
Salesforce1 Mobile App Developer Guide

Version 6, December 2015

Written by
Dianne Siebold
Samantha Ready
Michelle Chapman-Thurber

With contributions by
Michael Alderete
Cliff Armstrong
Jay Hurst
Dean Moses
Tammy Rahn
Samantha Reynard
Jim Sinai
Quinton Wall
Emily Wilska

Discover both the declarative (point-and-click) and the programmatic (code-based)
features of Salesforce1. Learn how you can optimize existing features such as
Visualforce pages and quick actions for the Salesforce1 mobile experience, as we
walk you through the process of making an existing organization mobile-ready.

Salesforce1 Mobile App Developer Guide

© Copyright 2000–2016 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of
salesforce.com, inc., as are other names and marks. Other marks appearing herein may be trademarks of
their respective owners.

Various trademarks held by their respective owners.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent
of the publisher.

CONTENTS

Chapter 1: Introduction . 1

Introducing the Salesforce App Cloud . 2
Salesforce App Cloud Features . 2
Introducing the Salesforce1 Apps . 4
Getting Around in Salesforce1 . 5
What about the Other Mobile Apps? . 10

Chapter 2: About This Book . 11

Who Is This Book For? . 12
How Do I Begin? . 12
About the Sample Scenario . 12
About Acme Wireless . 12

Chapter 3: Setting Up Your Work Environment . 15

Install the Enhanced Warehouse Data Model . 16
Download the Salesforce1 App . 16

SALESFORCE1 ADMINISTRATION . 17

Chapter 4: Configuring Salesforce1 . 17

Defining Which Users Can Use Salesforce1 . 18
About Notifications . 19
Try It Out: Enable Notifications . 20
About Offline Access in Salesforce1 . 20

Chapter 5: Customizing the Salesforce1 Navigation Menu 23

About the Salesforce1 Navigation Menu . 24
Try It Out: Configuring the Salesforce1 Navigation Menu 26
Test Out the Salesforce1 Navigation Menu . 26

How the Salesforce1 Navigation Menu Works . 28

Chapter 6: Customizing How Your Data Shows Up in Salesforce1 31

How Page Layouts Work in Salesforce1 . 32

Rethinking Your Page Layouts for Mobile . 33
Try It Out: Create a Custom Page Layout for the Mobile Technicians Profile . . . 35
Test the Page Layout . 37

Tips for Optimizing Page Layouts for Mobile . 38
About Compact Layouts . 39

Try It Out: Create a Compact Layout . 40
Test the Compact Layout . 42

Tell Me More: Compact Layouts . 43

Chapter 7: Using Actions in Salesforce1 . 45

About Quick Actions . 46
Action Categories . 48

Point and Click Your Way to Actions . 49
Try It Out: Create an Object-Specific Action . 49

Try It Out: Assign the Action to the Account Page Layout 50
About Global Quick Actions . 51
Tell Me More: Actions . 52

About Action Layouts . 52
Try It Out: Customize an Object-Specific Action Layout . 54

Test Out the Object-Specific Quick Action . 55
About Predefined Values in Actions . 57

Try It Out: Set a Predefined Field Value on an Action . 58
Test the Predefined Value . 59

About Custom Actions . 60

Chapter 8: Guidelines and Best Practices for Administrators 63

Action Guidelines and Best Practices . 64
Custom Icon Guidelines and Best Practices . 64

DEVELOPING FOR SALESFORCE1 . 67

Chapter 9: Welcome to Salesforce App Cloud Development 67

Our Scenario . 68
Who This Part is For . 68
When to Use Declarative vs. Programmatic Tools to Create Salesforce1 Apps 69
When to Use the Salesforce App Cloud vs. Creating Custom Apps 70

Contents

Salesforce App Cloud Development Process . 71
Development Prerequisites . 72

Change the System Administrator Page Layout Assignment 72

Chapter 10: Designing Mobile-First User Interfaces . 73

Design for Mobile . 74
Keep Navigation Simple . 74
Put Important Information at the Top . 74
Minimize the Number of Fields . 75
Use Field Defaults . 76
Minimize User Interface Text . 76
Tap Target Size . 77

Chapter 11: Extending Salesforce1 with Visualforce Pages 79

Try It Out: Create a Visualforce Page . 80
Create a New Tab . 83
Add the Tab to the Navigation Menu . 84
Test Out the Visualforce Page . 85

Tell Me More: Where Visualforce Pages Can Appear in Salesforce1 87
Tell Me More: About the Code . 89

Chapter 12: Adding Functionality with Visualforce Custom Actions 93

Custom Actions Scenario . 94
Try It Out: Create a Visualforce Custom Action . 94

Add the Visualforce Custom Action to the Page Layout . 95
Test Out the Visualforce Custom Action . 96

Tell Me More: About the Code . 98

Chapter 13: Integrating Your Web Applications in Salesforce1 with Force.com
Canvas . 105

About Force.com Canvas . 106
Extending Salesforce1 with Canvas Custom Actions . 106

Try It Out: Clone the Shipify Web Application . 107
Create the Shipify Canvas App . 108
Configure Who Can Access the Shipify Canvas App 110
Configure the Heroku Environment Variables . 111

Contents

Add the Action to the Global Publisher Layout . 112
Test Out the Canvas Custom Action . 113

Tell Me More: Get Context in your Canvas App . 115
Extending Salesforce1 with Canvas Apps in the Feed . 120

Try It Out: Clone the DeliveryTrakr Web Application . 120
Create the DeliveryTrakr Canvas App . 122
Configure Who Can Access the DeliveryTrakr Canvas App 124
Configure the Heroku Environment Variables . 125
Create a Global Action . 126
Add the Action to the Global Publisher Layout . 127
Test Out the DeliveryTrakr Canvas App . 128

Tell Me More: About the Code to Create Feed Items . 133

Chapter 14: Calling Quick Actions from the API . 135

Try It Out: Create an Invoice Action . 136
Add the Code to Call the Action . 137
Test Out Calling the Action from the API . 139

Tell Me More: Quick Actions and the REST API . 142

Chapter 15: Extending the User Interface with Lightning Pages 153

What Is a Lightning Page? . 154
Lightning Pages . 154

Lightning Pages: The Big Picture . 157
Before We Begin: Download the Deliveries App . 158
Creating a Lightning Page . 158

Try It Out: Create a Lightning Page . 159
Assigning Quick Actions to A Lightning Page . 160

Try It Out: Add a Quick Action to Your Lightning Page 161
Deploying a Lightning Page . 162

Try It Out: Deploy a Lightning Page . 162
About Lightning Page Tabs . 163

Try It Out: Create a Lightning Page Tab . 164
Tell Me More: Lightning Page Tabs . 165

Making Your Lightning Page Available in Salesforce1 . 165
Try It Out: Add a Lightning Page to the Salesforce1 Navigation Menu 166
Test the Lightning Page in Salesforce1 . 166

Contents

Tell Me More: Lightning Pages . 168

Chapter 16: Development Guidelines and Best Practices 171

When to Use the Navigation Menu or the Action Bar . 172
Visualforce Guidelines and Best Practices . 174

Sharing Visualforce Pages Between Mobile and Desktop 174
Excluding Visualforce Pages from Mobile or Desktop . 175
Choosing an Architecture for Visualforce Pages in Salesforce1 175

Standard Visualforce Pages . 175
Mixed Visualforce and HTML . 177
JavaScript Remoting and Static HTML . 179

Visualforce Components and Features to Avoid in Salesforce1 185
Unsupported Visualforce Components . 186

Choosing an Effective Page Layout . 186
User Input and Interaction . 190
Managing Navigation . 194

Navigation with the sforce.one Object . 196
How sforce.one Handles API Versions . 199

Visual Design Considerations . 203
Using Visualforce Pages as Custom Actions . 205
Creating Visualforce Pages That Work in Mobile and Desktop 206
Performance Tuning for Visualforce Pages . 208

Force.com Canvas Guidelines and Best Practices . 208
Canvas Apps in the Chatter Publisher and Salesforce1 Action Bar 209
Canvas Apps in the Feed . 211
Canvas Apps Context . 211
Custom Icons for Canvas Apps . 212

Chapter 17: Learning More . 213

INDEX . 215

Contents

CHAPTER 1 Introduction

Mobile has become the new normal for staying connected in both our
personal and professional lives. More and more, we’re living our lives

In this chapter ...

• Introducing the
Salesforce App
Cloud

connected to the Internet, but instead of sitting at a desk, we’re connecting
on planes, in cabs, in between meetings, in hotels, or even in line for coffee.
We follow friends, update status feeds, research local businesses,

• Salesforce App
Cloud Features

collaborate with colleagues, email suppliers, and much more—all tasks
increasingly performed on the go.

• Introducing the
Salesforce1 Apps

And at the same time, every company is working harder and faster to
innovate and stay ahead of the competition. The successful businesses of

• Getting Around in
Salesforce1

the future must embrace this mobile-first world and the freedom this
mobility provides to get things done, regardless of where you are and
what you’re doing.• What about the

Other Mobile Apps?
Salesforce1 solves the problems of lagging innovation and a lack of mobile
specialists with a revolutionary approach to app development for the social
and mobile-first world. Salesforce1 delivers breakthrough productivity for
all users because it puts the customer—employees, partners, consumers,
and devices—at the center of everything.

The result is a fast, connected mobile solution with the potential to be as
disruptive as Software as a Service. It’s time to build the future today!

1

Introducing the Salesforce App Cloud

Salesforce1 is a mobile app development platform for everyone. It gives ISVs, developers, administrators,
and every user the freedom to innovate.

This approach to unlocking mobile app development for organizations is built for today’s needs: mobile
and social solutions delivered in days or weeks. Apps are driven by metadata and intelligently provide
context to the user experience. These apps deliver information-based mobile device features: addresses
can be plotted on maps, phone numbers can be dialed with a simple tap, feed-centric workflows can be
created, and much more.

Business users and administrators can develop apps with clicks, not code, complete with powerful workflow
rules, approval processes, and dynamic user interfaces. Unlike other solutions where business users often
create independent applications in which IT has little visibility into their security or reliability, Salesforce1
gives administrators the tools to centrally manage apps without limiting the business’s need to innovate.

Designed for scale with open APIs for extensibility and integration, and powerful developer tools, there’s
no limit to what developers and ISVs can build on the platform. Salesforce1’s flexible development models
let every administrator or developer create custom apps that are supported by mobile back-end services
and a unique, yet familiar, mobile user experience. ISVs developing on the Salesforce App Cloud can
develop apps that take advantage of advanced packaging and version management controls, complete
enterprise marketplace capabilities with the AppExchange, and feed-first discovery of their apps within
the Salesforce App Cloud.

Salesforce App Cloud Features

The Salesforce App Cloud brings together Force.com, Heroku, and ExactTarget Fuel into one incredibly
powerful family of social, mobile, and cloud services—all built API first.

The Salesforce App Cloud delivers:

Social Data
The ability to share, follow, collaborate, and take business actions directly on data within Salesforce1 is at
the core of the platform. Users can follow records and data with a single tap. They can be notified of
changes in real time, and collaborate directly within the record feed. This feed-based approach to working
lets users focus on what’s most important to them.

By treating data as social and as an important participant in business, Salesforce1 allows data to share
updates, trigger workflows, and be part of the collaboration process with workers, teams, partners, and

2

Chapter 1 Introduction

customers. The result is an unparalleled opportunity to create new business apps and processes for business
productivity.

Declarative and Programmatic Development
IT departments have struggled to keep pace with the level of change required for businesses to remain
competitive. Too often, IT is resource-constrained because they must manage existing on-premises systems
while at the same time recruit and retain professional developers—especially those with mobile application
development experience.

Salesforce1 solves this problem by providing intuitive drag-and-drop tools for storing and working with
data, defining cloud-based logic with workflows, creating approval processes and formulas, and creating
mobile-ready apps.

Professional developers can use the most popular open-source languages, tools, and standards to build
completely custom apps and user interfaces. Unlike other platforms, Salesforce1 delivers a unique experience
where developers and administrators create apps on the same platform, eliminating the effort required
to build complicated integration solutions.

Action-Based App Model
Salesforce1 puts the customer at the center of the development process. Rather than require complicated
development cycles, apps can be declared through actions: create an order, set a delivery date, select a
route, and so on. Administrators can define default values for actions to streamline apps down to the click
of a mouse or a swipe of the finger.

Actions defined via the desktop are instantly available in context-sensitive menus on mobile devices. And,
for developers building integrations with Salesforce1, actions are automatically enabled with RESTful
endpoints capable of accepting either XML or JSON data envelopes.

Connect to Everything with Open APIs
Salesforce provides the flexibility to create apps that connect to everything using efficient and scalable
APIs that perform over 1.3 billion transactions a day. Every object or data entity is instantly REST-enabled.

Our APIs include bulk APIs for data loading, social APIs for ubiquitous collaboration anywhere, cutting-edge
streaming APIs to support push notification integrations, and metadata APIs that describe every aspect of
your app and business such as permissions, data access policies, field types, and user experience.

3

Chapter 1 Introduction

Introducing the Salesforce1 Apps

The Salesforce1 apps are Salesforce on the go! These enterprise-class mobile apps give your users real-time
access to the same information that they see in the office, but organized for getting work done in those
precioius free moments when they’re between customer meetings, waiting for a flight...even when they’re
in line for coffee.

You can get Salesforce1 in different ways:

• As a downloadable app from the App Store and Google Play™.

• As a mobile browser app that runs in supported mobile browsers. This option doesn’t require anything
to be installed.

Supported Devices
The way users access Salesforce1 depends on whether they are using one of the downloadable apps or
the mobile browser app.

Supported Mobile
Browser

Supported Mobile
OS

Supported DevicesSalesforce1 App

Not applicableiOS 8 or lateriPhone 5 or later models

iPad 4 or later models
(including iPad Air 2 and
iPad Pro)

Downloadable app for
iOS, v7.3.3 or later

iPad mini 2 or later models

Apple Watch (push
notifications only)

Not applicableAndroid 4.4 or laterAndroid phonesDownloadable app for
Android, v8.0 or later

Apple Safari

Good Access

iOS 8 or lateriPhone 5 or later models

iPad 4 or later models
(including iPad Air 2 and
iPad Pro)

Mobile browser app

iPad mini 2 or later models

4

Chapter 1 Introduction

Supported Mobile
Browser

Supported Mobile
OS

Supported DevicesSalesforce1 App

Google Chrome

Good Access

Android 4.4 or laterAndroid phones

Android tablets

BlackBerry BrowserBlackBerry OS 10.2 or
later

BlackBerry Z10 phones

(Support ends Winter ’17)

BlackBerry BrowserBlackBerry OS
10.2.1.3175 or later

BlackBerry Z30 phones

(Support ends Winter ’17)

Microsoft Internet
Explorer 11

Windows 8.1 UpdateNokia Lumia 1020 and HTC
8X phones

In this book, we’ll be working exclusively with the downloadable apps. See “Enable the Salesforce1 Mobile
Browser App” in the Salesforce Help for information on the Salesforce1 mobile browser app.

Getting Around in Salesforce1

Let’s take a tour of the Salesforce1 app.

When users log in to Salesforce1, the first thing they see is a landing page. The first item in the Salesforce1
navigation menu becomes a users’ landing page by default. If your organization has Chatter enabled, and
you haven’t customized the Salesforce1 navigation menu to change the first item in the menu to something
else, the user’s Feed will be their landing page.

The Feed
The Chatter feed shows users their updates, updates to records and people they follow, and updates in
groups they follow. Tapping a feed item displays all of the item’s details. Pulling down on the feed reveals
the search bar (1), sort and filter options (2), the feeds drop-down menu (3), and feed items (4).

5

Chapter 1 Introduction

From the feed, record pages, and from elsewhere in Salesforce1, users access actions from the action bar.

The Action Bar and Menu
Depending on which feed or record page users are viewing, they see different actions in the action bar
and action menu. From the feed, for example, they see a set of global actions. From a record page, however,
they see a mix of productivity actions, standard and custom buttons, standard Chatter actions such as Post
and File, and global and object-specific actions that are assigned to the layout for that record type. Users

can tap from the action bar to open the action menu, which contains the full set of actions that are
available for the object.

6

Chapter 1 Introduction

We’ll go over creating and customizing actions in Using Actions in Salesforce1 on page 45.

Salesforce1 Navigation Menu
Anywhere users see in Salesforce1, they can tap it to access the navigation menu.

What your users see in the menu is determined by how you, as the administrator, have configured it, what’s
available in your organization, and what users have access to, based on their user permissions and profile.

7

Chapter 1 Introduction

1. Search box

2. Menu items—any items you place above the Smart Search Items element when you customize
the navigation menu

3. Smart Search Items—includes a set of recently-searched objects in the Recent section and a larger
set of supported objects under the More link

4. Apps section—contains any items you place below the Smart Search Items element

From the navigation menu, users can access the feed, objects, apps, tasks, notes, and any other item you’ve
added to the menu. We’ll go over the components of the navigation menu in more detail in About the
Salesforce1 Navigation Menu on page 24. But for now, let’s take a look at records.

The Record View
The record view is made up of the record feed, detail, and related information pages, which your users
can swipe left and right to see. If your organization doesn’t have Chatter enabled, the record view only
includes the detail and related information pages.

8

Chapter 1 Introduction

At the top of each record page is the record highlights area. The icon for standard objects is predefined in
Salesforce, and you can select the icon for a custom object using the custom object’s tab style.

You can customize the fields displayed in the record highlights section by using compact layouts, which
we’ll look at in About Compact Layouts on page 39.

1. Back arrow—returns the user to the previous page

2. Record highlights—displays the first four fields that are assigned to the compact layout for the
object

9

Chapter 1 Introduction

What else do I need to know?
From the top of most pages, users can access their notifications by tapping .

Users can create a new record by tapping New at the top of recent object pages, search pages, and related
list pages. They can also create and update records by using actions, if create actions have been set up in
the organization.

What about the Other Mobile Apps?

Wondering how the Salesforce1 app relates to the other Salesforce mobile products?

• SalesforceA gives administrators mobile access to essential organization management tasks. Use it to
edit, unlock, freeze, and deactivate user accounts, reset passwords, and assign permission sets.

• The Salesforce mobile offerings still include Salesforce Classic Mobile. Salesforce Classic Mobile users
might find that Salesforce1 is a better fit for their needs, but Salesforce Classic Mobile remains the best
option if you need to create and edit in offline mode.

For more detailed information about the full suite of Salesforce mobile apps, see “Salesforce Mobile Product
Comparison” in the Salesforce Help.

10

Chapter 1 Introduction

CHAPTER 2 About This Book

This book introduces you to both the declarative (point-and-click) and the
programmatic (code-based) features of Salesforce1.

In this chapter ...

• Who Is This Book
For? To help you get familiar with the different pieces that make up the

Salesforce App Cloud, and to show you how you can optimize existing
• How Do I Begin?

features—such as Visualforce pages and actions—for the Salesforce1
• About the Sample

Scenario
mobile experience, this book walks you through the process of enhancing
an existing organization to make it mobile-ready and mobile-friendly.

• About Acme Wireless

11

Who Is This Book For?

This book is broken up into two major sections. The first, Salesforce1 Administration, is aimed at
administrators, and takes you through the declarative Salesforce1 tools in Setup, where you can
point-and-click your way through getting your organization ready for the Salesforce1 mobile experience.
This includes how to optimize your page layouts for mobile, customize the Salesforce1 navigation menu,
create actions, and set up mobile notifications.

The second section, Developing for Salesforce1, is for advanced administrators and developers who are
comfortable working with code. To fully understand its chapters, you should be familiar with Visualforce,
XML, and canvas apps. We’ll walk through optimizing your Visualforce pages for mobile, creating custom
actions, and creating custom app home pages for Salesforce1 using Lightning Pages.

Tip: Point-and-click admins, don’t let this deter you! We include code samples in most places, so
even if you're not an experienced developer, you can still try the steps in each chapter and get a
feeling for what can be done with Salesforce1.

How Do I Begin?

It’s up to you! You could begin by pointing-and-clicking your way through Configuring Salesforce1 and
working all the way through Using Actions in Salesforce1. Then, put your developer hat on and create
custom actions, or add canvas apps or Lightning Pages to further enhance your users’ Salesforce1 experience.

If you’re a seasoned developer, you could jump into the deep end first with the Welcome to Salesforce
App Cloud Development chapter.

About the Sample Scenario

The sample scenario for this book builds on the sample Warehouse data and code created in the Force.com
Workbook. We took that data set and added some extras. We’ll use what was built there as a launching
point, then add more to bring our sample organization into the mobile world of Salesforce1.

To do this, we’ll walk through the steps as if we were someone with administrator privileges at a
make-believe company called Acme Wireless.

About Acme Wireless

Let’s find out a little bit about our fictional company.

12

Chapter 2 About This Book

Acme Wireless is a large company that repairs devices such as mobile phones, tablets, and gaming consoles.
The company has a number of brick-and-mortar locations where customers can drop off devices for repair.
In addition, these storefronts sell device accessories like tablet covers, mobile phone covers, power cords,
rechargers, and so on.

Acme Wireless maintains a central warehouse where all the repair parts and accessories are stored. The
storefront locations order parts from the warehouse so that they can keep some inventory on hand. When
they need a special part that’s not in stock, storefronts can special order it from the warehouse.

Acme Wireless is also expanding its repair services by doing on-site service. Mobile technicians will go to
various customer locations to provide on-site service, including personal residences, hotels, small business
offices, and conference centers.

How Acme Wireless Uses Salesforce
Acme Wireless uses Salesforce to track customers. These are often individuals who visit the storefronts,
but can also be small businesses that have contracted with Acme Wireless for device support. Acme
Wireless also uses Salesforce to track merchandise items and inventory in the warehouse, as well as to
manage its billing and invoicing. They use two custom Web applications: one to track orders and process
merchandise for shipment and one to track delivery of shipments to storefront locations.

Employees at Acme Wireless’s storefronts and the main office use Chatter internally to communicate about
inventory levels, customer accounts, and orders.

How Acme Wireless Wants to Use the Salesforce1 App
Acme Wireless wants to use Salesforce1 to leverage its existing Salesforce organization and enable mobile
technicians to access customer and merchandise data. The technicians should be able to see all their repair
tickets for the day, locate a customer, look up inventory for any parts needed, order parts, check the status
of orders, and so on.

Acme Wireless also wants to enable their truck drivers, delivering products from the warehouses to the
storefronts, to track and update their deliveries for the day without having to use a separate app. They also
want to give the warehouse workers the ability to track customer orders and process them for shipping.

Acme Wireless also wants to enable Salesforce1 integration with legacy Web applications for order
management.

13

Chapter 2 About This Book

CHAPTER 3 Setting Up Your Work Environment

To follow along with the exercises in this book, you’ll need a Salesforce
account and a Developer Edition organization. If you don’t have a Developer

In this chapter ...

• Install the Enhanced
Warehouse Data
Model

Edition organization, go to http://sforce.co/1om1gHf and sign
up for a free Developer Edition account. Developer Edition is a fully
functional version of Salesforce that you can use to develop Salesforce

• Download the
Salesforce1 App

apps. Since it’s free, there are limits on the amount of users, bandwidth,
and storage you’re allowed, but it includes all the features in Salesforce.

After that, you’ll need to install the enhanced Warehouse data model into
your organization, and then download the Salesforce1 app, if you haven’t
already.

15

http://sforce.co/1om1gHf

Install the Enhanced Warehouse Data Model

To prepare your developer organization for the exercises in this book, you need to import the Warehouse
data model. You might be familiar with the Warehouse app if you’ve gone through the tutorials in the
Force.com Workbook. We took the Warehouse data from that guide and added a few extra things to it to
help show you what Salesforce1 can do.

1. Go to www.salesforce.com and log in to Salesforce using your Developer Edition credentials.

2. Open a new browser tab or window, and navigate to
https://github.com/forcedotcom/Salesforce1-Dev-Guide-Setup-Package.

Do this in the browser that you logged in to your developer organization with.

3. Open the README file.

4. Click the bit.ly link in the README file.

This is the installation link for the enhanced Warehouse data package. You should be taken directly
into your development organization to the Package Installation Details page.

5. Click Continue.

6. Click Next.

7. Click Next.

8. Click Install.

9. Wait for the installation to finish.

10. From the Force.com app menu, select Warehouse.

11. Click the Data tab.

12. Click Create Data.

All right! The last step is to download the Salesforce1 app, then we’ll be ready to roll.

Download the Salesforce1 App

If you’ve already downloaded Salesforce1, you can skip this step.

1. Go to www.salesforce.com/mobile/, and download Salesforce1 for your device.

You may be prompted to create a security PIN.

2. Open Salesforce1.

3. Log in using your developer organization credentials.

16

Chapter 3 Setting Up Your Work Environment

http://www.salesforce.com
https://github.com/forcedotcom/Salesforce1-Dev-Guide-Setup-Package
http://www.salesforce.com/mobile/

SALESFORCE1 ADMINISTRATION

CHAPTER 4 Configuring Salesforce1

Salesforce1 is automatically enabled for all organizations, except those
that have auto-enabling turned off.

In this chapter ...

• Defining Which Users
Can Use Salesforce1 Salesforce1 doesn’t require much configuration at the beginning, but

before your users start using Salesforce1, you should:
• About Notifications

1. Define which users can access the Salesforce1 mobile apps.• Try It Out: Enable
Notifications 2. Enable notifications.

• About Offline Access
in Salesforce1

Since we’re in a developer organization, we don’t need to worry about
enabling users. Review the information about that in the next section, then
we’ll get started by enabling notifications.

17

Defining Which Users Can Use Salesforce1

Important: This information is for reference only. We won’t be enabling users in this book, but this
step is important when configuring Salesforce1 in your production organization.

Downloadable Apps
The Salesforce1 downloadable apps are connected apps. As a result, you can control the users who have
access to the apps, as well as other security policies. By default, all users in your organization can log in to
the Salesforce1 downloadable apps.

You can control security and access policies for each of the Salesforce1 downloadable apps, using settings
components that are installed from the managed Salesforce1 connected apps package. These components
need to be installed in Salesforce:

• Salesforce1 for Android

• Salesforce1 for iOS

These components are automatically installed when one of your users installs a Salesforce1 downloadable
app from the App Store or Google Play on a mobile device and authenticates with your organization by
logging in to the mobile app.

Alternatively, you can manually install the Salesforce1 and Chatter Apps connected apps package so you
can review and modify the default security and access settings before rolling out the Salesforce1
downloadable apps to your users.

When the Salesforce1 connected apps components are installed, they’re added to the Connected Apps
page. (From Setup, enter Connected Apps in the Quick Find box, then select the option for
managing connected apps.) Here, you can view and edit the settings for each of the apps, including
controlling user access with profiles, permissions, and IP range restrictions. An error message is displayed
if a restricted user attempts to log in to a Salesforce1 downloadable app.

Mobile Browser App
You can control whether users can access the Salesforce1 mobile browser app when they log in to Salesforce
from a mobile browser. By default, the mobile browser app is turned on for your organization.

1. From Setup, enter Salesforce1 Settings in the Quick Find box, then select
Salesforce1 Settings.

2. Select Enable the Salesforce1 mobile browser app to allow all users in your
organization to access the app. Deselect this option to turn off access to the app.

18

Chapter 4 Configuring Salesforce1

https://appexchange.salesforce.com/listingDetail?listingId=a0N3000000B4cUuEAJ

3. Click Save.

When this option is turned on, users who log in to Salesforce from a supported mobile browser are
automatically directed to the Salesforce1 interface. Logging in from an unsupported mobile browser loads
the Salesforce Classic full site, even when this option is selected.

Important: Use of the Salesforce Classic full site in a mobile browser isn’t supported. While you can
disable the Salesforce1 mobile browser app for your organization, and individual users can turn off
the mobile browser app for themselves, regular use of the full site in a mobile browser isn’t
recommended. Your users may experience problems that Salesforce Customer Support won’t
investigate.

It’s not possible to access the Lightning Experience full site from any mobile browser.

About Notifications

Notifications let your users know when certain events occur in Salesforce. For example, notifications let
users know when they receive approval requests or when someone mentions them in Chatter.

Two types of notifications can appear to Salesforce1 users.

In-app notifications
In-app notifications keep users aware of relevant activity while they’re using Salesforce1. By tapping

, a user can view the 20 most recent notifications received within the last 90 days.

If Salesforce Communities is enabled for your organization, users see notifications from all of the
communities they’re members of. To help users easily identify which community a notification came
from, the community name is listed after the time stamp.

Push notifications
Push notifications are alerts that appear on a mobile device when a user has installed the Salesforce1
downloadable app but isn’t using it. These alerts can consist of text, icons, and sounds, depending on
the device type. If an administrator enables push notifications for your organization, users can choose
individually whether to receive push notifications on their devices.

Some notifications include text that your users enter in Salesforce. To ensure that sensitive information
isn’t distributed through a third-party service without proper authorization, push notifications include
minimal content (such as a user’s name) unless you enable full content in push notifications. For
example, suppose an in-app notification reads: “Allison Wheeler mentioned you: @John Smith, heads-up!
New sales strategy for Acme account.” By default, the equivalent push notification would be “Allison
Wheeler mentioned you.” However, if you enabled full content in push notifications, this push
notification would include the same (full) content as the in-app notification.

19

Chapter 4 Configuring Salesforce1

By enabling the option to include full content in push notifications, you’re agreeing on behalf of your
company to the terms and conditions displayed when you save the setting. For details, see “Salesforce1
Mobile App Notifications” in the Salesforce Help.

As the first task in our fresh new development organization, let’s set up notifications for all the Acme
Wireless mobile users.

Try It Out: Enable Notifications

We want all the Salesforce1 users in the Acme Wireless organization to receive notifications about events
happening in the full Salesforce site, such as approval requests, or when they’re mentioned.

1. From Setup, enter Salesforce1 Notifications in the Quick Find box, then select
Salesforce1 Notifications.

2. If they’re not already selected, select both Enable in-app notifications and Enable push
notifications.

3. Click Save.

Note: Enabling in-app notifications is an all-or-nothing process. Either they’re on for everyone, or
off for everyone. Mobile users can’t customize, enable, or disable in-app notifications for themselves.

Now that we’ve addressed notifications, let’s look at offline access in Salesforce1.

About Offline Access in Salesforce1

Offline access is available for users in the Salesforce1 downloadable apps only. We won’t be working with
Salesforce1’s offline mode in this book, but this information is important if you have any users who want
to take advantage of it.

Salesforce1 can cache recently accessed data so it’s available when a user’s device is offline or unable to
connect to Salesforce. Offline access is currently read-only, and is available in the Salesforce1 downloadable
apps for iOS and Android devices.

Offline access is enabled the first time a user in your organization installs one of the Salesforce1
downloadable apps. You can manage this setting on the Salesforce1 Offline page in Setup.

Cached data is encrypted and stored in a secure, persistent data store.

Available for Offline UseSalesforce1 Element

YesNavigation Menu

20

Chapter 4 Configuring Salesforce1

Available for Offline UseSalesforce1 Element

Previous searches onlyGlobal Search

Previously viewed onlyNotifications

Previously viewed onlyFeeds, Groups, and People

Main page and mobile event records if previously
view

Salesforce Today

Previously viewed onlySalesforce Events

Yes (top five)Recent Objects

NoOther Objects

Yes (30 most recent records)Record Details

Previously viewed onlyRelated Records

Previously viewed onlyList Views

Only tasks from the first page of the My Tasks list
(up to 10 tasks), and only if the list was previously
viewed or after the user manually updates the cache

Tasks

NoApprovals (submit, approve, or reject)

NoVisualforce pages

NoCanvas Apps

NoLightning Pages

YesSettings

Cached data is refreshed when a user switches to Salesforce1. If a user switches to another app, the user’s
cached data is automatically refreshed if the existing data store is over one hour old.

Users can manually cache their data at any time—for example, before switching into airplane mode or
entering an area with no service. From the Salesforce1 navigation menu, select Settings > Offline Cache >
Cache Now.

21

Chapter 4 Configuring Salesforce1

Note: The cache is saved for two weeks. Users can clear the cache by logging out of the Salesforce1
app.

All right! We’ve addressed notifications and offline access, now let’s look at the Salesforce1 navigation
menu.

22

Chapter 4 Configuring Salesforce1

CHAPTER 5 Customizing the Salesforce1
Navigation Menu

Before you can send your users out on their mobile adventure in
Salesforce1, they need a map to point the way to their destination.

In this chapter ...

• About the
Salesforce1
Navigation Menu

The Salesforce1 navigation menu is that map. And it’s up to you to draw
it for them.

