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ABSTRACT
Efficient thermal management is important in modern data centers
as cooling consumes up to 50% of the total energy. Unlike pre-
vious work, we consider proactive thermal management, whereby
servers can predict potential overheating events due to dynamics in
data center configuration and workload, giving operators enough
time to react. However, such forecasting is very challenging due
to data center scales and complexity. Moreover, such a physical
system is influenced by cyber effects, including workload schedul-
ing in servers. We propose ThermoCast, a novel thermal forecast-
ing model to predict the temperatures surrounding the servers in a
data center, based on continuous streams of temperature and airflow
measurements. Our approach is (a) capable of capturing cyber-
physical interactions and automatically learning them from data;
(b) computationally and physically scalable to data center scales;
(c) able to provide online prediction with real-time sensor mea-
surements. The paper’s main contributions are: (i) We provide a
systematic approach to integrate physical laws and sensor observa-
tions in a data center; (ii) We provide an algorithm that uses sensor
data to learn the parameters of a data center’s cyber-physical sys-
tem. In turn, this ability enables us to reduce model complexity
compared to full-fledged fluid dynamics models, while maintain-
ing forecast accuracy; (iii) Unlike previous simulation-based stud-
ies, we perform experiments in a production data center. Using real
data traces, we show that ThermoCast forecasts temperature 2×
better than a machine learning approach solely driven by data, and
can successfully predict thermal alarms 4.2 minutes ahead of time.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; C.4 [Performance
of Systems]: Measurement techniques;Modeling techniques
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1. INTRODUCTION
A modern data center hosts tens of thousands of servers used to

provide reliable and scalable infrastructure for Internet-scale ser-
vices. The enormous amount (in the order of tens of megawatts) of
energy these facilities consume and the resulting operational costs
have spurred interest in improving their efficiency.

Traditional data centers are over-provisioned; server rooms (usu-
ally called colos) are excessively cooled and the average server uti-
lization is kept quite low (e.g., CPU utilization between 10% to
30%). As a consequence, a “well tuned” data center rarely has
thermal alarms and it is sufficient to use reactive thermal manage-
ment, where data center operators take necessary actions only after
an over-heated server issues a protective shutdown. However, such
a conservative approach leads to waste of computational resources
and poor Power Utilization Efficiency (PUE) 1 (close to 2, with
≈ 40% of total data center energy used for cooling).

With increasing demand for improving data center efficiency,
data center operators look into many ways to reduce cooling cost
and increase server utilization. For example, a previous study con-
firms that fans consume most of the energy used by a Computer
Room Air-Conditioning(CRAC) system [19]. A single Liebert Deluxe
System/3 CRAC installed in our data center has three 7.57 kW·h
fans for a total energy consumption of 22.71kW·h [17]. Since the
power that fan motors consume increases with the cube of fan ro-
tation speed [19], modern data centers use variable speed fans in
order to reduce the CRAC’s energy use: a mere 10% reduction in
fan speed translates to 27% energy savings for the fan motor. Other
energy-saving approaches taken by modern data centers include
raising AC temperature set points, using outside air directly for
cooling, consolidating workload using virtual machines, and lever-
aging statistical multiplexing to opportunistically oversubscribe the
servers. However, as a result of such aggressive optimizations, the
safety margin of data center operation is getting smaller. This trend
requires data center monitoring to move from reactive to proactive,
whereby the servers can predict potential overheating events early
enough, giving operators enough time to react.

Central to any proactive thermal management approach is pre-
dicting temperature of different servers in a data center. This is
extremely challenging due to large scale (a data center usually con-

1PUE is defined as the ratio between total facility energy consump-
tion and the energy used by servers.
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tains tens of thousands of servers, multiple CRAC units and fans),
complex thermal interactions (e.g., due to server fans driving lo-
cal air flow, by-pass air through gaps between servers and racks),
and cyber effects (e.g., workload scheduling algorithms may have
visible effects on temperature distribution). Previous works have
considered two different approaches for data center thermal man-
agement. Thermodynamics-based solutions derive thermal models
of different locations inside a data center using fundamental ther-
modynamics laws and data center layout [1, 21, 26, 31]. On the
other hand, data-centric solutions use data-mining [27] or machine
learning algorithms [22] to model and optimize cooling in a data
center. All these existing solutions, however, provide static ther-
mal models and are not adaptive to changes in workloads, CRAC
fan speeds, data center layout, etc. Thus, these solutions are not
adequate for modern data centers serving dynamic workload [4] or
using power-efficient variable-speed fans.

In this paper we propose ThermoCast, a novel thermal forecast-
ing model that addresses the above limitation. ThermoCast uses
real-time workload information and measurements from a care-
fully deployed set of temperature and air-flow sensors to model and
predict temperatures around servers. We assume that each server
knows temperature of its cold inlet air and hot exhaust air. These
data can be obtained from temperature sensors shipped with some
servers, or a RACNet-like data center sensor network [16]. Two big
challenges in building any such real-time adaptive model are pre-
dictability and scalability: the model should be able to predict over-
heating early enough, without many false positives/negatives, even
when system configuration (e.g., workload, fan speed) changes and
it should be able to handle millions of data points to monitor within
a data center. Reducing false positives/negatives is important to
reduce burden on human operators who must take some action fol-
lowing an alarm and predicting early enough is important to give
operators enough time to react.

To achieve high predictability, ThermoCast uses a hybrid ap-
proach of aforementioned thermodynamics-based and data-centric
approaches. ThermoCast is based on thermodynamics laws and
cyber-physical interactions, however, it learns and adapts appro-
priate values of various parameters from real-time sensor data and
workload information. Thus, it is able to provide online prediction
even when configurations, such as servers’ on/off state, workload,
set of servers, air-conditioning equipment maintenance, change.

