
Position Based Cryptography∗

Nishanth Chandran Vipul Goyal† Ryan Moriarty Rafail Ostrovsky‡

Department of Computer Science, UCLA
{nishanth,vipul,ryan,rafail}@cs.ucla.edu

Abstract

We consider what constitutes identities in cryptography. Typical examples include your name and
your social-security number, or your fingerprint/iris-scan, or your address, or your (non-revoked) public-
key coming from some trusted public-key infrastructure. In many situations, however, where you are
defines your identity. For example, we know the role of a bank-teller behind a bullet-proof bank window
not because she shows us her credentials but by merely knowing her location. In this paper, we initiate
the study of cryptographic protocols where the identity (or other credentials and inputs) of a party are
derived from its geographic location.

We start by considering the central task in this setting, i.e., securely verifying the position of a
device. Despite much work in this area, we show that in the Vanilla (or standard) model, the above
task (i.e., of secure positioning) is impossible to achieve. In light of the above impossibility result, we
then turn to the Bounded Retrieval Model (a variant of the Bounded Storage Model) and formalize and
construct information theoretically secure protocols for two fundamental tasks:

• Secure Positioning; and

• Position Based Key Exchange.

We then show that these tasks are in fact universal in this setting – we show how we can use them to
realize Secure Multi-Party Computation.

Our main contribution in this paper is threefold: to place the problem of secure positioning on a sound
theoretical footing; to prove a strong impossibility result that simultaneously shows the insecurity of
previous attempts at the problem; and to present positive results by showing that the bounded-retrieval
framework is, in fact, one of the “right” frameworks (there may be others) to study the foundations of
position-based cryptography.

∗Research supported in part by NSF grants 0716835, 0716389, 0830803.
†Research supported in part by a Microsoft Research Graduate Fellowship and the above NSF grants.
‡Department of Computer Science and Department of Mathematics. Research supported in part by an IBM Faculty Award,

Xerox Innovation Group Award, NSF grants 0430254, 0716835, 0716389, 0830803 and U.C. MICRO grant.

0

1 Introduction

1.1 Motivation

In cryptography, typically a party will possess a set of credentials determining: its identity, what tasks it can
do, which protocols it can participate in and so on. These set of credentials will typically correspond to the
party having some of the following attributes: some secret information (e.g., a secret key), authenticated
information (e.g., a digitally signed certificate from a trusted entity), biometric feature and so on. In this
paper, we ask the following question: can the geographical position of a party be one of the credentials?
The geographical position of a party is valuable in a number of natural settings. We give a few examples:

• Position based Secret Communication. Consider communication between different military estab-
lishments. For example, the Pentagon in Washington D.C. might want to send a message (having some
classified information) such that it can only be read by an individual present at the US military base in
South Korea. In a traditional solution, the South Korean military base will have a secret key to decrypt
the message. However, the enemy might try to break into the military base computers to capture this
key. It would be desirable to add an additional layer of security that would guarantee that anyone
reading the message is physically present at the South Korean base.

• Position based Authentication/Signatures. In the above example, suppose the South Korean
military base wants to send some information to the Pentagon. It would be desirable for the Pentagon
to have a guarantee that the message was indeed sent from the geographical position of the military
base.

Indeed, the above list is not exhaustive. One could think about position based access control (where
access to a resource needs to be restricted to certain locations, e.g., a printer or fax machine is accessible
only to people inside some set of offices) and pizza delivery (where the pizza company first wants to verify
that the person placing the order is indeed located at the delivery address he specified). To perform such
“position specific” tasks, we introduce the notion of position based cryptography.

The first natural question that arises is: “Can you convince others about where you are?”. More
precisely, we have a prover who claims be at a geographical position P . There is a set of remote verifiers
(or in other words, a positioning infrastructure) who wish to make sure that the prover is indeed at
position P as claimed (for example, by executing a protocol with that prover). We call the above problem
as “Secure Positioning”. The question of secure positioning is a fundamental one and deals with designing
a system which enables a prover to communicate back and forth with a group of verifiers to give them an
interactive proof of its geographic position.

The problem of secure positioning is well studied in the security community (see e.g., [SSW03, SP05,
Bus04, CH05, CCS06]). The de-facto method to perform secure positioning is based on the time of response
technique where the messages travel with the speed of radio waves which is equal to the speed of light
(this is similar in nature to how the commercial GPS systems work, see section 1.4). At a high level, the
verifiers will send messages to the device and will measure the time taken to receive a response. Although
there have been several proposed protocols for secure positioning, all of them are completely insecure under
the so called “collusion attack”. That is, if a set of (possibly cloned) provers collude together and work in
a controlled manner during the protocol execution, the provers will be able to convince the verifiers that
the verifiers are talking to a prover at position P (even though none of the adversarial provers may be
at P). We in fact show that, unfortunately, such an attack is unavoidable. That is, it is impossible to
have secure protocols for positioning in this Vanilla model (even if one is willing to make computational
assumptions). Hence, we cannot hope to realize most of the meaningful position based tasks.

In light of the above drawbacks, in this paper we explore the intriguing possibility if secure positioning
protocols exist which can resist collusion attacks. In search of an answer to this question, we turn to the
bounded retrieval model (BRM), which is a variant of the bounded storage model (BSM) introduced by
Maurer [Mau92]. Quite surprisingly, this model turns out to be a right model for proving the security

1

of position-based cryptographic tasks. We first construct a protocol for information theoretic secure
positioning in this model. To our knowledge, this is the first protocol which is secure even against collusion
attacks. Although secure positioning is an important step, the full power of position based cryptography
can only be realized if we achieve key exchange with the device at a particular geographic position. Hence
we introduce position based key exchange and present two protocols to achieve it in the BRM. Our first
protocol achieves security against a computationally bounded adversary (in the BRM). In this protocol,
we achieve key exchange between the verifiers and any device at position P that is enclosed within the
tetrahedron formed between 4 verifiers in 3-dimensional space. Our second protocol achieves information
theoretic key exchange between the verifiers and devices at positions P that lie in a specific geometric
region (characterized by a condition that P must satisfy) within the tetrahedron.

Note that we are interested only in verifying the position claim of devices that are within the tetrahedron
enclosed between the 4 verifiers. This is not a limitation, since apriori, we are restricting, by geographical
bounds, the locations where an honest device can be located (such as inside a room, to get access to a
printer or a hard drive). If a device makes a position claim that lies outside of this region, we reject
the claim without any verification. We stress, however, that we do not make any assumption about the
positions of adversaries in the system. In particular, this freedom for the adversarial devices guarantees
that no set of adversaries (some of whom may even be outside of the tetrahedron) can falsely prove that
any one of them is at position P inside the tetrahedron as long as none of them are at position P .

1.2 The Two Models Considered

The Vanilla Model. We now informally describe the Vanilla model. We have a device (also referred
to as the prover) who is located at a position P (where P is a point in a d-dimensional Euclidean space).
There exists a set of verifiers {V1, V2,, Vm} at different points in the d-dimensional space, such that P
lies inside the tetrahedron enclosed by the verifiers. The verifiers are allowed to execute a protocol with the
prover to achieve some task. More precisely, a verifier can send messages to the prover at different points
in time (with a speed up to the speed of radio waves) and also record the messages which are received from
it (along with the time when they are received). The verifiers have a secret channel among themselves
using which they can coordinate their actions by communicating before, during or after protocol execution.
There could be multiple adversaries with possibly cloned devices who share a covert channel and collude
together. This setting is referred to as the Vanilla model.

The Bounded Retrieval Model. The bounded storage model (BSM) was introduced by Maurer in
[Mau92] and has been the subject of much work [Mau92, CM97, CCM98, AR99, Din01, ADR02, DR02,
Lu04, Vad04, MSTS04, DHRS04, DM04a, DM04b, Din05]. Very roughly, this model assumes that there
is a bound on the amount of information that parties (including an adversary) can store. It assumes
the existence of random strings, having high min-entropy, available to the parties at some point in the
protocol. An adversary is allowed to store an arbitrary function of these strings, as long as the length
of the output of the function is not longer than the adversary’s storage bound. A closely related model
to the BSM is the bounded retrieval model (BRM), introduced and studied in various related contexts
by Di Crescenzo et al. [CLW06] and Dziembowski [Dzi06a, Dzi06b]. This model assumes that parties
can store information having high min-entropy, but an adversary can only retrieve part of it. Recently,
Dziembowski and Pietrzak [DP07] introduced intrusion resilient secret sharing where shares of a secret
(stored on different machines) are made artificially large so that it is hard for an adversary to retrieve a
share completely, even if it breaks into the storage machine. We note that in the current work, we build
on the techniques of [DP07]. We extend these techniques and combine them with geometric arguments to
prove the security of our protocols.

In the context of position based cryptography, by bounded retrieval model, we mean the Vanilla model
setting where the verifiers can broadcast information having high entropy (or control a randomness source
which can) such that the adversaries can only retrieve, say, a constant fraction of this information as it

2

passes by at high speed. The assumption that the adversaries cannot retrieve all the information that
goes by seems very plausible in our setting since the information travels at a very high speed (particularly
when, e.g., the verifiers have several sources broadcasting information at different frequencies).

We note that our assumption, in some sense, is actually weaker than what is typically assumed while
working in the bounded retrieval model. Unlike in BRM, we do not need to assume that honest parties
themselves can store the strings that are being broadcast.

1.3 Our Contributions

In this paper, we give the following results towards developing a theory of position based cryptography:

• We begin with a lower bound for the Vanilla model in Section 3. We show that there does not exist a
protocol in the Vanilla model using which a group of verifiers can securely verify the location claim of a
prover. The impossibility is obtained via an explicit attack which does not depend on the computational
power of the parties. To begin with, the lower bound holds if all the parties (i.e., the verifiers, the honest
prover and the adversaries) are given unbounded computational power. Further, it holds even if the
verifiers are given unbounded computational power but the adversaries (and thus the honest prover)
are restricted to being probabilistic polynomial time (PPT) machines (i.e., one may make cryptographic
hardness assumptions). With the impossibility of this most fundamental task, we cannot hope to perform
most other meaningful position based tasks (including position based key exchange) in the Vanilla model.
Capkun et al. [CCS06] propose a protocol in which they assume that the geographical position of the
provers can either be “hidden” (not known to the adversary) or that the provers can move rapidly in
geographical space.

• Given the above severe lower bound, the task of now choosing a model in which protocols for secure
positioning exist becomes a tricky one. One of the main technical contributions of this paper is to connect
the bounded retrieval model to position based cryptography. Remarkably, bringing these seemingly
unrelated ideas together enables us to achieve meaningful and elegant protocols and proofs of security
for position based cryptography.

• In the BRM, we give a protocol for secure positioning (in Section 5) which is provably secure against
any number of (possibly computationally unbounded) adversaries colluding together, as long as the
total amount of information they can retrieve and store is bounded. To our knowledge, this is the first
protocol for positioning which does not fail against collusion attacks. We also describe, in Section 6, how
our protocol for secure positioning can be compiled with an unauthenticated computationally secure
key exchange protocol (like Diffie-Hellman) and a non-malleable zero-knowledge protocol to achieve
computationally secure position based key exchange in the BRM. That is, only a prover who is at a
designated position P will receive the key to be shared (even under the presence of any number of PPT
adversaries that can only retrieve a bounded amount of information).

• We then present a protocol (in Section 7) that does information theoretically secure key exchange between
the verifiers and a device at P . The construction of such a protocol turns out to be surprisingly intricate.
While our secure positioning (and computationally secure position based key exchange) can handle claims
of all positions P that lie within the tetrahedron formed between 4 verifiers in 3-dimensional space, our
information theoretic key exchange protocol can handle positions P that lie in a specific region (which
we characterize, using a geometric argument, by a condition that P must satisfy) within the tetrahedron.
In Appendix H, we show (for a few example cases) that this region is a large fraction of the enclosed
tetrahedron and also provide some figures containing what this region looks like (for various placements
of the 4 verifiers). In order to show the security of our protocol, we need to rely on delicate timing
arguments (based on geometric properties) as well as prove that the protocol of [DP07] is secure even in
the case when multiple parallel adversaries can gain access to the machines and may collude after they
have finished accessing the machines.

3

• Using the above two fundamental protocols as building blocks, we demonstrate that the protocols for
more complex tasks can be readily constructed. We consider the problem of establishing a secure
channel between two devices (such that each device has a guarantee on the geographic position of the
device at the other end). After establishing pairwise secure channels, a group of devices can perform
“position based” multi-party computation, where associated with each input, there is a guarantee about
the position of the device giving that input. We also discuss the setup of a position based public key
infrastructure, where a certificate provides a guarantee about the position (as opposed to the identity)
of the owner of the public key in question (We discuss these applications in further detail in Appendix
8.). We remark that the above is obviously not intended to be an exhaustive list of applications and one
can construct protocols for several other tasks.

• Our techniques simultaneously show the inadequacy of previous works in addressing collusion attacks.
Our impossibility results show explicit attacks on several previously proposed secure positioning pro-
tocols in the colluding adversaries scenario (we however note that many of these works did not aim at
addressing colluding adversaries). Furthermore, we study the model proposed in [CCS06] that makes the
assumption that there can exist verifiers that are “hidden” (whose geographical position is not known
to provers and adversaries). In this model, they provide protocols to achieve secure positioning. Indeed,
our impossibility results do not directly apply to this model. However, we show that the protocols
in [CCS06] are also susceptible to multiple colluding adversaries, although the attack required is more
subtle than in other cases. Our attacks are general and suggest that any protocol in such a model can
be broken against multiple adversaries (we leave generalization of our attacks to impossibility results to
future work).

Our results do not require any pre-sharing of data (cryptographic keys and so on) between the prover
and the verifiers. The only required credential of a prover is its real geographic position.

Open Problem: Other Models for Position Based Cryptography. By turning to the bounded
retrieval model, we are able to provide the first provably secure constructions of cryptographic tasks that
use position as an identity. Given our strong impossibility results in the Vanilla model, an important open
question is: do there exist other natural models that allow us to obtain positive results of similar nature?

1.4 Related Work

Secure Positioning. We remark that the problem of position-based cryptography as such has not been
studied before. However, secure positioning is a well-studied problem in the field of wireless security.
There have been several proposed protocols ([BC94, SSW03, VN04, Bus04, CH05, SP05, ZLFW06]). All
these protocols are susceptible to the collusion attack outlined earlier. One can get around this problem of
multiple cloned adversaries by assuming a setup phase where the verifiers give an unclonable tamper-proof
hardware (having some secret information) to all possible future provers. However in the current work, we
focus on the setting where the only credential needed by a prover is its geographical position.

In [CCS06], a model is considered, that makes the assumption that there can exist verifiers that are
covert or hidden to provers and adversaries. Based on this, they provide solutions to secure positioning.
The protocols in [CCS06] are also susceptible to multiple colluding adversaries, although the attack required
is more subtle than in other cases. We outline this attack in Appendix C. Chiang et al. [CHH09] directly
study the problem of colluding adversaries in the context of secure positioning. They propose a secure
positioning protocol which is the “best possible” in the vanilla model. Their results, together with ours,
imply that the protocol they propose is secure against a collusion of two adversaries. However, there is an
explicit attack if the number of colluding adversaries is three or higher.

A detailed description of related work on secure positioning and work in the BSM/BRM is presented
in Appendix A.

4

Global Positioning System. The problem addressed by the global positioning system (GPS) is comple-
mentary to the one considered in our work. In GPS, there is device trying to determine its own geographic
position with the aid of various satellites (in a non-adversarial setting). The GPS satellites continually
broadcast information in a synchronized manner with the speed of light. The time taken by the informa-
tion broadcast by various satellites to reach a GPS receiver enables the receiver to compute its position
using triangulation techniques.

2 The Model

In this section, we briefly discuss our model. More details can be found in Appendix B. There are three
types of parties in our model: Prover, Verifier and Adversary. We treat time and space as “continuous”
(rather than discrete). We assume that messages travel at a speed equal to that of radio waves (which is
the same as the speed of light). In the beginning, each party (prover, verifiers and adversaries) is given
as input, party’s own position (as a point in the d-dimensional space), the position of all verifiers and the
security parameter κ. The verifiers and the adversaries are given the claimed position of the prover.

The parties can send out the following two types of messages : (a) Broadcast messages: A broadcast
message originating at a position P travels in concentric hyperspheres centered at P in all directions, (b)
Directional messages: A directional message, instead of traveling in all directions, travels only in a specific
direction specified by a sector. Such messages can be sent using directional antennas. Additionally, verifiers
have a private channel among themselves which allows them to talk to each other secretly. Adversaries also
have a private (and covert) channel among themselves which allows them to talk to each other secretly
such that no verifier suspects any adversarial activity. More details about these messages (along with
formal definitions of secure positioning and key exchange) can be found in Appendix B.

The above is our so called Vanilla Model where we prove the impossibility of realizing the most basic
position based task (i.e., secure positioning). We assume that parties can send directional messages in the
Vanilla model in order to prove a strong lower bound. As noted earlier, all our positive results are in the
BRM. Our bounded retrieval model is the same as the Vanilla model except for the following changes:

• Verifiers “possess” a reverse block entropy source (defined formally in Appendix D) capable of generating
strings with high min-entropy, say (δ + β)n, where n is the length of the string (and 0 < δ + β < 1; it
is also called min-entropy rate). By possessing a reverse block entropy source, we mean that either the
verifier itself is capable of generating such a string of high min-entropy, or it has a randomness source
(located at the same point in space as itself) which generates and broadcasts such a string. We do not
assume that the verifiers can retrieve and store the broadcasted string of data themselves. Generating
a lot of entropy is easy; one can think of an “explosion” which generates a lot of noise that can be
measured but not stored.

• There exists a bound βn on the total amount of information the adversaries can retrieve as the informa-
tion passes at a high speed. The retrieval bound βn could be any constant fraction of the min-entropy
(δ + β)n. The honest parties (including the verifiers) are required to have a storage capacity of only
O(κ · log(n)).

• Verifiers and provers cannot send directional messages. We however do not restrict the adversary from
sending directional messages.

• Let X be a string having large min-entropy as before. The sender (which is a verifier) generates X and
sends it out. Any receiver gets to retrieve and store f(X) (for any arbitrary f) in a way such that the
total amount of information which it has retrieved does not exceed the retrieval bounds. In case a party
receives multiple strings simultaneously, it can retrieve information from these strings, in any order, any
number of times (i.e., we do not restrict the adversaries to retrieve information from a string only once)
as long as the total retrieval bound is not violated on the amount retrieved.

5

Observe that the last step above also enforces that any information about a string X (having large
min-entropy) that is sent from one adversary to the other is also bounded (since an adversary gets to
retrieve and resend only f(X)). This rules out simple “reflection attacks” to create a huge storage (where
a pair of adversaries close to each other just keep reflecting the string X to each other hence essentially
storing X thus violating the bounded storage assumption).

Relaxing Assumptions. For clarity of exposition during our positive results, we make the assumption
that the devices can read bits from the string and perform computations instantaneously. We refer the
reader to Appendix B for details on how to remove this assumption.

