[(T8 Process Server for Multiplatforms

Version 6.2.0

S

Développement et déploiement de modules

V[R Li[T(-H Process Server for Multiplatforms

Version 6.2.0

8% ==n 2
B
@@ N ‘

| M
e Y
@ o 2\ |

Développement et déploiement de modules

Important

Avant d'utiliser les informations de ce document, lisez les informations générales figurant a la section qui se
trouve a la fin du présent document.

LE PRESENT DOCUMENT EST LIVRE EN L’ETAT SANS AUCUNE GARANTIE EXPLICITE OU IMPLICITE. IBM
DECLINE NOTAMMENT TOUTE RESPONSABILITE RELATIVE A CES INFORMATIONS EN CAS DE
CONTREFACON AINSI QU’EN CAS DE DEFAUT D’APTITUDE A L'EXECUTION D'UN TRAVAIL DONNE.

Ce document est mis a jour périodiquement. Chaque nouvelle édition inclut les mises a jour. Les informations qui y
sont fournies sont susceptibles d’étre modifiées avant que les produits décrits ne deviennent eux-mémes
disponibles. En outre, il peut contenir des informations ou des références concernant certains produits, logiciels ou
services non annoncés dans ce pays. Cela ne signifie cependant pas qu’ils y seront annoncés.

Pour plus de détails, pour toute demande d’ordre technique, ou pour obtenir des exemplaires de documents IBM,
référez-vous aux documents d’annonce disponibles dans votre pays, ou adressez-vous a votre partenaire
commercial.

Vous pouvez également consulter les serveurs Internet suivants :

¢ |http:/ /www.fribm.com (serveur IBM en France)|

¢ |http:/ /www.can.ibm.com (serveur IBM au Canada)|

¢ http:/ /www.ibm.com (serveur IBM aux Etats-Unis)|

Compagnie IBM France
Direction Qualité

Tour Descartes

92066 Paris-La Défense Cedex 50

© Copyright IBM France 2009. Tous droits réservés.
© Copyright International Business Machines Corporation 2005, 2009.

http://www.fr.ibm.com
http://www.can.ibm.com
http://www.ibm.com

Manuels PDF et Centre de documentation

Les manuels PDF sont fournis pour votre convenance afin de les imprimer et de
les consulter hors ligne. Pour obtenir les informations les plus récentes, consultez
le Centre de documentation en ligne.

Dans 'ensemble, les manuels PDF contiennent les mémes informations que le
Centre de documentation.

La documentation PDF est disponible au plus tard un trimestre apres une édition
majeure du centre de documentation, comme Version 6.0 ou Version 6.1.

La documentation PDF est moins fréquemment mise a jour que le Centre de
documentation mais plus fréquemment que les Redbooks. En général, les manuels
PDF sont mis a jour lorsqu’il existe un nombre suffisant de modifications.

Les liens du manuel PDF pointant vers des rubriques sont dirigés vers le Centre de
documentation sur le Web. Les liens pointant vers des cibles sont marqués par des
icones qui indiquent si la cible est un manuel PDF ou une page Web.

Tableau 1. Icénes liant a des rubriques situées en dehors de ce manuel

Icone Description

o Lien vers une page Web, y compris une page du Centre de documentation.

Les liens vers le Centre de documentation passent par un service d’adressage
indirect de telle sorte qu’ils sont toujours valides méme si la rubrique cible est
déplacée vers un emplacement différent.

Si vous voulez trouver une page liée dans un centre de documentation local, vous
pouvez effectuer une recherche sur le titre du lien. Vous pouvez également
effectuer une recherche sur I'ID de la rubrique. Si la recherche donne plusieurs
résultats dans différentes rubriques pour des différents produits, vous pouvez
utiliser les commandes Grouper par du résultat de la recherche pour identifier
I'instance de la rubrique que vous souhaitez afficher. Par exemple :

1. Copiez 'URL du lien. Par exemple, cliquez avec le bouton droit de la souris
sur le lien puis sélectionnez Copier I'emplacement du lien. Par exemple :
http://wwwld.software.ibm.com/webapp/wshroker/redirect?version=wbpm620
&product=wesb-dist&topic=tins_apply_service

2. Copiez I'ID de la rubrique apres &topic=. Par exemple : tins_apply_service

3. Dans la zone de recherche de votre centre de documentation local, collez I'ID
de la rubrique. Si la fonction de documentation est installée localement, le
résultat de la recherche affichera la rubrique. Par exemple :

1 résultat(s) trouvé pour

Grouper par : Néant | Plateforme | Version | Produit
Afficher le récapitulatif

Installation de groupes de correctifs et de groupes de mises & jour avec
Update Installer

4. Cliquez sur le lien dans le résultat de la recherche pour afficher la rubrique.

E Lien vers un manuel PDF.

