
Force.com IDE Developer Guide
Force.com IDE v35.0, Winter ’16

 @salesforcedocs
Last updated: December 17, 2015

https://twitter.com/salesforcedocs

© Copyright 2000–2015 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: Force.com IDE UI Overview . 1

Force.com Toolbar Buttons . 2
Package Explorer . 2

Force.com Context (Right-Click) Menu . 2
Force.com IDE Editors . 3
Schema Explorer . 4
Force.com Wizards . 29

Create New Force.com Project . 25
Create New Apex Class . 6
Create an Apex Class from a WSDL . 7
Create New Apex Trigger . 8
Create New Custom Application . 8
Create New Custom Object . 9
Create New HomePage Component . 9
Create New HomePage Layout . 9
Create New Letterhead . 9
Create New Profile . 10
Create New Visualforce Component . 10
Create New Visualforce Page . 10
Add Workflow From Server . 10

Force.com Views (Tabs) . 11
Problems View . 11
Apex Test Results View . 35
Execute Anonymous View . 30
Synchronize View . 13
Force.com Log Viewer . 13

Chapter 2: Getting Started with the Force.com IDE . 15

Developing with the Force.com IDE . 24
Testing Code with the Force.com IDE . 34
Deploying Code with the Force.com IDE . 37
Quickstart: Using the Force.com IDE . 19
Working Offline . 22
Updating the Force.com IDE . 22
Developing with the Force.com IDE . 24

Force.com Project Basics . 24
Force.com Wizards . 29
Apex Editor . 29
Apex Code Assist . 30

Execute Anonymous View . 30
Server Synchronization . 31

Testing Code with the Force.com IDE . 34
Apex Test Results View . 35

Deploying Code with the Force.com IDE . 37
Destination Details . 37
Archive Options . 38
Deployment Plan . 38

Chapter 6: Getting Started with the Apex Debugger . 40

Summary of Getting Started with the Apex Debugger . 42
Set Up the Apex Debugger . 42

Contact Salesforce to Enable the Apex Debugger . 42
Install or Update the Force.com IDE Plug-In for Eclipse . 42
Set Up a Permission Set . 42
Create a Project . 43
Test Your Debugger Setup . 44

Explore a Simple Debugging Puzzle . 47
Create Sample Accounts in Your Org . 48
Create an Apex Class . 49
Create a Visualforce Page . 50
Identify a Problem . 51
Debug the Problem . 51
Fix the Problem . 55
Delete Your Sample Accounts . 56

Apex Debugger Limits and Considerations . 57
Apex Debugger Limits . 57
Apex Debugger Considerations . 57

Apex Debugger Troubleshooting . 58
Relaunch Your Debug Configuration . 59
Kill an Orphaned Session . 59
Change Your Session Timeout Preference . 60
Report Drastic Issues to Customer Support . 60

Chapter 7: Useful References . 61

Force.com IDE Release Notes . 62
Force.com Project Properties . 65
Apex Code Settings: Log Category and Log Level . 67
About Package.xml . 68

About Metadata Files . 69
Metadata Types . 69

Troubleshooting the Force.com IDE: Debug Mode . 70
Additional Resources . 70

Index . 72

Contents

CHAPTER 1 Force.com IDE UI Overview

The Force.com IDE plug-in adds a Force.com perspective to the Eclipse IDE. An Eclipse perspective is a
collection of views, editors, and other user-interface tools that are organized for a specific purpose. The
Force.com IDE plug-in includes specialized tools for developing applications for the Force.com platform.

In this chapter ...

• Force.com Toolbar
Buttons

To activate the Force.com perspective, select Window > Open Perspective > Other > Force.com
Perspective.

SEE ALSO:

Force.com Toolbar Buttons

Package Explorer

Force.com Context (Right-Click) Menu

Force.com IDE Editors

Schema Explorer

Create New Apex Class

Create an Apex Class from a WSDL

Create New Apex Trigger

Create New Custom Application

Create New Custom Object

Create New HomePage Component

Create New HomePage Layout

Create New Letterhead

Create New Profile

Create New Visualforce Component

Create New Visualforce Page

Add Workflow From Server

• Package Explorer

• Force.com IDE Editors

• Schema Explorer

• Force.com Wizards

• Force.com Views
(Tabs)

1

Force.com Toolbar Buttons

The Force.com perspective provides the following buttons in the Eclipse toolbar:

DescriptionButton

Saves changes to the active file. If you are working online, the file is saved to the server and refreshed.

Note: In offline mode, this button saves the file locally only. To save a file to the server, right-click
the file and choose Force.com > Save to Server. For details, see Working Offline.

Opens Salesforce in your default browser.

Opens the Salesforce Developers community in your default browser.

Launches the Deploy to Server wizard for the active Force.com project. For details, see Deploying Code
with the Force.com IDE.

Package Explorer

The Package Explorer provides a hierarchical tree view of the projects and files in your workspace, and works just like the standard Eclipse
Project Explorer. The Force.com IDE provides additional menu options; for details, see Force.com Context (Right-Click) Menu.

For information on standard project folders and files, see Force.com Project Basics.

Force.com Context (Right-Click) Menu
To access the Force.com context menu, right-click an object in the Package Explorer and scroll down to Force.com (or press the period
key (“.”) to jump to the Force.com menu). The options in the menu depend on the item selected. In addition to the Force.com-specific
options below, the right-click menu provides access to standard actions, including search and delete.

2

Force.com Toolbar ButtonsForce.com IDE UI Overview

DescriptionMenu Item

Enables Force.com functionality for a project. Use this option when you check
out a project from source control to associate the project with Force.com.
Available at project level only.

Add Force.com Nature

Disables Force.com functionality for a project. Available at project level only.Remove Force.com Nature

Disables all implicit server communication. In offline mode, saving files and
compiling code is done locally by default, but you can still save to the server by
using Save to Server. Available at project level only.

Work Offline

Re-enables implicit server communication. In online mode, saving a file saves
the file locally and on the server. Available at project level only.

Work Online

Executes anonymous blocks of code and commits to the database if successful.
For more information, see Execute Anonymous View.

Execute Anonymous

Displays the selected component in the default Web browser. This action
automatically logs you in based on your project's connection settings, and is a
handy way to immediately see the changes you've made.

Show in Salesforce Web

Upgrades the project to the latest version. For more information, see Upgrade
Project.

Upgrade Project

Replaces the current project definition with the server definition. You can refresh
individual components, folders, or the entire project. For more information, see
Refresh from Server.

Refresh from Server

Saves project files to the server if you are working in offline mode. For more
information, see Save to Server.

Save to Server

Synchronizes your project and server. For more information, see Server
Synchronization.

Synchronize with Server

Deploys components to the server. You can deploy individual files, folders, or an
entire project. For more information, see Deploying Code with the Force.com
IDE.

Deploy to Server

Configures the server metadata components to be synchronized with the project.
For more information, see Add/Remove Metadata Components.

Add/Remove Metadata Components

Opens the Project Properties dialog. For more information, see Project Properties.
Available at project level only.

Project Properties

Force.com IDE Editors

When you open a file in Eclipse, the file opens in the editor area of the IDE. The editor that opens is based on the type of file. The Force.com
IDE provides specialized editors for XML, Apex and Visualforce files.

The standard Eclipse editor functionality includes many useful editing features, such as syntax highlighting, unlimited undo and redo,
element selection and formatting, and document formatting. The main Eclipse menu bar and toolbar contain operations that are
applicable to the active editor.

3

Force.com IDE EditorsForce.com IDE UI Overview

The tabs at the top of the editor area display the names of files currently open for editing. An asterisk (*) indicates that a file has unsaved
changes.

The tabs at the bottom of the editor area allow you to toggle between different views of the active file. For example, when you open an
XML file, you can edit it in Design or Source view.

Force.com IDE editors have built-in content assistance for standard Apex and Force.com metadata types. When editing a custom object,
type the less-than sign (“<”) to pick from a list of valid elements. The Apex editor also provides code assistance; for details, see Apex
Code Assist.

Note: To use content assistance in a third-party XML editor installed as an Eclipse plugin, you must extract the
schema/metadata.xsd file from
<eclipse_installation>/plugins/com.salesforce.ide.api_<version>.jar and point the XML
editor to this file.

When you save a file, the editor checks for validity. You will not be able to save files to the server until they are formatted and compile
correctly.

SEE ALSO:

Apex Editor

Apex Code Assist

Schema Explorer

The Schema Explorer is a tool for browsing the metadata of a Salesforce organization, and for querying data. The Schema Explorer
presents the logged-in user's view of the Salesforce data model, including object visibility, permissions, data types, lookup values and
other information that is useful in developing applications on the Force.com platform.

The Schema Explorer provides a hierarchical tree view of your organization's schema. Every object that can be accessed by the logged-in
user is displayed at the root level of the tree, with additional related properties beneath those roots. Tooltips provide quick summary
information.

Note: The Schema Explorer is read-only. You can query data in the schema, but you cannot modify your schema through the
Schema Explorer.

To open the Schema Explorer:

1. In the Package Explorer, expand the node for your Force.com project.

2. Double-click salesforce.schema.

To create a query:

1. Expand the Schema objects in the tree view and select the objects or fields you want to query on.

2. Click Run Me.

3. You can also create a query by entering SOQL directly in the Query Results window. For example, to search for all the accounts in
your organization that start with the letter B, enter the following SOQL query:

SELECT Name FROM Account WHERE Name LIKE 'B%'

For more information about how to write SOQL queries, see the Force.com SOQL and SOSL Reference.

4

Schema ExplorerForce.com IDE UI Overview

https://developer.salesforce.com/docs/atlas.en-us.198.0.soql_sosl.meta/soql_sosl

Force.com Wizards

The Force.com IDE plug-in provides a set of wizards for creating new objects and components, accessible from the File > New menu
(or the New button in the toolbar).

• Create New Force.com Project

• Create New Apex Class

• Create an Apex Class from a WSDL

• Create New Apex Trigger

• Create New Custom Application

• Create New Custom Object

• Create New HomePage Component

• Create New HomePage Layout

• Create New Letterhead

• Create New Profile

• Create New Visualforce Component

• Create New Visualforce Page

• Add Workflow From Server

Create New Force.com Project
To launch the Create New Force.com Project wizard, select File > New > Force.com Project.

Note: If you do not see Force.com Project in the File > New menu, you are not using the Force.com perspective. You can still
create a Force.com project without using the Force.com perspective by selecting File > New > Other > Force.com > Force.com
Project; however, you should use the Force.com perspective because it includes other views and features that aid development.
To activate the Force.com perspective, select Window > Open Perspective > Other > Force.com Perspective.

The New Force.com Project wizard has two pages:

1. On the first page of the wizard, enter the appropriate properties for the project. For details on these settings, see Force.com Project
Properties. Click Next.

Note: When you create a new project, you might be prompted about a new master password. This is a separate password
of your choosing required by Eclipse secure storage, and is not associated with your Salesforce credentials. For details on
Eclipse secure storage, see the Eclipse Workbench User Guide.

2. On the Project Contents page, choose which metadata components are retrieved:

DescriptionField

Select this option to retrieve only Apex and Visualforce
components, including classes, triggers, components, pages,
and static resources.

Apex and Visualforce (classes, triggers, pages, components,
and static resources)

Select this option and click Choose... to open the Choose
Metadata Components dialog.

Selected metadata components

Select this option and click Choose package... to retrieve the
contents of a particular package. Note that this option is only

Contents of package

5

Force.com WizardsForce.com IDE UI Overview

DescriptionField

available when there are packages on the organization you
connect to.

Select this option to retrieve no components. You might want
to select this option if you are working in a team-based

None

environment where source files are checked out from a
source-control system. When creating a project offline, this is
the only option available.

3. Click Finish to create the new project.

Note: The selections you make in the New Force.com Project wizard are used to create the package.xml file, which defines
which components from the server are downloaded into your project. To later modify the project contents, right-click your project
and choose Properties, and go to Force.com > Project Contents. In special cases you may want to edit the package.xml
file by hand. For information on changing the contents of your project manifests after project creation, see About Package.xml.

Create New Apex Class
To launch the Create New Apex Class wizard, select File > New > Apex Class or right-click your project and choose New > Apex Class.
The wizard allows you to choose a template for the new class.

DescriptionField

Enter a name for the class. Salesforce recommends following Java standards for naming,
that is, classes start with a capital letter, methods start with a lower-case verb, and

Name

variables have meaningful names. It is not legal to define a class and interface with the
same name in the same class, or an inner class with the same name as its outer class.
However, since methods and variables have their own namespaces within the class, it
is legal for a variable, method, and a class within a class to have the same name.

Select the version of the API this object conforms to from the dropdown list.Version

Optional. Select a template for the Apex class from the drop-down list:Template

• Default - Creates a class without a template.

• Test Class - Creates a class with the @isTest annotation. Classes defined with
the @isTest annotation do not count against the organization size limit for
Apex scripts.

6

Create New Apex ClassForce.com IDE UI Overview

DescriptionField

• Inbound Email Client - Creates a class that processes the contents, headers, and
attachments of inbound e-mail.

SEE ALSO:

Apex Editor

Apex Code Assist

Execute Anonymous View

Create an Apex Class from a WSDL

Testing Code with the Force.com IDE

Apex Test Results View

Debug Logs for Apex Test Results

Apex Code Settings: Log Category and Log Level

Create an Apex Class from a WSDL
You can generate Apex classes from a WSDL document that is stored on a local hard drive or network. Creating a class by consuming a
WSDL document allows you to make callouts to an external Web service in your Apex code by calling the methods in the generated
class.

To create an Apex class from a WSDL, click File > New > Apex Class from WSDL, or right-click your project and choose New > Apex
Class from WSDL.

The first step of the WSDL to Apex wizard enables you to specify a WSDL file to import and choose whether to generate asynchronous
classes.

DescriptionField

Click Browse to select a WSDL file from your local hard drive or a network drive.WSDL File

Check this box to generate asynchronous classes. The generated classes enable you to
make synchronous callouts. If you choose to also generate asynchronous classes by

Add Async Class

checking this box, you can make asynchronous callouts from a Visualforce page by
using those classes.

In the second step of the wizard, you can rename the new classes. The wizard creates a default class name for each namespace in the
WSDL. While you can save more than one WSDL namespace into a single class by using the same class name for each namespace, Apex
classes can be no more than 1 million characters total. You can rename synchronous classes only. The names of asynchronous classes
correspond to the names of their synchronous counterparts and contain a prefix of Async.

Note: Open-source code for the WSDL to Apex wizard is available in the WSDL2Apex GitHub repository. Developers in the GitHub
community can add enhancements or customizations to WSDL2Apex. The Force.com IDE plug-in is a snapshot of the WSDL2Apex
and idecore GitHub repositories at the time of the latest official plug-in release.