3 Lower Bound on Secure Positioning in the Vanilla Model

We now show a lower bound for the Vanilla model. We show that there does not exist a protocol in the
Vanilla model using which a group of verifiers can securely verify the location claim of a prover. The
impossibility is obtained via an explicit attack which does not depend on the computational power of the
parties. To begin with, the lower bound holds if all the parties (i.e., the verifiers, the honest prover and
the adversaries) are given unbounded computational power. Further, it holds even if the verifiers are given
unbounded computational power but the adversaries (and thus obviously the honest party) are restricted
to being PPT machines (i.e., one may make cryptographic hardness assumptions). Finally, we present a
few extensions of our lower bound in Appendix C.

Theorem 1 There does not exist a protocol to achieve secure positioning in the Vanilla model.

Proof. Let there be n verifiers {V1, V2,, Vn} that take part in a protocol to verify that a prover is
at a position P . We show that for any protocol, there exists a set of l adversaries (l to be defined later)
who can interact with the verifiers in such a manner that it is impossible to distinguish if the verifiers are
interacting with an adversary or the actual prover.

Consider the hypersphere of radius r around position P such that the distance between Vi and P for all
i be strictly greater than r. In other words, we require that r is such that no verifier is present within the
hypersphere of radius r centered at position P . For all i, let the straight line joining Vi and P intersect the
hypersphere at position Ii. Let there exist l ≤ n such intersection points. We note that l could be less than
n because, two (or more) verifiers Vi, Vj , i 6= j may be such that P, Vi and Vj lie on the same straight line in
d-dimensional space. We place adversaries A1, A2,, Al at points I1, I2,, Il. The verifiers may run an
interactive protocol with the prover in order to verify that the prover is at position P . We show that these
l adversaries together can simulate the execution of the protocol in such a way that the verifiers cannot
distinguish between an execution in which they are interacting with the prover at P and an execution in
which they are interacting with these set of adversaries.

Any verification protocol is a series of messages (along with corresponding times), each being from one
of the n verifiers to the prover or vice-versa. The verifiers can then verify the position of the prover by
analyzing the message they sent and the response they got (along with corresponding times). We give a
strategy for every Am such that the adversaries together can prove that they are at position P .

Let the time taken for any message to travel between Vi and P be Ti. Note that the distance between
Am, for all m, and P is fixed (equal to r). Hence, let the time taken for a message to travel between Am

(for all m) and P be α. Let the set of verifiers that lie on the same straight line that connects Am and P
be Vm. Let the distance between two adversaries Am and Am′ be dist(m,m′) (note that dist(m,m) = 0).

Now during the protocol execution, every Am does the following. Am only listens to messages sent by
all Vi ∈ Vm and ignores messages sent by other verifiers. Am is at a location such that all the messages
sent by Vi (s.t., Vi ∈ Vm) to the point P would be received by it (irrespective of whether Vi sends a
broadcast message or a directional message). Lets say that a message M is received from a verifier Vi. For
every adversary Am′ (including itself, i.e., 1 ≤ m′ ≤ l), Am internally delays M by the duration of time

6

delay(m,m′) = 2α − dist(m,m′), and then sends it to Am′ over the covert channel. Hence, every single
adversary (including Am itself) would receive the message at time 2α (over the covert channel) after the
time when Am receives it from Vi (over the broadcast or directional channel).

For every adversary Am, now assume that the protocol requires the honest prover to send a reply
message, at time t, in directions such that verifiers in set Vm would receive it (note that since all of them
are in a straight line in the same direction of point P , either all of them would receive it or none would).
In that case, Am computes the response message using its view over the covert channel so far and sends
it at time t + α using a directional message (such that only verifiers in Vm receive it). However, Am does
not send any messages to Vi for Vi 6∈ Vm (if the verifiers in other sets are required to receive this message
as well, they will be “taken care of” by other adversaries near them).

The following simple argument shows that every adversary Am runs exactly a copy of the execution
of the prover, only at a time α later. Once this is shown, since it takes time Ti for a prover to send a
response to Vi when Vi ∈ Vm, and it takes Am only time Ti − α, the exact same response will reach Vi at
exactly the same instance of time (irrespective of whether it originated at P or at the location of Am).

We show that the following two statements are true. delay(m,m′) is a non-negative value for all m,m′

and every message which reaches the prover at P will reach all the adversaries after exactly time α. This
will prove that all adversaries run exactly the same copy of the prover, but at a later instance of time.

The first statement follows trivially from triangle inequality. For the second statement, assume that
verifier Vi sends a message to the prover at time t. Let m be such that Vi ∈ Vm and t′ be the time taken for
a message to travel between Vi and Am. The honest prover clearly receives the message at time t + t′ + α.
The adversary Am receives the message at time t + t′ and hence all the adversaries receive it at time
t + t′ + 2α over the covert channel.

This proves that all adversaries run exactly the same copy of the prover, but at an instance α later.
Hence, any execution of a protocol run between the n verifiers and the prover can be simulated by l
adversaries running the protocol with the n verifiers. ¤

We remark here that the above impossibility result holds even in a stronger model where there is a
fixed bound on the number of adversaries, as long as this bound can depend on the number of verifiers in
the system (but not on the secure positioning protocol itself). This motivates our search for alternative
models, where we do not restrict the number of adversaries and still achieve positive results.

4 Preliminaries

Vadhan [Vad04], introduced BSM pseudorandom generators (PRG). Informally, for string X sampled from
a distribution having high min-entropy and for a uniformly random seed K, the distribution of the output
of the BSM PRG (denoted by PRG(X,K)), is statistically close to the uniform distribution of appropriate
length even when given K and A(X) where A is any arbitrary function with bounded output length. We
introduce a relaxation of BSM PRGs, which we call BSM entropy generators (EG). The difference between
a BSM EG and a BSM PRG is that the output distribution of a BSM EG is only guaranteed to have high
min-entropy, and not necessarily be close to the uniform distribution. We refer the reader to Appendix D
for formal details about the definitions, constructions and instantiations.

5 Secure Positioning in the Bounded Retrieval Model

In this section, we propose protocols for secure positioning in the BRM. We shall build upon the primitives
described in Section 4. To make the intuition clear, we first give a secure positioning protocol for 1-
dimension.

7

5.1 Secure Positioning in 1-dimension

For 1-dimension, we employ two verifiers, denoted by V1 and V2 (which send messages with the speed of
radio waves). We assume that the position P being claimed by the prover is located between V1 and V2.
Our protocol is secure against an arbitrary number of adversaries colluding together to prove a position P ,
as long as the total information that these adversaries can store during the protocol is bounded. We let βn
denote the aforementioned retrieval bound. Verifier V1 is assumed to possess a random source X1, X2, · · ·
which is a reverse block entropy source of minimum entropy rate δ + β, where Xi ∈ {0, 1}n.

We shall use a (ε, ψ)-secure BSM entropy generator EG: {0, 1}n × {0, 1}` → {0, 1}m as discussed in
the previous section. We choose the input size ` such that ε + 2−ψ is negligible in the security parameter
κ. An example of a fast BSM EG, which is just a random sampler requiring no computations at all, is
presented in Section D.3. To use the instantiation of EG given in Section D.3, we set ` ≥ (2/δ)κlog(n).

Before the protocol starts, the verifier V1 selects a key K
R← {0, 1}` and sends it to verifier V2 over

the private channel (using a private multicast message). Let t and t′ be the time taken for radio waves to
reach P from V1 and V2 respectively. Verifier V1 sends out X from the reverse block entropy source such
that X has min-entropy (δ + β)n. At the same time, V1 computes EG(X, K) and stores it on its output
tape. Let T be the time at which X reaches P . Verifier V2 sends the key K out at a time such that it
meets X at time T at the position P . More precisely, X and K are sent at times (T − t) and (T − t′) by
V1 and V2 respectively.

At time T , the prover claiming to be at position P evaluates y = EG(X, K) and sends it back to the
verifier V1. Verifier V1 verifies that the string y is received at time (T + t) and that it equals EG(X, K).
If these verifications succeed, the position claim of the prover is accepted and it is assumed to be indeed
at position P . Otherwise, the position claim is rejected.

The protocol clearly satisfies the completeness property since an honest prover at position P will have
both X and K available at time T and hence it can compute y (by asking the hypothetical ITM Penv to
compute the function EG(.,K).) and report it back to V1 by time (T + t). We discuss the security below:

Theorem 2 The 1-dimension secure positioning protocol is secure against an arbitrary number of adver-
saries colluding together, with the total adversary information retrieved bounded by βn.

Proof. Suppose there exists an adversarial strategy with which a set of adversaries, none of which is
at position P , are able to report back the correct y to the verifier V1 at time (T + t) with a non-negligible
probability in the security parameter. We show that the above contradicts the properties of the EG.

We consider the state of the system at time T . X and K are at position P . Let there be g adversaries
between V1 and P and the information they have retrieved about X be S1, S2, ..., Sg respectively. Let S
denote the combined information S1∪S2∪ ...∪Sg. Clearly since K has not yet crossed P , S is an arbitrary
function of X alone. Further, |S| ≤ βn since βn is the total retrieval bound. Now we have the following:

Lemma 1 The string y to be sent to the verifier Vi at time (t + T), can be an arbitrary function of S and
K alone. More formally, given an adversarial strategy to compute y in our setting, there exists a simulator
that outputs y only given S and K (and not the string X).

The above lemma holds because (a) S is the only information stored by the adversaries between V1

and P , (b) there is no adversary at P , and, (c) any information about X between P and V2 at time T
cannot reach V1 by time (t + T).

Hence we have y = A(S, K), where A(., .) is any arbitrary adversarial algorithm. However, given S and
K, using properties of the BSM EG, the probability of an adversary correctly guessing y is upper bounded
by ε + 2−ψ. But ε + 2−ψ is negligible in the security parameter by our choice of `. Thus we have reached
a contradiction. ¤

8

V1

V2

V4

V3

P

K1

X1

X3

X2

•K 1 drawn uniformly at random

from {0,1}m.

•V 1, V2, V3, V4 broadcast K1, X1, X2,

X3 such that they “meet”at P.

•At time T, device at P computes

Ki+1 = PRG(Xi,Ki) for 1≤ i ≤ 3 and

broadcasts K4 to all Vi.

•At time T+t i, Vi verifies if the

response obtained is K4.

•If all verifiers accept, then position

accepted.

Figure 1: Secure positioning protocol in 3-Dimensions

5.2 Secure Positioning in 3-dimensions

We generalize the above protocol to obtain a protocol for secure positioning in 3-dimensional space. βn
is the total adversary information retrieval bound. We use 4 verifiers denoted by V1, · · · , V4 possessing
reverse block sources of minimum entropy (δ + β)n that output strings Xi. Position P being claimed by
the prover is enclosed in the tetrahedron defined by these 4 verifiers. ti is the time taken for radio waves
to reach the point P from verifier Vi. PRG:{0, 1}n×{0, 1}m → {0, 1}m is an ε-secure BSM pseudorandom
generator. We choose the parameters such that ε+2−m is negligible in the security parameter. In order for
the verifiers to themselves compute the response expected from the prover, we first assume that verifiers
can store the Xi values. We later show how this assumption can be removed. The protocol is illustrated
in Figure 1. For further details, refer Appendix E.

The completeness follows from the fact that verifiers can compute K4 from the stored Xi values and
the prover can also compute K4 since all the information required is present jointly at P at time T .
The security of this protocol is proven using techniques from the proof of security of the protocol for
3-dimensional position based key exchange that is discussed in Section 7 (note that position based key
exchange implies a protocol for secure positioning).

We now describe, how to remove the assumption that verifiers can store strings drawn from their
respective reverse block entropy sources. Note that the problem we face when verifiers cannot store the
large strings is that verifiers have no way of verifying the response of the prover. This is because, when
for example, V3 broadcasts string X2, it does not know the key K2 used to compute K3 from X2. We get
around this problem as follows. The verifiers pre-determine the keys K1,K2,K3,K4 that are to be used
at every iteration of the application of the PRG. Now, the expected response of the prover, K4 is known
before protocol execution to all verifiers. The protocol is as follows:

1. V1, V2, V3 and V4 pick keys K1,K2,K3,K4
R← {0, 1}m and broadcast them over their private channel.

2. V1 broadcasts key K1 at time T − t1. V2 broadcasts X1 at time T − t2 and simultaneously also
broadcasts K ′

2 = PRG(X1,K1) ⊕ K2. Similarly, V3 broadcasts (X2, K
′
3 = PRG(X2,K2) ⊕ K3) at

time T − t3 and V4 broadcasts (X3,K
′
4 = PRG(X3,K3)⊕K4) at time T − t4.

3. At time T , the prover at position P computes messages Ki+1 = PRG(Xi,Ki)⊕K ′
i+1 for 1 ≤ i ≤ 3.

The prover returns K4 to all verifiers.

4. All verifiers check that the string K4 is received at time (T + ti) and that it equals the K4 that
they pre-picked. If these verifications succeed, the position claim of the prover is accepted and it is
assumed to be indeed at position P . Otherwise, the position claim is rejected.

9

The completeness of this protocol is as follows. Note that since the verifiers picked K4 before the
execution of the protocol, they can verify the response of a prover without storing any of the large random
strings. To informally argue security of the protocol, note that in this protocol, instead of using the output
of the PRG as an input key in the next round, one treats the output as one secret share of the key to
be used. The other share of this key is broadcast in the clear. Now, if one of the shares of an additive
secret sharing scheme is random, then the secret is hidden. Hence, by the security of the protocol in which
verifiers could store the large random strings, it follows that this protocol is also secure.

6 Computational Position based Key Exchange

Informally, position based key exchange should have the property that if there is a prover at the claimed
position P , then at the end of the protocol, the verifiers should share a uniform key K with it while for a
group of colluding adversaries (none of whom is at P) K should look indistinguishable from a key drawn
uniformly at random. This also implies that in the absence of a prover at position P , such a group of
adversaries should be unable to execute the key exchange protocol on their own to obtain a shared key
with the verifiers. In this section, we show how to compile any 1-round information theoretically secure
positioning protocol SP in our bounded retrieval model along with any unauthenticated key-exchange
protocol KE to obtain an authenticated computational position based key exchange protocol CKE in the
BRM.

Any time of response based 1-round secure positioning protocol SP in the BRM begins with (possible)
messages from verifiers to the prover at P and ends with a response from the prover at P to all or some of
the verifiers (that needs to reach the verifiers within some particular time). For simplicity, we first show
how to construct computational position based key exchange with the assumption that the prover has
the (authentic) public key of the verifiers before the protocol starts. We then show how to remove this
assumption by using techniques based on non-malleable commitments ([DDN00, PR08]).

Let the verifiers generate a public key - secret key pair (pk, sk) of a CCA2 secure public key encryption
scheme [RS91, DDN00] (i.e., a scheme secure against adaptive chosen ciphertext attacks). We assume that
any prover would have access to pk. Let E(pk,m) denote an encryption of a message m with public key pk
and let D(sk, c) denote the decryption of ciphertext c with secret key sk. Let KE be an unauthenticated
key exchange protocol. Our protocol for computational position based key exchange CKE is as follows:

1. First, the prover and an arbitrary verifier Vj carry out the unauthenticated key exchange protocol
KE to obtain shared key k. Let the entire transcript of this protocol be denoted by Tk. At the end
of this protocol, verifier Vj sends Tk to all other verifiers through the private channel.

2. The verifiers then carry out the first message of the secure positioning protocol SP with the prover
at P . Let the response which the prover needs to broadcast to verifier Vi be Ki for all i.

3. For all i, the prover at point P computes ci = E(pk, Tk||Ki) and broadcasts it to Vi.

4. Verifier Vi computes D(sk, ci) and parses the obtained plaintext as T ′k||K ′
i. If the response K ′

i for
all verifiers completes the secure positioning protocol SP successfully, then all the verifiers check if
T ′k = Tk, and if so accept k as the shared secret key. Otherwise, the verifiers reject the response.

The high level intuition behind the security of this protocol is as follows. First, note that the above
protocol CKE is also an information theoretically secure positioning protocol. This is because if an ad-
versary can respond with E(pk, Tk||Ki) to Vi in CKE, then there exists a (computationally unbounded)
simulator that can respond with Ki to Vi in SP. Now, by the security of SP, it follows that for an adversary
to be successful in the CKE protocol, there must also be an honest prover at P sending out an encrypted
message in the last round. Note that by the security of KE, it follows that an adversary which is passive
during the execution of KE between the prover and the verifiers does not obtain any information about

10

key k. Now, an active adversary in KE must modify the transcript Tk (as observed by the prover) to T ′k.
This means that the adversary must also maul the encryption ci to succeed in the protocol and this breaks
the CCA2 security of E.

In order to remove the assumption that verifiers authentically know the public key of the verifiers, we
extend the above idea in the following way. The verifiers and the device at P carry out the first two steps
as in the above protocol. As the response, the device at P sends C(Tk||Ki; r) where C(m; r) denotes a
perfectly binding non-interactive commitment to message m using randomness r. Next the device, using a
non-malleable zero knowledge proof of knowledge protocol, proves to the respective verifiers that it knows
an opening to this commitment. Finally, the prover sends openings to the commitments to the respective
verifiers. The verifiers check the openings and all timings and accept the key k if all these checks succeed.
We refer the reader to Appendix F for a description of the protocol and a formal proof of security.

7 Information theoretic Position based Key-Exchange

In this section, we present an information theoretic protocol to achieve position based key exchange. The
overview of our protocol can be found in Figure 2. We start with some intuition behind our protocol and
the techniques required to prove its security. Let us first consider the case of one dimension. We extend the
protocol for secure positioning in one dimension presented earlier for the case of key exchange as follows.
Instead of only one verifier V2 sending a “large” string (drawn from a reverse block entropy source), both
the verifiers send one large string each. More precisely, the verifier V1 sends a key K1 and a large string
X2 while the verifier V2 sends a large string X1 such that all of them meet at the claimed position P at
the same instance of time T . The computation of the final key K3 is done by the prover as follows: set
K2 = PRG(X1,K1), K3 = PRG(X2,K2).

V1

V2

V4

V3

P

(X4,K1)

(X1,X5)

X3

X2

•Verifiers make sure that position P
satisfies the condition in Lemma 5.

•K 1 drawn uniformly at random from
{0,1}m.

•V 1, V2, V3, V4 broadcast (X4,K1),
(X1,X5), X2, X3 such that they “meet”
at P.

•At time T, device at P computes
Ki+1 = PRG(Xi,Ki) for 1≤ i ≤ 5 and
obtains key K6 as the secret key.

Figure 2: Position based key exchange in 3-Dimensions

To see the intuition behind why this protocol is a secure one dimensional information theoretic position
based key exchange, let us consider the state of the system at time T . Adversaries between V1 and
P (say, adversaries of type I) have stored (K1, A(X2,K1)) while adversaries between P and V2 (say,
adversaries of type II) have stored A(X1). After time T , the adversaries of type I can compute K2 thus
transitioning their state to (K2, A(X2,K1)) while adversaries of type II can only transition their state to
A(X1),K1, A(X2,K1). Thus it seems that to both these types of adversaries together, the final key K3

remains uniform. Indeed it turns out that this intuition is sound and the above is a secure one dimensional
information theoretic position based key exchange protocol.

