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Abstract: The statistical data association technique is an important ap-

proach to analyze long sequences of images in Computer Vision. Although

it has extensively been studied in other domains such as in radar imagery, it

was introduced only recently in Computer Vision, and is already recognized

as an e�cient approach to solving correspondence and motion problems.

This paper has two purposes. The �rst is to present a general formula-

tion of token tracking. The parameterization of tokens is not addressed.

This might be useful to those who are not familiar with statistical tracking

techniques. The second is to introduce some strategies for tracking with

emphasis on practical importance. They include beam search for resolv-

ing multiple matches, support of existence for discarding false matches, and

locking on reliable tokens and maximizing local rigidity for handling com-

binatorial explosion. We have implemented those strategies in a 3D line

segment tracking algorithm and found them very useful.

Key-words: Token Tracking, Matching, Cluttered Scenes, Search Strate-

gies

(R�esum�e : tsvp)

This paper will appear in the international journal of Image and Vision Compu-

ting, 1993. A short version appeared in Proc. British Machine Vision Conference

BMVC93, pages 207{216, University of Surrey, Guildford, UK, 21-23 September 1993
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Suivi de cible dans une sc�ene encombr�ee

R�esum�e : La technique statistique de la fusion de donn�ees est une approche

importante en vision par ordinateur pour analyser une s�equence longue

d'images. Bien qu'elle ait �et�e largement �etudi�ee dans les autres domaines

comme l'imagerie radar, ce n'est que r�ecemment qu'elle a �et�e adopt�ee par

la communaut�e de vision par ordinateur, et est d�ej�a consid�er�ee comme une

approche e�cace pour r�esoudre la mise en correspondance et l'analyse du

mouvement. Cet article a deux objectifs :

� pr�esenter une formulation g�en�erale du suivi de cible; la repr�esentation de

primitives n'est pas trait�ee; ceci peut être utile pour ceux qui ne connais-

sent pas tr�es bien les techniques statistiques de suivi,

� introduire quelques strat�egies pour le suivi en insistant sur l'importance

pratique; les strat�egies sont : recherche par faisceau pour lever des ambi-

gu��t�es d'appariements, support de l'existence pour �ecarter de mauvais

appariements, gestion de priorit�es des cibles et utilisation de contraintes

de rigidit�e locale pour �eviter l'explosion combinatoire.

Nous avons implant�e ces strat�egies dans le cadre du suivi de segments de

droite 3D, et elles ont �et�e trouv�ees tr�es utiles.

Mots-cl�e : Suivi de cible, Mise en correspondance, Sc�enes encombr�ees,

Strat�egies, Recherche
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1 Introduction

Statistical data association techniques have been extensively studied in ra-

dar imagery for target tracking1;2. Only recently they were introduced in

Computer Vision. Early work on motion analysis in Computer Vision was

mainly on the computation of motion for two frames obtained from two

quite di�erent positions3�5. One dominant di�culty is the establishment of

feature correspondences between frames. Many techniques have been propo-

sed which are mainly based on subgraph isomorphism, relational structure

matching and tree searching6�11. A number of constraints or heuristics, espe-

cially the rigidity assumption, have been incorporated. The correspondence

problem is still found to be very di�cult. Sooner, researchers realized that

the problem would become much easier if long sequences of images taken

at short time interval are used. Indeed, as the time interval is small and

object velocity is constrained by physical laws, the interframe displacements

of objects are bounded, i.e., the correspondence of a token at the next ins-

tant must be in its neighborhood. Furthermore, objects usually move smoo-

thly12�14, thus the motion coherence can be used to predict the occurrence of

tokens in the future, which considerably reduces the search space. The sta-

tistical data association techniques for target tracking, originally developed

for radar imagery, �t well in this framework, and are already recognized as

an e�cient approach to solving correspondence and motion problems15�17.

The reader is referred to18 for a recent review of statistical data association

techniques.

However, most of these techniques were originally developed for tracking

a few and known targets, although recently progresses have been made to

deal with a large number of targets 19. The theoretical base under these

techniques is directly applicable to tracking problems in computer vision. A

number of particularities, though, are required to be taken care:
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� large number of tokens, usually several hundreds. Furthermore, several

tokens are close to each other.

� appearance. A previously unseen object may partially or totally come into

view.

� disappearance. A moving object in the current �eld of view may move

partially or totally out of it in the next frames.

� occlusion. A moving object may be partially or totally occluded by the

background or by other objects.

� absence. Some tokens which should be present are not due to the failure

of the feature extraction (or reconstruction) process.

� coherence of tokens. In radar imagery, a target represents an object, e.g.,

an aircraft, and it usually moves independently from the others. In com-

puter vision, however, tokens originate from several independently moving

objects. Thus tokens from a single object undergo a similar (same, if the

object is rigid) 3D motion.

The interested reader is referred to20;21 for the above topics. This paper

is a continuation of our previous work and we concentrate on a couple of

strategies we recently developed for tracking tokens in a cluttered scene.

After presentation of a formulation for tracking \general" tokens, we des-

cribe in this paper some strategies for tracking with emphasis on practical

importance. They include beam search for resolving multiple matches, sup-

port of existence for discarding false matches, and locking on reliable tokens

and maximizing local rigidity for handling combinatorial explosion. We have

implemented those strategies in a 3D line segment tracking algorithm and

found them very useful.

