IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 1, FEBRUARY 1996 103

Motion of an Uncalibrated Stereo Rig:
Self-Calibration and Metric Reconstruction

Zhengyou Zhang, Quang-Tuan Luong, and Olivier Faugeras, Senior Member, IEEE

Abstract— We address in this paper the problem of self-
calibration and metric reconstruction (up to a scale factor) from
one unknown motion of an uncalibrated stereo rig. The epipolar
constraint is first formulated for two uncalibrated images. The
problem then becomes one of estimating unknowns such that
the discrepancy from the epipolar constraint, in terms of sum
of squared distances between points and their corresponding
epipolar lines, is minimized. Although the full self-calibration is
theoretically possible, we assume in this paper that the coordi-
nates of the principal point of each camera are known. Then,
the initialization of the unknowns can be done based on our
previous work on self-calibration of a single moving camera,
which requires to solve a set of so-called Kruppa equations.
Redundancy of the information contained in a sequence of stereo
images makes this method more robust than using a sequence of
monocular images. Real data has been used to test the proposed
method, and the results obtained are quite good. We also show
experimentally that it is very difficult to estimate precisely the
coordinates of the principal points of cameras. A variation of as
high as several dozen pixels in the principal point coordinates
does not affect significantly the 3-D reconstruction.

I. INTRODUCTION

T IS well recognized [1]-[3] that stereoscopic cues are im-

portant in understanding the 3-D environment surrounding
us and allow robust algorithms for 3-D reconstruction to be
applied. In order for the 3-D reconstruction to be possible,
one needs to know the relationship between the 3-D world
coordinates and their corresponding 2-D image coordinates
for each camera, and the relative geometry between the two
cameras. This is the purpose of camera calibration. A wealth of
work on camera calibration has been carried out by researchers
either in Photogrammetry [4], [5] or in Computer Vision and
Robotics [6]-[12] (see [13] for a review). The usual method
of calibration is to compute cameras parameters from one
or more images of an object of known size and shape, for
example, a flat plate with a regular pattern marked on it. One
problem is that it is impossible to calibrate online, while the
cameras are involved in a visual task [14]. Any change of
camera calibration occurring during the performance of the
task cannot be corrected without interrupting the task. The
change may be deliberate, for example the focal length of a
camera may be adjusted, or it may be accidental, for example
the camera may undergo small mechanical or thermal changes.
In many situations such as vision-based planetary exploration,
it is not very practical to calibrate cameras with a calibration
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apparatus. We can either send a calibration apparatus together
with the planetary rover and observe it each time we need
to calibrate the cameras, which is not very realistic, or we
can precalibrate the stereo system on the ground, which is not
reliable. . ’

Recently, a number of researchers in Computer Vision and
Robotics have been trying to develop online camera calibration
techniques, known as self-calibration. The idea is to calibrate
a camera by just moving it in the surrounding environment.
The motion rigidity provides several constraints on the camera
intrinsic parameters. They are more commonly known as the
epipolar constraint, and can be expressed as a 3 X 3, so-called
fundamental matrix. Hartley [15] proposed a singular-value-
decomposition method to compute the focal lengths from a
pair of images if all other cameras parameters are known.
Trivedi [16] tried to determine only the coordinates of the
principal point of a camera. Maybank and Faugeras [14]
proposed a theory of self-calibration. They showed that a
camera can be in general completely calibrated from three
different displacements. At the same time, they proposed an
algorithm using tools from algebraic geometry. However, the
algorithm is very sensitive to noise, and is of no practical
use. Luong, in cooperation with them, has developed a real
practical system as long as the points of interest can be located
with subpixel precision, say 0.2 pixels, in image planes [17],
[18].

In this paper, we describe a self-calibration method for a
binocular stereo rig from one displacement using a simplified
camera model (i.e., the principal points are known). We have
made this simplification because it is. very difficult to estimate
precisely the position of the principal point by calibration, and
is in practice very close to the image center. We have shown
this experimentally in Section VI. The formulation, however,
can be easily extended to include all parameters. Because
of the exploitation of information redundancy in the stereo
system, our approach yields more robust calibration results
than those which consider a single camera, as to be shown
by experiments with real images. Section II describes the
calibration problem to be addressed in this paper. Section III
summarizes the epipolar constraint, which is the fundamental
constraint underlying all self-calibration techniques. Section
IV deals with the details of the problem solving, including
additional constraints present in a stereo rig. As the problem
is solved by a nonlinear optimization, an initial estimation of
the camera parameters must be supplied, which is described
in Section V. Experimental results with real data are provided
in Section VI In Section VII, we discuss the possibility to
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include cross correspondences and the possibility to estimate
all camera parameters.