Help your mobile users get work done faster and more easily by configuring
which items appear in the navigation menu and in which order.

• How the Salesforce1
Navigation Menu
Works

23

About the Salesforce1 Navigation Menu

Anywhere your users see the icon in Salesforce1, they can tap it to access the menu. As an administrator,
you can customize what the menu contains.

What You Can Include
Depending on how your organization is configured and what they have access to, your users could see
multiple items in their navigation menu.

DescriptionMenu Item

Displays a list of the user’s pending approvals. Users can tap an approval item
and approve or reject it from within Salesforce1. Available in the Salesforce1
downloadable app for iOS and the Salesforce1 mobile browser app.

Approval Requests

Appears for organizations that have enabled a canvas app to appear in the
Salesforce1 navigation menu.

Canvas apps

Availability depends on edition and user permissions. If you don’t add this
item to the navigation menu, dashboards are automatically included in the

Dashboards

set of Smart Search Items instead and the Dashboards item is available from
the Recent section.

Lists events e owned by the user, that the user created for him- or herself, and
that the user or a user’s groups are invited to.

Events

Appears for organizations that have Chatter enabled.Feed

Appears for organizations that have Chatter enabled. If you don’t add this
item to the navigation menu, groups are automatically included in the set of

Groups

Smart Search Items instead and the Groups item is available from the Recent
section.

Only custom Lightning components that have a Lightning component tab
associated with them can appear in the Salesforce1 navigation menu.

Lightning component
tabs

Custom Salesforce1 app pages.Lightning Pages

Displays the Notes app. If you don’t add this item to the navigation menu,
notes are automatically included in the set of Smart Search Items instead and
the Notes item is available from the Recent section.

Notes

24

Chapter 5 Customizing the Salesforce1 Navigation Menu

DescriptionMenu Item

Displays a list of flow interviews that the user paused. An interview is a running
instance of a flow. Users can tap an interview and resume or delete it from
within Salesforce1. Available in the Salesforce1 mobile browser app only.

Paused Flow Interviews

Appears for organizations that have Chatter enabled. If you don’t add this
item to the navigation menu, profiles are automatically included in the set of

People

Smart Search Items instead and the People item is available from the Recent
section.

Availability depends on edition and user permissions. If you don’t add this
item to the navigation menu, reports are automatically included in the set of

Reports

Smart Search Items instead and the Reports item is available from the Recent
section when using the Salesforce1 downloadable app for Android or the
Salesforce1 mobile browser app. But the only way to include access to reports
in the Salesforce1 downloadable app for iOS is to add the Reports item directly
to the navigation menu.

Adds standard and custom Salesforce objects to the Recent section in the
menu. This item also adds a set of the user’s recently accessed objects to the

Smart Search Items

Recent section and adds the More item so users can access all the objects
they have permission to use and that are supported in Salesforce1. If you don’t
include this item in the navigation menu, users can’t access any objects on
the navigation menu.

Note: Smart Search Items is required for users to get search results in
the Salesforce1 downloadable app for Android. Users of the Salesforce1
downloadable app for iOS and the Salesforce1 mobile browser app
are able to search for records if this option is omitted from the
navigation menu.

If your users don’t yet have a history of recent objects, they initially see a set
of default objects in the Recent section. It can take up to 15 days for the objects
that users work with regularly in both Salesforce1 and the full Salesforce site
to appear in the Recent section. To make objects appear under Recent sooner,
users can pin them from the search results screen in the full site.

Lists of a user’s open and closed tasks and tasks that have been delegated.Tasks

An app that helps users plan for and manage their day by integrating mobile
calendar events with associated Salesforce tasks, accounts, and contacts. The

Today

25

Chapter 5 Customizing the Salesforce1 Navigation Menu

DescriptionMenu Item

app also allows users to instantly join conference calls, quickly log notes about
events, and more. Available in the Salesforce1 downloadable apps only.

Only Visualforce pages with the Available for Salesforce
mobile apps checkbox selected will display in Salesforce1.

Visualforce page tabs

We won’t get into Visualforce pages in these exercises, but to learn more about them and how they work
in Salesforce1, see Extending Salesforce1 with Visualforce Pages on page 79.

Try It Out: Configuring the Salesforce1 Navigation Menu
1. From Setup, enter Navigation in the Quick Find box, then select Salesforce1 Navigation.

Some items are automatically added to the menu.

The order in which you put the items in the Selected list is the order that they display in the
navigation menu. Also, the first item you put in the list becomes your users’ Salesforce1 landing
page. The Acme Wireless mobile technicians will probably be using the Today and Tasks menu
items the most, so we want to put those at the top.

2. Using the Up or Down arrows, arrange the top items in the Selected list like so:

• Today

• Tasks

• Feed

• Smart Search Items

• Dashboards

Now whenever a mobile technician logs in to Salesforce1, the Today page will be the first thing
they see.

3. Click Save.

Let’s go look at our changes.

Test Out the Salesforce1 Navigation Menu
1. Open the Salesforce1 app on your mobile device.

2. Tap to access the navigation menu.

26

Chapter 5 Customizing the Salesforce1 Navigation Menu

3. Pull down and release the navigation menu to refresh it.
You should see the Today, Tasks, and Feed items at the top, and then the Recent section, which
is created from the Smart Search Items element.

4. Scroll down to the Apps section.

This section contains any menu item that was put below the Smart Search Items element, whether
it’s really an “app” or not.

Now that we’ve addressed the Salesforce1 navigation menu, let’s look at configuring our data for mobile.

27

Chapter 5 Customizing the Salesforce1 Navigation Menu

How the Salesforce1 Navigation Menu Works

• The first item in the Selected list becomes your users’ Salesforce1 landing page.

• You can’t set different menu configurations for different types of users.

• When organizing the menu items, put the items that users will use most at the top. The Smart Search
Items element can expand into a set of eight or more menu items and it might end up pushing other
elements below the scroll point if you put it near the top of the menu. Anything you put below the
Smart Search Items element appears in the Apps section of the navigation menu.

• Before you can include Visualforce pages, Lightning Pages, or Lightning components in the Salesforce1
navigation menu, create tabs for them. From Setup, enter Tabs in the Quick Find box, then
select Tabs.

• Anything represented by a tab in Salesforce—such as standard and custom objects, Visualforce pages,
the Feed, People, or Groups—is visible for a user in the Salesforce1 menu, based on the user’s profile
settings. For example, if a user is assigned to a profile that has the Groups tab set to Tab Hidden, the
user won’t see the Groups menu item in Salesforce1, even though an administrator has included it in
the menu.

Some objects are excluded from the Recent section in the Salesforce1 navigation menu, even if you
accessed them recently.

• Tasks and events

• People, groups, notes, dashboards, and reports, if these items were added directly to the navigation
menu

Note: For the Salesforce1 downloadable app for iOS only, the Reports item is never available
in the Recent section.

• List views, which are shown only on object home pages, not in the navigation menu

• Objects that aren’t available in Salesforce1, including any objects that don’t have a tab in the full
Salesforce site

About the Dashboards, Reports, Notes, Groups, and
People Menu Items
If you opt to add the Dashboards, Reports, Notes, Groups, or People items to the Selected list for the
Salesforce1 navigation menu, these items appear in the order you specify, just like Tasks, Today, and other
individual menu items.

28

Chapter 5 Customizing the Salesforce1 Navigation Menu

If you don’t add these items to the navigation menu, however, they’re automatically included in the Smart
Search Items set of objects and show up in the Recent section of the navigation menu. (For Reports only,
this is true when using the Salesforce1 downloadable app for Android or the Salesforce1 mobile browser
app. But the only way to include access to reports in the Salesforce1 downloadable app for iOS is to add
the Reports item directly to the navigation menu.

Pin an Object into the Recent Section
Users can customize the objects that appear in the Recent section of the Salesforce1 navigation menu. If

they search for an object in the full site, they can hover their mouse over the object name and click
to pin it to the top of the search results. The order of pinned objects in the full site determines the order
of the objects that stick to the top of the Recent section of the navigation menu. However, pinning objects
in this way causes the unpinned objects remaining in the Recent section to drop into the More element.

29

Chapter 5 Customizing the Salesforce1 Navigation Menu

CHAPTER 6 Customizing How Your Data Shows
Up in Salesforce1

We’ve done the basic configuration for the Salesforce1 app; now it’s time
to consider how we can optimize things in the full Salesforce site to give

In this chapter ...

• How Page Layouts
Work in Salesforce1

our users the best possible mobile experience. First, we’ll customize how
our Salesforce data shows up when presented in a mobile context.

• About Compact
Layouts

Two factors in Salesforce affect how information is displayed in Salesforce1.
One has been around for a while: page layouts. The other is newer: compact
layouts. You’ll learn about both in this chapter.

31

How Page Layouts Work in Salesforce1

Use the enhanced page layout editor to customize the layout of an object’s record detail pages, configure
actions, and adjust which fields and related lists appear in Salesforce1.

In Salesforce1, page layouts drive these areas of the mobile experience.

Record Related Information and Detail Pages
When you view a record in Salesforce1, you see the fields, Visualforce pages, and related lists that are
based on the record type and the user’s profile. Related lists show up as single-line cards containing
the name of the page or related list. Tapping the related list card displays its details.

Mobile Cards
You can add expanded lookups, components, canvas apps, and Visualforce pages to the Mobile Cards
section of your page layout to have them show up as mobile cards in Salesforce1. The elements you
place in this section don’t show up on a record’s detail page in the full Salesforce site. They appear
only on the record’s related information page in Salesforce1.

Note: In organizations that are created after Spring ’14, the Twitter component is added by
default to the Mobile Cards section of page layouts for objects that support it.

Actions
In Salesforce1, actions in the Salesforce1 and Lightning Experience Actions section of a page layout
appear in the action bar and action menu on the object’s record pages.

Here are the record detail page, related information page, and action menu for a sample account, Edge
Communications:

32

Chapter 6 Customizing How Your Data Shows Up in Salesforce1

We’ll cover actions in a later chapter. For now, let’s focus on record pages and mobile cards.

Rethinking Your Page Layouts for Mobile
Page layouts containing dozens of fields and lots of related lists might be manageable when viewing
records on a computer screen, but on a small mobile device, viewing that same record can be overwhelming.
People accessing information using a mobile device are looking for a quick way to get what they need,
and making your users sift through hundreds of fields and related lists just doesn’t make sense.

For example, in our Warehouse data model, our custom page layout has 32 standard and custom fields.
That may not seem like many, but in a mobile context, fields add up quickly. In the full Salesforce site, an
account record detail page using the Warehouse Schema Account Layout looks like this:

33

Chapter 6 Customizing How Your Data Shows Up in Salesforce1

In Salesforce1, the same account detail page looks like this:

34

Chapter 6 Customizing How Your Data Shows Up in Salesforce1

Three pages of scrolling, and that’s from a page layout with only 32 fields! If you were a mobile user trying
to find specific fields in a record detail with dozens of fields on your phone, you’d have to scroll... and
scroll... and scroll. It’s not the best user experience and it’s definitely not good for your users’ productivity.

You have two options for handling page layouts for your mobile users: re-engineer your existing page
layouts, or create new page layouts that are mobile-friendly from the outset.

We’ll look at both options. First, we’ll walk through creating a fresh mobile-friendly page layout, then we’ll
discuss tips and tricks for optimizing existing long layouts for a mobile audience.

Try It Out: Create a Custom Page Layout for the Mobile Technicians
Profile
Users like the mobile technicians at Acme Wireless will spend the majority of their time accessing Salesforce
from a mobile device. We can create a streamlined, mobile-optimized page layout assigned to the Mobile
Technician profile, with only the items they need when on-site, and, voilà! Instant productivity boost.

In addition, using the specialized Mobile Cards section of the page layout, we can enhance the Salesforce1
record’s related information page by adding Visualforce pages and lookup cards.

1. From the object management settings for accounts, go to Page Layouts.

2. Click New.

3. Leave the Existing Page Layout drop-down list set to –None–.

We want to start with a clean slate for this page layout, so we’re choosing not to clone an existing
page layout.

4. Enter Account Mobile Technician Layout in the Page Layout Name field.

5. Click Save.

Required fields and “Always on Layout” fields are pre-populated onto the page layout. We just
need to add a few more that are pertinent to the mobile technicians.

6. Drag these fields from the palette into the Account Detail portion of the page, below the existing
fields.

• Shipping Address

• Business Hours

• Phone

7. Click the Visualforce Pages category in the palette and drag Account Location into the Mobile
Cards section.

35

Chapter 6 Customizing How Your Data Shows Up in Salesforce1

Account Location is a preconfigured Visualforce page that shows the user the location of the
selected account on a Google map. In Salesforce1, this will show up as a mobile card on the account
record related information page.

Note: Only Visualforce pages with the Available for Salesforce mobile
apps checkbox selected will display in Salesforce1. Mobile-enabled Visualforce pages
show up as slightly differently colored elements in the palette than their
non-mobile-enabled counterparts. Hovering your mouse over a Visualforce page element
in the palette shows whether the Visualforce page is mobile-enabled.

For more detailed information about using Visualforce in Salesforce1, see Extending Salesforce1
with Visualforce Pages on page 79.

8. Click the Expanded Lookups category and drag Parent Account into the Mobile Cards
section, above the Account Location mobile card.

Parent Account is a lookup field, and putting it into the Mobile Cards section makes it display
as a related lookup card on the account’s related information page in Salesforce1.

9. Click the Related Lists category and drag the Cases and Contacts related lists to the Related Lists
section.

Related lists show up on the record related information page in Salesforce1. When the mobile
technicians navigate to an account’s related information page, they’ll see preview cards for the
related lists that they can tap to get more information about the cases and contacts for that location.

10. Click Save.

11. Click No when asked if you want to override users’ customized related lists.

12. Click Page Layout Assignment.

13. Click Edit Assignment.

In this step, you would normally assign the new mobile-optimized page layout to a user profile
for the mobile technicians. However, since you’re logged in as a system administrator, we’re going
to have you assign it to the System Administrator profile instead.

14. Click the System Administrator line item to select it.

15. Select Account Mobile Technician Layout from the Page Layout to Use drop-down list.
The System Administrator profile should now be assigned to the Account Mobile Technician
Layout.

16. Click Save.

Now let’s check out what we did in the Salesforce1 app.

36

Chapter 6 Customizing How Your Data Shows Up in Salesforce1

Test the Page Layout
1. Open the Salesforce1 app on your mobile device and log in.

2. Tap to access the navigation menu.

3. In the Recent section, tap Accounts. You may have to tap More... to find it.

4. Tap the search bar.

5. Enter Barbary.

6. Tap Search.

7. Tap Barbary Coast Wireless.
You’re on the Barbary Coast Wireless record detail page, which is the default view when accessing
a record. Scroll down a bit, and you should see the same fields we added to the page layout, in
the same order.

8. Tap Related to get to the related information page.
You should see the Parent Account lookup card and the preview card for the Visualforce page first.

37

Chapter 6 Customizing How Your Data Shows Up in Salesforce1

Scroll down and you should also see the related lists that we added to the page layout. Tap a
related list to see its details.

Now that we’ve created this specialized page layout and added the fields our mobile technicians will need,
their jobs will be much easier when they go on site. When they visit an account record’s related information
page in Salesforce1, they won’t have to shuffle through a long list of unnecessary fields to find the ones
they really want. And, since we added the Visualforce page as a mobile card, they’ll be able to see the
location of an account on a Google map.

In the Actions chapter, we’ll enhance this page layout with special actions we’ve created just for our mobile
technicians. But for now, let’s go over some recommendations for paring down existing page layouts to
make them more mobile friendly.

Tips for Optimizing Page Layouts for Mobile
In many cases, creating a new mobile-only page layout may not make sense. Here are some tips and tricks
to making your existing page layouts more mobile friendly.

When optimizing a page layout, consider:

• What are the important things to see at a glance?

38

Chapter 6 Customizing How Your Data Shows Up in Salesforce1

• What are the important moments for your users when they’re working in Salesforce1?

• What actions or processes can you automate so that your users don’t have to manually do them?

The Key: Organize and Minimize Fields
• Use sections to organize information logically, putting the most important things at the top of the

page so they show up first. Your users don’t want to search for fields individually. Organizing similar
fields in sections will help your users find what they need. They can then easily scroll down the page
to the section they care about.

• For accounts, contacts, and leads, you don’t need to put phone or email fields near the top. They’re

already quickly accessible via the and icons on each record page’s action bar.

• You don’t need to keep fields in one column, as the page will render dynamically based on the device
that’s viewing it. A phone will reorder the fields into a single column, and a tablet or desktop will show
two columns.

• Put the most important fields into the compact layout—which drives record highlights and record
preview cards in Salesforce1—so they’re available right up front, and so your mobile users don’t have
to drill into the record detail. We’ll get into compact layouts in more detail soon.

• Keep the number of required fields to a minimum. Setting a field to required means it must appear
on the detail page of all page layouts, so consider whether each field is truly required. You might have
to convince stakeholders that a field isn’t actually necessary for a record to be saved.

• If available in your organization, think about using record types so that fields that aren’t common to
all records don’t have to appear on all records.

• To reduce the number of fields on a screen, consider using default values for new records instead of
having the user enter the data.

We’ve gone over page layouts. Now let’s get into another kind of layout, created especially for mobile: the
compact layout.

About Compact Layouts

In the last section, we learned how page layouts affect the look and content of records in the Salesforce1
app. But page layouts aren’t the only thing used to help customize how your Salesforce data appears in a
mobile environment.

Compact layouts are used in Salesforce1 and Lightning Experience to display a record’s key fields at a
glance.

In the full Salesforce site, compact layouts determine which fields appear in the Chatter feed item that
appears after a user creates a record with a quick action.

39

Chapter 6 Customizing How Your Data Shows Up in Salesforce1

In Salesforce1, the first four fields that you assign to a compact layout appear in:

• An object’s record highlights area

• Expanded lookup cards on a record’s related information page

If a user doesn’t have access to one of the fields that you assign to a compact layout, the next field on the
layout is used.

The first four fields you assign to your compact layout populate the record highlights section at the top
of each record view in Salesforce1, so we’ll put the fields we think our mobile technicians most want to
see into the list.

Creating and customizing compact layouts for objects isn’t required for Salesforce1, because system
defaults are provided out of the box. However, we recommend using compact layouts to put important
fields into object record headers—and elsewhere—to help your mobile users get the information they
need quickly. Let’s give it a try.

Try It Out: Create a Compact Layout
If you don’t create custom compact layouts for an object, all the object’s record highlight fields, preview
cards, and action-related feed items are driven by a read-only, system default compact layout that contains
a predefined set of fields. After you create one or more custom compact layouts, you can set one as the
primary compact layout for the object. The primary compact layout is then used as the default for that
object.

We’ll create a custom compact layout, and then set it as the primary compact layout for the Merchandise
object. Our new compact layout is used to render important merchandise record fields first in Salesforce1
for the Acme Wireless mobile technicians.

Before we can see compact layouts in action, though, we need a Merchandise record in our organization.
Let’s quickly create one.

1. From the Force.com app menu, select Warehouse.

2. Click the Merchandise tab.

3. Click New.

4. For Merchandise Name, enter iPhone 4.

5. For Price, enter 299.

6. For Quantity, enter 1.

7. Click the Warehouse lookup, then select Oaklandia.

8. Set the Condition to Refurbished.

9. Click Save.

40

Chapter 6 Customizing How Your Data Shows Up in Salesforce1

Currently, the Merchandise object uses its system default compact layout, which only has the
Merchandise Name field assigned. Here’s what our iPhone 4 record looks like in Salesforce1:

Let’s add more fields alongside that “iPhone4” so our mobile users can see more pertinent information
right at the top of the Merchandise record pages.

1. Navigate to the Merchandise custom object in Setup. From the Compact Layouts related list, click
New.

2. In the Label field, enter Customized Compact Layout.

3. Select these fields for the compact layout, and then click Add.

When on site, these are the most important fields for our mobile technicians to see. You can select
and add them individually or select them as a group using CTRL-click.

• Condition

• Merchandise Name

• Price

• Quantity

41

Chapter 6 Customizing How Your Data Shows Up in Salesforce1

4. Using the Up or Down buttons, adjust the list so that the fields are in this order: Merchandise
Name, Quantity, Condition, Price.

5. Click Save.
Now we need to set our compact layout as the primary.

6. Click Compact Layout Assignment.
You can see that the primary compact layout is set to the System Default here. We need to change
that.

7. Click Edit Assignment.

8. Select the compact layout you just created to use as the primary compact layout.

9. Click Save.

We’ve customized a compact layout for the Merchandise object. Now let’s see what its related information
page looks like in Salesforce1.

Test the Compact Layout
When you customize a compact layout and assign it as the default, as we just did, the changes are reflected
in Salesforce1 immediately.

1. Open the Salesforce1 app on your mobile device.

2. Tap to access the navigation menu.

3. In the Recent section, tap Merchandise. You may have to tap More... to find it.

4. Tap the iPhone 4 item.

42

Chapter 6 Customizing How Your Data Shows Up in Salesforce1

As you can see, the record highlights area has the fields from our newly-created custom compact layout.
Instead of seeing just the merchandise name, as on the system default layout, the Acme Wireless mobile
technicians can now see much more: that there is one refurbished iPhone 4 in stock at the warehouse,
and it costs $299.00.

Tell Me More: Compact Layouts
We’ve gone over a lot about compact layouts, but here are a few more more tidbits about how they work.

Compact layouts support all field types except:

• text area

• long text area

• rich text area

• multi-select picklist

Users who don’t have access to certain fields in Salesforce won’t see them on the compact layout.

Removing a field from a page layout doesn’t remove it from the object’s compact layout. The two layout
types are independent.

43

Chapter 6 Customizing How Your Data Shows Up in Salesforce1

Compact Layouts and Record Types
If you have record types associated with an object, you can override the primary compact layout assignment
and assign specific compact layouts to different record types. If you don’t set any record type overrides,
all record types use the object’s primary compact layout by default.

To find out more about compact layouts and record types, see “Assign Compact Layouts to Record Types”
in the Salesforce Help.

44

Chapter 6 Customizing How Your Data Shows Up in Salesforce1

CHAPTER 7 Using Actions in Salesforce1

As an administrator, you can enable valuable micro-moments for all of
your users by creating unique actions. When thinking about what actions

In this chapter ...

• About Quick Actions you might want to create specifically for Salesforce1, ask your users what
they wish they could do in the mobile context.• Point and Click Your

Way to Actions
For example, an administrator at a food service company could create an
“Emergency Order” action that allows their delivery drivers to immediately• About Action Layouts

• About Predefined
Values in Actions

order extra or missing food items using their mobile phone while still at a
customer site. Creating actions for Salesforce1 can drive adoption in your
organization and make you a hero to your users!• About Custom

Actions In this chapter, we’ll learn about types and categories of actions, how to
create and customize them in Salesforce using point-and-click tools, and
how they can help mobile users get essential work done while away from
the office.

45

About Quick Actions

Create actions and add them to the Chatter publisher on the home page, on the Chatter tab, in Chatter
groups, and on record detail pages. In Salesforce Classic, actions appear in the Chatter publisher. In Lightning
Experience, actions appear in different areas of the user interface, depending on the action’s type. In
Salesforce1, actions appear in the action bar, its associated action menu, and as list-item actions. In addition,
actions have their own action layouts, which let you specify which fields are included in the action, and
in which order.

Where Do Actions Appear?
In the Salesforce1 app, actions appear in the action bar and its action menu.

Actions also appear in Salesforce1 in an action bar on list items such as task lists and related record lists.
This gives your mobile users the ability to work with records directly from lists and update records without
having to open them. To access list item actions, navigate to the task list or open a related list from an
object’s related information page. Then swipe left on the desired record.

Types of Actions
There are several types of quick actions you can create using point-and-click tools in Salesforce.

46

Chapter 7 Using Actions in Salesforce1

• Create actions let users create records. They’re different from the Quick Create and Create New features
on the Salesforce home page, because create actions respect validation rules and field requiredness,
and you can choose each action’s fields.

• Log a call actions let users record the details of phone calls or other customer interactions. These call
logs are saved as completed tasks.

• Question actions enable users to ask and search for questions about the records that they’re working
with.

• Send email actions, available only on cases, give users access to a simplified version of the Case Feed
Email action on Salesforce1.

• Update actions let users make changes to a record.

For create, log-a-call, and custom actions—which we’ll go over at the end of this chapter—you can create
either object-specific quick actions or global quick actions. Update actions must be object-specific.

Object-Specific Quick Actions
Object-specific actions create records that are automatically associated with related records. For example,
you add an object-specific action on the Account object that creates contacts. If a user creates a contact
with that action on the detail page for the Acme account, that new contact is automatically associated
with Acme. You can only add an object-specific action to page layouts for that object.

Global Quick Actions
You can add global actions to any page that supports actions, like the Home page, the Chatter tab, and
object pages. Global create actions enable users to create object records, but the new record has no
relationship with other records.

Add Log a Call actions to global layouts to let users record call details from global pages. For example,
users can log calls from the Home page and the Chatter tab in the full Salesforce site, or the Feed or Groups
pages in Salesforce1. They can also record call details directly from their phone while in Salesforce1.

Note: Actions to create records for an object that is the detail object in a master-detail relationship
must be object-specific, not global.

For a list of supported objects for object-specific and global actions, see “Object-Specific Actions” and
“Global Actions” in the Salesforce Help.

47

Chapter 7 Using Actions in Salesforce1

Action Categories
Actions fall into several different categories. You may see some but not others, depending on the age and
configuration of your organization.

Standard actions
Standard actions are actions that are included automatically when Chatter is enabled: Post, File, Link,
Poll, and, in organizations that use work.com, Thanks. Standard actions can also include any you’ve
created for your organization using point-and-click methods, such as create or Log A Call actions.

Default actions
Default actions are Salesforce predefined actions to get you and your users started using actions in
your organization. Add default actions to publisher layouts to make them available to your users in
the full Salesforce site and the action bar in Salesforce1.

In organizations that are created after Winter ‘14, Salesforce adds default actions to the global publisher
layout and to the publisher layout on account, case, contact, lead, and opportunity objects. In
organizations that were created before Winter ‘14, default actions are available in the palette on the
page layout editor, but they’re not automatically added to publisher layouts.

Since our Development organization is new, it contains a set of default actions. You can check out the
default global actions: From Setup, enter Global Actions in the Quick Find box, then
select Global Actions.

For a list of which default actions appear on which object, see “Default Actions” in the Salesforce Help.

Mobile smart actions
Mobile smart actions are a set of preconfigured actions, just like default actions, and are supported on
the same list of objects. However, they appear in pre-Winter ’14 organizations and are displayed only
in Salesforce1.

In Salesforce1, the Mobile Smart Actions element expands to a set of distinct create actions that enable
users to create records directly in the feed.

Mobile smart actions are populated with all your organization’s required fields on the relevant object,
regardless of how many fields there are. For example, the New Case action in the mobile smart action
bundle includes all required case fields. You can’t edit the fields on mobile smart actions. The fields
that appear change only if you change which fields on an object are required.

48

Chapter 7 Using Actions in Salesforce1

Mobile smart actions don’t appear in the full Salesforce site, regardless of which page layouts you add
them to; they appear only to users in Salesforce1.

For more information on mobile smart actions, and a list of what the mobile smart action element on
each supported object expands to include, see “Mobile Smart Actions ” in the Salesforce Help.

Custom actions
Custom actions are Visualforce pages or canvas apps with functionality that you define. For example,
you can create a custom action so that users can write comments that are longer than 5,000 characters,
or create one that integrates a video-conferencing application so that support agents can communicate
visually with customers.

We’ll touch briefly on custom actions later in About Custom Actions, but you can find out much more
about them in the Adding Functionality with Visualforce Custom Actions chapter.

Productivity Actions
Productivity actions are predefined by Salesforce and are attached to a limited set of objects. You can’t
edit or delete productivity actions.

Point and Click Your Way to Actions

In the next set of tasks, we’ll create an object-specific action. But that’s only the first step. There are a few
things we need to do after that to make sure the action shows up where it’s supposed to in both the
Salesforce1 app and the full Salesforce site, and that it’s optimized for a mobile experience.

These are the steps you need to follow when setting up actions. We’ll go through all of them.

1. Create a global or object-specific action.

2. Customize the action’s layout, choosing the fields users see when they use it.

3. If you created an object-specific action, add it to one or more of that object’s page layouts. If you
created a global action, add it to a global publisher layout.

4. Set predefined field values for required fields, where possible.

Let’s get started!

Try It Out: Create an Object-Specific Action
Object-specific actions create records that are automatically associated with related records.

Let’s give the mobile technicians at Acme Wireless a way to quickly log a case while still on site with a
customer. If we put a record create action on the Account object with Case as the target object, the
technicians can browse to the customer account record on their mobile device, and log cases directly
from there.

49

Chapter 7 Using Actions in Salesforce1

1. In the object management settings for accounts, go to Buttons, Links, and Actions.

2. Click New Action.

3. For Action Type, select Create a Record.

4. For Target Object, select Case.

5. For Label, enter Create a Case.

6. Click Save.

After saving, we’re dropped directly into the action layout editor, where we can customize the fields
assigned to the action. We’ll get to action layouts shortly. But before we do, there’s one more thing we
need to do: assign the action to an account page layout.

Try It Out: Assign the Action to the Account Page Layout
Before the object-specific quick action can appear in Salesforce1, you need to add it to a page layout.

1. We’re already in the Buttons, Links, and Actions area for accounts. Now navigate to Page Layouts.

2. Click Edit next to Account Mobile Technician Layout.

This layout is the one you created in the Page Layouts chapter. The Salesforce1 and Lightning
Experience Actions section is empty, and a message states that Salesforcehas predefined the
actions on this layout. Because this page layout is for Acme Wireless mobile technicians, we want
to customize the actionsto match the work the technicians need to do when they’re in the field.

3. In the Salesforce1 and Lightning Experience Actions section, click override the predefined
actions.

Tip: If you haven’t customized the Salesforce1 and Lightning Experience Actions section
of a page layout, the actions for that object default to a set of predefined actions. If you
have customized actions in the Quick Actions in the Salesforce Classic Publisher section,
and have saved the layout, the Salesforce1 and Lightning Experience Actions section
inherits the actions from the Quick Actions in the Salesforce Classic Publisher section, plus
any standard or custom buttons present on the layout, when you click to override.

4. Click the Salesforce1 Actions category in the palette and then adjust the actions in the Salesforce1
and Lightning Experience Actions section to match this list.

• Create a Case

• Log a Call

• New Contact

• New Opportunity

50

Chapter 7 Using Actions in Salesforce1

• New Task

• Post

• File

Because the Create a Case action is important to the mobile technicians, we put it first in the list
so that they can access it directly from the action bar.

Notice there’s also a New Case item in the palette. The New Case item is a global default action
associated with the Account object. We’re going to customize our object-oriented Create a Case
action, so we don’t need the redundant global action.

Tip: On object page layouts, the Salesforce1 Actions category contains all available types
of actions for the object, including quick actions, productivity actions, and standard and
custom buttons.

5. Click Save.

Our new Create a Case action appears in the action bar on account records in Salesforce1 for all the mobile
technicians.

Now that’s all done, let’s go over global actions. Then we’ll revisit action layouts and customize our Create
a Case action.

About Global Quick Actions
Global create actions enable users to create object records, but the new record has no relationship with
other records. Actions tied to specific objects are only accessible from those objects’ record pages; however,
global actions can be added to any supported objects’ page layouts as well as to global layouts, so they’re
very useful for quickly creating records.

Creating Global Quick Actions
You create global actions in a different place in Setup than you create object-specific actions. To create a
global action, from Setup, enter Actions in the Quick Find box, then select Global Actions.
They’re called global actions because they can be put anywhere actions are supported.

51

Chapter 7 Using Actions in Salesforce1

The Global Publisher Layout
Global publisher layouts determine the global actions that appear in the various Salesforce interfaces. In
Salesforce Classic, these layouts customize the actions in Chatter publishers on global pages (like the Home
page) and on the Chatter page. Lightning Experience uses these layouts to populate the Global Actions
menu with Log A Call actions and Create a Record quick actions that point to the Events, Notes, and Tasks
objects. And in Salesforce1, these layouts drive the actions that appear in the action bar on the Feed and
People pages. Global publisher layouts can include global actions only. You can assign different global
publisher layouts to different user profiles to customize which actions users see by default on global pages.

In Salesforce1, global actions appear in the action bar and action menu on pages to which the global
publisher layout applies. Before our global action will show up either in the full Salesforce site or in
Salesforce1, we need to add it to the global publisher layout.