To achieve scalability, we use the insight that temperature around
a server is affected mostly by configurations of its neighboring
servers and not much by the servers far from it. Therefore, Ther-
moCast is based on a zonal thermal model that builds a relation-
ship among the cold-aisle vent temperature, the location of the
server, the local temperature distribution and the workload from
nearby servers, to predict the intake temperature at each server. Be-
cause of such local nature, ThermoCast can distribute the modeling
task among servers: each server learns and models the temperature
around itself by using nearby sensor measurements and workloads
of neighboring servers. Thus, ThermoCast is computationally and
physically scalable for a large data center.

We have deployed and evaluated ThermoCast in a lab data cen-
ter with a rack of 40 servers. Through dense data center instru-
mentation, we show the complex thermal dynamics with variable
workload and CRAC activities. Our experiments show that Ther-
moCast is more effective than pure machine learning approach with
better prediction accuracy and mean lookahead time. For example,
with real data traces, we show that ThermoCast can predict ther-
mal spikes 4.2 minutes ahead of time, comparing to 2.3 minutes
using an auto-regression (AR) model. The extra two minutes can
be crucial for thermal management. Previous studies have shown

that it takes about a minute to safely suspend a virtual machine in
cloud computing environment [33, 30]. For connection intensive
servers, like Windows Live Messenger, a minute can safely drain
7% of total TCP connections [4].

In summary, we make the following contributions in the paper:

1. We provide a systematic approach to integrate the physical
laws and sensor observations in a data center.

2. We provide an algorithm to learn from sensor data for such
cyber-physical system, and it enables us to reduce complex-
ity in full fluid models while still achieves good forecasting
of future temperatures.

3. Unlike previous simulation-based studies, we perform exper-
iments in a production data center. Using real data traces, we
show that ThermoCast can forecast temperatures 2× better
than the pure machine learning approach, and can success-
fully predict thermal alarms on average in 4.2 minutes ahead.

The rest of the paper is organized as follows. We review the liter-
ature in Section 2 and summarize the operation and energy cost of
data center cooling using air conditioners in Section 3.1. Section 3
presents our findings about how temperature inside a data center
changes as a function of server load and AC activity. Section 4
describes the proposed ThermoCast framework, while Section 5
presents evaluation results. We conclude in Section 6.

2. RELATED WORK
Our work is related to two areas of interest, thermal management

in data centers, time series mining and prediction.

Data center thermal management. A number of recent pa-
pers have investigated methods for efficient thermal management
in a data center. The methods can be broadly divided into two
categories. The first category of solutions are based on funda-
mental thermal and air dynamics laws using computational fluid
dynamic (CFD) simulators [1, 21, 26, 28, 31]. These solutions
derive thermal models of different locations inside the data center
during an initial profiling phase using data center layout and mate-
rial thermo properties. The models are subsequently used by var-
ious energy-optimizing tasks. Cooling-aware workload placement
algorithms [1, 21, 26, 31] use such models to place heavy com-
putational workload in cooling-efficient locations. Energy-aware
control algorithms [28] use such models to choose the best dynam-
ics voltage and frequency scaling (DVFS) policy for each server
to match its workload. Spatio-temporal scheduling algorithms [24]
use the models with virtualization to improve cooling efficiency.
Our work differs from these existing work in two important ways.
First, rather than open-loop CFD models, ThermoCast is based on
both thermodynamics laws and real-time measurements, and un-
like previous solutions, it can adapt with dynamics in workload,
fan speed, etc. Second, our focus is on predicting hot spots early
enough, giving data center operators enough time to react. This
requires ThermoCast to be scalable and predictable.

The second category of data center thermal management solu-
tions use black-box data-driven approaches. Patnaik et al. [27]
has proposed a temporal data mining solution to model and opti-
mize performance of data center chillers, a key component of the
cooling infrastructure. [22] proposed a thermal mapping prediction
problem that learns the thermal map of a data center for differ-
ent combinations of workload, cooling configurations, and physi-
cal topologies. The paper uses neural networks to learn this map-
ping from data derived from thermodynamic simulations of a data
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center. This model is then used for workload placement. This ap-
proach avoids the challenges of using thermodynamics to estimate
server temperature through a data-driven approach that is amenable
to online scheduling of computing workloads. However, the neu-
ral network is not dynamic and therefore temperature predictions
might be affected by scheduling dynamics and lead to scheduling
oscillations.

Mercury software suite [9] emulates single server temperatures
based on utilization, heat flow, and air flow information. Mercury
is then used by Freon, a system for managing thermal emergen-
cies. Unlike Mercury and Freon, ThermoCast models the thermal
relationship among nearby servers, which can be used to optimize
computation and cooling.

Finally, work that proposes to improve data center energy effi-
ciency through the use of low-power CPUs ([8]), smart cooling ([25]),
and power-efficient networking ([10]) is orthogonal to our work
that provides methods to improve the efficiency of existing infras-
tructure through data-driven thermal modeling and thermal-aware
dynamic workload placement.

Time series mining and prediction. Since our data is col-
lected from distributed sensors (temperature and airflow) in an on-
line fashion. Our work also falls into the category of time series
prediction. Autoregressive moving average (ARMA) are a stan-
dard family of models for time series analysis and forecasting (Box
and Jenkins [2]), and are discussed in every textbook in time se-
ries analysis and forecasting (e.g., [3]). Kalman filters and state-
space models are also previously used in mining motion capture
sequences and sensor data [32]. We use AR model as a baseline in
our experiments.