2 Notations and Terminology

We are interested in tracking geometric primitives including points, lines and

curves. A group of geometric primitives such as vertex and attached edges is
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also of interest. We shall call them tokens. A token at time ti is characterized

by its position, orientation and kinematic parameters, which are captured

in a vector called the state vector xi. An imaging system observes the token

which is represented by a vector called the measurement (or observation)

vector zi. We call the observation a scene token.

The (right) subscript is used to denote the time instant, as in xi and

zi. At each instant, there are many tokens and scene tokens which will be

distinguished to each other by a left subscript. For example, jzi is the jth

scene token observed at time i. One or both subscripts will be omitted if

this does not result in any ambiguity. The caret ^ denotes the estimation or

prediction. For example, x̂kjk�1 denotes the prediction of the state at time

k given measurements up to time k� 1. P denotes the covariance matrix of

a state vector and � denotes that of a measurement vector.

3 Problem Formulation

The dynamics of a token is assumed to be described by a di�erence equation

xk+1 = fk(xk) +wk ; (1)

where fk(�) is a vector function describing the transition of the state vector

from tk to tk+1 (the so-called state transition function), andwk is the random

disturbance of the dynamic system. In practice, the state transition function

is determined by the underlying token kinematics assumed. Two commonly

used kinematic models are:

a) Polynomial model: State variables evolve polynomially in time. In gene-

ral, constant velocity or constant acceleration model is used15;16.

b) General motion model: A token is assumed to undergo a motion with

polynomial angular velocity and polynomial translational velocity20;22.

In practice, constant angular velocity and constant translational velocity

or acceleration model is su�cient.
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In fact, the polynomial model is a special case of the general motion model

where the angular velocity is zero. One advantage of the polynomial model

is that the transition function fk(�) is linear while we generally cannot write

down a linear function using the latter model. However, the latter can more

reasonably approximate a real motion than the former.

The statistical property of the system noise term wk cannot in general

be known exactly. We model wk as an independent Gaussian noise sequence

with zero mean and known covariance, i.e.,

E[wk] = 0 ; and E[wkw
T
l ] = Qk�kl (2)

for all k and l, where �kl is the Kronecker delta, which is 1 for k = l and 0

otherwise. Qk is usually determined on the basis of the designer's experience

and physical understanding about the dynamic system. It is used, on the

one hand, to model disturbances due to, for example, vibration of objects

during motion, and on the other hand, to partially take into account the

error in modeling. The model we use is only an approximation to the real

motion which is usually very complex.

The measurement equation describes the relation between measurements

(observations) and state variables of the dynamic system, which can usually

be expressed as

zk = hk(xk) + nk ; (3)

where hk(�) is a vector function called the observation function and nk repre-

sents the random noise contained in the measurements. Measurements are

obtained through some signal processing algorithm such as edge detection

and 3D reconstruction in a stereo system. The statistical property of nk is

either provided by the signal processing algorithm if uncertainty is modeled

or determined on the basis of the designer's experience and physical unders-

tanding of the signal processing algorithm. We model nk as an independent
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Gaussian noise sequence with zero mean and known covariance, i.e.,

E[nk] = 0 ; and E[nkn
T
l ] = Rk�kl (4)

for all k and l.

In general, the noise in the state equation and that in the measurement

equation are determined independently. We thus assume that there is no

correlation between them, that is, E[wkn
T
l ] = 0 for all k and l.

Given a sequence of measurements fzk j k = 1::ng of a token, we are

ready to use the Kalman �lter if fk(�) and hk(�) are linear, or the extended

Kalman �lter otherwise, to estimate the state variable xk of the token. The

reader is referred to23�25 for the details of the Kalman �lter and the extended

Kalman �lter.

4 Main Steps in Tracking

We shall sketch out in this section the tracking process. By tracking, we

mean establishing at each instant a correspondence between the tokens being

tracked and the scene tokens observed. As time goes on, some tokens move

out of and some others come into the �eld of view. Thus we must also deal

with the disappearance and appearance problems. The tracking problem

becomes more di�cult, because some tokens may be occluded by others

(the so-called occlusion problem) or may not be detected due to temporary

failure of the signal processing algorithm (which we refer as the absence

problem). We shall address these issues in this and next sections.

4.1 Prediction-Matching-Update Loop

The tracking is performed in a prediction-matching-update loop. At time t

(tk�1 � t < tk), i.e., before data at tk are available, we predict its occurrence

at tk for each token being tracked. When data at tk are available, we try

to �nd for each token a scene token as its match in the neighborhood of its
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predicted position. When a match is found, the token (state) parameters are

updated using either the Kalman �lter or the extended Kalman �lter (EKF).

In the following, both the state transition and measurement observation

functions are assumed nonlinear, and the EKF will be used. The discussions,

however, are directly applicable to the linear case.