This work is an extension of our previous work described
in [19], where the intrinsic parameters of the cameras were
supposed to be known while the extrinsic ones were unknown.

II. PROBLEM STATEMENT AND NOTATIONS

A. Camera Model

A camera is described by the widely used pinhole model.
The coordinates of a 3-D point M = [z,v, 2]¥ and its retinal
image coordinates m = [u,v]T are related by

B
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1

where s is an arbitrary scale, and P is a 3 x 4 matrix, called
the perspective projection matrix. Denoting the homogeneous
coordinates of a vector x = [z,y,--]T by %, ie, X =
[z,9,-+,1]T, we have sth = PM.

‘The basic assumption behind this model is that zhe relation-
ship between the world coordinates and the pixel coordinates
is linear projective. This allows us to use the powerful tools
of projective geometry, which is emerging as an attractive
framework for computer vision [20]. With the state of the
art technology, camera distortion is reasonably small, and the
-pinhole model is thus a good approximation.

The matrix P can be decomposed as

P=A[Rt

where A is a 3 x 3 matrix, mapping the normalized image
coordinates to the retinal image coordinates, (R, t) is the dis-
placement (rotation and translation) from the world coordinate
system to the camera coordinate system. The most general
matrix A can be written as

—fky  fkycotf g

A= 0 L 0]
0 0 1 '

where

¢ f is the focal length of the camera;
e k, and k, are the horizontal and vertical scale factors,

whose inverses characterize the size of the pixel in the

world coordinate unit;

e ug and vy are the coordinates of the principal point of the
camera, i.e., the intersection between the optical axis and
the image plane; and

e 6§ is the angle between the retinal axes. This parameter
is introduced to account for the fact that the pixel grid
may not be exactly orthogonal. In practice it is very close
to v/2.

It is clear that we cannot separate f from k, and k,. In the
following, we use the following notations: o, = —fk, and
oy = —fk,. We thus have five intrinsic parameters for each
camera: Qu, O, Ug, Vg, and 6.

M

I

left image right image

Fig. 1. Tllustration of the problem to be studied.

B. Problem Statement

The problem is illustrated in Fig. 1. The left and fight images
at time ¢, are respectively denoted by I; and Iy, and those at
time tp are denoted by I3 and I;. A point m in the image
plane I; is noted as m,;, and a point M in 3-space expressed
in the coordinate system attached to the s-th camera is noted
as M;. The second subscript, if any, will indicate the index of*
the point in consideration. Thus m;; is the image point in I;
of the j-th 3-D point, and M;; is the j-th 3-D point expressed
in the coordinate system attached to the i-th camera.

Without loss of generality, we choose as the world coordi-
nate system the coordinate system attached to the left camera at
t1. Let (R, t5) be the displacement between the left and right
cameras of the stereo rig. Let (R, t;) be the displacement of
the stereo rig between ¢q and ¢o with respect to the left camera.
Let (R, t,) be the displacement of the stereo rig between #;
and t, with respect to the right camera. Let A; and A, be the
intrinsic matrices of the left and right cameras, respectively.
The problem can now be stated as follows.

given e m point correspondences between I; and o, noted |-
by (miZ,mi2} (i = 1,...,m)
® 7 point correspondences between f35 and Iy, noted
by {m3])m4j} (J =1,. n)
e p point correspondences between [y and I3, noted
by {mi}, mgi} (k=1,....p) '
e ¢ point correspondences between 5 and Iy, noted
by {m3}, mif} (1=1,...,q)
estimate the intrinsic matrlces Ay and A, and the.
displacements (R, ts), (R, t;)
and (R, t,), and the 3-D structure of these points if
necessary. : ‘

Refer to Fig. 1. As-the relative geometry of the two
cameras, ie., (R,,t;), does not change between ¢; and %2,
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Fig. 2. The epipolar geometry.

the displacement of the left camera (R;,t;) and that of the
right (R,,t,) are not independent from each other. Indeed,
after some simple algebra, we have the following constraints:

R, = R,R;R,” 2
t, = t, + Rt — Rt,. 3)

Furthermore, the overall scale can never be recovered by this
system, we can set one of the translations to have unit length,
say, |its|| = 1.

Thus, there are in total 21 unknowns in this system: 5
parameters for each intrinsic matrix, 5 parameters for (R, t.),
and 6 parameters for (Ry,t;).