© Copyright IBM Corp. 2005, 2009 iii

iv Développement et déploiement

Table des matieres

Manuels PDF et Centre de
documentation]dii

FiguresVi

Tableauxix

Partie 1. Développement
d’applications1

Chapitre 1. Développement de solutions
d’intégration métier. - .. .3
Modele de programmation pour l’mtegratlon métier 6

Architecture et modéles d’'intégration métier. . . .8
Scénarios d’intégration métier9
Roles, produits et défis techniques.10
Infrastructure d’objets métier12
Architecture de composants de service14
Processus métier.19
Taches utilisateur20

Création d’applications d’1ntegrat10n metler Lo 21

Chapitre 2. Développement de modules

de service23
Présentation du developpement de modules ... 24
Développement de composants de service26
Appel de composants B
Appel dynamique d'un composant . . .30
Présentation de l'isolement des modules et des

cibles31
Liaisons HTTP35

Chapitre 3. Guides et techniques de
programmation37

Programmation d’objets métier.37
Tableaux dans les objets métier.38
Création d’objets métier imbriqués 40
Objets métier : renforcement du schéma et prlse
en charge du schéma industriel.44
Remplacement d"une conversion d’objet SDO en
Java. 66
Remplacement de l’1mp1ementat10n d’archltecture

SCA générée 67
Regles en exécution de la conversion de]ava en
objets SDO68

Validation de document XML e . .70

Propagation d’en-téte de protocole a partir de

liaisons d’exportation non SCA.72

Gestion des regles métier.74
Modele de programmation75
Exemples.1
Classes d’opérations communes 188

© Copyright IBM Corp. 2005, 2009

Chapitre 4. Développement
d’applications client pour les taches
et processus métier 199

Comparaison entre les interfaces de
programmation visant a interagir avec les

processus métier et les taches utilisateur 200
Requétes portant sur les données des processus
métier et des tdches 203

Comparaison des 1nterfaces de programmatlon
destinées a I'extraction de données de processus

et de tache 204
Tables de requétes dans Busmess Process
Choreographer 206
API de requéte E]JB de Busmess Process
Choreographer 270
Développement d’apphcatlons chent E]B pour des
processus métier et des taches utilisateur 286
Acces aux APTEJB 289
Requéte sur des objets liés aux processus metler
et aux taches29
Développement d’apphcatlons pour les
processus métier 301
Développement d’apphcat1ons pour des taches
utilisateur 328
Développement d’apphcatlons pour les
processus métier et les taches utilisateur . . . 350
Gestion des exceptions et des erreurs . . . 357

Développement d’applications API de service Web 361
Composants de service Web et séquence de

contréle 2362
Présentation des API des services Web .. .363
Exigences en termes de processus métier et de
taches utilisateur 3064
Développement d’apphcat1ons chent B [
Copie d’artefacts 365
Développement d’apphcatlons chent dans
I'environnement de services Web Java 375
Développement d’applications client dans
I'environnement NET387
Requétes sur des objets liés aux processus
métier et aux taches 393
Développement d’applications chent a l’alde de
I’API JMS de Business Process Choreographer . . 397
Exigences des processus métier 398
Autorisation pour les affichages JMS 399
Acceés a l'interface JMS39
Copie d’artefacts pour les apphcatlons cllent
MsS 403
Vérification du message de reponse pour les
exceptions de métier 404

Exemple : exécution d'un processus de longue
durée a I'aide de I’API JMS de Business Process
Choreographer404

Développement d’applications Web pour les
processus métier et tiches utilisateur a 1’aide de

composants JSF. 405
Composants Exemples de Busmess Process
Choreographer Explorer. . . . 410

Traitement des erreurs dans les composants]SF 411
Convertisseurs et intitulés par défaut d’objets de
modele client 412
Ajout du composant List a une apphcatlon]SF 413
Ajout du composant Details a une apphcatlon

JSE. A A |
Ajout du Composant CommandBar a une
application JSF 423
Ajout du composant Message a une apphcatlon
JSE . . 428
Développement des pages]SP pour les messages
de tache et de processus. . . L. 432
Fragments JSP définis par l’ut1hsateur433

Création de modules d’extension pour

personnaliser les fonctionnalités des taches

utilisateur . . . 435
Création de gestlonnalres d’evenements d’ API 436
Création de gestionnaire d’événements de
notification 439
Installation des modules d extensmn du
gestionnaire d’événements d’API et du
gestionnaire d’événements de notification . . . 441
Enregistrement des modules d’extension du
gestionnaire d’événements d’API et du
gestionnaire d’événements de notification avec
des modeles de tache et des tdches 442
Création, installation et exécution de plug-ins en
vue du post-traitement des résultats des
requétes sur les utilisateurs. 443

Partie 2. Déploiement des
applications 449

Chapitre 5. Présentation de la
préparation et de I'installation de

modules 451
Présentation des blbhotheques et des f1ch1ers]AR 452
Présentation du fichier EAR455
Préparation au déploiement sur un serveur . . . 456
Remarques concernant l'installation d’applications

de service sur des clusters458

vi Développement et déploiement

Chapitre 6. Déploiement d’un module 461

Installation de modules SCA versionnés dans un

environnement de production 462
Installation d’un module SCA avec la console .. 463
Création d’un fichier EAR installable via

serviceDeploy 465
Déploiement d’ apphcatlons a l’alde des taches

ANT Apache465

Chapitre 7. Installation des
applications de tache utilisateur et de
processus métier. 469

Installation d’applications de processus métier et
de taches utilisateur dans un environnement de

déploiement réseau 470
Déploiement des processus metler et des taches
utilisateur . . . 471
Installation d’apphcatlons de processus metler et

de tache utilisateur en mode interactif 472

Configuration de la source de données d'une
application de processus et des paramétres de
référence d’ensemble 473
Désinstallation d’applications de processus metler
et de tache utilisateur a 'aide de la console
d’administration 474
Désinstallation d’apphcatlons de processus métier
et de tAches humaines a 1’aide d’une commande
d’administration475

Chapitre 8. Adaptateurs et installation 479

Chapitre 9. Identification et résolution
des incidents lors d’un échec de

déploiement. 481
Suppression des spécifications d activation]2C .. 482
Suppression des destinations SIBus 483

Partie 3. Annexes. 485

Remarques 487

Figures

1.

