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1 Introduction

These lectures are concerned with how we can formalize just what it is that a
static analysis computes about programs and how we might begin to formalize
the ways in which that information may be used in program transformation.

The most obvious reason for trying to formalize what a static analysis com-
putes is to be able to prove that it is sound : whenever the analysis reports
that a program P satisfies a property φ (` P : φ), then it really does do so
(|= P : φ).1 The approach we take is to this problem is semantic: we will de-
fine the meaning [[φ]] of each property φ in a way which is independent of the
analysis system or algorithm that is used to assign properties to programs. The
semantic approach should be contrasted with the common (at least in the case
of type systems) syntactic one. The syntactic approach, pioneered by Wright
and Felleisen [54], manages to avoid ever giving an independent interpretation
to program properties, relying instead on a form of subject reduction (preser-
vation and progress) to show that derivable properties behave well with respect
to small-step reductions in an operational semantics.

Where should we look for the meanings [[φ]] of properties? For simple prop-
erties,2 [[φ]] will be a set. We can either work directly with the syntax, taking
the interpretation of a property to be a set of programs, which is natural if we’re

1It is worth remarking that there are useful but unsound analyses. Bug-finding tools (such
as PREfix) perform static analyses but may be unsound in the sense that they generate both
false positives and false negatives. One would not wish to use such an analysis as the basis
of automated transformations in a compiler, but these tools only produce a report indicating
potential bugs – it is the programmer’s responsibility to decide whether, and if so how, to
transform the program. We will not (intentionally, at least) discuss unsound analyses here.

2We will see that not all properties are simple in this sense.
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going to define |= using an operational semantics, or go via a denotational se-
mantics in some mathematical space D, taking the interpretation of a property
to be a set of denotations (i.e. [[P ]] ∈ D, [[φ]] ⊆ D, and we then define |= P : φ
to mean [[P ]] ∈ [[φ]]).

Whether we base our reasoning on operational or denotational techniques,
however, there is a further important choice to be made: how extensional our
definition of [[φ]] should be. This is intimately connected with the use to which
we intend to put the information gathered by our analysis, and to our desire
to separate the meaning of properties from any specific syntactic system or
algorithm for inferring those properties of programs.

Analysis systems (at least, the implementable ones) are generally said to
compute safe approximations, since interesting properties of programs are un-
computable. In particular, the computed results of static analyses are not gen-
erally closed under contextual equivalence: we can have ` P : φ and P ∼ P ′,
but 6` P ′ : φ. In other words, the behaviour of the program analysis algo-
rithm depends on intensional, non-observable (from within the language) de-
tails of the source program, and this is essentially unavoidable if the analysis
is computable. But there is generally a whole range of possible “degrees of
extensionality” for the interpretations of properties. If our intent is to use the
results of the analysis to decide whether we can perform some transformation
f : programs → programs, then a plausible-looking3 chain of implications for
establishing correctness is

` P : φ =⇒ |= P : φ =⇒ P ∼ f(P )

Intuitively, we have flexibility in choosing the relative ‘lengths’ of the two arrows.
At one extreme, we could choose such a syntactic and intensional interpretation
of properties that |= P : φ ⇐⇒ ` P : φ holds (the analysis could then even
be claimed to be complete). At the other end of the scale, we could try to
define the properties in terms of the transformations we wish to perform: |= P :
φ ⇐⇒ P ∼ f(P ).4

One possible objection to either of these extremes is that they break the
problem down into rather unequal pieces: the interposition of the middle step
seems not to simplify the overall problem much. Another is that both ` and f
are very specific, referring to the syntax of a particular language, and also to a
particular analysis or transformation. Since there are many analyses that can
justify a particular transformation, and, indeed, many transformations that can
be justified by a given analysis, we’d like to define |= P : φ in a way which is
maximally reusable as well as intellectually satisfying.5

3We shall see that this is actually a bit too naive.
4‘This work suggests that the proposition associated with a program analysis can simply

be that “the optimization works.” ’ [51].
5This point seems embarassingly subjective and non-scientific, but I’ll try to make it any-

way. Proofs about programming languages rarely establish theorems the truth or falsity of
which has direct practical significance. We do them to gain sufficient insight and understand-
ing to find, fix and avoid bugs in real artifacts about which we cannot reason fully formally,
and to be able to design better artifacts, such as more efficient, accurate, expressive or useful
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Correctness proofs for analyses, especially for imperative programs, have
traditionally tended to use interpretations of properties which lie towards the
intensional end of the scale. Typically, one defines an instrumented semantics
that tracks extra information about how computations execute (e.g. which vari-
ables have been read or written), beyond that which would appear in a standard
semantics for the language. Whether the instrumented semantics is presented
operationally (e.g. [38, 48], amongst many others) or denotationally (e.g. [34]),
there is something slightly unsatisfactory about this approach (which is closely
related to the syntactic approach to type soundness). Of course, some analy-
ses are clearly intended to compute non-extensional properties (e.g. relating to
time or space usage) and the interpretations of those properties must be rela-
tive to a semantics that makes those aspects of computation explicit.6 But for
analyses which are going to be used to justify the actual legality of a trans-
formation, it seems that sufficient preconditions for the transformation should
be expressible in terms of a standard extensional semantics for the language on
which we perform the transformation (which may be a compiler intermediate
language). If the source and the target are indeed observationally equivalent,
then we should be able to explain why without messing about with the semantics
we first thought of.

As a facetious example of the difference between the intensional and exten-
sional approaches, consider why the following transformation is correct:

X := 7; X := 7;
Y := Y+1; ==> Y := Y+1;
Z := X; Z := 7;

The extensional answer is “when X is evaluated on the last line, its value will
always be 7”. The intensional answer is something like “the only definition of
X which reaches its use on line 3 is the one on line 1, and the right hand side of
that definition does not contain any variable which is assigned to in lines 1 or
2”. This may well be an accurate account of how an algorithm works, but it is
not a good basis for thinking about what it establishes. Things get even worse
if we consider a sequence like

X := 7; X := 7; X := 7;
Y := Y+1; ==> Y := Y+1; ==> Y := Y+1;
X := 7; X := 7;
Z := X; Z := 7; Z := 7;

After the first transformation, the intensional justification for the change to line
4 refers to the definition of X on line 3. But after the second transformation, that
definition has gone, which complicates proving the correctness of the combined
transformation. Problems of this sort occur both in real compilers (keeping

analyses and transformations. The shortest path to ‘QED’ may not be the most informative,
or useful in suggesting a better theorem.

6Importantly, this includes analyses or heuristics for profitability, used to decide whether
there is likely to be a benefit in performing some legal transformation.
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analysis results sound during transformations is notoriously tricky) and in proofs
(see for example the discussion of interference between ‘forward’ analyses and
‘backward’ transformation patterns in [31]).

There are a number of possible advantages from avoiding instrumentation
in formulating the soundness of analyses:

1. Different analyses are all interpreted relative to the same semantics rather
than each requiring their own ad hoc extension.

2. We’re in a much better position to reason about transformations. An
instrumented semantics, because it tracks extra intensional information,
will have a weaker equational theory than the source language.

3. We gain much more independence from the arbitrary syntactic details of
analysis systems. The same extensional interpretation of properties should
work for analyses that differ in precision.

4. We gain a deeper understanding.

But neither will we here go to the other extreme of just defining |= P : φ di-
rectly in terms of transformations.7 Instead, we’ll try to define the meanings of
analyses extensionally, in terms either of a standard non-instrumented computa-
tionally adequate denotatational semantics (or, operationally, using sets of pro-
grams that are closed under observational equivalence). I believe this position
on our intensionality scale seems to be maximally informative and maximally
reusable, leading to interpretations of program properties that are useful both
for many analyses and many applications.

We will abstract away from algorithmic details of analyses by presenting
them declaratively, using type-like inference systems. We will also ignore the
difficult question of how one decides, or specifies formally, exactly how one
wishes transform a program after analysis: we merely give inference systems
that define a set of programs, each of which is equivalent to the original one
given the results of the analysis.

Our basic approach is applicable to many different sorts of analysis, and for
different styles of programming language. In Section 2 we consider the sound-
ness of strictness analysis for a pure, higher-order, call-by-name language. In
Section 3 we consider the semantics of classical dataflow analyses for imperative
programs, and the soundness of the transformations they enable. Finally, in
Section 4, we give a denotational semantics to a simple effect analysis for an
impure, higher-order, call-by-value language and show how it enables program
transformations.

7Though this is actually rather a promising idea. A nice paper by Führmann [19] suggests
that, removing the dependency on a particular complex transformation f by instead looking at
allowable patterns of local rewrites (e.g. which computations can be duplicated, discarded or
commuted in which contexts), it may be possible to develop an elegant and general algebraic
approach to the meanings of analyses.
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2 Strictness Analysis

The problem of how to justify transforming call-by-name (CBN) into call-by-
value (CBV) has been studied by (arguably far too) many researchers, starting
with Mycroft’s work in 1980 [35] right up to the present [44]. It’s not been a
hot research topic for a decade or so, but still provides a nice case study. The
material in this section is based on [16, 15], closely related work may be found
in [26, 25].

Languages such as Haskell have a CBN semantics. In particular, this means
that the operational behaviour of function application is specified (using big-step
style) by a rule like

M [N/x] ⇓ V

(λx.M)N ⇓ V
Understood naively, this looks to be expensive, since it makes multiple copies of
N , many of which may be evaluated during the evaluation of M [N/x]. In the
absence of side-effects in the language, however, each of these evaluations will
yield equivalent results, so there is a uniformly applicable (i.e. not dependent
on any static analysis) optimization one can perform (at a lower level than the
source language), called lazy or call-by-need parameter passing, that implements
function calls by passing arguments as self-updating thunks. If the evaluation of
M requires the value of x, the thunk forN is evaluated, which not only computes
a value V ′, but also overwrites itself with that value, so subsequent evaluations
of x will yield V ′ immediately. As the replacement of call-by-name with call-
by-need is not based on a program analysis, we will not discuss it further here8

except to note that it is still more expensive than CBV evaluation. Creating
thunks to delay the evaluation of arguments has a cost, as does the code for
forcing them (which may involve an indirection or a test to check if the thunk
has already been evaluated) and the extra work involved in doing the updates.
But just using CBV evaluation:

N ⇓ V ′ M [V ′/x] ⇓ V

(λx.M)N ⇓ V

in place of CBN will change the observable behaviour of programs. If the eval-
uation of M does not require the value of x (for example, if there are no free
occurrences of x in M) then N will not be evaluated at all under CBN, but will
be evaluated under CBV. So if Ω is a divergent term, then a program such as
(λx.3)Ω will diverge under CBV but converge under CBN.

So we would like to selectively replace CBN with CBV, i.e. to compile some
applications (and possibly function definitions) to use CBV and some to use
CBN. When is this safe? If one thinks intensionally, then the above discussion

8Though its correctness is still non-trivial to show, and it gives a clear demonstration
that the shape of derivations in a natural operational semantics one might use for specifying a
language can bear a decidedly non-trivial relation to execution steps in a real implementation,
which is a good reason not to take them too seriously when formalizing analyses if one wishes
the theorems to apply to actual implementations.
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leads one towards the answer “when one can detect that the evaluation of the
function body will always require its argument”. Several researchers (e.g. [55])
have developed neededness analyses, which can detect this property, and even
related it to relevance logics [7]. But neededness is a very intensional prop-
erty, the formalization of which involves a detailed syntactic analysis of the fine
structure of reduction (labelling subterms and tracking those labels through the
operational semantics, which is a form of instrumentation). Furthermore, need-
edness is (at least, if formalized naively) unduly conservative as a precondition
for our transformation. For example, the function

λb.λn.if b then n+ 1 else Ω

does not need (always evaluate) its second argument, n, yet it is always safe
to pass that argument by value: even if the argument diverges and the func-
tion wouldn’t have tried to evaluate it, the function body would have diverged
anyway. This observation leads us to reformulate the precondition for the trans-
formation as “when one can detect that the function diverges whenever the ar-
gument diverges”. This property, strictness, is strictly weaker than neededness
(so is true of more programs) and, crucially, is extensional: it is defined entirely
in terms of the observable input/output behaviour of functions. Thus, even if
we had an analysis that only detected neededness, giving it a semantics in terms
of strictness is likely to be neater and more tractable. Of course, once we’ve
realised that strictness is the more general property, we would probably rather
have a more powerful analysis that looks directly for strictness.

We now give a more detailed account of a strictness analysis and how we may
formulate its meaning and correctness using a standard denotational semantics.