HOI. EPIPOLAR CONSTRAINT

Let us consider the case of two cameras as shown in Fig. 2.

Let Cy and Cs be the optical centers of the first and second
cameras, respectively. Given a point m; in the first image,
its corresponding point in the second image is constrained
to lie on a line called the epipolar line of m;, denoted by
Im,. The line l,,, is the intersection of the plane II, defined
by my, C; and C, (known as the epipolar plane), with the
second image plane I,. This is because image point m; may
correspond to an arbitrary point on the semiline C1 M (M
may be at infinity) and that the projection of C;M on Iy
is the line l,,,. Furthermore, one observes that all epipolar
lines of the points in the first image pass through a common
point e9, which is called the epipole. ez is the intersection
of the line C1C5 with the image plane I. This can be easily
understood as follows. For each point m;j in the first image
I, its epipolar line l,,,,, in I is the intersection of the plane
1% (defined by myj, C; and Cp) with image plane I5. All
epipolar planes IT* thus form a pencil of planes containing the
line C1C5. They must intersect Iy at a common point, which
is ey. Finally, one can easily see the symmetry of the epipolar
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geometry. The corresponding point in the first image of each
point my, lying on l,,, must lie on the epipolar line 1y, ,
which is the intersection of the same plane II* with the first
image plane I;. All epipolar lines form a pencil containing the
epipole e, which is the intersection of the line C;C> with the
image plane I;. If m; (a point in I;) and m, (a point in Iy)
correspond to a single physical poirit M in space, then m;,
mgy, C; and C must lie in a single plane. This is the well-
known co-planarity constraint or epipolar equation in solving
motion and structure from motion problems when the intrinsic
parameters of the cameras are known [21].

Let the displacement from the first camera to the second be
(R, t). Let m; and my be the images of a 3-D point M on
the cameras. Under the pinhole model, we have the following
two equations:

sy = A4[10] [ﬂ
so1y = Ag[R t) [ﬂ

where A; and A, are the intrinsic matrices of the first and
second cameras, respectively. Eliminating M, s1, and sy from
the above equations, we obtain

ml A;T[t]xRAT 'y = 0 )

where [t]« is an antisymmetric matrix defined by ¢ such that
[t]xx = t x x for all 3-D vector x (x denotes the cross
product).

Equation (4) is a fundamental constraint underlying any two
images if they are perspective projections of the same static
scene. Let F = A5 7[t]xRA[’, F is known as the fundamen-
tal matrix of the two images {17], [18]. Without considering
3-D metric entities, we can think of the fundamental matrix
as providing the two epipoles (i.e., e; and ey, the vertexes of
the two pencils of epipolar lines) and the 3 parameters of the
homography between these two pencils, and this is the only
geometric information available from two uncalibrated images
[14], [17]. This implies that the fundamental matrix has only
seven degrees of freedom. Indeed, it is only defined up to a
scale factor and its determinant is zero. Geometrically, Fri,
defines the epipolar line of point m; in the second image.
Equation (4) says no more than that the correspondence in the
right image of point m; lies on the corresponding epipolar
line. Transposing (4) yields the symmetric relation from the
second image to the first image.

IV. PROBLEM SOLVING

A. Formulation

From the preceding section, we see that each point corre-
spondence provides one equation of the form (4). As we have

in total M = m+n+ p-+ ¢ point correspondences (see Section

II), we can estimate the intrinsic matrices A; and A,, and
the displacements (R, t,), (R, t;) and (R,,t,) by solving a
least-squares problem, which minimizes the discrepancy from
the epipolar constraint (4), i.e.,
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The total number of unknowns is 21 (see Section II). On the
other hand, we have three independent fundamental matrices,
each providing seven constraints on the intrinsic and extrinsic
parameters. We thus have in total 21 constraints. This implies
that we can in principle solve all the unknowns. However, a
set of extremely nonlinear equations are involved, making the
parameter initialization impossiblel.

In this paper, we assume a simplified camera model: the
angle between the retinal-axes 6 is 7 /2, and the location of the
principal point (ug, vo) is known, and is assumed to be at the
image center in this paper. What we need to estimate is then
o, 0y for each camera. We have made such simplification
for the following reasons.

» With the current technology, the angle § can be made very
close to 7 /2. Indeed, we have carried out a large number
of experiments on our CCD cameras using a classical
calibration method [7], and the differences between the
estimated 6 and /2 are found to be in the order of 107°
radians.