The prediction is done in two stages. First, the state and its error cova-

riance are propagated to tk according to Eq. (1), that is

x̂kjk�1 = fk�1(x̂k�1) ; (5)

Pkjk�1 = Fk�1(x̂k�1)Pk�1F
T
k�1(x̂k�1) + Qk�1 ; (6)

where Fk�1(x̂k�1) is the partial derivative matrix of fk(x) with respect to x,

i.e.,

Fk�1(x̂k�1)
4
=

@fk�1(x)

@x

��
x=x̂k�1

: (7)

As one can observe, we use the �rst order approximation to compute the

prediction of the state error covariance if fk�1(�) is nonlinear. Second, the

predicted position and its covariance matrix of the token are computed. We

have according to Eq. (3):

ẑk = hk(x̂kjk�1) (8)

with an uncertainty of

�k = Hk(x̂kjk�1)Pkjk�1H
T
k (x̂kjk�1) ; (9)

where

Hk(x̂kjk�1)
4
=

@hk(x)

@x

��
x=x̂kjk�1

: (10)

Here we again use the �rst order approximation if hk(�) is nonlinear.

Due to noise from multiple sources, it is very unlikely that a scene to-

ken observed at tk has exactly ẑk. Given n observed scene tokens at tk
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fjzk j j = 1; : : : ; ng with covariance matrices fjRk j j = 1; : : : ; ng, we use

the Mahalanobis distance to decide which scene token matches the token

having the predicted measurement vector ẑk with covariance matrix �k.

The (squared) Mahalanobis distance between the prediction and the ith

scene token is de�ned as

id
M
k

4
= ir

T
k�

�1
irk

irk ; (11)

where irk = izk � ẑk and �
irk

= iRk + �k. We usually call irk the mea-

surement residual. The variable id
M
k is a scalar random variate following a

�
2 distribution with q degrees of freedom, where q is the dimension of the

measurement vector. By looking up the �2 distribution table, we can choose

an appropriate threshold � by setting Pr(�2
p < �) = �, where � is typically

equal to 95%. If id
M
k < �, then the ith scene token is considered as a potential

match of the token.

A naive matching algorithm yields a linear complexity in the number

of scene tokens to match one token being tracked, i.e., O(n). However, the

matching process may be slow, especially when there is a large number of

scene tokens. This is because the computation of the Mahalanobis distance

involves a matrix inversion and is relatively expensive. Many techniques

exist to speed up the matching process. One of them is the bucketing tech-

nique, which allow us to access directly a subset of scene tokens which are

in the neighborhood of the prediction. See22 for details. Another technique

is proposed by Orr et al.26, which uses the inequality

rT��1
r
r �

rTr

trace(�
r
)
: (12)

Thus we can �rst compute the simpli�ed distance d0 = rTr=trace(�
r
), which

is computationally much simpler than Eq. (11). If d0 � �, so will be id
M
k ,

then the computation of Eq. (11) is not necessary. This avoids the necessity

of performing a matrix inverse for every test.
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Once a match is found, the (extended) Kalman �lter is used to update

the token parameters. Let izk be the match of the token, the Kalman gain

is �rst computed:

Kk = Pkjk�1H
T
k (x̂kjk�1)(�k + iRk)

�1 ; (13)

where Hk and �k are given in (10) and (9). The state and its covariance

matrix are eventually updated with the measurement as

x̂k = x̂kjk�1+Kk(izk � ẑk) ; (14)

Pk = [I�KkHk(x̂kjk�1)]Pkjk�1 : (15)

4.2 Initialization

At time t1, each scene token is used to initialize a token. As described earlier,

the state of a token is composed of its position, orientation and kinematic

parameters. The position and orientation parameters of a scene token are

assigned to those of its corresponding token. The initialization of the kine-

matic parameters depends upon the a priori information. If such information

is not available, it is reasonable to initialize them to zero, because we are

considering a dense sequence and that the interframe motion is small. Ho-

wever, in the state covariance matrix, we should set the diagonal elements

corresponding to the kinematic parameters to a fairly big number and the

o�-diagonal ones to zero, in order to re
ect the fact that we know nothing

about the kinematics of the token.

4.3 Appearance

Because some new tokens enter the �eld of view, their corresponding scene

tokens in the current frame cannot be matched to any token being tracked. In

this case, each such scene token is used to initialize a new token as described

in the previous subsection, which starts the same process as the others.
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5 Beam Search and Support of Existence

5.1 Di�erent Cases in Matching and Beam Search Strategy

In using the criterion of the Mahalanobis distance, three cases occur in

matching a token:

(i) Unique match: only one scene token is identi�ed as a match of the

token.

(ii) No match: no scene token is identi�ed as a match of the token.

(iii) Multiple matches: several scene tokens are identi�ed as plausible matches

of the token.

If there is only one match, then there is a high probability that the scene

token is the observation of the token being tracked. Thus we just update the

token's state by incorporating the scene token.

\No-match" may occur due to a number of reasons. Firstly, the token

being tracked disappears, i.e., it is out of the current �eld of view. This case

can be easily veri�ed by projecting the token onto one of the camera planes.