For three dimensions, we have the prover to be inside the tetrahedron defined by the four verifiers. Now,
one can similarly try to extend the three-dimensional information theoretic secure positioning protocol

11

presented earlier to achieve three-dimensional information theoretic position based key exchange. Simply
add a fourth long string X4 to be sent by V1 in the natural way. However, it turns out that the above idea
is not sufficient because of the fact that there might be adversaries (far) outside this tetrahedron trying to
compute the key exchanged between the verifiers and an honest prover. In the case of secure positioning,
such adversaries would be too late in sending their response to the verifiers (there is no honest prover to
aid these adversaries). However, the key exchange scenario requires that once the verifiers and the honest
prover get a shared key after running the protocol, this key should be uniform to the adversaries even at
a much later point in time.

In contrast to what the intuition might suggest, the first problem we face is that there are certain
regions in the tetrahedron defined by the verifiers such that if the claimed position P lies within one of
these regions, there exists points, other than the point P , in the three dimensional space (but outside the
tetrahedron) where the messages broadcast by the four verifiers all meet simultaneously. Thus, if there
is an adversary located at such a point, it can compute the final key shared between the verifiers and
the honest prover simply by following the algorithm of the honest prover. To overcome this problem,
we characterize such regions of the tetrahedron (see Lemma 5; in Appendix H we further show that the
remaining region is a still a large fraction of the tetrahedron) and exclude them from the area from which
position claims are accepted. That is, given an area from which position claims need to be accepted,
Lemma 5 depicts the acceptable positioning of the verifiers so that they can verify the position claims
from that area.

The second main problem that arises is that even if the messages broadcast by the verifiers do not all
meet at a single point (other than P), there of course could be multiple colluding adversaries which utilize
different information available at multiple different points at different time instances to try to compute
the final key. Indeed, it can be shown that there is in fact an explicit attack on the protocol discussed
earlier (that is, the protocol resulting from a natural extension of our three-dimensional secure positioning
protocol where the verifiers broadcast four long strings) which allows multiple colluding adversaries to
completely recover the key exchanged between the verifiers and an honest prover. To solve the above
problem, we introduce a fifth long string in a similar way as before. Introducing this fifth long string
allows us to construct a geometric argument, along with a reduction argument relying on techniques from
[DP07], that multiple colluding adversaries do not have sufficient information, and our security proofs go
through. Our final protocol is given in Figure 2. Our security proofs are a careful combination of the
following two components:

• A geometric argument which rules out a “nice” way for adversaries to recover the final key exchanged.
In other words, very roughly, there does not exist a strategy for multiple colluding adversaries to
perform the operation Ki+1 = PRGi(Xi,Ki) in sequence for each i ∈ [5] to recover the final key K6.

• A reduction argument relying on the techniques from [DP07] to prove the final security of our proto-
col. In more detail, given the above geometric argument, if there exists an adversarial strategy that
can distinguish the final key K6 from uniform in our protocol, then we can construct an adversar-
ial strategy to contradict the security guarantees of an intrusion resilient secret sharing scheme (as
defined and constructed in [DP07]).

Complete details of our protocol and the security proofs are given Appendix G. The completeness of
the above protocol described relies on the assumption that the verifiers can store the long strings they
generated to be able to compute the final key K6 themselves. In the appendix, we show that, as with
the case of secure positioning, this assumption can be relaxed by using the same secret sharing technique
introduced in Section 5.

12

8 Applications: Constructing Various Position based Cryptosystems

In this section, we consider the case where there are several devices denoted by {P1,, Pn}. The devices
are assisted by a trusted infrastructure (i.e., a set of verifiers) and are trying to perform a position based
task amongst themselves. We show that using position-based key exchange as a fundamental protocol, a
number of protocols for realizing more complex tasks can be constructed in a straightforward manner. We
discuss how to (a) perform position based Multi-party computation, and, (b) setup position based Public
Key Infrastructure.

Position based Multi-party Computation Consider a set of parties at different geographic locations.
Within themselves, they wish to verify each other’s position and run multi-party computation with inputs
possibly dependent upon their positions. For example, a set of parties might wish to see which party is
located at a place having the best weather conditions. The parties are willing to trust each other with the
input supplied (i.e., the weather condition) only if it is clear that each is physically present at the place
whose weather is being supplied.

We assume that every party Pi shares a secret key Ki with the trusted infrastructure (this is done
through position-based key exchange). For all pairs of parties (Pi, Pj), j 6= i, the infrastructure generates
a shared secret key Ki,j and broadcasts EKi(Ki,j) and EKj (Ki,j), where EK(M) denotes an encryption
of M under key K. Thus, Pi and Pj obtain a shared secret key Ki,j and hence a secure channel between
them. Once every pair of parties have a secure and private communication channel, standard generic
multi-party computation protocols ([BoGW88],[GMW87]) can be run to achieve position based multi-
party computation. This enables us to realize virtually every functionality securely.

Establishing a Position-based Public Key Infrastructure In a regular public key infrastructure
(PKI), each party typically has a certificate from a trusted CA. The certificates provide a binding between
the public key and the identities. In other words, a certificate gives a guarantee about the identity of the
owner of the public key in question (thus saying that it is safe to use a particular public key to encrypt
email for a recipient).

In a position based PKI, the positioning infrastructure assign a certificate to each party binding its
position with a public key. The certificates would provide a guarantee that the public key indeed belongs
to a party at position P (rather than a party with an identity I). Hence the certificate (along with the
key pair) could be used for public key encryption and signature based applications where the geographic
positions are valuable. The certificate could also have an expiration time based on the application
(depending upon how often the parties are likely to move).

Acknowledgments. We thank Yevgeniy Dodis for interesting discussions. We also thank Harish
Rajagopalan for the simulations that helped identify the regions within the tetrahedron where information
theoretic position-based key exchange is possible.

References

[ADR02] Yonatan Aumann, Yan Zong Ding, and Michael O. Rabin. Everlasting security in the bounded
storage model. IEEE Transactions on Information Theory, 48(6):1668–1680, 2002.

[AR99] Yonatan Aumann and Michael O. Rabin. Information theoretically secure communication in
the limited storage space model. In CRYPTO, pages 65–79, 1999.

[BBR88] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by public
discussion. SIAM J. Comput., 17(2):210–229, 1988.

13

[BC94] Stefan Brands and David Chaum. Distance-bounding protocols. In EUROCRYPT ’93: Ad-
vances in cryptology, pages 344–359. Springer-Verlag New York, Inc., 1994.

[BoGW88] Michael Ben-or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC ’88: Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing, 2-4 May, Chicago,
Illinois, USA, pages 1–10, 1988.

[Bus04] Laurent Bussard. Trust Establishment Protocols for Communicating Devices. PhD thesis,
Eurecom-ENST, 2004.

[CCM98] Christian Cachin, Claude Crépeau, and Julien Marcil. Oblivious transfer with a memory-
bounded receiver. In FOCS, pages 493–502, 1998.

[CCS06] Srdjan Capkun, Mario Cagalj, and Mani Srivastava. Secure localization with hidden and mobile
base stations. In IEEE INFOCOM, 2006.

[CDD+07] David Cash, Yan Zong Ding, Yevgeniy Dodis, Wenke Lee, Richard J. Lipton, and Shabsi
Walfish. Intrusion-resilient key exchange in the bounded retrieval model. In Salil P. Vadhan,
editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages 479–498. Springer,
2007.

[CH05] Srdjan Capkun and Jean-Pierre Hubaux. Secure positioning of wireless devices with application
to sensor networks. In IEEE INFOCOM, pages 1917–1928, 2005.

[CHH09] Jerry T. Chiang, Jason J. Haas, and Yih-Chun Hu. Secure and precise location verification
using distance bounding and simultaneous multilateration. In David A. Basin, Srdjan Capkun,
and Wenke Lee, editors, WISEC, pages 181–192. ACM, 2009.

[CLW06] Giovanni Di Crescenzo, Richard J. Lipton, and Shabsi Walfish. Perfectly secure password
protocols in the bounded retrieval model. In TCC, pages 225–244, 2006.

[CM97] Christian Cachin and Ueli M. Maurer. Unconditional security against memory-bounded ad-
versaries. In CRYPTO ’97: 17th Annual International Cryptology Conference, Advances in
Cryptology, pages 292–306, 1997.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J. Comput.,
30(2):391–437, 2000.

[DHRS04] Yan Zong Ding, Danny Harnik, Alon Rosen, and Ronen Shaltiel. Constant-round oblivious
transfer in the bounded storage model. In TCC, pages 446–472, 2004.

[Din01] Yan Zong Ding. Oblivious transfer in the bounded storage model. In CRYPTO, pages 155–170,
2001.

[Din05] Yan Zong Ding. Error correction in the bounded storage model. In TCC, pages 578–599, 2005.

[DM04a] Stefan Dziembowski and Ueli M. Maurer. On generating the initial key in the bounded-storage
model. In EUROCRYPT, pages 126–137, 2004.

[DM04b] Stefan Dziembowski and Ueli M. Maurer. Optimal randomizer efficiency in the bounded-storage
model. J. Cryptology, 17(1):5–26, 2004.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In FOCS ’07:
Proceedings of the 48th Annual IEEE Foundations of Computer Science, 2007.

14

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In FOCS ’08:
Proceedings of the 49th Annual IEEE Foundations of Computer Science, 2008.

[DR02] Yan Zong Ding and Michael O. Rabin. Hyper-encryption and everlasting security. In STACS,
pages 1–26, 2002.

[Dzi06a] Stefan Dziembowski. Intrusion-resilience via the bounded-storage model. In TCC, pages 207–
224, 2006.

[Dzi06b] Stefan Dziembowski. On forward-secure storage. In Cynthia Dwork, editor, CRYPTO, volume
4117 of Lecture Notes in Computer Science, pages 251–270. Springer, 2006.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[Lu04] Chi-Jen Lu. Encryption against storage-bounded adversaries from on-line strong extractors. J.
Cryptology, 17(1):27–42, 2004.

[Mau92] Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher. J.
Cryptology, 5(1):53–66, 1992.

[MSTS04] Tal Moran, Ronen Shaltiel, and Amnon Ta-Shma. Non-interactive timestamping in the bounded
storage model. In CRYPTO, pages 460–476, 2004.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci.,
52(1):43–52, 1996.

[PR08] Rafael Pass and Alon Rosen. New and improved constructions of nonmalleable cryptographic
protocols. SIAM J. Comput., 38(2):702–752, 2008.

[RRV02] Ran Raz, Omer Reingold, and Salil P. Vadhan. Extracting all the randomness and reducing
the error in trevisan’s extractors. J. Comput. Syst. Sci., 65(1):97–128, 2002.

[RS91] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In CRYPTO 1991, pages 433–444, 1991.

[SP05] Dave Singelee and Bart Preneel. Location verification using secure distance bounding protocols.
In IEEE Conference on Mobile Adhoc and Sensor Systems Conference, 2005.

[SSW03] Naveen Sastry, Umesh Shankar, and David Wagner. Secure verification of location claims. In
WiSe ’03: Proceedings of the 2003 ACM workshop on Wireless security, pages 1–10, 2003.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. J. ACM, 48(4):860–879, 2001.

[Vad04] Salil P. Vadhan. Constructing locally computable extractors and cryptosystems in the bounded-
storage model. J. Cryptology, 17(1):43–77, 2004.

[VN04] Adnan Vora and Mikhail Nesterenko. Secure location verification using radio broadcast. In
OPODIS ’04: 8th International Conference on Principles of Distributed Systems, pages 369–
383, 2004.

[WF03] Brent Waters and Edward Felton. Secure, private proofs of location. Technical report, Depart-
ment of Computer Science, Princeton University, 2003.

15

[ZLFW06] Yanchao Zhang, Wei Liu, Yuguang Fang, and Dapeng Wu. Secure localization and authentica-
tion in ultra-wideband sensor networks. IEEE Journal on Selected Areas in Communications,
24:829–835, 2006.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Struct. Algorithms,
11(4):345–367, 1997.

16

Appendix

A Related Work

Secure Positioning. The problem of position-based cryptography as such has not been studied before.
However, secure positioning is a well-studied problem in the field of wireless security. There have been
several proposed protocols ([SSW03, SP05, Bus04, CH05]). We note that all these protocols are susceptible
to an attack in which an adversary clones a device (along with any keys and authentication mechanisms
that it may have) and uses it in a controlled manner at various locations (other than the location to be
proved) to falsely prove to the verifiers that it is at the designated position.

One of the earlier techniques used for secure positioning has been the distance bounding protocol
[BC94] that uses time-of-response as a parameter to verify the location of a prover. In this protocol, the
prover and verifier start with random numbers a and b respectively. They exchange the random numbers
bit by bit rapidly. At the end of this exchange, the verifier measures the time taken for the protocol.
Assuming that the bits travel at the speed of radio waves, the verifier’s location can then be verified.
Several improvements of this protocol (with respect to different adversarial models) have been discussed
[SSW03, VN04, Bus04]. These protocols either consider the model where an adversary, in between the
prover and the verifier, plays man-in-the-middle or a model where a single adversarial prover tries to prove
to the verifier that it is at a false location.

Capkun et al. [CH05] give a protocol for secure localization (positioning) that is secure under a single
adversary who tries to falsely prove to the verifiers that he is at the specified location. The protocol works
in d-dimensional space. It is insecure under adversaries who can clone devices. The protocol in [SP05] is
also susceptible to multiple adversaries (having cloned devices) attacking the system. Further, it assumes
that the prover and verifiers share cryptographic keys in advance. [ZLFW06] give a protocol for a prover
to prove its location in the presence of adversaries. These protocols are also not secure in the presence
of multiple adversaries with cloned devices. The protocol in [WF03] makes use of cryptographic setup
assumptions and is also susceptible to multiple adversaries (with cloned devices) attack.

In [CCS06], they consider a model that makes use of covert base stations. These are base stations
whose position is not known to the prover and to the adversaries. Based on this, they provide solutions
to secure positioning with hidden and mobile base stations. The protocol in [CCS06] is also susceptible to
multiple colluding adversaries, although the attack required is more subtle than in other cases. We outline
the attack in Section C.

The Bounded Storage Model. The bounded storage model for private-key cryptography was intro-
duced by Maurer [Mau92]. The efficiency and the security of the private-key cryptosystems in the model
were improved in a sequence of work [CM97, AR99, ADR02, DR02, DM04b, Lu04, Vad04]. Notably in
[ADR02, DR02], it is shown that protocols in the model can have the novel property of “everlasting se-
curity”. That is, the security is maintained even if after the protocol is used, the key is revealed to the
adversary and the adversaries computational and storage capacity becomes unbounded.

The works of [DM04b, Lu04, Vad04] give extremely efficient cryptosystems for this model, with [Vad04]
having nearly optimal key length and storage requirements. The work of [Vad04] introduces the “sample
then extract” paradigm, that is particularly relevant to our work. The idea of the “sample then extract”
paradigm is to use a sampler to select bits from a random source and then use the extractor to convert
these bits to a nearly uniform distribution. This immediately gives rise to locally computable extractors
which [Lu04] shows are very useful for creating cryptosystems in the bounded storage model.

The bounded retrieval model (BRM) was introduced and studied in various related contexts by
Crescenzo et al. [CLW06] and Dziembowski [Dzi06a, Dzi06b]. Dziembowski [Dzi06a] initiated the study
of intrusion resilient key exchange in this model and proposed constructions in the random oracle model.
Cash et al. [CDD+07] subsequently gave a construction in the standard model using a UC-secure password
authenticated key exchange. Other problems studied in this model include password based authentication

17

[CLW06] and forward secure storage [Dzi06b]. Recently, Dziembowski and Pietrzak [DP07] introduced
intrusion resilient secret sharing where shares of a secret (stored on different machines) are made arti-
ficially large so that it is hard for an adversary to retrieve a share completely even if it breaks into a
storage machine. However the reconstruction of the secret can be done by the parties storing the shares
very efficiently by running a protocol. Dziembowski and Pietrzak [DP08] elegantly also use the bounded
retrieval model to obtain provable security of stream ciphers against side-channel attacks.

We note that in the current work, we use the work of [DP07] on Intrusion Resilient Secret Sharing
schemes as a starting point. We build on these techniques and combine them with geometric arguments to
prove the security of our protocol. Furthermore, we also prove that in the protocol of [DP07], even when
multiple adversaries may break into the storage machine in parallel and then collude, the secret will be
statistically close to a uniformly random secret.

B The Model

In this section, we discuss our setting in further detail. All the parties are modeled as Interactive Turing
Machines (ITMs). There are three categories of ITMs: Prover, Verifier and Adversary. Apart from these
ITMs, to model the environment (and the communication channel), we also assume the existence of a
(hypothetical) trusted ITM Penv. All ITMs have local clocks. We assume that the clocks of all verifiers
are synchronized (we stress that this assumption is only for clarify of exposition and can be relaxed). We
do not require clock synchronization between verifiers and the honest prover, but we require that the pace
of their clocks be the same. The adversaries may (or may not) synchronize their clocks and have them
run with a different pace. The trusted ITM Penv can read all local clocks and also maintain its own clock
(which is the global time reference). We treat time and space as continuous (rather than discrete). We
assume that messages travel at a speed equal to that of radio waves (which is the same as the speed of
light).

In the beginning, Penv gives as input to each machine (prover, verifiers and adversaries) its own position
(as a point in the d-dimensional space) and the security parameter κ. Penv also gives every machine
(including the verifiers themselves), the positions and unique identifiers of all the verifiers. The verifiers
and the adversaries are given the claimed position of the prover. Penv can read output tapes and write
messages on input tapes of all machines at the appropriate time as discussed later.

A Verifier ITM can send the following types of messages:

1. Broadcast messages: A broadcast message originating at a position P , travels in concentric hy-
perspheres centered at P . It travels with equal speed in all directions and reaches a position P ′

after time t from the moment of broadcast, where t is the time needed by radio waves to travel the
distance between P and P ′.

2. Directional messages: A directional message originating at a position P , travels in a region
(specified by its angle with respect to the base axes) of concentric hyperspheres centered at P . The
region of the hypersphere can be specified by the angles with respect to all the base axes in d-
dimensional space (for example, in the 2-dimensional case, the Verifier selects a sector of a circle).
The message travels within this region and it reaches position P ′ (that is in this region) after time
t from the moment of broadcast, where t is the time needed by radio waves to travel the distance
between P and P ′. The idea behind permitting such messages is that they can be readily sent using
a directional antenna.

3. Private multi-cast messages: We allow a verifier to talk to other verifiers via a private channel. A
private multicast message is used by a verifier V to send a message to a subset of other verifiers such
that no adversary or honest party gains any information about this message. This can be achieved,
for example, by having a separate (wired) channel shared by the verifiers, or, by sharing a secret key
among the verifiers which can be used to encrypt messages.

18

An Adversary ITM can send the following types of messages:

1. Broadcast messages: This type of message can be used by an adversary to send messages to all
other Turing machines as described earlier.

2. Directional messages: This type of message can be used by an adversary to send messages in a
particular region of a hypersphere as described earlier. An adversary can send such a message by
using a directional antenna.

3. Private multi-cast messages: We assume that adversaries have a covert channel through which
they can communication without the knowledge of the verifiers. This can be done, for example, by
broadcasting messages at a frequency not monitored by the verifiers, or, by encrypting the data with
a shared secret key.