I'More correctly, we have not been able to work out such an algorithm.

. ® ,
An example to show the difficulty of localizing the principal point of a camera. (a) Images. (b) Intrinsic parameters estimated with a classical

« The position of the principal point ‘is in practice very
close to the image center. On the other hand, it is very
difficult to estimate it precisely. To show this, Fig. 3(a)
shows three images taken from three different positions
by the same camera. The corers on the grids have been
used to estimate the intrinsic parameters using a classical
calibration method [7]. The results are given‘in Fig. 3(b).
We see that the variation of ug and vy is quite large from
position to position. ]

Note that this simplification has also been adopted by many
researchers [6], [22]. They claim that a deviation of the
location of the principal point by a dozen of pixels from the
real location does not produce any severe distortion in 3-D re-
construction. This has been confirmed by our experimentation
(see Section VI).

Under this simplification, we are able to compute an initial
estimate of all remaining unknowns from the three fundamen-
tal matrices, as to be described in Section V.

B. Implementation Details

Now we describe some implementation details. The mini-
mization problem formulated by (5) is based on the epipolar
constraint  (see (4)). However, it is clear from (4) that a
translation can only be determined up to a scale. We thus nor-
malize each translation such that its normi is 1. More precisely,
each translation is represented by its spherical coordinates. A
rotation is described by the Rodrigues matrix [23], shown at
the bottom of the page. A rotation is thus represented by three
parameters g = [a, b, ¢]T. Such a representation is valid for all
rotations except for the one whose rotation angle is equal to
7 (which will pot happen in the problem addressed in this

1 1+ (a2 -0 - c?)/4
R= c+ab/2
@R | 5l

—c+ab/2 b+ ac/2
14+ (—a?+b%—c?)/4 —a+bc/2
a4+ be/2 1+ (—a? =02+ c?)/4
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paper). We have chosen this parameterization because of its
relatively simple expression of its derivative and because there
is no constraint on the parameters.

Regarding the constraints on the extrinsic parameters, it is
rather easy to incorporate the constraint (2) in (5). We do it
by simply replacing R, by R.R;R,” . For the constraint (3),
however, it is much more difficult. As the scale of one of
the translations can never be recovered by this system, we
can set, for example, ||ts]| = 1. The scales of the other two
translations, t; and t,., cannot be recovered by our algorithm.
This is because we try to estimate the unknowns by minimizing
the discrepancy from the epipolar constraint (quantified by the
distance of a point to its epipolar line, see below), and the
scales in the translations does not influence the functional to be
minimized. This is also clear from the fact that the fundamental
matrix is only defined up to a scale factor. Two unknown scales
are thus involved in (3), which implies that (3) provides only
one scalar equation. To be more precise, the scalar equation
is given by

|R.t: (I-R,)t, ]=0 (6)

where H denotes the determinant of a 3 X 3 matrix, and t
denotes the unit translation direction vector, i.e., t = t/||t]|.
The constraint (6) says nothing more than that the three vectors
R.t;, (I'— R,)t, and , are coplanar. This implies that the
crossproduct of two vectors, say, [(I — R,)t] x t,., should be
orthogonal to the other vector, Rsf;l. In our implementation,
this constraint multiplied by a coefficient (Lagrange multiplier)
is used as an additional measurement in the objective function.
The constraint is not satisfied exactly, but has a small value.
This value, noted as ¢, depends on the value of the Lagrange
multiplier, noted as A. The larger the value of ) is, the smaller
the value of c is. We set A = 105, which gives a value
of ¢ in the order of 10~%. The unknown scales in t; and
t, can be easily recovered in the 3-D reconstruction phase
if, for example, one can identify one point in each image
corresponding to a single point in 3-D space.

The problem described by (5) is to minimize a sum of terms
of the form

(0] Fjin;)’ %)

where Fi; = A77[t] RA;" (G, = I,r) is a fundamental
matrix. This criterion, however, does not have direct interpre-
tation in the measurement space, i.e., in the image planes. As
I; = F;;m; actually defines the epipolar line of m;, we can
replace (7) by the squared distance from my to 1;, i.e.,

d*(tay, ;) = (Ml Finmy)?/(13 + 13)

where [; and [ are the first two elements of the vector 1;.
d(tg, ;) is the Euclidean distance of point my to line 1; in
the image plane. In order to maintain the symmetry between
the two cameras to avoid any discrepancy in the epipolar
geometry, the term (7) is in fact replaced by the following
two terms:

d? (g, Fyyaiy) + d2(diy, Fjmy).
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The new criterion is more meaningful because Euclidean
distances in the measurement space are used.