2.1 The Λ Language

Our language, Λ, is a simply-typed CBN functional programming language, like
Plotkin’s PCF [39]. This is all entirely standard, but the next two sections
briefly recall the syntax, type rules, operational semantics and denotational
semantics of Λ to fix notation.

The types of the language are

A,B ::= int | bool | A→ B

the terms are

M,N ::= x | n | b |M +N |M = N | if M then N1 else N2 |
λx : A.M |M N | rec(x : A,M)

where x ranges over some set of variables, b and n range over booleans and
integers, respectively, + and = are representative arithmetic and comparison
operators. The type rules are standard, and shown in Figure 1.
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Γ, x : A ` x : A Γ ` n : int Γ ` b : bool

Γ `M : int Γ ` N : int

Γ `M +N : int

Γ `M : int Γ ` N : int

Γ `M = N : bool

Γ `M : bool Γ ` N1 : A Γ ` N2 : A

Γ ` if M then N1 else N2 : A

Γ, x : A `M : A

Γ ` rec(x : A,M) : A

Γ, x : A `M : B

Γ ` λx : A.M : A→ B

Γ `M : A→ B Γ ` N : A

M N : B

Figure 1: Types for Λ

V ⇓ V

M ⇓ m N ⇓ n

M +N ⇓ m+ n

M ⇓ m N ⇓ n

M = N ⇓ m = n

M ⇓ true N1 ⇓ V

if M then N1 else N2 ⇓ V

M ⇓ false N2 ⇓ V

if M then N1 else N2 ⇓ V

M ⇓ λx : A.M ′ M ′[N/x] ⇓ V

M N ⇓ V

M [rec(x : A,M)/x] ⇓ V

rec(x : A,M) ⇓ V

Figure 2: Operational semantics of Λ

2.2 Semantics

We define the values, V , to be a subset of terms:

V ::= n | b | λx : A.M

and define the operational semantics of Λ by a big-step natural semantics relat-
ing closed (having no free variables) terms to closed values as shown in Figure 2.
We define a context C[·] ∈ (Γ, A)> to be a ‘term with a hole in’, such that when-
ever Γ ` M : A, C[M ] is a closed term of ground (i.e. int or bool) type. We
define contextual equivalence, ∼, by

Γ `M1 ∼M2 : A ⇐⇒ Γ `M1 : A
∧ Γ `M2 : A
∧ ∀C[·] ∈ (Γ, A)>.C[M1] ⇓ ⇐⇒ C[M2] ⇓

Note that we only observe termination at ground type.
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A denotational semantics for Λ may be given in the category of ω-cpos and
continuous maps. Recall that the objectsD of this category are partially ordered
sets (|D|,v) that have least upper bounds

⊔
di for all ω-indexed ascending

chains d0 v d1 v d2 v . . . The morphisms are functions between the underlying
sets that are monotonic (preserve the order relation) and preserve least upper
bounds of chains. The category is cartesian closed: products are given by the
product of the underlying sets with the pointwise order, whilst the exponential
A⇒ B is the set of continuous functions A→ B with the order inherited from
the codomain. We say D is pointed if it has a least element ⊥D. If D is pointed
then any morphism f : D → D has a least fixed point, fix(f) ∈ D, given by
fix(f) =

⊔
i∈ω f

i(⊥D). There is a lift monad (·)⊥ which adds a least element
to a cpo: |D⊥| is {dde|d ∈ D} ∪ {⊥} and the order relation is the obvious one
from D extended with ⊥ v dde for all d ∈ D.

The interpretation [[A]] of each type A as a cpo is given inductively:

[[int]] = Z⊥
[[bool]] = B⊥

[[A→ B]] = [[A]] ⇒ [[B]]

and if Γ = x1 : A1, . . . , xn : An then [[Γ]] = [[A1]]× · · · × [[An]]. (Note that these
cpos are all pointed.)

If Γ `M : A then we define [[Γ `M : A]] : [[Γ]] → [[A]] by induction as shown
in Figure 3. We should really state and prove a few lemmas about weaking,
substitution, etc. and verify that the semantics we’ve presented really is well-
defined, but we omit those standard details here.

The important result about the relationship between the operational and de-
notational semantics is the following, which is established using a logical relation
between syntax and semantics [15, 53]:

Theorem 1 (Adequacy). If [[Γ `M1 : A]] = [[Γ `M2 : A]] then Γ `M1 ∼M2 :
A.

In other words, equality of denotations implies contextual equivalence. The
converse, full abstraction, does not hold for this semantics because of the pres-
ence of non-sequential functions in the model [39].

2.3 Strictness Logic

We will define a strictness analysis by giving a logic that refines the existing type
system of Λ. For each type A, we define a set of propositions LA as follows:

tA ∈ LA fA ∈ LA

φ ∈ LA ψ ∈ LB

φ→ ψ ∈ LA→B

φ ∈ LA ψ ∈ LA

φ ∧ ψ ∈ LA
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[[x1 : A1, . . . , xn : An ` xi : Ai]] ρ = πi(ρ)

[[Γ ` n : int]] ρ = dne

[[Γ ` b : bool]] ρ = dbe

[[Γ `M +N : int]] ρ =

 dm+ ne if [[Γ `M : int]] ρ = dme
and [[Γ ` N : int]] ρ = dne

⊥ otherwise

[[Γ `M = N : bool]] ρ =

 dm = ne if [[Γ `M : int]] ρ = dme
and [[Γ ` N : int]] ρ = dne

⊥ otherwise

[[Γ ` if M then N1 else N2 : A]] ρ

=

 [[Γ ` N1 : A]] ρ if [[Γ `M : bool]] ρ = dtruee
[[Γ ` N2 : A]] ρ if [[Γ `M : bool]] ρ = dfalsee
⊥ otherwise

[[Γ ` λx : A.M : A→ B]] ρ = λd ∈ [[A]].[[Γ, x : A `M : B]] (ρ, d)

[[Γ ` rec(x : A,M) : A]]ρ = fix(λd ∈ [[A]]. [[Γ, x : A `M : A]] (ρ, d))

Figure 3: Denotational Semantics of Λ

and we define an entailment preorder ≤A⊆ LA ×LA as shown in Figure 4. We
now define a refined type X to be a pair (A,φ) where φ ∈ LA and a refined
context Θ to be a finite map from variables to refined types. We will abbreviate
(A,φ) to φA, and if Γ = x1 : A1, . . . , xn : An then ΘΓ ranges over refined
contexts of the form x1 : (A1, φ1), . . . , xn : (An, φn). Our program logic, or
refined type system, for strictness analysis is shown in Figure 5.

The intuition is that the property fA will abstract divergent terms of type
A, whereas t represents all terms of type A (‘don’t know’). Thus, for example,
given some ` M : int → int, if we can derive ` M : fint → fint in the
strictness logic, we will be able to deduce that M is strict. We will make this
intended interpretation precise by giving a semantics to strictness properties as
subsets of the cpos used in the denotational semantics of Λ. We will then prove
soundness by showing that if the judgement that a term has a certain property
is derivable, then the denotation of that term is indeed an element of the the
denotation of the property.
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φ ∈ LA

fA ≤A φ

φ ∈ LA

φ ≤A tA

φ ∈ LA

φ ≤A φ

φ ∈ LA ψ ∈ LA

φ ∧ ψ ≤A φ

φ ∈ LA ψ ∈ LA

φ ∧ ψ ≤A ψ

φ ≤A ψ φ ≤A χ

φ ≤A χ

φ ≤A ψ1 φ ≤A ψ2

φ ≤A ψ1 ∧ ψ2

φ′ ≤A φ ψ ≤B ψ′

(φ→ ψ) ≤A→B (φ′ → ψ′)

tA→B ≤A→B (tA → tB) tA → fB ≤A→B fA→B

φ ∈ LA ψ1 ∈ LB ψ2 ∈ LB

(φ→ ψ1) ∧ (φ→ ψ2) ≤A→B (φ→ ψ1 ∧ ψ2)

Figure 4: Strictness Logic Entailment

We define the semantics of extended types as follows:

[[(A,φ)]] ⊆ [[A]]
[[(A, tA)]] = [[A]]
[[(A, fA)]] = {⊥[[A]]}

[[(A,φ ∧ ψ) = [[(A,φ)]] ∩ [[(A,ψ)]]
[[(A→ B,φ→ ψ)]] = {f ∈ [[A→ B]] | ∀a ∈ [[(A,φ)]]. f(a) ∈ [[(B,ψ)]]}

and then define [[ΘΓ]] ⊆ [[Γ]] in the natural pointwise manner:

[[x1 : (A1, φ1), . . . xn : (An, φn)]] = [[(A1, φ1)]]× · · · × [[(An, φn)]]

Lemma 1. For any well formed extended type (A,φ), [[(A,φ)]] is an ideal (a
non-empty, Scott-closed subset) of [[A]]. That is:

1. ⊥[[A]] ∈ [[(A,φ)]].

2. [[(A,φ)]] is down-closed. If a ∈ [[(A,φ)]] and a′ v a then a′ ∈ [[(A,φ)]].

3. [[(A,φ)]] is closed under limits of chains. If a0 v a1 v . . . is a chain in
[[A]] such that ai ∈ [[(A,φ)]] for all i, then

⊔
i ai ∈ [[(A,φ)]].

A simple induction, using entirely set-theoretic reasoning, established the
soundness of the entailment rules shown in Figure 4:

Lemma 2. If φ ≤A ψ is derivable then [[(A,φ)]] ⊆ [[(A,ψ)]].
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Θ, x : φA ` x : φA Θ ` n : tint Θ ` b : tbool

Θ `M : fint Θ ` N : φint

Θ `M +N : fint
Θ `M : φint Θ ` N : fint

Θ `M +N : fint

Θ `M : fint Θ ` N : φint

Θ `M = N : fbool
Θ `M : φint Θ ` N : fint

Θ `M = N : fbool

Θ `M : tint Θ ` N : tint

Θ `M +N : tint
Θ `M : tint Θ ` N : tint

Θ `M = N : tbool

Θ `M : fbool Θ ` N1 : tA Θ ` N2 : tA

Θ ` if M then N1 else N2 : fA

Θ `M : tbool Θ ` N1 : φA Θ ` N2 : φA

Θ ` if M then N1 else N2 : φA

Θ, x : φA `M : φA

Θ ` rec(x : A,M) : φA

Θ, x : φA `M : ψB

Θ ` (λx : A.M) : (φ→ ψ)A→B

Θ `M : (φ→ ψ)A→B Θ ` N : φA

Θ `M N : ψB

Θ `M : φA φ ≤A ψ

Θ `M : ψA

Θ `M : φA Θ `M : ψA

Θ `M : (φ ∧ ψ)A

Figure 5: Strictness Logic

and, although we don’t need this for soundness, we note that our axiomati-
sation of entailment is actually complete:

Lemma 3. If φ, ψ ∈ LA and [[(A,φ)]] ⊆ [[(A,ψ)]] then φ ≤A ψ.

Soundness of the program logic is then an induction on the rules in Figure 5:

Theorem 2. If ΘΓ `M : (A,φ) and ρ ∈ [[ΘΓ]] then [[Γ `M : A]] ρ ∈ [[(A,φ)]].

The proof of Theorem 2 makes use of Lemma 1 to establish the correctness
of the rule for recursion (ideals are admissible subsets).

So the strictness logic correctly lets us derive strictness-related facts about
the denotations of terms. For example:

• If `M : fint → fint then [[M ]] is strict.

• If `M : tint → fint then [[M ]] is the constant ⊥ function.
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• If ` M : tint → fint → fint then [[M ]] is a curried function that is strict
in its second argument.

• If `M : fint → fint → fint then [[M ]] is jointly strict in its two arguments.

• If `M : (tint → fint → fint)∧ (fint → tint → fint) then [[M ]] is a curried
function that is strict in both its arguments.

• If ` M : (fint → fint) → (fint → fint) then [[M ]] is a higher-order
function mapping strict functions to strict functions.

• If ` M : (fint → fint) → fint then [[M ]] is a higher order function that
returns ⊥ when given a strict argument.

• etc.

The reader may enjoy seeing what Theorems 1 and 2 imply about the soundness
of the logic in operational terms – it turns out that we have actually generalized
the naive operational notion of strictness we had at the start of the section.

Unfortunately, there still seems to be no entirely satisfactory formalization
of, let alone correctness proof for, the ways in which one may use the results of
this kind of higher-order strictness analysis in program transformation, though
simpler neededness-based transformations have been shown sound [5, 8], and
there is at least one other serious attempt to explain the use of strictness infor-
mation in compilation [37].