A Prover ITM can send the following types of messages:

1. Broadcast messages: This type of message can be used by a prover to send messages to all other
Turing machines as described earlier.

2. Directional messages: This type of message can be used by a prover to send messages in a
particular region of a hypersphere a described earlier.

To send a message, an ITM writes it to its output tape (along with the message type and any parameters
needed to fully specify its direction/recipients). The trusted ITM Penv instantaneously reads it and runs a
mental experiment (to check the message trajectory) in order to be able to compute the time when other
ITMs should receive it. Penv writes the message to the input tape of the receiving ITMs at the appropriate
time. Along with the message, if the sending ITM is a verifier, Penv also writes its identifier.

The default message sent by any ITM is a broadcast message. If the message is of any other type, we
would specify its type explicitly. We now define secure positioning and position based key exchange.

Secure Positioning. A positioning protocol SP (V er, Prov, d) in d-dimensional space is a set of ITMs
V er = {V1, V2,, Vn} at positions pos1, pos2,, posn respectively, that take as input a claimed position
P ′ of a prover Prov at position P , and jointly return "Accept" after interacting with the honest prover
Prov in the absence of any adversarial parties, if P ′ = P .

A positioning protocol is said to be secure, if for all sets of adversary ITMs {A1, A2,, Ak} at positions
apos1, apos2,, aposk, and for all positions P in the tetrahedron enclosed by pos1, pos2,, posn, with
P 6= aposi, ∀ i, the set of ITMs {V1, V2,, Vn} at positions pos1, pos2,, posn, jointly return "Accept"
with probability ε, where ε is negligible in the security parameter κ.

Position based Key Exchange. A position-based key exchange protocol in d-dimensional space,
KE(V er, Prov, d) is a set of ITMs V er = {V1, V2,, Vn} at positions pos1, pos2,, posn respectively,
that take as input a claimed position P ′, of a prover Prov at position P . After interacting with the honest
prover Prov in the absence of any adversarial parties, the prover and the verifiers (jointly) should output
a key K.

Let K = KE(Prov, V er, d). Let the verifiers output a secret key K after the protocol interaction (with
adversaries and/or possibly the honest prover Prov). The key exchange protocol KE is secure if for all
sets of adversary ITMs Adv = {A1, A2,, Ak} at positions apos1, apos2,, aposk and for all positions
P in the tetrahedron enclosed by pos1, pos2,, posn, with P 6= aposi, ∀ i,

|Pr[Adv(K) = 1]− Pr[Adv(U) = 1]| < ε

where U is a uniform string of appropriate length and ε is negligible in the security parameter κ.

19

As is clear from the above definitions, for the task of secure positioning, either we have an (hon-
est) prover at the claimed position, or we have a set of adversaries none of whom is at the claimed
position. The adversaries take part in a positioning protocol in an attempt to falsely prove the claimed
position. Hence, we do not consider the scenario where there is an honest prover at the claimed position
as well as a set of adversaries (since in this case, the adversaries could just do nothing and the verifiers
will output Accept). However, in the case of key exchange, we consider adversaries along with the honest
prover as well. This is because, in this case, we are concerned with preserving the key privacy of the
prover and verifier and this might be compromised by an adversary that can also observe the messages
sent between the prover and the verifier.

The above is our so called Vanilla Model where we prove the impossibility of realizing the most basic
position based task (i.e., secure positioning). However as noted earlier, all our positive results are in the
bounded retrieval model. More details about that follow.

Our bounded retrieval model is the same as the Vanilla model except for the following changes:

• Verifiers “possess” a reverse block entropy source (defined in Section D) capable of generating strings
with high min-entropy, say (δ + β)n, where n is the length of the string (and 0 < δ + β < 1, it is
also called min-entropy rate). By possessing a reverse block entropy source, we mean that either
the verifier itself is capable of generating such a string of high min-entropy, or it has a randomness
source (located at the same point in space as itself) which generates and broadcasts such string. We
do not assume that the verifiers can retrieve and store the broadcasted string of data themselves.

• There exists a bound βn on the total amount of information the adversaries can store as the infor-
mation passes at a high speed. Adversaries can store arbitrary functions of the information provided
the length of the output of the function is ≤ βn. The retrieval bound βn could be any constant
fraction of the min-entropy (δ+β)n. The honest parties (including the verifiers) are required to have
a storage capacity of only O(κ · log(n)).

• Let X be a string having large min-entropy as before. The message passing for X is now modeled as
follows. The trusted ITM Penv keeps track of the amount of information each ITM has retrieved so
far. The sender (which is a verifier) generating X writes it directly on the input tape of Penv (who
reads it instantaneously). As before, Penv runs a mental experiment to compute the time when other
ITMs should receive it.

Let t be a time instance when an ITM A is supposed to be receiving the strings X1, · · · , Xm (an
ITM may receive multiple strings at the same time). The ITM A retrieves information from the
received strings in several iteration. In each iteration, A specifies an index i and a function f to
Penv. The trusted ITM Penv computes f(Xi) and writes it back to the input tape of A as long as the
retrieval bounds are not violated1. Otherwise Penv truncates the output f(Xi) to the appropriate
size (possibly zero bits) before writing it to the input tape of A. The ITM A is allowed to run
as many iterations as it wants. Given a string X, we stress that every ITM (including the verifier
sending X) has to follow this procedure to retrieve any information about X. Observe that we do
not allow the ITM A to directly retrieve a joint arbitrary function of the strings X1, · · · , Xm.

Relaxing Assumptions. For clarity of exposition during our positive results, we make the following
assumptions. We assume that the devices can read bits from the string and perform lightweight computa-
tions instantaneously. It is easy to take a protocol with these assumptions and “compile” it into another
protocol (which allows time for computations). Consequently, the difference between the allowed time (for
honest devices) and the actual time taken by an adversary for an operation will determine the precision
with which positioning can be achieved. The same technique can also be used to relax the assumption

1For example, if A is an adversary, its information retrieval length will be added to the total information retrieved by all
adversaries and if the adversarial information retrieval bound is not violated, f(Xi) will be written onto the input tape of A.

20

that the honest prover is located exactly at the same point in space as claimed (and thus allow a small
variation in the claimed and the actual positions of the honest prover). The basic idea of this compiler is
as follows.

Without loss of generality, the verifiers wish to allow for a fixed amount of time (say t) for computation
immediately after the honest prover receives a message m. Then after the instance at which the prover
is supposed to receive m (say T), the verifiers and the prover come to a “standstill” for time t (while the
prover is doing the required computation). In other words, all the honest parties (prover and the verifier)
delay sending and receiving rest of the messages of the protocol by time t. Thus, any message that was
supposed to be sent or received at time T + t1 in the original protocol, will now be sent or received at
T + t1 + t. This yields a new protocol in which a computation time t is allowed at a specific point. By
applying this compiler repeatedly, we can achieve a protocol to allow computation time at multiple points
in time.

C Extensions of the lower bound in the Vanilla Model

In Section 3, the generic attack works as long as every adversary knows the source of every message. In
other words, all adversaries know which one of the verifiers sent a particular message. Below, we sketch
how this restriction can also be removed. In addition to the set of adversaries as discussed earlier, there
exists a set of n adversaries {B1, B2,, Bn}, such that Bi is at a distance εi close to Vi, where εi is such
that Bi is the first adversary to receive any message sent by Vi to P . Now, every adversary Bi upon seeing
a message without a label, appends a label to the message. In particular, when Vi sends out a message,
adversary Bi will be the first to receive this (as it is εi close to Vi). Bi will append a label Vi along with this
message and then send the message to other adversaries. This message can be sent using private multicast
message (or in other words, over the covert channel) so that no verifier knows that the adversaries are
appending labels to messages. Now, the attack works as before and the set of l adversaries {A1,Al}
can run the protocol discussed earlier. This proves that Secure Positioning in the Vanilla model (even
with this relaxation) is impossible to achieve.

C.1 Attacks on [CCS06].

The authors [CCS06] present protocols for secure positioning based on covert base stations (i.e., hidden
verifiers) and based on mobile covert base stations (i.e., hidden and moving verifiers). We give a high level
sketch of our attacks on these protocols. We show the attack in the two dimensional case (on a disk of
radius R as in [CCS06]), but these results can be extended to the more general cases. A very high level
description is given below. Please refer Appendix I for more details.

Stationary Covert Base Stations For the stationary base station case, we assume there is a single
covert base station, but the attack can be easily generalized to multiple covert base station. We place
three devices in the positioning region such that they are not in a line. Each device will be able to locate
a sector extending out from it containing the covert base station as follows. The devise will broadcast
legitime positioning interactions messages, however it will only do so on certain sectors extending out from
it using a directional antenna. Thus when a positioning interaction is rejected the device will know that
a covert base station is where he did not broadcast the message. The device will be able to conduct a
binary search on the area and find a thin sector having the covert base station. The three devices will
then combine their information and will be able to bound the area in which the covert base station could
be present.

Mobile Covert Base Stations In this case, we assume that the covert mobile base station will not
come within some radius r of the position. If this is not the case then the mobile base station can simply

21

physically check that the device is in the location. Thus this condition is necessary for this model to be
meaningful.

For this attack, we employ multiple adversaries that are on the circle of radius r around the position
which they are trying to fake. The adversaries will broadcast with the appropriate time delay outward
in a thin enough sector such that for the entire sector, the signal will reach the covert base station at
the appropriate time. If we employ enough adversaries on the circle, we can show through a geometric
argument that for any constant number of randomly moving covert base stations as in [CCS06], this attack
will have a constant probability of success.

D Bounded Storage Model Primitives

In this section, we introduce a new bounded storage model primitive called a BSM Entropy Generator (EG).
We describe its generic construction using averaging samplers. We also briefly recall BSM pseudorandom
generators introduced by [Vad04]. Finally, we describe the instantiation of each of these using fast samplers
and extractors suitable for our purposes.

D.1 Preliminaries

The statistical difference between two random variables X, Y taking values in a universe U is defined to
be

∆(X, Y)
def
= max

S⊂U

∣∣∣Pr[X ∈ S]− Pr[Y ∈ S]
∣∣∣ =

1
2

∑

x∈U

∣∣∣Pr[X = x]− Pr[Y = x]
∣∣∣

We say X and Y are ε-close if ∆(X, Y) ≤ ε.

We define min-entropy of a random variable X as H∞(X)
def
= minx log(1/Pr[X = x]). X is called a

k-source if H∞(X) ≥ k, i.e., for all x, Pr[X = x] ≤ 2−k.
We also define reverse block entropy as follows.

Definition 1 ([Vad04]) A sequence of random variables X1, X2, · · · , each distributed over {0, 1}n is a
reverse block source of min entropy rate α if for every t ∈ N and every xt+1, xt+2, · · · , the random variable
Xt|Xt+1=xt+1,Xt+2=xt+2,··· is an αn-source.

Next, we define a few objects which will be helpful in the construction of our bounded storage model
(BSM) primitives later on.

Definition 2 ([NZ96]) Ext: {0, 1}n×{0, 1}d→{0, 1}m is a strong (k, ε)-extractor if for every k-source X,
the distribution K×Ext(X, K) where K

R← Ud is ε-close to Ud × Um.

Definition 3 ([Vad04]) A function Samp: {0, 1}m→ [n]` is a (µ, θ, γ)-averaging sampler if for every
function f : [n] → [0, 1] with average value 1

n

∑
i f(i) ≥ µ, it holds that

Pr
(i1,··· ,i`) R←Samp(Um)

[
1
`

∑̀

j=1

f(ij) < µ− θ

]
≤ γ.

Samp has distinct samples if for every x ∈{0, 1}m, the samples produced by Samp(x) are all distinct.

Definition 4 ([HILL99]) Let h :{0, 1}ln×{0, 1}n→{0, 1}mn be a P-time function ensemble. For a fixed
y ∈{0, 1}ln, we view y as describing a function hy() that maps n bits to mn bits. Then, h is a universal

hash function if, for all x ∈{0, 1}n, x′ ∈{0, 1}n\{x}, for all a, a′ ∈{0, 1}mn,K R← Uln

Pr[(hK(x) = a ∩ (hK(x′) = a′)] = 1/22mn .

22

D.2 Primitives and Constructions

In this section we will describe the two primitives we will be using in the rest of the paper, namely BSM
entropy generator (EG) and BSM pseudorandom generator (PRG). We also show how to construct them
using samplers and strong extractors.

D.2.1 BSM Pseudorandom Generators

Vadhan [Vad04] introduced BSM pseudorandom generators and discussed their construction using locally
computable extractors. We briefly recall his results in this section.

Definition 5 ([Vad04]) PRG: {0, 1}n × {0, 1}d → {0, 1}m is an ε-secure BSM pseudorandom generator
for storage rate β and min-entropy rate α if and only if for every αn-source X on {0, 1}n and for every
function A: {0, 1}n → {0, 1}βn, the random variable (PRG(X,K), A(X),K) is ε-close to (Um, A(X),K),
where K

R← {0, 1}d.

Theorem 3 ([Vad04], also implicit in [Lu04]) If Ext: {0, 1}n × {0, 1}d → {0, 1}m is a strong (δn −
log(1/ε), ε)- extractor, then for every β > 0, PRG = Ext is a 2ε-secure BSM pseudorandom generator for
storage rate β and min-entropy rate β + δ.

Although the above theorem suggests that BSM PRGs can be constructed using any strong extractor,
it is desirable to minimize the number of bits read2 from the source X. To achieve this goal, Vadhan
introduced locally computable extractors.

Definition 6 ([Vad04]) Ext: {0, 1}n×{0, 1}d→{0, 1}m is t-locally computable (or t-local) if for every
r ∈{0, 1}d, Ext(x, r) depends on only t bits of x, where the bit locations are determined by r.

The use of locally computable extractors in Theorem 3 yields efficient BSM PRGs reading only a small
number of bits from the source. Vadhan shows how to generically construct t-local extractors given a
regular extractor and an averaging sampler.

Theorem 4 ([Vad04]) Let 1 ≥ δ ≥ 3τ > 0. Suppose that Samp: {0, 1}r→ [n]t is a (µ, θ, γ)-
averaging sampler with distinct samples for µ = (δ − 2τ)/ log(1/τ) and θ = τ/ log(1/τ) and that
Ext:{0, 1}t×{0, 1}d→{0, 1}m is a strong ((δ − 3τ)t, ε) extractor. Define Ext′:{0, 1}n×{0, 1}r+d→{0, 1}m

by
Ext′(x, (y1, y2)) = Ext(xSamp(y1), y2).

Then Ext′ is a t-local strong (δn, ε + γ + 2−Ω(τn)) extractor.

D.2.2 BSM Entropy Generators

In this section, we introduce a new BSM primitive which we call a BSM entropy generator (EG). We also
show how to construct it using averaging samplers.

Definition 7 EG: {0, 1}n × {0, 1}r → {0, 1}t is an (ε, ψ)-secure BSM entropy generator for storage rate
β and min-entropy rate α if and only if for every αn-source X on {0, 1}n and for every function A: {0, 1}n

→ {0, 1}βn, the random variable (EG(X,K), A(X),K) is ε-close to (W,A(X),K), where K
R← {0, 1}r and

W is a ψ-source.
2Recall that in bounded storage model, the source X is typically envisioned to be a huge random object which can neither

be accessed nor stored in its entirety.

23

Theorem 5 Let 1 ≥ δ − (1/n) log(1/ε) ≥ 3τ > 0. Suppose Samp:{0, 1}r → [n]t is a (µ, θ, γ) averaging
sampler for µ = (δ − (1/n) log(1/ε)− 2τ)/ log(1/τ) and θ = τ/ log(1/τ). Define EG: {0, 1}n × {0, 1}r →
{0, 1}t such that EG(X, R) = XSamp(R). Then EG is a (ε + γ + 2−Ω(τn), (δ− (1/n) log(1/ε)− 3τ)t)-secure
BSM entropy generator for storage rate β and min-entropy rate β + δ.

Proof. We shall build upon the following lemma given in [Vad04]. This is a refinement of the
fundamental Nisan-Zuckerman lemma [NZ96].

Lemma 2 ([Vad04]) Let 1 ≥ δ ≥ 3τ > 0. Suppose that Samp :{0, 1}r→ [n]` is an (µ, θ, γ) averaging
sampler with distinct samples for µ = (δ− 2τ)/ log(1/τ) and θ = τ/ log(1/τ). Then for every δn-source X
on {0, 1}n, the random variable (Ur, XSamp(Ur)) is (γ+2−Ω(τn))-close to (Ur,W) where for every a ∈ {0, 1}r,
the random variable W |Ur = a is a (δ − 3τ)`-source.

Let A: {0, 1}n → {0, 1}βn be any arbitrary function and let X be a reverse block source of min-entropy
(β + δ)n. As in [NZ96], with probability at least (1− ε) over S

R← A(X), the random variable X|A(X) = S
is a (β + δ)n − βn − log(1/ε) source. Putting δ′ = (δ − (1/n) log(1/ε)), we get that X|A(X)=S is a
δ′n-source. Hence, we have 1 ≥ δ′ ≥ 3τ > 0, µ = (δ′ − 2τ)/ log(1/τ) and θ = τ/ log(1/τ). Applying
the above lemma, (Ur, XSamp(Ur)) is (γ + 2−Ω(τn))-close to (Ur, W) where the random variable W is a
(δ′ − 3τ)t-source. Hence, with probability at least (1 − ε), (EG(X, K), A(X), K) is (γ + 2−Ω(τn))-close
to (W,A(X),K) where K

R← {0, 1}r and W |K is a (δ − (1/n) log(1/ε) − 3τ)t-source. Thus, EG is a
(ε + γ + 2−Ω(τn), (δ − (1/n) log(1/ε) − 3τ)t)-secure BSM entropy generator for storage rate β and min-
entropy rate β + δ. ¤

We note that a BSM PRG can be obtained from any BSM EG by applying a strong extractor to the
latter’s output. We also note that BSM PRG is a special case of BSM EG where the output distribution
is close to the uniform distribution. Hence it is always possible to use a BSM PRG in place of a BSM EG.
However, it is desirable to use the fast “sampler only” based BSM EGs at several places in our protocols
where the efficiency is critical and uniformity of the output is not required.

In this paper, all our constructions of BSM EG will be sampler based. Thus the number of bits read
from the source will be optimal, e.g., equal to the output size t.

D.3 Specific Instantiations of BSM PRG and BSM EG

In this section, we provide a concrete instantiation of each of the two BSM primitives discussed. We shall
primarily be interested in making the primitives as fast as possible. This is in contrast to the usual goal
of minimizing the input randomness and extracting as much entropy from the input source as possible.

In our setting, a particularly attractive choice as a sampler is to just uniformly pick a set of positions
of the input source X. This, though is expensive on the randomness used, is very efficient and in fact
requires no computations at all.

