
Textual Allusions to Artifacts
in Software-related Repositories

Gina Venolia
Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA
http://research.microsoft.com/~ginav

gina.venolia@microsoft.com

ABSTRACT
Much of what is written about a software project is soon
forgotten. Software repositories are full of valuable information
about the project: Bug descriptions, check-in messages, email and
newsgroup archives, specifications, design documents, product
documentation, and product support logs contain a wealth of
information that can potentially help software developers resolve
crucial questions about the history, rationale, and future plans for
source code. For a variety of reasons, developers rarely turn to
these resources when trying to answer these questions. We are
building a full-text search that encompasses multiple repositories.
To effectively implement full-text search in the absence of
hyperlinks we propose detecting textual allusions to software
artifacts in natural-language prose. Allusions are shown to
contribute a significant portion of the relationships represented in
the graph.

Categories and Subject Descriptors
H.3.1 [Information storage and retrieval]: Content Analysis and
Indexing; H.3.3 [Information storage and retrieval]:
Information search and retrieval—Retrieval models; H.5.3
[Information interfaces and presentation]: Group and
Organization Interfaces—Computer-supported cooperative work;
K.6.3 [Management of computing and information systems]:
Software Management—Software development, Software
maintenance.

General Terms
Documentation, Experimentation, Human Factors.

Keywords
Software development, project memory, software artifacts, search.

1. INTRODUCTION
In a series of surveys and interviews at Microsoft, my team
learned that the most serious problem that software developers
face is “understanding the rationale behind a piece of code” [4].
It’s likely that this is a universal phenomenon, not limited to
Microsoft. There are vast information repositories—bug
descriptions, check-in messages, email and newsgroup archives,
specifications, design documents, product documentation, product
support logs, etc.—that have the potential to answer questions
about rationale, but we found that developers rarely access them.
Instead they examine the source code text and probe it in the
debugger, and if those fail, they typically initiate a face-to-face
conversation with the person they think will know the answer.
This investigation process, while often successful, costs precious
time and causes interruptions.
There are many good reasons for a developer to neglect the
electronic repositories when trying to understand code. The
developer does not know a priori whether a topic of interest is
addressed in any repository. Fast full-text search is not
implemented for all the repositories. Each repository has its own
search and browse tools, and there’s little consistency among
them. It may be difficult to formulate a full-text query for the
topic of interest, or to browse meaningfully for artifacts related to
it. It may be difficult to assess whether an artifact (found by
searching or browsing) is the last word on the topic or is
hopelessly out-of-date. Given these barriers it’s easy to
understand why developers choose to neglect the electronic
repositories.
To address these deficiencies developers need a good full-text
search tool that spans the relevant repositories. Modern full-text
search systems rely in part on link-analysis scoring algorithms,
such as PageRank [5] and HITS [3], which estimate each artifact’s
importance based on analysis of the hyperlinks among the
artifacts. Unfortunately hyperlinks are rare among software
artifacts. This paper presents an approach to simulating hyperlinks
by detecting textual allusions to software artifacts in the natural-
language prose that is already present in many software artifacts.

1.1 Related work
The Hipikat system [1] provides artifact-based search for code-
related artifacts. It combines structural relationships with
relationships found by a measure of textual similarity.
Team Tracks [2], a recommender system for methods in source
code, relies on implicit relationships discovered by aggregating

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

151

developers’ navigation patterns in code to compute its
recommendations.

2. REPRESENTING THE GRAPH
There are many types of software-related artifacts: source code
files, classes, methods, bugs, check-ins, emails, specs, etc. While
there are some common attributes across artifacts (e.g. a name, a
brief description, and a date that the artifact first came into
existence) each type may also have properties particular to it.
Likewise there are many types of relationships: member-of,
implements, mentions, addressed-to, etc. Together these
requirements suggest that an appropriate representation may be a
directed multi-graph where the nodes (representing the artifacts)
and arcs (relationships) are typed.
Each node and arc in the index has an identifier that may be
derived directly from its type and its identifying properties. In our
present implementation each node has an identifier, which is a
string composed of its type name and its identifying properties.
For example the bug #12345 in the AppBugs database might be
named “bug:appbugs:12345”. The utility of this identifier will be
covered in greater detail later in this section.
In the current implementation the nodes and arcs share a common
abstract base class, Entry, properties for a unique identifier for
the entry and the dates that the entry was created and deleted,
which may be unspecified. Artifacts, or nodes in the graph, are
represented by the abstract Item type, which derives from
Entry. It extends Entry with properties for the human-readable
name for the item, the string on which full-text search operates,
and a URL or command for opening a viewer on the actual artifact
(all are optional). Relationships, or arcs in the graph, are
represented by the abstract Link type, which derives from
Entry. It extends Entry with properties for the identifiers of
the endpoint items, and an optional estimate of the confidence in
the relationship.
The graph is represented in a persistent store called the index. The
index is expected to be very large, so it is expected to be deployed
as a shared resource. For these reasons the index is stored as a
database using Microsoft SQL Server 2005. Stored procedures
and web service APIs provide mechanisms for submitting,
fetching, and deleting entries and for executing queries and
retrieving results. Full-text search indexing is enabled for the
Item name and search text columns.

