apply weakest preconditions
(cf. [28]).

Intermediate language The commands of the intermediate language are given by the
grammar in Figure 4. Our intermediate language is that of passive commands, i.e,
assignment-free and loop-free commands [17].

The assert and assume statements first evaluate the expression Ezpr. If it eval-
uates to ¢rue, then the execution continues. If the expression evaluates to false, the
assert statement causes the program to fail (the program goeswrong) and the assume
statement blocks the program (which implies that the program no longer has a chance
of going wrong). Furthermore, we have a statement for sequential composition and
non-deterministic choice.

The translation from a source language program S to an intermediate language
program is given by the following function (id denotes the identity map):

translate(S) = let (C,m)=1tr(S,id)in C

The goals of the translation are to get rid of (i) assignments and (ii) loops. To achieve
(i), the translation uses a variant of static single assignment (SSA) [0] that introduces
new variables (inflections) that stand for the values of program variables at different



source-program locations, such that within any one execution path an inflection vari-
able has only one value. To achieve (ii), the translation replaces an arbitrary number of
iterations of a loop with something that describes the effect that these iterations have on
the variables, namely the loop invariant. The definition of the function tr is in Figure 5.
The function takes as input a program in the source language and a renaming function
from program variables to their pre-state inflections, and it returns a program in the in-
termediate language and a renaming function from program variables to their post-state
inflections. The rules in Figure 5 are described as follows.

The translation of an assert just renames the variables in the asserted expression
to their current inflections. One of the goals of the passive form is to get rid of the
assignments. As a consequence, given an assignment z := E in the source language,
we generate a fresh variable for x (intuitively, the value of z after the assignment), we
apply the renaming function to E, and we output an assume statement that binds the
new variable to the renamed expression. For instance, a statement that assigns to ¥ in
a state where the current inflection of y is 0 is translated as follows, where y1 is a
fresh variable that denotes the inflection of y after the statement:

tr(y:=y+4, [y — y0]) = (assume yl = y0 + 4, [y — yl])

The translation of havoc z just binds = to a fresh variable, without introducing any
assumptions about the value of this fresh variable. The translation of sequential compo-
sition yields the composition of the translated statements and the post-renaming of the
second statement. The translations of the conditional and the loop are trickier.

For the conditional, we translate the two branches to obtain two translated state-
ments and two renaming functions. Then we consider the set of all the variables on
which the renaming functions disagree (intuitively, they are the variables modified in
one or both the branches of the conditional), and we assign them fresh names. These
names will be the inflections of the variables after the conditional statement. Then, we
generate the translation of the true (resp. false) branch of the conditional by assum-
ing the guard (resp. the negation of the guard), followed by the translated command
and the assumption of the fresh names for the modified variables. Finally, we use the
non-deterministic choice operator to complete the translation of the whole conditional
statement.

For the loop, we first identify the loop targets (defined in Figure 6), generate fresh
names for them, and translate the loop body. Then, we generate a fresh predicate symbol
indexed by the loop identifier (.J,), which intuitively stands for the invariant of the loop
LookupWhile(¢). We output a sequence that is made up by the assumption of the loop
invariant (intuition: we have performed an arbitrary number of loop iterations) and a
non-deterministic choice between two cases: (i) the loop condition evaluates to true,
we execute a further iteration of the body, and then we stop checking (assume false),
or (ii) the loop condition evaluates to false and we terminate normally. Finally, please
note that the arguments of the loop-invariant predicate .J, include the names of program
variables at the beginning of the loop (range(m)) and the names of the variables after
an arbitrary number of iterations of the loop (range(n)).

Please note that we tacitely assume a total order on variables, so that, e.g., the sets
range(m) and range(n) can be isomorphically represented as lists of variables. We
will use the list representation in our examples.



tr € L(Stmt) x (Vars — Vars) — L(Cmd) x (Vars — Vars)

tr(assert E;, m)