ALl

10.

11.

12.

13.

14.

15.

Les outils IBM prolongent le cycle de vie
complet de la gestion des processus métier, ce
qui vous permet de concevoir, assembler,
déployer et gérer vos processus. . . .
Structure a base de composants WebSphere
Process Server. .

SCA dans WebSphere Process Server .
Diagramme d’assemblage .

Modele d’appel simple.

Appel de service unique par des appllcatrons
multiples .

Modele d’appel 1sole du service
UpdateCalculateFinal

Modele d’appel isolé du service
UpdatedCalculateFinal .

Propagation de contexte comprenant un en-tete
de protocole .

Diagramme de classes de BusmessRuleGroup
et classes associées . .

Diagramme de classes de Property et classes
associées

Diagramme de classes de Operatron et classes
associées

Diagramme de classes de BusmessRule et
classes associées .

Diagramme de classes de BusmessRule et
classes associées . .
Diagramme de classes de Dec1sronTable et
classes associées .

© Copyright IBM Corp. 2005, 2009

.15
. 16
.17
. 32

. 33

. 34

. 35

.73

. 80

. 82

. 85

. 87

.90

.92

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.
27.

28.

29.

Diagramme de classes de TreeNode et classes
associées

Diagramme de classes de TreeActron et classes
associées .

Diagramme de classes de Dec151onTableRule
et classes associées .

Diagramme de classes de Template et de
Parameter, et classes associées .

Diagramme de classes de
BusinessRuleManager et module .
Diagramme de classes de QueryNodeFactory
et classes associées .

Diagramme de classes de
BusinessRuleManagementException et classes
associées . . .
Tables de requétes dans Busmess Process
Choreographer . .

Contenu des tables de requetes composrtes
Table de requétes composite avec critéres de
sélection .
Filtres dans les tables de requetes composrtes
Filtres et criteres de sélection dans des
expressions

Autorisation par 1nstar1ce pour les tables de
requeétes .
Relations entre module, composants et
bibliotheques

. 95

.99

. 100

. 102

. 104

. 106

. 108

. 207

216

. 218

222

. 230

. 236

. 453

vii

viii Développement et déploiement

Tableaux

=

)

10.

11.

12.
13.

14.

15.

16.
17.

18.
19.

20.

21.

22.

23.

24.
25.

26.
27.

28.

29.

Icones liant a des rubriques situées en dehors
de ce manuel .
Abstractions des donnees et 1mplernentat10ns
correspondantes .
Conversion de type WSDL en classe Java
Problémes liés aux groupes de régles métier
Problémes liés aux ensembles de regles et aux
tables de décisions .
Propriétés des tables de requetes predefmles
Tables de requétes prédéfinies contenant des
données d’instance.
Tables de requétes predefmles contenant des
données de modele -
Propriétés des tables de requétes
supplémentaires .
Contenus valides d'une table de requetes
composite. .
Contenus non valides d une table de requetes
composite. . o
Propriétés des tables de requetes comp051tes
Etapes de développement de tables de
requétes
Les attributs des tables de requetes et leur
utilisation dans les expressions. .
Types d’autorisation pour les tables de
requétes
Types d’éléments de trava11 .o
Eléments de travail et criteres d’affectatlon de
personnes.
Types d’attribut. .
Correspondance entre types des bases de
données et types d’attribut .
Exemple de mappage entre types de base de
données et types d’attribut . .
Correspondance entre types d’attribut et
valeurs littérales .
Correspondance entre types d’attr1but et
valeurs de parameétre utilisateur .
Correspondance entre types d’attribut et
types d’objet Java . . .
Compatibilité entre types d’attrlbut .
Méthodes pour les requétes exécutées sur les
tables de requétes .
Parametres de ’API de table de requetes
Parametres de I’API de table de requétes :
options de filtrage .
Parametres de 1’API de table de requetes
options d’autorisation par défaut pour
l'autorisation par instance
Parametres de 1’API de table de requetes
AdminAuthorizationOptions

© Copyright IBM Corp. 2005, 2009

. il

.13
70
108

. 109

210

. 211

. 212

. 214

. 219

. 219

219

. 224

. 229

. 235

. 237

. 238
. 240

. 241

. 242

. 243

. 244

. 245
. 246

. 249

251

. 253

. 256

. 257

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.
42.

43.

44.

45.

46.
47.
48.
49.

50.

51.

52.
53.
54.
55.
56.
57.
58.

Parametres utilisateur destinés a I’API de
table de requétes

Propriétés d'un ensemble de resultats
d’entités renvoyé par I’API de table de
requétes

Propriétés d'une entlte renvoyee par 1 API de
table de requétes

Propriétés d'un ensemble de resultats de

lignes renvoyé par I’API de table de requétes .