7

Create an Apex Class from a WSDLForce.com IDE UI Overview

https://github.com/forcedotcom/WSDL2Apex
https://developer.salesforce.com/page/Force.com_IDE
https://github.com/forcedotcom/WSDL2Apex
https://github.com/forcedotcom/idecore

Create New Apex Trigger
To launch the Create New Apex Trigger wizard, click File > New > Apex Trigger or right-click your project and choose New > Apex
Trigger. The wizard allows you to select the object that the trigger acts on and specify when the trigger fires.

DescriptionField

Enter a name for the trigger.Name

Select the version of the API this object conforms to from the
dropdown list.

Version

Select the object that the trigger acts on. If you do not see the
object you are looking for in the dropdown list, click Refresh
Objects.

Object

Use the checkboxes to specify when the trigger fires:Apex Trigger Operations

• before insert

• before update

• before delete

• after insert

• after update

• after delete

• after undelete

SEE ALSO:

Apex Editor

Apex Code Assist

Execute Anonymous View

Testing Code with the Force.com IDE

Apex Test Results View

Debug Logs for Apex Test Results

Apex Code Settings: Log Category and Log Level

Create New Custom Application
To launch the Create New Custom Application wizard, click New > Custom Application. You can edit the generated file to adjust
default values, or add new attributes and values.

DescriptionField

Enter the label as it should appear in the Salesforce user interface.Label

Enter a name for the application.Name

8

Create New Apex TriggerForce.com IDE UI Overview

Create New Custom Object
To launch the Create New Custom Object wizard, click New > Custom Object. You can edit the generated file to adjust default values,
or add new attributes and values.

DescriptionField

Enter the label as it should appear in the Salesforce user interface.Label

Enter the plural label of the object. If the default language for this
organization does require plural labels, this field may not be
available.

Plural Label

Enter a name for the custom object. The name is automatically
appended with “__c”.

Name

Create New HomePage Component
To launch the Create New HomePage Component wizard, click New > HomePage Component. You can edit the generated file to
adjust default values, or add new attributes and values.

DescriptionField

Enter a name for the component.Name

Create New HomePage Layout
To launch the Create New HomePage Layout wizard, click New > HomePage Layout. You can edit the generated file to adjust default
values, or add new attributes and values.

DescriptionField

Enter a name for the layout.Name

Create New Letterhead
To launch the Create New Letterhead wizard, click New > Letterhead. Use this wizard to create a new letterhead for use in an e-mail
template. You can edit the generated file to adjust default values, or add new attributes and values.

DescriptionField

Enter the label as it should appear in the Salesforce user interface.Label

Enter a name for the letterhead.Name

9

Create New Custom ObjectForce.com IDE UI Overview

Create New Profile
To launch the Create New Profile wizard, click New > Profile. You can edit the generated file to adjust default values, or add new
attributes and values.

DescriptionField

Enter a name for the profile.Name

Create New Visualforce Component
To launch the Create New Visualforce Component wizard, click New > Visualforce Component. Use this wizard to create a component
for a Visualforce page.

DescriptionField

Enter the label of the component as it should appear in the
Visualforce page.

Label

Enter a name for the component.Name

Select the version of the API this object conforms to from the
dropdown list.

Version

Create New Visualforce Page
To launch the Create New Visualforce Page wizard, click New > Visualforce Page

DescriptionField

Enter a label as it should appear on the Visualforce page.Label

Enter a name for the page.Name

Select the version of the API this object conforms to from the
dropdown list.

Version

Add Workflow From Server
Use the Add Workflow From Server wizard to add the workflow file for a particular object to your Force.com project. To launch the wizard,
click New > Workflow.

DescriptionField

Select the object the workflow should be based on. If you do not
see the object in the list, click Refresh Objects.

Object

The workflow file contains individual workflow components (Alerts, Rules, Tasks) for an object. You cannot create these components
from the IDE at this time.

10

Create New ProfileForce.com IDE UI Overview

To create new workflow components:

1. In Package Explorer, right-click your project and choose Force.com > Show in Salesforce Web.

2. In the Web browser, from Setup, enter Workflow in the Quick Find box, then select the appropriate option.

Force.com Views (Tabs)

The Force.com IDE plug-in includes a collection of views for navigating logs and test output. By default, these views are shown as tabs
at the bottom of the Eclipse IDE. You can drag and drop the tabs to rearrange views or move them to a different area of the IDE. To
reopen a view after it has been closed, use the Show View button in the bottom left corner of the IDE window.

• Problems View

• Apex Test Results View

• Execute Anonymous View

• Synchronize View

• Force.com Log Viewer

Problems View
The Problems view displays system-generated errors and warnings associated with project resources. When you perform an action, such
as saving a file to the server, any issues detected by the Force.com IDE or returned from the server will be listed in the Problems view.

The Problems view is a standard Eclipse view, as described in the Workbench User Guide in the Eclipse help.

Apex Test Results View
The Force.com IDE’s Apex Test Results view displays the results of your test runs. This view is useful for troubleshooting code, tuning
performance, and checking resource usage.

Note: All Apex test execution occurs on the server. Before testing your code, save any changes to the server.

To execute Apex unit tests, select Run > Run Configurations > Apex Test. To create a test run configuration, then select New launch

configuration (). To execute the selected test run configuration, click Run.

11

Force.com Views (Tabs)Force.com IDE UI Overview

Note: To set log levels for your Apex test runs, use run configurations. Logging settings in your project properties apply only
when you’re deploying code.

After the a test run, the Apex Test Runner view displays results. The left pane displays test results for each class and method in the test
run. The right pane displays code coverage, the stack trace, system debug logs, and user debug logs. Make sure that your code has better
coverage than the code in this sample org!

Debug Logs for Apex Test Results
When you run a test, the output is sent to the log. Debug logs display on the right side of the Force.com IDE’s Apex Test Results view.

• The first part of the log details the events that occurred during the test run.

• The next few lines give details on how long it took to execute specific lines of code. This information is useful for performance tuning.

• The debug log then lists how many resources a program uses and the total amount available for each resource. The Apex runtime
engine tracks the resources that every script uses so that a single script doesn’t monopolize the servers. If you write a script that goes
over one of the limits, you receive an error message.

To change your logging levels, create or edit an Apex test run configuration. To access your Apex test run configurations, select Run >

Run Configurations > Apex Test. To create a test run configuration, then select New launch configuration ().

12

Apex Test Results ViewForce.com IDE UI Overview

Execute Anonymous View
The Force.com IDE Execute Anonymous view allows you to execute an anonymous block of Apex.

Anonymous blocks help you to quickly evaluate Apex on the fly, or to write scripts that change dynamically at runtime. For example,
you might write a client Web application that takes input from a user, such as a name and address, and then use an anonymous block
to insert a contact with that name and address into the database.

The content of an anonymous block can include user-defined methods and exceptions. It cannot include the keyword static.

You do not need to manually commit database changes made by an anonymous block. If your Apex script completes successfully, any
database changes are automatically committed. If your Apex script does not complete successfully, any changes made to the database
are rolled back.

After your anonymous block is executed on the server, the Results area in the Execute Anonymous view will display the following:

• Status information for the compile and execute phases of the call, including any errors that occur.

• The debug log content, including the output of any calls to the System.debug() method.

• The Apex stack trace of any uncaught script execution exceptions, including the class, method, and line number for each call stack
element.

Note: Unlike classes and triggers, anonymous blocks are executed as the current user and can fail to compile if the script violates
the user's object- and field-level permissions.

Synchronize View
The Force.com IDE Synchronize view allows you to synchronize your project with the server without changing perspectives.

Note: By default, Eclipse prompts you to switch to the Team Synchronization perspective when you synchronize your project
with the server. To configure Eclipse to use the Force.com IDE Synchronize view:

1. In the Eclipse menu bar, choose Window > Preferences.

2. In the Preferences dialog, click Team in the navigation tree on the left.

3. In the Perspectives drop-down list, choose None.

This setting also affects synchronizing with a version control system.

SEE ALSO:

Server Synchronization

Force.com Log Viewer
The Force.com Log Viewer provides an easy way to access the contents of the Force.com IDE system log file. If you encounter exception
messages or other problems while using the IDE, this log file may help diagnose and resolve the issue, and can be provided to Salesforce
customer support.

To display the Force.com Log Viewer, click Help > Show Force.com IDE Log.

Note:

• To monitor for events as they occur, the Force.com Log Viewer frequently refreshes itself from the log file on disk. This activity
may slow your system.

• We recommend that you keep the Force.com Log Viewer closed during normal use of the IDE.

13

Execute Anonymous ViewForce.com IDE UI Overview

To include more detail in the system log, run the IDE in debug mode. For information, see Troubleshooting the Force.com IDE: Debug
Mode.

14

Force.com Log ViewerForce.com IDE UI Overview

CHAPTER 2 Getting Started with the Force.com IDE

The Force.com IDE is an integrated development environment for developing applications on the
Force.com platform using Apex, Visualforce, and metadata components. Designed for developers and
development teams, the IDE provides tools to accelerate Force.com application development. These
tools include wizards, source code editors, test execution tools, deployment aids, integrated help, and
an interactive debugger.

In this chapter ...

• Developing with the
Force.com IDE

• Testing Code with the
Force.com IDE

The Force.com IDE is built on top of the open-source Eclipse Platform and is available as a plug-in. The
plug-in is open source—you can find and contribute to its source code on GitHub.• Deploying Code with

the Force.com IDE
You can use the Force.com IDE to:

• Quickstart: Using the
Force.com IDE • Test and debug Apex classes and triggers using the Apex Test Results view.

• Run anonymous blocks of Apex on the server in the Execute Anonymous view.• Working Offline

• Browse schema objects and fields or assemble and execute SOQL queries in the Schema Explorer.• Updating the
Force.com IDE • Synchronize project contents with changes on the server using Save to Server, Refresh from Server,

and Synchronize with Server commands.

• Utilize the Compare Editor to merge changes when conflicts are detected.

• Deploy metadata components from one Salesforce organization to another, or validate a planned
deployment without saving changes, using the Deploy to Server wizard.

To get started working in the Force.com IDE, look at the following topics.

• Developing with the Force.com IDE

• Testing Code with the Force.com IDE

• Deploying Code with the Force.com IDE

15

https://github.com/forcedotcom/idecore

Developing with the Force.com IDE

The Force.com IDE allows you to create and edit Apex, Visualforce, and XML metadata components using source code editors that
provide syntax highlighting, code assistance, and server-based error checking.

Working with Force.com Projects
The first step is to create a Force.com project associated with your Salesforce organization (the home organization) and download
metadata components. You can manage projects and files using the standard views, tools, and commands in the Eclipse IDE workbench,
and use features from the Force.com IDE.

• Use a wizard to create your first project. For details, see Create New Force.com Project.

• Create or edit the package.xml project manifest file using the Choose Metadata Components dialog. For more information, see
About Package.xml and Project Properties.

• Develop in your project and on the server at the same time, with multiple developers accessing the same information. For information
on how to refresh data and synchronize changes, see Server Synchronization.

Writing Code
Once you have created a project, you can use the Force.com IDE to create, edit and manipulate objects and components.

• Use Force.com Wizards to create objects and components, including Apex classes and triggers, and Visualforce components and
pages. Each wizard allows you to define properties for the object and creates it with standard attributes and values.

• Edit your code in the feature-rich Force.com IDE Editors, which include content assistance for built-in Apex types.

• Execute anonymous blocks of Apex and commit them to the database using the Execute Anonymous View.

• Browse schema objects and fields or assemble and execute SOQL queries in the Schema Explorer.

SEE ALSO:

Force.com Project Basics

Create New Apex Class

Create New Apex Trigger

Apex Editor

Apex Code Assist

Execute Anonymous View

Working Offline

Testing Code with the Force.com IDE

To measure your code’s quality, track your code coverage and test case coverage. Use the Force.com IDE to create and execute unit tests
for your code’s actions and behaviors and to adjust the granularity of your test runs’ logging.

One of the most important and powerful features of the Force.com platform is its built-in support for automated testing. The Apex
language includes the ability to define and execute unit tests, which are pieces of code that verify that your application works the way
you intended. Each unit test is defined as a test method, and you can execute your test methods to see which tests are passing or failing.
Regularly executing test methods gives you instant insight into the quality of your code and provides an early warning system for
detecting regressions.

16

Developing with the Force.com IDEGetting Started with the Force.com IDE

There are two common ways to measure your code’s quality using unit tests.

• Code coverage identifies which lines of code a set of unit tests exercises. Code coverage is reported as a percentage. This metric helps
you identify the sections of code that are untested and therefore at greatest risk of containing a bug or introducing a regression.
Each time you run a set of unit tests on the Force.com platform, a code coverage number is returned. A list of uncovered lines of
code in the classes and triggers invoked by the tests is also returned.

Note: The Force.com platform requires at least 75% of your code to be covered by automated tests before you can deploy
it to a production organization. We recommend that you strive for 100% coverage. The code coverage restriction is not enforced
for sandbox or Developer Edition organizations.

• Test case coverage identifies real-world scenarios in which you expect your code to execute. Even if you have 100% code coverage,
bugs can be hiding in your code. To help prevent bugs, ensure that your test values reflect the full set of real-world possibilities,
including corner cases. Test cases are not actual unit tests, but are documents that specify what your unit tests are intended to do.
High test case coverage means that most or all of the real-world scenarios that you have identified are implemented as unit tests.

Developing a rich set of automatic tests gives you confidence that your code works correctly. Having good test coverage can help you
catch bugs when a code change suddenly causes a test to fail. Having a robust set of tests helps us help you, too. Salesforce executes
all your tests before each major release to help us avoid regressions. We run each test once in the existing version of our service—the
one currently in production—and once in the release-candidate version. We compare the results to identify unexpected functionality
changes between releases. To ensure robust test coverage, regularly do the following.

• Create unit tests within the implementation class or in a separate test class. Test classes that are annotated with @isTest do not
count against your Apex storage limits. Creating a test class is done like any other class. For details, see Create New Apex Class.

• Execute unit tests on the server and view the results using Apex test run configurations and the Apex Test Results view.

• Configure debugging output and system logs using Apex test run configurations.

Salesforce recommends that you write tests for the following:

Single action
Test to verify that a single record produces the correct, expected result.

Bulk actions
Any Apex code, whether a trigger, a class or an extension, may be invoked for 1 to 200 records. You must test not only the single
record case, but the bulk cases as well.

Positive behavior
Test to verify that the expected behavior occurs through every expected permutation, that is, that the user filled out everything
correctly and did not go past the limits.

Negative behavior
There are likely limits to your applications, such as not being able to add a future date, not being able to specify a negative amount,
and so on. You must test for the negative case and verify that the error messages are correctly produced as well as for the positive,
within the limits cases.