Such a token may be retained or discarded depending upon whether we want

to know it will reenter the �eld of view or not. Secondly, the token being

tracked is resulted from previous false matches. Such a token has no reason

to survive and should be discarded from further consideration. However,

how to determine whether this is the case? Thirdly, the token being tracked

is occluded by other tokens. Such a token should be retained for further

consideration, because it corresponds to a real token in space and that it will

be observed later. One may verify whether this is the case using geometric

knowledge. However, the test may be computationally expensive. Finally,

the token being tracked does exist, but the feature extraction process fails

in reconstructing it. This is usually the case in Computer Vision. Although

it is purely algorithmic, we can treat the token in the same manner as in

the previous case where the problem is physical.
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\Multiple-matches" occurs especially when a token is very uncertain (for

example, during the �rst instants after initialization) or when several scene

tokens are near to each other. One (maybe the most common) strategy is

best-�rst search, that is, to choose the nearest scene token as in15;16 and

to discard the other possibilities. This method is e�cient but not robust.

It may lead to unpredictable results, because the closest scene token is not

always the correct match. To increase the robustness, one may resort to

backtrack. This, however, results in a loss of e�ciency because we must save

all previous data in the memory. Another possible strategy is to replace all

scene tokens satisfy the criterion of the Mahalanobis distance by a virtual

one with a modi�ed probability distribution. This is the idea of the JPDAF

method proposed by Bar-Shalom and Fortmann 1. However, this method

introduces a bias in the state estimate because it merges several physically

distinct scene tokens as a single one to update the token's state.

An optimal assignment of which scene token to the token being tracked

can be expected to be achieved through a global optimization by taking all

tokens and their plausible matches into account. The computation, however,

will be very expensive. The di�culty can be overcome if decision-making

is deferred until more observations are collected. One approach is to �rst

save several, say three, forthcoming frames, and then disambiguate multiple

matches based on a temporal smoothness constraint by considering all pos-

sible combinations. This is the method used in13. However, it is not e�cient

enough, because it requires to store in the memory all data observed during

several instants and to test all possible combinations.

A more e�cient approach is to exploit the beam-search strategy. That

is, instead of choosing the nearest scene token, several (2, in our imple-

mentation), if any, nearest ones are used. This approach is similar to the

track-splitting �lter in the literature1. Di�erent from the JPDAF method,

we split the token being tracked into several, as many as the scene tokens

found in the search space. Each split token updates its state with one of
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the scene tokens chosen. We leave the forthcoming observations to decide

which match is correct. The token resulted from the correct match will be

con�rmed by forthcoming scene tokens, while those resulted from incorrect

matches will in general not. Thus the multiple-matches problem is handled

gracefully. However, the algorithm is potentially exponential. Take an ex-

treme example. We are given a sequence of observations of two tokens which

are close to each other. Each token may be matched to either one, and the

number of tokens being tracked at tn would be 2n. Some strategy needs to

be developed to discard the false tokens.

x

time

x

x
x

x
x

x x
x x

x

x

best−first search
time

x

beam search

x x

x
x

x
x

x

x
x

x

x
x

x

Fig. 1. A pedagogical example to show the strength of the beam search over the

best-�rst search

In Fig. 1 we provide a pedagogical example to show the strength of the

beam search over the best-�rst search. Originally there are three tokens

whose trajectories are shown in dashed lines. The real position of a token

is indicated by a small circle, and its prediction, by the symbol x. The

association between the prediction and the observation is indicated by thick

solid lines. The evolution of the tracking is shown by thin solid lines. Clearly,

the beam-search approach yields much better performance than the best-

�rst approach.
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The multiple-hypothesis �lter1, originally developed by Reid27, provides

a consistent way to deal with multiple matches, token initialization and

termination. However, the algorithm is much more complicated to implement

and requires a number of parameters, e.g., the probabilities of detection and

termination of a token and the probability of appearance of a new token.

Furthermore, it has also exponential complexity. A practical implementation

of this approach then exploits many heuristics, too.

5.2 Support of Existence

As described in the previous section, our idea of matching is to keep open

the possibility of accepting several or no matches for any given token. Ho-

wever, such strategy may lead to a computational explosion. To avoid this

we must discard tokens resulted from false matches. We compute for each

token a number that we call its support of existence which measures the ade-

quateness of the token with the measurements. We have already introduced

this measure in21, but for completeness we still include it here.

We denote the sequence of measurements corresponding to the token

being tracked up to time tk as Zk 4
= fz1; : : : ; zkg in which zi is the scene

token observed at time ti. Denote the event that Z
k yields a correct token,

i.e., that its components zi were produced by the same token moving in

space, by

e
4
= fZk yields a correct tokeng :

The likelihood function of this sequence yielding a correct token is the joint

probability density function (or PDF):

Lk(e) = p(Zkje) = p[z1; : : : ; zkje] : (16)

From the de�nition of a conditional PDF, Lk(e) can be written as

Lk(e) = p[Zk�1; zkje] = p[zkjZ
k�1; e] p[Zk�1je] =

kY
i=1

p[zijZ
i�1; e] ; (17)
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where Z0 represents the prior information.

As before, we denote the measurement residual as r, i.e., ri = zi � ẑi.