3 Analyses and Transformations for Simple Im-
perative Programs

The fact that strictness-based transformations haven’t been nicely formalized
and proved correct is slightly embarrassing. In fact, there has been compara-
tively little serious work on justifying any analysis-based program transforma-
tions, even though many analyses have been proved correct in isolation. That’s
because it’s a hard problem. Much of the work which has been done on proving
transformations is from the group at Northeastern [51, 46, 50, 49] led by Mitch
Wand, who says, for example [51],

The goal of (flow) analysis is to annotate a program with certain
propositions about the behavior of that program. One can then ap-
ply optimizations to the program that are justified by those propo-
sitions. However, it has proven remarkably difficult to specify the
semantics of those propositions in a way that justifies the resulting
optimizations.

Similar observations have been made by many other researchers.9

9I believe this has bad effects in practice. It’s not so much that real optimizing compilers
perform unsound transformations (though that is certainly a real problem), but that the use
they make of expensively-gathered information is rather conservative.
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In this section, based on [9, 11], we will formalize and show the correctness
of some very simple analyses and associated transformations for imperative
programs. One interesting feature is that these kinds of analyses are usually
presented in a very intensional way indeed, for example

An assignment [x := a]l may reach a certain program point if there
is an execution of the program where x was last assigned a value at
l when the program point is reached.

Nevertheless, we will show that it is possible to express what it is that such
analyses compute, as opposed to how they compute it, in terms of an extensional
semantics.

The second notable feature is that we move beyond a simple interpretation
of properties as sets, to a semantics in which properties are binary relations.
Typed lambda calculi are routinely presented using judgements of the form

Γ `M = M ′ : A

which does not assert “under assumptions Γ, M equals M ′ and they both have
type A”, but rather “under assumptions Γ, M and M ′ are equal at type A”.
Such calculi can be modelled by interpreting types as partial equivalence re-
lations over some untyped universe such as D∞. Many program analyses are
presented as non-standard type systems, and partial equivalence relations have
been used to give semantics to these non-standard types (equivalently, elements
of abstract domains), at least in the cases of binding-time [24] and security anal-
yses [43]. However, even in those cases, the emphasis has been on simple typing
judgements rather than equational reasoning. Our approach is to treat all ab-
stract properties as relations, including those which have naive interpretations
as predicates (e.g. ‘X is 5’), and to present transformations by giving rules for
deriving (non-standard) typed equations in context.

3.1 The Language of while-Programs

The syntax and denotational semantics of the language of while-programs are
entirely standard (see, e.g. [53]). To fix notation, they are briefly summarized
in Figure 6. We sometimes use Fτ as a metavariable ranging over τ exp where
τ ∈ {int, bool}.

The denotational semantics is given in the same category of ω-complete
partial orders that we used for Λ. We write (·)∗ : (D → D′

⊥) → (D⊥ → D′
⊥)

for the Kleisli extension operation of the lift monad. When R ⊆ D ×D, R⊥ ⊆
D⊥ ×D⊥ is the relation defined by

R⊥ = {(dxe, dye) | (x, y) ∈ R} ∪ {(⊥,⊥)}

If f : D → E, x ∈ D and y ∈ E then we define f [x 7→ y] : D → E in the usual
way:

(f [x 7→ y])(z) =
{
y if z = x
f(z) otherwise

13



Syntax

X ∈ V = {X, Y, . . .}
n ∈ Z b ∈ B = {true, false}
iop ∈ {+,×,−, . . .} ⊆ Z× Z → Z
bop ∈ {<,=, . . .} ⊆ Z× Z → B
lop ∈ {∨,∧, . . .} ⊆ B× B → B

int exp 3 E := n | X | E iop E

bool exp 3 B := b | E bop E | not B | B lop B

com 3 C := skip | X:=E | C;C | if B then C else C | while B do C

Denotational Semantics

S ∈ S = V → Z
[[E]] ∈ S → [[int]] = S → Z

[[n]]S = n
[[X]]S = S(X)

[[E1 iop E2]]S = ([[E1]]S) iop ([[E2]]S)

[[B]] ∈ S → [[bool]] = S → B
[[b]]S = b

[[E1 bop E2]]S = ([[E1]]S) bop ([[E2]]S)
[[B1 lop B2]]S = ([[B1]]S) lop ([[B2]]S)

[[notB]]S = ¬([[B]]S)

[[C]] ∈ S → S⊥
[[skip]] = λS.dSe

[[X:=E]] = λS.dS[X 7→ [[E]]S]e
[[C1;C2]] = [[C2]]∗ ◦ [[C1]]

[[if B then C1 else C2]] = λS.[[B]]S =⇒ [[C1]]S | [[C2]]S
[[while B do C]] = fix f.λS.[[B]]S =⇒ f∗([[C]]S) | dSe

Figure 6: Syntax and Semantics of while Programs

14



The denotational semantics is fully abstract with respect to the obvious opera-
tional semantics and definition of observational equivalence.

If X is a set, a binary relation R ⊆ X ×X is a partial equivalence relation
(PER) if it is symmetric and transitive. A relation on the carrier of a pointed ω-
cpo D is admissible if (⊥,⊥) ∈ R and for all ascending chains 〈di〉 and 〈d′i〉 with
(di, d

′
i) ∈ R, we have (tidi,tid

′
i) ∈ R. If R is a relation on a set X, then R⊥ is

an admissible relation on the flat cpo X⊥ and is a PER if R is. The set of PERs
on a set is closed under arbitrary intersections and disjoint unions. The set
of admissible relations on a pointed cpo is closed under arbitrary intersections
and finite unions. If R and S are relation on predomains D and E respectively,
we write R ⇒ S for the relation on the function space D → E defined by
(f, g) ∈ R⇒ S iff ∀(x, y) ∈ R.(fx, gy) ∈ S. This is a PER if R and S are. If E
is pointed and S is admissible, then R⇒ S is admissible.

3.2 Dependency, Dead Code and Constants

In this section we present DDCC, a simple analysis and transformation system
for while-programs which tracks dependency and constancy information, en-
abling optimizations such as constant-folding and dead-code elimination. As in-
dicated in the introduction, the system is presented as a non-standard type sys-
tem for deriving typed equalities between expressions and between commands.

3.2.1 DDCC Syntax and Semantics

Formulae We begin by defining the syntax of some non-standard types for
expressions. For τ ∈ {int, bool}, c ∈ [[τ ]]:

φτ := Fτ | {c}τ | ∆τ | Tτ

Intuitively, {c}τ is the type of τ -expressions equal to the constant c, ∆τ is the
type of τ -expressions whose value we do not know, whilst Tτ is the type of τ -
expressions whose value we do not care about. Fτ is an empty expression type,
which we have included for completeness.10 Semantically, the denotation of φτ

is a binary relation on [[τ ]]:

[[Fτ ]] = ∅
[[{c}τ ]] = {(c, c)}
[[∆τ ]] = {(x, x) | x ∈ [[τ ]]}
[[Tτ ]] = [[τ ]]× [[τ ]]

Types for states are then finite maps from variables to types for int exps,
written as lists with the usual conventions. In particular, writing Φ, X : φint
implies that X does not occur in Φ.

Φ := − | Φ, X : φint
10This is really just a matter of taste. Fτ does not appear in many interesting derivations.
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State types are interpreted as binary relations on S:

[[−]] = S× S
[[Φ, X : φint]] = [[Φ]] ∩ {(S, S′) | (S(X), S′(X)) ∈ [[φint]]}

Entailment There is a subtyping relation ≤ on expression types, which is
axiomatised as follows:

Fτ ≤ φτ {c}τ ≤ ∆τ

φτ ≤ Tτ φτ ≤ φτ

φτ ≤ φ′τ φ′τ ≤ φ′′τ

φτ ≤ φ′′τ

The above induces a depth- and width-subtyping relation on state types:

Φ ≤ − Φ, X : Fint ≤ Φ′

Φ ≤ Φ′

Φ ≤ Φ′, X : Tint

Φ ≤ Φ′ φint ≤ φ′int

Φ, X : φint ≤ Φ′, X : φ′int

Because Φ, X : Tint ≤ Φ and Φ ≤ Φ, X : Tint, absence of a variable from a state
type is equivalent to it being present with type Tint.

Lemma 4.

1. For all φτ and Φ, [[φτ ]] and [[Φ]] are partial equivalence relations.

2. The ≤ relation on state types is reflexive and transitive.

3. If φτ ≤ φ′τ then [[φτ ]] ⊆ [[φ′τ ]].

4. If Φ ≤ Φ′ then [[Φ]] ⊆ [[Φ′]].

5. (S, S′) ∈ [[Φ, X : φ]] iff ∀m,n.(S[X 7→ m], S′[X 7→ n]) ∈ [[Φ]] and (S(X), S′(X)) ∈
[[φ]].

3.2.2 Judgements

DDCC has two basic forms of judgement. For expressions, with F, F ′ ∈ τ exp,
we have judgements of the form

` F ∼ F ′ : Φ ⇒ φτ

whilst for commands, C,C ′ ∈ com, there are judgements of the form

` C ∼ C ′ : Φ ⇒ Φ′
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We write ` C : Φ ⇒ Φ′ as shorthand for ` C ∼ C : Φ ⇒ Φ′ and similarly for
single-subject expression judgements. If we define

[[Φ ⇒ φτ ]] ⊆ (S → [[τ ]])× (S → [[τ ]])
≡ {(f, f ′) | ∀(S, S′) ∈ [[Φ]]. (fS, f ′S′) ∈ [[φτ ]]}

[[Φ ⇒ Φ′]] ⊆ (S → S⊥)× (S → S⊥)
≡ {(f, f ′) | ∀(S, S′) ∈ [[Φ]]. (fS, f ′S′) ∈ [[Φ′]]⊥}

then the intended meanings of the judgements are:

|= Fτ ∼ F ′τ : Φ ⇒ φτ ≡ ([[Fτ ]], [[F ′τ ]]) ∈ [[Φ ⇒ φτ ]]
|= C ∼ C ′ : Φ ⇒ Φ′ ≡ ([[C]], [[C ′]]) ∈ [[Φ ⇒ Φ′]]

Lemma 5. [[Φ ⇒ φτ ]] is a PER and [[Φ ⇒ Φ′]] is an admissible PER.

Some basic rules for deriving DDCC judgements are shown in Figure 7.
The rules for expressions refer to abstract versions ôp of each primitive binary
operator op in the language. A typical definition is that for multiplication:

×̂ Fint {0}int {n}int ∆int Tint

Fint Fint Fint Fint Fint Fint

{0}int Fint {0}int {0}int {0}int {0}int
{m}int Fint {0}int {m× n}int ∆int Tint

∆int Fint {0}int ∆int ∆int Tint

Tint Fint {0}int Tint Tint Tint

The general correctness condition for abstract operations is familiar from ab-
stract interpretation:

Definition 1. We say ôp soundly abstracts the operation op if

∀(x, x′) ∈ [[φτ ]], (y, y′) ∈ [[φ′τ ]]. (x op y, x′ op y′) ∈ [[φτ ôp φ
′
τ ]].

The most interesting of the rules in Figure 7 are those for conditionals and
while-loops. Observe that for two conditionals to be related, not only do their
true and false branches have to be pairwise related, but they also have to agree
on which branch is taken; this is expressed by the use of ∆bool in the premises of
the rule. Similar considerations apply to the rule for while-loops, which ensures
that related loops execute in lockstep.