Méthodes pour I'extraction de métadonnées
des tables de requétes.

Métadonnées relatives a la structure d une
table de requétes

Métadonnées relatives a 1’1nternat10nahsat10n
d’une table de requétes .

Les options applicables aux tables de requetes
composites et leur impact sur les
performances des requétes .

Les options de 1’API de table de requetes et
leur impact sur les performances des requétes
Performances des tables de requétes - Autres
considérations

. 258

. 259

. 259

260

. 261

. 262

. 263

. 266

267

. 269

. 271

Méthodes API pour les modéles de processus
Les méthodes API sont liées au démarrage
des instances de processus. .

Méthodes API pour le controle du cycle de
vie des instances de processus . .
Méthodes API pour le contrdle du cycle de
vie des instances d’activité . . .
Méthodes API pour les variables et les
propriétés personnalisées

Méthodes API pour les modeles de taches
Meéthodes API pour les modeles de taches
Méthodes API de gestion des escalades
Méthodes API pour les variables et les
propriétés personnalisées S
Mappage des liaisons de reference aux noms
JNDI .
Mappage d'mterfaces de Busmess Process
Choreographer avec des objets de modeéle
client .

Attributs bpe: hst

Attributs bpe:column .

Attributs bpe:details

Attributs bpe:property

Attributs bpe:commandbar .

Attributs bpe:command .

Attributs bpe:form .

325

. 325

. 326

. 327

. 327

347
348
348

. 349

. 408

. 413
. 420
. 420
. 423
. 423
. 427
. 428
. 431

ix

X Développement et déploiement

Partie 1. Développement d’applications

© Copyright IBM Corp. 2005, 2009

2 Développement et déploiement

Chapitre 1. Développement de solutions d’intégration métier

Cette section évoque les principes du modele de programmation pour l'intégration
métier. Elle présente 1’architecture SCA (Service Component Architecture) et les
modeéles associés a l'intégration métier.

L’intégration métier est la discipline permettant aux entreprise d’identifier,
consolider et optimiser des processus métier. Son objectif est d’améliorer la
productivité et maximiser l'efficacité de I'entreprise. L'intérét grandissant que
suscite l'intégration métier est di aux fusions et aux consolidations d’entreprises et
au fait qu’elles développent des bibliotheques d’éléments d’actif informationnel
divers. Ces éléments d’actif manquent souvent de cohérence et de coordination, ce
qui crée des "flots d’informations”.

L’intégration métier est étroitement liée a la gestion des processus métier (BPM -
Business Process Management) et a I'architecture SOA (Service-Oriented
Architecture). En fonction du type d’entreprise et de 1’étendue des besoins
d’intégration, l'intégration métier impose diverses exigences aux services
informatiques. Certains projets peuvent seulement étre confrontés a quelques
aspects de ces exigences, alors que des projets de plus grande envergure peuvent
regrouper un grand nombre d’entre elles. Vous trouverez ci-dessous quelques
aspects, parmi les plus courants, composant des projets d’intégration métier :

* Intégration d’applications est une exigence courante. La complexité des projets
d’intégration d’applications varie selon qu’il s’agit de situations simples, dans
lesquelles vous devez garantir qu'un nombre réduit d’applications peut partager
des informations, ou de situations plus complexes, dans lesquelles des
transactions et des échanges de données doivent apparaitre simultanément dans
plusieurs applications dorsales. L’intégration d’applications complexe exige
souvent une gestion de 1'unité de travail compliquée, mais aussi de la
transformation et du mappage.

* Automatisation des processus est un autre aspect clé qui assure que les activités
exercées par une personne ou une entreprise déclenchent automatiquement des
conséquences ailleurs. Ceci garantit 'accomplissement du processus métier
global. Par exemple, lorsqu'une entreprise embauche un employé, les
informations de la feuille de paie doivent étre mises a jour, le service de sécurité
doit appliquer des actions adéquates, les outils requis doivent étre mis a la
disposition de 'employé, etc. Certaines activités composant un processus
peuvent capturer les entrées des utilisateurs et leur interaction, alors que
d’autres peuvent appeler des scripts sur des systémes dorsaux et d’autres
services présents dans l'environnement.

* Connectivité est un aspect abstrait, et pourtant essentiel, pour une entreprise et
les partenaires commerciaux. Par "connectivité”, nous voulons parler du flux
d’informations échangées entre les entreprises ou les sociétés et la capacité a
accéder a des services informatiques distribués.

Certains défis techniques liés aux implémentations d’intégrations métier peuvent se
résumer de la facon suivante :

e Traiter différents formats de données et ne pas étre en mesure d’effectuer une
transformation efficace des données

¢ Traiter différents protocoles et mécanismes pour accéder a des services
informatiques qui ont pu étre développés via des technologies tres différentes

© Copyright IBM Corp. 2005, 2009 3

* Organiser différents services informatiques qui peuvent étre distribués
géographiquement ou offerts par différentes entreprises

* Fournir des régles et des mécanismes pour classer et gérer les services qui sont
disponibles (gouvernance)

L’intégration métier en tant que telle regroupe de nombreux thémes et éléments
qui sont également communs a l’architecture SOA. La vision d’IBM concernant
I'intégration métier se fonde sur de nombreux concepts de base identiques figurant
dans l'architecture SOA. L'une des conséquences directes de cette vision est que les
solutions d’intégration métier peuvent exiger le recours a plusieurs produits pour
leur élaboration. IBM® fournit toute une gamme d’outils et de plateformes
d’exécution afin de prendre en charge les différentes étapes et aspects
opérationnels.