Tell Me More: Actions
• If you add an action to a page layout, but a user assigned to the profile that uses that page layout can’t

see the action either in the full Salesforce site or in Salesforce1, it might be because:

– If it’s a create action, the profile might not have access to create the record type of the action.

– The user doesn’t have both Read and Edit permission on the action’s relationship field. The
relationship field is the field that’s automatically populated on the target object when a user creates
a record using an action. For example, for an action on case that lets users create child cases, the
default relationship field is Parent Case. To be sure users can see the Create Child Case action,
check that they have both Read and Edit permissions on the Parent Case field.

• You can remove a required field from the action layout, but make sure that the field has a predefined
value. Otherwise, users can’t create records.

For more tips, see Action Guidelines and Best Practices on page 64.

About Action Layouts

Just as object record pages have page layouts that can be customized, actions have action layouts that
can be customized. We do this in the action layout editor.

When you create an action, Salesforce populates its layout with a default set of fields. Use the action layout
editor to add, remove, or reorder fields on an action layout.

52

Chapter 7 Using Actions in Salesforce1

The upper part of the editor contains a palette, and below the palette is the action layout. The palette
contains fields from the action’s target object that you can add to the action layout, except for the following
unsupported field types:

• Record type fields

• Read-only field types such as roll-up summary, formula, and auto-number fields

• Read-only system fields such as Created By or Last Modified By

Inactive Fields
Fields that are already on the action layout still appear on the palette but are inactive. When you select
an inactive field on the palette, Salesforce highlights the field on the action layout.

Field Type Conversion
If you convert a field’s type from one that is supported for actions to a type that isn’t supported,
Salesforce removes the field from the action layout. If you convert the field back to a supported type
without changing the action layout, Salesforce automatically adds the field back to the layout. If you
edit the layout and then convert the field back to a supported type, add the field back to the layout
manually.

53

Chapter 7 Using Actions in Salesforce1

Layouts Used for Log a Call Actions
A Log a Call action takes the active task page layout except under the following conditions:

• Suppose that your organization has a custom Log a Call action for an object. The custom action
takes the custom action layout defined for it.

• Now suppose that your organization has a custom Log a Call global action. That action takes the
custom layout defined for it, unless you also have a custom Log a Call action for an object. (A
custom action on an object overrides a custom global action.)

To display the simpler New Task form to Salesforce1 users, enable the form in Activity Settings and
ensure that the layout used includes a subject field.

Layout Auditing
Salesforce tracks action layout customization in the setup audit trail history.

Try It Out: Customize an Object-Specific Action Layout
The first time you view the layout for an action you’ve created, certain fields are prepopulated: target object
default fields, standard required fields, and any custom universally required fields. We’re going to add more
fields to the Create a Case action so the mobile technicians can put more information into the case for the
Acme Wireless support reps.

1. In the object management settings for accounts, go to Buttons, Links, and Actions.

2. Click Layout next to our Create a Case action.

The action has four fields already set by default: Contact Name, Status, Subject, and
Description. The red asterisk next to the Status field shows that it’s a required field. Let’s
add a few more fields.

3. Click and drag Priority into position right after Status.

4. Click and drag Product into position right after Priority.

This field lets the technicians indicate what product the customer is having trouble with.

54

Chapter 7 Using Actions in Salesforce1

5. Click Save.

Now when the Acme Wireless mobile technicians view an account in Salesforce1, they can create a case
from any account record page. Let’s give it a try.

Test Out the Object-Specific Quick Action
When you create an action, assign it to a page layout, and customize its action layout, as we did, the
changes are reflected in Salesforce1 immediately.

1. Open the Salesforce1 app on your mobile device.

2. Tap to access the navigation menu.

3. In the Recent section, tap Accounts.

4. Tap Barbary Coast Wireless.

5. In the action bar, tap to access the action menu.
Create a Case, and the other actions we added, are now in the action menu.

55

Chapter 7 Using Actions in Salesforce1

6. Tap the Create a Case action.

7. Tap the Contact Name field.

8. Tap Lloyd Benjamin to assign him to the case.

9. Leave its status as New.

10. Assign the case a low priority.

11. Tap Product, and select the first one on the list.

12. Enter a subject and description.

13. Tap Save.

OK, we’re back on the account record detail page. Tap Feed, and you should see a new feed item for the
case you just created.

56

Chapter 7 Using Actions in Salesforce1

Nice work!

About Predefined Values in Actions

Setting up predefined values for certain fields on actions can increase your mobile users’ productivity and
optimize the action for the mobile environment at the same time.

When you configure action layouts, it’s better to use fewer fields. Most users, especially mobile users, don’t
like to fill in a lot of required fields. They want to get things done and move on to their next task. A good
way to use fewer fields in action layouts is to set predefined values for as many fields as possible. The more
fields you can set predefined values for, the more you can remove from the layout and make the action
easier and quicker to use. Balance ease of use with the need for required information. However, don’t
remove required fields from an action layout without setting a predefined value for those fields, or when
a user applies that action, the record won’t save properly.

If you set predefined values for fields on object records created through an action, you don’t need to add
those fields to the action layout. For example, when you configure an action that lets users create
opportunities, set Prospecting as the predefined value for the Stage field. All new opportunities users

57

Chapter 7 Using Actions in Salesforce1

create through that action are automatically assigned to the prospecting stage. You can remove the
Stage field from the action’s layout, because the field is going to be assigned a value automatically.

You can set predefined values for any field available in the action layout editor, with these exceptions.

• Rich text area fields

• Multi-select picklists

• Read-only field types like auto-number, formula, and roll-up summary fields

Predefined values for fields on actions are different from default values that you can set for fields on records.
If a field is included in an action, it can have both a predefined value set for the action and a default value
set. If a field on an action has both a predefined value and a default value set, the action uses the predefined
value, not the default value.

Let’s set a predefined value for one of the fields on our Create a Case action.

Try It Out: Set a Predefined Field Value on an Action
When we customized our Create a Case action, the Status field was already present, because it’s a
required field for cases. Whenever Acme Wireless’ mobile technicians are out in the field and have to open
a case, the case status is always going to be “New” for them. Rather than require them to fill in the Status
field every time they open a case, let’s set up a predefined field value for it as “New”. Then we can remove
it from the action layout, and whenever the Create a Case action is used to create a case, the status will
automatically be set to “New”.

1. In the object management settings for accounts, go to Buttons, Links, and Actions.

2. Click Create a Case.

3. In the Predefined Values related list, click New.

4. From the Field Name drop-down list, select Status.

5. Set its value to New.

6. Click Save.
Now we need to remove the Status field from the action layout.

7. On the action detail page, click Edit Layout.

8. Click the Status field on the layout and drag it up to the palette.

Tip: You can remove a required field from the action layout, but make sure that the field
has a predefined value. Otherwise, users can’t create records.

9. Click Save.

OK, now let’s see it in action.

58

Chapter 7 Using Actions in Salesforce1

Test the Predefined Value
1. Open the Salesforce1 app on your mobile device.

2. Tap to access the navigation menu.

3. In the Recent section, tap Accounts. You may have to tap More... to find it.

4. Tap Barbary Coast Wireless.

5. In the action bar, tap to access the action menu.

6. Tap the Create a Case action.
Notice the Status field is now gone.

7. Assign the case a High priority.

8. Tap Product, and select any of the products on the list.

9. Enter a subject and description.

10. Tap Save.

11. Tap Feed, and you should see a new feed item for the case you just created.

12. Tap the case number in the feed item, then tap Details.
In the record highlights area of the case record page, you’ll see the subject, priority (High), status
(New), and the case number. The Status field was populated for us, thanks to our predefined
value.

59

Chapter 7 Using Actions in Salesforce1

All right! We’re almost done with actions. There’s one more type, custom actions, that we’ll go over briefly
for now.

About Custom Actions

Object-specific custom actions are Visualforce pages or canvas apps that let users interact with or create
records that have a relationship to an object record. The Visualforce page for an object-specific custom
action must include the standard controller for the relevant object. For example, use the standard contact
controller to create a custom action that lets users import a contact’s Twitter profile and add that information
to a contact record.

Use a Visualforce page or a canvas app to create global custom actions for tasks that don’t require users
to use records that have a relationship to a specific object. Canvas apps that you want to use as custom
actions require Publisher as a location. Visualforce pages that you want to use as global custom actions
can’t use standard controllers. For example, you want a custom action that lets users enter a street address
and see a map, the local time, and the local weather. For this action, create a Visualforce page that doesn’t
use any of the standard controllers, and add it as a custom global action.

60

Chapter 7 Using Actions in Salesforce1

We can’t create custom actions with point-and-click, so we won’t be working with them in our administrator
exercises. If you want to find out more about custom actions, see Adding Functionality with Visualforce
Custom Actions on page 93.

61

Chapter 7 Using Actions in Salesforce1

CHAPTER 8 Guidelines and Best Practices for
Administrators

We’ve covered the primary places you can use point-and-click tools to
optimize your organization for Salesforce1 and your mobile users. We

In this chapter ...

• Action Guidelines
and Best Practices

enabled notifications, created page layouts and compact layouts, set up
quick actions, and customized the Salesforce1 navigation menu.

• Custom Icon
Guidelines and Best
Practices

In this chapter, we’ll cover some suggestions and best practices for actions
and custom icons that can make your mobile users’ experience that much
better. And in case you missed it, don’t forget to review the page layout
guidelines in Tips for Optimizing Page Layouts for Mobile on page 38.

63

Action Guidelines and Best Practices

Actions are a great way to let your users get work done quickly. As an administrator, you’re in a prime
position to give them the exact actions that they need.

When considering what kinds of actions to create, or even when creating the actions themselves, keep
these suggestions in mind.

• When customizing action layouts, consider what your users will do with them. Minimalism is key.
Include only the fields that are necessary for them and for whomever handles the cases, calls, or records
that result from those actions.

• Don’t use actions for simple navigation shortcuts. They’re designed to perform a function.

• Give your actions task-oriented names that tell your users what they do. Use terms such as New, Create,
Share, Update, or Import. Keep names short and descriptive.

• Create a global action if you’re contemplating something that your users need to do that isn’t tied to
a specific object and that you want to be accessible from anywhere.

• Use the Description field to create notes for yourself about each action. Notes are especially
useful if you’re creating several similar actions for different record types, for example. The description
appears in the list of buttons, links, and actions for object-specific actions, or in the list of global actions,
as well as on the detail page for the action. Your notes aren’t visible to users.

• There is no hard limit to the number of fields you can add to an action layout. However, for optimum
usability, we recommend a maximum of 8 fields. Adding more than 20 fields can severely impact user
efficiency. To reduce the number of fields in your layout, you can create predefined values for the
required fields, and then remove those fields from your layout. You can set predefined field values
from the action detail page.

Custom Icon Guidelines and Best Practices

You can add custom icons to your actions or custom tabs if your organization has access to the Documents
tab.

If you decide to create your own action or tab icon, upload it to a Documents folder and make sure
Externally Available Image is selected.

When creating a custom icon, follow these image guidelines. The icon should:

• Be less than 10k in size

• Be 120 x 120 pixels

• Be a PNG with a transparent background

64

Chapter 8 Guidelines and Best Practices for Administrators

• Have a resolution of 72 dpi

• Not include a color background

• Not include outer shadows on the inner icon graphic

In addition, follow these visual guidelines.

• Center inner icon graphics within a 80 x 80 pixel area, leaving 20 pixels of spacing surrounding it in a
120 x 120 px final format.

• The icon graphic should be white, or lighter than the background color.

• Avoid heavy inner or outer shadows.

• Use simple and flat styling resembling the Salesforce1 icon family. See the Salesforce1 Style Guide for
examples.

You assign custom icons using the Change Icon link when you create the action or tab.

You can also customize the icon that is used in the navigation menu for canvas apps. See Custom Icons
for Canvas Apps on page 212.

65

Chapter 8 Guidelines and Best Practices for Administrators

http://sfdc-styleguide.herokuapp.com/

DEVELOPING FOR SALESFORCE1

CHAPTER 9 Welcome to Salesforce App Cloud
Development

Welcome to development for the Salesforce App Cloud. In Part I, Salesforce1
Administration, you learned how to set up and configure your organization
for Salesforce1. You also learned how to customize the Salesforce1 app
for mobile users by using declarative programming features. In this part,
you’ll learn how you can use the Salesforce App Cloud features to extend
the Salesforce1 app and add new functionality for your users with code.

In this chapter ...

• Our Scenario

• Who This Part is For

• When to Use
Declarative vs.

Developing for mobile users in Salesforce1 means you can leverage your
existing skills to extend and customize the app for your users. You can use

Programmatic Tools
to Create Salesforce1
Apps the Salesforce App Cloud to extend your organization and then make those

changes available to both mobile users and users of the full Salesforce site.• When to Use the
Salesforce App
Cloud vs. Creating
Custom Apps

• Salesforce App
Cloud Development
Process

• Development
Prerequisites

67

Our Scenario

We’ll continue the business scenario of Acme Wireless and build functionality to meet the needs of their
mobile technicians and warehouse workers.

You’ll learn how to:

• Optimize the mobile experience for users by employing mobile-first user interface design.

• Implement Visualforce pages so that mobile users can access them from the navigation menu or action
bar in Salesforce1, from a record, or from the publisher in the full Salesforce site.

• Create a Visualforce custom action to make a Visualforce page available from the action bar in
Salesforce1 or from the publisher in the full Salesforce site.

• Create a canvas custom action to make a Force.com Canvas app available from the action bar in
Salesforce1 or from the publisher in the full Salesforce site.

• Give users access to functionality in the feed and embed a canvas app in the Chatter feed.

• Leverage existing logic in custom actions by calling them from the API.

• Extend the Salesforce1 user interface by creating Lightning Pages.

• Implement development best practices when extending Salesforce1.

Who This Part is For

Part II of this book is geared towards all developers who need to customize the Salesforce1 app with code,
from beginner to seasoned pro.

If you’re familiar with programming in the Force.com platform or have done development using the Mobile
SDK, then you should be able to easily make the jump to developing in the Salesforce App Cloud.

If you’re new to the platform or have done mostly declarative programming, then don’t worry. Each chapter
takes you step-by-step through the process of implementing each feature for our fictitious business, Acme
Wireless. This way, you can learn by doing. These sections are titled “Try It Out.”

In each chapter you’ll also find information about what the feature is, how it works, and when to use it.
These sections are titled “Tell Me More.” Go there to delve into the details of the feature.

68

Chapter 9 Welcome to Salesforce App Cloud Development

When to Use Declarative vs. Programmatic Tools to
Create Salesforce1 Apps

When developing functionality for your Salesforce mobile users, you can use declarative features (clicks)
or programmatic tools (code). Here are some points to consider before you start coding.

Salesforce1 features built with declarative tools:

• Are usually faster and cheaper to build.

• Generally require less maintenance.

• Receive automatic upgrades when the tools are improved.

• Aren’t subject to governor limits.

Common declarative tools you can use in your Salesforce1 apps include:

• Quick Actions

• Page layout customization

• Formula fields and roll-up summary fields

• Validation rules

• Workflows and approval processes

• Custom fields and objects

Before you commit to developing a new feature using programmatic tools such as Visualforce, consider
whether you can implement your feature with declarative tools instead.

Of course, some apps can’t be built with declarative tools. Programmatic tools are often required for features
that:

• Support specialized or complex business processes.

• Provide highly customized user interfaces or customized click-through paths.

• Connect to or integrate with third-party systems.

There’s no hard-and-fast rule for when to choose clicks over code. When choosing, consider the problems
you’re trying to solve and resources available to solve them.

69

Chapter 9 Welcome to Salesforce App Cloud Development

When to Use the Salesforce App Cloud vs. Creating
Custom Apps

When it comes to developing functionality for your Salesforce mobile users, you have options. Here are
some differences between extending the Salesforce1 app and creating custom apps using the Mobile SDK
or other tools.

Salesforce App Cloud
• Has a defined user interface.

• Has full access to Salesforce data.

• Can be used to create an integrated experience in the Salesforce1 app.

• Gives you a way to include your own apps/functionality with quick actions.

• Lets you customize Salesforce1 with point-and-click or programmatic customizations.

• Lets you add functionality programmatically through Visualforce pages, Force.com Canvas apps, and
the Lightning Component Framework.

• Has defined navigation points. Salesforce1 customizations or apps adhere to the Salesforce1 navigation.
So, for example, a Visualforce page can be called from the navigation menu or from a custom action
in the action bar.

• Enables you to leverage existing Salesforce development experience, both point-and-click and
programmatic.

• Is included in all Salesforce editions and supported by Salesforce.

Custom Apps
Custom apps can be either free-standing apps you create with Salesforce Mobile SDK or browser apps
using plain HTML5 and jQuery Mobile / Ajax. With custom apps, you can:

• Define a custom user experience.

• Access Salesforce data using REST APIs in native and hybrid local apps, or with Visualforce in hybrid
apps using JavaScript Remoting. In HTML5 apps, do the same using jQuery Mobile and Ajax.

• Brand your user interface, including having a custom app icon, for increased exposure in apps that are
customer-facing.

• Create standalone mobile apps, either with native APIs using Java for Android or Objective-C for iOS,
or through a hybrid container using JavaScript and HTML5 (Mobile SDK only).

70

Chapter 9 Welcome to Salesforce App Cloud Development

• Distribute apps through mobile industry channels, such as the Apple App Store or Google Play (Mobile
SDK only).

• Configure and control complex offline behavior (Mobile SDK only).

• Use push notifications (available for Mobile SDK native apps only).

• Design a custom security container using your own OAuth module (Mobile SDK only).

Other important Mobile SDK considerations:

• Open-source SDK, downloadable for free through npm installers as well as from GitHub. No licensing
required.

• Requires you to develop and compile your apps in an external development environment (Xcode for
iOS, Eclipse or similar for Android).

• Development costs range from $0 to $1M or more, plus maintenance costs.

Salesforce App Cloud Development Process

The Salesforce1 app is designed to run on a mobile device, like a phone or tablet, but that doesn’t mean
you have to develop on one. Especially when you’re working with Visualforce pages that will apper in both
the Salesforce1 app and the full Salesforce site, it’s convenient to develop on your desktop. By accessing
the Salesforce1 app in a device emulator, you can develop iteratively on your desktop, without having to
pick up your device to test each change.

Important: Running the Salesforce1 app in an emulator isn’t supported for normal use, and it’s not
a substitute for full testing of your custom apps and pages on your organization’s supported mobile
devices. During development you should regularly test your app on every device and platform on
which you intend to deploy.

To view your Salesforce1 custom pages and apps on a device emulator, download and install the appropriate
SDK for your supported devices.

• Apple iOS Simulator for iPhone and iPad

developer.apple.com/library/ios/documentation/IDEs/
Conceptual/iOS_Simulator_Guide/

• Android Virtual Device Emulator for Phone and Tablet

developer.android.com/tools/devices/emulator.html

You can’t use the standard https://<Salesforce_instance>/apex/yourPageName URL
to test Visualforce in Salesforce1. You can only do that by accessing the page within Salesforce1.

71

Chapter 9 Welcome to Salesforce App Cloud Development

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/
http://developer.android.com/tools/devices/emulator.html

Development Prerequisites

You’ll need to have these before you can start these exercises.

• Access to a Developer Edition organization.

If you aren’t already a member of the Force.com developer community, go to
http://sforce.co/1om1gHf and follow the instructions for signing up for a Developer Edition
organization. Even if you already have Enterprise Edition, Unlimited Edition, or Performance Edition,
use Developer Edition for developing, staging, and testing your solutions against sample data to protect
your organization’s live data.

• The “API Enabled” permission must be enabled for your Developer Edition organization. This permission
is enabled by default, but might have been changed by an administrator.

• The Warehouse data model must be installed in your Developer Edition organization and the Salesforce1
app installed on a mobile device. If you haven’t already set up these items, see Setting Up Your Work
Environment on page 15.

Change the System Administrator Page Layout Assignment
We’ve created a custom page layout to help us illustrate some of the concepts in this book. Before we
begin, let’s switch the page layout assignment for our System Administrator profile to this new layout.

1. In Setup, enter Profiles in the Quick Find box, then select Profiles.

2. Select the System Administrator profile.

3. In the Page Layouts section, find Account, and click View Assignment.

4. Click Edit Assignment.

5. Click the System Administrator line item.

6. Select Warehouse Schema Account Layout from the Page Layout to Use drop-down list.

7. Click Save.

All right! Now we’re ready to roll.

72

Chapter 9 Welcome to Salesforce App Cloud Development

http://sforce.co/1om1gHf

CHAPTER 10 Designing Mobile-First User Interfaces

In this chapter, we’ll learn about user interface design considerations to
keep in mind when developing functionality for Salesforce1 mobile users.

In this chapter ...

• Design for Mobile
Designing your user interface with mobile in mind is critical to the success
of your app. If users find your functionality easy to use and in alignment• Keep Navigation

Simple
with the experience they have with other mobile apps, they’ll be much

• Put Important
Information at the
Top

happier with the app. The user interface guidelines in this chapter address
key differences in the mobile platform and the way users work in it:

• Mobile devices have smaller screens.
• Minimize the

Number of Fields • Navigation is done with gestures like tapping and swiping.

• Users typically perform focused tasks from mobile devices like adding
a new record.

• Use Field Defaults

• Minimize User
Interface Text Throughout the examples in this book, we demonstrate these best

practices. As you develop and create your own customizations and apps
using the Salesforce App Cloud, keep these guidelines in mind.

• Tap Target Size

73

Design for Mobile

When designing a user interface for Salesforce1 users, keep the smaller form factor and the way users work
in mind from the start.

In the mobile paradigm, users work in quick bursts, spending not more than a minute or two on a task. So
be sure to design your app for the way users work.

Avoid taking forms and workflow designed for the desktop environment and simply making them available
in Salesforce1. For example, it may be an acceptable user experience in a desktop Web browser to have
a form with many fields and related lists on it. However, that same form probably won’t provide a good
user experience when used from a mobile device.

Users will have a much better experience with forms that follow these user interface guidelines and are
designed specifically for the mobile environment.

Keep Navigation Simple

Design your customizations so that users can get to the screen quickly and know where they are within
the app.

When creating forms, be sure that they have a simple, logical flow. This helps users to know where they
are and keeps them from having to remember where they came from. For example, avoid creating a feed
item that links to another form that then links to another form.

Put Important Information at the Top

Put the most essential information at the top of the screen so that it’s immediately visible to the user and
easy to access.

For example, on a screen that the mobile technician uses to see all their repair appointments, put the most
important customer data such as name, address, and phone number at the top. For each screen, identify
what the user’s task is and what data they need to accomplish that task. Another example is if you’re
generating feed items, the text should be as concise as possible and the most important information
should be at the beginning of the post, as shown in the following example.

74

Chapter 10 Designing Mobile-First User Interfaces

Minimize the Number of Fields

When it comes to presenting fields on a screen, less is more. Give users only the fields they need to complete
the task at hand.

For example, if you’re creating a screen for adding a new warehouse, you might only want to surface the
warehouse name field. This way the user can quickly add a new warehouse. If the user has collected more
information, they can edit the new record and add it in the detail view.

This guideline is particularly important when displaying information that’s for viewing only. For example,
if you’re creating a form that the mobile technician uses to look up a customer, the technician probably
needs to see only the customer name, address, and a phone number. In our page to search for merchandise,
only two fields are needed: the merchandise name and delivery distance.

75

Chapter 10 Designing Mobile-First User Interfaces

To reduce the number of fields on a screen, consider using default values for new records instead of having
the user enter the data.

Use Field Defaults

When you have fields on a screen that user must enter, create defaults for as many of them as you can.

For example, if you create a form with a multi-select picklist, consider defaulting the field to a particular
value. This way the user can change it if necessary, but otherwise can simply accept the default for quicker
workflow.

Minimize User Interface Text

Be mindful of device form factor and size, and keep labels and user interface text short and concise.

Keep field and menu labels as short as you can while still conveying enough meaning for users to understand
what the field is for. Use intuitive icons or symbols whenever possible so users can quickly understand

76

Chapter 10 Designing Mobile-First User Interfaces

your user interface. The goal with user interface text is to provide enough information so that users can
understand what they need to do while at the same time keeping the user interface clean and simple.

A common best practice is to place labels above fields and to show only one column of fields instead of
displaying fields side by side.

Any blocks of text should also be concise and to the point. For example, if you’re automatically creating a
feed item to be viewed in Salesforce1, keep the text short and include only the necessary information.

In our warehouse scenario, when an order is fulfilled in the warehouse, a feed item appears in the customer
account feed that shows the key information such as invoice number and order number, along with a
short message and a link to the invoice.

Tap Target Size

Mobile users interact with the Salesforce1 user interface with their fingers, so be sure to design user interface
elements to be the optimal size.

77

Chapter 10 Designing Mobile-First User Interfaces

Screen controls should be large enough for users to tap easily and take into account that every user’s hands
are sized differently. Controls that are too small means users will need to tap multiple times, a frustrating
experience. But you don’t want controls so large that users can accidentally tap one when they meant to
tap another.

We recommend a minimum tap target size of 44 pixels wide by 44 pixels high. For more information about
custom icons, see Custom Icon Guidelines and Best Practices on page 64.

78

Chapter 10 Designing Mobile-First User Interfaces

CHAPTER 11 Extending Salesforce1 with Visualforce
Pages

You can use your knowledge of Visualforce to extend the Salesforce1 app
and give your mobile users the functionality they need.

In this chapter ...

• Try It Out: Create a
Visualforce Page In this chapter, we’ll extend the Acme Wireless organization and give

mobile technicians a way to find nearby warehouses. For example, if the
• Tell Me More: Where

Visualforce Pages
technician is out on a call and needs a part, they can use this page to look
for warehouses within a 20–mile radius.

Can Appear in
Salesforce1 While you could take an existing Visualforce page and surface it in

Salesforce1, you should consider how that page will look and function on• Tell Me More: About
the Code a mobile device. Most likely, you’ll want to create a new page designed

especially for a mobile experience.

For more information about where Visualforce pages can appear in the
user interface, see Tell Me More: Where Visualforce Pages Can Appear in
Salesforce1 on page 87.

Now, let’s get started!

79

Try It Out: Create a Visualforce Page

Now we’ll create a Visualforce page and make it available from the navigation menu.

This Visualforce page references these items.

• A static resource named googleMapsAPI

• An Apex class named FindNearby

These have been provided for you in the package that you downloaded and installed for this guide.

Also included in the package is the Visualforce page FindNearbyWarehousesPage. You can move
on to the next step, Create a New Tab on page 83, if you want to use the page included in the package.

The code for this page uses the location of the current user and integrates with Google Maps to display a
map with warehouses located within 20 miles. For each nearby warehouse, the map displays a pin along
with the warehouse name, address, and phone number.

1. In the Salesforce application, from Setup, enter Visualforce Pages in the Quick Find
box, then select Visualforce Pages.

2. Click New.

3. In the Label field, enter FindNearbyWarehousesPage.

The FindNearbyWarehousesPage page is included in the package you installed, so if
you’re copying this code to create a new page, you’ll want to name your page something different.

4. Select the Available for Salesforce mobile apps and Lightning Pages
checkbox.

Selecting this checkbox designates that the page is mobile-ready and can be used in Salesforce1.

5. Copy and paste this code into the Visualforce Markup tab.

Line breaks in the code might cause errors, so you might need to delete some of the line breaks.

<apex:page sidebar="false" showheader="false"
standardController="Warehouse__c"
recordSetVar="warehouses" extensions="FindNearby">

<apex:includeScript value="{!$Resource.googleMapsAPI}" />
<!-- This API key needs to be set up for there to be

no JS errors -->
<!--http://salesforcesolutions.blogspot.com/2013/01/

integration-of-salesforcecom-and-google.html-->
<!--<script type="text/javascript"

src="https://maps.googleapis.com/

80

Chapter 11 Extending Salesforce1 with Visualforce Pages

maps/api/js?key=AIzaSyAVrfZm7_NhbL
jHrFPdl242BYV1PBmDPqs&sensor=
false"> </script>-->

<!-- Set up the map to take up the whole window -->
<style>

html, body { height: 100%; }
.page-map, .ui-content, #map-canvas

{ width: 100%; height:100%; padding: 0; }
#map-canvas { height: min-height: 100%; }

</style>

<script>
function initialize() {

var lat, lon;

// Check to see if the device has geolocation
// detection capabilities with JS
if (navigator.geolocation) {

navigator.geolocation.getCurrentPosition(
function(position){
lat = position.coords.latitude;
lon = position.coords.longitude;

//Use VF Remoting to send values to be
//queried in the associated Apex Class
Visualforce.remoting.Manager.
invokeAction(

'{!$RemoteAction.FindNearby.
getNearby}',

lat, lon,
function(result, event){

if (event.status) {
console.log(result);
createMap(lat, lon, result);

} else if (event.type ===
'exception') {
//exception case code

} else {

}
},
{escape: true}

);
});

81

Chapter 11 Extending Salesforce1 with Visualforce Pages

} else {
//Set default values for map if the device
//doesn't have geolocation capabilities

/** San Francisco **/
lat = 37.77493;
lon = -122.419416;

var result = [];
createMap(lat, lon, result);

}

}

function createMap(lat, lng, warehouses){
//Grab the map div and center the map at
//the proper latitude/longitude
var mapDiv = document.getElementById(

'map-canvas');
var map = new google.maps.Map(mapDiv, {

center: new google.maps.LatLng(lat, lng),
zoom: 12,
mapTypeId: google.maps.MapTypeId.ROADMAP

});

//Set up the markers for the map using the
//variable we queried for in our controller
var warehouse;
for(var i=0; i<warehouses.length;i++){

warehouse = warehouses[i];
console.log(warehouses[i]);
setupMarker();

}

function setupMarker(){
var content='<a href src="/'+ warehouse.Id +

'" >'+
warehouse.Name + '
'+
warehouse.Street_Address__c +
'
' + warehouse.City__c +
'
' + warehouse.Phone__c;

//Create the callout that will pop up
//on the marker
var infowindow = new google.maps.

82

Chapter 11 Extending Salesforce1 with Visualforce Pages

InfoWindow({
content: content

});

//Place the marker
var marker = new google.maps.Marker({

map: map,
position: new google.maps.LatLng(

warehouse.Location__Latitude__s,
warehouse.Location__Longitude__s)

});

//Create an action to open the callout
google.maps.event.addListener(

marker, 'click', function(){
infowindow.open(map, marker);

});
}

}

//Run the initialize function when the window loads
google.maps.event.addDomListener(

window, 'load', initialize);

</script>

<body style="font-family: Arial; border: 0 none;">
<div id="map-canvas"></div>

</body>
</apex:page>

6. Click Save.

Now that we’ve created the Visualforce page for finding warehouses, the next step is to create a tab for it.
We’ll then add the page to the navigation menu in Salesforce1.

Create a New Tab
Now we’ll create a new tab and add the Visualforce page you just created.

1. From Setup, enter Tabs in the Quick Find box, then select Tabs.

2. In the Visualforce Tabs section, click New.

83

Chapter 11 Extending Salesforce1 with Visualforce Pages

3. In the Visualforce Page drop-down list, select FindNearbyWarehousesPage, or the page you created
in the previous step.

4. In the Tab Label field, enter Find Warehouses.

This label appears on the navigation menu in Salesforce1.

5. Click into the Tab Style field, and select the Globe style.

The icon for this style appears as the icon for the page in the Salesforce1 navigation menu.

6. Click Next.

7. Click Next to accept the visibility defaults.

8. Deselect the Include Tab checkbox so that the tab isn’t included in any of the apps in the
organization. We only want this tab to appear when users are viewing it on their mobile device.

9. Click Save.

Now that you’ve created the Visualforce page and the tab, you’re ready to add the new tab to the navigation
menu.

Add the Tab to the Navigation Menu
In this step, we’ll add the tab as a navigation menu item. It will instantly become available to Salesforce1
app users that have access to it.

1. From Setup, enter Navigation in the Quick Find box, then select Salesforce1 Navigation.

2. Select Find Warehouses and click Add to move it over to the Selected list.

84

Chapter 11 Extending Salesforce1 with Visualforce Pages

3. Click Save.

When your Salesforce1 users log in, they’ll see the Find Warehouses menu item in the navigation menu.
Now let’s test it out.

Test Out the Visualforce Page
Now you’ll play the part of an Acme Wireless mobile technician and search for nearby warehouses on your
device.

1. Open the Salesforce1 app on your mobile device.

2. Tap to access the navigation menu.

You should see Find Warehouses under the Apps section.