Then p(ri) = N [ri; 0;�ri
] with �

ri
= �i + Ri. We use N [x;�x;�] to denote

the Gaussian density function of the random variable x with mean �x and

covariance �. We now make the admittedly strong assumption that the ri's

are Gaussian and uncorrelated. We thus write:

p[zijZ
i�1; e] = N [ri; 0;�ri

] : (18)

It follows under the previous assumption that:

Lk(e) =

"
kY

i=1

j2��
ri
j
�1=2

#
exp

"
�
1

2

kX
i=1

rTi �
�1
ri
ri

#
:

Note that rTi �
�1
ri
ri = dMi (see Eq. (11)). The modi�ed log-likelihood function,

corresponding to the exponent of Lk(e), is de�ned as

lk
4
= �2 ln

"
Lk(e)=

kY
i=1

j2��
ri
j
�1=2

#
=

kX
i=1

dMi

and can be computed recursively as follows:

lk = lk�1 + dMk :

The last term has a �2 distribution with q degrees of freedom. Since the ri's

are assumed to be independent, lk has a �2 distribution with kq degrees of

freedom.

The statistical test for deciding that Zk yields a correct token is that the

log-likelihood function satis�es

lk � � ; (19)

where the threshold � is obtained from the �2 table with kq degrees of

freedom by setting Pr(�2
kq � �) = � ; where � is typically equal to 95%.

In practice, the test (19) cannot be used for a long sequence because the

likelihood function is dominated by old measurements and responds very
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slowly to recent ones. In order to limit the \memory" of the system, we can

multiply the likelihood function at each step by a discount factor c < 1. This

results in the fading-memory likelihood function:

lk = clk�1 + dMk =
kX

i=1

ck�idMi :

The e�ective memory of lk is now (1�c)�1, and in steady state lk is approxi-

mately a �2 random variable with q(1+ c)=(1� c) degrees of freedom, mean

q=(1�c), and variance 2q=(1�c2). See1 for the proof. In our implementation,

c = 0:75, thus a bad token may last for 4 frames before being discarded.

In the above discussion, we assume implicitly that a match is detected

at each sampling time. As described earlier, match detection may fail from

time to time for a number of reasons. In this case, it means that:

dMk � � :

Thus, if at time tk no match is found, the �t between the prediction and

the observation is not very good. But note that even in that case we may

still have lk � � and the processing of the token will continue. This allows

us to cope with problems such as occlusion, disappearance and absence. Of

course if the Mahalanobis distances stay over the threshold � at too many

consecutive time instants, i.e., if the token does not �nd any good match in

the scene too often, then lk will go beyond the threshold �, and the token will

be discarded, as expected. If the token has not found any correspondences

in a long time then it is bound either to be the result of a false match

that happened in the past or to have disappeared from the scene. In our

implementation we set dMk = �� where � = 1:2 in case of no match. � must

be larger than 1 because no match is found within the threshold �. The

bigger the value of � is, the faster a token will be discarded if it cannot �nd

any match at several consecutive time instants.
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5.3 Discarding Redundant Tokens

In the beam-search approach, a token can be split, each being updated

using a scene token satisfying the Mahalanobis distance. On the other hand,

a scene token can be used to update several tokens being tracked. This

occurs, for example, when a token splits into two (e.g., two fractions of

a line segment are observed) and then both new tokens are updated with

identical subsequent scene tokens. This implies that the state estimates of

two or more tokens tokens may be similar, and it is likely that they represent

the same token. We can thus just retain one token and discard the redundant

ones.

6 Trying to Resolve Ambiguity as Early as Pos-

sible

Use of the support of existence does prevent the algorithm from a compu-

tational explosion. However, it is not e�cient enough because we need to

process a token resulted from previous false matches during four or more

frames before it is discarded. It is of much bene�t if we can resolve match

ambiguities as early as possible. This section describes two strategies which

reduce the match ambiguity and thus reduce the number of tokens to be

processed.

6.1 Locking on a Reliable Token

Besides potentially computational explosion, one major drawback of beam-

search approach is due to the fact that a scene token can be shared by

several di�erent tokens being tracked. Thus it is possible that this approach

generates tokens which are not mutually exclusive, nor consistent with each

other. The former was already discussed in the previous section (discarding

redundant tokens). The latter is sometimes a desired feature, because if we
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have not enough information, it is wise to leave the forthcoming observations

to resolve the ambiguity.

T

T

S

S

1

1

2
2

Fig. 2. A scene token can be locked by a secure token. �: tokens; �: scene tokens

However, in the situation as shown in Fig. 2, we can exploit a strategy,

which we call the \locking-on-a-token", to obtain a better performance. Here

two tokens share one of the measurement (S1), and one token (T1) has much

less uncertainty than the other one (T2). When a measurement (scene token)

is validated by a secure token (T1 in this case), whose state parameters are

precise enough, the pairing is almost unambiguous. This measurement is

said to be locked on by the token, and all other tokens search for their

correspondences as if this measurement did not exist. In the situation as

shown in Fig. 2, the scene token S1 is locked on by the token T1, and then

the scene token S2 is uniquely paired to the token T2.

There are at least three ways to implement this strategy:

1. Comparing the uncertainty measures. The trace of the covariance matrix

roughly measures the magnitude of the uncertainty. If trace(Cov(T1))�

trace(Cov(T2)) (e.g., trace(Cov(T1)) < 1

3
trace(Cov(T2))), then T1 can

lock on the shared scene token.