The minimization is performed by the Nag routine
EO4GDF, which is a modified Gauss—Newton algorithm for
finding an unconstrained minimum of a sum of squares of
M nonlinear functions in N variables (M > N) [24]. Tt
requires the first derivative of the objective function and an
initial estimate of the intrinsic and extrinsic parameters. In
the next section, we shall describe how to compute the initial
estimation. If we have appropriate knowledge of the cameras
(e.g., from constructors’ specifications), we can directly use
it as the initial estimation.

In summary, there are N = 16 unknowns to be estimated
(2 intrinsic parameters for each camera, 5 for (Rs,ts), 5 for
(Ry, t;) and 2 for t,.) under the constraint (6). We need at least
m = 15 point correspondences. However, in order to use the
initialization technique described in the next section, we must
have m +n > 8, p > 8, and ¢ > 8. In that case, we have
M > 24 and the problem is always overdetermined.

V. INITIALIZATION OF THE PARAMETERS TO BE ESTIMATED

In this section, we briefly outline the process of the ini-
tialization of the parameters to be estimated, and provide
appropriate references if necessary.

First, based on the epipolar constraint (4), i.e.,

) Fiiy =0

we can estimate the fundamental matrices Fy;, F,, and Fyy;
between the left images, the right images, and the left and right
images, respectively, from the given point correspondences.
Several methods have been proposed in [25]. We have used
a linear least-squares method followed by a nonquadratic
minimization to improve the results.

Consider now the case of the left camera, i.e., Fy;. For the
reason of simplicity, the subscript will be omitted. From the
definition of F, we have E = ATFA, where E = [t] R is
called the essential matrix. As is well known [26], E is subject
to two independent polynomial constraints. This implies that
the entries of A are subject to two independent polynomial
constraints inherited from E. As there are only two unknowns,
o, and o, they can then be solved. Let us now follow the
theory of self-calibration developed by Maybank and Faugeras
[14]. Consider the absolute conic: =2 + 2% + 2% = 0, z4 = 0.
If we define © = z1/x3 and y = x2/z3, then the equation
can be rewritten as z2 + 2 = —1, which represents an
imaginary circle of radius ¢ = /=1 on the plane at infinity.
The important property of the absolute conic is that its image w
on the camera does not change from the position of the camera
as long as the same intrinsic parameters as maintained. In fact,
the image w is a conic described by the matrix B = A~T AL
This implies that the two epipolar lines tangent to w in the first
image must correspond to the two epipolar lines fangent to w
in the second image under the epipolar transformation defined
by the fundamental matrix F. This provided two independent,
the so-called Kruppa equations. They are of degree 2 in the
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entries of matrix K,

—6y3 83 b
K= 53 —513 61
b 61 —b1o

where K is the matrix defining the dual conic of w, ie.,
K = B* = AAT, defined up to a scale factor. We thus
have the following relations:

61 =9
52 = Ug
cot 8
(53 = UQVQ — Qo Qyy ——
sin 6
(512 =~1
2
07
Sog = —uf — —2
% sin?4
2
(8%
(513 = ——’Uz b 7.
%" sin?p

To be more precise, the Kruppa equations can be derived
as follows. Consider the epipolar line I tangent to w in the
first image. It is defined by the epipole e; and a point, say,

y, and therefore, 1 = e; x y. The epipolar line 1 is tangent

to w if and only if
(e1 x ) K(er xy) =0 or yTlei1]xKler]lxy =0. (8

The epipolar line corresponding to the point y is Fy and is
tangent to w in the second image if and only if

yIFTKFy = 0. )

Writing that (8) and (9) are equivalent yield the so-called
Kruppa equations. One possible way to do so is to take
y = (1,7,0) in the case where the epipoles are at finite
distance. The relations (8) (respectively, (9)) take the form
Pi(1) = ko + k17 + kat? = 0 (respectively, Py(r) =
ky + kT + k472 = 0), and the Kruppa equations can be
written as three proportionality conditions between these two
polynomials, of which only two are independent:

koky — kyky =0
kok; — koki =0
koky — koky = 0.

The reader is referred to [14] and [17] for more details about
the epipolar transformation and the Kruppa equations.