(assert m(E) m)
tr(x:=E;, m) ass

( =
( = (assume x’ = m(E), m[x — x']) where x is a fresh variable
tr(havoc x;, m) = (assume true, m[x — x']) where x’ is a fresh variable
tr(So Si1, ) = let (C 0, ’no) = tr(So, ) mn
let (C1,m1) = tr(S1, no) in
(Co 5 C1, m)

tr(if (E) {So} else {S1}, m) =

let (Co, no) = tr(So, m) in

let (C1,n1)=tr(S1,m) in

let V= {x € Vars | no(x) # ni(x)} in

let V' be fresh variables for the variables in V in

let Do = assume m(E) ; Cp ; assume V' = ng(V) in

let D; = assume —-m(E) ; C; ; assume V' = ny (V) in

(Do O Dy, mV— V)
tr(while® (E) {S}, m) =

let V= targets(S) in

let V' be fresh variables for the variables in V in

let n=m[V+— V] in

let (C, np) = tr(S,n) in

let J, be a fresh predicate symbol in

(assume J¢(range(m), range(n)) ;

(assume n(E) ; C; assume false O assume —n(E)), n)

Fig. 5. The function that translates from the source program to our intermediate language.

For example, applying translate to the program in Figure 2 results in the intermediate-
language program shown in Figure 7.

Weakest preconditions The weakest preconditions of a program in the intermediate
language are given in Figure 8, where @ denotes the set of first-order formulae. They
characterize the set of pre-states from which every non-blocking execution of the com-
mand does not go wrong, and from which every terminating execution ends in a state
satisfying @ [14, 33]. As a consequence, the verification condition for a given program
S, in the source language, is

wp(translate(S), true) ©)

For example, the verification condition for the source program in Figure 2, obtained
as the weakest precondition of the intermediate-language program in Figure 7, is the
formula shown in Figure 9. (As can be seen in this formula, the verification condition
contains a noticeable amount of redundancy, even for this small source program. We
don’t show it here, but the redundancy can be eliminated by using an important opti-
mization in the computation of weakest preconditions, which is enabled by the fact that
the weakest preconditions are computed from passive commands, see [17, 26, 3].)



targets € L(Stmt) — P(Vars)

targets(assertE ) =10

targets(x:= E;) = targets(havocx;) = {x}

targets(So Sl) = targets(if (E) {So} else {S1}) = targets(So) U targets(S1)
targets(while’ (E) {S}) = targets(S)

Fig. 6. The assignment targets, that is, the set of variables assigned in a source statement.

assume 7y = 0 ; assume my = 0 ;
assume Jo{(zo, mo, b, N), (21, m1, bo, N)) ;
( assume z; < N ;
( assume b; ; assume my = 71 ; assume mz = My
O assume —b; ; assert true ; assume mz = my
);
assume 2 = 11 + 1 ; assume false
a
assume —(z1 < N)

);
( assume 0 < N ;assert 0 < mi < N
O assume —(0 < N) ; assert true

)

Fig. 7. The intermediate-language program obtained as a translation of the source-language pro-
gram in Figure 2. J, is a predicate symbol corresponding to the loop.

1.3 Thebenefit of combining analysistechniques

It is unreasonable to think that every static analysis technique would encode all details
of the operators (like integer addition, bitwise-or, and floating-point division) in a pro-
gramming language. Operators without direct support can be encoded as uninterpreted
functions. A theorem prover that supports quantifications offers an easy way to encode
interesting properties of such functions. For example, the property that the bitwise-or
of two non-negative integers is non-negative can be added to the analysis simply by
including

(Vz,ye 0< 2 A0y = 0< bitwiseOr(z,y) ) Q)

in the antecedent of the verification condition. In an abstract interpreter, the addition
of properties like this requires authoring or modifying an abstract domain, which takes
more effort. On the other hand, to use the theorem prover to prove a program correct,
one needs to supply it with inductive conditions like invariants. An abstract interpreter
computes (over-approximations of) such invariants. By combining an abstract inter-
preter and a theorem prover, one can reap the benefits of both the abstract interpreter’s
invariant computation and the theorem prover’s high precision and easy extensibility.
For example, consider the program in Figure 10, where we use “|” to denote bitwise-
or. Without a loop invariant, the theorem prover cannot prove that the first assertion




wp € L(Cmd) X & — &
wp(assert E, Q) = E A Q
wp(assume E, Q) = E = @
wp(Co ; C1, @) = wp(Co, wp(C1, Q))
(CO 0 Cl7 Q) = Wp(CO7 Q) A Wp(Cl7 Q)

Fig. 8. Weakest preconditions of the intermediate language.