We now instantiate the BSM entropy generator EG: {0, 1}n × {0, 1}r → {0, 1}t with the above sampler.
We let µ = (δ− 2τ)/ log(1/τ) and θ = τ/ log(1/τ). Each possible input to any function f in the definition
of the averaging sampler is a random variable that takes values on [0, 1]. Thus we get directly from the
Chernoff-Hoeffding bound that

Pr
(i1,··· ,it) R←Samp(Ur)

[
1
t

t∑

j=1

f(ij) < (δ − 2τ)/ log(1/τ)− τ/ log(1/τ)
]
≤ 2

−tτ
log(1/τ) .

Thus γ = 2
−tτ

log(1/τ) . Note that in this case, r = t log(n). Now, let the adversarial storage rate be β and
min-entropy rate be β + δ. Setting EG(X, R) = XSamp(R) for the above uniform t-set sampler and using
Theorem 5, we get that EG is a (ε, ψ) = (a + 2−tτ/ log(1/τ) + 2−Ω(τn), (δ − (1/n) log(1/a) − 3τ)t)-secure
BSM entropy generator. Selecting a = 2−(δ/8)n and τ = δ/8, we get ψ = (δ/2)t. Now, given the security

24

parameter κ, we set r ≥ (2/δ)κ log(n) (or t ≥ (2/δ)κ). Thus, given A(X) with |A(X)| ≤ βn and R, the
probability p of an adversary successfully guessing the output y = EG(X, R) can be bounded as follows

p ≤ ε + 2−ψ

≤ 2−(δ/8)n + 2−tτ/ log(1/τ) + 2−Ω(τn) + 2−(δ/2)t

≤ neg(κ) (since n ≥ t ≥ κ)

We now turn towards the instantiation of the BSM pseudorandom generator PRG: {0, 1}n × {0, 1}r+d →
{0, 1}m. We construct it by simply applying a strong extractor to the output of the BSM EG constructed
above. An attractive choice here is to use a universal hash function, which in the light of leftover hash
lemma ([HILL99], [BBR88]) can be seen as a strong extractor. The leftover hash lemma is given.

Lemma 3 ([HILL99]) Let D :{0, 1}t be a probability ensemble that has min entropy at least me. Let ε be
a positive integer valued parameter. Let h :{0, 1}r×{0, 1}d→{0, 1}m be a universal hash function such that
m = me − 2ε. Let W

D←{0, 1}t. Then

∆((h(W,Ud), Ud), (Um, Ud)) ≤ 2−(ε+1).

We let PRG(X, R) = h(EG(X, R1), R2) where R = R1 ◦ R2 and EG be a (ε, ψ)-secure BSM EG
as constructed before using uniform t-set samplers. Setting me = (δ/2)t (=ψ) and ε = (δ/8)t, we get
m = (δ/4)t. Using leftover hash lemma, this yields a (ε + 2−(δ/8)t+1)-secure BSM PRG. Given A(X)
with |A(X)| ≤ βn and R, clearly the probability P of an adversary successfully guessing the output
y = PRG(X,R) is again negligible in the security parameter κ.

Hence, given the reverse block entropy source X ∈ {0, 1}n of min-entropy rate (β + δ) and adversary
storage bound β, the above PRG outputs (δ/4)t bits close to uniform using (t log(n) + d) random bits.

D.4 Other Extractors

The extractor used in the instantiation above is a fast extractor, i.e., a universal hash function. However, at
a few places in our protocols, the extractor phase of the BSM pseudorandom generator (constructed using
samplers and extractors) is performed offline without timing constraints. In such cases, it is desirable to
use an extractor with good asymptotic performance in order to preserve the entropy of the source. Below,
we briefly note a few suggestions for such extractors.

From [Zuc97] we have:

Lemma 4 Let δ, k > 0 be arbitrary constants. For every n ∈ N and every ε > exp(−n/2O(log∗ n)),
there is a explicit strong (δn, ε)-extractor Ext:{0, 1}n×{0, 1}d→ {0, 1}m with d = O(log n + log(1/ε)) and
m = (1− k)δn.

There are extractors from [Tre01, RRV02] that also extract a constant fraction of the min-entropy and
may be employed profitably as well.

E Secure positioning in 3-dimensional space

To securely position a prover in the 3-dimensional space, we shall use 4 verifiers denoted by V1, · · · , V4.
We assume that the location P being claimed by the prover is enclosed in the tetrahedron defined by
these 4 verifiers. The verifiers V1, V2 and V3 are assumed to possess reverse block sources of minimum
entropy (δ + β)n, where βn denotes the total adversary information retrieval bound. Let t1, · · · , t4 be the
time taken for radio waves to reach the point P from verifier V1 · · ·V4 respectively. When we say that
V1, V2, V3, V4 broadcast messages such that they “meet” at P , we mean that they broadcast these messages
at time T − t1, T − t2, T − t3 and T − t4 respectively so that at time T all these messages are at position

25

P in space. We use a BSM pseudorandom generator namely an ε-secure PRG:{0, 1}n×{0, 1}m → {0, 1}m.
We choose the parameters such that ε + 2−m is negligible in the security parameter. Xi denotes a string
drawn at random from a reverse block entropy source. We first assume that verifiers can store these Xi

values. Later, we show how this assumption can be removed. The protocol is given below:

1. V2, V3 and V4 broadcast strings X1, X2 and X3, drawn at random from their respective reverse block
entropy sources at times T − t2, T − t3 and T − t4. V1 broadcasts key K1

R← {0, 1}m at time T − t1.
V1, V2, V3 and V4 pre-compute Ki+1 = PRG(Xi,Ki), 1 ≤ i ≤ 3 from the stored X1, X2 and X3.

2. At time T , the prover at position P computes messages K2 = PRG(X1,K1), K3 = PRG(X2,K2)
and K4 = PRG(X3, K3) in that order. The prover returns K4 to all verifiers.

3. All verifiers check that the string K4 is received at time (T + ti) and that it equals the K4 that they
pre-computed. If these verifications succeed, the position claim of the prover is accepted and it is
assumed to be indeed at position P . Otherwise, the position claim is rejected.

The completeness follows from the fact that verifiers can compute K4 from the stored Xi values and
the prover can also compute K4 since all the information required is present jointly at P at time T .
The security of this protocol is proven using techniques from the proof of security of the protocol for
3-dimensional position based key exchange that is discussed in Section 7 (note that position based key
exchange implies a protocol for secure positioning).

We now describe, how to remove the assumption that verifiers can store strings drawn at random from
their respective reverse block entropy sources. The idea for this is as follows. Note that the problem we
face when verifiers cannot store the large strings is that verifiers have no way of verifying the response of
the prover. This is because, when for example, V3 broadcasts string X2, it does not know the key K2 used
to compute K3 from X2. We get around this problem as follows. The verifiers pre-determine the keys
K1,K2,K3,K4 that are to be used at every iteration of the application of the PRG. Now, the expected
response of the prover, K4 is known before protocol execution to all verifiers. The protocol is as below:

1. V1, V2, V3 and V4 pick keys K1,K2,K3 and K4 drawn at random from {0, 1}m and broadcast them
over their private channel.

2. In order to enable the device at P to compute Ki for 1 ≤ i ≤ 4, the verifiers do as follows. V1

broadcasts key K1 at time T−t1. V2 broadcasts X1 at time T−t2 and simultaneously also broadcasts
K ′

2 = PRG(X1,K1) ⊕K2. Similarly, V3 broadcasts (X2,K
′
3 = PRG(X2, K2) ⊕K3) at time T − t3

and V4 broadcasts (X3,K
′
4 = PRG(X3,K3)⊕K4) at time T − t4.

3. At time T , the prover at position P computes messages Ki+1 = PRG(Xi,Ki)⊕K ′
i+1 for 1 ≤ i ≤ 3.

The prover returns K4 to all verifiers.

4. All verifiers check that the string K4 is received at time (T + ti) and that it equals the K4 that
they pre-picked. If these verifications succeed, the position claim of the prover is accepted and it is
assumed to be indeed at position P . Otherwise, the position claim is rejected.

The completeness of this protocol is as follows. Note that since the verifiers picked K4 before the
execution of the protocol, they can verify the response of a prover without storing any of the large random
strings. To argue security of the protocol, note that in this protocol, instead of using the output of the
PRG as an input key in the next round, one treats the output as one secret share of the key to be used.
The other share of this key is broadcast in the clear. Now, if one of the shares of an additive secret sharing
scheme is random, then the secret is hidden. Hence, by the security of the protocol in which verifiers could
store the large random strings, it follows that this protocol is also secure.

26

F Computational Position Based Key Exchange

In this section, we show how to compile any 1-round information theoretically secure positioning protocol
SP in our bounded retrieval model along with any unauthenticated key-exchange protocol KE into an
authenticated computational position based key exchange protocol CKE in the bounded retrieval model.

Let the verifiers generate a public key - secret key pair (pk, sk) of a CCA2 secure public key encryption
scheme [RS91, DDN00]. Let E(pk,m) denote an encryption of a message m with public key pk and let
D(sk, c) denote the decryption of ciphertext c with secret key sk. Let KE be an unauthenticated key
exchange protocol. Our protocol for computational position based key exchange CKE is as follows:

1. First, the device and an arbitrary verifier Vj carry out the unauthenticated key exchange protocol
KE to obtain shared key k. Let the entire transcript of this protocol be denoted by Tk.

2. At the end of this protocol, verifier Vj sends Tk to all other verifiers through the private channel.

3. The verifiers then carry out the first message of the secure positioning protocol SP with the device
at P . Let the response which the device needs to broadcast to verifier Vi be Ki for all i.

4. The device at point P now computes ci = E(pk, Tk||Ki). The device broadcasts ci to verifier Vi for
all i.

5. Verifier Vi computes D(sk, ci) and parses the obtained plaintext as T ′k||K ′
i. If the response K ′

i for
all verifiers completes the secure positioning protocol SP successfully, then all the verifiers check if
T ′k = Tk, and if so accept k as the shared secret key. Otherwise, the verifiers reject the response.

The high level intuition behind the security of this protocol is as follows. First, note that the above
protocol CKE is also an information theoretically secure positioning protocol. This is because if an ad-
versary can respond with E(pk, Tk||Ki) to Vi in CKE, then there exists a (computationally unbounded)
simulator that can respond with Ki to Vi in SP. Now, by the security of SP, it follows that for an adversary
to be successful in the CKE protocol, there must also be an honest prover at P sending out an encrypted
message in the last round. Note that by the security of KE, it follows that an adversary which is passive
during the execution of KE between the prover and the verifiers does not obtain any information about
key k. Now, an active adversary in KE must modify the transcript Tk (as observed by the prover) to T ′k.
This means that the adversary must also maul the encryption ci to succeed in the protocol and this breaks
the CCA2 security of E.

Theorem 6 Let E be a CCA2 secure public key encryption, KE be a secure unauthenticated key exchange
protocol and SP be a 1-round information theoretically secure positioning protocol against active adver-
saries. Then, CKE described above is a secure position based key exchange protocol in 3-dimensional space.

Proof. We first begin by observing that CKE is an information theoretically secure positioning
protocol. This is because, if there exists an adversary that can respond with ci = E(pk, Tk||Ki) to verifier
Vi within the appropriate time such that Vi accepts ci as a correct response in the CKE security game,
then there exists a (computationally unbounded) simulator that can obtain Ki from ci and respond with
Ki to Vi within the appropriate time in the SP security game and succeed with the same probability.

Now, from the fact that CKE is an information theoretically secure positioning protocol, it follows that
no set of adversaries can succeed in the CKE protocol used as a secure positioning if there does not exists
a prover at P interacting with the verifiers and if the adversaries do not make use of information output
by the prover at P . Now, if the set of adversaries are passive, and do not modify any messages in the
KE protocol, then by the security of unauthenticated key exchange protocol KE, it follow that no passive
computationally bounded set of adversaries have any advantage in predicting any information about shared
secret key k.

27

We now turn to active adversaries who modify messages in the KE protocol. We now show that if
there exists a PPT adversary that can successfully modify a message in the CKE protocol and yet make
the verifiers accept, then there exists a (computationally unbounded) simulator that can succeed in the
secure positioning protocol SP without being present at position P .

In the protocol SP, let mi be the message sent by verifier Vi to the device at P and let Ki be the
response that the device at P must return to Vi within the appropriate time. The set of verifiers in the
security game of CKE is also {V1, · · · , Vr}. Let A1, · · · , Al be the set of adversaries in the security game of
CKE. Without loss of generality, we can assume that Ai responds with E(pk, Tk||Ki) to verifier Vi. For our
proof, we assume that there exists simulator Si at the same geographical position as Ai for all 1 ≤ i ≤ l
and there exists simulator SVi at the same geographical position as Vi for all 1 ≤ i ≤ r. We now consider
the following hybrid experiments.

Hybrid 1: In the first hybrid, in addition to the above simulator, there exists a simulator S at position P .
Initially, one of the simulators at the position of a verifier, say SVj , playing the role of the verifier Vj ,
executes the key exchange protocol KE with the simulator at S. Any adversary on the line between
SVj and P can modify messages in this protocol and the resulting transcript of this protocol is T ′k.
The simulators pick a (pk, sk) pair of the CCA2 encryption scheme. Now, the simulators, using the
verifiers {V1, · · · , Vr} of the SP security game, execute the SP part of the CKE protocol. Si, upon
receiving any message m from a verifier, forwards the message to Ai. Ai may modify bits of this
message to obtain modified message m∗. Note that this happens instantaneously. Si then sends out
message m∗ as the modified message. Simulator S, at position P , upon receiving all the (possibly
modified) messages from the verifiers, computes ci = E(pk, T ′k||Ki) and broadcasts the responses.
Again Si, upon receiving ci, forwards it to Ai. Ai, responds with (a possibly modified) c∗i . Note that
this also happens instantaneously. Si decrypts c∗i to obtain T ′k and K ′

i. Si sends K ′
i to verifier Vi.

Clearly, this is the real game of CKE and the probability with which the simulators succeed in the
SP security game is the same as the probability with which the set of adversaries succeed in the CKE
security game.

Hybrid 2: In the second hybrid, we do exactly as above, except that simulator S, instead of responding
with ci = E(pk, T ′k||Ki) to Vi, responds with ci = E(pk, d) where d denotes a random dummy message.
Again Si, upon receiving ci, forwards it to Ai. Ai, responds with (a possibly modified) c∗i . Note that
this also happens instantaneously. Si decrypts c∗i to obtain T ′k and K ′

i. Si sends K ′
i to verifier Vi.

It follows from the CCA2 security of the encryption E that, assuming a computationally bounded
adversary, the probability of success of the adversary in CKE remains negligibly close to the one in
the previous experiment.

Hybrid 3: In the third hybrid, we do exactly as above, except that no simulator S exists at position P .
Si executes KE with an imaginary simulator S by computing replies of S on its own and delaying
messages to Ai appropriately to finally obtain the possibly modified transcript T ′k. Now, instead of
S sending an encryption ci = E(pk,Ki) to Ai (as the response of S at P), Si sends ci = E(pk, d) to
Ai (Note that the simulators can before hand agree upon the randomness to be used in the protocol
so that each Si can be consistent in its messages to Ai.). Ai responds with c∗i . Si decrypts c∗i to
obtain T ′k and K ′

i. Si sends K ′
i to verifier Vi.

Clearly the probability of the adversary succeeding in this hybrid is negligibly close to the one in
the previous hybrid since the responses and timings of the simulators are consistent with those that
would have been sent by a simulator S at P .

In the third hybrid, note that no adversary exists at position P and yet the verifiers accept in the
positioning protocol SP with non-negligible probability (if the adversaries succeed in the security game of
CKE with non-negligible probability). The theorem follows from the security of the positioning protocol.
¤

28

Protocol without assuming public key infrastructure. We now describe our protocol for com-
putational position based key exchange that does not assume the existence of public key infrastructure.
We show how to compile any 1-round information theoretically secure positioning protocol SP in our
bounded retrieval model along with any unauthenticated key-exchange protocol KE into an authenticated
computational position based key exchange protocol CKE in the BRM.

Let c = C(m; r) denote a non-interactive perfectly binding commitment of message m using randomness
r. Let O(c) denote the opening of a commitment c (namely (m, r)). Let KE be an unauthenticated key
exchange protocol. Let ZK denote a non-malleable zero knowledge proof of knowledge system. Our protocol
for computational position based key exchange CKE is as follows:

1. First, the device and an arbitrary verifier Vj carry out the unauthenticated key exchange protocol
KE to obtain shared key k. Let the entire transcript of this protocol be denoted by Tk. At the end
of this protocol, verifier Vj sends Tk to all other verifiers through the private channel.

2. The verifiers then carry out the first message of the secure positioning protocol SP with the device
at P . Let the response which the device needs to broadcast to verifier Vi be Ki for all i.

3. For all i, the device at point P computes ci = C(Tk||Ki; ri) and broadcasts it to Vi.

4. For all i, the device next gives a non-malleable zero-knowledge proof of knowledge (to the re-
spective verifiers) using ZK for the following statement: “There exists Tk||Ki and ri such that
ci = C(Tk||Ki; ri)”. The zero-knowledge protocols can be run sequentially.

5. The last message of the last ZK protocol must be received by the verifier at some time T ′ and this T ′ is
publicly known to all parties, including the prover. After time T ′, the device sends O(ci) = (T ′k||K ′

i, ri)
to Vi.

6. The verifiers check if the ci values were received in time by Vi, if the ZK protocol finished within
time T ′ and if the opening of ci is to message T ′k||K ′

i such that K ′
i completes the secure positioning

protocol SP successfully. If this is the case, then all the verifiers check if T ′k = Tk, and if so accept k
as the shared secret key. Otherwise, the verifiers reject the response.

The correctness of the protocol is straightforward. The high level intuition behind the security of this
protocol is as follows. Note that the above protocol is also an information theoretically secure positioning
protocol. This is because if a prover can respond with ci = C(Tk||Ki; ri) to Vi in CKE within the appropriate
time, then there exists a (computationally unbounded) simulator that can respond with Ki to Vi in SP
(by breaking the perfectly binding commitment scheme). By the security of SP, it follows that a successful
adversary in the CKE protocol, must make use of an honest prover at P . Note that by the security of KE,
it follows that a passive adversary does not obtain any information about key k. Now, an active adversary
in KE must modify the transcript Tk to T ′k. This means that the adversary must change the commitment
ci (because the perfectly binding commitment is opened later on). Now, if the adversary is to succeed later
on and open the new commitment to a message containing Ki, then he must maul the zero-knowledge
proof to succeed in the protocol and this breaks the non-malleability of the zero-knowledge proof system.
A full proof of security for this protocol will be provided in the final version.

G Information Theoretic Position Based Key Exchange

We shall directly present a protocol to perform position based key exchange in the 3-dimensional
space. We shall use 4 verifiers denoted by V1, V2, V3 and V4. Let these verifiers be at coordinates
(0, 0, 0), (x2, 0, 0), (x3, y3, 0) and (x4, y4, z4) respectively in 3-dimensional space. V1, V2, V3 and V4 are such
that no three of them are co-linear and all of them are not co-planar. Let the position claimed by the
device be P at (a, b, c). We note here that key exchange can be done only in specific regions in space. In

29

Lemma 5, we characterize exactly this region. Let P be at a distance di from Vi and let (a, b, c) satisfy the
inequality given by Equation 1.