3.2.3 Equations

Using only the rules in Figure 7, most of the interesting judgements one can
prove relate a phrase to itself at some type. In other words, they constitute
an analysis system but not yet a program transformation system. However,
the advantage of our formulation is that program transformations can now be
specified and justified simply by adding new inference rules whose soundness
may be straightforwardly and independently checked in terms of the semantics.
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Subtyping and Structural

` C ∼ C ′ : Φ, X : Fint ⇒ Φ′ [D-CT] ` Fτ ∼ F ′τ : Φ ⇒ Tτ [D-ET1]

` Fτ ∼ F ′τ : Φ, X : Fint ⇒ φτ [D-ET2]
` Fτ ∼ F ′τ : Φ ⇒ φτ

[D-ESym]
` F ′τ ∼ Fτ : Φ ⇒ φτ

` Fτ ∼ F ′τ : Φ ⇒ φτ Φ′ ≤ Φ φτ ≤ φ′τ
[D-ESub]

` Fτ ∼ F ′τ : Φ′ ⇒ φ′τ

` C ∼ C ′ : Φ1 ⇒ Φ2 Φ′1 ≤ Φ1 Φ2 ≤ Φ′2
[D-CSub]

` C ∼ C ′ : Φ′1 ⇒ Φ′2
` Fτ ∼ F ′τ : Φ ⇒ φτ ` F ′τ ∼ F ′′τ : Φ ⇒ φτ

[D-ETr]
` Fτ ∼ F ′′τ : Φ ⇒ φτ

` C ∼ C ′ : Φ ⇒ Φ′
[D-CSym]

` C ′ ∼ C : Φ ⇒ Φ′

` C ∼ C ′ : Φ ⇒ Φ′ ` C ′ ∼ C ′′ : Φ ⇒ Φ′
[D-CTr]

` C ∼ C ′′ : Φ ⇒ Φ′

Expressions

` X ∼ X : Φ, X : φint ⇒ φint [D-V] ` n ∼ n : Φ ⇒ {n}int [D-N]

` b ∼ b : Φ ⇒ {b}bool [D-B]

` Fτ ∼ Gτ : Φ ⇒ φτ ` F ′τ ∼ G′τ : Φ ⇒ φ′τ
[D-op]

` Fτ op F ′τ ∼ Gτ op G′τ : Φ ⇒ (φτ ôp φ
′
τ )

Commands

` skip ∼ skip : Φ ⇒ Φ [D-Skip]

` C1 ∼ C ′1 : Φ ⇒ Φ′ ` C2 ∼ C ′2 : Φ′ ⇒ Φ′′
[D-Seq]

` (C1;C2) ∼ (C ′1;C
′
2) : Φ ⇒ Φ′′

` E ∼ E′ : Φ, X : φint ⇒ φ′int
[D-Ass]

` X:=E ∼ X:=E′ : Φ, X : φint ⇒ Φ, X : φ′int
` B ∼ B′ : Φ ⇒ ∆bool ` C ∼ C ′ : Φ ⇒ Φ

[D-Whl]
` (while B do C) ∼ (while B′ do C ′) : Φ ⇒ Φ

` B ∼ B′ : Φ ⇒ ∆bool ` C1 ∼ C ′1 : Φ ⇒ Φ′ ` C2 ∼ C ′2 : Φ ⇒ Φ′
[D-If]

` (if B then C1 else C2) ∼ (if B′ then C ′1 else C ′2) : Φ ⇒ Φ′

Figure 7: Core DDCC System
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Basic equations Our first set of transformation rules express universally ap-
plicable structural equivalences for while-programs, without requiring any of
the extra information gathered by the analysis.

Sequential unit laws:

` C : Φ ⇒ Φ′
[D-SU1]

` (skip;C) ∼ C : Φ ⇒ Φ′

` C : Φ ⇒ Φ′
[D-SU2]

` (C;skip) ∼ C : Φ ⇒ Φ′

Associativity:

` (C1;C2);C3 : Φ ⇒ Φ′

` ((C1;C2);C3) ∼ (C1;(C2;C3)) : Φ ⇒ Φ′

In practice, one usually identifies programs up to associativity of sequential
composition, rather than making explicit use of the rule above.

Commuting conversion for conditional:

` if B then C1 else C2 : Φ ⇒ Φ′ ` C3 : Φ′ ⇒ Φ′′
[D-CC]

` (if B then C1 else C2);C3

∼ if B then (C1;C3) else (C2;C3) : Φ ⇒ Φ′′

Loop unrolling:

` while B do C : Φ ⇒ Φ′ [D-LU1]

` while B do C
∼ if B then C;(while B do C) else skip : Φ ⇒ Φ′

` while B do C : Φ ⇒ Φ′ [D-LU2]

` while B do C
∼ while B do (C;if B then C else skip) : Φ ⇒ Φ′

Self-assignment elimination:

` X:=X ∼ skip : Φ, X : φint ⇒ Φ, X : φint [D-SAs]

In conjunction with the core rules, the rules above can be used to derive many
of the basic equalities one might expect.11 From a pragmatic point of view,
however, they are somewhat unwieldy: even very simple proofs get quite large,

11Though the rules presented are in no sense complete. There are sound rules (arithmetic
identities and equivalences for nested conditionals, for example) which are not consequences
of the ones we have given.
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with many applications of the symmetry and transitivity rules and many re-
peated sub-derivations. Reformulating the rules as logically equivalent versions
which can be applied in more general contexts helps immensely. For example,
a better formulation of one of the skip rules is the following:

` C ∼ skip : Φ ⇒ Φ′ ` C ′ ∼ C ′′ : Φ′ ⇒ Φ′′
[D-SU1’]

` (C;C ′) ∼ C ′′ : Φ ⇒ Φ′′

Presenting rules in this style is essentially trying to produce a system with a kind
of cut-elimination property, but we leave serious consideration of proof-theoretic
matters to future work.

Optimizing Transformations In this section we consider some more in-
teresting rules, in which equations are predicated on information in the type
system.

Dead assignment elimination:

` (X:=E) ∼ skip : Φ, X : φint ⇒ Φ, X : Tint [D-DAs]

Intuitively, the dead assignment rule says that an assignment to a variable
is equivalent to skip if we are in a context in which the value of that
variable does not matter.

Equivalent branches for conditional:

` C1 ∼ C2 : Φ ⇒ Φ′
[D-BrE]

` if B then C1 else C2 ∼ C1 : Φ ⇒ Φ′

An alternative form of this rule, which is a bit prettier, is

` C1 ∼ C : Φ ⇒ Φ′ ` C2 ∼ C : Φ ⇒ Φ′
[D-BrE’]

` if B then C1 else C2 ∼ C : Φ ⇒ Φ′

Constant folding:
` Fτ : Φ ⇒ {c}τ

[D-CF]
` Fτ ∼ c : Φ ⇒ {c}τ

Known branch:

` B : Φ ⇒ {true} ` C1 ∼ C ′ : Φ ⇒ Φ′
[D-KBT]

` (if B then C1 else C2) ∼ C ′ : Φ ⇒ Φ′

` B : Φ ⇒ {false} ` C2 ∼ C ′ : Φ ⇒ Φ′
[D-KBF]

` (if B then C1 else C2) ∼ C ′ : Φ ⇒ Φ′
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Dead while:
` B : Φ ⇒ {false}

[D-DWh]
` (while B do C) ∼ skip : Φ ⇒ Φ

This is actually derivable using loop unrolling [D-LU1] and known branch
[D-KBF].

Divergence:
` B : Φ ⇒ {true} ` C : Φ ⇒ Φ

[D-Div]
` (while B do C) : Φ ⇒ Φ′

The type Φ′ in the conclusion of the rule above is arbitrary because the
loop will diverge when executed in any state in the domain of Φ.

The following is an easy induction, relying on Lemmas 4 and 5:

Theorem 3. Assuming the abstract operations satisfy the correctness condition
given in Definition 1, the core DDCC rules of Figure 7 and the additional rules
of Section 3.2.3 are all sound:

` Fτ ∼ F ′τ : Φ ⇒ φτ =⇒ |= Fτ ∼ F ′τ : Φ ⇒ φτ

` C ∼ C ′ : Φ ⇒ Φ′ =⇒ |= C ∼ C ′ : Φ ⇒ Φ′

3.2.4 Example Transformations

These rules are sufficient to capture some non-trivial transformations, including
constant propagation, dead-code elimination and program slicing [52]. Some
example derivations are shown in Figure 8. We leave it as an exercise to prove
larger examples, such as the slicing transformation:

I := 1; I := 1;
S := 0;
P := 1; P := 1
while I<N do ( ==> while I<N do (
S := S+I;
P := P*I; P := P*I;
I := I+1;) I := I+1;)

at type N : ∆int ⇒ P : ∆int. Here we expressed the fact that we were only
interested in the final value of P simply by transforming it at a result type which
only constrains the value of that variable to be preserved – all the others (in
particular S) are typed at Tint and so are allowed to take any value.

Proof. Let Φ0 = I : Tint, S : Tint, P : Tint, N : ∆int and Φ1 = I : ∆int, S :
Tint, P : Tint, N : ∆int. Then

` 1 ∼ 1 : Φ0 ⇒ {1} {1} ≤ ∆int
[D-ESub]

` 1 ∼ 1 : Φ0 ⇒ ∆int
[D-Ass]

` I :=1 ∼ I :=1 : Φ0 ⇒ Φ1
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Then as
` S := 0 ∼ skip : Φ1 ⇒ Φ1 [D-DAs]

We can deduce
` (I := 1;S := 0) ∼ (I := 1) : Φ0 ⇒ Φ1

by [D-SU2’]. Now let Φ2 = I : ∆int, S : Tint, P : ∆int, N : ∆int and similar
reasoning yields

` (I := 1;S := 0;P:=1) ∼ (I := 1;P:=1) : Φ0 ⇒ Φ2

Next we show
` I < N ∼ I < N : Φ2 ⇒ ∆bool

and

` (S := S + 1; P := P ∗ I; I := I + 1) ∼ (P := P ∗ I; I := I + 1) : Φ2 ⇒ Φ2

so that, by [D-Whl]:

` (while I < N do (S := S + 1; P := P ∗ I; I := I + 1)) ∼
(while I < N do (P := P ∗ I; I := I + 1)) : Φ2 ⇒ Φ2

Then as N : ∆int ≤ Φ0 and Φ2 ≤ P : ∆int we can plug the bits together with
[D-Seq] and [D-CSub] and we’re done.

3.2.5 Secure Information Flow

It is worth observing that the T,∆ fragment of our calculus can be seen as
a non-interference type system. Figure 9 presents a version of a type system
for secure information flow due to Smith and Volpano [45]. In this system, a
security level, σ, is either low (L) or high (H). A context γ is then a finite map
from variables to security levels:

γ := − | γ,X : σint

Given such a context, the type system assigns a security level (σint or σbool)
to each expression and (σcom) to each command. The property which the type
system ensures is that any typeable command does not allow information to
flow (either directly, via assignment, or indirectly, via control flow) from high
security variables to low security ones. We define a translation (·)∗ from the
Smith/Volpano system into DDCC as follows:

Expression types: L∗τ = ∆τ and H∗
τ = Tτ .

Contexts: −∗ = − and (γ,X : σint)∗ = γ∗, X : σ∗int.

Judgements:

(γ ` F : στ )∗ = ` F ∼ F : γ∗ ⇒ σ∗τ

(γ ` C : Lcom)∗ = ` C ∼ C : γ∗ ⇒ γ∗

(γ ` C : Hcom)∗ = ` C ∼ skip : γ∗ ⇒ γ∗
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γ,X : σint ` X : σint γ ` n : σint γ ` b : σbool

γ ` E : σint γ ` E′ : σint
+ similar for bop and lop

γ ` E iopE′ : σint

γ,X : σint ` E : σint

γ,X : σint ` X:=E : σcom

γ ` C : σcom γ ` C ′ : σcom

γ ` C;C ′ : σcom

γ ` B : σbool γ ` C : σcom γ ` C ′ : σcom

γ ` if B then C else C ′ : σcom

γ ` B : Lbool γ ` C : Lcom

γ ` while B do C : Lcom

γ ` F : Lτ

γ ` F : Hτ

γ ` C : Hcom

γ ` C : Lcom

Figure 9: Smith/Volpano Type System

Theorem 4. For any judgement J derivable in the Smith/Volpano system, J∗

is derivable in DDCC

Definition 2. In the context of a security type assignment γ, a command C
satisfies strong sequential noninterference if |= C ∼ C : γ∗ ⇒ γ∗.

This version of non-interference is the semantic security property intended
by Smith and Volpano, though the actual property established by the sound-
ness proof in [45] is more syntactic and intensional, as it is defined in terms
of their particular typing rules. Our notion of intereference is strong because
it is termination-sensitive: varying the high-security inputs affects neither the
low-security outputs nor the termination behaviour. In the absence of any ter-
mination analysis, this is enforced by the rather brutal approach of making all
high-security commands total. The weaker notion of non-interference that is
achieved by the earlier system of Volpano, Smith and Irvine [47] does not seem
to translate directly into DDCC.

Even without constant tracking, DDCC is marginally more powerful than
the Smith/Volpano system. For example, if H is a high-security variable, and L
is low-security then the following are easily shown to satisfy non-interference in
DDCC, but would be rejected by the Smith/Volpano system:

1. if H > 3 then H := L ; L := 1 else L := 1

2. L := H ; L := 3
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3.3 Relational Hoare Logic

There are many common optimizing transformations which are not captured by
DDCC. In particular:

• It does not capture any transformations that take advantage of the fact
that one knows statically which way a boolean test must have evaluated
if one is within a particular branch of a conditional, or either in the body
of or have just left a while-loop. For example, the judgement

` (if X = 3 then Y :=X else Y :=3)
∼ (Y :=3) : X : ∆ ⇒ Y : {3}

is semantically valid but not derivable.