3. Tap Find Warehouses.

85

Chapter 11 Extending Salesforce1 with Visualforce Pages

4. Click OK when you see a prompt that asks to use your current location. A map that contains all
the nearby warehouse locations within 20 miles appears.

86

Chapter 11 Extending Salesforce1 with Visualforce Pages

The warehouses in our package sample data are all located in the San Francisco area. If you’re
testing this from another location, be sure to add a warehouse located within 20 miles. To add a
new warehouse, choose Warehouse from the Force.com app menu, click the Warehouses tab,
and then click New in the Recent Warehouses section.

That’s it! You can see how easy it is to make standard pages and tabs available to your mobile users.

For more information about development guidelines for Visualforce pages, see Visualforce Guidelines and
Best Practices on page 174.

Tell Me More: Where Visualforce Pages Can Appear
in Salesforce1

When you create a Visualforce page, you can make it available from a number of places in the Salesforce1
user interface.

• Navigation menu—available when you tap from the Salesforce1 mobile app

87

Chapter 11 Extending Salesforce1 with Visualforce Pages

• Action bar and action menu—available from the bottom of any page in the Salesforce1 app that
supports actions

• Record related information page (as a mobile card)—available when you navigate to a record

88

Chapter 11 Extending Salesforce1 with Visualforce Pages

You can also reference, and link to, another Visualforce page in your Visualforce markup, using the $Page
global, or in Apex custom code, by creating a PageReference object and returning it from an action
method. Page references like this are common in multi-page processes. Be sure to select Available
for Salesforce mobile apps for all pages in a multi-page process.

If a referenced page doesn’t have Available for Salesforce mobile apps selected, it
won’t prevent the referencing, or parent, page from appearing in Salesforce1. However, when a user tries
to access the non-mobile enabled page, they’ll receive an “Unsupported Page” error message.

Tell Me More: About the Code

Let’s take a look at some of the code behind our Visualforce page that finds warehouses.

FindNearby Apex Class Query
This snippet is a dynamic SOQL query that uses variables passed in from the Visualforce page to find
warehouses within 20 miles of the device accessing the page. This page works on any mobile device and
HTML5–enabled desktop browser.

If the page is unable to obtain the location, the search is centered on San Francisco. If you test this from a
browser, you might have to approve that the page can access your location depending on your device
security settings.

String queryString =
'SELECT Id, Name, Location__Longitude__s,
Location__Latitude__s, ' +
Street_Address__c, Phone__c, City__c ' +
'FROM Warehouse__c ' +
'WHERE DISTANCE(Location__c,
GEOLOCATION('+lat+','+lon+'), \'mi\') < 20 ' +
'ORDER BY DISTANCE(Location__c,
GEOLOCATION('+lat+','+lon+'), \'mi\') ' +
'LIMIT 10';

Visualforce Page initialize Function
The initialize function in the Visualforce page uses the HTML5 geolocation API to get the coordinates
of the user. The browser gets the position without using any plug-ins or external libraries, and then uses

89

Chapter 11 Extending Salesforce1 with Visualforce Pages

JavaScript remoting to invoke the getNearby function in the Apex controller and passes in the
coordinates.

function initialize() {
var lat, lon;

// Check to see if the device has geolocation
// detection capabilities with JavaScript
if (navigator.geolocation) {

navigator.geolocation.getCurrentPosition(
function(position){
lat = position.coords.latitude;
lon = position.coords.longitude;

//Use VF Remoting to send values to be
//queried in the associated Apex Class
Visualforce.remoting.Manager.invokeAction(

'{!$RemoteAction.FindNearby.getNearby}', lat, lon,
function(result, event){

if (event.status) {
console.log(result);
createMap(lat, lon, result);

} else if (event.type === 'exception') {
//exception case code

} else {

}
},
{escape: true}

);
});

} else {
//Set default values for map if the device doesn't
//have geolocation capabilities

/** San Francisco **/
lat = 37.77493;
lon = -122.419416;

var result = [];
createMap(lat, lon, result);

}

90

Chapter 11 Extending Salesforce1 with Visualforce Pages

Visualforce Page Redirect Code
The page FindNearbyWarehousesPage uses the Google Maps JavaScript API v3 to plot the nearby
warehouses on a map. We resize the map based on the records returned by the SOQL query and plot each
record as marker on the map.

The most important piece of the code is where we determine whether or not the page is being viewed
in the Salesforce1 app. If it is, the redirect link to the warehouse record must be coded slightly differently.
If the page runs in the Salesforce1 app, we must use the navigateToSobjectRecord method to
go to the record detail page but still stay in the app. We can check this with a simple try/catch construct,
and then set the redirect link accordingly.

try{
if(sforce.one){
warehouseNavUrl =

'javascript:sforce.one.navigateToSObject(
\'' + warehouse.Id + '\')';

}
} catch(err) {

console.log(err);
warehouseNavUrl = '\\' + warehouse.Id;

}
var warehouseDetails =

'' +
warehouse.Name + '
' +
warehouse.Street_Address__c + '
' +
warehouse.City__c + '
' +
warehouse.Phone__c;

91

Chapter 11 Extending Salesforce1 with Visualforce Pages

CHAPTER 12 Adding Functionality with Visualforce
Custom Actions

Actions appear in the action bar and action menu in the Salesforce1 mobile
app, and are a quick way for mobile users to access commonly used tasks
or functionality.

In this chapter ...

• Custom Actions
Scenario

We learned about standard actions that can be configured with
point-and-click tools in Using Actions in Salesforce1 on page 45. In this

• Try It Out: Create a
Visualforce Custom
Action

chapter we’ll look at custom actions, which are actions that you define.
There are two types of custom actions:

• Tell Me More: About
the Code • Visualforce—specifies a Visualforce page that’s called from the Chatter

publisher or Salesforce1 action bar.

• Canvas—specifies a canvas app that’s called from the Chatter publisher
or Salesforce1 action bar. For more information about canvas custom
actions, see Extending Salesforce1 with Canvas Custom Actions on
page 106.

Custom actions aren’t specific to mobile users, and appear in both the
Salesforce1 app and in the full Salesforce site. In the Salesforce1 mobile
app, custom actions appear in the action bar. In the full Salesforce site,
custom actions appear in the Chatter publisher.

93

Custom Actions Scenario

In this chapter, we’ll further extend the Acme Wireless organization and give mobile technicians a way to
quickly create an order. We’ll create a Visualforce page and make it available as a custom action from the
action bar. That way, if the technicians are out at a customer site and they want to order a part, they can
quickly navigate to the page.

The custom action enables the technician to enter the part name and a radius, and the Visualforce page
searches all warehouses within the given radius for that part. Once a warehouse is located, the technician
simply enters the quantity and taps a button to create the order. This is all done within the context of the
customer account.

Try It Out: Create a Visualforce Custom Action

First, we’ll create a Visualforce custom action that references a Visualforce page.

The custom action we’re creating uses these elements from the package that you downloaded and installed
for this guide.

• QuickOrderPage Visualforce page

• QuickOrderController Apex class

• Mobile_Design_Templates static resource used for styling the page

We’ll take an in-depth look at the code later in this chapter. But first, we’re going to create the action and
try it out.

The Visualforce code for this page uses the location of the current customer account to find warehouses
located within the specified distance (in miles) that also have a particular part in stock.

1. From the object management settings for accounts, go to Buttons, Links, and Actions.

2. Click New Action.

3. In the Action Type drop-down list, select Custom Visualforce.

4. In the Visualforce Page drop-down list, select QuickOrderPage.

5. In the Label field, enter Create Quick Order.

This is the action name that appears to the user in the action menu in the Salesforce1 app or in
the publisher in the full Salesforce site.

94

Chapter 12 Adding Functionality with Visualforce Custom Actions

6. Click Save.

Now that we’ve created the custom action, we’ll add the action to the Account page layout. This ensures
that the custom action appears in the publisher when you go to the page for a customer account.

Add the Visualforce Custom Action to the Page Layout
Now we’ll add the custom action to the Account page layout.

1. From the object management settings for Accounts, go to Page Layouts.

2. Click Edit next to the Warehouse Schema Account Layout.

3. Click the Salesforce1 Actions category in the palette.

4. In the Salesforce1 and Lightning Experience Actions section, click override the predefined
actions.

5. Drag the Create Quick Order element into the Salesforce1 and Lightning Experience Actions section
so that it appears as the first element on the left.

Our mobile technicians are going to use this custom action a lot, so we’re putting it at the start of
the list so it is one of the first actions they see in the action bar.

6. If it’s present, drag the Mobile Smart Actions element out of the section and back to the palette.

7. Click Save.

Now that we’ve created the custom action and added it to the page layout, we’re ready to see it in action.

95

Chapter 12 Adding Functionality with Visualforce Custom Actions

Test Out the Visualforce Custom Action
Now you’ll play the part of an Acme Wireless mobile technician on a customer call, and we’ll test out the
custom action in Salesforce1.

1. Open the Salesforce1 app on your mobile device.

2. Tap to access the navigation menu.

3. From the navigation menu, tap Accounts and navigate to an account.

4. In the action bar, tap to access the action menu.

5. Tap the Create Quick Order action.

6. In the Merchandise Name field, enter the name of an item, such as iPhone 5.

7. In the Max Delivery Distance (miles) field, enter 10.

8. Tap Submit.

96

Chapter 12 Adding Functionality with Visualforce Custom Actions

9. In the Search Results section at the bottom, you’ll see a list of merchandise that matches what you
searched for. The list shows parts contained in warehouses within 10 miles of the current account.
Tap iPhone 5S Gold.

10. In the Quantity field, enter 1.

After identifying nearby warehouses that contain the part you’re looking for, this screen lets you
enter a quantity and creates an order for the part. The order is associated with the current account.

Tip: If you want to return to the search screen, be sure to use the Back button. If you tap
Cancel, an invoice with no line items is created.

11. Tap Submit.

The order has been created. Swipe to the third page indicator, and you’ll see the Invoices related
list. Tap the Invoices related list, and you’ll see the new invoice. You can tap the invoice and then
tap Line Items on the Related page to see the line item that was created for the iPhone 5S Gold
part.

Success! You’ve gone through the entire process of enabling a mobile technician to quickly search for a
part in a warehouse and create an order.

97

Chapter 12 Adding Functionality with Visualforce Custom Actions

For more information about development guidelines for Visualforce page, see Visualforce Guidelines and
Best Practices on page 174.

Tell Me More: About the Code

There are two code objects behind our Visualforce custom action: the Apex class
QuickOrderController and the Visualforce page QuickOrderPage.

The Apex class is the controller for the Visualforce page, and uses the @RemoteAction annotation on
the methods. When you use this annotation, the Visualforce page wraps the logic in a JavaScript-friendly
way. This is known as Visualforce remoting.

Visualforce remoting allows for quick and tight integration between Apex and JavaScript. This
communication model works asynchronously as opposed to the synchronous model in the traditional
Visualforce/Apex MVC paradigm. So after passing parameters into your controller, you can get the result
from a response handler function, and write any additional client-side logic before doing any DOM
manipulation or building your page with mobile templates or frameworks.

Visualforce remoting is ideal for mobile developers on the Salesforce App Cloud because it simplifies the
direct server-side access to Salesforce objects and allows you to use Apex tools such as SOQL, Apex methods,
and so on for rapid platform development. And, you don’t have to deal with view state, which makes pages
perform better.

Apex Class QuickOrderController
This class uses Visualforce remoting and contains the logic called by the Visualforce page to find warehouses
and create orders and line items.

global class QuickOrderController{
public static List<Merchandise__c> merchandise;
public static Line_Item__c quickOrder;

public QuickOrderController(ApexPages.
StandardController controller){

}

@RemoteAction
global static List<Merchandise__c> findWarehouses(String accId,

String merchName, String warehouseDist){
merchandise = new List<Merchandise__c>();
String queryString = '';

98

Chapter 12 Adding Functionality with Visualforce Custom Actions

String queryName = '%' + merchName + '%';

Account acc = [Select Location__Longitude__s,
Location__Latitude__s, Name, Id
from Account where Id =: accId];

//Finds warehouses nearby if you have location
//specified on the Account
if(acc.Location__Latitude__s != null &&

acc.Location__Longitude__s != null){
queryString = 'SELECT Id, (SELECT Id, Name, Quantity__c,

Warehouse__r.Name, Warehouse__r.Id,
Warehouse__r.Street_Address__c,
Warehouse__r.City__c '+
'FROM Merchandise__r WHERE Name
like :queryName) '
+'FROM Warehouse__c WHERE '
+'DISTANCE(Location__c, GEOLOCATION('
+acc.Location__Latitude__s+','
+acc.Location__Longitude__s+'), \'mi\')';

if(warehouseDist != null){
queryString += ' <'+ warehouseDist;

}

}
//If no location defined on the Account, this will run
//query against the merchandise name only
else {

queryString = 'SELECT Id, Name,
Location__Longitude__s,
Location__Latitude__s, '
+'(SELECT Id, Name, Warehouse__r.Name,
Quantity__c
FROM Merchandise__r WHERE Name
like :queryName) '
+'FROM Warehouse__c limit 25';

}

//This creates a list of merchandise
//to display in the search results
Warehouse__c[] warehouses = Database.Query(queryString);
for(Warehouse__c warehouse : warehouses){

99

Chapter 12 Adding Functionality with Visualforce Custom Actions

Merchandise__c[] merch =
warehouse.getSObjects('Merchandise__r');
if (merch != null) {

for (Merchandise__c m : merch){
merchandise.add(m);

}
}

}
return merchandise;

}

//This remote action creates the invoice for the quick order
@RemoteAction
global static Line_Item__c createQuickOrder(

String accId, String merchandiseId){
Invoice__c newInvoice = new Invoice__c();
newInvoice.Account__c = accId;
insert newInvoice;

quickOrder = new Line_Item__c();
Merchandise__c m = [Select Id, Name from Merchandise__c

where Id=: merchandiseId limit 1];
quickOrder.Merchandise__c = m.Id;
quickOrder.Invoice__c = newInvoice.Id;

return quickOrder;
}

//This remote action creates the line item related to the
//invoice for the quick order
@RemoteAction
global static Boolean insertQuickOrder(String o, String q){

try {
Integer quantity = integer.valueof(q);

Line_Item__c order = new Line_Item__c();
/* The order variable being passed in as a param is being
passed in the form of a JSON object. You need to use
the JSON deserialize method in Apex to convert it
into a SObject */
order = (Line_Item__c)JSON.deserialize(

o, Line_Item__c.class);

100

Chapter 12 Adding Functionality with Visualforce Custom Actions

order.Quantity__c = quantity;
insert order;

//Need to requery for the name for the post to chatter
//since it wasn't explicitly specified
Line_Item__c li = [Select Name, Merchandise__r.Name, Id,

Quantity__c, Invoice__c from Line_Item__c
where Id =: order.Id];

FeedItem post = new FeedItem();
post.ParentId = aId;
post.Body = UserInfo.getName() + ' just created a quick order';

post.type = 'LinkPost';
post.LinkUrl = '/' + li.Invoice__c;
post.Title = li.Merchandise__r.Name + ': ' + li.quantity__c;
insert post;

} catch(System.Exception ex) {
system.debug(ex.getMessage());

}
return true;

}

//This remote action handles deleting the invoice if
//the user doesn't want to insert the line item
@RemoteAction
global static Boolean goBack(String invoiceId){

// Delete created invoice and return to original
//search screen
Invoice__c cancelledInvoice = [select Id from Invoice__c

where Id=: invoiceId];
delete cancelledInvoice;

return true;
}

}

Note: Use static queries and binding variables to prevent a SOQL injection attack. For example, use
:queryName instead of \'%'+merchName+'%\'. For more information, see “Security Tips
for Apex and Visualforce Development“ in the Salesforce Help.

101

Chapter 12 Adding Functionality with Visualforce Custom Actions

The Apex controller also has an insertQuickOrder method that creates a feed item about the new
order in the account feed as shown in this code snippet. The feed item is a link post that links to the invoice.

FeedItem post = new FeedItem();
post.ParentId = aId;
post.Body = UserInfo.getName() + ' just created a quick order';
post.type = 'LinkPost';
post.LinkUrl = '/' + li.Invoice__c;
post.Title = li.Merchandise__r.Name + ': ' + li.quantity__c;
insert post;

Visualforce Page QuickOrderPage
This page calls the controller with the user input and then displays the merchandise and warehouse
information to the user. If the user wants to create an order, this page also calls the controller to create
the order associated with the customer account and add a line item. At the beginning of the page, the
code also does some styling of the page using the Salesforce mobile design templates.

<apex:page standardController="Account"
extensions="QuickOrderController" docType="html-5.0"
standardStylesheets="false" showheader="false" sidebar="false">

<!--Include stylesheets for the mobile look and feel -->
<apex:stylesheet value="{!URLFOR(

$Resource.Mobile_Design_Templates,
'Mobile-Design-Templates-master/

common/css/app.min.css')}"/>
<apex:includeScript value="{!URLFOR(

$Resource.Mobile_Design_Templates,
'Mobile-Design-Templates-master/common/js/

jQuery2.0.2.min.js')}"/>
<apex:includeScript value="{!URLFOR(

$Resource.Mobile_Design_Templates,
'Mobile-Design-Templates-master/common/js/

jquery.touchwipe.min.js')}"/>
<apex:includeScript value="{!URLFOR(

$Resource.Mobile_Design_Templates,
'Mobile-Design-Templates-master/common/

js/main.min.js')}"/>

<style>
/* Default S1 color styles */

102

Chapter 12 Adding Functionality with Visualforce Custom Actions

.list-view-header, .data-capture-buttons a {
background: -webkit-linear-gradient(

#2a93d5,#107abb);
background: linear-gradient(#2a93d5,#107abb);
box-shadow: 0 1px 3px rgba(0,0,0,.2),

inset 0 1px 0 rgba(255,255,255,.21);
color: white;
font-weight: bold;

}

#resultPage, #searchPage {
padding-bottom: 50px;

}
</style>

The QuickOrderPage also calls the Force.com Canvas SDK to enable the publisher Submit button
and close the publisher window.

First, it includes a reference to the SDK:

<!-- This needs to be included so the publisher can be used
to submit the action -->

<script type='text/javascript'
src='/canvas/sdk/js/publisher.js'></script>

Then it calls the setValidForSubmit method to enable the publisher Submit button:

//This method will activate the publish button
//so the form can be submitted
Sfdc.canvas.publisher.publish({

name: "publisher.setValidForSubmit",
payload:"true"});

After the setValidForSubmit is called and the user clicks Submit, this subscribe method fires.
This method invokes the final JavaScript function which uses JavaScript remoting to insert the line item
(thus completing the quick order) and then post a feed item to the account:

<script type='text/javascript'>
Sfdc.canvas.publisher.subscribe({name: "publisher.post",

onData:function(e) {
//This subscribe fires when the user hits
//Submit in the publisher
insertQuickOrder();
}});

</script>

103

Chapter 12 Adding Functionality with Visualforce Custom Actions

Finally, after the callback from the remoting method returns successfully, this method closes the publisher
window:

// Success - close the publisher and refresh the feed
Sfdc.canvas.publisher.publish({name: "publisher.close",

payload:{ refresh:"true"}});

104

Chapter 12 Adding Functionality with Visualforce Custom Actions

CHAPTER 13 Integrating Your Web Applications in
Salesforce1 with Force.com Canvas

Force.com Canvas lets you easily integrate a third-party Web application
in Salesforce1.

In this chapter ...

• About Force.com
Canvas The Force.com Canvas SDK is an open-source suite of JavaScript libraries

that provide simple methods that use existing Salesforce1 APIs (REST API,
• Extending

Salesforce1 with
SOAP API, Chatter REST API) so you can build a seamless end-user
experience for your mobile users.

Canvas Custom
Actions

• Extending
Salesforce1 with
Canvas Apps in the
Feed

105

About Force.com Canvas

Force.com Canvas features include:

• Language Independence—You develop it and we display it. With Force.com Canvas you can develop
in the language of your choice and easily surface the app inside of the Salesforce1 app.

The third-party app that you want to expose as a canvas app can be written in any language. The only
requirement is that the app has a secure URL (HTTPS).

• JavaScript SDK—Lightweight and easy-to-use JavaScript libraries allow your app to authenticate and
communicate without having to deal with cross-domain network issues. This gives your users a single
command center to drive all their apps.

• Simplified Authentication—Allows you to authenticate by using OAuth 2.0 or a signed request. This
means that your app can connect to Salesforce at the data layer while remaining seamless for users.

• App Registration and Management—Developers can create apps and allow their customers to install
them with a single click. Administrators can easily install apps from developers, and quickly manage
who in their organizations can use the app.

Extending Salesforce1 with Canvas Custom Actions

Canvas custom actions provide a way to make canvas apps available from both the publisher in the full
Salesforce site and the action bar and action menu in Salesforce1.

In this chapter, we’ll further extend the Acme Wireless organization by integrating a third-party app with
the platform using Force.com Canvas. Acme Wireless has a Web application running on Heroku called

106

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

Shipify. They use it to process orders. We’ll copy the Shipify application that runs on Heroku and make it
available as a canvas custom action from the Salesforce1 action bar.

In this scenario, warehouse workers with mobile devices can bring up a list of open customer orders. They
can select an order and then process it for shipping. After the order is processed, Shipify sets the order
status in Salesforce and posts a feed item to the associated customer account. You’ll see how easy it is to
integrate a Web application and enable it to communicate with Salesforce. This creates a seamless
experience for your mobile users.

Try It Out: Clone the Shipify Web Application
We’ll start the process of creating a canvas custom action by cloning the Shipify Web application.

In addition to the prerequisites for this book listed in Development Prerequisites on page 72, you’ll also
need:

• “Customize Application” and “Modify All Data” user permissions. If you’re an administrator, you most
likely already have these permissions. Otherwise, you need to add them so that you can see the Canvas
App Previewer and create canvas apps.

• Git installed. Go here to install and configure Git:
https://help.github.com/articles/set-up-git.

After you install Git, you might need to configure SSH by using the keygen tool. See
https://help.github.com/articles/generating-ssh-keys for more information.
If you’re using Windows, this tool is located in the Git \bin directory, which isn’t added to the path
after you install Git. Add the \bin directory to your path by using Control Panel. Depending on your
installation directory, the path might be something like C:\Program Files (x86)\Git\bin.

• A GitHub account to clone the code example. Go here to set up a GitHub account:
https://github.com/plans.

• A Heroku account because our Web application will run on Heroku. Go here to create a Heroku account:
https://api.heroku.com/signup.

• Heroku Toolbelt to manage the Heroku app from the command line. Go here to download and install
Heroku Toolbelt: https://toolbelt.heroku.com.

Shipify is a Web application that Acme Wireless uses to track the status of customer orders, customer
shipments, and deliveries. The warehouse workers use this application to check for outstanding orders,
fulfill those orders, and then update the shipping status. The Shipify Web application contains some order
processing logic, but it’s not a full order processing application. Its purpose is to demonstrate how you
can integrate your Web applications with the Salesforce1 app.

Shipify is a Node.js application that runs on Heroku. Each running instance of the application must reference
the consumer secret for the connected app that you create in your organization. Therefore, you’ll need to

107

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

https://help.github.com/articles/set-up-git
https://help.github.com/articles/generating-ssh-keys
https://github.com/plans
https://api.heroku.com/signup
https://toolbelt.heroku.com/

have your own instance of Shipify on Heroku that you can then add as a canvas app. In this step, we’ll
clone the application, which is the first step in the process.

1. Open a command window and navigate to the directory where you want to download Shipify.
When you clone the application, it will create a directory called Shipify-Node-App from
wherever you run the clone command.

• From a computer running Windows, open a command window by clicking Start > Run... and
entering in cmd.

• From a computer running Mac OS, open a command window by pressing Command + Space
and entering terminal.

2. Enter this command: git clone
https://github.com/forcedotcom/Shipify-Node-App

3. Navigate to the Shipify-Node-App directory. For example, if your Shipify-Node-App
directory is located in C:\Users\yourname, you would enter this command: cd
C:\Users\yourname\Shipify-Node-App

4. Enter this command to log in to Heroku: heroku login

When prompted, enter your email and password.

5. Enter this command to create a new Heroku app: heroku apps:create

Confirmation that the app was created looks like this:

Creating deep-samurai-7923... done, stack is cedar
http://deep-samurai-7923.herokuapp.com/ |
git@heroku.com:deep-samurai-7923.git
Git remote heroku added

6. Copy the URL of the Heroku app because we’ll use it in the next task. In this example, the URL is
http://deep-samurai-7923.herokuapp.com, but you’ll want to copy the URL of
your own Heroku app. Your URL must begin with https://.

We’ve created the Shipify Web application in Heroku, but it won’t work yet because we still need
to deploy it, which we’ll do in a later step.

The next step is to add it as a canvas app in Salesforce.

Create the Shipify Canvas App
In this step, we’ll expose the Shipify Web application as a canvas app.

You’ll need user permissions “Customize Application” and “Modify All Data” to create a canvas app.

108

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

1. In the Salesforce application, from Setup, enter Apps in the Quick Find box, then select
Apps.

2. In the Connected Apps related list, click New.

3. In the Connected App Name field, enter Shipify.

4. In the Contact Email field, enter your email address.

5. In the API (Enable OAuth Settings) section, select Enable OAuth Settings.

6. In the Callback URL field, paste the URL of the Heroku app you just created and change the
protocol to HTTPS. For example, your final URL should look something like
https://deep-samurai-7923.herokuapp.com.

7. In the Selected OAuth Scopes field, select Full access and click Add.

As a best practice, you’ll want to keep the OAuth scopes as limited as needed for your canvas app
functionality.

8. In the Canvas App Settings section, select Force.com Canvas.

9. In the Canvas App URL field, enter the same URL you entered in the Callback URL field
with /signedrequest appended to it. For example, the URL might look like
https://deep-samurai-7923.herokuapp.com/signedrequest.

10. In the Access Method drop-down list, select Signed Request (POST).

11. In the Locations field, select Chatter Tab and Publisher and click Add.

For a canvas app to appear in the publisher in the full Salesforce site or in the action bar in
Salesforce1, you only need to specify a location of Publisher. In this scenario, we also chose Chatter
Tab to be able to easily test the canvas app by looking at the Chatter tab.

109

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

12. Select Create Actions Automatically.

Selecting this field creates a global custom action for the canvas app.

13. Click Save. After the canvas app is saved, the detail page appears.

We added the canvas app, and now we’ll specify who can access it.

Configure Who Can Access the Shipify Canvas App
You’ve created the canvas app, but no one can see it until you configure user access.

1. From Setup, enter Connected Apps in the Quick Find box, then select the option for
managing connected apps.

2. Click the Shipify app, and then click Edit.

3. In the Permitted Users drop-down list, select Admin approved users are pre-authorized. Click
OK on the pop-up message that appears.

110

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

4. Click Save.

Now you’ll define who can see your canvas app. This can be done using profiles and permission
sets. In this example, we’ll allow anyone with the System Administrator profile to access the app.

5. Click Shipify in the Master Label column on the Connected Apps page.

6. In the Profiles related list on the Connected App Detail page, click Manage Profiles.

7. Select the System Administrator profile and click Save.

That’s it! The next step is to set up some environment variables on Heroku.

Configure the Heroku Environment Variables
Now that we’ve created the canvas app, we need to set up an environment variable for the consumer
secret.

1. From Setup, enter Apps in the Quick Find box, then select Apps.

2. In the Connected Apps related list, click Shipify.

3. Next to the Consumer Secret field, click the link Click to reveal.

111

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

4. Copy the consumer secret.

5. Open a command window, navigate to the Shipify-Node-App directory, and enter this
command to create the environment variable: heroku config:add
APP_SECRET='Your_Consumer_Secret'

If you’re working from a Windows computer, you may need to replace the single quotes with
double quotes (").

6. Enter this command: heroku config:add RUNNING_ON_HEROKU='true'

This specifies that the application is running on Heroku. This is helpful for testing so you don’t
need to re-deploy every time you make a change. If you’re working from a Windows computer,
you may need to replace the single quotes with double quotes (").

7. Enter this command to deploy the app to Heroku: git push heroku master

If the process completes successfully, you’ll see something like this:

-----> Compiled slug size: 11.2MB
-----> Launching... done, v6

http://deep-samurai-7923.herokuapp.com deployed to Heroku

To git@heroku.com:deep-samurai-7923.git
* [new branch] master -> master

If you receive a “permission denied” error message, you may need to set up your SSH key and add
it to Heroku. See https://devcenter.heroku.com/articles/keys.

You can quickly test that the canvas app is working in the full Salesforce site by clicking the Chatter tab.
Click the Shipify link on the left, and you’ll see the Heroku application appear right in Salesforce and display
a list of open orders, including the one you created in the previous chapter. Now we’ll add the canvas
custom action to the publisher layout so our users can see it.

Add the Action to the Global Publisher Layout
When we created the canvas app, we opted to automatically create the action. In this step, we’ll add the
action to the global publisher layout so that it shows up in the action bar in the Salesforce1 app.

112

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

https://devcenter.heroku.com/articles/keys

1. In the Salesforce application, from Setup, enter Publisher Layouts in the Quick Find
box, then select Publisher Layouts.

2. Click Edit next to the Global Layout.

This layout is the default for the publisher.

3. In the Salesforce1 and Lightning Experience Actions section, click override the predefined
actions.

4. Drag the Shipify element into the Salesforce1 and Lightning Experience Actions section so that it
appears as the first element.

Our warehouse workers are going to use this custom action a lot, so we’re putting it at the start
of the list so it is one of the first actions they see in the action bar.

Note: The canvas custom action was created automatically, so it used the name of the
canvas app for the name of the action (in this case, Shipify). In a production scenario,
change the action name to represent what the user can do. For example, we could change
the name of this action to Ship Orders.

5. Click Save.

Now that we’ve created the custom action and added it to the publisher layout, we’re ready to see it in
action (no pun intended).

Test Out the Canvas Custom Action
Now you’ll play the part of an Acme Wireless warehouse worker processing orders as we test out the
custom action in the Salesforce1 mobile app.

1. On your mobile device, tap to access the action menu.

2. Tap the Shipify action.

A list of all open invoices along with the customer account and warehouse information appears.

3. Tap one of the invoices, and a screen appears that shows the total amount of the invoice and a
Ship It button.

113

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

4. Tap Ship It.

This kicks off order processing in the Shipify Web application. Shipify sets the invoice status to
Closed. It also creates a feed item for the account showing that the invoice has shipped, the related
order number, and a link to the invoice.

114

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

You did it! You’ve gone through the entire process of integrating a Web application in the Salesforce1 app
using Force.com Canvas and canvas custom actions. Now warehouse workers can find customer orders,
ship them out, and then update the order and the account feed.

For more information about development guidelines for canvas apps in the publisher and action bar, see
Canvas Apps in the Chatter Publisher and Salesforce1 Action Bar on page 209.

Tell Me More: Get Context in your Canvas App
The Force.com Canvas SDK provides calls and objects that let you retrieve context information about the
application and the current user from Salesforce.

Getting Context
When you authenticate your canvas app using signed request, you get the CanvasRequest object (which
contains the Context object) as part of the POST to the canvas app URL. If you’re authenticating using
OAuth, or if you want to make a call to get context information, you can do so by making a JavaScript call.

115

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

You can use this information to make subsequent calls for information and code your app so that it appears
completely integrated with the Salesforce1 user interface.

The following code sample is an example of a JavaScript call to get context. This code creates a link with
the text “Get Context” which then calls the Sfdc.canvas.client.ctx function.

<script>
function callback(msg) {

if (msg.status !== 200) {
alert("Error: " + msg.status);
return;

}
alert("Payload: ", msg.payload);

}

var ctxlink = Sfdc.canvas.byId("ctxlink");
var client = Sfdc.canvas.oauth.client();
ctxlink.onclick=function() {

Sfdc.canvas.client.ctx(callback, client)};
}

</script>

Get Context

Context Objects
When you make a call to get context in your canvas app, you get a CanvasRequest object back in the
response. This object contains all the contextual information about the application and the user. The
context objects include:

DescriptionObject

Returns the Context and Client objects.CanvasRequest

Returns context information about the client app.Client

Returns information about the consumer of the canvas app. Contains the
Application, Environment, Links, Organization, and User objects.

Context

Returns information about the canvas app, such as version, access method,
URL, and so on.

Application

Returns information about the environment, such as location, UI theme, and
so on.

Environment

116

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

DescriptionObject

Returns links, such as the metadata URL, user URL, Chatter groups URL, and
so on. You can use these links to make calls into Salesforce from your app.

Links

Returns information about the organization, such as name, ID, currency code,
and so on.

Organization

Returns information about the currently logged-in user, such as locale, name,
user ID, email, and so on.