=0= my=0=
Je{(20, mo, b, N), (21, ma, bo, N)) =
(1 <N =
(hh=>m=xz = m3=mp = =n+1 = false = ...) A
(mb1 = true A(mg=m1 = =21 +1 = false = ...))
) A
(=(z1 < N) =
(0< N = 0<mi <N A true) A
(=(0 < N) = true A true)

)

Fig. 9. The weakest precondition of the program in Figure 7. We use =- as a right-associative
operator with lower precedence than A . The ellipsis in each of the two occurrences of the
sub-formula “ false =- ...” stands for the conjunction shown in the second and third last lines.

holds. Without support for bitwise-or, an abstract interpreter cannot prove it either. But
the combination can prove it: an abstract interpreter with support for intervals infers the
loop invariant 0 < x, and given this loop invariant and the axiom (1), a theorem prover
can prove the program correct.

2 Loop-invariant fact generator

To determine whether or not a program is correct with respect to its specification, we
need to determine the validity of the verification condition (0), which we do using a
theorem prover. A theorem prover can equivalently be thought of as a satisfier, since
a formula is valid if and only if its negation is unsatisfiable. In this paper, we take the
view of the theorem prover being a satisfier, so we ask it to try to satisfy the formula
—(0). If the theorem prover’s exhaustive search determines that —(0) is unsatisfiable,
then (0) is valid and the program is correct. Otherwise, the prover returns a monome—
a conjunction of possibly negated atomic formulas—that satisfies —(0) and, as far as
the prover can tell, is consistent. Intuitively, the monome represents a set of execution
paths that lead to an error in the program being analyzed, together with any information
gathered by the theorem prover about these execution paths.

A satisfying monome returned by the theorem prover may be an indication of an
actual error in the program being analyzed. But the monome may also be the result
of too weak loop invariants. (There’s a third possibility: that the program’s correctness
depends on mathematical properties that are beyond the power or resource bounds of



z:=0;

while’ (z < N) {
if (0 < y) {assert 0 < z|y;} else {assert true; }
r:=z+ 1

}

Fig. 10. An artificial program whose analysis benefits from the combination of an abstract inter-
preter and a theorem prover.

the prover. In this paper, we offer no improvement for this third possibility.) At the point
where the prover is about to return a satisfying monome, we would like a chance to infer
stronger loop invariants. To explain how this is done, let us give some more details of
the theorem prover.

We assume the architecture of a lemmas-on-demand theorem prover [15,12]. It
starts off viewing the given formula as a propositional formula, with each atomic sub-
formula being represented as a propositional variable. The theorem prover asks a boolean-
satisfiability (SAT) solver to produce monomes that satisfy the formula propositionally.
Each such monome is then scrutinized by the supported theories. These theories may
include, for example, the theory of uninterpreted function symbols with equality and
the theory of linear arithmetic. If the monome is found to be inconsistent with the theo-
ries, the theories generate a lemma that explains the inconsistency. The lemma is then,
in effect, conjoined with the original formula and the search for a satisfying monome
continues.

If the SAT solver finds a monome that is consistent with the theories, the theorem
prover invokes a number of fact generators[27], each of which is allowed to return facts
that may help refute the monome. For example, one such fact generator is the quantifier
module, which Skolemizes existential quantifiers and heuristically instantiates universal
quantifiers [16, 27]. Unlike the lemmas generated by the theories, the facts may or may
not be helpful in refuting the monome. Any facts generated are taken into consideration
and the search for a satisfying monome is resumed. Only if the fact generators have no
further facts to produce, or if some limit on the number of fact-generator invocations
has been reached, does the theorem prover return the satisfying monome.

To generate loop invariants on demand, we therefore build a fact generator that
infers loop invariants for the loops that play a role in the current monome. This fact
generator can apply a more powerful technique with each invocation. For example, in
a subsequent invocation, the fact generator may make use of more detailed abstract do-
mains, it may perform more join operations before applying accelerating widen opera-
tions, or it may apply more narrowing operations. The fact generator can also make use
of the contextual information of the current monome when inferring loop invariants—a
loop invariant so inferred may not be a loop invariant in every execution of the program,
but it may be good enough to refute the current monome.

The routine that generates new loop-invariant facts is shown in Figure 11. The
GenerateFacts routine extracts from the monome each loop-invariant predicate J¢(Vo, V1)
of interest. The inference of a loop invariant for loop ¢ is done as follows.