All the verifiers are assumed to possess reverse block sources of minimum entropy (δ+β)n Let t1, · · · , t4
be the time taken for radio waves to reach the point P from verifier V1, · · · , V4 respectively.

Let PRG:{0, 1}n×{0, 1}m → {0, 1}m be an ε-secure BSM pseudorandom generator. K1 is a key drawn
from Um and Ki+1 = PRGi(Xi,Ki) for 1 ≤ i ≤ 5. We choose the parameters such that 5ε + 2−m is
negligible in the security parameter. We shall first assume that verifiers can store Xi sampled from the
entropy sources and then show how to remove the assumption.

Let M1 be the message pair (K1, X4) where K1 is a secret key drawn uniformly at random from {0, 1}m.
Let M2 be the message pair (X1, X5), let M3 be the message X2 and M4 be the message X3.

G.1 Key-exchange protocol description

1. Vi broadcasts Mi in such a way that messages M1,M2,M3 and M4 reach P at exactly the same
instance of global time. In other words, let T be the global time at which prover at P should receive
M1,M2,M3 and M4. Then Vi broadcasts message Mi at time T − ti.

2. The prover at P upon receiving all four messages, computes Ki+1 = PRGi(Xi,Ki) for 1 ≤ i ≤ 5.

3. K6 is the computed shared secret key.

We now proceed to the proof of security for this protocol. Our proof relies on work from [DP07] on
intrusion-resilient random secret sharing. We first present the required background on this work.

G.2 Intrusion Resilient Random Secret Sharing Schemes [DP07]

Our main proof is based on the work from [DP07] on Intrusion-Resilient Random-Secret Sharing (IR-
RSS). IRRSS is a secret sharing scheme (of an unknown random message) for a set of players (P =
{P0, · · · , Pa−1}). There is a dealer who sends “shares” of the message to Pi for all i. The adversary can
corrupt a player and look at the memory of this player. The scheme is in the bounded-retrieval model
([CLW06, Dzi06a]) and hence assumes that an adversary can compute and store any arbitrary function
on the memory of the player, but has a bound on the number of bits that he can retrieve. The scheme is
guaranteed to be secure (in other words the secret is indistinguishable from random to the adversary) even
if the adversary were to have temporary access to each of the shares of the players. One can consider the
corruptions coming in rounds, where the adversary can choose some player to corrupt and some function
to compute on that player’s share in each round.

Consider the set of players P. The IRRSS will be an a-out-of-a-secret sharing scheme. There is a dealer
who creates large shares (Xi) such that each player Pi receives Xi ∈{0, 1}n. The random secret will be the
output of a function that requires the players to make ` “loops” in order to compute the secret. A loop is
a sequence of a short messages sent from player Pi to player Pi+1 mod a, starting and ending with player
P0.

In an IRRSS an adversary will be able to adaptively issue corruption requests. However, we imagine
the shares of each player are so large that while an adversary may have temporary access to a players share
they cannot record the entire share. This situation models a player keeping the large random share on
their machines. If an adversary temporarily corrupts a machine, it may not be able to retrieve the share
completely. The properties of the IRRSS will require that for an adversary to compute the secret share,
the adversary will need to corrupt the machines in a sequence that contains ` loops through the players
machines making the exact secret recovery process. We first introduce some notation.

Definition 8 Let || denote concatenation. Let X = (x1, x2, · · · , xn) be a sequence. We say that X is
a subsequence of sequence Y , if there exists (possibly empty) sequences Y1, Y2, · · · , Yl+1 such that Y =
Y1||x1|| · · · ||Yl||xn||Yl+1. We also say that Y contains X.

30

Um denotes the uniform distribution on {0, 1}m and δ(X,Y) denotes the statistical distance between
distributions X and Y . Below we give the functional definition of an IRRSS from [DP07].

Definition 9 An intrusion-resilient random secret sharing (IRRSS) scheme Ξa,` is a protocol between a
dealer and the players in some set P. It consists of the following two algorithms, indexed by the number
of players a ∈ N and some parameter ` ∈ N .

• sharea,` is a randomized algorithm that returns a sequence X1, · · · , Xa of bit-strings, where each Xi

is of length n. The algorithm is executed by the dealer that later sends each Xi to player Pi.

• reconstructa,` is a deterministic algorithm that takes as input a sequence R = (X1, · · · , Xa) (produced
by the share algorithm) and returns Ka+1 ∈{0, 1}ma+1. The reconstructa,` algorithm consists of
al rounds, where in the ith round (for i = 1, · · · , a`) player Pi mod a sends a message to player
Pi+1 mod a. The output is computed by P0.

In our use of the IRRSS scheme ` = 1 and the remainder of the definitions and lemmas from [DP07]
will reflect this. We shall also abuse notation and drop parameters from notation when they are fixed. We
now give the adversarial model for an IRRSS from [DP07].

Adversarial Model. Let Ξ = (sharea, reconstructa) be an IRRSS scheme as above. Consider an ad-
versary A that plays the following game against an oracle Ω. The oracle runs sharea to obtain the values
X1, · · ·Xa. Now, the adversary can issue an (adaptively chosen) sequence corrupt1, · · · ,corrupte of cor-
ruption requests. Each request corrupti is a pair (Pci , hi), where Pci ∈ P, and hi : {0, 1}n → {0, 1}si is
an arbitrary function (given as a Boolean circuit). Note that this boolean circuit can have the history
of the adversary hardwired into it as input. On input corrupti the oracle replies with Hi := h(Xci). We
will say that the adversary chose a corruption sequence C = (Pc1 , · · · , Pcw). An adversary A is a valid
adversary if the sequence R (that was output by the reconstruction algorithm) is not a subsequence of
C. Finally A outputs a guess Ka+1. We say that valid adversary A breaks the scheme with advantage
ε if Pr[Ka+1 = Ka+1] = ε. When we consider adversaries in the IRRSS scheme, we only consider valid
adversaries. We now define a βn bounded adversary.

Definition 10 An adversary A is βn-bounded, if the corruption sequence C = (Pc1 , · · · , Pcw) chosen by
A satisfies the following:

∑w
i=1 si ≤ βn, where si := |Hi| is the length of the output of hi.

We define the security of an IRRSS scheme.

Definition 11 An IRRSS scheme Ξa is (ε, βn)-secure if every βn bounded valid adversary A breaks Ξa

with advantage at most ε.

For more details on Intrusion-resilient (random) secret sharing schemes, we refer the reader to [DP07].

G.3 Proof of Key-exchange protocol

We first introduce some conventions. We distinguish between the (only) two possibilities: an adversary
receiving the strings broadcast by the verifiers and an adversary receiving information from other adver-
saries. When we say that an adversary B directly receives information from a verifier Vj , we mean that
B obtains a broadcast that is made by verifier Vj . When we say that an adversary B receives information
about bit-string Xi from an adversary B′, very informally, we mean that B receives some function of string
Xi from B′ (this function could also depend upon several other strings). This can be defined recursively in
a more precise way. An adversary B can receive information about Xi from an adversary B′ only if B′ had
received information about Xi (either directly from the verifiers or from another adversary) by the time it
sends the information to B. When we say that an adversary receives information about Xi, we mean that
either B received information from an adversary B′ or B directly received information from a verifier.

31

G.3.1 Characterization of points in 3-dimensional space

In Lemma 5 below, given the positions of 4 verifiers, we exactly characterize the regions in 3-dimensional
space for which position-based key exchange is achieved. More specifically, given the geometric coordinates
of the 4 verifiers in 3-dimensional space, we give a condition that the geometric coordinates of position
P must satisfy so that the verifiers can verify the claim of a device at position P . We require this
characterization for the following reason. Since verifiers must broadcast strings such that they all meet at
P at some specific instance of time t, we require a guarantee that these broadcasts do not meet again at
some other point in space at (possibly) a later instance of time. Hence, we need to characterize points P
that precisely prevent this.

Lemma 5 Let V1, V2, V3 and V4 be four verifiers in 3-Dimensional Euclidean space. Without loss of
generality, we assume V1 to be at coordinates (0, 0, 0), V2 at (x2, 0, 0), V3 at (x3, y3, 0) and V4 at (x4, y4, z4).
V1, V2, V3 and V4 are such that no three of them are co-linear and all of them are not co-planar. Let P be
the point at position (a, b, c) which is within the tetrahedron enclosed by V1, V2, V3 and V4. Let the distance
between Vi and P be di for all 1 ≤ i ≤ 4.

Let Mi be the message broadcast by Vi in such a way that messages M1,M2,M3 and M4 reach P at
exactly the same instance of global time. In other words, let T be the global time at which P should receive
M1,M2, M3 and M4. Then Vi broadcasts message Mi at time T − di

c = T − ti where c is the speed at which
radio waves travel in air. (ti is the time taken for any message to travel from Vi to position P .)

Furthermore, assume that the messages M1,M2,M3 and M4 contain strings drawn at random from
reverse block entropy sources and cannot be re-broadcast by an adversary receiving them.

Let
λ1 =

(d2 − d1)
x2

λ2 =
(d2 − d1)(x3 − x2)

x2y3
− (d3 − d2)

y3

λ3 =
(d2 − d1)(x4 − x3)

x2z4
+

(d3 − d2)(y4 − y3)
y3z4

− (d2 − d1)(x3 − x2)(y4 − y3)
x2y3z4

− (d4 − d3)
z4

Let (a, b, c) satisfy the inequality

2d1 + 2aλ1 − 2bλ2 − 2cλ3

λ2
1 + λ2

2 + λ2
3 − 1

≤ 0 (1)

Then P is the unique point at which messages M1,M2,M3 and M4 are all simultaneously available in
3-Dimensional space.

Proof. Since P is at position (a, b, c), we have the following equations by computing the distance of
P from each of the verifiers V1, V2, V3 and V4.

a2 + b2 + c2 = d2
1

(a− x2)2 + b2 + c2 = d2
2

(a− x3)2 + (b− y3)2 + c2 = d2
3

(a− x4)2 + (b− y4)2 + (c− z4)2 = d2
4

We note that the messages M1,M2,M3, M4 were broadcast from the respective verification verifiers in
such a way that they reached P at exactly the same instance of global time. Suppose there exists a point
A at coordinates (x, y, z) in 3-Dimensional space such that M1,M2,M3,M4 reach A at exactly the same
instance of global time. In this case, we note that A must be at a distance d + d1 from V1, d + d2 from
V2, d + d3 from V3 and d + d4 from V4 for some value of d. Furthermore, we note that if such an A exists,

32

then d is positive. If d = 0, then clearly A is at point P and if d < 0 this shows the existence of a point in
3-Dimensional space that is simultaneously closer to V1, V2, V3, V4 than P is, which cannot be true. Hence,
d > 0. Writing the equations of the distances of A from each of the verifiers gives us:

x2 + y2 + z2 = (d + d1)2

(x− x2)2 + y2 + z2 = (d + d2)2

(x− x3)2 + (y − y3)2 + z2 = (d + d3)2

(x− x4)2 + (y − y4)2 + (z − z4)2 = (d + d4)2

Solving for d, we obtain either d = 0 or d = 2d1+2aλ1−2bλ2−2cλ3

λ2
1+λ2

2+λ2
3−1

. From Equation 1, it follows that d ≤ 0
and hence the only point at which M1,M2,M3,M4 are all simultaneously present is point P . ¤

G.3.2 Main proof of Key-exchange protocol

Theorem 7 Let Xi (1 ≤ i ≤ 5) be strings of length n drawn at random from the reverse block entropy
source Si as discussed earlier. Let PRG:{0, 1}n×{0, 1}m → {0, 1}m (1 ≤ i ≤ 5) be an ε-secure BSM
pseudorandom generator. K1 is a key drawn from Um and Ki+1 = PRGi(Xi,Ki) for 1 ≤ i ≤ 5.

Let the prover be at position P in 3-dimensional space such that P satisfies the condition in Lemma 5.
Let verifiers be V1, V2, V3, V4 in 3-dimensional space and let the time taken for signals to travel from Vi to
P be ti. V1 broadcasts K1, X4 at time T − t1, V2 broadcasts X1, X5 at time T − t2, V3 and V4 broadcast
X2 and X3 at times T − t3, T − t4. Let DK6 denote the distribution of key K6 over the randomness of
K1, X1, · · · , X5. Then for any adversary B (who can control a set of adversaries, with total data retrieval
bound βn, none of whom is at position P), δ(Um, DK6) ≤ 5ε.

Proof. The proof at a high level will be as follows. For every adversary B that can distinguish key
K6 from a key drawn from Um with advantage > 5ε, we shall construct a βn-bounded valid adversary A
that breaks the security of an (5ε, βn) IRRSS scheme of [DP07] with advantage > 5ε 3.

Consider an adversary B that distinguishes key DK6 from Um. This adversary obtained information
from a (possibly empty) set of adversaries at various positions in 3-dimensional space and from (possibly)
the verifiers directly. Let the set of adversaries at various positions in 3-dimensional space be denoted
by B1,B2, · · · ,Br. Now, consider those adversaries who use information only received directly from the
verifiers (V1, V2, V3, V4) to compute any information and do not receive any information from other ad-
versaries (Note that adversaries who compute some function by themselves upon receiving information
directly from the verifiers alone and then receive further information from the verifiers are also not in
this set of adversaries. We will deal with such adversaries later.). Let these adversaries be denoted by
B′1,B′2, · · · ,B′p. At a high level, we shall prove the main theorem as follows.

For every adversary B′i, we shall construct a corresponding valid adversary A′i for the IRRSS scheme
that can compute any information that B′i can compute (Lemma 7). Next, given any two adversaries Bi

and Bj , along with their corresponding adversaries Ai and Aj in the IRRSS scheme, we shall construct a
valid adversary Aij for the IRRSS scheme that will represent the joint information that can be computed
by adversaries Bi and Bj (Lemma 8). Finally, given an adversary Bi that takes as input the output from
another adversary Bj (with corresponding adversary Aj) and receives information directly from a subset
of the verifiers, we show how to construct the corresponding adversary Ai (Lemma 11). Since B is just
an adversary that computes information from a set of adversaries at various positions and (possibly) from
the verifiers directly, these processes together will give us a recursive procedure to construct adversary A.

The corresponding IRRSS scheme that we will construct is as follows. In our setting a = 6. We have
the IRRSS scheme Ξ with players P0, · · · , P3. The random secret that we will be sharing is K6 ∈ {0, 1}m.

3We note here that the adversaries are not computationally bounded.

33

As before, PRG:{0, 1}n×{0, 1}m → {0, 1}m (1 ≤ i ≤ 5) is an ε-secure BSM pseudorandom generator. The
IRRSS scheme Ξ is constructed as follows:

• share: Choose K1 ∈{0, 1}m uniformly at random and sample X1, · · · , X5 ∈ {0, 1}n at random from
their respective reverse block entropy sources. Player P0 gets K1 and X4. P1 gets X1 and X5. P2

gets X2 and P3 gets X3. The random secret K6 is computed using the following procedure: For
i = 1, · · · , 5 let Ki+1 := PRG(Xi,Ki).

• reconstruct(K1, X1, · · · , X5): The players execute the following procedure:

1. Player P0 sends secret K1 to P1; P1 sends K2 = PRG(X1,K1) to P2

2. P2 sends K3 = PRG(X2, K2) to P3; P3 sends K4 = PRG(X3,K3) to P0

3. P0 sends K5 = PRG(X4, K4) to P1; P1 computes and outputs the key K6 = PRG(X5,K5)

Lemma 6 The IRRSS scheme Ξ is (5ε, βn)-secure.

Proof. This scheme is just an IRRSS scheme as in [DP07] where P0 holds K1 and X4, P1 holds
X1||X5, P2 holds X2 and P3 holds X3. P1 outputs the final key K6 where Ki = PRG(Xi−1,Ki−1). It
is (5ε, βn)-secure against any adversary B′ for which (P0, P1, P2, P3, P0, P1) is not a subsequence of the
corruption sequence C ′ (from [DP07]). ¤

We now prove the main three lemmas (Lemmas 7, 8 and 11) that will prove the security of our protocol.

Lemma 7 For every adversary B′i that directly receives information from a subset of the verifiers
{V1, V2, V3, V4}, simultaneously at point and time (L0, T0), (but does not receive any other information)
and outputs any string λ with probability pλ in the key-exchange protocol, there exists a valid adversary A′i
(with corruption sequence C ′

i) in Ξ that outputs the same string λ with probability ≥ pλ.

Proof. Consider adversary B′i. From Lemma 5, we know that B′i cannot simultaneously directly
receive information from all verifiers. We note that Pt (0 ≤ t ≤ 3) hold exactly the same information
as the information sent by Vt+1. Since B′i does not receive information from other adversaries, the only
information it can possess is at the most information from 3 out of the 4 verifiers or in other words the
corruption sequence of A′i will not contain at least one Pt (0 ≤ t ≤ 3). Without loss of generality, assume
that B′i does not get information from V4. Since B′i can only access one string at a time, the sequence
in which B′ accesses the strings can be written as a permutation of the elements of the set (P0, P1, P2).
Let SB′i denote this sequence. Then the corruption sequence of A′i is SB′i . Note that A′i can compute any
information computed by B′i and hence Lemma 7 holds. ¤

We say that an adversary Ai is a corresponding adversary for adversary Bi if for adversary Bi that
outputs any string λ with probability pλ in the key-exchange protocol, Ai is a valid adversary (with
corruption sequence Ci) for IRRSS Ξ and outputs the same string λ with probability ≥ pλ.

Lemma 8 Let Bi and Bj be any two adversaries in the key-exchange protocol. Let Ai and Aj be their
corresponding adversaries respectively. Let Bij be any adversary in the key-exchange protocol that takes as
input only the outputs of Bi and Bj (and does not directly receive information from any of the verifiers).
Then there exists an adversary Aij that is a corresponding adversary for Bij.

Proof. Let SBi and SBj be the corruption sequences of adversaries Ai and Aj respectively. We
shall show how to combine these corruption sequences in order to obtain the corruption sequence of
adversary Aij . We know that P0, P1, P2, P3, P0, P1 is not a subsequence of SBi . Let J i

0 be the first
point in SBi that is a P0. Let J i

1 be the first point after J i
0 in the sequence that is a P1 and so on.

(J i
4 is the first point in the sequence after J i

3 that is a P0.) Let W i
t be the corruption sequence be-

tween J i
t−1 and J i

t (with W i
0 being the corruption sequence before J i

0 and W i
5 being the corruption se-

quence after J i
4). Now, SBi can be written as follows W i

0||J i
0||W i

1|| · · · ||W i
4||J i

4||W i
5. Note that a valid

34

corruption sequence will not contain J i
5. Similarly, SBj can also be written in the above format as

W j
0 ||J j

0 ||W j
1 || · · · ||W j

4 ||J j
4 ||W j

5 . To combine two corruption sequences, write the new corruption sequence
of Aij as SBij = W i

0||W j
0 ||J i

0||J j
0 ||W i

1||W j
1 ||J i

1||J j
1 || · · · ||W i

5||W j
5 .