In our particular case (ug, vo and @ are known), the Kruppa
equations reduce to two simple equations of the form

alz% + b1x129 + 121 + diza + 21 =0 (10)

1y

where z; = o2, 22 = o2, and a1, b1, -, ez are coefficients
which can be computed from F, ug, vp and §. We must point
out that we always have ajag = b1be. We can thus solve zo
in terms of z; from the first equation, and substitute it into
the second equation to obtain an equation of degree 3 only in

aza:% + boxyxy + cowg +doxy +ea =0

x1. So, we can have at most three real solutions, and usually

only one physical solution such that 1 > 0 and z5 > 0.

i

TABLE I
RESULTS OF THE SELF-CALIBRATION: INTRINSIC PARAMETERS
Left camera Right camera | distance
ay @y Oy o (pixels)
initialization |l 597.15 786.99 | 598.31 902.26 11.3
final estimate | 610.99 910.13 } 617.13 916.58 | . 0.5

Once we have computed «,, and «,, we can compute the
essential matrix by E = ATFA. The rotation and translation -
are then computed from E by any standard methods such as
those described in [27]-[29]. We thus compute a7, o, Ry,
and t; for the left camera from the fundamental matrix Fy;. In
the same way, we can compute iy, Qyr, Ry, and t,. for the
right camera from the fundamental matrix‘ F,.,..

It remains to compute the rotation R, and the translation t
between the left and right cameras. Since the intrinsic matrices
A; and A, are now available, we can easily compute the
essential matrix E, = ATF.,A;. R, and t, can then be
solved from E, using the same method as for (R, t;) and
Rn t,).

In summary, the initial estimates are obtained as follows.

* First, compute the fundamental matrices F,.;, Fy, and Fy.,,
from the stereo correspondences, the temporal correspon-
dences of the left camera, and the temporal correspon-
dences of the right camera, respectively. ‘ )

¢ Second, compute A;, R;, and t; from Fy;; compute A,
R,, and t,. from F,.,..

¢ Finally, compute R; and t, from F,;.

VI. EXPERIMENTAL RESULTS

We show in Fig. 4 the two pairs of stereo images used in
this experiment. Two CCD cameras with resolution 512 x 512
are used. The points of interest used for self-calibration are
also shown as indicated by the white crosses. These points are
extracted with subpixel accuracy by an interactive program of
Blaszka and Deriche [30]. However, a few points, especially
those on the background are not well localized.

‘We show in Table I a subset of results of the self-calibration
on this sequence of images, where the distance means the
root of mean squares of distances between points and their
corresponding epipolar lines (i.e., the root of the objective
function divided by the number of correspondences). We see
that the average distance decreases from 11.3 pixels to 0.5
pixels. This shows the advantage of our approach which takes .
into account the stereo correspondences ‘over -the. previous
approach based on calibrating separately each camera. The
two cameras are almost the same as they have. almost the
same intrinsic parameters. o

'After having estimated the intrinsic and extrinsic param-
eters, we can perform metric reconstruction (up to-a scale’
factor). For comparison, we show both the 3-D reconstruction
result with the initial estimate (Fig. 5) and that with the final
estimate (Fig. 6). In order to have a better visualization, the
3-D reconstructed points are artificially linked, and shown as
line segments. Figs. 5(a) and 6(a) show the back projection of
the reconstructed 3-D points on the left image at ¢7, which are
linked by black line segments, together with the original 2-D
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Left iage at ty )

Left image at #

Fig. 4.

points as indicated by white crosses. The projected and original
points with the technique described in this paper coincide
very well as shown in Fig. 6(a), while this is not the case
with the previous technique used for parameter initialization
as shown in Fig. 5(a). Figs. 5(b) and 6(b) show the projection
of the 3-D reconstruction on a plane perpendicular to the image
plane, which is expected to be parallel to the ground plane. A
closeup of the foreground is also given in Fig. 6(b). We see
clearly that the reconstructed points of the foreground lie in
two planes. The reconstruction of the background is however
noisier due to the poor location of the 2-D points, especially
with the previous technique as shown in Fig. 5(b). In Fig.
7, a stereogram of the final 3-D reconstruction is displayed.
The reader can easily perceive the 3-D information by cross-
eye fusion. In particular, he should see two planes in the
foreground.

To give an idea of the quantitative performance, we consider
the points on the grid pattern because we have manually
measured their positions. Using an algorithm similar to that
described in [31], we are able to compute the scalar factor,
the rotation matrix and the translation between the points re-
constructed and those measured manually. The scale computed
is 301.69. We then apply the estimated transformation to the
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Right image at tp

Images with overlay of the points of interest used for self-calibration.

points reconstructed, and eventually compute the distances
between the transformed points and the manually measured
ones. The error (the root of the mean squares of the distances)
is found to be 0.86 mm (the grid size is about 300 mm), which
is remarkably small remembering that no knowledge has been
used except that the principal point is assumed to be located
at the image center.