2. Counting the number of appearances. If during the pastN (say, 5) frames,

the number of appearance of T1 (denoted byN1) is much bigger than that
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of T2 (denoted by N2), e.g., N1 � 4 and N2 � 2, then T1 can lock on the

shared scene token.

3. Comparing the support of existence lk. A secure token implies that it has

a high coincidence with the measurements, that is, it should have a low

value of lk (it has a high support for the existence). If the lk of the token

T1 is less than ��, where � is a threshold as de�ned in Eq. (19), and � < 1

(we set � = 1=3), then T1 can lock on the shared scene token.

The third method has been implemented because the value of lk is readily

available.

6.2 Maximizing the Rigidity

Rigidity assumption has been used in most matching algorithms, especially

in short-sequence motion analysis. Psychological study shows that, among

many possible interpretations of any change between two successive frames,

the human visual system only accepts a few, often only one, which are con-

sistent with the rigidity assumption3. In long-sequence motion analysis like

the problem studied in this paper, rigidity assumption is not exploited be-

cause the motion continuity or coherence is usually strong enough to resolve

matching ambiguities. Here, we combine the rigidity and motion continuity

to reduce the ambiguities.

T

T

1

S1

2
S2

Fig. 3. Combining rigidity and motion continuity to disambiguate matches. �: tokens;

�: scene tokens
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Given a situation as shown in Fig. 3, where two tokens (T1 and T2) share

the same measurements (S1 and S2). If we split tokens, we will obtain four

tokens. If the relationship between S1 and S2 is not rigid compared with

that between T1 and T2, then they originate from two di�erent objects (or

the object is deformed), and splitting is the only way we can do. However, if

they satisfy the rigidity constraints, we can resolve the ambiguity using the

motion continuity. The displacement of a rigid object between two successive

frames in a sequence with high sample frequency cannot be large due to

physical law. A reasonable constraint, for example, is that the rotation angle

between two successive frames must be less than some threshold, say 60

degrees. To explain how to exploit this constraint, we refer to Fig. 3 and

consider the two-dimensional case. If we assign S1 to T1 and S2 to T2, the

rotation angle is about 45 degrees. On the other hand, if we assign S1 to

T2 and S2 to T1, the rotation angle will be about 135 degrees, which is of

course not reasonable. We thus resolve the ambiguity.

The reader is referred to11;28 for a complete set of rigidity constraints

for 3D line segments. As the data we have are always corrupted with noise,

the equalities hardly ever hold true. We have formulated the rigidity cons-

traints by explicitly taking into account the uncertainty of measurements.

The reader is referred to10;29;30 for other formalisms of rigidity constraints.

7 Experimental Results

We have incorporated the strategies described above into a tracking algo-

rithm previously developed20;21. The algorithm tracks 3D line segments in a

sequence of 3D frames reconstructed by a trinocular stereo system. It com-

putes at the same time the 3D kinematic parameters for each line segment,

and can segment the scene into objects by grouping line segments based on

motion similarity.
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(the �rst) (the sixth)

(the eleventh) (the sixteenth)

Fig. 4. Sample images of the stereo sequence studied
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Table 1. The numbers of scene tokens and active tokens in each frame

frame number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

scene tokens 37 42 42 44 43 43 48 50 51 58 66 73 102 101 98 103

tokens (modified) 37 54 61 51 51 50 52 60 61 69 79 86 115 134 146 147

tokens (original) 37 68 78 63 61 56 59 70 74 80 98 119 147 179 190 192

We have tested the modi�ed algorithm on the sequences described in20;21,

and better results have been obtained. In this paper, we provide the results

on a di�erent sequence, consisting of 16 triplets of images. The 1st, 6th,

11th and 16th images taken by the �rst camera of the stereo rig are shown

in Fig. 4. The sequence was acquired by manually moving the stereo rig away

from a wall on which we have put several posters to increase the number of

line segments. The interframe displacement was supposed a pure translation

of 10 centimeters. It is in fact almost true except for the thirteenth frame,

as can be seen later. This sequence is interesting in that more and more

tokens are visible when time goes on, i.e., the appearance is remarkable.

(Several line segments are not observable in the 3D frames due to the absence

problem described in the introduction section.) If we process the sequence

in the reverse direction, more and more tokens would disappear. However,

the appearance problem is more di�cult to tackle than the disappearance in

tracking. The number of line segments reconstructed by the stereo system

in each frame is shown in the �rst row of Table 1.

Each segment in the �rst frame is initialized as a token to be tracked.

Since the motion tracking algorithm is recursive, some a priori information

on the kinematics is required. A reasonable assumption may be that ob-

jects do not move, as the inter-frame motion is expected to be small. The

kinematic parameters are thus all initialized to zero, but with fairly large

uncertainty: the standard deviation for each angular velocity component is
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0.0873 radians/unit-time (or 5 degrees/unit-time), and that for each trans-

lational velocity component is 150 millimeters/unit-time.