• It cannot express the preservation of the values of expressions, except
where they are statically known to be a particular constant. These means
even trivial code-motion transformations cannot be derived.

Rather than making piecemeal additions to the system to address such particular
weaknesses, we instead now jump straight to the presentation of a rather more
general system, which we call Relational Hoare Logic (RHL), into which many
of these extensions or alternative type systems can be embedded.

Unlike DDCC, RHL does not look like a conventional type-based analysis
system – it has a rather general syntax for relations and is parameterized on
some system for deciding the entailment relation between them. The intention
is that more specific analyses and transformations can be formulated as sub-
systems of RHL by restricting the syntax of assertions and providing particular
approximations to the entailment relation. Another way in which RHL goes
beyond DDCC is that it is not restricted to partial equivalence relations, which
deserves some comment.

PERs are certainly privileged: they are the basis of equational reasoning, and
we will nearly always be trying to prove that one program phrase is related to
another by a PER so that we can perform a rewrite in some context. However,
in order to establish that two phrases are related by a PER, we often have
to do some local reasoning using more general relations. This is familiar in
the semantics of polymorphic type theories: types are interpreted by PERs,
and polymorphism by quantification over PERs, but parametricity theorems
and equivalence results for implementations of abstract dataypes arise from
substituting more general relations. To give some intuition for why this might
be so, consider proving the equivalence

X := -Y; X := Y;
Z := Z-X; ==> Z := Z+X;
X := -X;

at, say, Y : ∆int, Z : ∆int ⇒ X : ∆int, Y : ∆int, Z : ∆int. If we try to
to establish that the two commands are related by this PER by relating their
intermediate states (though this is not the only approach one could take), we

25



will need to use the relation that the value of X in one state is the negation of
that in the other, which is not a PER.

RHL is an extremely simple variation on traditional Floyd-Hoare logic [22].
Instead of assertions which denote predicates on states and judgements which
say that terminating execution of a command in a state satisfying a precondi-
tion will yield a state satisfying a postcondition, we directly axiomatise when a
pair of commands map a given pre-relation into a given post-relation. Binary
relations on states are simply specified by boolean expressions of the language
over variables tagged with an indication of which of the two states they refer
to. At first sight, this may seem frighteningly simple-minded, but it actually
works rather nicely. In this presentation we do not consider quantification over
metavariables (also known as auxiliary, or ghost, variables); their addition does
add power to the logic, but simple global analyses seem to be expressible without
them.

3.4 RHL Syntax and Semantics

3.4.1 Syntax

We define generalized expressions and relational assertions as follows:

gexp 3 GE := n | X〈1〉 | X〈2〉 | GE iop GE

relexp 3 Φ := b | GE bop GE | notΦ | Φ lop Φ

We overload the notation (·)〈1〉 and (·)〈2〉 to stand for homomorphic embeddings
int exp → gexp and bool exp → relexp in the obvious way. The basic
judgement form is ` C ∼ C ′ : Φ ⇒ Φ′ (though the use of ∼ for arbitrary
relations is arguably bad).

Semantics The semantics of generalized expressions as integer-valued func-
tions of two states, and of relational assertions as relations on states are just as
one would expect:

[[GE]] ∈ S× S → Z
[[n]](S1, S2) = n

[[X〈1〉]](S1, S2) = S1(X)
[[X〈2〉]](S1, S2) = S2(X)

[[E iop F ]](S1, S2) = ([[E]](S1, S2)) iop ([[F ]](S1, S2))

[[Φ]] ⊆ S× S
= {(S, S′) | χΦ(S, S′) = true}

χtrue(S′S′) = true
χfalse(S, S′) = false

χE bop F (S, S′) = [[E]](S, S′) bop [[F ]](S, S′)
χΦ lop Φ′(S, S′) = χΦ(S, S′) lop χΦ′(S, S′)

χnotΦ(S, S′) = ¬(χΦ(S, S′))
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` skip ∼ skip : Φ ⇒ Φ [R-Skip]

` C ∼ C ′ : Φ ∧ (B〈1〉 ∧B′〈2〉) ⇒ Φ′ ` D ∼ D′ : Φ ∧ not(B〈1〉 ∨B′〈2〉) ⇒ Φ′
[R-If]

` if B then C else D ∼ if B′ then C ′ else D′ : Φ ∧ (B〈1〉 = B′〈2〉) ⇒ Φ′

` C ∼ C ′ : Φ ⇒ Φ′ ` D ∼ D′ : Φ′ ⇒ Φ′′
[R-Seq]

` C ; D ∼ C ′ ; D′ : Φ ⇒ Φ′′

` X := E ∼ Y := E′ : Φ[E〈1〉/X〈1〉, E′〈2〉/Y 〈2〉] ⇒ Φ [R-Ass]

` C ∼ C ′ : Φ ∧ (B〈1〉 ∧B′〈2〉) ⇒ Φ ∧ (B〈1〉 = B′〈2〉)
[R-Whl]

` while B do C ∼ while B′ do C ′ : Φ ∧ (B〈1〉 = B′〈2〉) ⇒ Φ ∧ not(B〈1〉 ∨B′〈2〉)

` C ∼ C ′ : Φ1 ⇒ Φ2 |= Φ′1 ≤ Φ1 |= Φ2 ≤ Φ′2
[R-Sub]

` C ∼ C ′ : Φ′1 ⇒ Φ′2
` C ∼ C ′ : Φ ⇒ Φ′ |= PER(Φ ⇒ Φ′)

[R-Sym]
` C ′ ∼ C : Φ ⇒ Φ′

` C ∼ C ′ : Φ ⇒ Φ′ ` C ′ ∼ C ′′ : Φ ⇒ Φ′ |= PER(Φ ⇒ Φ′)
[R-Tr]

` C ∼ C ′′ : Φ ⇒ Φ′

Figure 10: Core Relational Hoare Logic
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The intended meaning of judgements is given by

|= C ∼ C ′ : Φ ⇒ Φ′

≡ ∀(S1, S2) ∈ [[Φ]]. ([[C]](S1), [[C ′]](S2)) ∈ [[Φ′]]⊥

We will also need some auxiliary semantic judgements, whose meanings are as
follows:

|= Φ ≤ Φ′ ≡ [[Φ]] ⊆ [[Φ′]]
|= PER(Φ) ≡ ([[Φ]] ◦ [[Φ]] ⊆ [[Φ]]) and ([[Φ]]−1 ⊆ [[Φ]])

Inference Rules The core rules for RHL are shown in Figure 10. Observe
that, as was the case in DDCC, the basic rules ensure that the same conditional
branches are taken and that loops are executed the same number of times on
the two sides. Note also that one could add distinct semantic judgements for
symmetry and transitivity, rather than requiring both. The assignment rule is
surprisingly liberal, but there is no reason to require the assigned variables to
be the same in both commands.

3.4.2 Equations

As with DDCC, we will specify optimizing transformations by adding extra
(sound) rules to the core. But even before we do that, RHL can justify some
useful transformations. Here’s an example of removing a redundant evaluation:

1. ` Z:=Y+1
∼ Z:=X

:
X〈1〉 = X〈2〉∧
Y 〈1〉+ 1 = X〈2〉 ⇒ X〈1〉 = X〈2〉∧

Z〈1〉 = Z〈2〉 by [R-Ass]

2. ` X:=Y+1
∼ X:=Y+1

:
Y 〈1〉+ 1 = Y 〈2〉+ 1∧
Y 〈1〉+ 1 = Y 〈2〉+ 1 ⇒ X〈1〉 = X〈2〉∧

Y 〈1〉+ 1 = X〈2〉 by [R-Ass]

3. |= (Y 〈1〉 = Y 〈2〉) ≤ Y 〈1〉+ 1 = Y 〈2〉+ 1∧
Y 〈1〉+ 1 = Y 〈2〉+ 1 by logic

4. ` X:=Y+1
∼ X:=Y+1

: Y 〈1〉 = Y 〈2〉 ⇒ X〈1〉 = X〈2〉∧
Y 〈1〉+ 1 = X〈2〉 by [R-Sub] applied

to 2. and 3.

5. ` X:=Y+1;Z:=Y+1
∼ X:=Y+1;Z:=X

: Y 〈1〉 = Y 〈2〉 ⇒ X〈1〉 = X〈2〉∧
Z〈1〉 = Z〈2〉 by [R-Seq] ap-

plied to 4. and 1.

Basic Equations The basic equations we presented in the context of DDCC
are still valid for RHL, with the exception of self-assignment elimination, though
the contextual versions are now more powerful than the simple ones, so we take
[R-SU1’L] and [R-SU2’L] (and their symmetric versions) as basic.

I believe an RHL version of [D-CC] is probably admissible given the other
RHL rules presented here, but admissibility is not preserved by adding further
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rules, so it seems easiest to add something explicit, at least to make sure that the
DDCC embedding theorem is valid. There are a number of choices for natural
RHL rules which imply [D-CC]. The following is one:

` if B then C1 else C2 ∼ C : Φ ⇒ Φ′
[R-CBInvTL]

` C1 ∼ C : Φ ∧B〈1〉 ⇒ Φ′

` if B then C1 else C2 ∼ C : Φ ⇒ Φ′
[R-CBInvFL]

` C2 ∼ C : Φ ∧ notB〈1〉 ⇒ Φ′

Plus the obvious ones the other way around. These are the inverted versions of
[R-CB] (see later).

We also add the loop unrolling rules [R-LU1L] and [R-LU2L] and their right-
handed versions, mainly to ensure that the embedding of DDCC in RHL works.
A more powerful inductive rules could be used here instead. It should also be
remarked that the messy business of having left and right variants of rules can
also be avoided by use of a Φ−1 rule, which swaps 1 and 2. (There’s also a case
to be made for adding syntactic relational composition.)

Optimizing Transformations

Falsity:
` C ∼ C ′ : false⇒ Φ [R-F]

Dead assignment:

` X:=E ∼ skip : Φ[E〈1〉/X〈1〉] ⇒ Φ [R-DAssL]

` skip ∼ X:=E : Φ[E〈2〉/X〈2〉] ⇒ Φ [R-DAssR]

These rules subsume our previous dead-assignment and self-assignment
rules. With the basic rules for skip, they subsume the [R-Ass] rule too.

Common branch:

` C ∼ D : Φ ∧B〈1〉 ⇒ Φ′ ` C ′ ∼ D : Φ ∧ notB〈1〉 ⇒ Φ′
[R-CBL]

` if B then C else C ′ ∼ D : Φ ⇒ Φ′

Plus a version with the conditional on the right. These subsume our earlier
equivalent branch rule, and (via the falsity equation) the known-branch
rules and the [R-If] rule.

Dead while:

` while B do C ∼ skip : Φ ∧ notB〈1〉 ⇒ Φ ∧ notB〈1〉 [R-DWhl]

Plus the variant with skip on the left.

Soundness follows by induction:

Theorem 5. For all C,C ′,Φ,Φ′, if ` C ∼ C ′ : Φ ⇒ Φ′ is derivable using the
rules in Figure 10 and Section 3.4.2 then |= C ∼ C ′ : Φ ⇒ Φ′.

29



3.4.3 Examples

With these rules, one can prove the correctness of many traditional compiler
optimizations, including various forms of code motion and predicated transfor-
mation. Producing proofs in RHL is fairly straightforward, so we just give a
couple of small examples of the sort of thing one can prove.

Invariant hoisting:

while I<N do X := Y+1;
X := Y+1; ==> while I<N do
I := I+X; I := I+X;

at type Φ ⇒ Φ where Φ is I〈1〉 = I〈2〉∧N〈1〉 = N〈2〉∧Y 〈1〉 = Y 〈2〉. Note
that the lifting is only valid because we do not care about the final value
of X. The proof makes two uses of the dead-assignment rule, which is a
common pattern for performing code-motion in RHL: one effectively adds
skips to both sides to make them the same ‘shape’, shows the equivalence
using the congruence rules and then removes the skips.