Restricted user
Test whether a user with restricted access to the sObjects used in your code sees the expected behavior. That is, whether they can
run the code or receive error messages.

Note: Conditional and ternary operators are not considered executed unless both the positive and negative branches are executed.

17

Testing Code with the Force.com IDEGetting Started with the Force.com IDE

For more information, see “Understanding Testing in Apex” in the Force.com Apex Code Developer's Guide.

SEE ALSO:

Apex Test Results View

Debug Logs for Apex Test Results

Apex Code Settings: Log Category and Log Level

Problems View

Force.com Log Viewer

Troubleshooting the Force.com IDE: Debug Mode

Deploying Code with the Force.com IDE

Once you have created application components and tested them in your own development organization, you usually want to migrate
them to a different organization for testing, staging, publication, or production use by end users.

Though each Force.com metadata component lives and runs in a particular organization on Force.com servers, the metadata files you
work with in the Force.com IDE are portable from one organization to another. Deploying is the process of pushing your local project
files into a different Salesforce organization than your project’s home organization. The Force.com IDE provides the Deploy to Server
wizard to guide you through the deployment process.

Before you deploy, you can streamline your deployment process by creating a new project with only the components you want to
deploy. For information, see Create New Force.com Project.

Note: If you deploy to a production organization, you must meet the Apex testing compliance policy: 75% of your Apex must be
covered by unit tests, and all of those tests must complete successfully. Additionally, each trigger must have some code coverage.

To open the Deploy to Server wizard, right-click the src folder of the project and select Force.com > Deploy to Server. You can also
select individual classes or triggers, multiple classes and triggers, or the classes or triggers folder. Before the wizard opens, the
IDE checks for conflicts between the project and the home organization. If conflicts are found, you are given the option to synchronize
before continuing.

The Deploy to Server wizard includes the following pages:

1. On the Destination Details page, enter the connection information for the target organization and click Next.

2. On the Archive Options page, optionally create backup files for this deployment and click Next.

3. On the Deployment Plan page, review the actions to be performed in this deployment. Click Next to execute the deployment.

4. The Deployment Result page displays the result of the deployment. You should see Success displayed at the top of the page. If you
do not, review the deployment logs by clicking View Logs. If you need assistance with deployment errors, click Save to save your
log file for future reference.

SEE ALSO:

Destination Details

Archive Options

Deployment Plan

18

Deploying Code with the Force.com IDEGetting Started with the Force.com IDE

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/

Quickstart: Using the Force.com IDE

This simplified quickstart guides you step-by-step through the following tasks:

1. Create a new project.

2. Create an Apex class and trigger that populates the custom field with text.

3. Add a unit test to automatically test the method.

Note: To complete this exercise, you must have administrative access to two different organizations: either two Developer Edition
organizations, or a Developer Edition organization and a sandbox organization. Do not use a production organization for this
exercise.

1. Create a Project
The following steps create an Eclipse project and connect it to the home organization (the organization associated with the project):

1. Select File > New > Force.com Project.

Note: If you do not see Force.com Project in the File > New menu, you are not using the Force.com perspective. You can
still create a Force.com project without using the Force.com perspective by selecting File > New > Other > Force.com >
Force.com Project; however, you should use the Force.com perspective because it includes other views and features that
aid development. To activate the Force.com perspective, select Window > Open Perspective > Other > Force.com
Perspective.

2. Enter the following information and click Next:

ValueField

Enter a name for your project.Project Name

Enter the username you use to log in to the organization
associated with this project (“home organization”). The username
must have the “Modify All Data” permission.

Username

Enter the password for the specified username.Password

If you are using a security token, enter the value here.Security Token

Choose the appropriate environment for your connection
(Developer Edition or Sandbox).

Environment

Leave this option unchecked.Do not change endpoint

Set to a value between 3 and 600 seconds.Timeout (sec)

If you connect through a proxy, click the Proxy Settings link to
open the Network Connections dialog.

Proxy Settings

For details on these settings, see Force.com Project Properties.

3. On the Project Contents page, choose Apex and Visualforce.

4. Click Finish to create the project, connect it to the associated organization, and copy components from the home organization into
the project in the appropriate folders.

19

Quickstart: Using the Force.com IDEGetting Started with the Force.com IDE

Now that you have created a project, when you edit and save items in the project, the edits are saved to the server. (If the items fail to
compile, they are not saved.)

2. Create Apex Components
The following steps create an Apex class and trigger to pre-populate a field on the Accounts tab.

Create a class that populates the Hello field on the Accounts tab with the word “World”:

1. In Eclipse, right-click on the project you created in the Package Explorer, and select New > Apex Class.

2. Enter MyHelloWorld as the name for the project, leave the other settings as is, and click Finish.

3. The source for the new MyHelloWorld.cls class is displayed. Replace the auto-generated text with the following:

public class MyHelloWorld {
// This method updates the Description field for a list
// of accounts to read "Hello World".
public static void addHelloWorld(Account[] accs){
for (Account a:accs){
if (a.Description != 'Hello World')
a.Description = 'Hello World';
}
}
}

Save your changes.

4. If the IDE asks if you want to save the changes to the server, click Yes.

Next, create a trigger that calls MyHelloWorld.cls whenever a new record is created.

1. Right-click on your project in the Package Explorer and select File > New > Apex Trigger.

2. Enter helloWorldAccountTrigger as the name of the trigger.

3. Click the Object drop-down list and select Account.

4. In the Apex Trigger Operations section, check the before insert checkbox.

5. Click Finish.

6. The source for the new helloWorldAccountTrigger.trigger file is displayed. Replace the auto-generated text with
the following:

trigger helloWorldAccountTrigger on Account
(before insert) {
MyHelloWorld.addHelloWorld(Trigger.new);
}

Save your changes.

To see your new Apex class and trigger working, log in to your Salesforce organization in a browser and create a new account. You
should see the Description field pre-populated with the value “Hello World”.

At this point, you can make changes to the class or trigger in the project. When you save, the changes are automatically saved to the
associated organization, assuming no conflicts exist. If you make changes from the organization itself, you must synchronize those
changes to the project. For details, see Server Synchronization.

20

Quickstart: Using the Force.com IDEGetting Started with the Force.com IDE

3. Add Tests
Unit tests are class methods that verify whether a particular piece of code is working properly. Unit test methods take no arguments,
commit no data to the database, and are flagged with the testMethod keyword in the method definition. A rich set of unit tests
gives you confidence that your code works correctly and can help you catch bugs when a code change suddenly causes a test to fail.

Note: While you can develop and execute Apex classes and triggers freely in your Developer Edition or Sandbox organization, at
least 75% of your code must be covered by automated unit tests before you can deploy it to a production organization.

The steps below create a simple unit test for the Hello World program:

1. Open MyHelloWorld.cls and add the test methods below:

public class MyHelloWorld {
// This method updates the Description field for a list
// of accounts to read "Hello World".
public static void addHelloWorld(Account[] accs){

for (Account a:accs){
if (a.Description != 'Hello World')
a.Description = 'Hello World';

}
}

}

2. Create another Apex class with the name MyHelloWorld.cls. Replace the auto-generated text with the following test class:

@isTest
private class MyHelloWorldTest {

// Simple test of the method
// MyHelloWorld.addHelloWorld(Account[])
static testMethod void test_addHelloWorld()
{

// Set up test data set
Account testAcct1 = new Account();
Account testAcct2 = new Account(Description = 'Foo');
Account[] accts = new Account[] { testAcct1, testAcct2 };

// Execute code with test data
MyHelloWorld.addHelloWorld(accts); // call

// Confirm results
System.assertEquals('Hello World', accts[0].Description);
System.assertEquals('Hello World', accts[1].Description);

}

// Simple test of the trigger helloWorldAccountTrigger
static testMethod void test_helloWorldAccountTrigger()
{

// Set up test data set
Account testAcct1 = new Account(Name='One');
Account testAcct2 = new Account(Name='Two', Description = 'Foo');
Account[] accts = new Account[] { testAcct1, testAcct2 };

// Execute trigger with test data set
insert accts;

21

Quickstart: Using the Force.com IDEGetting Started with the Force.com IDE

// Confirm results
Account[] acctQuery = [SELECT Description FROM Account WHERE Id = :accts[0].Id OR

Id = :accts[1].Id];
System.assertEquals('Hello World', acctQuery[0].Description);
System.assertEquals('Hello World', acctQuery[1].Description);

}
}

3. Save your changes.

4. Right-click on the classes folder in Project Explorer and select Force.com > Run Tests.

For detailed information on testing, see Testing Code with the Force.com IDE.

Working Offline

Increase your productivity by reducing the time required for saving the projects you create using the Force.com IDE in offline mode,
which is the default setting.

By default, you’ll create your projects in offline mode. When you work in offline mode, you avoid compiling your organization’s Apex
code each time you save your files. If, however, you have a stable Internet connection and a small- to medium-sized code base, you may
wish to toggle your projects to online mode.

Toggle Between Offline and Online Modes
Right-click your project in the Package Explorer and choose Force.com, and then select the mode in which you want to work.

Save Files
When working online, the files you save are saved on the server and then retrieved from the server into your project. When working
offline, files are saved locally. You can, however, save files to the server when you right-click the file in the Package Explorer and choose
Force.com > Save to Server. This action is the same as when you save files while working online.

SEE ALSO:

Server Synchronization

Updating the Force.com IDE

It is recommended that you always use the latest version of the Force.com IDE so you have the latest features, bug fixes, and documentation.
To update the IDE:

1. From Eclipse, select Help > Software and Workspace Center. Alternatively, you can click the Check for Updates link on the
Force.com Start Page.

2. The Software and Workspace Center opens, searches automatically, and provides a link to any relevant updates in the Updates
Available section.

3. Select the Force.com IDE update and click Apply 1 change.

4. In the dialog that opens, confirm that the Install Location is correct and click Update.

5. Accept the license agreement and click Finish.

22

Working OfflineGetting Started with the Force.com IDE

6. You are prompted to restart Eclipse; click OK.

After you have updated the Force.com IDE, your projects might also need to be upgraded to the latest version. For more information,
see Upgrade Project.

23

Updating the Force.com IDEGetting Started with the Force.com IDE

Developing with the Force.com IDE

The Force.com IDE allows you to create and edit Apex, Visualforce, and XML metadata components using source code editors that
provide syntax highlighting, code assistance, and server-based error checking.

Working with Force.com Projects
The first step is to create a Force.com project associated with your Salesforce organization (the home organization) and download
metadata components. You can manage projects and files using the standard views, tools, and commands in the Eclipse IDE workbench,
and use features from the Force.com IDE.

• Use a wizard to create your first project. For details, see Create New Force.com Project.

• Create or edit the package.xml project manifest file using the Choose Metadata Components dialog. For more information, see
About Package.xml and Project Properties.

• Develop in your project and on the server at the same time, with multiple developers accessing the same information. For information
on how to refresh data and synchronize changes, see Server Synchronization.

Writing Code
Once you have created a project, you can use the Force.com IDE to create, edit and manipulate objects and components.

• Use Force.com Wizards to create objects and components, including Apex classes and triggers, and Visualforce components and
pages. Each wizard allows you to define properties for the object and creates it with standard attributes and values.

• Edit your code in the feature-rich Force.com IDE Editors, which include content assistance for built-in Apex types.

• Execute anonymous blocks of Apex and commit them to the database using the Execute Anonymous View.

• Browse schema objects and fields or assemble and execute SOQL queries in the Schema Explorer.

SEE ALSO:

Force.com Project Basics

Create New Apex Class

Create New Apex Trigger

Apex Editor

Apex Code Assist

Execute Anonymous View

Working Offline

Force.com Project Basics
Like most integrated development environments, the Force.com IDE organizes application resources into containers called projects.
Unlike traditional software development projects where source code is compiled to create runnable applications, the resources in a
Force.com project live within a Salesforce organization and are copied into the local project for editing.

Each Force.com project is connected to a Salesforce organization, known as its home organization, and contains a set of files which
correspond to metadata components stored in the home organization’s database. When you save a file in a Force.com project, it is
immediately saved to the server, or if the server finds an error that error message is returned to the Force.com IDE and displayed in the
Problems View.

24

Note: Because Force.com projects are connected to a live environment, they may be impacted by components running in the
home organization but not downloaded into the project. For example, a workflow rule defined in your organization will run in the
same transaction as an Apex trigger if both are defined against the same object and the workflow rule’s criteria are met.

To manage Force.com projects and resources, use the Package Explorer view, which displays each project’s resources in a hierarchical
tree view. Force.com projects are organized into the following folders:

• src – This folder contains all of the metadata components in your project. Metadata components are organized into folders, by type.
For a list of types and folders, see Metadata Types.

• src/package.xml – This control file, known as the project manifest, determines what metadata components are retrieved from the
server when synchronizing with the project’s home organization. For more information see About Package.xml.

• salesforce.schema – Opening this file activates the Schema Explorer for the project’s home organization. For more information
see Schema Explorer.

• Referenced Packages – This folder contains the contents of any managed packages that are installed in the project’s home
organization. These files are read only; customizing installed managed packages from the Force.com IDE is not supported.

SEE ALSO:

Create New Force.com Project

Add/Remove Metadata Components

Project Properties

Working Offline

About Package.xml

Create New Force.com Project
To launch the Create New Force.com Project wizard, select File > New > Force.com Project.

Note: If you do not see Force.com Project in the File > New menu, you are not using the Force.com perspective. You can still
create a Force.com project without using the Force.com perspective by selecting File > New > Other > Force.com > Force.com
Project; however, you should use the Force.com perspective because it includes other views and features that aid development.
To activate the Force.com perspective, select Window > Open Perspective > Other > Force.com Perspective.

The New Force.com Project wizard has two pages:

1. On the first page of the wizard, enter the appropriate properties for the project. For details on these settings, see Force.com Project
Properties. Click Next.

Note: When you create a new project, you might be prompted about a new master password. This is a separate password
of your choosing required by Eclipse secure storage, and is not associated with your Salesforce credentials. For details on
Eclipse secure storage, see the Eclipse Workbench User Guide.

2. On the Project Contents page, choose which metadata components are retrieved:

DescriptionField

Select this option to retrieve only Apex and Visualforce
components, including classes, triggers, components, pages,
and static resources.

Apex and Visualforce (classes, triggers, pages, components,
and static resources)

Select this option and click Choose... to open the Choose
Metadata Components dialog.

Selected metadata components

25

Force.com Project Basics

DescriptionField

Select this option and click Choose package... to retrieve the
contents of a particular package. Note that this option is only

Contents of package

available when there are packages on the organization you
connect to.