In this paper, we assume that we can obtain all sensor data. But
one of the challenge in sensor data is the missing observations
partly due to unreliability of wireless transmission. Li et al [14]
proposed DynaMMo method to learn a linear dynamical system in
presence of missing values and fill in them. Their method could
then use the learned latent variables to better compress the long
time sequences. Our system can leverage such approaches.

Remotely related is time series indexing, segmentation, classi-
fication [15] and anomaly detection [13]. A common approach
for indexing time series is extracting a few features from time se-
quences and matching them based on the features [7], such as the
Fourier transform coefficients, wavelet coefficients (Jahangiri et
al. [11]), and local dimensionality reduction (Keogh et al. [12]).
However, time series indexing does not offer predictability, which
is key in data center management scenarios.

3. MOTIVATION

3.1 Background
To understand the challenges of thermal prediction, we overview

the operation of a typical data center including its cooling systems.
There are many data center architectures, from ad hoc server cab-

inets to dedicated containers. However, most enterprise and Inter-
net data centers use a cold-aisle, hot-aisle cooling design. Figure 1
illustrates the cross section of a data center server room that fol-
lows this design. Server racks are installed on a raised floor in
aisles. Cool air is blown by the CRAC (Computer Room Air Con-
ditioning) system to the sub-floor. Perforated floor tiles act as vents,
making cool air available to the servers. The aisles with these vents
are called cold aisles. Typically, servers in the racks draw cool air
from the front and blow hot exhaust air to the back in hot aisles. To
effectively use the cool air, servers are arranged face to face in cold
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Figure 1: An illustration of the cross section of a data center.
Cold air is blown from floor vents in cold aisles and hot air
rises in hot aisles. Mixed air eventually returns to the CRAC
where the chilled water cools the air.

aisles. As Figure 1 suggests, cool and hot air eventually mix near
the ceiling, and this return air is drawn back into the CRAC.

In its simplest form, a CRAC consists of two parts: a heat ex-
change unit and one or more fans. To handle the large cooling
capacity requirement of a data center, the heat exchange unit typi-
cally uses a chilled water-based design. Specifically, the CRAC is
connected to water chillers outside of the facility with circulation
pipes. These pipes deliver chilled water with which the return air
exchanges heat inside the CRAC. The warm water then circulates
back to the outside water chillers. Finally, the cooled air is blown
by the CRAC’s fans to the floor vents. To reduce the energy con-
sumption of the cooling equipment, many CRACs offer adjustable
cooling capacity by adjusting the chilled water valve opening and
the fan speed according to the return air temperature reported by
the temperature sensor at the CRAC’s air intake [18].

3.2 Data Center Sensor Instrumentation
Liu et al. argued about the benefits of using wireless sensor net-

works (WSNs) for data center monitoring including the ease of de-
ployment in existing facilities with minimal infrastructure require-
ments [20]. In our case, using a WSN to measure temperature and
airflow speeds across a data center allows us to quickly reconfigure
the measurement harness as we vary measurement locations across
different experiments.

We deployed a network of 80 sensor nodes at an university data
center hosting a high-performance scientific computing cluster. The
cluster consists of 171 1U 2 compute nodes with eight CPU cores
each connected to two file servers through a low-latency InfiniBand
switch. The sensor nodes are equipped with low-power 802.15.4
radios and form a multi-hop routing tree rooted at a gateway. The
network comprised 15 air flow velocity sensors [6] and 65 humid-
ity/temperature sensors [29].

We used this network to instrument three server racks according
to the following sensor configuration. First, a rack is divided into
three sections: top (i.e., four top most servers), middle (i.e., five
middle servers) and bottom (i.e., four servers closest to the floor).
During the experiments we control the load on the server at the
middle of each section (termed as the controlled server). Servers in
all three sections are instrumented with two humidity/temperature
sensors: one at the server’s air intake grill, facing the cold aisle,
and another at the air ventilation grill in the hot aisle. Second, to
measure the velocity of the cold air flowing from the floor vent at
different heights, we positioned 12 air flow sensors directly above
the floor vent at a vertical interval of 5.25”, or every 3U (cf. Fig 2).
Furthermore, we placed one air flow sensor at the air intake grill of

2A rack unit or U is a unit of measure used to describe the height
of equipment intended for mounting in a 19- or 23-inch rack. One
rack unit is 1.75 inches.
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Figure 2: A picture of the air flow sensors setup. We positioned
12 air flow sensors directly above the floor vent at a vertical
interval of 5.25”, or every 3U.
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Figure 3: The relation between the cold air velocity from the
floor vent and the server intake air temperatures of a single
rack.

each controlled server. Finally, we used the servers’ built-in mon-
itoring facilities to monitor their CPU load, fan speeds, and power
consumption.

3.3 Observations
This section presents insights derived from the WSN measure-

ments which provide both the motivation and the intuition to the
control framework presented in Section 4.

Figure 3 shows the relation between the cold air velocity from
the floor vent and the range of server intake temperatures across a
single rack. We make two observations from this figure.

First, the temperature difference cycle (termed as the contraction
and relaxation cycle) is in antiphase with the air velocity cycle. In
other words, the temperature variation of a rack is smallest when
the air velocity is highest. When the air velocity is low, the air is
colder closer to the floor vent but less cool air is available at the
top of the rack. Hence, the high and low temperature at the top and
bottom section respectively are significantly different. At high air
velocities, the top section cools down as cold air is forced further
up, but the temperature of the bottom section actually increases
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Figure 4: The intake air temperature change of the controlled
server decreases after the server is shut down, while the temper-
ature of the server below increases. The vertical line indicates
when the controlled server was shut down.

due to the Bernoulli effect. The implication of this effect, which
dictates that fast moving air creates a decrease in pressure, is that
hot air from the back of the rack is drawn to the front of the server
as the speed of cold air increases [5]. Therefore, simply increasing
the CRAC fan speed can lead to unexpected hotspots.