Those tokens are then predicted for the next instant t2 and the predicted

tokens are compared with those in the new frame. Of course, since we assume

that there is no motion, the predicted position and orientation of each token

remain unchanged, but their uncertainty changes and becomes very large. As

expected, multiple matches occur for most of the tokens. Techniques based

only on the best match usually fail at this stage, since the nearest scene

token is not always the correct match. We retain the two best matches if

a token has multiple matches. Furthermore, the strategies described in this

paper are exploited to reduce the matching ambiguities. The token updates

its kinematic parameters using its best match. A new token is initialized

by combining the original token and its second best match which is used

to estimate its kinematic parameters. It pursues the tracking in the same

manner as the others. Usually the tokens originated from false matching in

the preceding instants are losing their support for existence as more frames

are processed, and are eventually deactivated. The number of active tokens

after processing each frame is shown in the second row of Table 1. The

number does not become overwhelming, even though there is a signi�cant

increase in the number of scene tokens.

In Fig. 5, we show the superposition of the predicted (in solid lines)

and the observed (in dashed lines) segments at time t3. (Note: In �gures 5

through 8, the left picture is a perspective view of a 3D frame, that is, its

perspective projection onto the �rst image plane; the right one is the top

view, that is, its orthographic projection onto the ground plane.) In the top

view, the segments on the top correspond to the projections of the posters

on the wall; those in the middle correspond to the boxes on the table. As

can be observed, more active tokens (in solid lines) exist at this moment:

some have been activated due to multiple matches at time t2 and some just

entered the �eld of view. We observe that the tokens originated from good
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(Perspective view) (Top view)

Fig. 5. The superposition of the predicted (in solid lines) and the observed (in dashed

lines) segments at time t3

(Perspective view) (Top view)

Fig. 6. The superposition of the predicted (in solid lines) and the observed (in dashed

lines) segments at time t5
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matching coincide well with the scene tokens. After having processed the

fourth frame, a number of false tokens disappear, as shown in Fig. 6, where

the predictions for t5 are overlayed on the observations at t5.

(Perspective view) (Top view)

Fig. 7. The superposition of the predicted (in solid lines) and the observed (in dashed

lines) segments at time t13

As said earlier, the thirteenth frame was taken, not intentionally, in a

shifted position. Figure 7 shows the superposition of the predicted (in solid

lines) and the observed (in dashed lines) segments at time t13. Compared

with the results shown in Fig. 5 and Fig. 6, we can observe a relatively big

di�erence between the prediction and the observation. After several frames,

such occasional incoherent motion will be compensated for by the algorithm.

Figure 8 shows the superposition of the predicted (in solid lines) and ob-

served (in dashed lines) segments at t16. Quite a good �tting between the

prediction and observation is now again observed.

As described in 20;21, we can group the individual tokens into objects

based on the motion coherence. Here there is only one object. The �nal

estimate of the interframe rotation is 1.1 milliradians, or 0.063 degrees. The
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(Perspective view) (Top view)

Fig. 8. The superposition of the predicted (in solid lines) and the observed (in dashed

lines) segments at time t16

�nal estimate of the interframe translation is 99.52 millimeters. Recall that

the supposed displacement is a pure translation of 100 millimeters.

To compare the performance of the original and the modi�ed algorithm,

we rerun the algorithm without using the strategies described in the section

\Trying to resolve ambiguity as early as possible", i.e., locking-on-a-token

and maximizing the rigidity . The third row of Table 1 shows clearly that

the number of tokens being tracked at each instant with the original algo-

rithm is larger than with the modi�ed one. Indeed, the number of tokens is

30% larger in average. The di�erence becomes even bigger as more frames are

processed. This indicates the necessity of exploiting the strategies described.

Because it tracks less, but more reliable, tokens, the modi�ed algorithm is

also computationally more e�cient. For example, if we run both algorithms

on a SUN SS10 workstation (about 5.4 MFLOPS), the CPU time for pro-

cessing frame 15 is shown in Table 2. The execution time with the modi�ed

algorithm is about 30% less.
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Table 2. Comparison of computational costs of the original and modi�ed algorithms

(CPU time in seconds for Frame 15)

Algorithm prediction time matching-update time total

modi�ed 0.11 0.25 0.36

original 0.16 0.31 0.47

8 Conclusion

In this paper we have presented our recent work on token tracking in a

cluttered scene in the statistical data association framework. A general for-

mulation has been described. The main steps have been summarized. We

have focused in this paper on several strategies including beam search for

resolving multiple matches, support of existence for discarding false matches,

locking tokens and maximizing local rigidity for handling combinatorial ex-

plosion. We have implemented these strategies in a 3D line segment tracking

algorithm and found them to be very useful. Indeed, the number of tokens

has been reduced by 30% by exploiting these strategies, and the modi�ed

algorithm is computationally more e�cient.

References

[1] Y. Bar-Shalom and T. Fortmann, Tracking and Data Association. Aca-

demic, New York, 1988.

[2] S. S. Blackman, Multiple-Target Tracking with Radar Application. Ar-

tech House, Norwood, MA, 1986.

[3] S. Ullman, The Interpretation of Visual Motion. MIT Press, Cambridge,

MA, 1979.



28 Zhengyou Zhang

[4] R. Tsai and T. Huang, \Estimating 3-D motion parameters of a rigid

planar patch, i," IEEE Trans. ASSP, vol. 29, pp. 1147{1152, December

1981.

[5] H. Longuet-Higgins, \A computer algorithm for reconstructing a scene

from two projections," Nature, vol. 293, pp. 133{135, 1981.