Select this option to retrieve no components. You might want
to select this option if you are working in a team-based

None

environment where source files are checked out from a
source-control system. When creating a project offline, this is
the only option available.

3. Click Finish to create the new project.

Note: The selections you make in the New Force.com Project wizard are used to create the package.xml file, which defines
which components from the server are downloaded into your project. To later modify the project contents, right-click your project
and choose Properties, and go to Force.com > Project Contents. In special cases you may want to edit the package.xml
file by hand. For information on changing the contents of your project manifests after project creation, see About Package.xml.

Project Properties
Use the Force.com IDE’s project properties dialog to modify an existing project: to update organization credentials and connection
settings, change the included metadata components, and adjust view settings. To open the project properties dialog, right-click your
top-level project folder and select Properties.

The project properties dialog includes standard Eclipse property pages and the following Force.com project property pages.

• Force.com Project Properties: The properties on the main page determine a Force.com project’s Salesforce connection settings.
Use this page to update your password or security token, change timeout values, or associate your project with a different home
organization. For details on these properties, see Force.com Project Properties.

• Apex Code Settings: This page allows you to define default logging levels for the tests that execute during your deployments and
during Execute Anonymous code execution. For details on these settings, see Apex Code Settings: Log Category and Log Level.

• Force.com Project Contents: This page shows the contents of your project based on the project manifest file (package.xml).
To add or remove metadata components from your project, click Add/Remove Metadata Components. If this project contains a
package, the server determines which files are retrieved. You can change the contents of the package only on the server, not from
this page. When you change project contents, you are prompted to refresh files from the server.

Add/Remove Metadata Components
To add existing components in your home organization to a project:

1. In the Package Explorer, right-click the project and choose Properties.

2. In the Project Properties dialog, expand the node for Force.com and click Project Contents.

3. Click Add/Remove Metadata Components to open the Choose Metadata Components dialog.

Because a Force.com project is connected to its home organization, simply deleting a metadata file from a project does not always
permanently remove it. Depending on whether your intention is to delete a component from the home organization as well as your
project, or merely to exclude it from your project, the steps you will take are different.

26

Force.com Project Basics

Note: If you remove a component from a project without deleting it from the server, you can add it to your project again. The
component will also be available in other projects that connect to the same server. If you delete the component on the server,
the component will not be accessible from other projects. The only way to retrieve it again is by using the Web interface and
viewing your Recycle Bin.

To remove a component from the project only:

1. In the Package Explorer, right-click your project and choose Properties.

2. In the Project Properties dialog, expand the Force.com node and click Project Contents.

3. On the Project Contents page, click Add/Remove Metadata Components.

4. Use the Choose Metadata Components dialog to remove the component.

5. In the Package Explorer, expand the nodes to find the component you want to remove. The project will no longer download the
component from your home organization during synchronization, but you still need to delete your local copy of the file.

6. In the Package Explorer, right-click the component and choose Delete.

7. You will be prompted whether you want to delete the file. Click Yes to remove the local copy.

8. In the Remote Delete Confirmation dialog, you will be prompted whether to also delete the component on the server. Click No to
leave the server-side component unaffected.

To remove a component from the project and delete it from the server:

1. In the Package Explorer, expand the nodes to find the component you want to delete.

2. Right-click the component and choose Delete.

3. You will be prompted whether you want to delete the file. Click Yes to remove the local copy.

4. Finally, in the Remote Delete Confirmation dialog, you will be prompted whether to also delete the component on the server. Click
Yes to delete the component entirely.

SEE ALSO:

Choose Metadata Components

Field-Level Security Warning

Choose Metadata Components
Use the Choose Metadata Components dialog to specify which Force.com metadata components you want to retrieve in a project. Click
a top-level folder to select all components of a particular type. This option will also retrieve new components that are added via the Web
interface whenever you refresh from server. (Selecting the top-level folder is the equivalent of adding the wildcard character to the
package.xml file. For more information, see About Package.xml.)

Only fully editable packages are available; those created in your organization or installed unmanaged packages. Installed managed
packages are not available in this list.

Note: A Force.com project is defined by a package.xml file. While you can edit this file by hand, it's much easier and less
error prone to use the Choose Metadata Components dialog to create or edit this file. If you edit the package.xml file by hand,
your changes may be overwritten if you open the Choose Metadata Components dialog. For more information, see About
Package.xml.

The following controls help you navigate the available components:

27

Force.com Project Basics

DescriptionField

Enter text to filter all metadata components that start with the letters you
enter in this field. You can use the * character within the filter string as a
wildcard.

Filter

Select this checkbox to show only the items that have been selected. This
is useful after you make several selections and want to see only what will
be retrieved in your project.

Show only selected items

Selects all components.Select All

Deselects all components.Deselect All

Expands all nodes.Expand

Collapses all nodes.Collapse

Refreshes selections from server.Refresh

Field-Level Security Warning
Including both objects and profiles in your project will cause profiles to contain field-level security for all of that object's fields. The
settings in your project will overwrite field-level security settings on the server when the profiles are deployed. If you are developing in
a sandbox where field-level security is not set up correctly, and you deploy to a production organization, you will overwrite the field-level
security in the production organization. To prevent overwriting production field-level security, do one of the following:

• Do not include profiles in your project

• Only choose object fields for which you want to overwrite the field-level security

• Make sure your sandbox security settings are exactly the same as your production org

Component Properties
You can use the Component Properties dialog to view the server properties of a metadata component, such as its name, type, status,
package and namespace membership, and the date the file was created and last modified.

To view Component Properties:

1. In the Package Explorer, locate the component file you want to view.

2. Right-click the component and choose Properties.

3. Click Force.com Component in the navigation pane, on the left side of the file properties dialog.

Upgrade Project
When you create a Force.com project, it's designed to work with a specific version of the server. When the server is upgraded to the next
version, your projects need to be updated so you can have access to the latest features and metadata.

Note: To upgrade a project, the connection settings for username, password, and proxy settings (if applicable) must be up to
date.

To upgrade a Force.com project:

1. Right click a project and choose Force.com > Upgrade Project to open the Project Upgrade wizard. (This option only appears if
an upgrade is available.)

28

Force.com Project Basics

2. On the first page of the wizard, review the information and click Next to continue.

3. On the second page of the wizard, review the full details of what will be changed. If you don’t want to upgrade all of these components,
click Cancel. Otherwise click Finish.

4. On the final page of the wizard, review your changes.

5. Click Finish to retrieve the specified components.

Force.com Wizards
The Force.com IDE plug-in provides a set of wizards for creating new objects and components, accessible from the File > New menu
(or the New button in the toolbar).

• Create New Force.com Project

• Create New Apex Class

• Create an Apex Class from a WSDL

• Create New Apex Trigger

• Create New Custom Application

• Create New Custom Object

• Create New HomePage Component

• Create New HomePage Layout

• Create New Letterhead

• Create New Profile

• Create New Visualforce Component

• Create New Visualforce Page

• Add Workflow From Server

Apex Editor
To edit an Apex class or trigger:

1. In the Package Explorer, expand the project node.

2. Apex classes and triggers are in separate folders. Expand the /classes or /triggers folder and double-click the name of
the item you want to edit.

29

Force.com Wizards

3. Use the Source tab of the editor for writing Apex and the Metadata tab for editing the associated metadata file.

Note: The editor has content assistance for all built-in types, including both Apex and XML metadata.

SEE ALSO:

Force.com IDE Editors

Apex Code Assist

Apex Code Assist
Apex code assist is activated when you begin to type a valid line of Apex in the editor. Code assist opens a list of available code completions
that aid in both development speed and accuracy.

To use code assist:

1. Insert the cursor in the editor area.

2. If you are typing a class or variable name, type a dot (“.”) and pause for a moment, and the proposal window opens. Otherwise press
Ctrl + Space on the keyboard to activate the proposal window.

3. Use the mouse or keyboard to select an item from the list.

4. Click or press Enter on a selected line in the list to insert the selection into the editor.

Execute Anonymous View
The Force.com IDE Execute Anonymous view allows you to execute an anonymous block of Apex.

30

Apex Code Assist

Anonymous blocks help you to quickly evaluate Apex on the fly, or to write scripts that change dynamically at runtime. For example,
you might write a client Web application that takes input from a user, such as a name and address, and then use an anonymous block
to insert a contact with that name and address into the database.

The content of an anonymous block can include user-defined methods and exceptions. It cannot include the keyword static.

You do not need to manually commit database changes made by an anonymous block. If your Apex script completes successfully, any
database changes are automatically committed. If your Apex script does not complete successfully, any changes made to the database
are rolled back.

After your anonymous block is executed on the server, the Results area in the Execute Anonymous view will display the following:

• Status information for the compile and execute phases of the call, including any errors that occur.

• The debug log content, including the output of any calls to the System.debug() method.

• The Apex stack trace of any uncaught script execution exceptions, including the class, method, and line number for each call stack
element.

Note: Unlike classes and triggers, anonymous blocks are executed as the current user and can fail to compile if the script violates
the user's object- and field-level permissions.

Server Synchronization
When you create a Force.com project, the files you specify in your project manifest are copied from the server (your Salesforce organization)
and stored locally on your computer.

Note: The term project refers to the local files on your computer, while the term server refers to the live metadata components
in a Salesforce organization.

As you develop in the IDE and make changes to the metadata files in your project, it is possible that you (or another developer or
administrator) may make changes to the metadata components directly in the browser from the Salesforce Setup menu. Or if you are
working in a team-based development environment, other developers may make changes in the source files in your shared repository.
In either case, when metadata is changed outside your project, your project is not immediately aware of those changes and your files
may get out of sync.

There are three actions you can take to keep your project and organization files in sync. All of these actions are available by right-clicking
the project src folder and choosing Force.com:

• Save to Server

• Refresh from Server

• Synchronize with Server

Note: If you receive a save error that updates only your local instance (your local project or source control repository), this indicates
that your files are not in sync with the server. To replace project files with server definitions, use Refresh from Server. To push
project files to the server, use Save to Server.

SEE ALSO:

Save to Server

Refresh from Server

Synchronize with Server

Synchronize View

31

Server Synchronization

Save to Server
Saving files to the server overwrites the metadata components in your organization with the definition in your project files, then refreshes
the local files you saved with new copies from your organization. You can save individual files, or all the files in your project.

To save changes in your project:

• Click the Save icon, or right-click the src node in the Package Explorer and choose Force.com > Save to Server. This saves all the
files in your project to the server.

To save an individual file:

• Select a component in the Package Explorer and choose Force.com > Save to Server. This saves only the specified file to the server.

Note: If the metadata components on the server have changed since your last save or refresh and a conflict is detected, you may
be asked to enter the Synchronize with Server view.

Refresh from Server
To refresh projects, folders, or individual items:

• In the Package Explorer, right click the item you want to refresh and choose Force.com > Refresh from Server.

Note: Refresh from Server only refreshes the contents specified in the package.xml project manifest file. That is, if a file in
your project is removed from package.xml, you no longer receive new versions of that file when performing a Refresh from
Server.

Synchronize with Server
When making changes to your home organization in both the IDE and in the browser, your IDE project files may become out of date.
When your project is out of sync, you have three options: use your project files, use the server files, or compare the differences between
the two. To avoid inadvertently overwriting changes made outside your project, Salesforce recommends using Synchronize with Server
whenever a conflict is detected. Synchronize with Server opens conflicting files in a diff tool so you can compare and merge them.

To synchronize your project with the home organization:

1. In the IDE, right-click the project name in the Package Explorer or other navigation view and select Force.com > Synchronize with
Server. The first time you select this option, the IDE asks if you wish to display the Synchronize view. Click Yes. If any project files
need to be synchronized, the project is displayed in the Synchronize view with a red arrow and X if there are changes in the project
component, and with a blue arrow if there are changes in the home organization. If nothing needs to be synchronized, the Synchronize
view displays the message “No changes in 'Latest From Salesforce (Workspace)'”, and the number of conflicts at the bottom of the
IDE all show 0.

2. Resolve any reported conflicts. Open the project and the relevant folders until you find the component with a red arrow and X or
blue arrow. Right-click the component and select one of the following options, depending on the action you wish to take:

• Apply server to project: Completely replaces the component with the corresponding item in the home organization.

• Apply project to server: Completely replaces the corresponding item in the home organization with the component in the
project.

• Open in Compare Editor: Opens the editor so you can inspect each conflict and choose to keep either the home organization
change or the component as it is for each conflict. You cannot make any other choice; that is, you cannot overwrite a change
in the home organization.

3. Click the save icon when you have resolved all conflicts. You may close the Synchronize view when all conflicts are resolved.

32

Server Synchronization

Note: The Synchronize view may not recognize items in the home organization that are not in the project. In these cases, you
can right-click the project name and select Force.com > Refresh from server to refresh the components in a project.

33

Server Synchronization

Testing Code with the Force.com IDE

To measure your code’s quality, track your code coverage and test case coverage. Use the Force.com IDE to create and execute unit tests
for your code’s actions and behaviors and to adjust the granularity of your test runs’ logging.

One of the most important and powerful features of the Force.com platform is its built-in support for automated testing. The Apex
language includes the ability to define and execute unit tests, which are pieces of code that verify that your application works the way
you intended. Each unit test is defined as a test method, and you can execute your test methods to see which tests are passing or failing.
Regularly executing test methods gives you instant insight into the quality of your code and provides an early warning system for
detecting regressions.

There are two common ways to measure your code’s quality using unit tests.

• Code coverage identifies which lines of code a set of unit tests exercises. Code coverage is reported as a percentage. This metric helps
you identify the sections of code that are untested and therefore at greatest risk of containing a bug or introducing a regression.
Each time you run a set of unit tests on the Force.com platform, a code coverage number is returned. A list of uncovered lines of
code in the classes and triggers invoked by the tests is also returned.

Note: The Force.com platform requires at least 75% of your code to be covered by automated tests before you can deploy
it to a production organization. We recommend that you strive for 100% coverage. The code coverage restriction is not enforced
for sandbox or Developer Edition organizations.

• Test case coverage identifies real-world scenarios in which you expect your code to execute. Even if you have 100% code coverage,
bugs can be hiding in your code. To help prevent bugs, ensure that your test values reflect the full set of real-world possibilities,
including corner cases. Test cases are not actual unit tests, but are documents that specify what your unit tests are intended to do.
High test case coverage means that most or all of the real-world scenarios that you have identified are implemented as unit tests.

Developing a rich set of automatic tests gives you confidence that your code works correctly. Having good test coverage can help you
catch bugs when a code change suddenly causes a test to fail. Having a robust set of tests helps us help you, too. Salesforce executes
all your tests before each major release to help us avoid regressions. We run each test once in the existing version of our service—the
one currently in production—and once in the release-candidate version. We compare the results to identify unexpected functionality
changes between releases. To ensure robust test coverage, regularly do the following.