GenerateFacts(Monome p) =
let V be the program variables in
var Facts := () ;
foreach Jy(Vo, Vi) € i {
var do := a(u) ;
foreach x & Vo { do := do.eliminate(x); }
let d = do Mb[Vo = V](do) in
let (_, f) = c[LookupWhile()](d) in
let m=V — V; in
let LoopInv = m(f(¢)) in
Facts := Facts U {y(do) N Je(Vo, V1) = ~(LoopInv)} ;
}

return Facts

Fig.11. The GenerateFacts routine, which invokes the abstract interpreter to infer loop invari-
ants.

First, GenerateFacts computes into d an initial state for the loop ¢. This initial
state is computed as a projection of the monome p onto the loop pre-state inflections
(Vo). We let the abstract interpreter compute this projection, so we start by applying the
abstraction function «, which maps the monome to an abstract element. For instance,
using the polyhedra abstract domain, the « keeps just the parts of the monome that
involve linear inequalities, all the other parts being abstracted away. The initial state,
which is in terms of V,, is then conjoined with a set of equalities such that each program
variable in V has the value of the corresponding variable in V.

Then, GenerateFacts fetches the loop to be analyzed (LookupWhile(¢)) and runs
the abstract interpreter with the initial state d. Since the abstract element d represents
arelation on v, and Vv, the analysis will infer a relational invariant [29].

The abstract interpreter returns a loop invariant f (£) with variablesin vV, and V. The
routine GenerateFacts then renames each programvariable (in V) to its corresponding
loop post-state inflection (in v, ). Finally, the set of gathered facts is updated with the
implication

v(do) N Je(Vo, V1) = ~y(LoopInv)

Intuitively, it says that if the execution trace being examined satisfies d—the initial
state of the loop used in the analysis just performed—then the loop-invariant predicate
Je(Vo, V1) is no weaker than the inferred invariant LoopInv. In this formula, the ab-
stract domain elements d and LoopInv are first concretized using the concretization
function -, which produces a first-order formulain &.

Not utilized in Figure 11 are the invariants inferred for nested loops, which are also
recorded in f. With a little more bookkeeping (namely, keeping track of the pre- and
post-state inflections of the nested loop), one can also produce facts about these loops.



Continuing our example, when the negation of the verification condition in Fig-
ure 9 is passed to the theorem prover, the theorem prover responds with the following
monome:

p=0Amyg=0A
J[<($Q,m0,b,N), (fl?l,’l’TLl,bO,N)) A
—|($1<N)/\

0< N A=(0<m)

(or, depending on how the SAT solver makes its case splits, the last literal in the
monome may instead be —(my < N)). When this monome is passed to GenerateFacts
in Figure 11, the routine finds the J;((xo, mo, b, N), (@1, m1, bo, N)) predicate, which
tells it to analyze loop ¢. We assume for this example that a numeric abstract do-
main like the polyhedra domain [11] is used. Since loop ¢’s pre-state inflections are
(20, mg, b, N'), the abstract element d, is computed as

p=0Amy=0AN0<N
and d thus becomes

p=0Amy=0A0< N A
=z Amy=mANb=bAN=N

The analysis of the loop produces in f(¢) the loop invariant
p=0<z< NAm=0<m<N

Note that this loop invariant does not hold in general—it only holds in those executions
where 0 < N . Interestingly enough, notice that the condition 0 < N occurs after the
loop in the program, but since it is relevant to the candidate error trace, it is part of the
monome and thus becomes considered during the inference of loop invariants. Finally,
the program variables are renamed to their post-state inflections (to match the second
set of arguments passed to the .J, predicate), which yields

=0< <K NAm=0<m <N
and so the generated fact is

xO:O/\m():O/\O<N/\Jg<($0,m0,b,N), (xl,ml,bO,N» =
=0< < NAm=0<m <N

With this fact as an additional constraint, the theorem prover is not able to satisfy the
given formula. Hence, the program in Figure 2 has been automatically proved to be
correct.

3 Redated work

Handjieva and Tzolovski [21] introduced a trace partitioning technique based on a pro-
gram’s control points. Their technique augments abstract states with an encoding of the
history of the control flow. They consider finite sequences over {¢;, f;}, where i is a



control point and ¢; (resp. f;) denotes the fact that the true (resp. false) branch at the
control point 7 is taken. Nevertheless, their approach abstracts away from the values of
variables at control points, so that with such a technique it is impossible to prove correct
the example in Figure 0.