When an entry is submitted to the index, the index first checks
whether it already contains one with that identifier. If not then one
is created with the specified property values; otherwise any
newly-specified optional property values override the old ones.
(The rationale for this behavior will be explained in section 3.4.)
This infrastructure provides a generic base on which a rich index
of domain-specific information can be built.

3. PROVISIONING THE INDEX
An index is provisioned with artifacts and relationships from a
collection of information repositories, e.g. bug databases, source
code control system databases, email archives, etc. There are three
distinct categories of provisioning—source schema, file structure,
and textual allusions—discussed in the next three subsections.

3.1 Crawling the Source Schema
Each of the data sources has a unique programmatic interface,
requiring custom software we call a crawler. The crawler uses the
repository’s interface to query for new information, creates
instances of types derived from Item and Link to represent the
new information, and then submits the instances to the index. The
crawlers are run on a periodic basis, though in principle a crawler
could be run when notified of new data by the data source.
For example consider the source-schema entries created by a
crawler on a particular source code control system database. With
this particular source code control system, check-ins are
numbered sequentially. The crawler keeps a record of the last
crawled check-in. When it runs, it queries the repository for the
subsequent check-in numbers, and then iterates through each one,
requesting detailed information about it. An instance of
CheckInItem (i.e. the type derived from Item that represents a
check-in) is created, along with a DomainAccountItem to
represent the author, and an AuthorLink that connects the two
items. Then, for each file revision in the check-in, the crawler
created a RevisionItem, which is associated with the
CheckInItem using a ChangeLink. A file revision is
conceptually bound to a particular file path, so the crawler creates
items to represent file itself and the directory hierarchy above it,
associated with a chain of ContainsLink instances. The
consecutive revisions are linked—a RevisionItem
representing the previous revision is created and a NextLink
relating it to the present RevisionItem.

Our current implementation has crawlers for the source code
control system, the bug database, and email. In the future we
expect to implement crawlers for Active Directory (the company-
wide database that stores organization chart, email discussion list
membership, and security group membership), a file system
crawler, a website crawler, an RSS/Atom crawler for gathering
weblogs, and perhaps others.

3.2 Cracking Structured Files
Structured files are an important source of artifacts and
relationships in the index. Files occur many places in the
repositories, e.g. as an attachment to an email or bug, or stored in
a source code control system, file server, or web server. When a
file is encountered it its type is used to look up a cracker, a piece
of code that reads the file and produces items and links to
represent its contents. For example a source code file contains
useful structure, as does an XML file that controls a build process;
on the other hand a Microsoft Word document has structure, but
none that relates specifically to software-related artifacts.
The cracker “cracks open” the file and creates entries to represent
its structure. The C# cracker runs a compiler front-end and walks
the resulting abstract syntax tree to produce ClassTypeItem
instances, ImplementsLink relationships to other
ClassTypeItem instances, FieldMemberItem and
MethodMemberItem instances and ContainsLink instances
to associate them with the ClassTypeItem, etc. A build-file
cracker would associate the items representing various source files
with the item representing the binary output file.
Our current implementation has crackers for C/C++ files, which
create shallow structure, C# files, which creates deeper structure,
and any files for which an IFilter can be found (IFilter is public

152

interface for components that convert files to plain-text streams;
there are IFilters for dozens of file formats, including Microsoft
Word, Excel, and PowerPoint, and Adobe PDF), which creates no
structure but extracts a plain-text version of the file’s contents,
making it searchable and allowing it to be scanned for textual
allusions. In the future we expect to implement a deeper cracker
for C/C++, a cracker for Visual Studio project files, crackers for
binary files, and perhaps others.