User

This code snippet shows an example of the CanvasRequest object:

{
"context":
{

"application":
{

"applicationId":"06Px000000003ed",
"authType":"SIGNED_REQUEST",
"canvasUrl":"http://instance.salesforce.com:8080

/canvas_app_path/canvas_app.jsp",
"developerName":"my_java_app",
"name":"My Java App",
"namespace":"org_namespace",
"referenceId":"09HD00000000AUM",
"samlInitiationMethod": "None",
"version":"1.0.0"

},
"user":
{

"accessibilityModeEnabled":false,
"currencyISOCode":"USD",
"email":"admin@6457617734813492.com",
"firstName":"Sean",
"fullName":"Sean Forbes",
"isDefaultNetwork":false,
"language":"en_US",
"lastName":"Forbes",
"locale":"en_US",
"networkId":"0DBxx000000001r",
"profileId":"00ex0000000jzpt",
"profilePhotoUrl":"/profilephoto/005/F",

117

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

"profileThumbnailUrl":"/profilephoto/005/T",
"roleId":null,
"siteUrl":"https://mydomain.force.com/",
"siteUrlPrefix":"/mycommunity",
"timeZone":"America/Los_Angeles",
"userId":"005x0000001SyyEAAS",
"userName":"admin@6457617734813492.com",
"userType":"STANDARD"

},
"environment":
{

"parameters":
{

"complex":
{

"key1":"value1",
"key2":"value2"

},
"integer":10,
"simple":"This is a simple string.",
"boolean":true

},
"dimensions":
{

"height": "900px",
"width": "800px",
"maxHeight":"2000px",
"maxWidth":"1000px",

"clientHeight":"80px",
"clientWidth":"968px"

},
"displayLocation":"Chatter",
"locationUrl": "http://www.salesforce.com

/some/path/index.html",
"uiTheme":"Theme3",
"record":{},
"version":
{

"api":"36.0",
"season":"SUMMER"

},
},

118

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

"organization":
{

"currencyIsoCode":"USD",
"multicurrencyEnabled":true,
"name":"Edge Communications",
"namespacePrefix":"org_namespace",
"organizationId":"00Dx00000001hxyEAA"

},
"links":
{

"chatterFeedItemsUrl":"/services/data/v36.0/
chatter/feed-items",

"chatterFeedsUrl":"/services/data/v36.0/
chatter/feeds",

"chatterGroupsUrl":"/services/data/v36.0/
chatter/groups",

"chatterUsersUrl":"/services/data/v36.0/
chatter/users",

"enterpriseUrl":"/services/Soap/c/36.0/
00Dx00000001hxy",

"loginUrl":"http://login.salesforce.com",
"metadataUrl":"/services/Soap/m/36.0/00Dx00000001hxy",
"partnerUrl":"/services/Soap/u/36.0/00Dx00000001hxy",
"queryUrl":"/services/data/v36.0/query/",
"recentItemsUrl":"/services/data/v36.0/recent/",
"restUrl":"/services/data/v36.0/",
"searchUrl":"/services/data/v36.0/search/",
"sobjectUrl":"/services/data/v36.0/sobjects/",
"userUrl":"/005x0000001SyyEAAS"

}
},
"client":
{

"instanceId":"06Px000000002JZ",
"instanceUrl":"http://instance.salesforce.com:

8080",
"oauthToken":"00Dx0000X00Or4J!ARQAKowP65p8FDHkvk.Uq5...",
"targetOrigin":"http://instance.salesforce.com:

8080"
},

"algorithm":"HMACSHA256",
"userId":"005x0000001SyyEAAS",

119

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

"issuedAt":null
}

For more information about context objects and the Force.com Canvas SDK, see the Force.com Canvas
Developer’s Guide.

Extending Salesforce1 with Canvas Apps in the Feed

Force.com Canvas enables you to add even more functionality to the feed by exposing your canvas apps
as feed items in the Salesforce1 app.

You can use this functionality to:

• Post to the feed from a canvas app exposed from a canvas custom action in the Salesforce1 action bar
or the publisher in the full Salesforce site.

• Post to the feed through the Chatter API.

• Display a canvas app directly inside a feed item.

In this chapter, we’ll further extend the Acme Wireless organization by integrating a third-party Web app
in the feed using Force.com Canvas.

Acme Wireless has a Web application that runs on Heroku called DeliveryTrakr that they use to process
deliveries of customer orders. We’ll copy the DeliveryTrackr application that runs on Heroku and make it
available as a global action from the publisher.

In this scenario, warehouse workers equipped with mobile devices can bring up a list of deliveries. When
warehouse workers access the app from the publisher, they can use it to create feed posts of different
types. The app can create a text post which is a feed item that contains information about a delivery, a link
post which is a feed item that contains a link to the DeliveryTrakr app, or a canvas post which is a feed
item that contains a link to another canvas app. The user can click on this link to access a canvas app that
lets them approve or deny a delivery.

Try It Out: Clone the DeliveryTrakr Web Application
We’ll start the process of integrating a canvas app in the feed by cloning the DeliveryTrakr Web application.

In addition to the prerequisites for this book listed in Development Prerequisites on page 72, you’ll also
need:

• “Customize Application” and “Modify All Data” user permissions. If you’re an administrator, you most
likely already have these permissions. Otherwise, you need to add them so that you can see the Canvas
App Previewer and create canvas apps.

120

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

https://developer.salesforce.com/docs/atlas.en-us.200.0.platform_connect.meta/platform_connect/
https://developer.salesforce.com/docs/atlas.en-us.200.0.platform_connect.meta/platform_connect/

• Git installed. Go here to install and configure Git:
https://help.github.com/articles/set-up-git.

After you install Git, you might need to configure SSH using the keygen tool. See
https://help.github.com/articles/generating-ssh-keys for more information.
If you’re using Windows, this tool is located in the Git \bin directory, which isn’t added to the path
after you install Git. Add the \bin directory to your path by using Control Panel. Depending on your
installation directory, the path might be something like: C:\Program Files (x86)\Git\bin.

• A GitHub account to clone the code example. Go here to set up a GitHub account:
https://github.com/plans.

• A Heroku account because our Web application will run on Heroku. Go here to create a Heroku account:
https://api.heroku.com/signup.

• Heroku Toolbelt to manage the Heroku app from the command line. Go here to download and install
Heroku Toolbelt: https://toolbelt.heroku.com.

The steps to create and run a canvas app are the same, regardless of the app’s functionality. So the steps
in this chapter are similar to those of the previous chapter, Extending Salesforce1 with Canvas Custom
Actions on page 106.

DeliveryTrakr is a Web application that Acme Wireless uses to track deliveries of customer orders. The
warehouse workers use this application to check for orders that have been delivered and post delivery
information to the feed. The DeliveryTrakr Web application contains some delivery processing logic, but
it’s not a full application. Its purpose is to demonstrate how you can integrate your Web applications with
the Salesforce1 app.

DeliveryTrakr is a Java application that runs on Heroku. Each running instance of the application must
reference the consumer secret for the connected app that you create in your organization. Therefore, you’ll
need to have your own instance of DeliveryTrakr on Heroku that you can then add as a canvas app. In this
step, we’ll clone the application, which is the first step in the process.

1. Open a command window and navigate to the directory where you want to download DeliveryTrakr.
When you clone the application, it will create a directory called
Delivery-Tracker-Java-App from wherever you run the clone command.

• From a computer running Windows, open a command window by clicking Start > Run... and
entering in cmd.

• From a computer running Mac OS, open a command window by pressing Command + Space
and entering terminal.

2. Enter the command: git clone
https://github.com/forcedotcom/Delivery-Tracker-Java-App

121

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

https://help.github.com/articles/set-up-git
https://help.github.com/articles/generating-ssh-keys
https://github.com/plans
https://api.heroku.com/signup
https://toolbelt.heroku.com/

3. Navigate to the Delivery-Tracker-Java-App directory. For example, if your
Delivery-Tracker-Java-App directory is located in C:\Users\yourname, you
would enter this command: cd C:\Users\yourname\Delivery-Tracker-Java-App

4. Enter this command to log in to Heroku: heroku login

When prompted, enter your email and password.

5. Enter this command to create a new Heroku app: heroku apps:create

Confirmation that the app was created looks like this:

Creating deep-samurai-7923... done, stack is cedar
http://deep-samurai-7923.herokuapp.com/ |
git@heroku.com:deep-samurai-7923.git
Git remote heroku added

6. Copy the URL of the Heroku app because we’ll use it in the next task. In this example, the URL is
http://deep-samurai-7923.herokuapp.com, but you’ll want to copy the URL of
your own Heroku app.

We’ve created the DeliveryTrakr Web application in Heroku, but it won’t work yet because we still
need to deploy it, which we’ll do in a later step.

The next step is to add it as a canvas app in Salesforce.

Create the DeliveryTrakr Canvas App
In this step, we’ll expose the DeliveryTrakr Web application as a canvas app.

You’ll need user permissions “Customize Application” and “Modify All Data” to create a canvas app.

1. In the Salesforce application, from Setup, enter Apps in the Quick Find box, then select
Apps.

2. In the Connected Apps related list, click New.

3. In the Connected App Name field, enter DeliveryTrakr.

4. In the Contact Email field, enter your email address.

5. In the API (Enable OAuth Settings) section, select Enable OAuth Settings.

6. In the Callback URL field, paste the URL of the Heroku app you just created and change the
protocol to HTTPS. For example, your final URL might look something like
https://deep-samurai-7923.herokuapp.com.

7. In the Selected OAuth Scopes field, select Full access and click Add.

122

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

As a best practice, you’ll want to keep the OAuth scopes as limited as needed for your canvas app
functionality.

8. In the Canvas App Settings section, select Force.com Canvas.

9. In the Canvas App URL field, enter the same URL you entered in the Callback URL field
with /canvas.jsp appended to it. For example, the URL might look like
https://deep-samurai-7923.herokuapp.com/canvas.jsp.

10. In the Access Method drop-down list, select Signed Request (POST).

11. In the Locations field, select Chatter Feed and Publisher and click Add.

We selected these values because the canvas app appears in the publisher as well as in the feed.

123

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

12. Click Save. After the canvas app is saved, the detail page appears.

We added the canvas app, and now we’ll specify who can access it.

Configure Who Can Access the DeliveryTrakr Canvas App
You’ve created the canvas app, but no one can see it until you configure user access.

1. From Setup, enter Connected Apps in the Quick Find box, then select the option for
managing connected apps.

2. Click the DeliveryTrakr app, and then click Edit.

3. In the Permitted Users drop-down list, select Admin approved users are pre-authorized. Click
OK on the pop-up message that appears.

4. Click Save.

Now you’ll define who can see your canvas app. This can be done using profiles and permission
sets. In this example, we’ll allow anyone with the System Administrator profile to access the app.

5. On the Connected App Detail page, in the Profiles related list, click Manage Profiles.

6. Select the System Administrator profile and click Save.

That’s it! The next step is to set up some environment variables on Heroku.

124

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

Configure the Heroku Environment Variables
Now that we’ve created the canvas app, we need to set up an environment variable for the consumer
secret.

1. From Setup, enter Apps in the Quick Find box, then select Apps.

2. In the Connected Apps related list, click DeliveryTrakr.

3. Next to the Consumer Secret field, click the link Click to reveal.

4. Copy the consumer secret.

5. Open a command window, navigate to the Delivery-Tracker-Java-App directory, and
enter this command to create the environment variable: heroku config:add
APP_SECRET='Your_Consumer_Secret'

If you’re working from a Windows computer, you may need to replace the single quotes with
double quotes (").

6. Navigate to the Delivery-Tracker-Java-App\src\main\webapp\scripts
directory.

7. Open shipment.js in an editor. In the onGetPayload function, replace YOUR_APP_URL
with the URL of your DeliveryTrakr app on Heroku: p.url =
"https://[YOUR_APP_URL]/signed-request.jsp?shipment=" +
shipment;

This code is located on or around line 231. Using our example, the line of code should look like:

p.url = "https://deep-samurai-7923.herokuapp.com/
signed-request.jsp? shipment=" + shipment;

8. Save the changes to shipment.js and navigate back to the
Delivery-Tracker-Java-App directory.

9. Enter this command: heroku config:add RUNNING_ON_HEROKU='true'

This specifies that the application is running on Heroku. This is helpful for testing so you don’t
need to re-deploy every time you make a change. If you’re working from a Windows computer,
you may need to replace the single quotes with double quotes (").

10. Enter this command to get the file ready to commit: git add —A

11. Enter this command to commit the changes along with a comment: git commit —m
'MyChangeComments'

If you’re working from a Windows computer, you may need to replace the single quotes with
double quotes (").

125

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

12. Enter this command to deploy the app to Heroku: git push heroku master

If the process completes successfully, you’ll see something like this:

-----> Compiled slug size: 11.2MB
-----> Launching... done, v6

http://deep-samurai-7923.herokuapp.com deployed to Heroku

To git@heroku.com:deep-samurai-7923.git
* [new branch] master -> master

If you receive a “permission denied” error message, you may need to set up your SSH key and add
it to Heroku. See https://devcenter.heroku.com/articles/keys.

You can quickly test that the canvas app is working from Setup in the full Salesforce site by clicking Canvas
App Previewer. Click the DeliveryTrakr link on the left, and you’ll see the Heroku application running
in the previewer and displaying a list of shipments and their delivery status. Now we’ll create a global
action for the canvas app so that your mobile users can starting using what you’ve created.

Create a Global Action
We’ll create a global custom action for the DeliveryTrakr app so that we can then add it to the global
publisher layout.

In the previous canvas example, we selected Create Actions Automatically when we created
the canvas app in Salesforce. So the global action was created for us. In this scenario, we didn’t select that
field, so we’ll step through creating the action manually.

1. If the Canvas Previewer is still open, click Close. From Setup, enter Actions in the Quick
Find box, then select Global Actions.

2. Click New Action.

3. In the Action Type drop-down list, select Custom Canvas.

4. In the Canvas App drop-down list, select DeliveryTrakr.

5. In the Label field, enter Track Deliveries.

This is the label that appears to the user in the action bar and action menu in the Salesforce1 app
or in the publisher in the full Salesforce site.

126

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

https://devcenter.heroku.com/articles/keys

6. Click Save.

Now that we’ve created the global custom action, we’ll add the action to the global publisher layout. This
ensures that the action appears in the action bar where mobile users can access it.

Add the Action to the Global Publisher Layout
We just created the global action for the canvas app. Now we’ll add the action to the global publisher
layout to have it appear in the action bar in the Salesforce1 app.

1. From Setup, enter Publisher Layouts in the Quick Find box, then select Publisher
Layouts.

2. Click Edit next to the Global Layout.

3. Drag the Track Deliveries element into the first position in the Salesforce1 and Lightning Experience
Actions section.

Our warehouse workers are going to use this custom action a lot, so we’re putting it at the start
of the list so it is one of the first actions they see in the action bar.

4. Click Save.

Now that we’ve created the custom action and added it to the publisher layout, we’re ready to see it in
action.

127

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

Test Out the DeliveryTrakr Canvas App
Now you’ll play the part of an Acme Wireless warehouse worker processing deliveries, and we’ll test out
the canvas app in the Salesforce1 app.

The DeliveryTrakr app demonstrates how a canvas app can create one of three types of posts in the feed:

• Text post—Feed item that contains information about a delivery.

• Link post—Feed item that contains a link to the DeliveryTrakr app.

• Canvas post—Feed item that contains a link to another canvas app. This app is used by warehouse
workers to approve or deny a delivery.

1. On your mobile device, tap Feed from the navigation menu.

2. In the action bar, tap to access the action menu.

3. Tap the Track Deliveries action.

The DeliveryTrakr app appears, displaying a list of shipments.

4. Tap one of the deliveries in the grid.

128

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

5. Tap Text Post.

You can also add some of your own text to the post by entering it in the What are you working
on? pane.

6. Tap Share.

This creates a text feed post about the shipment, and that post appears in the current user’s feed.

129

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

7. To test out creating a link post, tap the Track Deliveries action in the action bar.

8. Tap one of the deliveries in the grid.

9. Tap Link Post.

You can also add some of your own text to the post by entering it in the What are you working
on? pane.

130

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

10. Tap Share.

This creates a link feed post about the shipment, and that post appears in the current user’s feed.
When you click the link, it brings you to the DeliveryTrakr app running on Heroku.

131

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

11. To test out creating a canvas post, tap the Track Deliveries action again.

12. Tap one of the deliveries in the grid.

13. Tap Confirmation Post.

You can also add some of your own text to the post by entering it in the What are you working
on? pane.

14. Tap Share.

This creates a canvas feed post about the shipment with a link. When you click the link, it actually
takes you to a canvas app where you can complete or cancel a shipment.

132

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

You did it! You’ve gone through the entire process of creating a canvas app that posts a text feed item, a
link feed item, and—most importantly—a canvas app in the feed.

For more information about development guidelines for canvas apps in the feed, see Canvas Apps in the
Feed on page 211.

Tell Me More: About the Code to Create Feed Items
In the code for the DeliveryTrakr Web application, the shipment.js file contains the logic to create
the various feed items.

Creating a Canvas Feed Item
This code snippet from the onGetPayload function creates a feed item of type CanvasPost. As
you can see, it dynamically sets all the post values and retrieves information about the canvas app, such

133

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

as the namespace and developerName, from the signed request. You can also pass in parameters
that are appended to the URL and used in the canvas app feed item.

else if ("approval" === action)
{

p.feedItemType = "CanvasPost";
p.auxText = "Please confirm this shipment status: " +

shipments[shipment].description;
p.namespace = sr.context.application.namespace;
p.developerName = sr.context.application.developerName;
p.thumbnailUrl = "https://cdn1.iconfinder.com/data/icons/

VISTA/project_managment/png/48/deliverables.png";
p.parameters = "{\"shipment\":\"" + shipment + "\"}";
p.title = shipments[shipment].description;
p.description = "This is a travel shipment for Shipment - " +

shipments[shipment].description +
". Click the link to open the canvas app.";

}

Enabling the Share Button
This code snippet is from the draw function. After this statement is called, the Share button is enabled.
This ensures that the user can’t create a feed item until they have selected all the required elements for
the canvas app.

$$.client.publish(sr.client, {
name : 'publisher.setValidForSubmit',
payload : true});

Publishing the Feed Item
When the user clicks the Share button, this code snippet publishes the feed item to the feed. The type of
feed item it creates depends on which type you select: text, link, or canvas.

$$.client.publish(sr.client, {name : 'publisher.setPayload',
payload : p});

134

Chapter 13 Integrating Your Web Applications in Salesforce1 with Force.com Canvas

CHAPTER 14 Calling Quick Actions from the API

You can further extend the power of actions by calling them from the REST
API.

In this chapter ...

• Try It Out: Create an
Invoice Action Throughout this guide, we’ve seen how powerful actions are because they

let you quickly extend the Salesforce1 app and give users the functionality
• Tell Me More: Quick

Actions and the REST
API

they need right within the publisher. You can harness this power outside
of the Salesforce1 app by calling actions from the REST API.

In this chapter, we’ll walk through creating an action off the Invoice object
and calling it from the Shipify Web application. After we make our changes,
when users access the Shipify canvas app and click Ship It, the app will
add a delivery record in Salesforce.

Note: This chapter builds on the tasks completed in the section
Extending Salesforce1 with Canvas Custom Actions on page 106. Be
sure to complete the steps of downloading the Shipify Web
application and creating the canvas app before starting the tasks in
this chapter.

135

Try It Out: Create an Invoice Action

In this step, we’ll create the Invoice action that adds the delivery record.

1. From the object management settings for custom objects, click Invoice.

2. Scroll down to the Buttons, Links, and Actions related list and click New Action.

3. In the Action Type drop-down list, select Create a Record.

4. In the Target Object drop-down list, select Delivery.

5. In the Label field, enter Create Delivery.

The action name defaults to Create_Delivery. This is name by which the action is referenced by
the API.

6. Click Save.

7. After you save the action, the page layout editor appears. Drag the Invoice, Order Number, and
Owner fields to the page layout.

8. Click Save.

136

Chapter 14 Calling Quick Actions from the API

Now that we’ve created the action, we’ll add the code to the Shipify Web application that’s running on
Heroku.

Add the Code to Call the Action
We’ll add the code that calls the Create_Delivery action by using the REST API.

1. Navigate to the Shipify-Node-App directory where you downloaded the Shipify Web
application. Copy the file shipment_with_action_api_call.js to file
shipment.js.

• On a Windows computer, the command would be: copy
shipment_with_action_api_call.js shipment.js

• On a Mac OS computer, the command would be: cp
shipment_with_action_api_call.js shipment.js

2. Confirm that you want to overwrite shipment.js.

3. Enter this command to get the files ready to commit: git add —A

4. Enter this command to commit the changes along with a comment: git commit —m
'MyChangeComments'

If you’re working from a Windows computer, you may need to replace the single quotes with
double quotes (").

137

Chapter 14 Calling Quick Actions from the API

5. Enter this command to deploy the app to Heroku: git push heroku master

Example: If you look at the code in shipment.js that creates the delivery record, you’ll see
that it passes the invoice ID and does a POST to the /quickActions/Create_Directory
resource.

Shipment.prototype.createDelivery = function createDelivery(so) {

var self = this;
var authorization = this._formatAuthHeader(so.authorization);

if(!so.invoiceId) {
var err = new Error("Must Pass InvoiceId to Ship!");
err.statusCode = '400';
err.err = err.message;
this.emit('create-delivery', err);
return;

}
var quickActionBody = {

contextId: so.invoiceId,
record: {

Order_Number__c: so.orderNumber
}

};

var deliveryReq = {
url: so.instanceUrl + '/services/data/v29.0/

sobjects/Invoice__c/quickActions/Create_Delivery/',
method: 'POST',
headers: {

'Authorization': authorization,
'Content-Type': 'application/json'

},
body: JSON.stringify(quickActionBody)

};

//Make Ajax request and emit 'create-delivery'
//with result data or error back to listner.
request(deliveryReq, this.handleAJAXResponse(

'create-delivery'));
};

We’ve got our API call all ready to go, so let’s test it out by shipping a customer order.

138

Chapter 14 Calling Quick Actions from the API

Test Out Calling the Action from the API
Now we’ll test out the code that calls the action and adds a delivery record in the Salesforce1 app.

1. From your mobile device, tap the Shipify action in the action bar.

A list of all open invoices along with the customer information appears.

2. Tap one of the invoices. A screen appears that shows the total amount of the invoice and a Ship
It button.

139

Chapter 14 Calling Quick Actions from the API

3. Tap Ship It.
This kicks off order processing in the Shipify Web application. Shipify sets the invoice status to
Closed and creates a feed item for the account. But now, a delivery record is also created for the
invoice. After the order is shipped, you’ll see a confirmation screen.

4. Tap Cancel.
In the feed, you’ll see the new delivery record

140

Chapter 14 Calling Quick Actions from the API

5. To see the closed invoice, tap and then tap Accounts.

6. Tap the account for the shipped order and swipe to the Feed. You’ll see a feed item that lets the
user know the order has been shipped.

141

Chapter 14 Calling Quick Actions from the API

Voila! You’ve now gone through the process of updating the Shipify Web application to make a REST API
call to invoke the action that you created.

Tell Me More: Quick Actions and the REST API

The REST API contains a number of resources and calls that you can use when working with actions.

Quick Actions
Use the Quick Actions resource to return a list of actions as well as custom fields and objects that appear
in the feed. The resource uses a URI of the format services/data/v36.0/quickActions/.

You might have a preferred tool for working with Salesforce APIs. If you don’t have a preferred tool,
Workbench is an easy way to get started. You can find information about Workbench at
https://developer.salesforce.com/page/Workbench. You can find information about the REST API in the
Force.com REST API Developer’s Guide.

142

Chapter 14 Calling Quick Actions from the API

https://developer.salesforce.com/page/Workbench
https://developer.salesforce.com/docs/atlas.en-us.200.0.api_rest.meta/api_rest

Global Actions

To return global actions, use: services/data/v36.0/quickActions/

A call to this resource returns information about the global actions including our Shipify canvas custom
action as shown in this snippet of the response.

...
{
"urls" : {

"quickAction" : "/services/data/v36.0/
quickActions/LogACall",

"defaultValues" : "/services/data/v36.0/
quickActions/LogACall/defaultValues",

"describe" : "/services/data/v36.0/
quickActions/LogACall/describe"

},
"name" : "LogACall",
"type" : "LogACall",
"label" : "Log a Call"

},
{
"urls" : {

"quickAction" : "/services/data/v36.0/
quickActions/Shipify",

"describe" : "/services/data/v36.0/
quickActions/Shipify/describe"

},
"name" : "Shipify",
"type" : "Canvas",
"label" : "Shipify"

},
...

Object Actions

To return a specific object’s actions, as well as global actions, use:
services/data/v36.0/sobjects/object/quickActions/

The call /services/data/v36.0/sobjects/Invoice__c/quickActions returns
information about global actions as well as the Invoice Create_Delivery action, as shown in
this snippet of the response.

...
{ "urls" : {

"quickAction" : "/services/data/v36.0/

143

Chapter 14 Calling Quick Actions from the API

quickActions/Shipify",
"describe" : "/services/data/v36.0/

quickActions/Shipify/describe"
},
"name" : "Shipify",
"type" : "Canvas",
"label" : "Shipify"
},
{
"urls" : {

"defaultValuesTemplate" : "/services/data/v36.0/
sobjects/Invoice__c/quickActions/Create_Delivery/
defaultValues/{ID}",

"quickAction" : "/services/data/v36.0/
sobjects/Invoice__c/quickActions/Create_Delivery",

"defaultValues" : "/services/data/v36.0/
sobjects/Invoice__c/quickActions/Create_Delivery/
defaultValues",

"describe" : "/services/data/v36.0/
sobjects/Invoice__c/quickActions/Create_Delivery/
describe"

},
"name" : "Invoice__c.Create_Delivery",
"type" : "Create",
"label" : "Create Delivery"

},
...

Specific Actions

To return a specific action, use:
services/data/v36.0/sobjects/object/quickActions/Action_Name

The call /services/data/v36.0/sobjects/Invoice__c/
quickActions/Create_Delivery returns information about only the Create_Delivery
action, as shown in this response.

{
"colors": [

{
"theme": "theme4",
"color": "AA8E0A",
"context": "primary"

},
{

144

Chapter 14 Calling Quick Actions from the API

"theme": "theme3",
"color": "AA8E0A",
"context": "primary"

}
],
"miniIconUrl": "https://instance.salesforce.com/img/

icon/custom51_100/truck16.png",
"sourceSobjectType": "Invoice__c",
"targetParentField": "Invoice__c",
"targetRecordTypeId": null,
"targetSobjectType": "Delivery__c",
"visualforcePageName": null,
"iconUrl": "https://instance.salesforce.com/img/

icon/custom51_100/truck32.png",
"iconName": null,
"canvasApplicationName": null,
"height": null,
"icons" : [],

...
"layout": {

"layoutRows": [{
"layoutItems": [

{
"layoutComponents": [{

"details": {
"namePointing": false,
"custom": true,
"htmlFormatted": false,
"dependentPicklist": false,
"calculatedFormula": null,
"defaultValueFormula": null,
"defaultedOnCreate": false,
"digits": 0,
"groupable": true,
"permissionable": false,
"referenceTo": ["Invoice__c"],
"relationshipOrder": 0,
"soapType": "tns:ID",
"nameField": false,
"sortable": true,
"filterable": true,
"restrictedPicklist": false,
"caseSensitive": false,

145

Chapter 14 Calling Quick Actions from the API

"calculated": false,
"scale": 0,
"nillable": false,
"externalId": false,
"idLookup": false,
"controllerName": null,
"deprecatedAndHidden": false,
"inlineHelpText": null,
"writeRequiresMasterRead": false,
"createable": true,
"updateable": false,
"relationshipName": "Invoice__r",
"autoNumber": false,
"unique": false,
"picklistValues": [],
"displayLocationInDecimal": false,
"cascadeDelete": true,
"restrictedDelete": false,
"length": 18,
"name": "Invoice__c",
"type": "reference",
"defaultValue": null,
"byteLength": 18,
"label": "Invoice",
"precision": 0

},
"displayLines": 1,
"tabOrder": 1,
"value": "Invoice__c",
"type": "Field"

}],
"placeholder": false,
"editable": true,
"required": true,
"label": "Invoice"

},
{

"layoutComponents": [],
"placeholder": true,
"editable": false,
"required": false,
"label": ""

}
],

146

Chapter 14 Calling Quick Actions from the API

"numItems": 2
}],
"useCollapsibleSection": false,
"useHeading": false,
"columns": 2,
"heading": null,
"rows": 1

},
"defaultValues": [],
"width": null,
"urls": {

"defaultValuesTemplate": "/services/data/v36.0/
sobjects/Invoice__c/quickActions/
Create_Delivery/defaultValues/{ID}",

"quickAction": "/services/data/v36.0/
sobjects/Invoice__c/quickActions/Create_Delivery",

"defaultValues": "/services/data/v36.0/
sobjects/Invoice__c/quickActions/
Create_Delivery/defaultValues",

"describe": "/services/data/v36.0/
sobjects/Invoice__c/quickActions/
Create_Delivery/describe"

},
"name": "Invoice__c.Create_Delivery",
"type": "Create",
"label": "Create Delivery"

}

Action Details

To return a specific action’s descriptive detail, use:
services/data/v36.0/sobjects/object/quickActions/Action_Name/describe/

Action Default Values and Field Values

To return a specific action’s default values, including default field values, use:
services/data/v36.0/sobjects/object/quickActions/Action_Name/defaultValues/

The call /services/data/v36.0/sobjects/Invoice__c/
quickActions/Create_Data/defaultValues returns information about defaults for
the Invoice Create_Delivery action, as shown in this snippet of the response.

...
{

"attributes":{
"type":"Delivery__c"

147

Chapter 14 Calling Quick Actions from the API

}
}
...

Action Default Values

To return the default values for an action, use: /services/data/v36.0/subjects/
object/quickActions/Action_Name/defaultValues/Parent_ID

Describe Layouts
Use the global describe layouts resource to get global layout information for objects, including action
objects. The resource uses a URI of the format: services/data/v36.0/
sobjects/Global/describe/layouts/

A call to this resource returns layout information for the global actions (including our Shipify canvas custom
action), as shown in this response.

{
"recordTypeSelectorRequired":[

false
],
"recordTypeMappings":[

],
"layouts":[

{
"relatedLists":[

],
"relatedContent":null,
"detailLayoutSections":[

],
"editLayoutSections":[

],
"multirowEditLayoutSections":[

],
"offlineLinks":[

],
"buttonLayoutSection":null,

148

Chapter 14 Calling Quick Actions from the API

"highlightsPanelLayoutSection":null,
"quickActionList":{

"quickActionListItems":[
{

"quickActionName":"Shipify",
"colors":[

],
"miniIconUrl":null,
"targetSobjectType":null,
"iconUrl":null,
"urls":{

"quickAction":"/services/data/v36.0/
quickActions/Shipify",

"describe":"/services/data/v36.0/
quickActions/Shipify/describe"

},
"icons":[

],
"type":"Canvas",
"label":"Shipify"

},
{

"quickActionName":"FeedItem.TextPost",
"colors":[

],
"miniIconUrl":null,
"targetSobjectType":null,
"iconUrl":null,
"urls":{

},
"icons":[

],
"type":"Post",
"label":"Post"

},
{

"quickActionName":"FeedItem.ContentPost",
"colors":[

149

Chapter 14 Calling Quick Actions from the API

],
"miniIconUrl":null,
"targetSobjectType":null,
"iconUrl":null,
"urls":{

},
"icons":[

],
"type":"Post",
"label":"File"

},
{

"quickActionName":"NewTask",
"colors":[

{
"color":"44A12C",
"theme":"theme4",
"context":"primary"

},
{

"color":"1797C0",
"theme":"theme3",
"context":"primary"

}
],
"miniIconUrl":"https://instance.

salesforce.com/img/icon/tasks16.png",
"targetSobjectType":"Task",
"iconUrl":"https://instance.

salesforce.com/img/icon/home32.png",
"urls":{

"quickAction":"/services/data/v36.0/
quickActions/NewTask",

"defaultValues":"/services/data/v36.0/
quickActions/NewTask/defaultValues",

"describe":"/services/data/v36.0/
quickActions/NewTask/describe"

},
"icons":[

{
"url":"https://instance.

150

Chapter 14 Calling Quick Actions from the API

salesforce.com/img/icon/home32.png",
"height":32,
"theme":"theme3",
"width":32,
"contentType":"image/png"

},
{

"url":"https://instance.
salesforce.com/img/icon/tasks16.png",

"height":16,
"theme":"theme3",
"width":16,
"contentType":"image/png"

},
...