The trace partitioning technique used by Jeannet et al. [25] allows performing the
partition according the values of boolean variables or linear constraints appearing in the
program text. Their technique is effective for the analysis of reactive systems, but in the
general case it suffers from being too syntactic-based.

Bourdoncle considers a form of dynamic partitioning [6] for the analysis of recur-
sive functions. In particular, he refines the solution of representing disjunctive proper-
ties by a set of abstract elements (roughly, the disjunctive completion of the underlying
abstract domain), by limiting the number of disjuncts through the use of a suitable
widening operator.

Mauborgne and Rival [31] present a systematic view of trace partitioning tech-
niques, and in particular they focus on automatic partitioning for proving the absence of
run-time errors in large critical embedded software. The main difference with our work
is that in our case the partition is driven by the property to be verified, i.e., the refuted
verification condition.

Finally, the theoretical bases for trace partitioning are given by the reduced cardinal
product (RDC) of abstract domains [10, 19]. Roughly, the RDC of two abstract domains
Dy and Dy produces a new domain made up of all the monotonic functions with do-
main Dy and co-domain Dy . In trace partitioning, D contains the elements that allow
the partitioning.

Yorsh et al. [35] and Zee et al. [36] use approaches different from ours for com-
bining theorem proving and abstract interpretation: The first work relies on a theorem
prover to compute the best abstract transfer function for shape analysis. The second
work uses an interactive theorem prover to verify that some program parts satisfy their
specification; then, a static analysis that assumes the specifications is run on the whole
program to prove its correctness.

Henzinger et al. [23,22] use the proof of unsatisfiability produced by a theorem
prover to systematically reduce the abstract models checked by the BLAST model
checker. The technique used in BLAST has several intriguing similarities to our tech-
nique. Two differences are that (i) our analysis is mainly performed inside the theorem
prover, whereas BLAST is a separate tool built around a model checker, and (ii) our
technique uses widening, whereas BLAST uses Craig’s interpolation.

4 Conclusion

We have presented a technique that combines the precision and flexibility of a theorem
prover with the power of an abstract interpretation-based static analyzer. The verifi-
cation conditions are generated from the program source, and they are passed to an
automatic theorem prover. The prover tries to prove the verification conditions, and it
dynamically invokes the abstract interpreter for the inference of (more precise) loop
invariants on a subset of the program traces. The abstract interpreter infers a loop in-
variant that is particular to this set of execution traces, and passes it back to the theorem



prover, which then continues the proof. We obtain a program analysis that is a form of
trace partitioning. The partitioning is value-based (the partition is done on the values of
program variables) and automatic (the theorem prover chooses the partitions automati-
cally).

We have a prototype implementation of our technique, built as an extension of the
Zap theorem prover. We have used our prototype to verify the program in our running
example, as well as several other small example programs.

We plan to extend our work in several directions. For the implementation, we plan
(i) to perform several optimizations in the interaction of the prover and the abstract
interpreter, e.g., by caching the calls to the GenerateFacts routine or by a smarter han-
dling of the analysis of nested loops; and (ii) to include our work in the Boogie static
program verifier, which is part of the Spec# programming system [4]. This second point
will give us easier access to many larger programs. But it will also require some exten-
sions to the theoretical framework presented in this paper, because the starting point
of Boogie’s inference is a language with basic blocks and goto statements [13, 3] (as
opposed to the structured source language we have presented here).

We also want to extend our work to handle recursive procedures. In this case, the
abstract interpreter will be invoked to generate not only loop invariants, but also proce-
dure summaries, which we are hopeful can be handled in a similar way on demand. If
obtained, such an extension of our technique to procedure summaries could provide a
new take on interprocedural inference.

It will also be of interest to instantiate the static analyzer with non-numeric abstract
domains, for instance a domain for shape analysis (e.g., [34]). In this case, we expect the
abstract interpreter to infer invariants on the shape of the heap that are useful to prove
heap properties such as that a method correctly manipulates a list (e.g., “if the input is an
acyclic list, then the output is also an acyclic list”), and that combined with the inference
of class invariants [30, 7] may allow the verification of class-level specifications (e.g.,
“the class implements an acyclic list”).
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