3.3 Scanning for Textual Allusions
Any text that is presumed to be natural-language prose that a
crawler or cracker encounters is submitted to a battery of
scanners, which scan the text for textual allusions to software-
related artifacts and create entries to represent them. Each check-
in crawled by the source code control system crawler has a check-
in message which typically contains prose, as do comments in
C++ source code, emails, word processing documents, and web
pages. Each item type may contribute a scanner to the battery. We
currently implement several scanners:
EmailAddressItem: Email addresses, e.g. “foo@bar.com”,
recognized with a simple regular expression.
LocalLocationItem: Local file paths, e.g.
“C:\folder\foo.txt”, recognized with a simple regular expression.
UncLocationItem: Universal Naming Convention file paths,
e.g. “\\server\folder\foo.txt”, recognized with a simple regular
expression.
IdentifierItem: Uses a simple regular expression to find the
kinds of names that are often used for software-related artifacts,
e.g. “FooBar”, “foo_bar”, “foo123”, etc..
NumberItem: Uses a simple regular expression to find strings of
digits, e.g. “12345”, because software-related artifacts are often
numbered.
HttpLocationItem: While URLs are detected using a regular
expression, redirection can cause a single page to have multiple
URLs so the HttpLocationItem attempts to fetch any URL
found by the regular expression, and uses the final URL to create
the identifier.

BugItem: At Microsoft (and likely elsewhere), people use a wide
variety of wording to reference bugs (“bug 12345”, “resolves
12345”, “duplicate of 12345”, “fixes 12345, 23456, and 34567”,
etc.) the regular expression used by the BugItem scanner is
much more complex than the others. At Microsoft there are
hundreds of bug databases, with conflicting number spaces, so
more work must be done to resolve the reference to a specific
database. Most allusions to bugs rely on context to imply the
particular database. The current system resolves the ambiguity by
querying the index to find the bug database that’s most strongly
connected to the item that includes the scanned text. When a
candidate bug database is detected, the BugItem scanner queries
it for the specified bug number and then discards reference if the
bug don’t exist. (Note that we make no attempt to resolve vague
allusions like, “that bug we worked on yesterday”.)
For example, consider a hypothetical check-in message: “This
fixes bug 12345, which was an off-by-one error causing an array
scan to terminate before the end. It also caused that intermittent
problem reported by foo@bar.com.” The message contains a
reference to a bug and a reference to an email address. When the
BugItem scanner detects the bug reference, it creates an instance
of BugItem and an instance of MentionsLink associating it
with the present CheckInItem. The NumberItem scanner
also detects a reference to the number 12345, and therefore
instantiates a NumberItem instance and a MentionsLink. A
similar process happens with the EmailAddressItem scanner.
The other scanners are run but don’t detect any allusions. Thus
the knowledge casually coded into the check-in message is
normalized into data structures.
In the future we expect to implement scanners for build numbers,
knowledge base articles, domain account aliases, and method
names. Method names might be approached with a combination of
dictionary-based and regular expression techniques but both are
problematic because, at least in current work practice, people
often accidentally misspell identifiers and intentionally transform
them into plurals (-s) and gerunds (-ing).

3.4 More about Provisioning
The crawlers, crackers, and scanners work in concert to provision
the index with artifacts and relationships. They may be augmented
by other techniques. Text similarity, used by the Hipikat system
[1], could be applied to the index to create additional links, using
the Link confidence property to represent the degree of
similarity. Relationships between items discovered in navigation
history, used by the Team Tracks system [2], could be turned into
additional links (again using the confidence property), and indeed
be extended beyond methods to include other artifacts such as
bugs, emails, specs, URLs, etc. Simple rule-based approaches
could be used to associate check-ins with contemporaneous bug
actions by the same author. There may be other automated
techniques for provisioning the index. They would work
independently but the combined effect creates a richly-connected
graph of software-related artifacts. In addition to automated
techniques tools could allow the user to create items and
relationships, such as annotations, and user-specified keywords
that are automatically linked to the items that contain them.
Note that in several cases the crawlers, crackers, and scanners will
submit items that may already be in the index. For example the
bug database crawler may create a BugItem for bug 12345 and

Table 1: The number of items of each type, and their average
number of incident arcs.

Type Count Avg. Degree
SCCS* file revision 2,688,714 2
SCCS file 878,736 3
SCCS check-in 379,913 8
SCCS folder 243,756 5
Identifier 190,177 4
Number 148,498 4
Bug 93,554 6
Bug revision 49,731 12
Local file path 17,436 3
Email message 12,203 47
HTTP URL 11,377 6
Email conversation 8,292 2
Domain account 8,067 70
Server file path 3,823 2
Email address 266 43
SCCS database 17 22,493
Bug database 4 23,388

* Source code control system

153

the BugItem scanner may do the same. While the crawler has
detailed information about the bug, and may thus populate the
optional properties, the scanner knows only enough to create the
item’s identifier. To further complicate matters, either may
encounter the bug first. The semantics of submission described in
the section 2 allow the crawler and scanner (and any other
mechanisms that provision the index) to operate independently.