],
"type":"Create",
"label":"New Task"

},
{

"quickActionName":"NewContact",

...
],
"type":"Create",
"label":"New Contact"

},
...

"type":"Create",
"label":"New Lead"

},
{

"quickActionName":"FeedItem.LinkPost",
"colors":[

],
"miniIconUrl":null,
"targetSobjectType":null,
"iconUrl":null,
"urls":{

},
"icons":[

151

Chapter 14 Calling Quick Actions from the API

],
"type":"Post",
"label":"Link"

},
{

"quickActionName":"FeedItem.PollPost",
"colors":[

],
"miniIconUrl":null,
"targetSobjectType":null,
"iconUrl":null,
"urls":{

},
"icons":[

],
"type":"Post",
"label":"Poll"

}
]

},
"id":"00hR0000000MpLAIA0"

}
]

}

Use the describe layouts resource to obtain a description of a layout for a specific object, including action
objects. The resource uses a URI of the format: services/data/
v36.0/sobjects/object/describe/layouts/

152

Chapter 14 Calling Quick Actions from the API

CHAPTER 15 Extending the User Interface with
Lightning Pages

In this chapter, we’ll extend the Acme Wireless organization for a different
mobile audience. In our scenario, Acme Wireless maintains a central

In this chapter ...

• What Is a Lightning
Page?

warehouse where all the repair parts and accessories are stored. The
storefront locations order parts from the warehouse so that they can keep

• Lightning Pages: The
Big Picture

some inventory on hand. When they need a special part that’s not in stock,
storefronts can special order it from the warehouse.

• Deploying a
Lightning Page

Instead of focusing on the mobile technicians like we have for most of this
book, this time we’re going to shift our attention to the delivery drivers

• About Lightning
Page Tabs

transporting inventory from the warehouse to the storefronts. Currently,
the drivers use a custom app to create, update, and track their deliveries.

• Making Your
Lightning Page

We’re going to use a Lightning Page to create a home page for that app,
which will allow us to incorporate it into Salesforce1. This way, the drivers
have a single source for information they need to manage their deliveries.Available in

Salesforce1

• Tell Me More:
Lightning Pages

153

What Is a Lightning Page?

A Lightning Page is a custom layout that lets you design pages for use in the Salesforce1 mobile app or
in Lightning Experience.

Lightning Pages occupy a middle ground between page layouts and Visualforce pages. Like a page layout,
Lightning Pages allow you to add custom items to a page. However, these items, instead of being fields
or Visualforce components, are Lightning components, which allow much more flexibility.

You can use a Lightning Page to create an app home page that you can add to the Salesforce1 navigation
menu. An app home page is a mobile home page that enables your users to quickly access the objects
and items that are most important in that app.

You can also assign global quick actions to a Lightning Page by specifying them in the Lightning Page
XML. When users access the Lightning Page, any global actions that you’ve assigned to it will show up in
the action bar at the bottom of the page.

Lightning Pages
A Lightning Page consists of a list of regions containing ComponentInstances. A ComponentInstance
contains properties for an instance of a particular component, such as which Lightning component the
instance points to, and a set of name/value pairs representing a subset of the Lightning component’s
attributes.

Available Standard Lightning Components
Not every Lightning component can be specified in a ComponentInstance. Even among those that are
allowed, not all their attributes can be specified. Currently, these Lightning components are supported for
use across all types of Lightning Pages.

flexipage:filterListCard
Points to a list view and displays the first few records from that view.

The flexipage:filterListCard component supports all list views that are associated with
standard and custom objects except:

• Activity

• ContentVersion (Files)

• Task

• User

• UserProfile

154

Chapter 15 Extending the User Interface with Lightning Pages

flexipage:recentItems
A list of most recently used items that supports these objects, based on the specified properties:

• All custom objects

• All standard objects for which both of these conditions are true:

– A compact layout is defined for the object.

– The object is tracked in the most recently used objects list.

If an object is tracked in the most recently used objects list, one or both of the LastViewedDate
or LastReferencedDate fields will be present.

The Recent Items component doesn’t support these objects:

• ContentVersion (Files)

• User

• UserProfile

flexipage:reportChart
Use the Report Chart component to include a chart from a report in your Lightning Page.

Properties:

• label: If you leave this property blank, the component label is taken from the label of the report
instead.

• reportName: the API name of the report

This component is supported in API version 32.0 and later. It doesn’t work with reports that are located
in the My Personal Custom Reports folder. Report Chart components that refer to reports in the Unfiled
Public Reports folder aren’t deployable if you include them in a package.

flexipage:richText
Use the Rich Text component to add text and simple HTML markup to your Lightning Page.

Properties:

• richTextValue: the HTML or text to display

Note: JavaScript, CSS, iframes, and other advanced markup aren’t supported. To use
advanced HTML elements in a component, we recommend using a Visualforce page
component or a custom Lightning component.

The Rich Text component is limited to 4,000 characters. This component is supported in API version
32.0 and later.

155

Chapter 15 Extending the User Interface with Lightning Pages

flexipage:tab (Pilot)
Use the Tabs component to add a set of tabs to a region of your Lightning Page. Choose from a set of
standard tabs or create custom tabs to enhance record pages for your Lightning Experience users.

You can place up to 25 tabs in a Tabs component. This component is supported in API version 36.0
and later.

Use the Report Chart component to include a chart from a report in your Lightning Page.

The Tabs component is part of the pilot program for creating and editing record pages in Lightning
Experience.

Note: Creating and editing Lightning Experience record pages using the Lightning App Builder
is currently available to Developer Edition organizations through a pilot program. Pilot programs
are subject to change, and as such, we cannot guarantee a particular time frame in which this
feature can be enabled. Any unreleased services or features referenced in this document, press
releases, or public statements are not currently available and may not be delivered on time or
at all. Customers who purchase our services should make their purchase decisions based on
features that are currently available.

flexipage:visualforcePage
Use the Visualforce Page component to include a Visualforce page in your Lightning Page.

Properties:

• label: the component label. If you leave this property blank, the component label is taken from
the label of the Visualforce page.

• pageName: the API name of the Visualforce page to render

• height: the height of the Visualforce page in pixels. This value must be a whole number, and not
negative. If this property is left blank, a default height of 300 pixels is assigned.

This component is supported in API version 32.0 and later.

To appear in Salesforce1, the Visualforce page must have the Available for Salesforce
mobile apps and Lightning Pages option selected. This option is available for pages
that are set to API version 27.0 and later.

salesforceIdentity:appLauncherDesktop
The App Launcher displays a user’s available Salesforce apps and any connected apps the administrator
configures. Users navigate between apps using the App Launcher.

This component is supported in API version 35.0 and later.

Contact Salesforce to enable the App Launcher component for the Lightning App Builder in your
organization.

156

Chapter 15 Extending the User Interface with Lightning Pages

wave:waveDashboard

Use the Wave Dashboard component to include Wave Analytics dashboards in your Lightning Page.
This component is supported for desktop only.

Properties:

• dashboard: the name of the dashboard to display.

• height: the height of the dasboard in pixels. This value must be a whole number, and not negative.
If this property is left blank, a default height of 300 pixels is assigned.

• filter: the filters to apply to the dashboard at run time, in JSON. For example,
{datasetDeveloperName1:{field1:[value]},datasetDeveloperName1:{field1:[value1,value2],field2:["value3,
with comma"]}}.

• showTitle: enable the dashboard’s title to appear.

• openLinksInNewWindow: whether to open a link from the dashboard to another asset in the same
window, replacing the dashboard, or in a new window.

• hideOnError: whether to hide the Wave dashboard when an error occurs.

Contact Salesforce to enable the Wave Dashboard component for the Lightning App Builder.

Lightning Pages: The Big Picture

It’s not enough to just create the XML for the Lightning Page. After you create it, you’ve got to deploy it
to your organization, configure the page, and get it into Salesforce1. Here’s an overview of the steps from
beginning to end:

1. Before creating your page, determine which components you want to include and the global
actions your users need.

2. Create the Lightning Page XML file.

3. Add actions to your page.

You can assign specific global actions to your Lightning Page in the XML for the page. If you don’t
define specific actions in the XML, the action bar won’t appear on the page.

4. Deploy the Lightning Page into your development organization.

5. Create a Lightning Page custom tab.

6. Add your Lightning Page tab to the Salesforce1 navigation menu.

We’ll walk through all these tasks, starting with step 2, in this chapter. But before we can get started, we
need to download the custom Deliveries app that the delivery drivers have been using.

157

Chapter 15 Extending the User Interface with Lightning Pages

Before We Begin: Download the Deliveries App
As we mentioned previously, Acme Wireless delivery drivers use a custom app to create, update, and track
their deliveries. We want to add a Lightning Page to it so we can surface it in Salesforce1, but before we
can do that, we need to download the custom app.

1. Go to
https://github.com/forcedotcom/Salesforce1-Dev-Guide-Setup-Package.

2. Click Download ZIP.

3. Save the Salesforce1-Dev-Guide-Setup-Package.zip to your hard drive.

4. Extract the Salesforce1-Dev-Guide-Setup-Package.zip file.

In it, you’ll find Salesforce1_Dev_Guide_Deliveries_App.zip.

5. Now extract the Salesforce1_Dev_Guide_Deliveries_App.zip file.

Remember where you extracted the Deliveries app files, because we’ll be returning there shortly.

Creating a Lightning Page
You create a Lightning Page manually in XML, then deploy it into Salesforce either through the Force.com
Migration Tool, the Force.com IDE, or Workbench.

The Lightning Page layout and style is provided by Salesforce. There’s no custom coding necessary.

Here’s a sample of what a Lightning Page XML file looks like. This is our Deliveries app starting code, which
we’ll work with in the next exercise.

158

Chapter 15 Extending the User Interface with Lightning Pages

https://github.com/forcedotcom/Salesforce1-Dev-Guide-Setup-Package

1. Start of the Lightning Page region. Lightning Pages can have only one region.

2. Start of the componentInstances properties.

3. Start of the flexipage:filterListCard component.

4. Name of the region. Must be “main”.

5. Master label of the Lightning Page.

Ready to give it a shot? Let’s create one for ourselves.

Try It Out: Create a Lightning Page
As we mentioned, we have to create our Lightning Page manually as an XML file. You’ll need an XML editor
for this task and the next one.

In the Salesforce1_Dev_Guide_Deliveries_App folder created when you extracted the
package, you’ll see a flexipages folder. Inside, you’ll find a sample version of the final Lightning Page
file we’re creating here, for your reference. But you’re going to create one for yourself. Let’s get coding!

1. Open the XML editor of your choice.

2. Open a new file.

3. Copy and paste this code block into your XML editor:

<?xml version="1.0" encoding="UTF-8"?>
<FlexiPage xmlns="http://soap.sforce.com/2006/04/metadata">

159

Chapter 15 Extending the User Interface with Lightning Pages

<flexiPageRegions>
<componentInstances>

<componentInstanceProperties>
<name>entityName</name>
<value>Delivery__c</value>

</componentInstanceProperties>
<componentInstanceProperties>

<name>filterName</name>
<value>Todays_Deliveries</value>

</componentInstanceProperties>

<componentName>flexipage:filterListCard</componentName>
</componentInstances>
<componentInstances>

<componentInstanceProperties>
<name>entityNames</name>
<value>Delivery__c,Return_Item__c</value>

</componentInstanceProperties>
<componentName>flexipage:recentItems</componentName>

</componentInstances>
<name>main</name>

</flexiPageRegions>
<masterLabel>Deliveries</masterLabel>

</FlexiPage>

4. Save the file as Deliveries.flexipage in the flexipages folder.

Important: Always save your Lightning Pages with the .flexipage extension.

All right, we’ve created a basic Lightning Page, but there’s another block of code we need to add: a section
specifying actions to be assigned to the Lightning Page. We’re not done with the XML just yet.

Assigning Quick Actions to A Lightning Page
We learned all about quick actions in the Using Actions in Salesforce1 chapter, where we created and
configured an action using point-and-click tools. Actions you want to use for your Lightning Pages must
first be created and configured in the full Salesforce site, but unlike objects, where you add the action to
a page layout declaratively, actions on Lightning Pages must be specified in the XML.

Only global quick actions are supported for Lightning Pages.

160

Chapter 15 Extending the User Interface with Lightning Pages

When a user visits a Lightning Page in Salesforce1, only the actions that you specify for the Lightning Page
are displayed. If you don’t specify any actions, the action bar doesn’t appear when users access the page.

In this exercise, we’ll be adding a pre-configured global action to the Lightning Page. This action lets our
drivers schedule a delivery while on the road.

Try It Out: Add a Quick Action to Your Lightning Page
A global quick action called “New Delivery” for this Lightning Page is included in the sample app package
you downloaded at the start of this chapter. We just need to call it in the XML.

1. If it’s not already open, re-open the Deliveries.flexipage file in your XML editor.

2. Add this action codeblock to the end of the XML, just before the </FlexiPage> tag.

This codeblock associates the New Delivery action with the Lightning Page.

<quickActionList>
<quickActionListItems>

<quickActionName>New_Delivery</quickActionName>
</quickActionListItems>

</quickActionList>

3. Save the Deliveries.flexipage file.

Now, when users open the Deliveries app from the Salesforce1 menu, the Lightning Page will have an
action bar that they can tap to access this action.

Example: Your full codeblock should look like this:

<?xml version="1.0" encoding="UTF-8"?>
<FlexiPage xmlns="http://soap.sforce.com/2006/04/metadata">

<flexiPageRegions>
<componentInstances>

<componentInstanceProperties>
<name>entityName</name>
<value>Delivery__c</value>

</componentInstanceProperties>
<componentInstanceProperties>

<name>filterName</name>
<value>Todays_Deliveries</value>

</componentInstanceProperties>
<componentName>flexipage:filterListCard</componentName>

</componentInstances>
<componentInstances>

161

Chapter 15 Extending the User Interface with Lightning Pages

<componentInstanceProperties>
<name>entityNames</name>
<value>Delivery__c,Return_Item__c</value>

</componentInstanceProperties>
<componentName>flexipage:recentItems</componentName>

</componentInstances>
<name>main</name>

</flexiPageRegions>
<masterLabel>Deliveries</masterLabel>
<quickActionList>

<quickActionListItems>
<quickActionName>New_Delivery</quickActionName>

</quickActionListItems>
</quickActionList>

</FlexiPage>

The XML code is ready. Now it’s time to deploy it, and the rest of the Deliveries package, into your
organization.

Deploying a Lightning Page

As we mentioned at the start of this chapter, a Lightning Page has to be deployed via the Metadata API,
and there are a few ways to do that: through the Force.com Migration Tool, the Force.com IDE, or
Workbench.

You may have some of those already set up on your computer, but for the purposes of this exercise, we’re
going to choose the simplest route. We’ll be deploying via the Workbench, which is an online suite of
open-source tools designed for administrators and developers to interact with Salesforce organizations
via the Force.com APIs.

Try It Out: Deploy a Lightning Page
We’ve created our Lightning Page XML, so now it’s time to deploy it and its app into our developer
organization.

1. Zip the contents of the Salesforce1_Dev_Guide_Deliveries_App package folder
back up into a new .zip file called DeliveriesApp.zip.

Important: Don’t zip up the main folder itself, or the package won’t deploy correctly.
Select the package.xml file and all the subfolders (objects, flexipages, tabs, and so
on), and zip them up together.

162

Chapter 15 Extending the User Interface with Lightning Pages

2. In a new browser tab or window, navigate to https://developer.salesforce.com/page/Workbench.

3. Click Login to Workbench Now on Developerforce.

4. Set the API version to the latest one.

For example, Summer ’15 is API version 34.0. Lightning Pages are supported in API version 29.0
and later.

5. Agree to the terms of service, and then click Login with Salesforce.

6. Log in using your Developer Edition credentials.

7. From the migration menu, select Deploy.

8. Click Choose File, and then select the DeliveriesApp.zip file you just created that now
contains our Lightning Page.

9. Select Single Package.

10. Click Next.

11. Click Deploy.

12. Wait for the deployment to finish.

13. Return to your Salesforce browser window.

Great! Now our package and its contents are in our development organization. But we’re not done yet.
We need to get our Lightning Page into Salesforce1, and to do that, we need to create a tab.

About Lightning Page Tabs

Before you include a Lightning Page App Page in the Salesforce1 navigation menu, you must create a
custom tab for it.

Lightning Page tabs aren’t available in the full Salesforce site and don’t work like other custom tabs in
Salesforce. In Salesforce Classic, they don’t show up on the All Tabs page when you click the plus icon ()
that appears to the right of your current tabs. Nor do Lightning Page tabs show up in the Available Tabs
list when you customize the tabs for your apps. And Lightning Page tabs aren’t available in Lightning
Experience either.

Lightning Page tabs only facilitate inclusion of the Lightning Page in the Salesforce1 navigation menu.

You can define a Lightning Page tab in XML and deploy it like you would any other custom tab, but we’re
going to do it in the full Salesforce site to illustrate the Lightning Page tab’s unique qualities.

163

Chapter 15 Extending the User Interface with Lightning Pages

https://developer.salesforce.com/page/Workbench

Try It Out: Create a Lightning Page Tab
1. In Setup, enter Tabs in the Quick Find box, then select Tabs.

2. Click New in the Lightning Page Tabs related list.

3. Select our Deliveries Lightning Page for the tab.

4. Enter My Deliveries as the label.

This text becomes the name for the Lightning Page in the Salesforce1 navigation menu, and it
also displays in the Lightning Page header along with its corresponding icon.

5. Click the Tab Style lookup icon to display the Tab Style Selector.

6. Click the Globe style.

The icon on the style that you select is the icon that displays to the left of the Lightning Page label
in the Salesforce1 navigation menu.

7. Click Next.

8. Leave the tab applied to all profiles.

Note: The Default On and Default Off options for Lightning Pages don’t work as they
would with other custom tabs. The Lightning Page menu item appears for the selected
profiles in Salesforce1 whether you choose Default On or Default Off. Select the Tab Hidden
option to hide the Lightning Page menu item for the selected profiles in Salesforce1.

9. Click Save.

Example:

All right! The tab is created. Now we can make our Lightning Page available in Salesforce1.

164

Chapter 15 Extending the User Interface with Lightning Pages

Tell Me More: Lightning Page Tabs

Creating a Custom Tab Style
You can create your own custom tab style for your Lightning Page tab if your organization has access to
the Documents tab. When in the tab style selector:

1. Click Create your own style.

2. Click the Color lookup icon to display the color selection dialog and click a color to select it.

3. Click Insert an Image, select the document folder, and select the image you want to use.

Alternatively, click Search in Documents, enter a search term, and click Go! to find a document
file name that includes your search term.

Note: This dialog only lists files in document folders that are under 20 KB and have the
Externally Available checkbox selected in the document property settings. If the document
used for the icon is later deleted, Salesforce replaces it with a default multicolor block icon

().

4. Select a file and click OK. Then you’re taken back to the New Custom Tab wizard.

Icon Guidelines
When creating a custom icon for use in a Lightning Page tab, follow the guidelines in Custom Icon Guidelines
and Best Practices on page 64.

Making Your Lightning Page Available in Salesforce1

In Customizing the Salesforce1 Navigation Menu on page 23, we went over the Salesforce1 navigation
menu items and some of the quirks about how navigation works. We also customized the navigation
menu structure for the Acme Wireless mobile technicians. Later, in the Extending Salesforce1 with Visualforce
Pages chapter on page 79, we added a Visualforce page to the menu.

Now it’s time to augment the menu even further by adding our Lightning Page, and hence, our custom
app, to the Salesforce1 navigation menu.

165

Chapter 15 Extending the User Interface with Lightning Pages

Try It Out: Add a Lightning Page to the Salesforce1
Navigation Menu
The first item you put in the menu becomes your users’ Salesforce1 landing page. The Acme Wireless
delivery drivers don’t need to see the Deliveries app as their landing page every time they open Salesforce1,
but they do need access to it. Let’s put it in the Apps section of the menu.

1. From Setup, enter Mobile Navigation in the Quick Find box, then select Salesforce1
Navigation

2. In the list of available items, select our Lightning Page tab, My Deliveries, and click Add.

3. Using the Up and Down arrows, position My Deliveries just below the Smart Search Items menu
item.
This will make the Deliveries app the first item in the Apps section of the menu.

4. Click Save.

It’s done! Let’s go test it out in Salesforce1.

Test the Lightning Page in Salesforce1
1. Open the Salesforce1 app on your mobile device.

2. Tap to access the navigation menu.

3. Scroll down to the Apps section.

This section contains any menu item that was put below the Smart Search Items element, whether
it’s really an “app” or not.

4. Tap My Deliveries.

You’re taken to the Lightning Page. The “My Deliveries” label is at the top, and we see two list cards
representing Today’s Deliveries and Recent Items. There aren’t any deliveries scheduled for today,
so the first list view is empty.

166

Chapter 15 Extending the User Interface with Lightning Pages

Example: The Today’s Deliveries component picks up any delivery scheduled for today’s date with
a status of “In Transit”. If we did have some records in our developer organization that matched those
requirements, our Lightning Page might look like this:

167

Chapter 15 Extending the User Interface with Lightning Pages

Tell Me More: Lightning Pages

When working with Lightning Pages, keep in mind that a Lightning Page region can contain no more than
25 components.

Modifying Lightning Pages
If you’re considering making changes to a Lightning Page, some changes require an update to the XML,
and others don't. You must modify the Lightning Page XML and re-deploy it if you change:

• Which list views are displayed

• The order that the different list views are displayed in (not the contents of the list view)

• The objects that show up in the recent items list

• The global actions that are available

168

Chapter 15 Extending the User Interface with Lightning Pages

Updates to these other items don’t require a change to the Lightning Page XML, and can be done in the
full Salesforce site.

• The contents of the list view components

• The global actions

Packaging Lightning Pages
For details on how Lightning Pages work in packages, see the ISVforce Guide.

169

Chapter 15 Extending the User Interface with Lightning Pages

https://resources.docs.salesforce.com/200/latest/en-us/sfdc/pdf/salesforce_packaging_guide.pdf

CHAPTER 16 Development Guidelines and Best
Practices

You’ve had a chance to learn the major concepts of developing for the
Salesforce1 app, and to see how you can easily add customized
functionality for your mobile users. This chapter focuses on some
conceptual guidelines and specific best practices for developing advanced
custom actions and pages using the programmatic tools available to all
Salesforce App Cloud developers.

In this chapter ...

• When to Use the
Navigation Menu or
the Action Bar

• Visualforce
Guidelines and Best
Practices Whether you’re creating Visualforce pages to add as custom actions or

mobile cards, or creating or integrating canvas apps into Salesforce1, these
• Force.com Canvas

Guidelines and Best
Practices

principles and practices will help you provide the best experience for your
mobile users.

171

When to Use the Navigation Menu or the Action Bar

As we’ve seen throughout the examples in this book, you can extend and customize the Salesforce1 app
and make your new functionality accessible to users from either the navigation menu or from the action
bar. Here we’ll look at when you should use one method over another.

Navigation menu

The navigation menu appears when you tap . This menu is available in the global context. For
example, if users log in and are viewing items in the feed, they can tap and open the navigation menu,
and it displays menu items. Typically, these menu items lead to more complex business processes that
don’t take place in the context of any particular object.

Menu items in the navigation menu should bring users to a fully functional page or app. So if you have
a page or app that contains many fields through which the user would need to scroll and perform a
more complex process, you’ll want to make your page or app available from the navigation menu.

An example from this book is the Find Warehouses Visualforce page that we made available from the
navigation menu in Extending Salesforce1 with Visualforce Pages on page 79. When the mobile
technician taps the menu item, a page appears that contains a Google map and displays any nearby
warehouses. The functionality of this page is global—not in the context of any particular object in our
schema.

172

Chapter 16 Development Guidelines and Best Practices

Action Bar

The action bar and its action menu appear on all pages that support actions The action bar is for
accessing custom functionality that displays small amounts of data and allows users to perform short,
quick actions. If you have functionality that occurs in the context of an object, you’ll want to add it as
an action in the action bar.

An example from this book is the Create Quick Order action, available from the action bar within a
customer account. While the mobile technicians are servicing a customer account, they can tap the
action and then enter in just the merchandise name and distance to find warehouses with a part in
stock. Then the technicians enter the quantity and a customer order is created. The functionality of
this Visualforce page occurs within the context of a customer account. The user interaction with the
page is quick, and it’s a simple process to search and create an order because the action contains only
a few fields.

173

Chapter 16 Development Guidelines and Best Practices

Visualforce Guidelines and Best Practices

Visualforce pages aren’t automatically mobile friendly in the Salesforce1 app. The standard Salesforce
header and sidebar are disabled in favor of the Salesforce1 controls, and a JavaScript API is available to
make it possible for Visualforce pages to connect with Salesforce1 navigation management. In other
respects the pages remain as they are and, although usable within Salesforce1, desktop focused Visualforce
pages will feel desktop focused.

Fortunately, making your apps look great in the Salesforce1 app is straightforward. You can either revise
your code so that your pages work in both the full Salesforce site and the Salesforce1 app, or you can
create mobile-specific pages.

In this chapter, you’ll learn best practices for how to:

• Share Visualforce pages between mobile and desktop.

• Exclude Visualforce from mobile or desktop.

• Choose the best architecture for your Visualforce pages.

• Choose an effective page layout for your pages.

• Manage user input and navigation.

• Use Visualforce pages as custom actions.

• Tune your pages for the best performance.

Sharing Visualforce Pages Between Mobile and Desktop
You should revise Visualforce pages that appear in both the Salesforce1 mobile app and in the full Salesforce
site to support both environments. This includes Visualforce pages used as custom actions, and Visualforce
pages added to standard page layouts, except those added to the Mobile Cards section of a page layout.

Visualforce pages that need to work in both environments include:

• Pages used as custom actions. Custom actions appear in the action bar in the Salesforce1 mobile app,
and in the publisher menu in the full Salesforce site.

• Pages added to normal page layouts, when Available for Salesforce mobile apps
and Lightning Pages is enabled for the page.

• Custom Visualforce buttons or links added to normal page layouts.

• Standard button overrides with Visualforce pages for the New, Edit, View, Delete, and Clone actions.
Overriding standard list and tab controls isn’t supported in Salesforce1. Button overrides won’t appear
in the Salesforce1 app unless Available for Salesforce mobile apps and
Lightning Pages is enabled for the page.

174

Chapter 16 Development Guidelines and Best Practices

Note: Standard buttons that are overridden with a Visualforce page disappear from record
detail pages and record lists in Salesforce1 if Available for Salesforce mobile
apps and Lightning Pages is disabled for the Visualforce page that overrides the
corresponding button.

Excluding Visualforce Pages from Mobile or Desktop
To display your Visualforce pages only in the Salesforce1 app, add them to the Mobile Cards section of
your page layout. To add Visualforce pages to either the Salesforce1 app or the full Salesforce site, use tab
and navigation settings.

Visualforce pages that can be configured to be desktop-only or mobile-only include:

• Pages added as mobile cards on page layouts. These only appear in the Salesforce1 app.

• Pages added to normal page layouts, when Available for Salesforce mobile apps
is disabled for the page. These only appear in the full Salesforce site.

• Pages used in Visualforce tabs. You add tabs to Salesforce1 navigation separately from adding them
to the full Salesforce site navigation.

Choosing an Architecture for Visualforce Pages in
Salesforce1
The Salesforce App Cloud supports several ways to design and structure Visualforce pages, each with
different trade-offs with respect to development time, developer skill required, and how thoroughly you
want your custom functionality to match Salesforce1.

Use one of the following approaches for the structure of your pages:

• Standard Visualforce Pages on page 175

• Mixed Visualforce and HTML on page 177

• JavaScript Remoting and Static HTML on page 179

Standard Visualforce Pages
Normal Visualforce pages render well on mobile browsers, and can be used as-is, with a modest reduction
of the user experience compared to mobile-optimized Web pages. Pages display as they would on the
full Salesforce site, and won’t visually match other Salesforce1 features.

You saw how easy it is to add a Visualforce page to Salesforce1 in Extending Salesforce1 with Visualforce
Pages on page 79.

175

Chapter 16 Development Guidelines and Best Practices

Limitations
Limitations to the user experience include:

• Tap targets—buttons, links, form fields, and so on—are optimized for mouse cursors, and can be
difficult to hit accurately with a fingertip.

• The visual design is unchanged, and may not fit with the mobile-optimized, modern visual design of
Salesforce1.

If your development timeline is aggressive, you might find these limitations acceptable. Standard Visualforce
development is documented in detail in the Visualforce Developer’s Guide.

Example: Example of a Standard Visualforce Page

The following code provides a sample for a standard Visualforce page that allows a user to edit a
warehouse record. The edit feature is provided by the standard controller for the object.

<apex:page standardController="Warehouse__c">

<apex:form>

<apex:pageBlock title="{! warehouse__c.Name }">

<apex:pageBlockSection title="Warehouse Details" columns="1">

<apex:inputField value="{! warehouse__c.Street_Address__c
}"/>

<apex:inputField value="{! warehouse__c.City__c }"/>
<apex:inputField value="{! warehouse__c.Phone__c }"/>

</apex:pageBlockSection>

<apex:pageBlockButtons location="bottom">
<apex:commandButton action="{! quickSave }" value="Save"/>

</apex:pageBlockButtons>

</apex:pageBlock>

</apex:form>

</apex:page>

This page can be used in both the Salesforce1 app and the full Salesforce site. It displays as a standard
desktop Visualforce page in both contexts.

176

Chapter 16 Development Guidelines and Best Practices

https://developer.salesforce.com/docs/atlas.en-us.200.0.pages.meta/pages

Mixed Visualforce and HTML
Combine Visualforce tags for form elements and output text with static HTML for page structure to create
mobile-friendly pages that more closely match the visual design of the Salesforce1 app. For mobile-only
pages, you can quickly convert an existing Visualforce page, but this doesn’t work as well for pages that
are used in both the Salesforce1 app and the full Salesforce site.

Visualforce pages designed this way are still “standard” Visualforce, in that they use the standard
request-response cycle, standard controller functionality, <apex:inputField> for form fields,
POSTBACK and view state, and so on. The main difference from authoring pages for the full Salesforce site
is the reduced or eliminated use of Visualforce tags to add structure to the page, in favor of static HTML.
That is, replacing <apex:pageBlock>, <apex:pageBlockSection>, and so on, with <div>,
<p>, , and so on.

This approach also requires creating CSS stylesheets to manage the look-and-feel of the page elements,
instead of using the built-in, automatically applied styles provided when you use the Visualforce
components. While this can take some time, it allows you to much more closely match the visual design
of Salesforce1. This also means that pages designed this way won’t match the full Salesforce site visually.

Applying this Approach to Your Visualforce Pages
To use this approach for creating pages to use in Salesforce1, follow a few general rules.

• Don’t use the following Visualforce tags:

– <apex:pageBlock>

– <apex:pageBlockButtons>

– <apex:pageBlockSection>

– <apex:pageBlockSectionItem>

– <apex:pageBlockTable>

• Use <apex:form>, <apex:inputField> or <apex:input>, and
<apex:outputLabel> for forms.

• Use <apex:outputText> or Visualforce for non-editable text.

• Use your preferred HTML to construct the structure for the page: <div>, , <h1>, <p>,
and so on.

• Use CSS styling to apply your preferred visual design.

Advantages and Limitations
The advantages of this approach include:

177

Chapter 16 Development Guidelines and Best Practices

• Reasonably fast development time, and you use the normal Visualforce development tools and
processes.

• It’s reasonably easy to repurpose existing pages.

• You can more closely match the Salesforce1 look and feel.

Some limitations to keep in mind:

• This approach makes the usual Visualforce request round trips, with larger data payloads, compared
to a fully mobile-optimized approach using JavaScript remoting.

• It’s extra work to add CSS styles that replace the styles automatically added by <apex:pageBlock>
and related components.

Example: Example of a Mixed Visualforce and HTML Page

The following code sample shows a mixed HTML and Visualforce page that allows a user to edit a
warehouse record. The edit feature is provided by the standard controller for the object.