Proof. Let Φ be as defined above, B = (I < N) and Φ′ = Φ ∧ (X〈2〉 =
Y 〈2〉+ 1) ∧ (B〈1〉 = B〈2〉). Now by [R-Ass]

` I := I+X ∼ I := I+X : Φ′[(I〈1〉+X〈1〉)/I〈1〉, (I〈2〉+X〈2〉)/X〈2〉] ⇒ Φ′

and by [R-DAs]

` X := Y+1
∼ skip

:
Φ′[(I〈1〉+X〈1〉)/I〈1〉, (I〈2〉+X〈2〉)/X〈2〉][(Y 〈1〉+ 1)/X〈1〉]
⇒ Φ′[(I〈1〉+X〈1〉)/I〈1〉, (I〈2〉+X〈2〉)/X〈2〉]

so by [R-SU1’L]

` (X := Y+1; I := I+X) ∼ (I := I+X)
: Φ′[(I〈1〉+X〈1〉)/I〈1〉, (I〈2〉+X〈2〉)/X〈2〉][(Y 〈1〉+ 1)/X〈1〉] ⇒ Φ′

Expanding the substitution on the left gives

Φ′′ = (I〈1〉+ Y 〈1〉+ 1) = (I〈2〉+X〈2〉)
∧ N〈1〉 = N〈2〉
∧ Y 〈1〉 = Y 〈2〉
∧ X〈2〉 = Y 〈2〉+ 1
∧ ((I〈1〉+ (Y 〈1〉+ 1)) < N〈1〉) = (I〈2〉+X〈2〉 < N〈2〉)

Logic and arithmetic then give |= (Φ∧(X〈2〉 = Y 〈2〉+1)∧B〈1〉∧B〈2〉) ≤
Φ′′, so by [R-Sub] and [R-Whl]

` while I<N do (X :=Y+1;I:=I+X) ∼ while I<N do I := I+X
: Φ′ ⇒ Φ ∧ (X〈2〉 = Y 〈2〉+ 1) ∧ not(B〈1〉 ∨B〈2〉)
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Now by [R-DAs]

skip ∼ X := Y+1 : Φ′[(Y 〈2〉+ 1)/X〈2〉] ⇒ Φ′

and |= Φ ≤ Φ′[(Y 〈2〉+ 1)/X〈2〉]. So by [R-Sub] and [R-SU1’]

` while I<N do (X :=Y+1;I:=I+X) ∼ X := Y+1; while I<N do I := I+X
: Φ ⇒ Φ ∧ (X〈2〉 = Y 〈2〉+ 1) ∧ not(B〈1〉 ∨B〈2〉)

and clearly |= (Φ ∧ (X〈2〉 = Y 〈2〉 + 1) ∧ not(B〈1〉 ∨ B〈2〉)) ≤ Φ so we’re
done by [R-Sub].

Sophisticated dead-code:

if X>3 then Y := X else Y := 7 ==> skip

at type (X〈1〉 = X〈2〉 ∧ Y 〈1〉 > 2 ∧ Y 〈2〉 > 2) ⇒ (Y 〈1〉 > 2 ∧ Y 〈2〉 > 2).
I.e. if all that matters about the value of Y in the rest of the derivation
is that it is greater than 2, then the conditional has no effect.

Proof. Write Φ for (X〈1〉 = X〈2〉 ∧ Y 〈1〉 > 2 ∧ Y 〈2〉 > 2) and Φ′ for
(Y 〈1〉 > 2 ∧ Y 〈2〉 > 2). By [R-DAssL]

` Y :=X ∼ skip : Φ′[X〈1〉/Y 〈1〉] ⇒ Φ′

and
` Y :=7 ∼ skip : Φ′[7/Y 〈1〉] ⇒ Φ′

It is then trivial to check

|= Φ ∧ (X〈1〉 > 3) ≤ Φ′[X〈1〉/Y 〈1〉] and
|= Φ ∧ not(X〈1〉 > 3) ≤ Φ′[7/Y 〈1〉]

so that by two applications of [R-Sub] and one of [R-CBL] we are done.

The main weakness of RHL as presented here relates to its treatment of loops.
Since we insist that transformed programs have the same termination behaviour
as the original, but have no non-trivial termination analysis, this is hardly supris-
ing. I believe it is possible to add sound rules which can justify some cases of
loop distribution/fusion, but more ambitious loop optimizations seem to require
either a language with restricted iteration constructs or a logic which can reason
about termination.

31



3.4.4 Embedding Simpler Logics in RHL

RHL is powerful but hardly suitable for direct implementation in a compiler.
However, it can provide a useful framework for developing sound type and trans-
formation systems which are more specific. One would start by identifying a
restricted sublanguage of relational assertions. For example, several useful anal-
yses can be formulated using only partial equivalence relations generated from
axioms such as:

` PER(E〈1〉 = E〈2〉) ` PER(B〈1〉 = B〈2〉)

` PER(B〈1〉 ∧B〈2〉)

plus rules stating that PERs are closed under conjunction, disjoint union and
the arrow constructor. Our earlier DDCC system is of this form, with state
relations being formed as conjunctions of primitive assertions of the forms
X〈1〉 = X〈2〉 and X〈1〉 = n ∧ X〈2〉 = n. The rules of DDCC can then be
presented as derived rules in RHL.

For F, F ′ ∈ τ exp and DDCC expression type φτ , define the RHL relation
(F ∼ F ′ : φτ )∗ as follows:

(F ∼ F : F)∗ = false
(F ∼ F ′ : {c})∗ = (F 〈1〉 = c) ∧ (F ′〈2〉 = c)
(F ∼ F ′ : ∆)∗ = (F 〈1〉 = F ′〈2〉)
(F ∼ F ′ : T)∗ = true

Then for a DDCC state type Φ, define the RHL relation Φ∗ by

(−)∗ = true

(Φ, X : φint)∗ = Φ∗ ∧ (X ∼ X : φint)∗

Theorem 6. For all F, F ′,Φ,Φ′, C, C ′, φ:

1. If ` F ∼ F ′ : Φ ⇒ φ then |= Φ∗ ≤ (F ∼ F ′ : φ)∗.

2. If ` C ∼ C ′ : Φ ⇒ Φ′ in DDCC then ` C ∼ C ′ : Φ∗ ⇒ Φ′∗ in RHL.

A natural question is whether the usual Hoare logic can be embedded in
RHL. One’s first thought might be that a partial correctness judgement `
{P}C{Q} would be equivalent to the ‘squared’ RHL judgement

` C ∼ C : P 〈1〉 ∧ P 〈2〉 ⇒ Q〈1〉 ∧Q〈2〉

but this is not the case because C’s termination behaviour might differ on two
states satisfying P . Nor can one simply intersect the pre- and post-relations
with the identity relation on states, since we do not have syntax for that ‘global’
identity relation. If we fix C, however, we can conjoin the pre- and post-relations
with X〈1〉 = X〈2〉 for every variable X occurring in C and thus effectively
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recover Hoare logic.12 Going the other way, one can soundly extend RHL with
the squared versions of valid total correctness judgements ` [P ]C[Q].

As a simple, concrete example of the embedding approach, Figure 11 presents
(a very naive version of) a type system AERC for available expression analysis
and removal of redundant evaluation. State types Θ are finite sets {Xi = Ei |
1 ≤ i ≤ n} of equalities between variables and expressions (in which the same
variable may occur multiple times on the left) and we write Θ ≤ Θ′ for Θ ⊇ Θ′.
The macros kill and gen are defined by

kill(Θ, X) = {(Xi = Ei) ∈ Θ | Xi 6= X ∧X 6∈ Ei}

gen(X,E) =
{
{X = E} if X 6∈ E
{} otherwise

The translation of the AERC into RHL is indexed by a finite set V of variables.
Define

Θ∗
V =

∧
X∈V

(X〈1〉 = X〈2〉) ∧
∧

(X=E)∈Θ

(X〈1〉 = E〈1〉)

It is easy to see that for any Θ, |= PER(Θ∗
V ) and that Θ ≤ Θ′ implies Θ∗

V ≤ Θ′∗
V .

The following asserts the soundness of the translation, and hence of AERC:

Theorem 7. For any expressions E,F and commands C,D all of whose vari-
ables occur in V ,

1. If ` E ∼ F : Θ ⇒ τ then |= Θ∗
V ≤ (E〈i〉 = F 〈j〉) for i, j ∈ {1, 2}.

2. If ` C ∼ D : Θ ⇒ Θ′ in AERC then ` C ∼ D : Θ∗
V ⇒ Θ′∗

V in RHL.

3.5 Related Work

We have already mentioned the work of Wand et al and of Amtoft on prov-
ing soundness of optimizing transormations for functional languages. Other
examples include Damiani and Giannini on dead-variables [17, 18], Kobayashi
on dead-variables [28] and Benton and Kennedy on effects [12]. Damiani and
Giannini explicitly use PERs in giving the semantics of their analysis system
but give a more algorithmic account its use in transformation. Benton and
Kennedy present optimizing transformations as equations in context, but derive
those (rather clumsily) from a predicate-based semantics for the analysis.

Recently Lacey et al. [30] described how some of the classical [27, 21, 4]
transformations considered here (dead code elimination, constant folding and
a simple code-motion transformation) can be formulated as conditional rewrite
rules on control flow graphs. The rewrites are predicated on temporal logic
formulae expressing (intensionally) the contexts in which the rewrites may be
applied. The authors then use a small-step operational semantics to verify that
under these conditions, their transformations preserve the observable behaviour
of programs.

12The civilised way to do this is to index all our judgements by finite sets of variable names.
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` X ∼ X : Θ ⇒ int [A-V] ` n ∼ n : Θ ⇒ int [A-N]

` b ∼ b : Θ ⇒ bool [A-B] ` X ∼ E : Θ ∪ {X = E} ⇒ int [A-Red]

` skip ∼ skip : Θ ⇒ Θ [A-Skp]

` E ∼ E′ : Θ ⇒ int ` F ∼ F ′ : Θ ⇒ int
[A-iop] (+ similar bop and lop)

` E iop F ∼ E′ iop F ′ : Θ ⇒ int

` C1 ∼ C ′1 : Θ ⇒ Θ′ ` C2 ∼ C ′2 : Θ′ ⇒ Θ′′

[A-Seq]
` (C1;C2) ∼ (C ′1;C

′
2) : Θ ⇒ Θ′′

` B ∼ B′ : Θ ⇒ bool ` C ∼ C ′ : Θ ⇒ Θ
[A-Whl]

` (while B do C) ∼ (while B′ do C ′) : Θ ⇒ Θ

` E ∼ E′ : Θ ⇒ int
[A-Ass]

` X:=E ∼ X:=E′ : Θ ⇒ (kill(Θ, X) ∪ gen(X,E) ∪ gen(X,E′))

` B ∼ B′ : Θ ⇒ bool ` C1 ∼ C ′1 : Θ ⇒ Θ′ ` C2 ∼ C ′2 : Θ ⇒ Θ′

[A-If]
` (if B then C1 else C2) ∼ (if B′ then C ′1 else C ′2) : Θ ⇒ Θ′

` C ∼ C ′ : Θ ⇒ Θ′

[A-CSym]
` C ′ ∼ C : Θ ⇒ Θ′

` C ∼ C ′ : Θ1 ⇒ Θ2 Θ′
1 ≤ Θ1 Θ2 ≤ Θ′

2
[A-CSub]

` C ∼ C ′ : Θ′
1 ⇒ Θ′

2

` Eτ ∼ E′τ : Θ ⇒ τ Θ′ ≤ Θ
[A-ESub]

` Eτ ∼ E′τ : Θ′ ⇒ τ

` Fτ ∼ F ′τ : Θ ⇒ τ
[A-ESym]

` F ′τ ∼ Fτ : Θ ⇒ τ

` C ∼ C ′ : Θ ⇒ Θ′ ` C ′ ∼ C ′′ : Θ ⇒ Θ′

[A-CTr]
` C ∼ C ′′ : Θ ⇒ Θ′

` Fτ ∼ F ′τ : Θ ⇒ τ ` F ′τ ∼ F ′′τ : Θ ⇒ τ
[A-ETr]

` Fτ ∼ F ′′τ : Θ ⇒ τ

Figure 11: AERC: Available Expressions and Redundant Computation
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Lerner et al. [31, 32] have built a couple of implementations of a domain-
specific languages for specifying and justifying rewrites on a simple imperative
language which interfaces to a theorem prover for checking the supplied justi-
fication. This systems use temporal logic formulae or user-defined propogation
rules for specifying the justifications of optimizations over flow graphs.

Kozen and Patron [29] describe an algebraic approach to proving some tra-
ditional optimizations correct. There is no mention of relations in their work,
and they abstract rather severely from the actual language (there are no assign-
ments, just unspecified atomic programs including one which makes a variable
‘undefined’), but the connections between their work and this seem worth fur-
ther study.