• Create unit tests within the implementation class or in a separate test class. Test classes that are annotated with @isTest do not
count against your Apex storage limits. Creating a test class is done like any other class. For details, see Create New Apex Class.

• Execute unit tests on the server and view the results using Apex test run configurations and the Apex Test Results view.

• Configure debugging output and system logs using Apex test run configurations.

Salesforce recommends that you write tests for the following:

Single action
Test to verify that a single record produces the correct, expected result.

Bulk actions
Any Apex code, whether a trigger, a class or an extension, may be invoked for 1 to 200 records. You must test not only the single
record case, but the bulk cases as well.

Positive behavior
Test to verify that the expected behavior occurs through every expected permutation, that is, that the user filled out everything
correctly and did not go past the limits.

Negative behavior
There are likely limits to your applications, such as not being able to add a future date, not being able to specify a negative amount,
and so on. You must test for the negative case and verify that the error messages are correctly produced as well as for the positive,
within the limits cases.

34

Restricted user
Test whether a user with restricted access to the sObjects used in your code sees the expected behavior. That is, whether they can
run the code or receive error messages.

Note: Conditional and ternary operators are not considered executed unless both the positive and negative branches are executed.

For more information, see “Understanding Testing in Apex” in the Force.com Apex Code Developer's Guide.

SEE ALSO:

Apex Test Results View

Debug Logs for Apex Test Results

Apex Code Settings: Log Category and Log Level

Problems View

Force.com Log Viewer

Troubleshooting the Force.com IDE: Debug Mode

Apex Test Results View
The Force.com IDE’s Apex Test Results view displays the results of your test runs. This view is useful for troubleshooting code, tuning
performance, and checking resource usage.

Note: All Apex test execution occurs on the server. Before testing your code, save any changes to the server.

To execute Apex unit tests, select Run > Run Configurations > Apex Test. To create a test run configuration, then select New launch

configuration (). To execute the selected test run configuration, click Run.

35

Apex Test Results View

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/

Note: To set log levels for your Apex test runs, use run configurations. Logging settings in your project properties apply only
when you’re deploying code.

After the a test run, the Apex Test Runner view displays results. The left pane displays test results for each class and method in the test
run. The right pane displays code coverage, the stack trace, system debug logs, and user debug logs. Make sure that your code has better
coverage than the code in this sample org!

Debug Logs for Apex Test Results
When you run a test, the output is sent to the log. Debug logs display on the right side of the Force.com IDE’s Apex Test Results view.

• The first part of the log details the events that occurred during the test run.

• The next few lines give details on how long it took to execute specific lines of code. This information is useful for performance tuning.

• The debug log then lists how many resources a program uses and the total amount available for each resource. The Apex runtime
engine tracks the resources that every script uses so that a single script doesn’t monopolize the servers. If you write a script that goes
over one of the limits, you receive an error message.

To change your logging levels, create or edit an Apex test run configuration. To access your Apex test run configurations, select Run >

Run Configurations > Apex Test. To create a test run configuration, then select New launch configuration ().

36

Apex Test Results View

Deploying Code with the Force.com IDE

Once you have created application components and tested them in your own development organization, you usually want to migrate
them to a different organization for testing, staging, publication, or production use by end users.

Though each Force.com metadata component lives and runs in a particular organization on Force.com servers, the metadata files you
work with in the Force.com IDE are portable from one organization to another. Deploying is the process of pushing your local project
files into a different Salesforce organization than your project’s home organization. The Force.com IDE provides the Deploy to Server
wizard to guide you through the deployment process.

Before you deploy, you can streamline your deployment process by creating a new project with only the components you want to
deploy. For information, see Create New Force.com Project.

Note: If you deploy to a production organization, you must meet the Apex testing compliance policy: 75% of your Apex must be
covered by unit tests, and all of those tests must complete successfully. Additionally, each trigger must have some code coverage.

To open the Deploy to Server wizard, right-click the src folder of the project and select Force.com > Deploy to Server. You can also
select individual classes or triggers, multiple classes and triggers, or the classes or triggers folder. Before the wizard opens, the
IDE checks for conflicts between the project and the home organization. If conflicts are found, you are given the option to synchronize
before continuing.

The Deploy to Server wizard includes the following pages:

1. On the Destination Details page, enter the connection information for the target organization and click Next.

2. On the Archive Options page, optionally create backup files for this deployment and click Next.

3. On the Deployment Plan page, review the actions to be performed in this deployment. Click Next to execute the deployment.

4. The Deployment Result page displays the result of the deployment. You should see Success displayed at the top of the page. If you
do not, review the deployment logs by clicking View Logs. If you need assistance with deployment errors, click Save to save your
log file for future reference.

SEE ALSO:

Destination Details

Archive Options

Deployment Plan

Destination Details
On the Destination Details page, enter the connection settings for the organization you are deploying to.

DescriptionField

Required. The username you use to log into the organization you
are deploying to. The username associated with this connection

Username

must have the “Modify All Data” permission. Typically, this is only
enabled for System Administrator users.

Required. The password for the username specified.Password

The security token is appended to your password as an added
security measure. If you are using a security token, enter the value

Security Token

37

DescriptionField

here. For more information, see the Salesforce online help topic
Setting Login Restrictions.

Choose the appropriate environment for your connection:Environment

• Production/Developer Edition - Choose this option if you
are connecting to a production or Developer Edition
organization.

• Sandbox - Choose this option if you are connecting to a
sandbox organization. Sandbox organizations have an URL
that starts with test.

• Pre-Release - Choose this option if you have been given the
credentials to connect to a prerelease server.

• Other (Specify) - Choose this option if you want to connect
to a specific instance. If you choose this option, you must enter
a value in the Hostname field.

Archive Options
The Archive Options page allows you to save a snapshot of the project and the destination organization, respectively, before any changes
are made. If you are deploying to a production organization, archive your destination organization to facilitate recovery, in the unlikely
event that this is needed. The archive options save a snapshot of the project and the destination organization, respectively, before any
changes are made. This facilitates recovery if needed. For deployments to production organizations, you should select both archive
options.

DescriptionField

Select to create an archive of your project (local files).Project archive

Select to create an archive of the destination files (files on the
server).

Destination archive

Deployment Plan
The Deployment Plan page lists every item available for deployment and the action that will be performed. Each type of action is color
coded for quick reference. Select the actions you wish to perform in this deployment.

• Add (green) - Adds the component to the destination organization.

• Delete (red) - Deletes the component from the destination organization.

• Overwrite (yellow) - Overwrites the Deployment Plancomponent on the destination organization. This action is available when no
differences between the project and server organization for the component are found. This option is not selected by default when
files are identical.

• No Action (grey) - Clear the checkbox next to the component to take no action.

The following controls help navigate the available components:

38

Archive Options

DescriptionButton

Click to select to deploy all items.Select All

Click to remove all items from deployment plan.Deselect All

Click to refresh available objects.Refresh Plan

Click Validate Deployment to check the likely success or failure of the deployment. The Test Deployment Results View displays either
a Success or Failure icon along with the reasons for any failures. Click View Logs to view details. Close the window to return to the
Deployment Plan page.

39

Deployment Plan

CHAPTER 6 Getting Started with the Apex Debugger

Nobody likes the idea of looking for a needle in a haystack—or for a bug in a call stack. We want our
tools to facilitate your work and enable your success. And we haven’t found the debugging experience
at Salesforce any more pleasant than you have. Yes, it’s gotten better over time. Years passed. Winter
changed into Spring. Spring changed into Summer. Summer changed back into Winter. And gradually
the Salesforce debugging experience became less painful. But innovation is in our DNA, and we don’t
settle for “less bad.” So, at Dreamforce ’14 we unveiled our gift to you: a real debugger. At Dreamforce
’15, we announced that it is generally available. And there was much rejoicing.

In this chapter ...

• Summary of Getting
Started with the Apex
Debugger

• Set Up the Apex
Debugger

• Explore a Simple
Debugging Puzzle Note: Some services and subscriptions include this feature for an extra cost. For pricing details,

contact your Salesforce account executive.
• Apex Debugger

Limits and
Considerations

The Apex Debugger extends the Force.com IDE plug-in for Eclipse and does most of the things you
expect a debugger to do. Use it to:

• Apex Debugger
Troubleshooting

• Set breakpoints in Apex classes and triggers.

• View variables, including sObject types, collections, and Apex System types.

• View the call stack, including triggers activated by Apex Data Manipulation Language (DML),
method-to-method calls, and variables.

• Interact with global classes, exceptions, and triggers from your installed managed packages. (When
you inspect objects that have managed types that aren’t visible to you, only global variables are
displayed in the variable inspection pane.)

• Complete standard debugging actions, including step into, over, and out, and run to breakpoint.

• Output your results to the Console window.

40

41

Getting Started with the Apex Debugger

Summary of Getting Started with the Apex Debugger

This documentation exists to help you, a Force.com developer, get started with the Apex Debugger for Eclipse. Step through the process
of setting up the Debugger. Then, explore a simple debugging puzzle and start thinking about how to debug your projects. Be sure to
check out the limits and considerations, too. Finally, learn about some common problems you might encounter and how you can get
over those hurdles.

Set Up the Apex Debugger

Complete these tasks to get the Apex Debugger ready for use in your Salesforce org and on your workstation.

IN THIS SECTION:

Contact Salesforce to Enable the Apex Debugger

Some services and subscriptions include this feature for an extra cost. For pricing details, contact your Salesforce account executive.

Install or Update the Force.com IDE Plug-In for Eclipse

The Apex Debugger is part of the Force.com IDE plug-in for Eclipse. Before you set up the Debugger, install or update the Force.com
IDE.

Set Up a Permission Set

Create a permission set for Apex Debugger users, and assign it to any users in your org who plan to use the Debugger.

Create a Project

If you’re new to using the Force.com IDE, set up a project. If you plan to debug an existing Force.com IDE project, skip these steps.

Test Your Debugger Setup

To make sure that everything is functioning properly, create a simple Apex class, set a breakpoint in your code, and then hit the
breakpoint using Execute Anonymous.

Contact Salesforce to Enable the Apex Debugger
Some services and subscriptions include this feature for an extra cost. For pricing details, contact your Salesforce account executive.

Install or Update the Force.com IDE Plug-In for Eclipse
The Apex Debugger is part of the Force.com IDE plug-in for Eclipse. Before you set up the Debugger, install or update the Force.com
IDE.

Ensure that the Prerequisites listed on the Force.com IDE Installation page are installed on your workstation.

1. In Eclipse, choose Help > Install New Software.

2. Click Add, and add this update site. https://developer.salesforce.com/media/force-ide/eclipse42/

3. In the Name and Version list, select all items named Force.com IDE and Force.com IDE Debugger.

4. Click Next and proceed with the installation.

Set Up a Permission Set
Create a permission set for Apex Debugger users, and assign it to any users in your org who plan to use the Debugger.

42

Summary of Getting Started with the Apex DebuggerGetting Started with the Apex Debugger

https://developer.salesforce.com/page/Force.com_IDE_Installation

1. Log in to your org.

2. From Setup, enter Permission Sets in the Quick Find box, then click Permission Sets.

3. Create a permission set. Give it a name that you can remember, such as Debug Apex.

4. In the “Select the type of users who will use this permission set” section, choose None from the User License drop-down list. Choosing
None lets you assign the permission set to more than one type of user.

5. Save your changes.

6. Click System Permissions.

7. Click Edit.

8. Enable the Debug Apex permission.

9. Save your changes.

10. Click Manage Assignments.

11. Click Add Assignments.

12. Select the users to whom you want to assign the permission set, and then click Assign.

Create a Project
If you’re new to using the Force.com IDE, set up a project. If you plan to debug an existing Force.com IDE project, skip these steps.

1. In Eclipse, choose File > New > Project > Force.com > Force.com Project > Next.

2. Enter a descriptive project name and your Salesforce sandbox org’s credentials. Choose Sandbox from the Environment drop-down
menu.

3. Click Next, and then complete the New Force.com Project wizard.

4. To save changes to the server automatically, right-click the name of the project that you created, then select Force.com > Work
Online. By default, your changes are saved only locally, but Work Online is the recommended setting for using the Apex Debugger.

When Work Online is enabled, the icon next to your project name looks like this: , rather than like this: .

43

Create a ProjectGetting Started with the Apex Debugger

Test Your Debugger Setup
To make sure that everything is functioning properly, create a simple Apex class, set a breakpoint in your code, and then hit the breakpoint
using Execute Anonymous.

1. Create an Apex class called SampleClass with this content.

public class SampleClass {
public void level1(Integer depth1) {

level2(2);
}

public void level2(Integer depth2) {
level3(3);

}

public void level3(Integer depth3) {
System.debug('Placeholder for setting breakpoint');

}
}

2. Save the class.

3. If you don’t have Work Online enabled, save the class to the server. Right-click the class in the Package Explorer, then choose
Force.com > Save to Server. This screenshot shows that Work Online is not enabled (1), and demonstrates how to save to the
server (2).

44

Test Your Debugger SetupGetting Started with the Apex Debugger

4. Switch to the Debug perspective by choosing Window > Open Perspective > Other > Debug. After you’ve completed the initial
Debugger setup, you can switch between perspectives by clicking the icons in the upper right corner of your Eclipse window.

5.
Click the debug icon () in the toolbar and select Debug Configurations.

6. Select Remote Apex Debugger.

7.
To create a configuration for your project, click the New launch configuration icon ().

8. Name the configuration.

9. Click Browse and select your project.

10. Click Apply, and then click Debug.

11.
Click the debug icon () and launch the new debug configuration.

12. Wait until you see an icon showing turning yellow gears in the Debug pane.

45

Test Your Debugger SetupGetting Started with the Apex Debugger

13. To set a breakpoint, double-click in the gray gutter to the left of the System.debug statement in SampleClass.cls.

14. Select the Execute Anonymous tab at the bottom of the screen. If the Execute Anonymous tab isn’t available, choose Window >
Show View > Other > Force.com and add it.

15. Make sure that your project is the Active Project.

16. In the Source to execute field, enter:

new SampleClass().level1(1);

17. Click Execute Anonymous.

Note: You might get an error message like, “SocketTimeoutException: Read timed out,” when using Execute Anonymous to
hit a breakpoint during a debugging session. Execute Anonymous expects to receive timely results from the server, but because
you’ve stopped at a breakpoint your results don’t arrive in a timely fashion. Dismiss the error message, and carry on with your
debugging.

The Debugger stops at the breakpoint (1). The call stack (2) and the values of your variables (3) are displayed. When applicable, a
URL showing how each request originated displays next to the request ID in your call stack details.

46

Test Your Debugger SetupGetting Started with the Apex Debugger

Explore a Simple Debugging Puzzle

Once you’ve gotten the Apex Debugger up and running, work through this exercise to explore some of the Debugger’s capabilities.