<apex:page standardController="Warehouse__c">

<style>
html, body, p { font-family: sans-serif; }

</style>

<apex:form >

<h1>{!Warehouse__c.Name}</h1>

<h2>Warehouse Details</h2>

<div id="theForm">
<div>

<apex:outputLabel for="address" value="Street Address"/>

<apex:inputField id="address"
value="{! warehouse__c.Street_Address__c}"/>

</div>
<div>

<apex:outputLabel for="city" value="City"/>
<apex:inputField id="city"

value="{! warehouse__c.City__c}"/>
</div>
<div>

<apex:outputLabel for="phone" value="Phone"/>
<apex:inputField id="phone"

178

Chapter 16 Development Guidelines and Best Practices

value="{! warehouse__c.Phone__c}"/>
</div>

</div>

<div id="formControls">
<apex:commandButton action="{!quickSave}" value="Save"/>

</div>

</apex:form>

</apex:page>

This page can be used in both the Salesforce1 app and the full Salesforce site. It displays as a standard
page on the full Salesforce site, but without the full Salesforce styling for the form. In the Salesforce1
app, it displays roughly matching the Salesforce1 visual style. With additional styles, the page can
approximate the visual style for both versions.

JavaScript Remoting and Static HTML
Combine JavaScript remoting and static HTML to offer the best user experience, with the best performance
and user interface match to Salesforce1. This architecture avoids most Visualforce tags in favor of rendering
page elements in JavaScript. This option requires the most developer expertise, and can take a little longer
to set up than standard Visualforce or mixed Visualforce and HTML. Use the Salesforce Mobile Packs for a
fast start and to work with the very latest in mobile Web application technology.

Visualforce pages designed this way eschew many of the automatic, simplified features of standard
Visualforce, in favor of taking more control over the request-response cycle, and performing page updates
using JavaScript instead of page reloads. This can substantially improve the performance of the page,
especially over the lower bandwidth, higher latency wireless network connections that make mobile
devices so, well, mobile. The downside is that there is more code to write, and you need expertise in
JavaScript, JavaScript remoting, HTML5, your mobile toolkit, and CSS, in addition to Apex and Visualforce.
The upside of the downside is that you’re working with the latest, most advanced tools for mobile
development, and the pages you can build are the best, most complete way to “snap in” custom
functionality that fully integrates with Salesforce1.

You can build desktop Visualforce pages using this approach as well as pages for Salesforce1. It’s even
possible to share such pages between the two environments by customizing the styling, though it’s a
challenge to closely match the full Salesforce site look and feel. Most importantly, the pages you design
can be fully responsive, adapting and working across a range of devices and form factors.

179

Chapter 16 Development Guidelines and Best Practices

Applying this Approach to Your Visualforce Pages
To use this approach for creating pages for the Salesforce1 app, follow this general process:

1. Install your preferred Salesforce Mobile Pack (available on Salesforce Developers) into your
organization as a static resource.

2. Set your page’s docType to html-5.0. Strongly consider disabling the standard stylesheets and
header. For example:

<apex:page standardController="Warehouse__c"
extensions="WarehouseEditor"
showHeader="false" standardStylesheets="false"
docType="html-5.0">

3. Add scripts and styles from your chosen mobile toolkit to the page using Visualforce resource tags.
For example:

<apex:includeScript
value="{!URLFOR(

$Resource.Mobile_Design_Templates,
'Mobile-Design-Templates-master/common/js/

jQuery2.0.2.min.js'
)}"/>

4. Use HTML5 and your mobile toolkit’s tags and attributes to create a page skeleton.

5. Add JavaScript functions to the page as handlers to respond to user interaction. Use JavaScript
remoting to call Apex @RemoteAction methods that retrieve records, perform DML, and so
on.

6. Add additional JavaScript functions to handle user actions and page updates. Perform page updates
by constructing HTML elements in JavaScript, and then adding or appending them to the page
skeleton.

Example: Example of a JavaScript Remoting and Static HTML Page

The following code sample shows a remoting + HTML Visualforce page that allows a user to edit a
warehouse record. The edit feature is provided by a controller extension with @RemoteAction
methods that respond to JavaScript remoting requests.

<apex:page standardController="Warehouse__c"
extensions="WarehouseEditor"

showHeader="false" standardStylesheets="false"
docType="html-5.0" applyHtmlTag="false" applyBodyTag="false">

180

Chapter 16 Development Guidelines and Best Practices

https://developer.salesforce.com/en/mobile/services/mobile-packs

<!-- Include Mobile Toolkit styles and JavaScript -->
<apex:stylesheet
value="{!URLFOR($Resource.Mobile_Design_Templates,
'Mobile-Design-Templates-master/common/css/app.min.css')}"/>

<apex:includeScript
value="{!URLFOR($Resource.Mobile_Design_Templates,

'Mobile-Design-Templates-master/common/js/jQuery2.0.2.min.js')}"/>

<apex:includeScript
value="{!URLFOR($Resource.Mobile_Design_Templates,

'Mobile-Design-Templates-master/common/js/jquery.touchwipe.min.js')}"/>

<apex:includeScript
value="{!URLFOR($Resource.Mobile_Design_Templates,
'Mobile-Design-Templates-master/common/js/main.min.js')}"/>

<head>
<style>

html, body, p { font-family: sans-serif; }
input { display: block; }

</style>

<script>
$(document).ready(function(){

// Load the record
loadWarehouse();

});

// Utility; parse out parameter by name from URL query string

$.urlParam = function(name){
var results = new RegExp('[\\?&]' + name + '=([^&#]*)')

.exec(window.location.href);
return results[1] || 0;

}

function loadWarehouse() {
// Get the record Id from the GET query string
warehouseId = $.urlParam('id');

181

Chapter 16 Development Guidelines and Best Practices

// Call the remote action to retrieve the record data
Visualforce.remoting.Manager.invokeAction(

'{!$RemoteAction.WarehouseEditor.getWarehouse}',
warehouseId,
function(result, event){;

if(event.status){
console.log(warehouseId);
$('#warehouse_name').text(result.Name);
$('#warehouse_address').val(
result.Street_Address__c);

$('#warehouse_city').val(result.City__c);
$('#warehouse_phone').val(result.Phone__c);

} else if (event.type === 'exception'){
console.log(result);

} else {
// unexpected problem...

}
});

}

function updateWarehouse() {
// Get the record Id from the GET query string
warehouseId = $.urlParam('id');

// Call the remote action to save the record data
Visualforce.remoting.Manager.invokeAction(

'{!$RemoteAction.WarehouseEditor.setWarehouse}',
warehouseId, $('#warehouse_address').val(),

$('#warehouse_city').val(),
$('#warehouse_phone').val(),

function(result, event){;
if(event.status){

console.log(warehouseId);
$('#action_status').text('Record updated.');

} else if (event.type === 'exception'){
console.log(result);
$('#action_status').text(
'Problem saving record.');

} else {
// unexpected problem...

}
});

182

Chapter 16 Development Guidelines and Best Practices

}

</script>
</head>

<body>

<div id="detailPage">
<div class="list-view-header" id="warehouse_name"></div>
<div id="action_status"></div>

<section>
<div class="content">

<h3>Warehouse Details</h3>
<div class="form-control-group">

<div class="form-control form-control-text">
<label for="warehouse_address">

Street Address</label>
<input type="text" id="warehouse_address" />

</div>
<div class="form-control form-control-text">

<label for="warehouse_city">City</label>
<input type="text" id="warehouse_city" />

</div>
<div class="form-control form-control-text">

<label for="warehouse_phone">Phone</label>
<input type="text" id="warehouse_phone" />

</div>
</div>

</div>
</section>

<section class="data-capture-buttons one-buttons">
<div class="content">

<section class="data-capture-buttons one-buttons">
<a href="#" id="updateWarehouse"

onClick="updateWarehouse();">save
</section>

</div>
</section>

</div> <!-- end detail page -->

</body>

183

Chapter 16 Development Guidelines and Best Practices

</apex:page>

The static HTML provides the shell of the page, including empty form fields. JavaScript functions
load the record, fill in the form fields, and send updated form data back to Salesforce.

Although this page can be used in the full Salesforce site, it’s designed as a Salesforce1 app page
and looks very different than a normal Visualforce page.

Example: Example of a JavaScript Remoting and Static HTML Controller

Unlike the other two approaches to creating Salesforce1 pages, the remoting + HTML approach
doesn’t use standard controller functionality to retrieve data from and save data to Salesforce. Instead,
you create a controller extension, or custom controller, to add any @RemoteAction methods
your page requires. Here’s a simplified controller extension that supports the above page.

global with sharing class WarehouseEditor {

// Stub controller
// We're only using RemoteActions, so this never runs
public WarehouseEditor(ApexPages.StandardController ctl){ }

@RemoteAction
global static Warehouse__c getWarehouse(String warehouseId) {

// Clean up the Id parameter, in case there are spaces
warehouseId = warehouseId.trim();

// Simple SOQL query to get the warehouse data we need
Warehouse__c wh = [

SELECT Id, Name, Street_Address__c, City__c, Phone__c

FROM Warehouse__c
WHERE Id = :warehouseId];

return(wh);
}

@RemoteAction
global static Boolean setWarehouse(

String whId, String street, String city, String phone) {

// Get the warehouse record for the Id

184

Chapter 16 Development Guidelines and Best Practices

Warehouse__c wh = WarehouseEditor.getWarehouse(whId);

// Update fields
// Note that we're not validating / sanitizing, for

simplicity
wh.Street_Address__c = street.trim();
wh.City__c = city.trim();
wh.Phone__c = phone.trim();

// Save the updated record
// This should be wrapped in an exception handler
update wh;

return true;
}

}

Visualforce Components and Features to Avoid in
Salesforce1
Most core Visualforce components (those components in the apex namespace) function normally within
Salesforce1. Unfortunately, that doesn’t mean they’re optimized for mobile, or that every feature works
with Salesforce1. You can improve the Salesforce1 user experience of your Visualforce pages by following
some straightforward rules.

In general, avoid structural components, like <apex:pageBlock> and child components, and other
components that mimic the Salesforce look and feel, such as <apex:pageBlockTable>. If you must
use these components, set them to one column, using <apex:pageBlockSection
columns="1">, instead of the default of two columns.

Avoid wide, non-wrapping components, especially <apex:detail>, <apex:enhancedList>,
<apex:listViews>, and <apex:relatedList>, which are all unsupported. Keep device width
in mind when creating tables with <apex:dataTable>.

Avoid using <apex:inlineEditSupport>. Inline editing is a user interface pattern that works well
for mouse-based desktop apps, but it’s difficult to use on a touch-based device, especially on phones
where the screen is small.

Using <apex:inputField> is fine for fields that display as a basic input field, like text, email, and
phone numbers, but avoid using it for field types that use an input widget, such as date and lookup fields.

Don’t use <apex:scontrol>. sControls aren’t supported anywhere in Salesforce1.

185

Chapter 16 Development Guidelines and Best Practices

PDF rendering, by setting renderAs="PDF" on <apex:page>, isn’t supported for pages in
Salesforce1.

Unsupported Visualforce Components
Here’s a list of Visualforce components that aren’t supported in Salesforce1, and shouldn’t be used in
Visualforce pages that will be used with the Salesforce1 app.

• <analytics:reportChart>

• <apex:detail>

• <apex:emailPublisher>

• <apex:enhancedList>

• <apex:flash>

• <apex:inputField> for field types that use a widget for input, instead of a basic form field

• <apex:listViews>

• <apex:logCallPublisher>

• <apex:relatedList>

• <apex:scontrol>

• <apex:sectionHeader>

• <apex:selectList> for picklist fields

• <apex:tabPanel> (and, as a consequence, <apex:tab>)

• <apex:vote>

Warning: Embedded Visualforce pages—that is, those added to a page layout—that contain an
<apex:enhancedList> component may cause the Salesforce1 app to crash on iOS.

Standard components outside the apex namespace, for example, <liveagent:*>, <chatter:*>,
and so on, aren’t supported in Salesforce1.

Custom components can be used in Visualforce in Salesforce1, as long as they themselves don’t use
unsupported components.

Choosing an Effective Page Layout
Design Visualforce pages that look good and work well within the Salesforce1 app by using a page layout
appropriate for the context that the page is used in. Pages added as main navigation tabs or as custom
actions in the action bar can use nearly the full screen of the device, and can scroll vertically, while Visualforce
added to an object’s page layout has to fit within a specific, limited space.

186

Chapter 16 Development Guidelines and Best Practices

In general, Visualforce added to page layouts works best if it’s read-only, at-a-glance information. Put
features that require user interaction, like multi-field forms, on full screen pages by adding them as tabs
in the main navigation, or as custom actions from the action bar.

Mobile Card Layout
Mobile cards have the most limited layout, both in size and placement. Visualforce pages added as mobile
cards on an object’s page layout appear on the related lists page for the object in Salesforce1, as the first
items on the page, below the header.

1. The record header displays when an record is loaded, but can be scrolled up and off the screen
by the user. When on screen, it’s 158 pixels high on all devices, and takes the full width of the
screen. You can’t control the display of the record header.

2. Mobile cards display above all of the related items on the record.

3. Set the width to 100%; the element sizes automatically, minus some padding on either side. The
content of mobile cards can’t be scrolled, so make sure it fits in the space you provide to it.

4. Control the height of the mobile card by setting the height in pixels in the page layout editor. The
mobile card area uses exactly that height, even if the mobile card’s content is shorter. In that case,
the extra area is blank. If the card’s content is taller, the content is clipped. As a best practice, don’t
create mobile cards taller than the smallest device screen you intend to support. Be sure to set the
height of screen elements relevant to your environment.

5. The record’s related items are displayed after all mobile cards.

187

Chapter 16 Development Guidelines and Best Practices

While you can add multiple mobile cards, it quickly becomes a user experience challenge to scroll past
them to the related lists. It’s a best practice to add only one or two. If you need a full screen to display your
page, consider moving it to a custom action on the object instead.

The normal Salesforce header and sidebar are automatically removed from Visualforce pages added as
mobile cards. You may find it useful to explicitly turn them and the full Salesforce site stylesheets off while
you’re developing the page. Additionally, if your page uses the Google Maps API, Google recommends
using an HTML5 doctype. Here’s an <apex:page> tag that does all of these things:

<apex:page standardController="Warehouse__c"
docType="html-5.0" showHeader="false" standardStylesheets="false">

Visualforce on a Page Layout
Visualforce pages added to an object’s page layout display on the record details page. Unlike mobile cards,
you can control the Visualforce element’s placement on the Salesforce1 record details screen, putting
fields and other record details above and below it, by changing its placement on the object’s page layout.
Visualforce pages added this way follow the same rules for ordering that fields and other elements do.

1. The record header displays when an record is loaded, but can be scrolled up and off the screen
by the user. When on screen, it’s 158 pixels high on all devices, and takes the full width of the
screen. You can’t control the display of the record header.

2. Record controls and details, automatically generated by Salesforce1.

188

Chapter 16 Development Guidelines and Best Practices

3. A Visualforce page added to the object’s page layout.

4. Set the width to 100%; the element sizes automatically, minus some padding on either side.

5. Control the height of the Visualforce page’s area by setting the height of the item in pixels in the
page layout editor. The Visualforce element uses exactly that height, even if the content is shorter.
In that case, the extra area is blank. If the page’s content is taller, the content is clipped. As a best
practice, don’t set inline Visualforce pages to be taller than the smallest device screen you intend
to support.

As is the case with multiple cards, although you can add multiple inline Visualforce pages to a page layout,
it quickly becomes a user experience challenge to scroll past them to see the rest of the page. It’s a best
practice to never add more than two Visualforce page elements in a row; separate Visualforce elements
with a regular page element, such as a field. If you need a full screen to display your page, consider moving
it to a custom action on the object instead.

Visualforce pages added to page layouts automatically have the normal Salesforce header and sidebar
removed. You may find it useful to explicitly turn them and the full Salesforce site stylesheets off while
you’re developing the page. Additionally, if your page uses the Google Maps API, Google recommends
using an HTML5 doctype. Here’s an <apex:page> tag that does all of these things:

<apex:page standardController="Warehouse__c"
docType="html-5.0" showHeader="false" standardStylesheets="false">

Full Screen Layout
Visualforce pages added to the Salesforce1 navigation menu, or as custom actions to the action bar, can
use almost the entire screen, allowing more information, and more complex user interfaces.

189

Chapter 16 Development Guidelines and Best Practices

1. The Salesforce1 header, which provides access to the main Salesforce1 menu, is 42 pixels high.
The contents of the header can’t be changed.

2. The rest of the device screen is dedicated to your Visualforce page.

When displayed in the Salesforce1 app, the standard Salesforce header and sidebar are automatically
removed, like Visualforce pages used as mobile cards or added to page layouts. However, Visualforce pages
used as custom actions in the action bar are shared with the full Salesforce site, and pages added to the
Salesforce1 navigation may or may not be shared. Pages shared with the full Salesforce site shouldn’t have
the standard Salesforce header and sidebar explicitly removed unless removing the header and sidebar is
the standard practice for all Visualforce on your site.

User Input and Interaction
Use <apex:input>, the type attribute, and pass-through HTML attributes to create mobile-friendly
forms and user interfaces that are efficient and take advantage of native mobile browser features.

Without a keyboard and mouse, standard HTML forms can be difficult for users to fill out and interact with
on mobile devices, especially phones. For Visualforce pages that don’t use JavaScript remoting to make
requests, choose Visualforce components for form input with an eye towards mobile users. No other
change you can make to your Visualforce pages will have a larger usability impact than taking advantage
of new HTML5 and mobile browser features to improve your forms and user interface controls.

190

Chapter 16 Development Guidelines and Best Practices

Choose Efficient Input Elements
Use <apex:input> to get user input whenever possible. <apex:input> is an HTML5-ready,
mobile-friendly, general-purpose input component that adapts to the data expected by a form field. It’s
even more flexible than <apex:inputField> because it uses the type attribute to allow client
browsers to display type-appropriate user input widgets, such as a date picker, or use a type-specific
keyboard that makes entering input on a mobile device much easier.

You can also use <apex:inputField> to create an HTML input element for a value that corresponds
to a field on a Salesforce object. <apex:inputField> adapts the HTML generated to correspond
with the data type of the underlying sObject field. Usually this is what you want, but if it isn’t, use the
type attribute to override the automatic data type detection. However, be aware that
<apex:inputField> generates a lot of HTML, and requires additional resources to load, which
means it’s not the most efficient component to use over a mobile wireless connection.

Use the type Attribute to Create Mobile-Friendly Input Elements
Set the type attribute on <apex:input> components—and <apex:inputField>, if you’re
using it—to display data-type-specific keyboards and other input user interface widgets that are easier to
use on touchscreens. The value is passed through to the generated HTML <input> element, for display
in the Salesforce1 app.

As users step through form elements, the input method for that form element adapts for the type of data
expected. Text fields show the standard keyboard, email fields show an email-specific keyboard with
characters like the “@” sign and “.com” assigned to keys, date fields show a date picker, and so on.

Here’s an example of a form that illustrates how this works:

<apex:form >

<apex:outputLabel value="Phone" for="phone"/>
<apex:input id="phone" value="{!fPhone}" type="tel"/>

<apex:outputLabel value="Email" for="email"/>
<apex:input id="email" value="{!fText}" type="email"/>

<apex:outputLabel value="That Number" for="num"/>
<apex:input id="num" value="{!fNumber}" type="number"/>

<apex:outputLabel value="The Big Day" for="date"/>
<apex:input id="date" value="{!fDate}" type="date"/>

</apex:form>

191

Chapter 16 Development Guidelines and Best Practices

As the user moves through the form fields, either by tapping into them or tapping the Next button, the
keyboard changes to match the expected data for the field.

These type-specific keyboards make filling in forms much easier for people using their mobile devices on
the go.

<apex:input> allows the following explicit type values to be set:

• date

• datetime

• datetime-local

• month

• week

• time

• email

• number

• range

• search

• tel

• text

• url

You can also set type to auto, and the data type of the associated controller property or method is used.

192

Chapter 16 Development Guidelines and Best Practices

The HTML type attribute, including new HTML5 features, is a standard part of HTML. For additional
details about the type attribute, what you can use it for, and how it relates to mobile development, see
WHATWG’s list of input type attribute values and descriptions. Not all values are supported on Visualforce
input components. If you want to use a value not supported by Visualforce, use static HTML instead of a
Visualforce tag.

Use HTML5 Pass-Through Attributes for Client-Side Validation
Set pass-through attributes on your <apex:input> and other Visualforce components to enable other
HTML5 features, such as client-side validation. By performing basic validation on the client side, you can
avoid sending a request to the server and waiting for a response, when there are easily-corrected errors
on a form.

Attributes prefixed with html- are passed through to the generated HTML, with the prefix removed. To
enable client-side validation, set an html-pattern attribute on the <apex:input> tag to match
expected form values. This will add a pattern attribute to the generated <input> tag, enabling
client-side validation for that field.

Note: Client-side validation requires that the Visualforce page be set to API version 29.0 or later,
and the page docType be set to html-5.0.

Validation patterns are regular expressions. Form input is checked against the expression, and if it matches,
the field input is considered valid. If it doesn’t match, the input is considered invalid; an error message is
displayed, and the form won’t be submitted to the server. Here’s an example of a field that requires an
email address from a specific domain:

<apex:input id="email" value="{!fText}" type="email"
html-placeholder="you@example.com"
html-pattern="^[a-zA-Z0-9._-]+@example.com$"
title="Please enter an example.com email address"/>

Other useful HTML5 attributes that can be set as pass-through attributes include:

• placeholder (set using the html-placeholder attribute)—adds ghost text to the field to
show sample input to the user.

• title (set using the title attribute on <apex:input>, and the html-title attribute
on components without a title attribute)—adds an error message to use if the field fails client-side
validation.

For inspiration for how you can use attributes to enhance the usability of HTML <input> elements,
HTML5 Forms Introduction and New Attributes is a good survey of the new features in HTML5. For further
details, especially for mobile users, and details of client-side forms validation, see Client-side form validation
and Improving the user experience on mobile devices in WHATWG’s HTML: The Living Standard.

193

Chapter 16 Development Guidelines and Best Practices

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-input-element.html#attr-input-type
http://html5doctor.com/html5-forms-introduction-and-new-attributes/
http://developers.whatwg.org/forms.html#client-side-form-validation
http://developers.whatwg.org/forms.html#improving-the-user-experience-on-mobile-devices
http://developers.whatwg.org/

Managing Navigation
Salesforce1 manages navigation using events. The navigation event framework is made available as a
JavaScript object that provides a number of utility functions that make creating programmatic navigation
that “just works” a breeze. The advantage is a navigation experience that’s more natural for a mobile
context. It also makes creating post-completion navigation, such as redirecting to an order page after the
order is successfully submitted, easier for Salesforce1 developers.

In Salesforce1, programmatic navigation for Visualforce pages generally works something like this:

1. A user invokes a Visualforce page, usually from the navigation menu, or from an action in the action
bar.

2. The Visualforce page loads and runs, including any custom controller or extension code called by
the page.

3. The user interacts with the page in some way: for example, to fill in some form values.

4. The user submits the form, or performs some other action on the page that commits a change.

5. Controller or extension code runs, saving the changes to Salesforce, and returning the results of
the action.

6. The Visualforce page, using JavaScript response handlers, receives the results of the action, and
when successful, responds by redirecting the user to a new page that shows the results of their
action.

This scenario is easily handled by the Salesforce1 navigation framework.

Another common use case is simply adding links or other user interface controls to a page, which move
from that Visualforce page to another page in Salesforce1. This navigation is also easily managed by the
Salesforce1 navigation framework.

In these cases, navigation is handled by a special utility JavaScript object, sforce.one. The
sforce.one object is automatically added to all Visualforce pages when they run inside the Salesforce1
app. This object provides a number of functions that trigger navigation events when they run. To use these
functions, you can call them directly from your page’s JavaScript code, or you can attach calls as click
handlers to elements on the page.

Here’s a JavaScript function, from the FindNearbyWarehousesPage page introduced in Extending
Salesforce1 with Visualforce Pages on page 79, which creates markers to add to a Google map.

function setupMarker(){

// Use JavaScript nav function to determine if we are
// in Salesforce1 and set navigation link appropriately
var warehouseNavUrl =

'sforce.one.navigateToSObject(\'' + warehouse.Id + '\')';

194

Chapter 16 Development Guidelines and Best Practices

// Wrap the warehouse details with the link to
// navigate to the warehouse details
var warehouseDetails =

'' +
warehouse.Name + '
' +
warehouse.Street_Address__c + '
' +
warehouse.City__c + '
' +
warehouse.Phone__c;

// Create a panel that will appear when a marker is clicked
var infowindow = new google.maps.InfoWindow({

content: warehouseDetails
});

// ...
}

The very first line builds a string, warehouseNavUrl, that, when used as a JavaScript URL, navigates
to the detail page for the warehouse. The link is created around the warehouse name, and appears in the
information panel (put together in the warehouseDetails string) that appears when you click a
marker. Clicking the warehouse name takes you to the detail page for that warehouse (the omitted part
of the function code deals with the Google Maps API calls to create a marker and add it to the map).

If you have JavaScript code or HTML markup that runs inside of Salesforce1, keep these considerations in
mind:

• Don’t directly manipulate the browser URL using window.location.href. This doesn’t work
well with the Salesforce1 navigation management system.

• Don’t use target="_blank" in navigation URLs; you can’t open new windows inside Salesforce1.

Navigation Methods within the Force.com Canvas Framework
If you’re using Force.com Canvas, there’s a simpler way to control navigation around canvas apps and
canvas personal apps in Salesforce1.

You can use Force.com methods to control navigation in Salesforce1. These methods within the Force.com
Canvas framework are events that reside in the JavaScript library. When you call one of the navigation
methods from your canvas code, you send an event into Salesforce1 that reads the payload and directs
the user to the specified destination.

Reference the navigation method as an event variable, with name and payload. For example:

195

Chapter 16 Development Guidelines and Best Practices

var event = {name:"s1.createRecord", payload: {entityName: "Account",
recordTypeId: "00h300000001234"}};

For more information about using the new methods, see “Salesforce1 Navigation Methods for Use with
Canvas Apps” in the Force.com Canvas Developer’s Guide.

Navigation with the sforce.one Object
The Salesforce App Cloud includes an event mechanism for navigation. This is exposed in Visualforce as a
JavaScript object called sforce.one. It’s available in any page that appears in Salesforce1.

The sforce.one object provides the following functions. Reference the function using dotted notation
from the sforce.one object. For example: sforce.one.navigateToSObject(recordId,
view).

DescriptionFunction

Navigates to the previous state that’s saved in the sforce.one
history. It’s equivalent to clicking a browser’s Back button.

refresh is optional. By default, the page doesn’t refresh. Pass true
to refresh the page if possible.

back([refresh])

Navigates to an sObject record, specified by recordId. This record
“home” has several views, which in Salesforce1 are available as slides
that the user can swipe between.

view is optional and defaults to detail. view specifies the slide
within record home to display initially. The possible values are as follows.

navigateToSObject(
recordId[, view])

• detail: the record detail slide

• chatter: the Chatter slide

• related: the view of related slide

Navigates to the specified URL.

Relative and absolute URLs are supported. Relative URLs are relative to
the one.app domain, and retain navigation history. External URLs—that

navigateToURL(url[,
isredirect])

is, URLs that are outside the Salesforce1 app—open in a separate
browser window.

Use relative URLs to navigate to different screens within your app. Use
external URLs to allow the user to access a different site or app, where
they can take actions that don’t need to be preserved in your app. To

196

Chapter 16 Development Guidelines and Best Practices

DescriptionFunction

return to your app, the separate window that’s opened by an external
URL must be closed when the user is finished with the other app. The
new window has a separate history from your app, and this history is
discarded when the window is closed. This also means that the user
can’t click a Back button to go back to your app; the user must close
the new window.

mailto:, tel:, geo:, and other URL schemes are supported for
launching external apps and attempt to “do the right thing.” However,
support varies by mobile platform and device. mailto: and tel:
are reliable, but we recommend that you test any other URLs on a range
of expected devices.

Note: Only standard URL schemes are supported by
navigateToURL. To access custom schemes, use
window.location instead.

isredirect is optional and defaults to false. Set it to true to
indicate that the new URL should replace the current one in the
navigation history.

Navigates to the feed of the specified type, scoped to the
subjectId. For some feed types, the subjectId is required

navigateToFeed(
subjectId, type)

but ignored. For those feed types, pass the current user’s ID as the
subjectId.

type is the feed type. The possible values are as follows.

• BOOKMARKS: Contains all feed items saved as bookmarks by the
context user. Pass the current user’s ID as the subjectId.

• COMPANY: Contains all feed items except feed items of type
TrackedChange. To see the feed item, the user must have
sharing access to its parent. Pass the current user’s ID as the
subjectId.

• FILES: Contains all feed items that contain files posted by people
or groups that the context user follows. Pass the current user’s ID
as the subjectId.

• GROUPS: Contains all feed items from all groups the context user
either owns or is a member of. Pass the current user’s ID as the
subjectId.

197

Chapter 16 Development Guidelines and Best Practices

DescriptionFunction

• NEWS: Contains all updates for people the context user follows,
groups the user is a member of, and files and records the user is
following. Also contains all updates for records whose parent is the
context user and every feed item and comment that mentions the
context user or that mentions a group the context user is a member
of. Pass the current user’s ID as the subjectId.

• PEOPLE: Contains all feed items posted by all people the context
user follows. Pass the current user’s ID as the subjectId.

• RECORD: Contains all feed items whose parent is a specified record,
which could be a group, user, object, file, or any other standard or
custom object. When the record is a group, the feed also contains
feed items that mention the group. When the record is a user, the
feed contains only feed items on that user. You can get another
user’s record feed. Pass the record’s ID as the subjectId.

• TO: Contains all feed items with mentions of the context user, feed
items the context user commented on, and feed items created by
the context user that are commented on. Pass the current user’s ID
as the subjectId.

• TOPICS: Contains all feed items that include the specified topic.
Pass the topic’s ID as the subjectId. This value is supported for
the Salesforce1 mobile browser app only. Topics aren’t available in
the Salesforce1 downloadable apps.

Navigates to the specific feed item, feedItemId, and any associated
comments.

navigateToFeedItemDetail(
feedItemId)

Navigates to a related list for the parentRecordId. For example,
to display a related list for a Warehouse object, the
parentRecordId is Warehouse__c.Id.

relatedListId is the API name or ID of the related list to display.

navigateToRelatedList(
relatedListId,
parentRecordId)

Navigates to the list view that’s specified by the listViewId, which
is the ID of the list view to be displayed.

listViewName sets the title for the list view. It doesn’t need to
match the actual name that’s saved for the list view. To use the saved
name, set listViewName to null.

navigateToList(
listViewId,
listViewName, scope)

198

Chapter 16 Development Guidelines and Best Practices

DescriptionFunction

Set scope to the name of the sObject in the view, for example,
“Account” or “MyObject__c”.

Opens the page to create a new record for the specified entityName,
for example, “Account” or “MyObject__c”.

recordTypeId is optional and, if provided, specifies the record type
for the created object.

createRecord(
entityName[,
recordTypeId])

Opens the page to edit the record specified by recordId.editRecord(recordId)

Keep the following in mind when using the sforce.one object:

• Calls to sforce.one.navigateToURL may result in an “Unsupported Page” error if the URL
references standard pages for objects or Chatter pages. To avoid this error, ensure that the URL begins
with a backslash (/_ui instead of _ui).

• The sforce.one.createRecord method doesn’t respect Visualforce overrides on the standard
action.

How sforce.one Handles API Versions
The sforce.one object is frequently improved in new releases of the Salesforce App Cloud. To maintain
backward compatibility, sforce.one provides version-specific behavior, and you can use a specific
version of sforce.one in your apps.

By default, sforce.one uses the same version as the API version of the requested Visualforce page.
For example, if a Visualforce page has an API version of 30.0, JavaScript on that page that uses
sforce.one by default uses the API version 30.0 of sforce.one.

This means that when a Visualforce page is updated to a new API version, the page automatically uses the
updated version of sforce.one. In the preceding example, if that Visualforce page is updated to API
version 31.0, app functionality that uses sforce.one uses the API version 31.0 of sforce.one.

If updated behavior in a new API version of sforce.one causes compatibility problems with the page’s
features, you have three options for correcting the problem.

• Revert the Visualforce page’s API version to the prior version. This action requires no code changes.

• Update the code for the page’s features to fix the problem. This solution is best, but it might require
some debugging, and it will definitely require code changes.

• Use a specific version of sforce.one. This solution often requires minimal code changes.

199

Chapter 16 Development Guidelines and Best Practices

Note: sforce.one was added in Winter ’14 (API version 29.0) and wasn’t versioned until Summer
’14 (API version 31.0). All versions of sforce.one earlier than version 31.0 are identical to version
31.0. You can specify a version of sforce.one for any version that’s valid for Visualforce, that is,
from version 15.0 to the current API version.