Now let us consider the effect of the position of the principal
point on the reconstruction. The process is as follows. We shift
the coordinates of the principal point from the image center by
(Buo 6u ), and then carry out the same calibration procedure.
Finally we compare the reconstruction result with the manually
measured one, as described just above. The results are shown
in Table II, where the errors are still quantified as the root
of the mean squares of the distances between the transformed
points and the manually measured ones (in millimeters).. The
image center is at (255, 255) in our case. For example, the
number given at the first row and the third column, 1.70 mm,
corresponds to the error of the reconstruction with (8, , 6., )
= —15 x (1,0), ie., the principal point is assumed to be
at (240, 255). From this table, we confirm that the 3-D
reconstruction is not very sensitive to the location of the
principal points of the cameras. Even with a deviation as large
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Fig. 5. Initial 3-D reconstruction result. (a) Back projection on the left image at 1. (b) Projection on a plane perpendicular to the image plane (top view).

(®)

Fig. 6. - Final 3-D reconstruction result. (a) Back projection on the left image at ;. (b) Projection on a plane perpendicular to the image plane (top view).

as 35 pixels from the image center, the 3-D reconstruction is
still reasonable.

VII. DISCUSSIONS

In this section, we examine the exact number of geometric
constraints which exist in the problem addressed in this paper.

A. Gain from the Correspondences Across Cameras

In this paper, we have ignored the correspondences between
image 1 and image 4 and those between image 2 and image
3. In this section, we describe the benefit of using such cross
correspondences’. E

Let F;; be the fundamental matrix between image ¢ and
image j. The epipole in image i, e;;, satisfies F;;e;; = 0; the
epipolar line in image j of a point in image ¢, m;, is given
by 1, = F;jm,. Symmetrically, the epipole in image j, e;;,

2This problem was raised by one of the anonymous reviewers of this article.

[

)
U

Fig. 7. Stereogram of the metric reconstruction for cross-eye fusion.

l,D ﬁ

satisfies F;e;; = 0; the epipolar line in Image i of a point in-
image j, m;, is given by ly,;, = FLm;. Geometrically, the
epipole e;; is the projection in image ¢ of the optical center
of image j. »

Assume we have obtained the fundamental matrices F,
F;, and F,.. As said in Section III, each fundamental' matrix



ZHANG et al.: MOTION OF AN UNCALIBRATED STEREO RIG

111

TABLE II
ERRORS IN RECONSTRUCTION (DISTANCES IN MILLIMETERS) VERSUS POSITIONS OF THE PRINCIPAL POINTS

Guorbo) | —25 —20 —15 —10 -5 0 5 10 15 20 25
@, 0) |157 173 170 147 111 086 097 129 176 229 281
(0, 1) |162 137 115 097 087 08 095 111 130 152 176
(1, 1) | 273 275 251 200 133 086 113 174 249 3.26 3.9
(1,-1) 109 1.02 106 1.04 094 086 083 095 114 140 1.69

I
ty
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Fig. 8. Ilustration of the epipolar geometry of a stereo rig in motion.

depends on seven parameters which can be interpreted geomet-
rically as the coordinates of the two epipoles (four parameters)
and the three parameters determining the homography between
the two pencils of epipolar lines. Thus, the three fundamental
matrices provide in total 21 constraints on the intrinsic and
extrinsic parameters.
Consider now the epipolar geometry Fisbetween images
1 and 4 (see Fig. 8). In image I, we know two epipoles
ey and esy. Therefore we can build the epipolar line in I)
of ep4, lo,, = FTey, and the epipolar line in 14 of ey,
le,, = FFey;. These two epipolar lines are the intersections
of the plane going through the three optical centers (the so-
called trifocal plane [32]) with I; and 14, respectively. Thus,
we observe [32]:
* the two epipolar lines correspond to each other between
I, and I; and
» the two epipoles e14 and e4; must lie on these two lines,
respectively.

Exactly the same reasoning can be made with the triplet of
cameras (I3, I1, I3): We build two epipolar lines, l,, = Ffe34,
and l.,, = FTes;, which correspond to each other between
I; and 14. Thus, we have two pairs of corresponding epipolar
lines. The epipoles €14 and e4; are the intersection of 1.,, and

le,,, and that of 1., and l.,,, respectively. Since in addition
to ey and ey, three correspondences of epipolar lines are
required to determine completely F14. Therefore, the three
fundamental matrices F, F; and F',. leave only one unknown
parameter in F4.