[6] R. Haralick and L. Shapiro, \The consistent labeling problem: Part i,"

IEEE Trans. PAMI, vol. 1, pp. 129{139, April 1979.

[7] R. Hummel and S. Zucker, \On the foundation of relaxation labeling

process," IEEE Trans. PAMI, vol. 5, pp. 267{286, May 1983.

[8] O. Faugeras and M. Berthod, \Improving consistency and reducing

ambiguity in stochatic labeling: An optimization approach," IEEE

Trans. PAMI, vol. 3, pp. 412{423, April 1981.

[9] B. Radig, \Image sequence analysis using relational structures," Pattern

Recog., vol. 17, no. 1, pp. 161{167, 1984.

[10] H. Chen and T. Huang, \Maximal matching of 3-D points for multiple-

object motion estimation," Pattern Recog., vol. 21, no. 2, pp. 75{90,

1988.

[11] Z. Zhang, O. Faugeras, and N. Ayache, \Analysis of a sequence of stereo

scenes containing multiple moving objects using rigidity constraints,"

in Proc. Second Int'l Conf. Comput. Vision, (Tampa, FL), pp. 177{186,

December 1988. Also as a chapter in R. Kasturi and R.C. Jain (eds),

Computer Vision: Principles, IEEE computer society press, 1991.

[12] A. van Doorn and J. Koenderink, \Spatiotemporal integration in the

detection of coherent motion," Vision Research, vol. 24, no. 1, pp. 47{

53, 1984.



Token Tracking in a Cluttered Scene 29

[13] M. Jenkin and J. Tsotsos, \Applying temporal constraints to the dyna-

mic stereo problem," Comput. Vision, Graphics Image Process., vol. 24,

pp. 16{32, 1986.

[14] S. Sethi and R. Jain, \Finding trajectories of feature points in a mo-

nocular image sequence," IEEE Trans. PAMI, vol. 9, no. 1, pp. 56{73,

1987.

[15] J. Crowley, P. Stelmaszyk, and C. Discours, \Measuring image 
ow

by tracking edge-lines," in Proc. Second Int'l Conf. Comput. Vision,

(Tampa, FL), pp. 658{664, IEEE, December 1988.

[16] R. Deriche and O. Faugeras, \Tracking line segments," in Proc. First

European Conf. Comput. Vision, (O. Faugeras, ed.), (Antibes, France),

pp. 259{268, Springer, Berlin, Heidelberg, April 1990.

[17] Z. Zhang and O. Faugeras, \Tracking and motion estimation in a se-

quence of stereo frames," in Proc. 9th European Conf. Artif. Intell.,

(L. Aiello, ed.), (Stockholm, Sweden), pp. 747{752, August 1990.

[18] I. Cox, \A review of statistical data association techniques for motion

correspondence," Int'l J. Comput. Vision, vol. 10, no. 1, pp. 53{66,

1993.

[19] J. Uhlmann, \Algorithms for multiple-target tracking," American

Scientist, vol. 80, pp. 128{141, March-April 1992.

[20] Z. Zhang and O. Faugeras, \Tracking and grouping 3D line segments,"

in Proc. Third Int'l Conf. Comput. Vision, (Osaka, Japan), pp. 577{

580, IEEE, December 1990.

[21] Z. Zhang and O. Faugeras, \Three-dimensional motion computation

and object segmentation in a long sequence of stereo frames," Int'l J.

Comput. Vision, vol. 7, pp. 211{241, March 1992.



30 Zhengyou Zhang

[22] Z. Zhang, Motion Analysis from a Sequence of Stereo Frames and its

Applications. PhD thesis, University of Paris XI, Orsay, Paris, France,

1990. in English.

[23] A. Jazwinsky, Stochastic Processes and Filtering Theory. Academic,

New York, 1970.

[24] P. Maybeck, Stochastic Models, Estimation and Control. Vol. 1, Aca-

demic, New York, 1979.

[25] P. Maybeck, Stochastic Models, Estimation and Control. Vol. 2, Aca-

demic, New York, 1982.

[26] M. Orr, J. Hallam, and R. Fisher, \Fusion through interpretation,"

in Proc. Second European Conf. Comput. Vision, (Santa Margherita

Ligure, Italy), pp. 801{805, May 1992.

[27] D. Reid, \An algorithm for tracking multiple targets," IEEE Trans.

AC, vol. 24, pp. 843{854, Dec. 1979.

[28] Z. Zhang and O. Faugeras, \Estimation of displacements from two 3D

frames obtained from stereo," IEEE Trans. PAMI, vol. 14, pp. 1141{

1156, December 1992.

[29] S. Pollard, J. Porrill, J. Mayhew, and J. Frisby, \Matching geometri-

cal descriptions in three-space," Image and Vision Computing, vol. 5,

pp. 73{78, may 1987.

[30] D. Murray and D. Cook, \Using the orientation of fragmentary 3D edge

segments for polyhedral object recognition," Int'l J. Comput. Vision,

no. 2, pp. 153{169, 1988.



Unité de recherche INRIA Lorraine, Technôpole de Nancy-Brabois, Campus scientifique,
615 rue de Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY
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