Second, as the floor vent air velocity varies, the coldest section of
the rack oscillates between the middle and the bottom section. On
the other hand, the top section is almost always the hottest section.
In addition to the fact that the CRAC needs to increase the fan speed
to deliver cold air to the top section, the top section has a relatively
higher initial temperature as it is close to the warm return air flow
(cf. Figure 1).

Chen et al. suggested shutting down under-utilized servers to re-
duce the energy consumption of cooling system [4]. Intuitively, this
approach applies well to servers in the top section which we just
showed to frequently be the hottest. However, shutting down one
server can impact the intake air temperature of its neighbors. Fig-
ure 4 illustrates an example of this interaction; shutting down the
controlled server causes an increase in the intake air temperature of
the server below it. While few servers are affected by the actions of
one server, a framework that predicts temperatures should consider
these interactions.

4. ThermoCast FRAMEWORK
ThermoCast faces the unique challenge of modeling the interac-

tion between the computing and cooling systems. As we have seen
in Section 3, duty cycles of the CRAC system affect the amount of
cooling that the different rack sections receive and thus affect the
temperature at the servers’ intakes. Furthermore, turning a server
on or off affects its nearby servers and reaching a new equilibrium
can take as long as an hour.

4.1 Federated Modeling Architecture
The scale of mega data centers prevents us to use a centralized

approach for model building and prediction. It is hard to even visu-
alize tens of thousands of monitoring points on a screen. In Ther-
moCast, we use a federated modeling architecture that relies on
each server to model its own thermal environment and make pre-
dictions. Only when local predictions exceed certain thresholds,
the system draws the operators’ attention, accumulates more sensor
points, and possibly performs another tier of prediction and diag-
nosis.

The federated modeling architecture in ThermoCast takes advan-
tage of the physical properties of heat generation and propagation.
That is, heat diffuses locally and gradually following models of
thermo- and fluid dynamics. Although the model parameters can
be drastically different depending on the local configuration – rack
heights, server locations, server types, on/off states etc. – the model
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structure remains the same. Based on this insight, we use a “gray-
box” approach, in which the model is known but the parameters are
unknown, as opposed to “white-box” modeling using CFD, and a
completely data-driven “black-box” model such as neural network.

Server n 

Server n-1 

Server n+1 

Fan Speed Vfan 

T(n+1), in 

T(n-1), in 

T(n+1), out 

T(n-1), out 

Tn, in 
Tn, out T

... 
... 

Workload n 

Figure 5: The ThermoCast modeling framework. Circles cor-
respond to model variables, while the arrows indicate relation-
ships among these variables.

Another advantage of the federated architecture is that model
learning and prediction can be done in a distributed fashion. Fig-
ure 5 shows one section of the graphical model in ThermoCast.
First of all, time is discretized into ticks. At every time tick, with
step size ts, server n uses its own intake and exhaust air temper-
atures, the intake and exhaust air temperatures of its immediate
neighbor (n − 1 and n + 1), the air speed and temperature at the
AC vent, and its own workload to build a model that computes its
own intake and exhaust air temperature in the next time tick. The
variable dependencies capture the air flow in different directions,
as well as local heat generation.

Sensor data can be communicated efficiently in this architecture.
If a wireless sensor network is used for monitoring, then each sen-
sor only need to broadcast its value to the local neighbors. If the
sensors are on the server chassis, then the data only needs to go
through the local top-of-the-rack switch, rather than data center
level routers.

4.2 Thermal Modeling
We build a model based on first principles from thermodynamics

and fluid mechanics. While a comprehensive computational fluid
dynamics model (CFD) is often complex and computationally ex-
pensive, we exploit a zonal model for the thermo/air dynamics near
the server rack. The intuition is to divide the data center’s indoor
environment into a coarse grid of zones such that air and thermal
conditions can be considered uniform within each zone. We divide
the room into zones, as shown in Figure 6, and define the variables
shown in Table 1.

We make the following assumptions to simplify the model during
a prediction cycle:

A0: Incompressible air, which implies the density of air ρ is con-
stant. We ignore dynamic pressure due to height and tem-
perature differences, and care only about the Bernoulli effect
caused by high-speed airflow.

A1: TRM , the room temperature is constant in a short period of
time.

A2: TFL, the supply air temperature at the floor vent is constant
within a short period of time.

Zone F1 

Server SN 
Workload WN 

Server SN-1 
Workload WN-1 

Server SN-2 
Workload WN-2 

... 

Server S3 
Workload W3 

Server S1 
Workload W1 

Server S2 
Workload W2 

Zone FN 

Zone FN-1 

Zone FN-2 

Zone F3 

Zone F2 

... 

Zone BN 

Zone BN-1 

Zone BN-2 

Zone B3 

Zone B2 

Zone B1 

... 

Zone RM 

Zone FL 

Server S3
Workload W3

Server S

Server S1

Workload W2
U2 U2 

VF1 VB1 

VF2 

VF0 

VB2 

Figure 6: The zonal model for thermo dynamics around a rack.

A3: Constant server fan speed, thus UFi = UBi .

A4: The vertical air flow at the back of the server is negligible.

A5: The vertical air flow in the front scales linearly with the floor
vent speed, although the scaling factor depends on server
height and the on/off status of nearby servers. In other words
VFi = δiVFL, where δi is constant during a short period of
time.