IN THIS SECTION:

Create Sample Accounts in Your Org

To complete this exercise, add the following sample data in your org.

Create an Apex Class

Next, let’s create an Apex class to debug. This class removes cold accounts from a list so that you can focus on more promising
clients.

Create a Visualforce Page

Now we need a Visualforce page to bring the AccountViewer controller to life.

Identify a Problem

Because we never write buggy code, our Visualforce page should be working perfectly! Let’s make sure.

47

Explore a Simple Debugging PuzzleGetting Started with the Apex Debugger

Debug the Problem

Let’s use the Apex Debugger to see what went wrong.

Fix the Problem

By now you’ve discovered that we need to decrement the iterator i when removing an item from listToReduce. But we can’t
save changes to our code while a debugging session is in process. We first terminate our debugging session, then fix the code.

Delete Your Sample Accounts

Unless you want to keep your sample accounts so that you can play with them in the future, run this code to delete them.

Create Sample Accounts in Your Org
To complete this exercise, add the following sample data in your org.

1. Enter this code in the Source to execute field of the Force.com IDE’s Execute Anonymous pane.

List<String> acctNames = new List<String>{
'Ant Conglomerate',
'Bee Collection Agency',
'Beetle Brothers Body Shop',
'Butterfly Beauty Supplies',
'Flea LLC',
'Fly Airlines',
'Moth Candle Company',
'Tick Timepieces',
'Wasp Industrial Products',
'Weevil Consultancy'
};

List<Account> newAccts = new List<Account>();

for(Integer i = 0; i < 10; i++) {
Account newAcct = new Account();
newAcct.name = acctNames.get(i);
newAcct.BillingCity = 'Suffragette City';
newAccts.add(newAcct);

}

newAccts.get(0).rating = 'Warm';
newAccts.get(1).rating = 'Cold';
newAccts.get(2).rating = 'Hot';
newAccts.get(3).rating = 'Cold';
newAccts.get(4).rating = 'Cold';
newAccts.get(5).rating = 'Warm';
newAccts.get(6).rating = 'Hot';
newAccts.get(7).rating = 'Hot';
newAccts.get(8).rating = 'Cold';
newAccts.get(9).rating = 'Warm';

for (Integer i = 0; i < 10; i++) System.debug(newAccts.get(i));
insert newAccts;

48

Create Sample Accounts in Your OrgGetting Started with the Apex Debugger

2. Click Execute Anonymous.

Note: If you get a compile error after executing this code, make sure that Account.rating is visible to your user. To
give yourself access to the Account object’s Rating field, from Setup, enter Field in the Quick Find box, then click
Account > Fields > Rating > Set Field-Level Security or Field Accessibility > Account > View by Fields > Rating.

3. In the Accounts tab of the Salesforce user interface, verify that your accounts have been created.
Congratulations. Your org now contains all the data that you need to complete the debugging exercise.

Create an Apex Class
Next, let’s create an Apex class to debug. This class removes cold accounts from a list so that you can focus on more promising clients.

1. Create an Apex class called AccountViewerController.

2. Replace your class’s default contents with this code.

public class AccountViewerController {

public Boolean removeCold { get; set; }
public List<Account> results { get; set; }

public AccountViewerController() {

removeCold = false;

results = [SELECT Id, Name, Owner.Name, Rating, BillingCity, BillingState
from Account
WHERE BillingCity = 'Suffragette City'
Order By Name ASC];

}

public List<Account> getAccountTable() {

List<Account> accountsToReturn;
accountsToReturn = new List<Account>();
accountsToReturn.addAll(results);

if (removeCold==true) {
removeColdAccounts(accountsToReturn);

}

return accountsToReturn;
}

public void removeColdAccounts(List<Account> listToReduce) {

49

Create an Apex ClassGetting Started with the Apex Debugger

System.debug('Removing "cold" accounts');
System.debug(' size before: ' + listToReduce.size());

for (Integer i = 0; i < listToReduce.size(); i++) {
Account a = listToReduce.get(i);
if (a.Rating.equalsIgnoreCase('Cold')) {

listToReduce.remove(i);
System.debug('removed cold account: ' + a.Name);

}
}

System.debug(' size after: ' + listToReduce.size());
}

public void noOp() {
}

}

3. Save AccountViewerController.cls.

Create a Visualforce Page
Now we need a Visualforce page to bring the AccountViewer controller to life.

1. Create a Visualforce page with the label Account Viewer and the name AccountViewer.

2. Replace your page’s default contents with this code.

<apex:page controller="AccountViewerController">
<apex:form>

<apex:outputPanel id="resultTable">
<apex:pageBlock>

<apex:actionstatus id="status">
<apex:facet name="start">

<div class="waitingSearchDiv" id="el_loading" style=
"background-color: #fbfbfb; height: 100%; opacity:0.65;
width:100%;">

<div class="waitingHolder" style="top: 74.2px; width: 91px;">
<img class="waitingImage" src="/img/loading.gif" title=

"Please Wait..." />
Please Wait...

</div>
</div>

</apex:facet>
</apex:actionstatus>
<apex:pageBlockSection title="Special Accounts" collapsible="false">

<apex:inputCheckbox value="{!removeCold}" label="Hide Cold Accounts">
<apex:actionSupport event="onchange" action="{!noOp}"

50

Create a Visualforce PageGetting Started with the Apex Debugger

status="status" rerender="resultTable"/>
</apex:inputCheckbox>

</apex:pageBlockSection>
<apex:pageBlockSection title="Scheduled Jobs" collapsible="false">

<apex:pageBlockTable value="{!accountTable}" var="a"
id="thePageBlockTable">
<apex:column style="vertical-align:top">

<apex:outputField value="{!a.name}" />
<apex:facet name="header">Name</apex:facet>

</apex:column>
<apex:column>

<apex:outputField value="{!a.BillingCity}" />
<apex:facet name="header">City</apex:facet>

</apex:column>
<apex:column>

<apex:outputField value="{!a.BillingState}" />
<apex:facet name="header">State</apex:facet>

</apex:column>
<apex:column>

<apex:outputField value="{!a.Rating}" />
<apex:facet name="header">Rating</apex:facet>

</apex:column>
</apex:pageBlockTable>

</apex:pageBlockSection>
</apex:pageBlock>

</apex:outputPanel>
</apex:form>

</apex:page>

3. Save AccountViewer.page.

Identify a Problem
Because we never write buggy code, our Visualforce page should be working perfectly! Let’s make sure.

1. Make sure that you’re logged in to your org.

2. Navigate to https://your_salesforce_instance/apex/AccountViewer.

3. Notice that your Special Accounts list includes cold accounts. Their presence is unacceptable! Select Hide Cold Accounts.

4. They're all gone, right? Wrong. What happened? It's time for debugging!

Debug the Problem
Let’s use the Apex Debugger to see what went wrong.

1. Make sure that AccountViewerController.cls is open.

2. Switch to the Debug perspective of the Force.com IDE.

3.
Make sure that the turning yellow gears () are visible in the Debug pane.

4. Find the removeColdAccounts(List<Account> listToReduce) method.

51

Identify a ProblemGetting Started with the Apex Debugger

5. Set a breakpoint on this line:

Account a = listToReduce.get(i);

6. Navigate to https://your_salesforce_instance/apex/AccountViewer.

7. Select Hide Cold Accounts.

8. Notice that Please Wait has been displaying for awhile. Execution has stopped because you’ve successfully hit a breakpoint.

9. In Eclipse, click the line in the Debug pane’s stack trace that corresponds to your breakpoint.

52

Debug the ProblemGetting Started with the Apex Debugger

10.
Click Step Over () until you’ve stepped through all the iterations of your for loop. As you do so, pay attention to the values of
the variables in your Variables pane. If you notice the problem, try to correct it. If you manage to correct the problem, go ahead and
skip to Fix the Problem on page 55 to confirm your solution.

11. After you’ve stepped all the way through the for loop, look at your Visualforce page. Some of the cold accounts were hidden, but at
least one remains.

12. In this screenshot, the cold account is Flea LLC. Make a note of this account’s name. Then, let’s step through our for loop again.

13. Deselect Hide Cold Accounts.

14. In Eclipse, click one of the top two levels of the stack trace in the Debug pane.

15. To stop your debugging session, click the terminate icon ().

16.
To start a new session, click the debug icon ().

17.
Wait for the turning yellow gears () to reappear in the Debug pane.

18. Reload your Visualforce page, then select Hide Cold Accounts again.

53

Debug the ProblemGetting Started with the Apex Debugger

19. This time, pay special attention to what happens when you move past the account right before Flea LLC. Make a note of the account
that you want to watch out for. In this case, the account we want to watch for is Butterfly Beauty Supplies.

20.
Click Step Over () until you see that the value of a.Name is the account name you’re watching for—in this case, Butterfly
Beauty Supplies.

21. Paying close attention to the values of your variables, click Step Over until a’s value changes again.

22. Look at the value of listToReduce. 'Butterfly Beauty Supplies' was removed, but we’ve skipped right over
'Flea LLC'. Why do you think that could be?

54

Debug the ProblemGetting Started with the Apex Debugger

The problem lies in the value of the iterator, i. When we removed 'Butterfly Beauty Supplies' from the list, we didn’t
account for the fact that removing this list item would change the positions of the subsequent items. Flea LLC is now at position 2,
formerly occupied by Butterfly Beauty Supplies, but that position has already been processed. Fortunately, this problem is easily fixed.

Fix the Problem
By now you’ve discovered that we need to decrement the iterator i when removing an item from listToReduce. But we can’t
save changes to our code while a debugging session is in process. We first terminate our debugging session, then fix the code.

1. In the Debug perspective of the Force.com IDE, click one of the top two levels of the stack trace in the Debug pane.

55

Fix the ProblemGetting Started with the Apex Debugger

2. To stop your debugging session, click the terminate icon ().

3. To decrement the value of i after an account is removed from listToReduce, modify AccountViewerController.cls.

4. Save your changes.

5. Reload your Visualforce page: https://your_salesforce_instance/apex/AccountViewer

6. Select Hide Cold Accounts.

7. Celebrate! You’ve successfully debugged your code.

Delete Your Sample Accounts
Unless you want to keep your sample accounts so that you can play with them in the future, run this code to delete them.

1. Enter this code in the Force.com IDE’s Execute Anonymous pane, in the Source to execute field.

List<Account> buggyAccounts = [SELECT Id
FROM Account
WHERE BillingCity = 'Suffragette City'];

delete buggyAccounts;

2. Click Execute Anonymous.

56

Delete Your Sample AccountsGetting Started with the Apex Debugger

3. In the Accounts tab of the Salesforce user interface, verify that your accounts have been deleted.

Apex Debugger Limits and Considerations

Keep these limits and considerations in mind when working with the Apex Debugger.

IN THIS SECTION:

Apex Debugger Limits

Your use of the Apex Debugger is subject to these restrictions.

Apex Debugger Considerations

Don’t be surprised if you encounter these potential “gotchas” when using the Apex Debugger.

Apex Debugger Limits
Your use of the Apex Debugger is subject to these restrictions.

• You can use the Apex Debugger only with sandbox orgs.

• You can have only one active debugging session per org across all the org’s sandboxes. However, you can purchase more sessions
for your parent org. Each sandbox org can have only one active session.

• You can’t debug more than two threads at a time.

• Your Apex Debugger session times out if it’s left inactive. Under normal conditions, you’re allowed 1 hour of inactivity. When your
instance’s server is experiencing peak loads, the timeout limit can be reduced to 30 minutes.

• Your Apex Debugger session times out after 4 hours, regardless of activity.

• Salesforce can terminate debugging sessions for maintenance purposes, with or without notice. You can’t initiate a new debugging
session until the maintenance is complete.

Apex Debugger Considerations
Don’t be surprised if you encounter these potential “gotchas” when using the Apex Debugger.

• If you edit Apex classes while a debugging session is in progress, your breakpoints might not match your debugging output after
you save your changes.

• Your debugging session is orphaned when you close Eclipse before stopping your session. If you have an orphaned session, you
can’t start a new session.

• Eval functionality isn’t available.

• Hot swapping isn’t permitted. These actions kill your debugging session.

– Installing or uninstalling a package

– Saving changes that cause your org’s metadata to recompile

You can’t save changes to these items during a debugging session.

• Apex classes or triggers

• Visualforce pages or components

• Lightning resources

• Permissions or preferences

• Custom fields or custom objects

57

Apex Debugger Limits and ConsiderationsGetting Started with the Apex Debugger

• These entry points aren’t supported.

– Asynchronously executed code, including asynchronous tests

Note: Test code between a pair of startTest and stopTest methods can run synchronously. To debug your
asynchronous functionality, use these methods within your tests.

– Batch, Queueable, and Scheduled Apex

– Inbound email

– Code with the @future annotation

• Keep these things in mind when working with breakpoints.

– You can’t set conditional breakpoints.

– Breakpoints set on a get or set method must be within the method’s body.

– You can’t set breakpoints in or step through Execute Anonymous blocks. However, when you hit a breakpoint using Execute
Anonymous, we show your Execute Anonymous frame in the stack. To view your Execute Anonymous code’s variables, click this
line in the stack.

• Keep these things in mind when working with variables.

– You can’t watch variables.

– Variable inspection in dynamic Visualforce and Lightning components isn’t supported.

– You can’t drill into the instance variables of Apex library objects. To view these objects’ contents, use their toString methods.

– Variables declared within a loop are visible outside of the loop.

– Drill into variables to see their children’s values. For example, if you run the query [SELECT Id, ContactId,
Contact.accountId, Contact.Account.ownerId FROM Case], your results are nested as follows.

Case
--> Contact
-----> contactId
-----> Account
--------> accountId
--------> ownerId

– When you perform a SOQL query for variables from the EntityDefinition table, your results include the durableId even if
you don’t explicitly SELECT that variable.

Apex Debugger Troubleshooting

If you encounter problems when using the Apex Debugger, try these troubleshooting techniques.

IN THIS SECTION:

Relaunch Your Debug Configuration

If your code isn’t stopping on breakpoints, variables aren’t displaying in the Variables pane, or you don’t see turning yellow gears in
the Debug pane, relaunch your debug configuration.

Kill an Orphaned Session

If Eclipse crashes or is shut down before you end your debugging session, your session is orphaned. You can’t start a new session
until you remove the orphan. But don’t panic! You can kill an orphaned session in Setup or with the Tooling API.

58

Apex Debugger TroubleshootingGetting Started with the Apex Debugger

Change Your Session Timeout Preference

If you’re on a slow network, you can change the default timeout setting for your Debugger connection. This setting determines how
long Eclipse waits for the Debugger to respond when you take an action, such as stepping through your code.