Pour paraphraser la vision d’IBM concernant I'intégration métier, elle doit
permettre aux entreprises de définir, créer, fusionner, consolider et simplifier les
processus métier a 1’aide d’applications exécutées sous une infrastructure
informatique SOA. Le travail d’intégration métier se base véritablement sur des
roles. Au niveau macro, ceci implique la conception, le développement, la
gouvernance, la gestion et la surveillance des applications de processus métier.
Grace a I'utilisation d’outils et de procédures adéquats, vous pouvez automatiser
les processus métier impliquant des personnes et des systemes hétérogenes a
I'intérieur, mais aussi a l'extérieur, de l'entreprise. L'un des points clés de
I'intégration métier est la possibilité d’optimiser vos activités commerciales afin
qu’elles soient suffisamment efficaces, évolutives, fiables et flexibles pour gérer des
modifications.

L’intégration métier exige des outils de développement, des serveurs d’exécution,
des outils de surveillance, un référentiel de services, des boites a outils et des
modeles de processus. Etant donné que l'intégration métier se compose de
nombreux aspects différents, vous allez découvrir que plusieurs outils de
développement doivent étre utilisés pour développer une solution. Ces outils
permettent aux développeurs d’intégration d’assembler des solutions métier
complexes. Un serveur est un moteur d’activités a hautes performances ou un
conteneur de services qui exécute des applications complexes. La direction veut
toujours étre informée de l'attribution des taches au sein de 'entreprise et c’est a ce
moment-1a que les outils de surveillance interviennent. A mesure que les
entreprises créent des processus ou services métier, la gouvernance, la classification
et le stockage de ces services deviennent essentiels. Cette fonction est mise a
disposition par un référentiel de services. Des boites a outils spéciales permettant
de créer des éléments spécifiques a la solution, comme les connecteurs ou les
adaptateurs de systémes existants, sont souvent requises.

4 Développement et déploiement

:'““““"‘"' Assemblage Déploiement Gestion de
® POEeSES de processus de processus processus
et simulation ’)
WehSphere Web3phere WebSphere WebSphere
Business Modeler Integration Process Server Business Monilor
Developer

Figure 1. Les outils IBM prolongent le cycle de vie complet de la gestion des processus
meétier, ce qui vous permet de concevoir, assembler, déployer et gérer vos processus.

L’intégration métier ne se base pas sur un produit unique. Elle mobilise la
quasi-totalité du personnel et tous les aspects commerciaux d'une et de plusieurs
entreprises. L’intégration métier regroupe de nombreux services et éléments
figurant dans l’architecture de référence SOA.

Pour plus de détails sur ces concepts et pour consulter des exemples de

programmation, reportez-vous a :

* WebSphere Business Integration Primer : Process Server, BPEL, SCA, and SOA, IBM
Press, 2008.

* Getting Started with IBM WebSphere Process Server and IBM WebSphere Enterprise
Service Bus Part 1 : Development, IBM Redbooks, SG24-7608-00, June 2008.

Chapitre 1. Développement de solutions d’intégration métier

5

Concepts associés

Modele de programmation pour I'intégration métier|

L’intégration métier n’est pas une tache facile. Il existe un trés grand nombre de
technologies et de méthodes permettant de représenter ou d’interagir avec des
données. Par conséquent, le fait de réussir une intégration se révele étre une tache
difficile. Si vous considérez les trois aspects composant un modele de
programmation (données, appel et composition) et que vous appliquez les
nouveaux paradigmes d'une approche orientée services, le nouveau modele de
programmation d’une architecture SOA commence a prendre forme.

[Architecture et modeéles d’intégration métier]

Un projet d’intégration métier classique implique la coordination de plusieurs
actifs informatiques différents qui peuvent étre en cours d’exécution sur différentes
plateformes et qui ont été développés a différentes périodes via diverses
technologies. La capacité a manipuler et échanger facilement des informations a
l'aide d'un ensemble de composants divers représente un défi technique énorme.
Le modele de programmation utilisé pour développer des solutions d’intégration
métier permet de relever ce défi.

(Création d’applications d’intégration métiet]

Intégration métier implique l'intégration d’applications, de données et de processus
dans une ou plusieurs entreprises. L'intégration implique également le
développement de processus, car il existe une certaine logique dans la séquence
d’applications assemblées, afin de les intégrer. WebSphere Integration Developer
permet de créer des applications d’intégration métier.

Modéle de programmation pour I'intégration métier

L’intégration métier n’est pas une tache facile. Il existe un tres grand nombre de
technologies et de méthodes permettant de représenter ou d’interagir avec des
données. Par conséquent, le fait de réussir une intégration se réveéle étre une tache
difficile. Si vous considérez les trois aspects composant un modele de
programmation (données, appel et composition) et que vous appliquez les
nouveaux paradigmes d’une approche orientée services, le nouveau modele de
programmation d’une architecture SOA commence a prendre forme.