We then model the following relationships between model vari-
ables.

Basic fluid dynamics: (Bernoulli’s principle):

P = −1

2
ρV̂ 2

(1)

where V̂ is the total air speed, i.e. V̂z
2
= U2

z +V 2
z . Thus, for zone

z

Pz = −1

2
ρ(U2

z + V 2
z ) (2)

Now consider server s with front zone Fs and back zone Bs. By
(2), and assumption [A4], VBs = 0

PFs − PBs =
ρ

2
(V 2

Bs
− V 2

Vs
) = −ρ

2
V 2
Fs

(3)

This pressure difference drives the hot air to flow from the hot
aisle to the cold aisle.

Basic thermodynamics:
Consider zone z ∈ {F1, ....FN} of air mass Mz and tempera-

ture Tz . During time interval [t, t+ ts], let Λi,z(t) be the air mass
flowing into z from zone i with temperature Ti(t), then

∑
i Λi,z(t)

is the air flowing out of zone z (due to mass conservation and as-
sumption about incompressible air [A0]) with temperature Tz(t):

Mz · Tz(t+ 1) = Mz · Tz(t) +
∑

i

(Λi,z(t) · Ti(t))

−(
∑

i

Λi,z(t)) · Tz(t) (4)

1374



Parameter Description
i = 1 · · ·N server index in the rack
Zone Fi area in front of the server i; close

enough to get the Bernoulli effect.
Zone Si area inside server i
Zone Bi area immediately behind server i; only

impacted by the heat generated by the server
Zone RM zone for the room ambient air
Zone FL zone below the vent
Tz temperature of zone z
Vz vertical airflow speed out of zone z
Uz horizontal airflow speed out of zone z
Pz dynamic air pressure in zone z, i.e. “measurable”

pressure minus atmospheric pressure
Ws Watts generated by server s, representing

its workload
ρ air density

Table 1: ThermoCast parameters and their description.

The air mass in exchange per unit time is proportional to air
speed. So,

Λi,z(t) = βi,z

√
(Pi(t)− Pz(t)) (5)

where βi,z captures air density (ρ) and all geometric characteris-
tics between i and z, such as gap size, server type, and server on/off
etc., i.e. how hard it is to push air from i to z.

So, by (4) and (5)

Tz(t+1) = (1−αz)·Tz(t)+
∑

i

(βi,z(Pi(t)−Pz(t))·Ti(t)) (6)

where αz captures the flowing out of the zone, including those
going into the server and those going up/down to the next zone.
Clearly, αz depends on height, fan speed, and server on/off.

Plugging in (3) and using assumption [A5], we derive the fol-
lowing structure of the local thermo-dynamics model:

Tz(t+ 1) = a · Tz(t)

+
∑

j∈{Bz−1,Bz ,Bz+1}
(βj · (Pz(t)− Pj(t)) · Tj(t))

+
∑

j∈{Fz−1,Fz+1}
(cj · VFL · Tj(t)) (7)

where parameters {a, βj’s, and cj’s} are server and location depen-
dent and are learned by each server through parameter estimation.

Including Workload For each server s, the workload Ws con-
verts into heat and effects the temperature at the back of the server.
So for zone Bs, we have:

TBs(t+ 1) = f1 · TBs(t) + f2 · TFs(t) +

f3 · Us(t) ·Ws(t) + f4 · TBs−1(t) (8)

When the server is on, the horizonal mass exchange from front
zone Fz to back zone Bz in Eq. (5) is dependent on the server’s fan
speed (= Uz). We also assume the interaction between the server’s
intake and its neighbor’s outtake is indirect, thus eliminating the
corresponding terms in Eq. (7). Therefore, with such reasoning
and the result of Eq (7), the workload dependent equation for intake

temperature becomes,

Tz(t+ 1) = a · TFi(t) + b1 · Ui(t) · TBi(t)

+ b2 · (1− Ui(t)) · TBi(t) + b3 · VFL(t) · TFi−1(t)

+ b4 · VFL(t) · TFi+1(t) (9)

4.3 Parameter Learning
For each server in the rack, there are a total of eleven parameters

in the above local model. To make things concrete, we use the no-
tation, θ = {a, b1, b2, b3, b4, c1, c2, f1, f2, f3, f4}. Let θ(i) be the

parameter set for server i, hence θ(−1), θ(0) and θ(1) correspond
to the server immediately below, the server itself, and the server
directly above. Note that in our framework, the current local server
does not know the temperatures and airflow status for neighbors
that are two or more slots away on the rack, hence the correspond-

ing parameters b
(−1)
3 , c

(−1)
2 and f

(−1)
4 are explicitly made 0.

Base model
To estimate the parameters, we optimize the following objective

function:

θ̂(i) ← argmin f(θ(i)) =

tmax−1∑

t=1

g(θ(i), t) (10)

where

g(θ(i), t) =
(
TFi(t+ 1)− a · TFi(t)− b1 · Ui(t) · TBi(t)

− b2 · (1− Ui(t)) · TBi(t)− b3 · VFL(t) · TFi−1(t)

− b4 · VFL(t) · TFi+1(t)
)2

+
(
TBi(t+ 1)− f1 · TBi(t)− f2 · TFi(t)

− f3 · Ui(t) ·Wi(t)− f4 · TBi−1(t)
)2

(11)

Given the available measurements of temperature, server on/off
status, workload, and floor vent air velocity, the objective function
is convex and there is a global optimal solution. The solution can be
obtained by minimizing the least square objective, i.e. by solving
∂f(θ(i))

∂θ(i)
= 0.