Consider now the epipolar geometry Fosbetween I and I.
Making exactly the same reasoning, we build two pairs of
corresponding epipolar lines between I, and Iz (as shown as
solid lines in Fig. 8), which leaves one unknown parameter in
F,3. This unknown can, however, be determined as follows.
In fact, we have not yet used the epipoles €14 and ey in Iy
and Iy; they are corresponding points for these two images
(they can be thought of as images of the point at infinity
of the line going through the two optical centers of I; and
I,). Considering the triplet of cameras (I, I, I4), we can
construct in I the point corresponding to ei4 and ey as the
intersection of two epipolar lines (shown as dashed lines in
Fig. 8). Similarly, considering the triplet of cameras (I1, I,
I,), we can construct in I3 the point corresponding to e14 and
e41 as the intersection of two epipolar lines. These two points
correspond to each other, and provide us with a third pair of
corresponding epipolar lines (by linking them to the epipoles),
which completes the determination of Fas.
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From the above discussion, it is clear that we can obtain, the-
oretically, only one additional constraint on the intrinsic and
extrinsic parameters by using the correspondences between Iy
and I, and those between I; and I;. In practice, we would
expect to achieve a better self-calibration result because of
data redundancy. :

B. Estimation of All Camera Parameters

As described in Section IV, by counting the number of
geometric constraints available and the number of intrinsic
and extrinsic parameters to estimate, it is possible to achieve
a full calibration of the stereo rig undergoing one motion. The
formulation in Section IV is still valid for the full calibration,
only the minimization should be carried out over a larger set
of unknowns by including the location of the principal points.
However, we have not been able until now to work out an
algorithm to initialize the parameters from the fundamental
matrices. S

One possible solution could be the following: Assume the
principal point is at the image center, compute the other
parameters exactly as described in Section V, and eventually
conduct a minimization of sum of squared distances between
points and their epipolar lines, as described in Section IV,
over all parameters. However, the self-calibration may be less
stable because a larger set of unknowns is involved in the
minimization leaving less constraint on the solution, as noticed
by Luong [17] in calibrating a single camera from three views.
We have not yet implemented this method.

VIII. CONCLUSION

In this paper, we have described a new method for calibrat-
ing a stereo rig by moving it in an environment without using
any reference points (self-calibration). The only geometric
constraint between a pair of uncalibrated images is the epipolar
constraint, which has been formulated in this paper from
a point of view in Euclidean space. The problem of self-
calibration has then been formulated as one of estimating
unknowns such that the discrepancy from the epipolar con-
straint, in terms of sum of squared distances between points
and their corresponding epipolar lines, is minimized. As the
minimization problem is nonlinear, an iniiial estimate of the
unknowns must be supplied. The initialization is done based on
the work of Maybank, Luong, and Faugeras on self-calibration
of a single moving camera, which requires to solve a set of
so-called Kruppa equations. One point which differs our work
from the previous ones in that our formulation is directly
built in the measurement space and is thus physically more
meaningful. Furthermore, stereo setup is used in our work.
Redundancy of the information contained in a sequence of
stereo images makes this method more robust than using a
sequence of monocular images. This has been demonstrated
with real data. The results obtained are very good. We have
also shown experimentally that it is very difficult to estimate
precisely the principal point. A variation of as high as several
dozens of pixels in the principal point coordinates does not
affect significantly the 3-D reconstruction.

Our future work will be on the extension of the current
technique to take into account all camera parameters and to
include more image views.

In order to apply the technique described in this paper, we
must establish correspondences between two images (stereo
or temporal) with unknown epipolar geometry. This is a
difficult problem. We have recently developed an algorithm to
solve it, and very good results have been obtained [33], [34).
The idea is to establish matches through the recovery of the
unknown epipolar geometry. We first use classical techniques
(correlation and relaxation methods in our particular imple-
mentation) to find an initial set of matches, and then use a
robust technique—the Least Median of Squares (LMedS)—to
discard false matches in this set. The epipolar geometry is
then accurately estimated using a meaningful image criterion:
This algorithm produces the fundamental matrix as well as the
correspondences between two images. The executable code is
available through anonymous ftp on krakatoa.inria.fr
in file pub/robotvis/BINAIRES/sund0S4/image-
matching .gzZ.
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