Tout d’abord, nous constatons que le langage XML (Extensible Markup Language)
est principalement utilisé pour représenter des données et que leur programmation
est effectuée a 1'aide d’objets SDO (Service Data Objects) ou de fonctions XML
natives, telle que XPath ou XSLT (Extensible Stylesheet Language Transformation).
Ensuite, un appel de service effectue un mappage vers l'architecture SCA (Service
Component Architecture). Pour finir, la composition est intégrée a 1’orchestration
des processus a 'aide du langage BPEL (Business Process Execution Language). Le
schéma suivant illustre les trois aspects de ce nouveau modéle de programmation.

6 Développement et déploiement

Composition
Process Orchestration
(BPEL)

Objets métier
de données
(SDO)

Appel SCA
(Service Component Architecture)
(SCA)

Architecture SCA

En plus de fournir une syntaxe cohérente et un mécanisme d’appel des services,
l'architecture SCA sert de cadre d’appel et permet aux développeurs d’encapsuler
les implémentations de services dans des composants réutilisables. Elle permet aux
développeurs de définir des interfaces, des implémentations et des références
indépendamment du point de vue technologique, vous donnant ainsi la possibilité
d’associer des éléments a la technologie de votre choix. L’architecture SCA
distingue la logique métier de l'infrastructure afin que les programmeurs
d’application puissent se consacrer a la résolution de problémes métier.

Concepts associés

[Développement de solutions d’intégration métier|

Cette section évoque les principes du modele de programmation pour l'intégration
métier. Elle présente 1’architecture SCA (Service Component Architecture) et les
modeles associés a l'intégration métier.

Chapitre 1. Développement de solutions d’intégration métier 7

Architecture et modeéles d’intégration métier

Un projet d’intégration métier classique implique la coordination de plusieurs
actifs informatiques différents qui peuvent étre en cours d’exécution sur différentes
plateformes et qui ont été développés a différentes périodes via diverses
technologies. La capacité a manipuler et échanger facilement des informations a
l'aide d'un ensemble de composants divers représente un défi technique énorme.
Le modele de programmation utilisé pour développer des solutions d’intégration
métier permet de relever ce défi.

Cette section présente 1’architecture SCA (Service Component Architecture) et les
modeles associés a l'intégration métier. L'utilisation de modeles semblent se
généraliser dans notre vie quotidienne. Les modéles de patrons, les modeles
d’apprentissage personnalisé ("Think-and-learn”) destinés aux enfants, les modeles
pour la construction de maisons individuelles, les modeles de sculpture sur bois,
les modeles de vols, les modeles de configuration des vents, les modeles de
pratique en médecine, les modeles d’achat des clients, les modeles de flux de
travaux, les modeéles de conception en informatique, et beaucoup d’autres encore.

Les modeles se révelent étre utiles pour les concepteurs et développeurs de
solutions. Il n’est donc pas surprenant de voir des modeles d’intégration métier et
d’intégration d’entreprise. Il existe toute une gamme de modéles pouvant étre
appliqués a l'intégration métier, y compris des modeles de demande et de réponse
pour le routage, des modeles de canaux (publication/abonnement) et beaucoup
d’autres encore. Les modeles abstraits fournissent un modele de résolution
appliqués a une certaine catégorie de problemes, alors que les modéles concrets
fournissent des indications plus précises concernant la méthode d’implémentation
d’une solution spécifique. Cette section traite des modeles devant traiter 1’appel de
données et de services qui constituent la structure du modele de programmation
de la stratégie des logiciels IBM pour l'intégration métier de WebSphere.

8 Développement et déploiement

Concepts associés

[Développement de solutions d’intégration métier|

Cette section évoque les principes du modele de programmation pour l'intégration
métier. Elle présente 1’architecture SCA (Service Component Architecture) et les
modeles associés a l'intégration métier.

Scénarios d’intégration métier]

Les entreprises disposent de nombreux systemes logiciels différents qui sont
utilisés dans le cadre de leur activité. De plus, I'intégration de ces composants
métier est propre a chaque entreprise.

IRoles, produits et défis techniques|
La réussite de projets d’intégration métier dépend de l'association de roles de
développement spécialisés, de techniques de programmation et de suites d’outils.

[Infrastructure d’objets métier|

L’industrie du logiciel a développé plusieurs modéles et infrastructures de
programmation permettant aux développeurs d’encapsuler des informations sur un
objet métier (BO - Business Object). L'infrastructure d’'un BO doit généralement
assurer l'indépendance de la base de données, mapper de fagon transparente les
objets métier personnalisés par I’administrateur vers les tables de la base de
données ou vers les structures de données dans les systemes d’information
d’entreprise, mais aussi associer les objets métier aux interfaces utilisateur. Les
schémas XML sont récemment devenus les schémas les plus courants et les plus
acceptés pour représenter la structure d’un objet métier.

[Architecture de composants de service]

L’architecture SCA est un concept que vous pouvez implémenter de différentes
manieres. Elle n’exige aucune technologie, langage de programmation, protocole
d’appel ou mécanisme de transport particulier. Les composants SCA sont décrits a
l'aide du langage SCDL (Service Component Definition Language) qui est un
langage basé sur XML.