Proposed ThermoCast
The base model assign equal weights to the deviation of predic-

tion and observation at all time ticks. However, in reality, tem-
peratures can be more perturbed by temporal nearby events, e.g.
shutdown of the server. Intuitively, a good model should forget the
events or data in the distant age. In order to adaptively capture
changes in dynamics, our proposed ThermoCast assign different
weights for different time ticks, according to the temporal locality.
We propose to use the following exponentially weighted loss

θ̂(i) ← argmin fλ(θ
(i)) =

tmax−1∑

t=1

exp(λt)g(θ(i), t) (12)

where λ is the forgetting factor, which can be tuned either manually
or using cross-validation.

Again the solution of this optimization problem is obtained by

solving
∂fλ(θ(i))

∂θ(i)
= 0.

4.4 Prediction
In ThermoCast framework, the prediction component works as

follows. Based on the learning results, each server predicts its lo-
cal temperatures for the near future. The predictor uses a a past
window of size Tw for training and predicts Tp minutes into the
future.
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Note that due to the structure of the model from (9), the server’s
intake temperature depends on its own past intake and its neigh-
bors’ intake and outtake, as well as the workload on the server.
While the outtake temperature depends its intake, workload(fan sta-
tus) and its neighboring outtakes. On the other hand, the neighbors’
future environmental conditions (e.g. servers may shutdown) are
unknown during the prediction process. This is a main source of
prediction error and the reason that we cannot predict too far into
the future.

In order to run the model forward in time, we extrapolate the
neighbor’s intake and output temperatures. Furthermore, we need
the future floor air flow speed and temperatures. To this end, we use
a separate autoregressive (second order AR) to predict the future
floor vent air flow.

VFL(t+ 1) = η0 · VFL(t) + η1 · VFL(t− 1)

Where the parameters η0 and η1 are estimated using linear least
square.

Since AC is the main external stimulus to the system we build a
degenerate model for the bottom machine that depends only on the
vent airflow. (The vent temperature is assumed to be a constant.)
Using the same notation, the model for the bottom machine has the
structure:

T (t+ 1) =
∑

k={0,..m−1}
ak · T (t− k) + b′ · VFL(t) (13)

We introduce higher orders m in the regression to counterfeit un-
modeled factors such as the node’s neighbors. In practice, we found
m = 3 to be adequate. We use the method described in Section 4.3
to estimate these parameters as well.

With the predicted floor vent air speed and bottom server tem-
perature, it then straightforward to forecast the intake and outtake
temperatures using Eq. 9 and Eq. 8.

5. EVALUATION
We evaluate ThermoCast using real data traces, controlled exper-

iments, and trace driven simulations. In particular, we are interested
in answering the following questions:

• How accurately can a server learn its local thermal dynamics
for prediction?

• How much extra computing capacity can ThermoCast achieve
compared to other approaches under the same cooling cost?

For environmental data such as temperature distributions and air-
flow speed, we use the data collected from the university testbed, as
described in section 3. We use a total of 900 minutes of data traces,
during which the AC has both high and low duty cycles. The sam-
pling interval in the trace is 30 seconds. We choose one server at
the top of a rack, one in the middle and one at the bottom of the
rack to represent different server locations.

5.1 Model Quality
We are interested in how much historical training data a server

needs to keep in order to obtain a good enough local thermal model.
Obviously, less data means faster training speed, less storage, and
less communication among servers. We evaluate the model accu-
racy in terms of its prediction accuracy. In the experiments, we
choose a moving window Tw for training and prediction length Tp.

Figure 7 shows the prediction results in terms of Mean Square
Error (MSE) as a function of training data length (in minutes). We
can see that in general, the more data used the training, the more

Prediction length (minutes)
5 10 15 20

Tr
ai

ni
ng

le
ng

th
(m

in
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)

15 5.1 5.0 5.0 5.1
30 7.2 7.0 14.8 8.2
45 10.1 10.3 10.7 11.4
60 13.4 13.5 13.3 16.9
75 16.0 17.6 17.7 178.0
90 20.1 19.5 23.7 204.0

Table 2: Execution time (in milliseconds) for different training
and prediction time combinations.
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Figure 7: Forecasting error (MSE) of the thermal model as a
function of training data length. All predictions are made at
5 minutes away from training. ThermoCast produces consis-
tently lower error and is up to 2x better than the baseline AR
method.

accurate the model is. The shorter prediction length, the better ac-
curacy we can achieve. In fact, if we use 90 minutes of training
data and predict 5 minutes into the future, we can obtain very good
results. Figure 8(b) shows a time domain plot for one of the traces.

Table shows the computational overhead of prediction and learn-
ing on each server (Dual core 3.2GHz, 2G RAM, Win XP server).
As the data shows, the overhead is small.

5.2 Preventive Monitoring
We did experiments on the real data set to test the capability of

our model in case of thermal alarms. The major event of interest in
data center is occasional over heating of servers. These event can be
caused by a variety of factors such as insufficient cooling, blocking
of intake air, fan error, and over placement of workload. Our goal
is to exploit ThermoCast to continuously monitor and predict in
advance cases of overheating of the intake air. Since we are not
allowed to create actual overheating in a real data center, we use
real traces of temperature readings and set an artificial threshold
(=16). Any temperature higher than such a threshold will trigger
an alarm.