Other work that is closely related to that presented here has been done
in the contexts of credible compilation [41, 42] and translation validation [36,
57]. These both take the view that formal verification of complete optimizing
compilers is impractical, but that one might realistically produce a correctness
proof relating the input and output of particular compilations. Translation
validation tries to do this without modifying the compiler, using an independent
tool that tries to infer that the output is a correct translation of the input.
Credible compilation envisages an instrumented compiler producing a putative
proof that the transformations it performed in each particular case were safe;
these proofs can then be examined by a comparatively simple proof-checker.
The basic technical ideas used in credible and validated compilation are very
close indeed to the ones presented here (developed quite independently). The
main difference is that we use the language of types, denotational semantics
and PERs instead of that of control-flow graphs, operational semantics and
simulation relations. Inspired by Rinard’s work, Yang [56] has recently used
a version of relational Hoare logic in reasoning about the correctness of the
Schorr-Waite graph marking algorithm.

The idea of directly axiomatising a logic of PERs [3] and more general rela-
tions was inspired by the work of Abadi et al on a formal logic for parametric
polymorphism [2].

We have already mentioned some of the large amount of recent work using
PERs (and domain-theoretic projections) to give semantics to analyses for non-
interference, slicing, secure information flow, binding time analysis. An elegant
general calculus, DCC, for such dependency-based analyses has been defined
by Abadi et al. [1]. DCC seems comparable to a higher-order version of our
DDCC, though it is not explicitly presented as an equational calculus and is
more directly in the style of type systems for secure information flow.

The work of Hughes on type specialization [23] seems to have interesting
connections with (a higher-order version of) the work presented here. Hughes
has formulated a type-based analysis which essentially uses a form of singleton
type, and proved the correctness of an associated transformation system which
changes types. Singleton types and their PER semantics have also been studied
in some depth by Aspinall [6].
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4 An Effect Analysis

In this section we discuss how a very simple effect analysis for a higher-order
language may be given an extensional semantics. The work described in this sec-
tion is particularly preliminary, and a fuller account will be published elsewhere
in due course.

Many analyses and logics for imperative programs involve reasoning about
whether particular mutable variables (or references or heap cells or regions) may
be read or written by a phrase. For example, the equivalence of while-programs

C ; if B then C’ else C’’ = if B then (C;C’) else (C;C’’)

is valid when B does not read any variable which C might write. Hoare-style
programming logics often have rules with side-conditions on possibly-read and
possibly-written variable sets, and reasoning about concurrent processes is dra-
matically simplified if one can establish that none of them may write a variable
which another may read.13

Effect systems, first introduced by Gifford and Lucassen [20, 33], are static
analyses that compute upper bounds on the possible side-effects of computa-
tions. The literature contains many effect systems that analyse which storage
cells may be read and which storage cells may be written (as well as many other
properties), but no truly satisfactory account of the semantics of this informa-
tion, or of the the uses to which it may be put. Note that because effect systems
overestimate the possible side-effects of expressions, the information they cap-
ture is of the form that particular variables will definitely not be read or will
definitely not be written. But what does that mean?

Thinking operationally, it may seem entirely obvious what is meant by saying
that a variable X will not be read (written) by a command C, viz. no execution
trace of C contains a read (resp. write) operation to X. But, as we have
already argued such intensional interpretations of program properties are over-
restrictive, cannot be interpreted in a standard semantics, do not behave well
with respect to program equivalence or contextual reasoning and are hard to
maintain during transformations. Thus we seek extensional properties that are
more liberal than the intensional ones yet still validate the transformations or
reasoning principles we wish to apply.

In the case of not writing a variable, a naive extensional interpretation seems
clear: a command C does not observably write the variable X if it leaves the
value of X unchanged:

∀S, S′. C, S ⇓ S′ =⇒ S′(X) = S(X)

though we should note right away that even this definition lacks something as a
basis for contextual reasoning: firstly, the quantification over all initial states is
rather strong (in a particular program context we will often be able to determine
static constraints on the possible initial states), and, secondly, the requirement
for equality of the final values of X is also strong (a context may care only

13Though here we restrict attention, in a rather essential manner, to sequential programs.
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about, say, the parity of the final value of X). Thus even our obvious definition
calls out to be relativized with respect to contexts.

Note that this definition places no constraint on diverging executions or the
value of X at intermediate states – operationally, C may read and write X
many times, so long as it always restores the original value before terminating.
Furthermore, the definition is clearly closed under observational equivalence. If
we have no non-termination and just two integer variables, X and Y , and the
denotation of C is f : Z×Z → Z×Z then our simple-minded definition of what
it means for C not to write X can be expressed denotationally as

∃f2 : Z× Z → Z. f(X,Y ) = (X, f2(X,Y ))

The property of neither reading nor writing X is also not hard to formalize
extensionally:

∀S, S′, n. C, S ⇓ S′ ⇐⇒ C,S[X 7→ n] ⇓ S′[X 7→ n]

Alternatively
∃f2 : Z → Z. f(X,Y ) = (X, f2(Y ))

The property of not observably reading X is rather more subtle, since X
may, or may not, be written. We want to say that the final values of all the
other variables are independent of the initial value of X, but the final value of
X itself is either a function of the other variables or is the initial value of X:

∃f1 : Z → B, f2, f3 : Z → Z. f(X,Y ) = (f1(Y ) =⇒ X | f2(Y ), f3(Y ))

This is clearly a more complex property than the others! In earlier, operationally-
based, work [12] we expressed a global ‘does not read’ property on integer-valued
state using sets of cotermination tests (pairs of contexts) written explicitly in
the language, but those definitions were very unwieldy and phrased in a way
that would not generalize easily to other types. The tricky nature of the does
not read property also shows up if one tries to define a family of monads in a syn-
thetic, rather than an analytic fashion: neither reading nor writing corresponds
to the identity monad; not writing corresponds to the reader (environment)
monad; but there is no nice definition of a ‘writer’ monad.14

The previous section described how such an extensional relational interpre-
tation of static analyses allows one both to express constancy and dependency
properties for while-programs, and to reason about the transformations they en-
able. Here we will show how reading and writing properties for a higher-order
language with state can also be captured in a relational framework. The final re-
sults we will obtain are similar to (and in fact, for the most part, more restricted
than) those of our previous work [12] on proving the correctness of effect-based
transformations in the MIL-lite subset of the intermediate language of MLj [13]

14Though, chatting to Ian Stark about this, it seems that the general theory of generating
computational monads algebraically, from operations and equations [40], might allow one to
deduce that such a monad exists in various categories of interest, even if it doesn’t have an
obvious definition in terms of familar first-order type constructions.
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and SML.NET [14]. The difference is that the new semantic interpretation of
effects is dramatically slicker and more extensible than in the earlier work.

Our starting point is the following observation, which, though simple, does
not seem to have been published before:

Lemma 6.

1. The above definition of not writing X is equivalent to

∀R ≤ ∆. f : R×∆ → R×∆

2. The property of neither reading nor writing X is equivalent to

∀R. f : R×∆ → R×∆

3. The property of not reading X is equivalent to

∀R ≥ ∆. f : R×∆ → R×∆

There are many ways we can use the idea above to produce static analy-
sis and transformation systems or program logics. One is to produce a fairly
general syntactic system which extends DDCC or RHL with bounded quan-
tification. Another is to present simpler (more first order) effect analyses and
transformations and use bounded quantification in giving their semantics and
soundness proofs. Of course, we should be able to to both, and justify the
effect systems via a syntactic translation into the more generic systems. The
details of the systems with explicit bounded quantification in the syntax are
fairly complex, so we’ll start by just doing the second.

4.1 The World’s Second-Stupidest Effect System

4.1.1 Base Language

We consider a monadically-typed, normalizing, call-by-value lambda calculus
with a single global integer reference. This extremely simple setting allows us
to explore the key idea without getting bogged down in too much auxiliary
detail.

Value types A, computation types TA and contexts Γ:

A,B := unit | int | bool | A×B | A→ TB

Γ := x1 : A1, . . . , xn : An

Value judgements Γ ` V : A and computation judgements Γ ` M : TA are
shown in Figure 12. Denotational semantics just uses sets as no recursion.
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Γ ` n : int Γ ` b : bool Γ ` () : unit Γ, x : A ` x : A

Γ ` V1 : int Γ ` V2 : int

Γ ` V1 + V2 : int

Γ ` V1 : int Γ ` V2 : int

Γ ` V1 > V2 : bool

Γ ` V1 : A Γ ` V2 : B

Γ ` (V1, V2) : A×B

Γ ` V : A1 ×A2

Γ ` πi V : Ai

Γ, x : A `M : TB

Γ ` λx : A.M : A→ TB

Γ ` V1 : A→ TB Γ ` V2 : A

Γ ` V1 V2 : TB

Γ ` V : A

Γ ` val V : TA

Γ `M : TA Γ, x : A ` N : TB

Γ ` let x⇐M inN : TB

Γ ` V : bool Γ `M : TA Γ ` N : TA

Γ ` if V then M else N : TA

Γ ` read : Tint
Γ ` V : int

Γ ` write(V ) : Tunit

Figure 12: Simple computation type system

Write S for Z.

[[unit]] = 1
[[int]] = Z

[[bool]] = B
[[A×B]] = [[A]]× [[B]]

[[A→ TB]] = [[A]] → [[TB]]
[[TA]] = S → S × [[A]]

Semantics of contexts:

[[x1 : A1, . . . , xn : An]] = [[A1]]× · · · × [[An]]

Semantics of terms in context:

[[Γ ` V : A]] : [[Γ]] → [[A]]
[[Γ `M : TA]] : [[Γ]] → [[TA]]

Defined inductively in the usual way. Types on binders make derivations unique.
Adequate for the obvious operational semantics and notion of equivalence.
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X ≤ X

X ≤ Y Y ≤ Z

X ≤ Z

X ≤ X ′ Y ≤ Y ′

X × Y ≤ X ′ × Y ′

X ′ ≤ X TεY ≤ Tε′Y ′

(X → TεY ) ≤ (X ′ → Tε′Y ′)

ε ⊆ ε′ X ≤ X ′

TεX ≤ Tε′X ′

Figure 13: Subtyping extended types

4.1.2 Effect system

Extended value types X, computation types TεX and contexts Θ:

X,Y := unit | int | bool | X × Y | X → TεY

ε ⊆ {r, w}
Θ := x1 : X1, . . . , xn : Xn

Subtyping on extended types shown in Figure 13.
There’s an erasure map U(·), taking extended types to simple types by for-

getting the effect annotations:

U(int) = int

U(bool) = bool

U(unit) = unit

U(X × Y ) = U(X)× U(Y )
U(X → TεY ) = U(X) → U(TεY )

U(TεX) = T (U(Y ))

which we extend pointwise to contexts:

U(x1 : X1, . . . , xn : Xn) = x1 : U(X1), . . . , xn : U(Xn)

The following is obvious:

Lemma 7. If X ≤ Y then U(X) = U(Y ), and similarly for computations.

The extended type assignment system is shown in Figure 14. Note that the
terms are the same (we still only have simple types on λ-bound variables). The
following is a trivial induction:

Lemma 8. If Θ ` V : X then U(Θ) ` V : U(X), and similarly for computa-
tions.
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Θ ` n : int Θ ` b : bool Θ ` () : unit Θ, x : X ` x : X

Θ ` V1 : int Θ ` V2 : int

Θ ` V1 + V2 : int

Θ ` V1 : int Θ ` V2 : int

Θ ` V1 > V2 : bool

Θ ` V1 : X Θ ` V2 : Y

Θ ` (V1, V2) : X × Y

Θ ` V : X1 ×X2

Θ ` πi V : Xi

Θ, x : X `M : TεY

Θ ` λx : U(X).M : X → TεY

Θ ` V1 : X → TεY Θ ` V2 : X

Θ ` V1 V2 : TεY

Θ ` V : X

Θ ` val V : T∅X

Θ `M : TεX Θ, x : X ` N : Tε′Y

Θ ` let x⇐M inN : Tε∪ε′Y

Θ ` V : bool Θ `M : TεX Θ ` N : TεX

Θ ` if V then M else N : TεX

Θ ` read : T{r}int
Θ ` V : int

Θ ` write(V ) : T{w}unit

Θ ` V : X X ≤ X ′

Θ ` V : X ′

Θ `M : TεX TεX ≤ Tε′X ′

Θ `M : Tε′X ′

Figure 14: Extended type system
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4.1.3 Semantics of Effects

Now we define the semantics of extended types as binary relations on the se-
mantics of their erasures.