[Processus métier]
Processus métier, plus précisément, processus métier basés sur BPEL, qui
constituent la base des composants de service dans 1’architecture SCA.

[Taches utilisateur]
Une tache utilisateur est un composant impliquant l'interaction des personnes et
des services.

Scénarios d’intégration métier

Les entreprises disposent de nombreux systemes logiciels différents qui sont
utilisés dans le cadre de leur activité. De plus, I'intégration de ces composants
métier est propre a chaque entreprise.

Les deux scénarios d’intégration de processus métier les plus répandus sont les
suivants :

* Courtier d’intégration : Dans ce scénario, la solution d’intégration métier agit
comme intermédiaire entre plusieurs d’applications dorsales. Par exemple, vous
devez vous assurer que lorsqu’un client passe une commande a l'aide de
l'application de gestion de commandes en ligne, la transaction met a jour les
informations correspondantes dans votre application dorsale CRM (Customer
Relationship Management). Dans ce scénario, la solution d’intégration doit
pouvoir capturer et éventuellement transformer les informations requises de
l'application de gestion de commandes et appeler les services correspondants
dans l'application CRM.

* Automatisation des processus : Dans ce scénario, la solution d’intégration sert
de lien entre les différents services informatiques qui, dans le cas contraire,

Chapitre 1. Développement de solutions d’intégration métier 9

n’auraient aucun point commun. Par exemple, lorsqu’une entreprise embauche
un employé, la série d’actions suivante doit se dérouler :

— Les informations relatives a I'employé sont ajoutées au systeme de feuille de
paie.

- L’employé doit pouvoir accéder physiquement aux infrastructures et un
badge doit lui étre fourni.

— L’entreprise peut fournir un ensemble de ressources matérielles a I'employé
(espace bureau, ordinateur, etc.).

— Le service informatique doit créer un profil utilisateur pour I’employé et
autoriser 1’acces a toute une série d’applications.

L’automatisation de ce processus est courante dans un scénario d’intégration
métier. Dans ce cas, la solution implémente un flux automatisé qui est
déclenché du fait de I’ajout de 'employé au systeme de feuille de paie. Par
conséquent, le flux déclenche les étapes suivantes en créant des éléments de
travail pour les preneurs de décisions ou en appelant les services
correspondants.

Dans ces deux scénarios, la solution d’intégration doit accomplir les actions
suivantes :

1. Utiliser des sources d’informations diverses et des formats de données
différents, mais aussi pouvoir convertir des informations entre différents
formats.

2. Pouvoir appeler plusieurs services, en utilisant éventuellement différents
mécanismes et protocoles d’appel.

Concepts associés

[Architecture et modeéles d’intégration métier|

Un projet d'intégration métier classique implique la coordination de plusieurs
actifs informatiques différents qui peuvent étre en cours d’exécution sur différentes
plateformes et qui ont été développés a différentes périodes via diverses
technologies. La capacité a manipuler et échanger facilement des informations a
I'aide d’un ensemble de composants divers représente un défi technique énorme.
Le modele de programmation utilisé pour développer des solutions d’intégration
métier permet de relever ce défi.

Réles, produits et défis techniques

La réussite de projets d’intégration métier dépend de 'association de rdles de
développement spécialisés, de techniques de programmation et de suites d’outils.

Les projets d’intégration métier exigent quelques éléments de base :

* Une séparation claire des roles au sein de l’entreprise en charge du
développement, afin de favoriser la spécialisation, ce qui améliore généralement
la qualité des composants individuels qui sont développés.

* Un modele d’objet métier (BO - Business Object) commun qui permet aux
informations métier d’étre représentées dans un modele logique commun.

* Un modele de programmation qui sépare clairement les interfaces des
implémentations, qui prend en charge un mécanisme d’appel de service
générique totalement indépendant de 1'implémentation et qui concerne
uniquement les interfaces.

¢ Un ensemble d’outils et de produits intégrés qui prend en charge les roles de
développement et empéche leur séparation.

Les sections suivantes détaillent chacun de ces éléments.

10 Développement et déploiement

Séparation claire des roles

Un projet d’intégration métier a besoin de personnel pour quatre roles de
collaboration clairement distincts :

¢ Analyste métier : Il s’agit d’experts de domaine en charge de capturer les
aspects métier d’un processus et de créer un modele de processus qui représente
correctement le processus méme. Leur mission est d’optimiser les performances
financieres d'un processus. IIs ne s’intéressent pas aux aspects techniques de
I'implémentation de processus.

¢ Développeur de composants : IIs sont en charge de I'implémentation de services
et de composants individuels. Leur mission consiste a utiliser une technologie
spécifique pour I'implémentation. Ce role exige une formation solide en
programmation.

* Spécialiste en intégration : Ce rdle relativement nouveau consiste a assembler
un ensemble de composants existants dans une solution d’intégration métier
plus grande. Les développeurs d’intégration n’ont pas besoin de connaitre les
détails techniques de chaque composant et service qu’ils réutilisent et connectent
entre eux. Théoriquement, ils doivent uniquement s’intéresser a comprendre les
interfaces des services qu’ils assemblent. Ils doivent utiliser les outils
d’intégration pour le processus d’assemblage.