The test process works as follows. We first obtain a true labeled
trace by identifying “overheating” sections in the temperature se-
quences. Each section corresponds to a thermal event. In testing,
we use ThermoCast or the baseline to forecast the temperatures in
the future, and trigger alarms when such predicted temperature is
above the thermal threshold. We then calculate two sets of metrics
for both our model and the baseline, namely recall(R)/false alarm
rate(FAR) and mean look-ahead time(MAT). Recall and false alarm
rate are defined on all time ticks with or without alarms, using the
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Figure 8: A time domain trace for prediction quality using
ThermoCast. Tw = 90 minutes; all predictions are made at 5
minutes away from training. The baseline AR uses second or-
der auto-regressive model. ThermoCast: λ = 0.006. Thermo-
Cast intake temperature forecasts closely resemble the actual
observations. The spikes seen in the outtake temperature fore-
casts are due to change in CPU utilization (75% to 100%, and
100% to shutdown). Even though ThermoCast misses a few
time ticks in the beginning of these transition, ThermoCast can
adapt quickly as new observations become available.

Baseline ThermoCast

Recall 62.8% 71.4%

FAR 45% 43.1%

MAT 2.3min 4.2 min

Table 3: Alarm prediction performance. Better performance
corresponds to higher recall, lower false alarm rate (FAR), and
the larger Mean look-ahead time (MAT). Tmax = 16◦C.

following equation:

Recall =
#truealarms

#truealarms+#missedalarms

FAR =
#falsealarms

#truealarms+#falsealarms

Mean look-ahead time (MAT) is to estimate how much time in
advance the model can forecast future “overheating” events. It is
only measured for the sections when true alarm happens.

MAT =

∑K
i max{Δt|f(ti −Δt) > Tmax}

K

where ti is the starting time of i-th “overheating” section, Tmax

is the temperature threshold. f(ti − Δt) is temperature forecast
using all the data before ti −Δt as training and predicting in next
few minutes. The longer this time is, the better it predicts since it
allows sufficient reaction time.

Table 3 show the performance of the alarm prediction based
on our proposed ThermoCast and the baseline method. Note our
method achieves nearly 10% better recall and forecasts the alarms
twice earlier than the baseline approach.

5.3 Potential Capacity Gains
Better prediction implies better utilization of cooling capacity

under the same CRAC load. To evaluate the computing capacity
gain, we need to approximate the cooling effect of 1oC temperature
difference in intake temperature.

Our experimental servers are Dell PowerEdge 1950, with 300W
peak power consumption. According to its specification, “the air-
flow through the PE1950III without the added back pressure from
the doors is approximately 35 Cubic Feet Per Minute (CFM).” In [23],
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Figure 9: Mean look-ahead time(MAT) as a function of the
thermal threshold. Higher MAT values provide more time to
react. ThermoCast consistently outperforms the baseline AR
method.

Dell Inc. recommended the following rules for estimating cooling
capacity.

CFM = 1.78
Power (W)

Temperature Differences (◦C)
(14)

In other words, under 35 CFM, 1oC air flow can cool 20W of work-
load.

We compare predictive load placement with static profiling-based
workload placement decisions. We use 5-minute forecast length,
since it is long enough to change load balancer (or load skewer)
policies or migrating virtual machines.

Let’s assume that the profiling is tight. That is, we use the max-
imum measured temperature as the basis for profiling results and
compute the difference between the static profiling (16.5oC at the
intake) and prediction results. In both cases, we add a 10% safety
margin. With ThermoCast, we can operate the server at 13.75oC
on average, which leads to 53W computing power. That is, on av-
erage, the same server now can potentially take up to 53W more
workload without adding any additional cooling requirement.

Assume that the servers consume 200W on average, we gain ex-
tra 26% compute power with the same cooling. Note that we as-
sume that the 53W per server is moved from other places in the
data center to this server. So, the overall CRAC duty cycle is un-
changed. In other words, if the original PUE of the data center is
1.5 and there are enough work, then with ThermoCast, we can re-
duce the PUE to 1.4. If there are fixed amount of work, we can
achieve better workload consolidation and shut down more servers
from the whole data center perspective.

6. CONCLUSION
Data center temperature distribution and variations are compli-

cated, which make most workload placement methods shy away
from fine-graining thermal aware load scheduling. In this paper,
through dense instrumentation and a gray-box thermo-dynamics
model, we show that it is possible to predict servers’ thermal con-
dition in real time. The gray-box model is derived from a zonal
partition of space near each server. In comparison to CFD mod-
els, zonal models are simple to evaluate and robust to unmodeled
disturbances through parameter estimation.

To solve the scalability and coordination challenges, Thermo-
Cast uses a federated architecture to delegate model building and
parameter estimates to individual servers. Using predictions at each
server, workload can be consolidated to servers with access to extra
cooling capacity without changing CRAC setting.

This work is a building block towards a holistic data center load
management solution that takes into account both the dynamic vari-
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ation of workload and the responses of cooling system. We also
plan to investigate in the future the dynamic server provisioning al-
gorithm based on the local thermal effects due to turning servers
on/off.

7. REFERENCES
[1] C. Bash and G. Forman. Cool job allocation: measuring the

power savings of placing jobs at cooling-efficient locations
in the data center. In USENIX Annual Technical Conference,
2007.

[2] G. E. Box, G. M. Jenkins, and G. C. Reinsel. Time Series
Analysis: Forecasting and Control. Prentice Hall,
Englewood Cliffs, NJ, 3rd edition, 1994.

[3] P. J. Brockwell and R. A. Davis. Time Series: Theory and
Methods. Springer Verlag, New York, 1987.

[4] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and
F. Zhao. Energy-aware server provisioning and load
dispatching for connection-intensive internet services. In
NSDI, 2008.

[5] G. Craig. Introduction to Aerodynamics, volume 1.
Regenerative Press, Anderson, IN, 1st edition, 2003.