We first note that if SBi and SBj are valid corruption sequences, then SBij is also a valid corruption
sequence. We are only left with showing that Aij can compute any information that can be computed by
Bij . To see this, we note that Aij internally can simulate the information provided by both Bi and Bj

by just looking at those parts of the corruption sequence that correspond with SBi and SBj respectively.
This is because information provided by Bi and Bj to Bij is bounded information and can be computed
in parallel while reading the corruption sequence SBij by Aij . Now, Aij can run the same algorithm that
Bij runs to output string λ, and output the same string λ with probability ≥ pλ. Hence, adversary Aij

can compute any information that can be computed by Bij and adversary Aij is a valid adversary (with
a valid corruption sequence) in Ξ. Hence Aij is a corresponding adversary for Bij . ¤

The only case we are left with is the case when an adversary Bi receives information from an adversary
Bj as well as directly receives information from a verifier. Without loss of generality, we can assume that
Bi receives information only from one adversary Bj as the case when Bi receives information from multiple
adversaries can be combined first using Lemma 8. Before we discuss this case, we first present two lemmas.

Lemma 9 In Lemma 8, let t be defined as the largest integer such that either J j
t exists in SBj or J i

t exists
in SBi. Then, t is the largest integer such that J ij

t exists in SBij .

Proof. The above lemma follows from the construction of SBij in Lemma 8. We note that the value
of t can increase only if Bij directly receives information from some verifier. ¤

Lemma 10 Let h(Xi, ·) be information that an adversary Bi receives or computes at time T0. Then, Bi

cannot directly receive information Xi from a verifier at any time T1 > T0.

Proof. This follows from triangle inequality. ¤
We now consider the case when an adversary Bi receives information from an adversary Bj as well as

directly receives information from a verifier.

Lemma 11 Let Bi be an adversary in the key exchange protocol that receives information from one adver-
sary Bj (with corresponding adversary Aj with corruption sequence SBj) and directly receives information
from a subset of verifiers from the set {V1, V2, V3, V4}. Let t be the largest integer such that J i

t exists in
SBi. Then t < 5.

Proof. Assume for contradiction that there exists an adversary Bi at some point in the key exchange
protocol with t = 5. This means that there must have existed an adversary Bj at some point when t = 3
for the first time (There may exists many such adversaries; the following argument will apply for all such
adversaries.). Consider this adversary. Note that at the position of this adversary, the string with X3 is
present at this instance of time (since t = 3 for the first time). Now since t = 3, this means that Bj has
already seen information about K1 and X1. Hence, the strings with M1 = (K1, X4) and M2 = (X1, X5)
were seen by Bj at an earlier instance of time or are present at this instance at the position where Bj is.
If one of the strings (M1 or M2) were seen by Bj at an earlier instance, then by Lemma 10 it follows that
t cannot become 5 for any adversary in the system (as any information from this adversary cannot be
jointly present either with X4 or with X5). If both the strings M1 and M2 are currently present at this
point, then by Lemma 10, we have that the adversary could not have seen M1 or M2 at an earlier instance
of time. Hence, he receives information from M1 and M2 for the first time at this point. This means that
X2 is also present at this point at the same instance (since otherwise t cannot become 3). However, this
cannot be the case by Lemma 5 and 10. Hence, t could not have been 3 at this point. Hence in Bi, the
value of t < 5. ¤

35

We complete the proof of security of our protocol by showing that if there exists an adversary B in the
key-exchange protocol that can distinguish DK6 from Um, then there exists a corresponding adversary A
in Ξ that can distinguish K6 from a key drawn from Um. Given an adversary B, we construct adversary
A recursively using the constructions in Lemmas 7, 8 and 11. Through the proofs of Lemma 7, 8 and 11
it follows that A can compute any information that B can. Since A runs exactly the same algorithm as B
and accesses the same information as B, it also follows that the total number of bits retrieved by A is the
same as B which is less than βn. Therefore, A is a valid adversary (with a valid corruption sequence) in
Ξ, and hence the probability with which B can distinguish DK6 from Um is 5ε which is negligible in the
security parameter. ¤

We note that one can remove the assumption on verifiers storing the large random strings by using
the same technique described in Section 5 on secure positioning. We can modify the above proof to argue
security of this protocol. Note that in this protocol, instead of using the output of the PRG as an input
key in the next round, one treats the output as one secret share of the key to be used. The other share of
this key is broadcast in the clear. Now, if one of the shares of an additive secret sharing scheme is random,
then the secret is hidden. Hence, by the above security proof, it follows that this modified protocol is also
secure. More details will be provided in the full version of this paper.

H Identifying regions in 2-Dimensional and 3-Dimensional space where
Key exchange is possible

We shall now prove that there exists a large region within three points in 2-Dimensional space such that
any point P within this region is a unique point where M1,M2,M3 are available simultaneously. Thus, a
natural variant of our 3-dimensional protocol works for key exchange in 2-dimensions for a claimed point
in that region. We shall consider the special case when the three points form an isosceles right angle
triangle. Without loss of generality assume that the three verification verifiers in 2-Dimensional space are
given by V1 at (0, 0), V2 at (a, 0) and V3 at (0, a). In the case of 2-Dimensions the corresponding condition
(analogous to Equation 1 in the 3-Dimensional case) we need to check is given by the following expression:

(d2 − d1)2

x2
2

+ (
1

x2y3
(x2(d3 − d1) + x3(d2 − d1)))2 − 1 < 0 (2)

Substituting values of x2 = a, x3 = 0 and y3 = a in Equation 2, we obtain (d2− d1)2 + (d3− d1)2 < a2.
We shall now identify a region within the three verification verifiers where this condition is satisfied.
Consider the triangle formed by the three points K1 at (λ, λ), K2 at (a− λ, λ) and K3 at (λ, a− λ) with
a
4 < λ < a

2 . We claim that any point P inside this triangle satisfies Equation 2.

Proof. We note that for any point P at (a, b) inside the triangle formed by K1,K2 and K3,
a, b ≥ λ. Hence we have d1, d2, d3 ≥

√
2λ. The point in the triangle at maximum distance from V2 is K3.

Hence we have d2 ≤
√

2(a − λ). Similarly d1, d3 ≤
√

2(a − λ). Substituting these bounds in Equation 2,
we obtain a

4 < λ < 3a
4 , which is satisfied by our assumption on λ 4. ¤

Consider four verification verifiers V1, V2, V3, V4 in 2-Dimensional space at points (0, 0), (a, 0), (0, a) and
(a, a). Now consider the square bounded by four points K1,K2,K3,K4 at (λ, λ), (a− λ, λ), (λ, a− λ), (a−
λ, a − λ) with a

4 < λ < a
2 . For any point P inside the square bounded by K1,K2,K3,K4, P and V2, V3

along with either V1 or V4 as the third verifier satisfy the condition required.
Below we give a few examples of the geographical region within a triangle (in the 2-Dimensional case)

and tetrahedron (in the 3-Dimensional case) where secure position-based key exchange is possible. The
region in red marks the area where secure position-based key exchange is possible.

4We require λ < a
2

so that the three points will form a triangle.

36

Figure 3: 2 Dimensions Equilateral Triangle

Figure 4: 3 Dimensions Example 1

 Figure 5: 3 Dimensions Example 2

Figure 6: 3 Dimensions Example 3

I Attacks on [CCS06]

To position a device securely in the presence of multiple adversaries holding cloned devices, Capkun et
al. [CCS06] propose two solutions: the first, based on “covert” (or “hidden”) base stations and the second,
based on mobile base stations. In the first model, there exists base stations that remain silent on the
network and only observe signals. These base stations enable a verification authority to determine the
position of a device. The protocol is secure under the assumption that adversaries cannot determine or
“guess” the location of these hidden base stations. The second model is based on base stations that
constantly move within the network. The positioning is based on the assumption that since the base
stations move randomly, the adversary nodes cannot pre-determine the position of the base stations.

We now take a closer look at the above protocol [CCS06] for secure positioning in the presence of
multiple adversaries. As noted above, Capkun et al. [CCS06] consider a model that makes use of base
stations that may be of two types: stationary hidden base stations or mobile base stations. In stationary
hidden base stations, the main assumption is that an adversary cannot determine or guess the position of
the base station. In mobile base stations, the main assumption is that an adversary cannot pre-determine
the position of the base station as the base station moves randomly within the network. In both models,
they assume that the adversary may have directional antennas, which is precisely the model we consider (see
Page 2, Section II.B: Attacker model [CCS06]). The protocols of [CCS06] are given in both infrastructure-
centric service model (the infrastructure computes the position of a device) and the node-centric service
model (the infrastructure verifies a position claimed by the device). In this paper, we show both the
protocols in [CCS06] to be insecure in common situations. We emphasize that we are able to compromise
the security of the protocols in either of these models so long as the following conditions are satisfied.

37

Stationary hidden base stations: In the case of stationary hidden base stations we show that the
adversaries can determine the position of the hidden base stations in certain situations. In order to carry
out our attack, we require that the following two conditions hold.

• First, we require that the adversaries receive feedback on whether their position was accepted or
rejected by the positioning infrastructure (in the case of node-centric positioning) and that the
adversaries receive their position (in the case of infrastructure-centric positioning). Indeed, if this is
not the case, then it means that there is no difference between an adversary who lies and claims the
wrong position and a participant that is at the right position. Thus, any protocol where there is no
difference in the outcome appears to be useless. We argue that this condition is essential in many
situations that we discuss below.

• The second condition that we require is that the protocol can be used several times. More specifically,
we require that the adversary can make a O(log(1

δ)) number of queries in total even if some of the
queries are rejected by the infrastructure. The value δ represents the precision with which the
adversary wishes to locate the hidden base station. More precisely, it is the radius within which the
adversary wishes to identify that a hidden base station exists. We emphasize that we only require
an order of a logarithmic number of queries (since we are able to use binary search techniques rather
than exhaustive search). Indeed, protocols that can be used only a few times and then must stop
operations are not particularly useful, since in general we wish to design protocols that remain
secure even if used multiple times. Below, we discuss further why this condition is essential in many
applications.

If these two conditions hold, we first show that the assumption made by [CCS06] (that adversaries
cannot determine the position of hidden base stations) is incorrect. We give an attack that allows the
adversary to compute the position of a hidden base station with arbitrarily small error. In fact, our attack
makes use of the secure positioning protocol in a black-box manner (i.e., is independent of the actual
functioning of the hidden base station protocol). Therefore, it generalizes to any protocol for positioning
that may be based on the assumption that base stations can be “hidden”. Hence, we show that the “hidden”
base station assumption is invalid and positioning protocols should not be based on this assumption.

Neither of the necessary conditions for our attacks were explicitly forbidden by the original protocols
of [CCS06]. The validity of these conditions seems to be outside the scope of actual protocol and will be
determined by the situation that the protocol is used in. Indeed in many common deployments of the
positioning protocol, it will be the case that these conditions are inherently true.

The first condition of requiring an accept or reject be known by the adversary is reasonable in many
application of the positioning protocol. One simple example is a device trying to access a resource (eg.
a printer) and is given access to the resource only if it is within a specified range of the resource. An
adversary will explicitly know whether his position was accepted or rejected simply by knowing whether
it was granted access to the device. Another example where this condition seems inherent is using the
positioning infrastructure to create an ad-hoc network. In this case the device will know whether its
position was accepted by whether it becomes part of the ad-hoc network or not. More generally it seems
that if this protocol is used as part of a larger protocol where the nodes will have some interaction after
they are positioned, there is a strong possibility that the node will know whether its position was accepted
or rejected even without getting an explicit accept or reject message.

The second condition of the adversaries needing to make a small number of queries, even if some of
the queries result in “reject”, is again reasonable and possibly inherent in many situations in which the
protocol may be deployed. One possible “fix” to avoid this attack is to forbid a node from making any
more positioning attempts if its position was rejected once (or a threshold number of times). We emphasize
that this is not the protocol originally given in [CCS06] and adding this condition is already a “fix” to
their protocol. However, this fix seems unreasonable in the event that a node’s attempt is rejected due to
communication or other errors in the system. Also if the protocol were changed as suggested, the adversary
would now have an easy denial of service attack by blocking or modifying part of an honest party’s signal

38

so that the honest party fails in a positioning protocol. This attack would lead to a ban on an honest user
in the system.

Furthermore, even with this fix to the original protocol given in [CCS06], it still may not be possible
to limit the number of adversarial queries below the required number needed to carry out such an attack.
Since the attack only requires a small number of queries, it may be the case that the attack could be carried
out by a number of adversarial nodes, equal to the required number of queries (which is not unreasonable
since the number of required queries is low). In such a situation each adversary would only need to make
a single query and then combine their information. This is very reasonable in a situation where there are
many nodes in the system or there is a high turn around on the number of nodes entering and leaving the
system. We also note that these are stationary positioning stations and it may be the case that we want
to use this infrastructure for a long time (e.g., years). In this situation, it seems very reasonable that an
adversary would be able to carry out the this attack.

A concrete example of where this attack would be possible is granting resource access to a device. It
could easily be the case that the number of users in the system far exceeds the number of queries needed
to locate the hidden base stations. In such a case, the fraction of corrupted users would only need to be
small. Or if the users that are able to access the device change over time, it could be possible to locate
the hidden base stations over a period of time.

These are the only conditions that are required for the attack. While it seems more natural that
feedback on whether a query was accepted or rejected would be available in the node-centric model, even
in the infrastructure-centric model it seems plausible that a device gets back a response on its computed
position. Now, if an adversarial node is trying to spoof a particular position, then by the response received
it can check if its spoofing was successful or not.

If these conditions are not met, then the first attack on positioning in stationary hidden base station
model will not be successful. However we still feel it is important that these attacks be brought to the
attention of the security community. These attacks throw light on some situations where the positioning
protocol will be insecure. These situations seem very natural and are within the model proposed by
[CCS06]. These attacks also bring to light the “fixes” that could be necessary in many situations where
the infrastructure must ban a node if it gets a reject from the infrastructure. Unless someone implementing
this protocol knows of this necessary fix, they may not build it into their protocol resulting in a security
loophole in the system. Further, since the attack is independent of the actual positioning protocol, this
shows an inherent drawback in the assumption that base stations can be “hidden” from adversaries. We
show that this is not a valid assumption to make to obtain a secure positioning protocol.

Since this attack in within the model given by [CCS06], it also raises a concern that the security analysis
presented in [CCS06] is not sufficient. While the conditions described above are sufficient to lead to an
attack on the protocol, they may not be necessary and other security vulnerabilities may exist.

Mobile hidden base stations: In our second attack (independent of the first), we show that a set of
adversaries can spoof a location in the given positioning protocol in the mobile base station model [CCS06].
Here, we show that for an adversary to have a “low” probability of spoofing a location, the number of
mobile base stations required in the infrastructure is very large. This shows that the secure positioning in
this model may well be impractical.

This location spoofing attack has no additional conditions for its success. For analysis, the only
necessary condition is that there exists a circle (centered around the location which the adversaries want
to spoof), within which the mobile base stations do not enter during the protocol execution. We believe
this to be a condition that is inherently true in all interesting secure positioning protocols for the following
reason. If there is no small circle that the mobile base stations do not enter, then the task of secure
positioning becomes trivial; a mobile base station goes exactly to the claimed position and verifies that
the device is there either by physical contact or simply verifying that it is within a small enough radius ε
using the inherent restriction on the speed at which information can travel. We note that typically mobile
base stations are envisioned as satellites and there is always a good probability that none of these satellites

39

come too close to the location being spoofed.
Although we present this attack in the mobile base station model, we note that it can be used in

the stationary base station model as well. However we presented the first attack separately because that
actually locates the hidden base stations and opens up the stationary infrastructure to many more attacks
(than just this form of location spoofing).

I.1 Positioning based on Hidden Base stations

In this section, we describe the protocol for node-centric and infrastructure-centric positioning with hidden
base stations proposed in [CCS06]. The system and adversary model are as outlined below:

I.1.1 Model

System model: The system consists of a set of covert base stations (CBS) and a set of public base
stations (PBS) forming the positioning infrastructure. A covert base station is a base station whose
position is known only to the authority controlling the verification infrastructure. Covert base stations
only listen to ongoing communication; they never send any message so their position cannot be detected
through radio signal analysis. The base stations know their correct positions and the adversary cannot
tamper with the positions or compromise a base station. The covert base stations can measure received
signal strength and can also perform ranging. Covert base stations can communicate secretly with the
verification authority.

Adversary model: There are two types of positioning systems: node-centric and infrastructure-
centric. In a node-centric model, the node computes its position and reports this to the authority. The
authority then runs a verification procedure to check that the position reported is indeed correct. In an
infrastructure-centric model, the verifying authority needs to compute the position of the node without
any prior information.

We note that there are two kinds of attacks possible: internal and external. In an internal attack,
a set of dishonest nodes (or adversaries), try and convince a verifying authority that some one of them
exists at a position where no adversary actually is present. In an external attack, the adversary nodes try
and prevent the verification authority from being able to determine or verify the position of a node in the
network.

The most common approach to positioning has been that based on time difference of arrival. In this
approach, the verification authority sends a nonce challenge to the device which reports this nonce back to
the authority. Based on the time of response, the verification authority can verify or compute the position
of the device. In this approach for positioning, an adversary can cheat on the position by sending signals
to base stations at different times and by varying the strength of the radio signal. Attackers may also
make use of directional antennas to perform such tasks.

I.1.2 Protocol for positioning in Hidden Base stations model [CCS06]

Capkun, Cagalj and Srivastava [CCS06] propose a method to perform infrastructure-centric and node-
centric positioning of a node. The infrastructure-centric protocol is based on time-difference of arrival
(TDOA) and covert base stations. TDOA is the process of positioning a source of signal in two (three)
dimensions, by finding the intersection of multiple hyperbolas (or hyperboloids) based on time-difference
of arrival between the signal reception at multiple base stations. The node-centric protocol is based on a
single hidden base station and on the time difference in receiving radio signals and ultrasound signals.
The two protocols are fairly similar. The main assumption in the protocols is that the probability of an
adversary “guessing” the position of a covert base station is very low.

Infrastructure-centric positioning: The public base station (PBS), at time 0, sends out a

40

CBS

CBS

A

CBS

CBS

3

1

2

4

t
1

t
2

r

r

r

r

t
3

t
4

(a) Infrastructure-centric positioning

CBSdF

m

dF

c

dA

pF

pCBSpA

A

(b) Node-centric positioning

Figure 7: Positioning protocols based on covert base stations[CCS06]

challenge nonce (N) to the node A, whose position is to be determined. The node receives this nonce at
time ts, where ts is the time needed for radio signals to travel from the PBS to A. This node sends out a
signal with this challenge value. The hidden base stations (located at various positions in the plane) note
the times at which each station received the nonce. The base station, then computes the node’s location
with TDOA and check if this is consistent with the time differences notes (refer Figure 7a).

Let the covert base stations be {CBS1, CBS2,, CBSk} and let the time taken for radio signals to
travel from A to the position of CBSi be ti. p is the position of node A computed from measured time
differences and it is the solution to the least square problem p = argminp∗

∑
i>j(|ti − tj | − h(p∗, i, j))2.

h(p∗, i, j) is the difference of signal reception times at CBSi and CBSj , if the signal is sent from position
p∗. ∆ is the maximum expected inconsistency between the computed position and the measured time
differences. The proposed protocol is given below. For more details, we refer the reader to [CCS06].