Report Drastic Issues to Customer Support

It’s unlikely that you’ll encounter drastic issues while working with the Apex Debugger. However, never say never. If you encounter
performance issues or are unable to kill your orphaned sessions, contact Salesforce Customer Support for help. If necessary, Support
can kill all debugging sessions for the instance on which your org is running. This process prevents you—and all orgs running on
your instance—from immediately initiating new debugging sessions.

Relaunch Your Debug Configuration
If your code isn’t stopping on breakpoints, variables aren’t displaying in the Variables pane, or you don’t see turning yellow gears in the
Debug pane, relaunch your debug configuration.

1.
Click the arrow next to the debug icon (), and choose your configuration from the list. This action relaunches your debug
configuration.

2. Wait for the turning yellow gears to reappear in the Debug pane.

Kill an Orphaned Session
If Eclipse crashes or is shut down before you end your debugging session, your session is orphaned. You can’t start a new session until
you remove the orphan. But don’t panic! You can kill an orphaned session in Setup or with the Tooling API.

IN THIS SECTION:

Kill a Debugging Session in Setup

From the Apex Debugger page in Setup, you can easily kill any debugging session in your org—even sessions belonging to your
coworkers. Please use this power compassionately!

Kill a Debugging Session with the Tooling API

If you’re too cool for declarative tools, fret not: You can kill a debugging session using the Tooling API, without going anywhere near
the Setup tree.

Kill a Debugging Session in Setup
From the Apex Debugger page in Setup, you can easily kill any debugging session in your org—even sessions belonging to your
coworkers. Please use this power compassionately!

1. From Setup, enter Apex Debugger in the Quick Find box, then click Apex Debugger.

2. Click Kill Debugger.

59

Relaunch Your Debug ConfigurationGetting Started with the Apex Debugger

Kill a Debugging Session with the Tooling API
If you’re too cool for declarative tools, fret not: You can kill a debugging session using the Tooling API, without going anywhere near the
Setup tree.

1. Open the Developer Console.

2. Open the Query Editor.

3. Select Use Tooling API.

4. Run this SOQL query.

SELECT Status FROM ApexDebuggerSession WHERE Status = 'Active'

5. Change the value of Status from Active to Kill.

6. Save the modified row.

Change Your Session Timeout Preference
If you’re on a slow network, you can change the default timeout setting for your Debugger connection. This setting determines how
long Eclipse waits for the Debugger to respond when you take an action, such as stepping through your code.

1. In Eclipse, select Window > Preferences > Force.com > Apex Debugger.

2. Enter a new value for Connection timeout (ms). For slower connections, we recommend a connection timeout of up to 30,000
milliseconds.

3. Click Apply.

4. Click OK.

Report Drastic Issues to Customer Support
It’s unlikely that you’ll encounter drastic issues while working with the Apex Debugger. However, never say never. If you encounter
performance issues or are unable to kill your orphaned sessions, contact Salesforce Customer Support for help. If necessary, Support can
kill all debugging sessions for the instance on which your org is running. This process prevents you—and all orgs running on your
instance—from immediately initiating new debugging sessions.

60

Change Your Session Timeout PreferenceGetting Started with the Apex Debugger

CHAPTER 7 Useful References

This section provides additional details on a range of topics:In this chapter ...
• Force.com Project Properties• Force.com IDE

Release Notes • Apex Code Settings: Log Category and Log Level

• About Package.xml• Force.com Project
Properties – About Metadata Files

• Apex Code Settings:
Log Category and
Log Level

– Metadata Types

• Troubleshooting the Force.com IDE: Debug Mode

• About Package.xml

• Troubleshooting the
Force.com IDE:
Debug Mode

• Additional Resources

61

Force.com IDE Release Notes

Because the Force.com IDE has an off-cycle release cadence, changes are not typically documented in the Salesforce Release Notes.
Read Force.com IDE Release Notes for API versions 31.0 and later here.

Winter ’16 (Force.com IDE v35.0)
Winter ’16 (Force.com IDE v35.0) contains the following updates.

Enabled auto-completion for System types
In Spring ’15 (Force.com IDE v33.0), we removed inline auto-complete tips for Apex built-in objects to allow packaging of a new
compiler that features outline view. We’ve been working on bringing auto-completion back. In Winter ’16 (Force.com IDE v35.0),
we’re reintroducing auto-completion for the System namespace.

Provided run configurations for Apex tests, with configurable logging levels
To execute Apex unit tests, select Run > Run Configurations > Apex Test. To create a test run configuration, then select New

launch configuration (). To execute the selected test run configuration, click Run.

Made the interactive Apex Debugger generally available
The Apex Debugger extends the Force.com IDE plug-in for Eclipse and behaves similarly to debuggers available for other languages.
Use it in sandbox orgs to root out the bugs in your Apex code. After you’ve set a breakpoint and started a debugging session, you
can debug actions in your org that cause the line of code to execute.

Note: Some services and subscriptions include the Apex Debugger for an extra cost. For pricing details, contact your Salesforce
account executive.

Use the Apex Debugger to complete the following actions.

• Set breakpoints in Apex classes and triggers.

62

Force.com IDE Release NotesUseful References

• View variables, including sObject types, collections, and Apex System types.

• View the call stack, including triggers activated by Apex Data Manipulation Language (DML), method-to-method calls, and
variables.

• Interact with global classes, exceptions, and triggers from your installed managed packages. When you inspect objects that have
managed types that aren’t visible to you, only global variables are displayed in the variable inspection pane.

• Complete standard debugging actions, including step into, over, and out, and run to breakpoint.

• Output your results to the Console window.

Spring ’15 (Force.com IDE v33.0)
Spring ’15 (Force.com IDE v33.0) contains the following updates.

Introduced a wizard for generating Apex classes from a WSDL
Previously, you could only generate classes from a WSDL in the Salesforce user interface. The WSDL-based classes enable you to
make callouts to external services.

63

Force.com IDE Release NotesUseful References

Open-source code for the WSDL to Apex wizard is available in the WSDL2Apex GitHub repository. Developers in the GitHub community
can add enhancements or customizations to WSDL2Apex. The Force.com IDE plug-in is a snapshot of the WSDL2Apex and idecore
GitHub repositories at the time of the latest official plug-in release.

The Spring ’15 (Force.com IDE v33.0) version of the WSDL to Apex tool includes this user-visible contribution from the open-source
community.

Update ApexTypeMapper.java—#6
Added integer and boolean as reserved keywords. These words now pick up the _x suffix when used as variable names.

Incorporated pull requests from the open-source community
For complete lists of pull requests, see https://github.com/forcedotcom/idecore/pulls and
https://github.com/forcedotcom/WSDL2Apex/pulls. User-visible impacts of community-submitted changes that were incorporated
in Spring ’15 (Force.com IDE v33.0) include:

Respect spacesForTabs preference for auto-indent—#39
Previously, a hard-coded tab character in ApexAutoIndentStrategy.java led to Apex files that contained a mixture
of spaces and tabs when the spacesForTabs preference was enabled. This change makes the Force.com IDE respect
Eclipse’s General > Editors > Text Editors > Insert spaces for tabs preference.

Speed up unit test postprocessing—#52
This change made a significant improvement in debug-log processing speeds when running unit tests.

Changes to monitor only SF files in `/src/` folder—#57
Popup menus now work only in the src folder and on projects.

The Force.com submenu is now easier to see, thanks to the addition of an icon.

Changes for Apex Test Runner: Code coverage results should be alphabetized—#61
Code coverage results are now alphabetized in the Apex Test Runner pane.

Fix display of child and parent records in schema browser—#64
A red “icon missing” image has been removed in the Schema Explorer. This icon was displayed erroneously.

Need to have a different text for debug only—#65
The Execute Anonymous view now displays System.debug statements in a more noticeable text style.

Spring ’15 (Force.com IDE v33.0)
Spring ’15 (Force.com IDE v33.0) contains the following updates.

New wizard for generating Apex classes from a WSDL
Previously, you could only generate classes from a WSDL in the Salesforce user interface. The WSDL-based classes enable you to
make callouts to external services.

Open-source code for the WSDL to Apex wizard is available in the WSDL2Apex GitHub repository. Developers in the GitHub community
can add enhancements or customizations to WSDL2Apex. The Force.com IDE plug-in is a snapshot of the WSDL2Apex and idecore
GitHub repositories at the time of the latest official plug-in release.

The Spring ’15 (Force.com IDE v33.0) version of the WSDL to Apex tool includes this user-visible contribution from the open-source
community.

Update ApexTypeMapper.java—#6
Added integer and boolean as reserved keywords. These words now pick up the _x suffix when used as variable names.

Incorporated pull requests from the open-source community
For complete lists of pull requests, see https://github.com/forcedotcom/idecore/pulls and
https://github.com/forcedotcom/WSDL2Apex/pulls. User-visible impacts of community-submitted changes that were incorporated
in Spring ’15 (Force.com IDE v33.0) include:

64

Force.com IDE Release NotesUseful References

https://github.com/forcedotcom/WSDL2Apex
https://developer.salesforce.com/page/Force.com_IDE
https://github.com/forcedotcom/WSDL2Apex
https://github.com/forcedotcom/idecore
https://github.com/forcedotcom/WSDL2Apex/pull/6
https://github.com/forcedotcom/idecore/pulls
https://github.com/forcedotcom/WSDL2Apex/pulls
https://github.com/forcedotcom/idecore/pull/39
https://github.com/forcedotcom/idecore/pull/52
https://github.com/forcedotcom/idecore/pull/57
https://github.com/forcedotcom/idecore/pull/61
https://github.com/forcedotcom/idecore/pull/64
https://github.com/forcedotcom/idecore/pull/65
https://github.com/forcedotcom/WSDL2Apex
https://developer.salesforce.com/page/Force.com_IDE
https://github.com/forcedotcom/WSDL2Apex
https://github.com/forcedotcom/idecore
https://github.com/forcedotcom/WSDL2Apex/pull/6
https://github.com/forcedotcom/idecore/pulls
https://github.com/forcedotcom/WSDL2Apex/pulls

Respect spacesForTabs preference for auto-indent—#39
Previously, a hard-coded tab character in ApexAutoIndentStrategy.java led to Apex files that contained a mixture
of spaces and tabs when the spacesForTabs preference was enabled. This change makes the Force.com IDE respect
Eclipse’s General > Editors > Text Editors > Insert spaces for tabs preference.

Speed up unit test postprocessing—#52
This change made a significant improvement in debug-log processing speeds when running unit tests.

Changes to monitor only SF files in `/src/` folder—#57
Popup menus now work only in the src folder and on projects.

The Force.com submenu is now easier to see, thanks to the addition of an icon.

Changes for Apex Test Runner: Code coverage results should be alphabetized—#61
Code coverage results are now alphabetized in the Apex Test Runner pane.

Fix display of child and parent records in schema browser—#64
A red “icon missing” image has been removed in the Schema Explorer. This icon was displayed erroneously.

Need to have a different text for debug only—#65
The Execute Anonymous view now displays System.debug statements in a more noticeable text style.

Summer ’14 (Force.com IDE v31.0)
Summer ’14 (Force.com IDE v31.0) contains the following updates.

• Made the Force.com IDE source code available on GitHub.

• Added new metadata support. See the Salesforce.com Summer '14 Release Notes for a complete list of metadata enhancements.

• Facilitated editing of metadata using the new Properties tab—a form-based GUI.

• Discontinued support for Java 6. We now require Java 7.

• Set offline mode as the default for new projects to shorten save times.

• Enabled syntax checking and outline view using a new parser, which can be toggled through Preferences > Force.com > Apex
Parser.

• Set the Tooling API as the default mechanism used for Apex classes and triggers and for Visualforce pages and components.

• Removed inline auto-complete tips for Apex built-in objects to allow packaging of a new compiler that features outline view.
Auto-complete tips are still available in Spring ’14 (Force.com IDE v30.0) and earlier versions.

Force.com Project Properties

The properties on the main Force.com Project Properties page determine a Force.com project’s Salesforce connection settings. Use this
page to update your password or security token, change timeout values, or associate your project with a different home organization

DescriptionField

Required. A project is associated with one organization. Project
names must be unique. You can create more than one project that

Project Name

connects to the same organization, but they cannot have the same
project name.

Note: You can enter any name for the project here, but
we recommend that you append the login name used for

65

Force.com Project PropertiesUseful References

https://github.com/forcedotcom/idecore/pull/39
https://github.com/forcedotcom/idecore/pull/52
https://github.com/forcedotcom/idecore/pull/57
https://github.com/forcedotcom/idecore/pull/61
https://github.com/forcedotcom/idecore/pull/64
https://github.com/forcedotcom/idecore/pull/65
https://github.com/forcedotcom/idecore
https://help.salesforce.com/help/pdfs/en/salesforce_summer14_release_notes.pdf

DescriptionField

the organization associated with the project. For example,
if you logged into an organization as
mary_jones@mycompany.com, you would use
myProject_mary_jones@mycompany.com for
the project name. Since you are likely to create multiple
projects on multiple organizations, it is important to clearly
identify the project with the organization it represents.

Required. The username you use to log in to the organization
associated with this project (“home organization”). The username

Username

associated with this connection must have the “Modify All Data”
permission. Typically, this is only enabled for System Administrator
users.

Required. The password for the specified username.Password

Note: When you create a new project, you might be
prompted about a new master password. This is a separate
password of your choosing required by Eclipse secure
storage, and is not associated with your Salesforce
credentials. For details on Eclipse secure storage, see the
Eclipse Workbench User Guide.

The security token is appended to your password as an added
security measure. If you are using a security token, enter the value

Security Token

here. For more information, see the Salesforce online help topic
Setting Login Restrictions.

Required. Choose the appropriate environment for your connection:Environment

• Production/Developer Edition - Choose this option if you are
connecting to a production or Developer Edition organization.

• Sandbox - Choose this option if you are connecting to a
sandbox organization. Sandbox organizations have an URL
that starts with test.

• Pre-Release - Choose this option if you are connecting to a
prerelease server.

• Other (Specify) - Choose this option if you want to connect to
a specific instance.

This field is only available if you have chosen Other (Specify), in the
Environment field above. Enter a specific server instance.

Hostname

Choose this option if you want to keep the endpoint unchanged
for this project. This option is for specialized cases.

Do not change endpoint

If you experience timeouts before all the items in your project can
download, you can reset the timeout from a minimum of 3 seconds

Timeout (sec)

to a maximum of 600 seconds. This is not usually necessary unless

66

Force.com Project PropertiesUseful References

DescriptionField

your project requires an long-running server communication. For
example, if you had a long-running test, more than 50 components,
or very large or complex components, you might consider adjusting
this value. If you reach the maximum limit, you will be prompted
to continue or abort.