[[X]] ⊆ [[U(X)]]× [[U(X)]]
[[int]] = ∆Z

[[bool]] = ∆B

[[unit]] = ∆1

[[X × Y ]] = [[X]]× [[Y ]]
[[X → TεY ]] = [[X]] → [[TεY ]]

[[TεX]] =
⋂

R∈Rε

R→ R× [[X]]

where

R{} = P(S × S)
R{r} = {R | R ⊆ ∆S}
R{w} = {R | R ⊇ ∆S}
R{r,w} = {∆S}

For each ε there is a set Rε of relations on the state that computations of type
TεX have to preserve; the more possible effects occur in ε, the fewer relations
are preserved.

We also extend the relational interpretation of extended types to extended
contexts in the natural way:

[[Θ]] ⊆ [[U(Θ)]]× [[U(Θ)]]
[[x1 : X1, . . . , xn : Xn]] = {(ρ, ρ′) | ∀1 ≤ i ≤ n. (πi(ρ), πi(ρ′)) ∈ [[X1]]}

Lemma 9. For any Θ, X and ε, all of [[Θ]], [[X]] and [[TεX]] are partial equiv-
alence relations.

The following establishes semantic soundness for our subtyping relation:

Lemma 10. If X ≤ Y then [[X]] ⊆ [[Y ]], and similarly for computation types.

And we can then show a ‘fundamental theorem’ establishing the soundness
of the effect analysis itself:

Theorem 8.

1. If Θ ` V : X, (ρ, ρ′) ∈ [[Θ]] then

([[U(Θ) ` V : U(X)]] ρ, [[U(Θ) ` V : U(X)]] ρ′) ∈ [[X]]
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2. If Θ `M : TεX, (ρ, ρ′) ∈ [[Θ]] then

([[U(Θ) `M : T (U(X))]] ρ, [[U(Θ) `M : T (U(X))]] ρ′) ∈ [[TεX]]

The soundness proofs above are very straightforward and familiar-looking,
which is one of the benefits of our relational formulation. Because we have used
standard technology (logical relations, PERs), the pattern of what we have to
prove is obvious and the definitions are all set up so that the proofs go through
smoothly. Had we defined the semantics of effects in some more special-purpose
way (e.g. trying to work directly with the property of being uniformly either
constant or the identity), it could have been rather less obvious how to make
everything extend smoothly to higher-order and how to deal with combining
effects in the let-rule.

4.1.4 Using Effect Information

This section discusses how effect information may be used to justify program
transformations, presented as typed equations in context.

Before looking at effect-dependent equivalences, we note that the semantics
validates all the usual equations of the computational metalanguage, including
congruence laws and β and η laws for products, function spaces, booleans and
the computation type constructor. The correctness of the basic congruence laws
subsumes Theorem 8.

More interesting equivalences are predicated on the effect information. We
show some of these in Figure 15.

Theorem 9. All of the equations shown in Figure 15 are soundly modelled in
the semantics, in the sense that

• If Θ ` V = V ′ : X then for all (ρ, ρ′) ∈ [[Θ]]

([[U(Θ) ` V : U(X)]] ρ, [[U(Θ) ` V ′ : U(X)]] ρ′) ∈ [[X]]

• If Θ `M = M ′ : TεX then for all (ρ, ρ′) ∈ [[Θ]]

([[U(Θ) `M : T (U(X))]] ρ, [[U(Θ) `M ′ : T (U(X))]] ρ′) ∈ [[TεX]]

4.2 Discussion

We have shown how an extensional interpretation of read and write effects may
be given using bounded quantification over relations, and how that semantics
may be used to enable program transformations.

It is interesting to note that, whilst quantifier-free RHL can express many
interesting analyses, it does not admit a simple compositional translation of
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Θ `M : TεX Θ ` N : Tε′Y
x 6∈ Θ, ε ⊆ {r}

Θ ` let x⇐M inN = N : Tε′Y

Θ `M : TεX Θ, x : X, y : X ` N : Tε′Y
ε ⊆ {r} or ε ⊆ {w}

Θ ` let x⇐M in let y⇐M inN
= let x⇐M inN [x/y] : Tε∪ε′Y

Θ `M1 : Tε1X1 Θ `M2 : Tε2X2 Θ, x1 : X1, x2 : X2 ` N : Tε′Y ε1, ε2 ⊆ {r}
or ε1 = {}

Θ ` let x1⇐M1 in let x2⇐M2 inN
= let x2⇐M2 in let x1⇐M1 inN

: Tε1∪ε2∪ε′Y

Θ `M : T{}Z Θ, x : X, y : Z ` N : TεY

Θ ` val (λx : U(X).let y⇐M inN)
= let y⇐M in val (λx : U(X).N) : T{}(X → TεY )

Figure 15: Effect-dependent equivalences

perhaps the simplest static analysis there is for while-programs, viz. the ob-
vious inductive definition of possibly-read and possibly-written sets for each
command. The results here show that adding relation variables and quantifica-
tion to RHL would certainly solve that problem, but the details of the best way
to define such an extension deserve some further study.

The tricky case for our semantics was the ‘does not read’ property, which we
interpreted using relational quantification with a lower bound. Whilst quantifi-
cation with upper bounds, which we used to interpret ‘does not write’, is fairly
common in the literature on type systems, lower bounds have received rather
less attention.

It is worth remarking that an apparently appealing candidate for an exten-
sional characterization of not reading is idempotency. For simple commands
C : S → S, it is easy to see that a command that does not read the store, i.e.
that is either constant or the identity, satisfies C;C = C. Unfortunately this
does not work as a semantics of not reading, as idempotency is not closed under
sequential composition (in Führmann’s [19] terminology, idempotency is not an
effectoid).

Of course, a terminating language with a single piece of integer-valued global
state is not particularly exciting or realistic, and there are many ways in which
this effect system and language could be extended, including higher types in the
store, dynamic allocation, regions, effect polymorphism and combining state
with other notions of computation. However, there is good reason to believe
that the basic techniques used here will extend smoothly to such settings.
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and A. Rauzy, editors, Proceedings of the Third International Workshop on
Static Analysis, Padova, Italy, volume 724 of Lecture Notes in Computer
Science, pages 218–229. Springer-Verlag, September 1993.

[6] D. Aspinall. Subtyping with singleton types. In L. Pacholski and J. Tiuryn,
editors, Computer Science Logic, 8th International Workshop (CSL’94),
number 933 in Lecture Notes in Computer Science. Springer-Verlag, 1995.

[7] C. A. Baker-Finch. Relevant logic and strictness analysis. In Workshop on
Static Analysis, LaBRI, Bordeaux. Bigre, 1992.

[8] N. Benton. A unified approach to strictness analysis and optimizing trans-
formations. Technical Report 388, Computer Laboratory, University of
Cambridge, February 1996.

[9] N. Benton. Simple relational correctness proofs for static analyses and pro-
gram transformations. In Proceedings of the 31st ACM Symposium on Prin-
ciples of Programming Languages (POPL), January 2004. Revised version
available from http://research.microsoft.com/∼nick/publications.
htm.

[10] N. Benton. Semantics of program analyses and transformations. Lecture
Notes for the PAT Summer School, Copenhagen, June 2005.

[11] N. Benton. Simple relational correctness proofs for static analyses and
program transformations. Technical Report MSR-TR-2005-26, Microsoft
Research, February 2005.

[12] N. Benton and A. Kennedy. Monads, effects and transformations. In 3rd
International Workshop on Higher Order Operational Techniques in Se-
mantics (HOOTS), Paris, volume 26 of Electronic Notes in Theoretical
Computer Science. Elsevier, September 1999.

45



[13] N. Benton, A. Kennedy, and G. Russell. Compiling Standard ML to Java
bytecodes. In Proceedings of the 3rd ACM SIGPLAN Conference on Func-
tional Programming (ICFP), September 1998.

[14] N. Benton, A. Kennedy, and C. Russo. Adventures in interoperability: The
SML.NET experience. In Proceedings of the 6th ACM-SIGPLAN Interna-
tional Conference on Principles and Practice of Declarative Programming
(PPDP), August 2004.

[15] P. N. Benton. Strictness Analysis of Lazy Functional Programs. PhD thesis,
Computer Laboratory, University of Cambridge, December 1992.

[16] P. N. Benton. Strictness logic and polymorphic invariance. In A. Nerode
and M. Taitslin, editors, Proceedings of the Second International Sympo-
sium on Logical Foundations of Computer Science, Tver, Russia, volume
620 of Lecture Notes in Computer Science, pages 33–44. Springer-Verlag,
July 1992.

[17] F. Damiani. Useless-code Detection and Elimination for PCF with Alge-
braic Datatypes. In 4th International Conference on Typed Lambda Calculi
and Applications (TLCA), volume 1581 of Lecture Notes in Computer Sci-
ence, pages 83–97. Springer-Verlag, 1999.

[18] F. Damiani and P. Giannini. Automatic useless-code detection and elim-
ination for hot functional programs. Journal of Functional Programming,
pages 509–559, 2000.

[19] C. Führmann. Varieties of effects. In Proceedings of Foundations of Soft-
ware Science and Computation Structures (FOSSACS), volume 2303 of
Lecture Notes in Computer Science, pages 144–158. Springer-Verlag, 2002.

[20] D. K. Gifford and J. M. Lucassen. Integrating functional and imperative
programming. In ACM Conference on LISP and Functional Programming,
Cambridge, Massachusetts, August 1986.

[21] M S. Hecht. Flow Analysis of Computer Programs. Elsevier North-Holland,
1977.

[22] C. A. R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–585, October 1969.

[23] J. Hughes. Type specialization for the lambda calculus. In Proceedings of
the Dagstuhl Seminar on Partial Evaluation, 1996.

[24] S. Hunt and D. Sands. Binding time analysis: A new PERspective. In Pro-
ceedings ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM), June 1991.

[25] T. Jensen. Abstract Interpretation in Logical Form. PhD thesis, Imperial
College, University of London, November 1992.

46



[26] T. P. Jensen. Strictness analysis in logical form. In Proceedings of the 1991
Conference on Functional Programming Languages and Computer Archi-
tecture, 1991.

[27] G. A. Kildall. A unified approach to global program optimization. In
Proceedings of the 1st ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL), pages 194–206. ACM Press, 1973.

[28] N. Kobayashi. Type-based useless variable elimination. In Proceeedings of
the ACM Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, 2000.

[29] D. Kozen and M. Patron. Certification of compiler optimizations using
Kleene algebra with tests. In Proceedings of the 1st International Confer-
ence in Computational Logic, volume 1861 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2000.

[30] D. Lacey, N. D. Jones, E. Van Wyk, and C. C. Frederiksen. Proving cor-
rectness of compiler optimizations by temporal logic. In Proceedings of
the 29th Annual ACM SIGPLAN - SIGACT Symposium on Principles of
Programming Languages, Portland, January 2002.

[31] S. Lerner, T. Millstein, and C. Chambers. Automatically proving the cor-
rectness of compiler optimizations. In Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation
(PLDI), June 2003.

[32] S. Lerner, T. Millstein, E. Rice, and C. Chambers. Automated sound-
ness proofs for dataflow analyses and transformations via local rules. In
Conference Record of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), January 2005.

[33] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Con-
ference Record of the 15th Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL), 1988.

[34] M. Mizuno and D.A. Schmidt. A security flow control algorithm and its
denotational semantics correctness proof. Formal Aspects of Computing,
4:727–754, 1992.

[35] A. Mycroft. The theory and practice of transforming call-by-need into call-
by-value. In Proceedings of the 4th International Symposium on Program-
ming, number 83 in Lecture Notes in Computer Science, pages 269–281.
Springer-Verlag, April 1980.

[36] G. C. Necula. Translation validation for an optimizing compiler. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 83–95, 2000.

47



[37] H. R. Nielson and F. Nielson. Context information for lazy code generation.
In LISP and Functional Programming, June 1990.

[38] P. Orbaek. Can you trust your data? In Proceedings of TAPSOFT/FASE,
volume 915 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

[39] G. D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223–255, 1977.

[40] G. D. Plotkin and J. Power. Notions of computation determine monads.
In Foundations of Software Science and Computation Structures, Proceed-
ings of FOSSACS ’02, volume 2303 of Lecture Notes in Computer Science.
Springer-Verlag, 2002.

[41] M. Rinard. Credible compilation. Technical Report MIT-LCS-TR-776,
Massachusets Institute of Technology, March 1999.

[42] M. Rinard and D. Marinov. Credible compilation with pointers. In Proceed-
ings of the FLoC Workshop on Run-Time Result Verification, July 1999.

[43] A. Sabelfeld and D. Sands. A PER model of secure information flow in
sequential programs. Higher-Order and Symbolic Computation, 14(1):59–
91, March 2001.

[44] Manfred Schmidt-Schauß, Marko Schütz, and David Sabel. On the safety
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