Capkun et al. claim in [CCS06] that since the adversaries can guess the positions of base stations
only with a very low probability, the TDOA with hidden base stations can detect internal and external
attacks. We show that TDOA protocol is insecure under an attack made by several colluding adversaries
(described in section I.2). In particular, we show that a set of adversaries can run a strategy in a way
that the probability of finding the positions of the base stations is not low.

Node-centric positioning: In this system, the node reports a claimed position to the verifica-
tion infrastructure. The verification authority then runs a procedure to verify if the claimed position is
correct. The protocol is based on a single hidden base station and the difference between the time at
which radio signals are received and ultrasound signals are received. This protocol also assumes that
the adversary nodes cannot “guess” the location of a hidden base station. The public base station sends
a challenge nonce N to node A. A sends a radio signal and an ultrasound signal, both containing the
claimed position pF . The covert base station computes the distance dc

F = d(pF , pCBS) and compares it
the calculated position between CBS and pF as (tus − trf)s, where tus and trf are the times at which the
ultrasound signal and radio signal are received respectively. If this difference between the two calculated
positions is less than ∆, then the position is accepted. Refer [CCS06] for more details.

41

I.1.3 Assumptions in the Hidden base model

The main assumption in the hidden base model, is that the position of the covert base stations cannot
be “guessed” correctly by the nodes with significant probability. If the position of the base stations are
known, then the adversary can carry out collusion attacks based on timing of the signals in such a way
that he can convince the verification authority that he is at a false position. In the following section, we
show that the assumption that adversaries cannot guess the position of a covert base station is incorrect.
In particular, we show a protocol in which a set of adversaries can determine the location of covert base
station with significant probability.

I.2 Insecurity of the hidden base stations model

In this section, we show how a set of adversaries colluding together, can determine the location of a hidden
base station with significant probability. Once this has been done, the attackers can carry out known
attacks based on timing of the signals to break the positioning protocol. We call determining the position
of a device or station upto within a radius of δ as determining the position with δ-precision. We show how
a set of adversaries working in a controlled manner can locate the position of a “hidden” base station in
the two-dimension plane with δ-precision in running time O(log(1

δ)). As in [CCS06], we assume that the
plane is a two-dimensional disk of radius r. For simplicity, we will first show how a set of adversaries can
locate the position of a single “hidden” base station and then show how to extend this attack to multiple
“hidden” base stations. As stated before, we assume that adversaries are legitimate nodes in the system,
can therefore interact with the verification authority multiple times and receive "Accept" or "Reject"
responses.

At a high level, the adversaries will “test” the response of the verification authority on various runs of
the protocol. Based on whether the verification authority accepts or rejects a run, the adversaries will gain
some partial knowledge on the location of a hidden base station. More precisely, the adversary nodes will
follow the TDOA protocol from section I.1.2, with the only difference that they will now broadcast the
nonce response only in certain directions (i.e, in sectors) using a directional antennae. If the verification
authority accepts the positioning attempt, then certainly no CBS exists in the directions that the adversary
did not broadcast the nonce. If the verification authority rejects the attempt, then there exists at least one
CBS in the direction that the adversary did not broadcast the nonce (see Figure 8). Using this technique,
the adversaries can conduct a binary search on the area of the two-dimensional disk to determine the
location of the covert base stations. Through a geometric analysis, we then show that the distance from
any node within the disk to a hidden base station can be determined with δ-precision in time O(log(1

δ)).

Necessary conditions for the attack: In order to carry out this attack we require that the following
conditions hold: 1) the adversary can determine whether his claimed position was accepted or rejected ,
and, 2) the adversary can make the required number of queries. If these conditions hold than our attack
will be able to located the “hidden” base stations. Again these assumptions may not only be reasonable
in many situations be also inherently true in others. We refer the reader to the introduction for examples
and details on the plausibility of the assumptions.

I.2.1 Determining the position of a single hidden base station

We present the formal procedure for determining the location of a single hidden base station. We assume
that there are three adversary nodes (called locators) at positions l1, l2, l3 such that l1, l2, l3 do not lie on the
same straight line. The nodes can communicate securely amongst themselves. The adversary nodes wish
to determine the position of a base station with δ-precision. The nodes run a binary search as described in
Protocol 3. We show below how the adversaries decide when a sector is “narrow enough”. Let l1 and l2 be
adversaries that return different sectors on LOCATE-SINGLE and let the distance between l1 and l2 be
x. Let the angle of the sector to which each adversary broadcasts the response be γ. The two sectors, upon

42

!"#!

$%#&'(&)*!

#+!),-.&/

0%#&'(&)*!

),-.&/

1#(&*#%

2((34*!!!5363(*

!"#!

$%#&'(&)*!

#+!),-.&/

0%#&'(&)*!

),-.&/

1#(&*#%

!"#!

$%#&'(&)*!

#+!),-.&/

0%#&'(&)*!

),-.&/ 1#(&*#%

2((34*

Figure 8: Binary search on the disk space to locate CBS

1. Adversary li runs the following procedure:

(a) Let the sector in which the covert base station may exist be πi. Divide this sector
into two sectors of equal area, πi

1 and πi
2.

(b) The adversary broadcasts the nonce response signal to πi
1, but not to πi

2 using a
bidirectional antenna (πi

1 is chosen arbitrarily).

(c) If the response from the verifying authority is "Accept", then set πi = πi
1, otherwise

set πi = πi
2. If πi is “narrow enough” to resemble a straight line, then go to step 2,

else go to step (a).

2. Now, knowing that the covert base station lies on narrow sectors πi and πj for some
1 ≤ i, j,≤ 3 the adversaries can compute the position of the covert base station with
δ-precision.

3. We note that this procedure will not be successful in the case that CBS, li and lj lie on
the same straight line (as πi and πj will be the same narrow sector). Hence, we need
three adversaries l1, l2, l3 with the condition that they are not co-linear.

Protocol 1 [LOCATE-SINGLE]: Strategy of an adversary to locate the position of
hidden base stations

43

α

β
x

y

γ

γ
l1

l2

Q1

Q2

P1

P2

z

Figure 9: Finding maximum error of computing the position of CBS

intersection form the quadrilateral Q2P2Q1P1 as shown in Figure 9. Let the length of the two diagonals of
this quadrilateral be y and z. The angle between Q1, l1 and l2 is α and the angle between Q1, l2 and l1 is
β. The two adversaries know that a hidden base station exists inside the quadrilateral Q2P2Q1P1. If the
length of the longest chord in this quadrilateral is less than the desired error δ, then the adversaries know
the position of the covert base station with δ-precision. We know that either line P1P2 or Q1Q2 must be
the longest chord in this quadrilateral. We have,

y2 =
(

x sin(γ + α)
sin(α + β + 2γ)

)2

+
(

x sinα

sin(α + β)

)2

−

2
(

x sin(γ + α)
sin(α + β + 2γ)

)(
x sinα

sin(α + β)

)
cos γ

z2 =
(

x sin(α)
sin(α + β + γ)

)2

+
(

x sin(α + γ)
sin(α + β + γ)

)2

−

2
(

x sin(α)
sin(α + β + γ)

)(
x sin(α + γ)

sin(α + β + γ)

)
cos γ

The values of y and z are properly defined (as we pick adversaries l1 and l2 accordingly) and the larger
of these two values gives us the maximum error. We now show that as γ decreases, y and z both decrease
polynomially. If this is the case, then by reducing γ, we can reduce the error in computing the position
of CBS to less than δ. To show that the relation between γ, y and z is polynomial, we can expand out
the sine and cosine terms in the expressions for y and z using the Taylor series. Dropping higher order
negligible terms gives us a polynomial relationship between y, γ and z. Thus we obtain a polynomial
relationship between δ and γ. The algorithm that the adversary runs reduces γ successively by a factor of
2 and hence, we can achieve any given precision δ in O(log(1

δ)) steps.

I.2.2 Determining the position of multiple hidden stations

When there are multiple hidden base stations, we need to modify the location procedure of the adversaries
slightly. At every broadcast stage, if the adversary receives a "Reject" output from the protocol, it can
not assume that the area broadcasted to contains no hidden base station (it only shows that there was a
tower in an area not broadcasted to). Thus before the adversary determines which half the base station
may be in, it will broadcast to πi

1 and then to πi
2. If the output is "Reject" when it broadcasts to both

44

1. Adversary li runs the following procedure (locate-sectors):

(a) Let the sector in which the covert base station may exist be πi. Divide this sector
into two sectors of equal area, πi

1 and πi
2.

(b) The adversary broadcasts the nonce response signal to πi
1, but not to πi

2 using a
directional antenna (πi

1 is chosen arbitrarily).

(c) If the response from the verifying authority is "Accept", then first check if πi
1 is

“narrow” enough to resemble a straight line. If this is the case, then go to step 2,
otherwise run locate-sectors on πi

1. If the response from the verification authority
is "Reject", then run procedure locate-sectors on both πi

1 and πi
2.

2. Now, knowing that the covert base station lies on narrow sectors πi and πj for some
1 ≤ i, j,≤ 3 the adversaries can compute the position of the covert base station with
δ-precision. This is done for all covert base stations.

Protocol 2 [LOCATE-MULTIPLE]: Strategy of an adversary to locate the positions of
multiple hidden base stations

halves it must be the case that there is at least one tower in each half. It will then choose one half and
always broadcast to that half, while it will continue to do a binary search on the other half. Once it has
located the hidden tower to enough precision in the second half it will then return to locating the tower in
first half and do a binary search on that region. The adversary follows this strategy recursively at every
stage whenever it gets a response of "Reject" from the verification authority. Let the total number of
hidden base stations be a constant C. It is easy to see that the above procedure will then take O(log(1

δ))
steps when δ-precision is desired.

We note that our protocols to locate the positions of multiple hidden base stations were actually
independent of the positioning protocol. As long as adversaries receive a response about acceptance or
rejection of the protocol that they participated in, they can locate the positions of the “hidden” base
stations. This implies that the assumption that one can keep base stations “hidden” from adversaries is
invalid and the security of positioning protocols should not be based on this assumption.

I.3 Positioning based on Mobile Base stations

The protocol used for positioning a device with mobile base stations [CCS06] is similar to the protocol
for node-centric positioning with hidden base stations. Instead of having a fixed station whose location
is unknown, we have a base station whose position changes continuously. This mobile base station sends
a verification request (or nonce challenge) at one position and then waits for the response at a different
position. In this way, an adversarial node cannot, ahead of time, determine the position at which the base
station will receive the response. We now present the protocol more formally.

K is the secret key shared between the mobile station MBS and the node S; TR is the time after
which the node must send its reply (ideally TR = t2 − t1). TR is also an estimated time within which the
MBS will move from one position to another. At time t1, the mobile base station (MBS), is at position
pMBS(t1) and sends the challenge nonce N and a time delay TR after which the node must reply to the
message. Within this time, the MBS moves to position pMBS(t2). Now, it receives the reply from the
node at this position and computes the position of the node based on the time difference with which it
received the signal. If this position matches with the position being claimed by the node (allowing for
error in computation), then the MBS returns "Accept" else it returns "Reject" (see figure 10).

45

S2 S2

S1
S1

S3
S3

S4
S4

N,TR

p (t)MBS 2

p (t)MBS 1
p (t)MBS 1

ra
ng

in
g

si
gn

al

(a) (b)

Figure 10: Positioning based on mobile base stations [CCS06]

θ
′

pF

Ai

Li

Ri = Li+1

α

a
a

∆

R′

R

Ai,i−1

Figure 11: Attack on the protocol in the mobile base stations model

I.4 Attack on the protocol in the mobile base stations model

We assume as in [CCS06] that the area within which the positioning of a node takes place is a two-
dimensional disk of radius R′. This is a necessary assumption for any reasonable positioning protocol
as without such an assumption positioning is trivial, as described in the introduction. For the sake of
simplicity, we assume that the location that the adversaries wish to spoof is pF , the center of this two-
dimensional disk. When the position to be spoofed is not the center of the radius, we later provide a
lower bound on the probability with which an adversary can spoof a location. Let ∆ be the error that
a verification authority can tolerate in receiving a signal response from a node. Now, consider a two-
dimensional disk of radius R, with center at pF . The k adversarial nodes {A1, A2,, Ak} will position
themselves around the circumference of this two-dimensional disk. We assume that R is small enough such
that there is a reasonable probability that the mobile base stations will not enter this two-dimensional
disk. These nodes will use directional antennas and broadcast their signals with an angle α as shown in
Figure 11. Let the sector in which Ai broadcasts be Li, Ai, Ri and let radius LiAi be equal to a. Let
Li = Ri−1 for all 2 ≤ i ≤ k and let L1 = Rk. Now, let the angle between Ai, pF and Li be θ′.

46

When responding to a challenge, all the adversaries will delay their response by a time duration of
R

sus
, where sus is the speed of signal transmission. Now, if the angle α is “small enough”, then any mobile

base station that is in the sector LiAiRi will accept the position pF due to the signal it received from Ai.
A mobile station that is present in the area AiLiAi−1 will not receive any signal. For the attack to be
successful, it must be the case that no mobile base station is present in such an area. As in [CCS06], we
assume that the mobile base station moves uniformly at random over the entire disk of radius R′. The
probability (λ) with which the adversaries can falsely prove to a single MBS that there exists a node at
pF , is the ratio of the area LiAiRi to the total area LiAi−1AiRi. Thus the probability that the adversaries
can make the infrastructure falsely believe that there exists a node at position pF is λmb , where mb is the
total number of mobile base stations in the system. We show later that for reasonable settings of ∆, R
and R′ this attack is quite reasonable.

Determining k and θ′ We now describe how to determine the number of adversaries (k) needed so
that θ′ will be such that a + R−R′ ≤ ∆. Note that if an MBS in area LiAiRi were to be present on the
line pfAi extended to meet the circumference of the disk, then the adversary could spoof location pF by
simply delaying his signal. In the case that MBS is not on this line, then the delaying of signal will cause
a slight error in the time at which MBS receives the response signal. We note that fixing θ′ gives us a
value for a, which in turn will give us a bound on this error. We shall fix an upper bound (θ) on the value
of θ′ such that the bound on the error is ∆. Once the value of θ is fixed, we can compute the number of
adversaries needed. Using properties of triangles we get that,

θ ≤ cos−1

(
(∆ + R′ −R)2 −R′2 −R2

−2R′R

)
.

Thus to determine how many adversaries we actually need on the circumference, we calculate k = dπ
θ e.

From this, we can determine θ′ = π
k .

Determining probability of spoofing position pF First we will calculate the probability of spoofing
position pF to the infrastructure when there is only one mobile base station. Let “good” area (denoted by
rg) be the area LiAiRi. This the area in which if an MBS is present, the adversary succeeds in spoofing
pF . Let “bad” area (denoted by rb) be the area LiR

′Ai. This is the area in which the MBS will reject
position pF . The total area = rg +rb. λ = rg

rg+rb
, is the probability with which an adversary spoofs location

pF to a single MBS. Let R′
R = β. Now we can calculate the ratio of the areas by simple geometry as

λ = 1− (R′ −R)
√

2R2 − 2R2 cos(θ′) sin(π/2 + θ′/2)
(R′2 −R2)θ′

−−R2(θ′ − sin θ′)
(R′2 −R2)θ′

=
β − θ

(1− 1
β)θ

When there are mb mobile base stations in the network, the probability of a successful attack5 is simply
(λ)mb .

Spoofing other locations We discussed above, the case where pF was the center of the disk with
radius R′. We outline here, the attack in the case when pF is some other point on the disk. As before,
all adversaries on the circumference of the disk of radius R, will broadcast signals such that the sectors in
which they broadcast meet exactly on the circumference of disk with radius R′. Now consider the largest
disk of radius Rc that can be drawn completely inside the disk of radius R′. Suppose, the positioning
were to be done within this new disk and the adversaries broadcast their signals such that the sectors met

5More precisely, the success probability is Pr[X](λ)mb where X is the event that mobile base stations do not enter the disc
of radius R. The term Pr[X] is ignored to simplify analysis.

47

exactly on the circumference of this new disk. Then, the analysis from above holds and the adversaries
will have the probability of success λ (corresponding to R = R and R′ = Rc) as described earlier. We note
that, keeping the number of adversaries the same, if the adversaries were to now instead broadcast such
that the sectors met on the circumference of the disk with radius R′, then we only increase the probability
of success. The reason is as follows: since the distance between two adversaries Ai−1 and Ai is the same
in both cases, the angle Ai−1LiAi will be smaller in the case where the adversaries broadcast sectors that
meet on the circumference of disk with radius R′. Since, this angle determines the area Ai−1LiAi, or
in other words rb, when this angle becomes smaller, rb will become smaller in comparison with the area
LiAiRi. Hence, the probability of success of the adversaries will only be larger. Thus, the probability of
success of the adversaries in spoofing position pF (where pF is not the center of the positioning disk) is
certainly greater than λ obtained with corresponding values of R and Rc.

I.5 Analysis of the attack on mobile base stations

We would like to first highlight the following cases. Assume that R′ = 500m, R = 50m and ∆ = 2.5m. In
this case, we get that we need 11 adversaries and the probability of success of these adversaries against a
single mobile base station will be approximately .91. Even with 30 mobile base stations within the 500m
disk, the adversaries will still have approximately .06 chance of spoofing location pF . There will need to be
49 hidden mobile base stations within the 500m disk to push the probability below .01. With R′ = 1000m
R = 50m and ∆ = 2.5m we will need 11 adversaries. Again we get that the probability of success against
a single hidden base station is approximately .95. With 30 mobile hidden base stations the probability of
success is .215 and 96 mobile base stations will be needed to drop the adversaries probability of success
below 0.01. We give these examples as evidence that our attack is feasible in common reasonable situations.
We present below some results about the number of adversaries required and the probabilities of success.

Number of Adversaries Required: Since the actual values of the R′, R and ∆ do not matter and
only their ratio to one another, we only present the ratios. We present two graphs in (figures 12 and 13)
with different values of ratios between R, R′ and ∆.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25

N
u
m
b
e
r
o
f
A
d
v
e
rs
a
ri
e
s
 N
e
e
d
e
d

Delta

3.14159/acos(((x+p-r)**2-p**2-r**2)/(-2*p*r))

Figure 12: R = .5R′ and ∆ = .01R′

Probability of Success Now we look at the probability of success in the “worst case”. By worst case,
we mean that the value of ∆ is very small for a fixed R/R′ ratio. This in turn means that the value of
θ′ is very small and we will need a large number of adversaries. Assume that θ′ = .00001. Note that this
is only for analysis and will give us a value close to the worst case scenario. It would be impractical to
actually have a θ′ = .00001 (see graph in figure 14).

48

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25

N
um

be
r

of
 A

dv
er

sa
rie

s
N

ee
de

d

Delta

3.14159/acos(((x+p-r)**2-p**2-r**2)/(-2*p*r))

Figure 13: R = .1R′ and ∆ = .01R′

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
h
a
n
ce

 o
f
S

u
cc

e
ss

Ratio: r/r’

1-((p-x)*sqrt(2.0*x**2.0-2.0*x**2.0*cos(h))*sin(3.1416/2.0+h/2.0)-x**2*(h-sin(h)))/(p**2*h-x**2*h)

Figure 14: Worst case probability of success

49