4. RESULTS
We have built an index based on some of the data sources related
to the development of the Microsoft Windows operating system.
Activity between July 1st, 2005 and January 31st, 2006 has been
gathered from eighteen source code control system databases one
bug database. (For this analysis the contents of the source code
control system file revisions were not gathered.) In addition, the
index includes about twelve thousand emails dating from 2005
from several internal build-related email discussion lists.
The index includes 4,734,565 items and 9,613,398 links of
various types (see Tables 1 and 2). (Note that each bug is
composed of a series of bug revisions, each representing a specific
action done to the bug: create, edit, resolve, close, etc.) While the
average node degree (i.e. the average number of edges incident to
the node) is 2.0, the distribution is highly skewed. The degree
varies greatly by the node type, as shown in the Avg. Degree
column of Table 1.
The links representing textual allusions are plentiful, comprising
19% of the links in the index. Table 3 categorizes the
MentionsLink instances in the index by the type of item in
which the allusion occurred and the type of item alluded to. (Note
that text associated with a bug is counted twice, once for the bug
revision and once for the bug itself; the Bug revision and Bug
columns in Table 3 should be interpreted accordingly.)

5. DISCUSSION AND CONCLUSION
This effort combines the traditional representation of structured
relationships with detection of textual allusions. These allusions
contribute a substantial portion of the relationships represented in
the index. Textual allusions are only one way to go beyond
structured relationships. Text similarity, explored in the Hipikat
project, and navigation paths, explored in the Team Tracks

project, and other techniques, may complement the structured and
allusive relationships.
The use of identifiers and the associated semantics of submitting
items to the index combine to support decoupling of the various
components contributing to the index. This is an important
property if the system is to be allowed to grow organically,
allowing new data sources to be added without much concern to
the prior or subsequent additions.
While this initial work suggests that the approach is promising,
there is a lot of work to do to evaluate whether it has benefits in
real-world usage of tools built on the index. Tools that employ the
index to deliver benefit to developers need to be fleshed out and
evaluated in lab-based and field studies. Once deployed, their
utility in helping developers understand the rationale behind code
will become clearer.
If such a system is useful for software developers and their
cohorts then it may be applicable to other knowledge work
environments.

6. REFERENCES
[1] Davor Čubranić, Gail C. Murphy, Janice Singer, Kellogg S.

Booth, “Hipikat: A Project Memory for Software
Development,” in IEEE Transactions on Software
Engineering 31(6), IEEE Computer Society, pp. 446-465,
June, 2005.

[2] Robert DeLine, Mary Czerwinski, and George Robertson,
“Easing Program Comprehension by Sharing Navigation
Data,” in Proc. VL/HCC’05, IEEE Computer Society, pp.
233-240, 2005.

[3] Jon Kleinberg, “Authoritative Sources in a Hyperlinked
Environment,” in J-ACM 46(5), pp. 604-622, 1999.

[4] Thomas D. LaToza, Gina Venolia, Robert DeLine,
“Maintaining Mental Models: A Study of Developer Work
Habits,” to appear in Proc. ICSE’06, ACM Press, 2006.

[5] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd, “The PageRank Citation Ranking: Bringing Order
to the Web,” Stanford Digital Libraries Working Paper,
1998.

Table 3: The number of textual allusions by type of the item in which they were found and
the type of item referred to.

 Mentioning Item Type
 SCCS check-in Email Bug revision Bug Total

Identifier 221,510 197,301 298,173 224,436 941,420
Number 309,403 209,630 89,139 66,431 674,603
Bug 81,680 20,440 3,563 1,826 107,509
HTTP URL 939 22,542 28,748 25,480 77,709
Local file path 495 35,729 10,164 6,458 52,846
Server file path 280 4,272 2,359 1,892 8,803M

en
tio

ne
d

Ite
m

 T
yp

e

Email address 21 773 241 207 1,242
 Total 614,328 490,687 432,387 326,730 1,864,132

Table 2: The number of links
of each type.

Type Count
Contains 5,578,988
Mentions 1,864,132
Next 1,590,770
Author 470,569
Recipient 49,118
Owner 43,683
Resolved-by 6,426
Closed-by 5,801
Reply 3,911

154