[6] E. Elektronik. EE575 Series - HVAC Miniature Air Velocity
Transmitter. Available at http://www.epluse.com/
uploads/tx_EplusEprDownloads/datasheet_
EE575_e_02.pdf.

[7] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databases. In SIGMOD,
pages 419–429, Minneapolis, MN, May 25-27 1994.

[8] D. Grunwald, C. B. Morrey, III, P. Levis, M. Neufeld, and
K. I. Farkas. Policies for dynamic clock scheduling. In OSDI,
2000.

[9] T. Heath, A. P. Centeno, P. George, L. Ramos, Y. Jaluria, and
R. Bianchini. Mercury and freon: temperature emulation and
management for server systems. In ASPLOS, 2006.

[10] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis,
P. Sharma, S. Banerjee, and N. McKeown. Elastictree:
Saving energy in data center networks. In NSDI, 2010.

[11] M. Jahangiri, D. Sacharidis, and C. Shahabi. Shift-split: I/o
efficient maintenance of wavelet-transformed
multidimensional data. In SIGMOD, pages 275–286, 2005.

[12] E. J. Keogh, K. Chakrabarti, S. Mehrotra, and M. J. Pazzani.
Locally adaptive dimensionality reduction for indexing large
time series databases. In SIGMOD, pages 151–162, 2001.

[13] J.-G. Lee, J. Han, and X. Li. Trajectory outlier detection: A
partition-and-detect framework. ICDE, pages 140–149, 2008.

[14] L. Li, J. McCann, N. Pollard, and C. Faloutsos. Dynammo:
Mining and summarization of coevolving sequences with
missing values. In KDD, New York, NY, USA, 2009. ACM.

[15] L. Li, B. A. Prakash, and C. Faloutsos. Parsimonious linear
fingerprinting for time series. In PVLDB, volume 3, pages
385–396, 2010.

[16] C.-J. M. Liang, J. Liu, L. Luo, A. Terzis, and F. Zhao.
RACNet: a high-fidelity data center sensing network. In
Sensys, pages 15–28, 2009.

[17] Liebert. Liebert Deluxe System/3 - Chilled Water - System
Design Manual. Available at
http://shared.liebert.com/
SharedDocuments/Manuals/sl_18110826.pdf,
2007.

[18] Liebert. Liebert Deluxe System/3 Precision Cooling System.
Available at

http://www.liebert.com/product_pages/
ProductDocumentation.aspx?id=13&hz=60,
2007.

[19] Liebert. Technical Note: Using EC Plug Fans to Improve
Energy Efficiency of Chilled Water Cooling Systems in
Large Data Centers. Available at http:
//shared.liebert.com/SharedDocuments/
White%20Papers/PlugFan_Low060608.pdf, 2008.

[20] J. Liu, B. Priyantha, F. Zhao, C.-J. M. Liang, Q. Wang, and
S. James. Towards discovering data center genome using
sensor net. In Proceedings of the 5th Workshop on Embedded
Networked Sensors (HotEmNets), 2008.

[21] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making
scheduling "cool": temperature-aware workload placement in
data centers. In USENIX Annual Technical Conference, 2005.

[22] J. Moore, J. S. Chase, and P. Ranganathan. Weatherman:
Automated, online and predictive thermal mapping and
management for data centers. In Proc. of the 2006 IEEE
International Conference on Autonomic Computing, 2006.

[23] D. Moss. Guidelines for assessing power and cooling
requirements in the data center. Available at
http://www.dell.com/downloads/global/
power/ps3q05-20050115-Moss.pdf, 2005.

[24] T. Mukherjee, A. Banerjee, G. Varsamopoulos, S. K. S.
Gupta, and S. Rungta. Spatio-temporal thermal-aware job
scheduling to minimize energy consumption in virtualized
heterogeneous data centers. Comput. Netw.,
53(17):2888–2904, 2009.

[25] C. Patel, C. Bash, R. Sharma, and R. Friedrich. Smart
cooling of data centers. In ASME Interpack, 2003.

[26] C. Patel, R. Sharma, C. Bash, and S. Graupner. Energy aware
grid: Global workload placement based on energy efficiency.
In ASME International Mechanical Engineering Congress
and R&D Expo, 2003.

[27] D. Patnaik, M. Marwah, R. Sharma, and N. Ramakrishnan.
Sustainable operation and management of data center
chillers using temporal data mining. In KDD, 2009.

[28] L. Ramos and R. Bianchini. C-Oracle: Predictive Thermal
Management for Data Centers. In HPCA, 2008.

[29] Sensirion. Datasheet SHT1x (SHT10, SHT11, SHT15) -
Humidity and Temperature Sensor. Available at
http://www.sensirion.com/en/pdf/product_
information/
Datasheet-humidity-sensor-SHT1x.pdf, 2010.

[30] K. R. Swalin. Evaluating microsoft hyper-v live migration
performance using ibm system x3650 m3 and ibm system
storage ds3400. Available at
ftp://public.dhe.ibm.com/common/ssi/ecm/
en/xsw03091usen/XSW03091USEN.PD, 2010.

[31] Q. Tang, S. K. S. Gupta, and G. Varsamopoulos.
Energy-efficient thermal-aware task scheduling for
homogeneous high-performance computing data centers: A
cyber-physical approach. IEEE Transactions on Parallel and
Distributed Systems, 19(11):1458–1472, 2008.

[32] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and
indexing of moving objects with unknown motion patterns.
In SIGMOD, pages 611–622, 2004.

[33] M. Zhao and R. Figueiredo. Experimental study of virtual
machine migration in support of reservation of cluster
resources. In 2nd International Workshop on Virtualization
Technology in Distributed Computing, 2007.

1378