Using a Specific Version of sforce.one

To use a specific version of sforce.one, use the sforce.one.getVersion() function and
provide it with the API version and a callback function that needs to use a specific version of sforce.one.
The appropriate versions of sforce.one are automatically loaded by this call.

The signature for sforce.one.getVersion() is:

sforce.one.getVersion(versionString, callbackFunction);

versionString is the API version that your application requires. It’s always two digits, a period, and
one digit, such as “30.0”. Calls with invalid version strings fail silently.

callbackFunction is a JavaScript function that uses a specific version of sforce.one.
sforce.one.getVersion() operates asynchronously, and your callback function is called when
it finishes loading the requested version of sforce.one. Your callback function receives a single
parameter, an sforce.one object for the specified API version. Use the object passed in instead of the
global sforce.one to make calls to sforce.one that conform to the API version that your app
requires.

Examples of Using a Specific Version of sforce.one

The next examples all add a Create Account function to the following input button:

<input type="button" value="Create Account" onclick="btnCreateAccount()"
id="btnCreateAcct"/>

Defaulting to the Visualforce Page’s API Version

App code that should use the default version of sforce.one—the version that corresponds to the
Visualforce Page’s API version—doesn’t need to ask for a version. Using that version happens automatically,
and the code is straightforward.

<script>
function MyApp() {

this.createAccount = function() {
sforce.one.navigateToURL("/001/e");

};
}

200

Chapter 16 Development Guidelines and Best Practices

var app = new MyApp();

function btnCreateAccount() {
app.createAccount();

}
</script>

App functionality is created in a MyApp object, and then an event handling function calls the app function
when that event, a button click, occurs. Separating application functionality from application event handling
is a best practice, and it sets you up for using version-specific versions of sforce.one.

Using a Specific sforce.one API Version (Simple)

To use a specific version of sforce.one, get and save a reference to a versioned instance of the object.
Then use this object to make sforce.one calls. The simplest way is to save it in the MyApp object.
In the next sample, references to the versioned instance of sforce.one are in bold.

<script>
function MyApp(sfone) {

this.createAccount = function() {
sfone.navigateToURL("/001/e");

};
}

var app30 = null;

function btnCreateAccount() {
// Create our app object if not already defined
if(!app30) {

// Create app object with versioned sforce.one
sforce.one.getVersion("30.0", function(sfoneV30) {

app30 = new MyApp(sfoneV30);
app30.createAccount();

});
return;

}
app30.createAccount();

}
</script>

In the preceding example, the event-handling function is expanded from the first example to include the
creation of a version-specific instance of sforce.one. If your app needs to mix multiple versions, you
can create multiple MyApp instances with appropriate versions and names. More than one or two, though,
are cumbersome to manage. We recommend the next approach instead.

201

Chapter 16 Development Guidelines and Best Practices

Using a Specific sforce.one API Version (Best)

A better way to organize your app code is to create version-specific instances of sforce.one in an
app initialization block of code so you can keep the event handling separate.

<script>
function MyApp(sfone) {

this.createAccount = function() {
sfone.navigateToURL("/001/e");

};
}

var app30 = null;

// Initialize app: get versioned API, wire up clicks
sforce.one.getVersion("30.0", function(sfoneV30) {

// Create app object with versioned sforce.one
app30 = new MyApp(sfoneV30);

// Wire up button event
var btn = document.getElementById("btnCreateAcct");
btn.onclick = btnCreateAccount;

});

// Events handling functions
// Can't be fired until app is defined
function btnCreateAccount() {

app30.createAccount();
}

</script>

In this sample the app initialization is separated only by white space and comments, but you can separate
it into functions for better encapsulation.

Using a Specific sforce.one API Version (Synchronous)

You can trigger a synchronous mode for sforce.one by manually including the specific version of
sforce.one’s JavaScript on your page. The format for the URL to the library
is:/sforce/one/sforceOneVersion/api.js. Here’s an example:

<script src="/sforce/one/30.0/api.js"></script>
<script>

function MyApp(sfone) {
this.createAccount = function() {

sfone.navigateToURL("/001/e");

202

Chapter 16 Development Guidelines and Best Practices

};
}

var app = null;

sforce.one.getVersion("30.0", function(sfoneV30) {
app = new MyApp(sfoneV30);

});

// Events handling function
// Can't be fired until app is defined
function btnCreateAccount() {

app.createAccount();
}

</script>

Although some situations require synchronous mode, the asynchronous version is preferred. If you forget
to manually include the correct versions of the sforce.one library, your code will contain bugs that
are difficult to diagnose.

Visual Design Considerations
Create Visualforce pages that more closely match the look of Salesforce1 by using CSS styling, responsive
design, and minimal HTML.

Fonts and Styles
The visual design for Salesforce1 uses Proxima Nova, a sans-serif typeface licensed specially for Salesforce1.
People in your organization might not have the font installed on their devices, but the following CSS font
stack will use the closest matching font available:

p {
font-family: "ProximaNovaSoft-Regular", Calibri,

"Gill Sans", "Gill Sans MT", Candara, Segoe, "Segoe UI",
Arial, sans-serif;

}

Change the selectors to match the appropriate text blocks and styles on your pages.

203

Chapter 16 Development Guidelines and Best Practices

We also recommend slightly increasing the size of the font used for normal text and form elements. This
makes them easier to read and, for form elements, to tap into. Here’s a complete style block to get you
started:

<style>
html, body, p {

font-family: "ProximaNovaSoft-Regular", Calibri,
"Gill Sans", "Gill Sans MT", Candara, Segoe,
"Segoe UI", Arial, sans-serif;

font-size: 110%;
}
input { font-size: 95%; }

</style>

Warning: Directly referencing Salesforce1 style sheets in your pages, or depending on styles found
in them, isn’t supported. As Salesforce1 evolves, the styles will change in ways that you won’t expect.
Pages that depend on unsupported styles might eventually break.

HTML Markup
If your organization’s Visualforce pages match the full Salesforce site’s look and feel, it’s probably by using
the Salesforce header, sidebar, styling, and <apex:pageBlock> and child components. Don’t explicitly
disable these elements, by setting <apex:page showHeader="false"
standardStylesheets="false" ...>; Salesforce1 automatically disables these elements
when the page runs inside it.

However, you might want to reconsider using <apex:pageBlock> and child components, because
they explicitly match the full Salesforce site look and feel, and even with standard stylesheets turned off,
the markup they generate carries over into Salesforce1. This makes your markup more complex, and it’s
harder to apply styling that matches Salesforce1.

Instead, use simple, static HTML markup, or the markup required by your chosen Mobile Toolkit. Sample
markup is included the next section.

Responsive Design
Salesforce1 pages use responsive design techniques to provide device-optimized layouts, a stacked single
column layout for phones, and a side-by-side, two-column layout for tablets. You can use a similar technique
for your Visualforce pages used in Salesforce1.

204

Chapter 16 Development Guidelines and Best Practices

First, your page should establish a default layout:

/* Default CSS: 2 columns */
.content-block {

width: 50%;
float: left;

}

Second, use CSS styling and media queries to make the layout responsive:

/* CSS phone */
@media screen and (max-width: 767px) {

.content-block {
width: 100%;
float: none;

}
}

Try it yourself in a Visualforce page using this HTML. Place the above CSS snippets between <style>
tags on the same Visualforce page as the HTML, and then drag the corners of your browser window to
observe the responsive layout.

<!-- HTML for two blocks of content -->
<!-- On a phone they live underneath each other -->
<!-- On bigger screens they live next to each other -->

<div class="content-block">
top on the phone, left on big screens

</div>

<div class="content-block">
bottom on the phone, right on big screens

</div>

Using Visualforce Pages as Custom Actions
If your Visualforce page is used as a custom action, design it so that it either acts upon a single record
provided by a standard controller, or finds and acts upon a record, or records your custom controller code
retrieves.

205

Chapter 16 Development Guidelines and Best Practices

Custom Actions on an Object
Visualforce pages added as custom actions on an object are invoked in the context of a record of that
object type. The custom action has a specific record ID handed to it—the record the user was looking at
when they clicked the custom action. Design the page to act on that specific record type.

Visualforce pages used as custom actions on an object must use the standard controller for that object.
Use controller extensions to add custom code, including @RemoteAction methods you can call using
JavaScript remoting.

Your custom code could do more than make updates to the originating record. For example, the Create
Quick Order custom action searches for matching merchandise. It then creates an invoice and line item,
all as part of creating an order for a part. That logic occurs in the context of the originating account
record—the invoice is associated to the account record where the quick order action was invoked.

When the action completes, redirect the user to a page related to the originating record.

Custom Global Actions
Visualforce pages used as global actions can be invoked in many different places and don’t have a specific
record associated with them. They have complete “freedom of action,” which means it’s up to you to write
the code.

More specifically, Visualforce pages used as global actions can’t use any standard controller. You must
write a custom controller to handle the page. Your code might create one or many records, modify found
records, and so on.

When a global action completes, the user should be either redirected to a parent record created as part
of the action or returned to where they started.

Creating Visualforce Pages That Work in Mobile and
Desktop
Create Visualforce pages that work well in both the Salesforce1 app and the full Salesforce site by writing
code that adapts to the context it’s running in.

As you learned in Managing Navigation on page 194, Salesforce1 provides a framework for handling various
navigation controls and events. That framework isn’t available to Visualforce pages when they run on the
full Salesforce site, because the sforce object is injected onto pages only inside Salesforce1. This means
that, for pages shared between the Salesforce1 app and the full Salesforce site, you’ll want to write code
that uses the sforce object when it’s available, and standard Visualforce navigation when it’s not.

206

Chapter 16 Development Guidelines and Best Practices

For example, here is a bit of JavaScript that runs after a JavaScript remoting request successfully returns
from the @RemoteAction method that creates a quick order. This code is from a Visualforce page
that’s used as a custom action, which adds it to the action bar in the Salesforce1 app and the publisher
menu in the full Salesforce site. It needs to work in both places. The intent of the code is to navigate to
the detail page for the account for whom the order was placed:

// Go back to the Account detail page
if((typeof sforce != 'undefined') && sforce && (!!sforce.one)) {

// Salesforce1 navigation
sforce.one.navigateToSObject(aId);

}
else {

// Set the window's URL using a Visualforce expression
window.location.href =

'{!URLFOR($Action.Account.View, account.Id)}';
}

The if statement checks to see if the sforce object is available and usable. This is only true if the page
is running inside Salesforce1. If sforce is available, the Salesforce1 navigation management system is
used to go to the account’s detail page.

If the sforce object isn’t available, trying to use it to navigate anywhere results in a JavaScript error,
and no navigation. So, instead, the code sets the window’s URL using a Visualforce expression that returns
the URL for the account’s detail page. You don’t want to do this in Salesforce1 because the navigation
event will be lost by the framework, but it’s required in normal Visualforce.

Note: It’s a best practice to factor out common tests like this one into their own helper function.
You could add something like the following to a JavaScript static resource, and then just call
ForceUI.isSalesforce1() in your if conditions. Then, if the detection logic changes, you
only have to update it in one place.

(function(myContext){
myContext.ForceUI = myContext.ForceUI || {};

myContext.ForceUI.isSalesforce1 = function() {
return((typeof sforce != 'undefined') && sforce &&

(!!sforce.one));
}

})(this);

For more details on how to use the $Action global variable to create URLs for different kinds of objects
and actions, see the Global Variables appendix in the Visualforce Developer’s Guide.

207

Chapter 16 Development Guidelines and Best Practices

https://developer.salesforce.com/docs/atlas.en-us.200.0.pages.meta/pages

Performance Tuning for Visualforce Pages
Performance is an important aspect of mobile Visualforce pages. Visualforce has a caching mechanism to
help you tune the performance of your pages.

To enable caching for a page, use this statement:

<apex:page cache="true" expires="600">

The parameters for page caching are:

DescriptionAttribute

Boolean value that specifies whether the browser should
cache the page. If not specified, defaults to false.

cache

Integer value that specifies the period of cache in seconds.expires

For more information, see Force.com Sites Best Practices on Developerforce

More Resources
Here are some more resources to help you tune the performance of your Salesforce1 apps:

• Inside the Force.com Query Optimizer (webinar)

• Maximizing the Performance of Force.com SOQL, Reports, and List Views (blog post)

• Force.com SOQL Best Practices: Nulls and Formula Fields (blog post)

Force.com Canvas Guidelines and Best Practices

There are some additional best practices and guidelines to keep in mind when exposing your applications
as canvas apps and making them available to mobile users.

Force.com Canvas makes it easy for you to integrate Web applications with Salesforce1 at the user interface
level. However, the user experience in the Salesforce1 app is different than in the full Salesforce site. You’ll
want to make sure you design your canvas apps for mobile users and be sure to test them in the mobile
environment.

208

Chapter 16 Development Guidelines and Best Practices

https://developer.salesforce.com/page/Force.com_Sites_Best_Practices
https://developer.salesforce.com/page/Webinar:_Inside_the_Force.com_Query_Optimizer_%282013-Apr%29#!
http://blogs.developerforce.com/engineering/2013/07/maximizing-the-performance-of-force-com-soql-reports-and-list-views.html
https://developer.salesforce.com/blogs/engineering/2013/02/force-com-soql-best-practices-nulls-and-formula-fields.html

Canvas Apps in the Chatter Publisher and Salesforce1
Action Bar
Keep these best practices and guidelines in mind when making your canvas apps available in the publisher
and action bar.

• When you access a canvas app from the publisher in the full Salesforce site, the user interface is different
than when you access a canvas app from the action bar or action menu in the Salesforce1 mobile app.
For example, in the feed in the full Salesforce site, the Share button is at the bottom of the feed item.

In the Salesforce1 mobile app, the Share button is at the top of the screen.

209

Chapter 16 Development Guidelines and Best Practices

• When creating a canvas custom action, the height available for that action in the full Salesforce site is
much greater than the height for that action in Salesforce1. Use the Dimensions object in the Force.com
Canvas SDK to render your canvas app in the correct size.

• Keep the labels for canvas custom actions concise. Longer labels may not fully display in the publisher.

• When you access a canvas app from the publisher, the What are you working on? pane
appears above the canvas app. This pane remains fixed, even if your canvas app scrolls.

• When the request comes into your Web application that’s exposed as a canvas app, you can determine
the type of device that’s making the request. Use this information to render your app based on the
requesting device for a better user experience. For example, you can add logic so that if the request
comes from a mobile phone, only four lines of text are displayed; if the request comes from a tablet,
ten lines of text are displayed.

• In most cases, you’ll want to specify 100% for the canvas app height and width in your CSS. This ensures
that the canvas app takes up the maximum available screen space.

• Canvas apps appear in an iFrame, so you can format the app appearance as you would any standard
iFrame.

210

Chapter 16 Development Guidelines and Best Practices

Canvas Apps in the Feed
Keep these best practices and guidelines in mind when making your canvas apps available in the feed.

• On a mobile device, the link text and description for a feed item display fewer characters than in the
full Salesforce site. Keep this in mind when programmatically creating feed items.

• When a canvas app is contained in a feed item, the feed item appears with a link to the canvas app.
On a mobile device, the canvas app doesn’t appear in the feed; instead, a new page opens and displays
the canvas app.

• In the Salesforce1 mobile browser app, the screen changes if the device is rotated. Your canvas app
should support rotation, if possible, to maintain a seamless user experience. Note that the Salesforce1
downloadable app doesn’t rotate.

• If your canvas app appears as a feed item, keep in mind that it will display in the feed on a mobile
device so you’ll want to render a mobile-friendly user interface.

Canvas Apps Context
When you display a canvas app inside the Salesforce1 app, keep these considerations in mind.

When you display a canvas app inside of the feed or publisher, the canvas context you receive (either from
the signed request or from the getContext call) contains information specific to the Salesforce1
publisher.

• You can verify you’re on either the feed or publisher by looking at the displayLocation value
in the environment section. For publisher, displayLocation is set to Publisher. For the
feed, displayLocation is set to ChatterFeed.

• When creating a canvas feed item, you can specify a JSON string as the parameter’s value. When the
context is sent, any value in the parameter’s field on the feed item is sent in the parameters of the
environment section of the context.

• As with any canvas app, the context contains information about the app dimensions. Since Salesforce1
is designed for mobile, the sizes we provide are different than for the full Salesforce site.

• For a single-finger touch scrolling experience:

– Ensure that the outermost div elements contain the following properties:

• min-height: 250px;

• overflow: scroll;

• width: 100%;

• -webkit-overflow-scrolling: touch;

• -webkit-transform: translated(0%,0px,0px);

211

Chapter 16 Development Guidelines and Best Practices

– Set the height attribute to the clientHeight value delivered in the signed request. For
example:

//Where sr is a parsed signed request object
var h = parseInt(sr.context.environment.

dimensions.clientHeight, 10);
Sfdc.canvas.byId('divElementId').style.height = h;

– The clientHeight value can be very small, particularly in a phone’s landscape mode, and
users may not be able to see any content. Use min-height set to the desired height in pixels
to ensure a good user experience.

Custom Icons for Canvas Apps
Keep these best practices and guidelines in mind when you add custom icons to your canvas apps.

You can customize the icon that is used in the Salesforce1 navigation menu. You set this icon in the Icon
URL entry in the Basic Information section of the connected app settings for your canvas app. From Setup,
enter Apps in the Quick Find box, then select Apps and click Edit for your connected app. The
icon URL must be a secure HTTPS URL that points to an icon image file. The image file must be in the GIF,
JPG, or PNG file format. For the Salesforce1 navigation menu, the icon cannot be larger than 60 pixels high
by 60 pixels wide.

The custom icon that is used in the Salesforce1 navigation menu is also used in the Chatter tab and the
Canvas App Previewer. If your canvas app will be shown in the navigation menu, we recommend that you
use a 60x60 pixel size icon and let Salesforce automatically resize the icon to the smaller size that is needed
for the Chatter tab and the Canvas App Previewer.

You can also customize the icon that is used in the Salesforce1 action bar for a canvas app. The action bar
uses the custom icon set for the action that accesses the canvas app, not the custom icon that is associated
with the connected app. See Custom Icon Guidelines and Best Practices on page 64 for more guidelines
on custom action icons.

212

Chapter 16 Development Guidelines and Best Practices

CHAPTER 17 Learning More

In addition to this guide, there are many resources available to help you in your Salesforce App Cloud
development journey.

Admin Resources

Salesforce Help & Training Portal
A site devoted to the help documentation for Salesforce. Get help for what you’re working on, find
answers to your questions, and download tip sheets and other guides.

Salesforce Success Community
Home to a set of extremely useful tools to help you get your Salesforce work done. Connect with
Salesforce customers, partners, product specialists and employees to learn, get answers to your
questions, and share new ideas.

Salesforce Developers Website

Our premier developer site is a one-stop shop for all things related to Salesforce App Cloud development.
On Salesforce Developers you’ll find documentation, code samples, tools, articles, discussion boards, and
other resources to help you get started with mobile development.

Developer Documentation

You’ll find all these guides and more on our developer site at
http://developer.salesforce.com/docs.

Quick Actions Implementation Guide
Learn about the default actions, how to create object-specific actions, and how to configure publisher
layouts. Find out how you can extend the Chatter publisher and the Salesforce1 action bar with
Visualforce custom actions and Force.com Canvas custom actions.

213

https://help.salesforce.com
https://success.salesforce.com
https://developer.salesforce.com
http://developer.salesforce.com/docs
https://resources.docs.salesforce.com/200/latest/en-us/sfdc/pdf/actions_impl_guide.pdf

Mobile App Developer Guide
Learn about native iOS and Android, HTML5, and hybrid mobile development. This guide also includes
information about more advanced topics such as authentication, geolocation, and distributing your
mobile apps.

Force.com Canvas Developer’s Guide
Learn about integrating Web applications with Salesforce1 using Force.com Canvas. You’ll learn how
to get up to speed quickly with quick starts, how to use the Force.com Canvas SDK, and about the
context objects.

Chatter REST API Developer Guide
Learn how to programmatically access Chatter feed and social data like users, groups, followers, and
files. You’ll learn how to get up to speed quickly with quick starts and how to call the various Chatter
REST resources.

Force.com REST API Developer’s Guide
Learn to use the REST-based API to retrieve, create, update, and delete data in Salesforce. You’ll learn
how to get up to speed quickly with quick starts, about the available REST API resources, and how to
make calls and work with data.

Visualforce Developer’s Guide
Learn how to use Visualforce to customize and extend the Salesforce user interface.

Force.com SOQL and SOSL Reference
Learn how to use SOQL and SOSL to build powerful queries and text searches.

214

Chapter 17 Learning More

https://developer.salesforce.com/docs/atlas.en-us.200.0.salesforce_platform_mobile_services.meta/salesforce_platform_mobile_services
https://developer.salesforce.com/docs/atlas.en-us.200.0.platform_connect.meta/platform_connect
https://developer.salesforce.com/docs/atlas.en-us.200.0.chatterapi.meta/chatterapi
https://developer.salesforce.com/docs/atlas.en-us.200.0.api_rest.meta/api_rest
https://developer.salesforce.com/docs/atlas.en-us.200.0.pages.meta/pages
https://developer.salesforce.com/docs/atlas.en-us.200.0.soql_sosl.meta/soql_sosl

INDEX

A
About Acme Wireless 12
About the sample scenario 12
About this book

audience 12
how do I begin? 12

Actions
about action layouts 52
about custom actions 60
about predefined values 57
assigning to a global page layout 51
assigning to a page layout 50
create actions 46
creating 49
creating a global action 51
creating an object-specific action 49–50
custom actions 48
customizing an action layout 54
default actions 48
global actions 46
guidelines and best practices 64
log a call actions 46
mobile smart actions 48
object-specific actions 46, 49, 55
overview for mobile 45
predefined values for actions 59
setting a predefined field value 58
standard actions 48
tell me more 52
testing in Salesforce1 55, 59
update actions 46
what they are 46

Actions, calling from the API
add the code to call the action 137
create an action 136
overview 135

Actions, calling from the API (continued)
REST API resources 142
test it out 139

Add the Visualforce tab to the navigation menu 84
Audience for Part II, developer guide 68

B
business scenario, Acme Wireless 68

C
Canvas apps in the feed

about the code to create feed items 133
add the action to the publisher layout 127
clone the third-party Web application 120
configure the Heroku environment variable

125
configure who can access the canvas app 124
create a global action 126
create the canvas app 122

canvas apps in the feed introduction 120
Canvas custom actions

add the action to the publisher layout 112
clone the third-party Web application 107
configure the Heroku environment variable

111
configure who can access the canvas app 110
create the canvas app 108
get context in your canvas app 115
introduction 106
test canvas apps in the feed in Salesforce1

128
test the canvas custom action in Salesforce1

113
canvas custom actions introduction 106
Compact layouts

creating 40

215

Compact layouts (continued)
find out more 43
overview 39
overview for mobile 31
test it out 42
try it out 40

Configuring and enabling offline access 20
Configuring Salesforce1 17–18
Create a Visualforce page 80
Create a Visualforce tab 83
Custom actions

add the Visualforce custom action to the page
layout 95

business scenario 94
create a Visualforce custom action 94
introduction 93
test the Visualforce custom action in the

Salesforce1 app 96
custom actions introduction 93

D
development process for Salesforce1 71

F
Force.com Canvas

best practices 208–209, 211–212
Force.com Canvas features 106
Force.com Canvas introduction 105

G
Guidelines and best practices

actions 64
custom icons 64
for administrators 63
for developers 171

I
Introduction 1

L
Learning more

development resources 213
Lightning Pages

about 163
adding an action 161
adding to Salesforce1 navigation menu 165–

166
assigning actions 160
available components 154
create a tab 164
creating 157–159
deploying 162
downloading the sample app 158
overview 153–154
structure 154
tell me more 165, 168
test it out 166

N
Navigation menu

when to use 172
Notifications

about 19
enabling 20

O
overview of calling actions from the API 135

P
Page layouts

creating a mobile-optimized layout 35
how they work in Salesforce1 32
optimizing for mobile 38
overview for mobile 31
rethinking for mobile 33
test it out 37

Prerequisites for Salesforce1 development 72

216

Index

Publisher
when to use 172

S
Salesforce App Cloud

features 2
overview 2

Salesforce App Cloud development
clicks vs. code 69
Salesforce App Cloud vs. custom apps 70

Salesforce1
about 4
comparison to other mobile apps 10
configuring 17–18
configuring offline access 20
defining users 18
enabling offline access 20
notifications, about 19
notifications, enabling 20
overview 10
what it looks like 5

Salesforce1 development
about the code to create feed items 133
about the Visualforce custom action code 98
about the Visualforce page code 89
best practices 171–172, 174–175, 177, 179,

185–186, 190, 194, 196, 199, 203, 205–
206, 208–209, 211–212

business scenario 68
canvas apps in the feed 120, 122, 124–128
canvas custom actions 106–108, 110–112
custom actions 93–96, 113
custom actions scenario 94
development process 71
Force.com Canvas 105, 171, 208
Force.com Canvas apps in the feed 211
Force.com Canvas apps in the publisher 209
Force.com Canvas context 211
Force.com Canvas custom icons 212
Force.com Canvas features 106

Salesforce1 development (continued)
get Salesforce context 115
introduction 67
Lightning Pages 165
prerequisites 72
Visualforce 171, 174–175, 177, 179, 185–186,

190, 194, 196, 199, 203, 205–206, 208
Visualforce pages 79–80, 83–85
where Visualforce pages can be accessed 87
who this part is for 68

Salesforce1 navigation menu
about 24
configuring 26
overview 23
tell me more 28
test it out 26
try it out 26

Salesforce1 Platform development
learning more 213

Setting up your work environment
downloading and configuring Salesforce1 16
importing warehouse data model 16
setting your default page layout 72

U
User interface guidelines

design for mobile 74
introduction 73
keep navigation simple 74
minimize the number of fields 75
minimize user interface text 76
put important information at the top 74
tap target size 77
use field defaults 76

V
Visualforce custom actions

about the custom action code 98
add the Visualforce custom action to the page

layout 95

217

Index

Visualforce custom actions (continued)
create a Visualforce custom action 94
test the Visualforce custom action in the

Salesforce1 app 96
Visualforce pages in the navigation menu

about the controller and page code 89
add the tab to the navigation menu 84
create a page 80
create a tab 83
introduction 79

Visualforce pages in the navigation menu
(continued)
test your page in the Salesforce1 app 85

Visualforce pages introduction 79

W
When to use the Mobile SDK 70
When to use the Salesforce App Cloud 69–70
When to use Visualforce 69

218

Index

	Introduction
	Introducing the Salesforce App Cloud
	Salesforce App Cloud Features
	Introducing the Salesforce1 Apps
	Getting Around in Salesforce1
	What about the Other Mobile Apps?

	About This Book
	Who Is This Book For?
	How Do I Begin?
	About the Sample Scenario
	About Acme Wireless

	Setting Up Your Work Environment
	Install the Enhanced Warehouse Data Model
	Download the Salesforce1 App

	Salesforce1 Administration
	Configuring Salesforce1
	Defining Which Users Can Use Salesforce1
	About Notifications
	Try It Out: Enable Notifications
	About Offline Access in Salesforce1

	Customizing the Salesforce1 Navigation Menu
	About the Salesforce1 Navigation Menu
	Try It Out: Configuring the Salesforce1 Navigation Menu
	Test Out the Salesforce1 Navigation Menu

	How the Salesforce1 Navigation Menu Works

	Customizing How Your Data Shows Up in Salesforce1
	How Page Layouts Work in Salesforce1
	Rethinking Your Page Layouts for Mobile
	Try It Out: Create a Custom Page Layout for the Mobile Technicians Profile
	Test the Page Layout

	Tips for Optimizing Page Layouts for Mobile

	About Compact Layouts
	Try It Out: Create a Compact Layout
	Test the Compact Layout
	Tell Me More: Compact Layouts

	Using Actions in Salesforce1
	About Quick Actions
	Action Categories

	Point and Click Your Way to Actions
	Try It Out: Create an Object-Specific Action
	Try It Out: Assign the Action to the Account Page Layout

	About Global Quick Actions
	Tell Me More: Actions

	About Action Layouts
	Try It Out: Customize an Object-Specific Action Layout
	Test Out the Object-Specific Quick Action

	About Predefined Values in Actions
	Try It Out: Set a Predefined Field Value on an Action
	Test the Predefined Value

	About Custom Actions

	Guidelines and Best Practices for Administrators
	Action Guidelines and Best Practices
	Custom Icon Guidelines and Best Practices

	Developing for Salesforce1
	Welcome to Salesforce App Cloud Development
	Our Scenario
	Who This Part is For
	When to Use Declarative vs. Programmatic Tools to Create Salesforce1 Apps
	When to Use the Salesforce App Cloud vs. Creating Custom Apps
	Salesforce App Cloud Development Process
	Development Prerequisites
	Change the System Administrator Page Layout Assignment

	Designing Mobile-First User Interfaces
	Design for Mobile
	Keep Navigation Simple
	Put Important Information at the Top
	Minimize the Number of Fields
	Use Field Defaults
	Minimize User Interface Text
	Tap Target Size

	Extending Salesforce1 with Visualforce Pages
	Try It Out: Create a Visualforce Page
	Create a New Tab
	Add the Tab to the Navigation Menu
	Test Out the Visualforce Page

	Tell Me More: Where Visualforce Pages Can Appear in Salesforce1
	Tell Me More: About the Code

	Adding Functionality with Visualforce Custom Actions
	Custom Actions Scenario
	Try It Out: Create a Visualforce Custom Action
	Add the Visualforce Custom Action to the Page Layout
	Test Out the Visualforce Custom Action

	Tell Me More: About the Code

	Integrating Your Web Applications in Salesforce1 with Force.com Canvas
	About Force.com Canvas
	Extending Salesforce1 with Canvas Custom Actions
	Try It Out: Clone the Shipify Web Application
	Create the Shipify Canvas App
	Configure Who Can Access the Shipify Canvas App
	Configure the Heroku Environment Variables
	Add the Action to the Global Publisher Layout
	Test Out the Canvas Custom Action

	Tell Me More: Get Context in your Canvas App

	Extending Salesforce1 with Canvas Apps in the Feed
	Try It Out: Clone the DeliveryTrakr Web Application
	Create the DeliveryTrakr Canvas App
	Configure Who Can Access the DeliveryTrakr Canvas App
	Configure the Heroku Environment Variables
	Create a Global Action
	Add the Action to the Global Publisher Layout
	Test Out the DeliveryTrakr Canvas App

	Tell Me More: About the Code to Create Feed Items

	Calling Quick Actions from the API
	Try It Out: Create an Invoice Action
	Add the Code to Call the Action
	Test Out Calling the Action from the API

	Tell Me More: Quick Actions and the REST API

	Extending the User Interface with Lightning Pages
	What Is a Lightning Page?
	Lightning Pages

	Lightning Pages: The Big Picture
	Before We Begin: Download the Deliveries App
	Creating a Lightning Page
	Try It Out: Create a Lightning Page

	Assigning Quick Actions to A Lightning Page
	Try It Out: Add a Quick Action to Your Lightning Page

	Deploying a Lightning Page
	Try It Out: Deploy a Lightning Page

	About Lightning Page Tabs
	Try It Out: Create a Lightning Page Tab
	Tell Me More: Lightning Page Tabs

	Making Your Lightning Page Available in Salesforce1
	Try It Out: Add a Lightning Page to the Salesforce1 Navigation Menu
	Test the Lightning Page in Salesforce1

	Tell Me More: Lightning Pages

	Development Guidelines and Best Practices
	When to Use the Navigation Menu or the Action Bar
	Visualforce Guidelines and Best Practices
	Sharing Visualforce Pages Between Mobile and Desktop
	Excluding Visualforce Pages from Mobile or Desktop
	Choosing an Architecture for Visualforce Pages in Salesforce1
	Standard Visualforce Pages
	Mixed Visualforce and HTML
	JavaScript Remoting and Static HTML

	Visualforce Components and Features to Avoid in Salesforce1
	Unsupported Visualforce Components

	Choosing an Effective Page Layout
	User Input and Interaction
	Managing Navigation
	Navigation with the sforce.one Object
	How sforce.one Handles API Versions

	Visual Design Considerations
	Using Visualforce Pages as Custom Actions
	Creating Visualforce Pages That Work in Mobile and Desktop
	Performance Tuning for Visualforce Pages

	Force.com Canvas Guidelines and Best Practices
	Canvas Apps in the Chatter Publisher and Salesforce1 Action Bar
	Canvas Apps in the Feed
	Canvas Apps Context
	Custom Icons for Canvas Apps

	Learning More

	Index