If you connect through a proxy, use Eclipse's proxy configuration.
Click the Proxy Settings link to open the Window > Preferences >
General > Network Connections dialog.

Proxy Settings

Apex Code Settings: Log Category and Log Level

The default logging levels for Apex tests executed during deployments and for the Execute Anonymous view are defined on the Apex
Code Settings page in the project properties dialog. To open the project properties dialog, right-click your top-level project folder and
select Properties.

To define logging levels for Apex test execution, select Run > Run Configurations > Apex Test. To create a test run configuration,

then select New launch configuration ().

You can customize these log categories.

DescriptionLog Category

Includes information about database activity, including every data manipulation language
(DML) statement or inline SOQL or SOSL query.

Database

Includes information for workflow rules, flows, and processes, such as the rule name, the
actions taken, and so on.

Workflow

Includes information about validation rules, such as the name of the rule, whether the rule
evaluated true or false, and so on.

Validation

Includes the request-response XML that the server is sending and receiving from an external
web service. Useful when debugging issues related to using Force.com web service API calls
or troubleshooting user access to external objects via an OData adapter for Lightning Connect.

Callout

Includes information about Apex code and can include information such as log messages
generated by DML statements, inline SOQL or SOSL queries, the start and completion of any
triggers, and the start and completion of any test method, and so on.

Apex Code

Includes cumulative profiling information, such as the limits for your namespace, the number
of emails sent, and so on.

Apex Profiling

Includes information about Visualforce events, including serialization and deserialization of
the view state or the evaluation of a formula field in a Visualforce page.

Visualforce

Includes information about calls to all system methods such as the System.debug
method.

System

67

Apex Code Settings: Log Category and Log LevelUseful References

You can assign these log levels to your log categories.

DescriptionLog Level

Includes error, warning, and information messages.Error, Warn, Info

Includes lower-level messages, and messages generated by calls to the System.debug
method.

Debug

Includes log messages generated by calls to the System.debug method, every DML
statement or inline SOQL or SOSL query, and the entrance and exit of every user-defined

Fine, Finer

method. In addition, the end of the debug log contains overall profiling information for the
portions of the request that used the most resources. These resources include SOQL and SOSL
statements, DML operations, and Apex method invocations.

Includes all messages generated by the Fine or Finer log levels, as well additional information
on Apex scripts, including the following.

Finest

• Variable declaration statements

• Start-of-loop executions

• All loop controls, such as break and continue

• Thrown exceptions

• Static and class initialization code

• Any changes in the with sharing context

About Package.xml

The package.xml file, also known as the project manifest, is a control file that determines the set of metadata components to retrieve
or deploy in a project. If you are looking at the Package Explorer, this file is located in the src folder.

Note: In practice, it is much easier to use the Project Properties dialog to add or remove components from a project—which
modifies package.xml for you—but it is also possible to edit package.xml by hand.

If your Force.com project is associated with a particular server-side package (as specified in the <fullName> element), the server
determines what components are listed in package.xml and any user changes to the file will be overwritten.

The following XML elements may be defined in package.xml:

DescriptionName

Optional. The name of a server-side package associated with the project. If the
<fullName> field is present, all components in the package will be downloaded into
the project, and new components created from the IDE will be added to that package.

<fullName>

This element contains one or more <members> tags and one <name> tag, and is
used to list the metadata components of a certain type to retrieve or deploy.

<types>

The full name of a component. There is one <members> element defined for each
component in the directory. You can replace the value in this member with the wildcard

<members>

character * (asterisk) instead of listing each member separately. This is a child element
of <types>.

68

About Package.xmlUseful References

DescriptionName

Contains the type of the component, for example CustomObject or Profile.
There is one name defined for each component type in the directory. This is a child element
of <types>.

<name>

The Metadata API version number of the files being retrieved or deployed. When deploying,
all the files must conform to the same version of the Metadata API.

<version>

SEE ALSO:

About Metadata Files

Metadata Types

Add/Remove Metadata Components

Project Properties

About Metadata Files
The Force.com platform executes applications in its multi-tenant environment through a concept known as meta-customization.
Application components such as schema definitions, page layouts, workflow rules, even classes and triggers, are stored in a database,
just like data in a traditional single-tenant application. These database records that describe the application itself are called metadata
components. Because they are stored in the database and loaded at runtime, metadata components can be created and modified on
the fly by manipulating these records using the Setup pages of your Salesforce organization.

The Force.com IDE brings these metadata components into the context of traditional source code based application development by
presenting them as text files. In the IDE, you work with metadata files that define Apex classes and triggers, custom objects, custom
fields, Visualforce pages, and other metadata components, and then synchronize these artifacts back to your home organization (a
sandbox or Developer Edition environment).

Because the files are text-based, these metadata files can be created or modified in a text editor, compared using text diff tools, managed
in a version control system such as CVS or Subversion, and even deployed from one Salesforce organization to another.

Note: The Force.com IDE uses the Metadata API to communicate with the Force.com servers. This API contains a retrieve()
method to convert metadata components stored in the database into text files, and a deploy() method to convert metadata
files back into database records. Although most developers will want to use the Eclipse user interface to accomplish their
development tasks, the underlying Metadata API calls and components are openly available and documented for your reference.
For more information about Metadata calls, see the Metadata API Developer Guide.

SEE ALSO:

Metadata Types

Metadata Types
There are three different kinds of metadata: simple, compound, and complex.

• Simple — These types consist of only a single file, which does not depend on another file for its existence. For example, a custom
application is a simple type of metadata. Simple metadata types may be retrieved or deployed by themselves.

• Compound — These types consist of two files, a class file and a metadata file (the name is appended with -meta.xml.). For
example, Apex classes and triggers, are compound types because there is a class file and a supporting metadata file.

69

About Metadata FilesUseful References

https://developer.salesforce.com/docs/atlas.en-us.198.0.api_meta.meta/api_meta

• Complex — These metadata files may contain multiple named components. For example, a .object file may contain an entire
custom object, or a subset of custom fields on that object, depending on what components were included in the project. The
.workflow file behaves in a similar manner with respect to individual workflow types.

Custom fields can be considered both simple and complex. Simple because you can retrieve them alone, complex because they are
always defined within the context of a standard or custom object.

For a list of the metadata types that can be retrieved or deployed with the Metadata API, and whether or not the component may be
retrieved with the wildcard (*) symbol in package.xml, see Metadata Types in the Metadata API Developer’s Guide.

Troubleshooting the Force.com IDE: Debug Mode

If you experience errors in the Force.com IDE, it can be useful to run Eclipse in Debug Mode. This will cause the IDE to write additional
information to its system log.

To turn on Debug Mode, add the following parameter to Eclipse's startup command line or in eclipse.ini:

• -Dforce-ide-debug=true

You can view the system log within the IDE. For more information, see Force.com Log Viewer.

You can also write the zip file to disk for each save, refresh, synchronize, or deploy action, which can be helpful in diagnosing errors. Add
the following parameter to Eclipse's startup command line or in eclipse.ini:

• -Dforce-ide-temp=<full-path-to-directory>

Note: If you need help that is not provided in the Force.com IDE documentation, you can contact the developer.salesforce.com
discussion forums. Be sure to include as much information as possible, including any relevant error log entries.

Additional Resources

The Force.com technical library is available online at developer.salesforce.com/docs. Among the many documents you’ll
find useful are:

Developer Guides for the Force.com Programming Languages and Controllers:

• Force.com Apex Code Developer Guide

• Visualforce Developer Guide

API Developer Guides:

• SOAP API Developer Guide

• Force.com REST API Developer Guide

• Metadata API Developer Guide

• Force.com Streaming API Developer Guide

• Chatter REST API Developer Guide

Reference Materials:

• Object Reference for Salesforce and Force.com

• Force.com SOQL and SOSL Reference

• Development Lifecycle Guide

• AppExchange Publishing Guide

• Force.com Migration Tool Guide

70

Troubleshooting the Force.com IDE: Debug ModeUseful References

https://developer.salesforce.com/docs/atlas.en-us.198.0.api_meta.meta/api_meta/meta_types_list.htm
https://developer.salesforce.com/docs
https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode
https://developer.salesforce.com/docs/atlas.en-us.198.0.pages.meta/pages
https://developer.salesforce.com/docs/atlas.en-us.198.0.api.meta/api
https://developer.salesforce.com/docs/atlas.en-us.198.0.api_rest.meta/api_rest
https://developer.salesforce.com/docs/atlas.en-us.198.0.api_meta.meta/api_meta
https://developer.salesforce.com/docs/atlas.en-us.198.0.api_streaming.meta/api_streaming
https://developer.salesforce.com/docs/atlas.en-us.198.0.chatterapi.meta/chatterapi
https://developer.salesforce.com/docs/atlas.en-us.198.0.object_reference.meta/object_reference
https://developer.salesforce.com/docs/atlas.en-us.198.0.soql_sosl.meta/soql_sosl
https://developer.salesforce.com/docs/atlas.en-us.198.0.dev_lifecycle.meta/dev_lifecycle
https://developer.salesforce.com/docs/atlas.en-us.198.0.appExchangePublishGuide.meta/appExchangePublishGuide
https://developer.salesforce.com/docs/atlas.en-us.198.0.daas.meta/daas

• Force.com Sites Implementation Guide

• Security Implementation Guide

71

Additional ResourcesUseful References

https://developer.salesforce.com/docs/atlas.en-us.198.0.salesforce_platform_portal_implementation_guide.meta/salesforce_platform_portal_implementation_guide
https://developer.salesforce.com/docs/atlas.en-us.198.0.securityImplGuide.meta/securityImplGuide

INDEX

A
Additional information 70
Apex

adjusting log level 67
testing 16, 34

Apex class
editing 29–30

Apex Debugger
Considerations 57
Debug configuration 59

Debugging puzzle
47–51, 55–56

Create a Visualforce page 50
Create an Apex class 49
Create sample accounts 48
Debug the problem 51
Delete sample accounts 56
Fix the problem 55
Identify a problem 51

Enable 42
Getting started

40, 42–44, 47–51, 55–60
Overview 40

Install the Force.com IDE 42
Kill debugging session 59
Kill debugging session in Setup 59
Kill debugging session with Tooling API 60
Limits 57
Permission set 42
Project creation 43
Session timeout preference 60
Setup 44
Terminate debugging session 59
Terminate debugging session in Setup 59
Terminate debugging session with Tooling API 60
Timeout preference 60

Troubleshooting
58–60

Change session timeout preference 60
Contact customer support 60
Kill orphaned debugging session 59
Kill orphaned debugging session in Setup 59
Kill orphaned debugging session with Tooling API 60
Relaunch debug configuration 59

Update the Force.com IDE 42

Apex trigger
editing 29–30

B
Browser for metadata 4

C
Code assist for Apex 30

D
debug mode 70
Declarative development 69
Deploying 18, 37

E
Execute Anonymous view 13, 30

F
File-based metadata 69
Force.com

projects 24
Force.com IDE

about 2–3, 11–12, 36
development 16, 24
Package Explorer 2
running in debug mode 70

Force.com Log Viewer 13
Force.com perspective 1
Force.com projects

creating 5, 25
upgrading 28

Force.com projects, choosing metadata components 27
Force.com projects, connection settings 65
Force.com yIDE

about 2

G
Getting started 15

I
Information

more 70

L
Log Viewer 13

72

M
Metadata

types 69

O
Offline projects 22

P
package.xml 24
package.xml file 68
Project

refreshing from server 32
saving files 32
sync files with server 32

project manifest 68
Project properties 26
project synchronization, about 31
Projects

creating 5, 25
offline 22
upgrading 28

Projects, about 24

Q
Quickstart 19

R
Refreshing from server 32
Run Tests view

about 11, 35

S
Saving project files 32
Schema browser 4
Server

refreshing project files 32
SOQL queries 4
synchronize view

using 13
synchronizing project and server, about 31
Synchronizing project files 32

U
Upgrading the IDE 22

73

Index

	Force.com IDE UI Overview
	Force.com Toolbar Buttons
	Package Explorer
	Force.com Context (Right-Click) Menu

	Force.com IDE Editors
	Schema Explorer
	Force.com Wizards
	Create New Force.com Project
	Create New Apex Class
	Create an Apex Class from a WSDL
	Create New Apex Trigger
	Create New Custom Application
	Create New Custom Object
	Create New HomePage Component
	Create New HomePage Layout
	Create New Letterhead
	Create New Profile
	Create New Visualforce Component
	Create New Visualforce Page
	Add Workflow From Server

	Force.com Views (Tabs)
	Problems View
	Apex Test Results View
	Debug Logs for Apex Test Results

	Execute Anonymous View
	Synchronize View
	Force.com Log Viewer

	Getting Started with the Force.com IDE
	Developing with the Force.com IDE
	Testing Code with the Force.com IDE
	Deploying Code with the Force.com IDE
	Quickstart: Using the Force.com IDE
	Working Offline
	Updating the Force.com IDE

	Developing with the Force.com IDE
	Force.com Project Basics
	Create New Force.com Project
	Project Properties
	Add/Remove Metadata Components
	Choose Metadata Components
	Field-Level Security Warning

	Component Properties
	Upgrade Project

	Force.com Wizards
	Apex Editor
	Apex Code Assist
	Execute Anonymous View
	Server Synchronization
	Save to Server
	Refresh from Server
	Synchronize with Server

	Testing Code with the Force.com IDE
	Apex Test Results View
	Debug Logs for Apex Test Results

	Deploying Code with the Force.com IDE
	Destination Details
	Archive Options
	Deployment Plan

	Getting Started with the Apex Debugger
	Summary of Getting Started with the Apex Debugger
	Set Up the Apex Debugger
	Contact Salesforce to Enable the Apex Debugger
	Install or Update the Force.com IDE Plug-In for Eclipse
	Set Up a Permission Set
	Create a Project
	Test Your Debugger Setup

	Explore a Simple Debugging Puzzle
	Create Sample Accounts in Your Org
	Create an Apex Class
	Create a Visualforce Page
	Identify a Problem
	Debug the Problem
	Fix the Problem
	Delete Your Sample Accounts

	Apex Debugger Limits and Considerations
	Apex Debugger Limits
	Apex Debugger Considerations

	Apex Debugger Troubleshooting
	Relaunch Your Debug Configuration
	Kill an Orphaned Session
	Kill a Debugging Session in Setup
	Kill a Debugging Session with the Tooling API

	Change Your Session Timeout Preference
	Report Drastic Issues to Customer Support

	Useful References
	Force.com IDE Release Notes
	Force.com Project Properties
	Apex Code Settings: Log Category and Log Level
	About Package.xml
	About Metadata Files
	Metadata Types

	Troubleshooting the Force.com IDE: Debug Mode
	Additional Resources

	Index