* Déployeur de solutions : Les déployeurs et les administrateurs de solutions se
chargent de rendre les solutions d’intégration métier disponibles aux utilisateurs
finaux. En théorie, un déployeur de solutions se charge principalement de lier
une solution aux ressources physiques prétes a la faire fonctionner (bases de
données, gestionnaires de files d’attente, etc.) et non pas de comprendre le
fonctionnement interne d’une solution. Sa mission premiere est la qualité de
service (QoS - Quality of Service).

Un modele d’objet métier commun

Comme nous 'avons mentionné précédemment, les aspects clés d'un projet
d’intégration métier incluent la capacité a coordonner 1’appel de plusieurs
composants et a gérer 1'échange de données entre eux. Plus particulierement,
différents composants peuvent utiliser différentes techniques pour représenter des
éléments métier, comme les données d’une commande, les informations relatives a
un client, etc. Par exemple, il se peut que vous ayez a intégrer une application
Java™ qui utilise des EJB (Enterprise Java Beans) d’entité pour représenter des
éléments métier et une application existante qui organise les informations dans des
fichiers de stockage COBOL. Par conséquent, une plateforme dont 1’objectif est de
simplifier la création de solutions d’intégration doit également fournir une
méthode générique pour représenter des éléments métier, en faisant abstraction des
techniques utilisées par les systemes dorsaux pour la gestion des données.
WebSphere Process Server et WebSphere Enterprise Service Bus permettent d’y
parvenir grace a la structure d’objets métier.

Cette derniére permet aux développeurs d’utiliser des schémas XML afin de définir
la structure des données métier, mais aussi d’accéder et de manipuler les instances
de ces structures de données (objets métier) via un code XPath ou Java.
L’infrastructure d’objets métier se base sur la norme SDO (Service Data Object).

Modéle de programmation de I’architecture SCA (Service
Component Architecture)

Le modele de programmation SCA représente la base de toute solution a
développer sur WebSphere Process Server et WebSphere Enterprise Service Bus.

Chapitre 1. Développement de solutions d’intégration métier ~ 11

L’architecture SCA permet aux développeurs d’encapsuler les implémentations de
services dans des composants réutilisables. Elle permet de définir des interfaces,
des implémentations et des références indépendamment du point de vue
technologique, vous donnant ainsi la possibilité d’associer des éléments a la
technologie de votre choix. Il existe également un modele de programmation client
SCA qui permet d’appeler ces composants. Plus particulierement, il permet aux
infrastructures d’exécution basées sur Java d’interagir avec des exécutions non
Java. L’architecture SCA utilise des objets métier comme éléments de données pour
I'appel d’un service.

Outils et produits

IBM WebSphere Integration Developer est 1’environnement de développement
intégré qui dispose de tous les outils nécessaires pour créer et composer des
solutions d’intégration métier basées sur les technologies susmentionnées. Ces
solutions sont généralement déployées dans WebSphere Process Server ou, dans
certains cas de figure, dans WebSphere Enterprise Service Bus.

Concepts associés

[Architecture et modeéles d’intégration métier|

Un projet d’intégration métier classique implique la coordination de plusieurs
actifs informatiques différents qui peuvent étre en cours d’exécution sur différentes
plateformes et qui ont été développés a différentes périodes via diverses
technologies. La capacité a manipuler et échanger facilement des informations a
l'aide d’un ensemble de composants divers représente un défi technique énorme.
Le modele de programmation utilisé pour développer des solutions d’intégration
métier permet de relever ce défi.

Infrastructure d’objets métier

L’industrie du logiciel a développé plusieurs modeles et infrastructures de
programmation permettant aux développeurs d’encapsuler des informations sur un
objet métier (BO - Business Object). L'infrastructure d’un BO doit généralement
assurer I'indépendance de la base de données, mapper de fagon transparente les
objets métier personnalisés par I’administrateur vers les tables de la base de
données ou vers les structures de données dans les systémes d’information
d’entreprise, mais aussi associer les objets métier aux interfaces utilisateur. Les
schémas XML sont récemment devenus les schémas les plus courants et les plus
acceptés pour représenter la structure d’un objet métier.

D’un point de vue outils, WebSphere Integration Developer fournit aux
développeurs un modele de BO commun, afin de représenter plusieurs sortes
d’entités issues de domaines différents. Pendant la phase de développement,
WebSphere Integration Developer représente les objets métier sous la forme de
schémas XML. Toutefois, au moment de 1’exécution, ces mémes objets métier sont
représentés dans la mémoire par l'instance Java d’un objet SDO. Un objet SDO est
une spécification standard que les systemes IBM et BEA ont développé
conjointement et qu’ils ont convenu d’utiliser. IBM a étendu la spécification SDO
en incluant des services supplémentaires qui facilitent la manipulation des données
dans les objets métier.

Avant de nous intéresser a l'infrastructure d'un BO, penchons-nous un instant sur
les types basiques de données qui sont manipulées :

* Données d’instance correspond aux données réelles et aux structures de
données pouvant contenir de simples objets de base dotés de propriétés scalaires
jusqu’a des hiérarchies d’objets volumineux et complexes. Des définitions de

12 Développement et déploiement

données sont également incluses, comme la description de types d’attributs de
base, des informations de type complexe, la cardinalité et des valeurs par défaut.

Métadonnées d'instance correspond a des données propres a une instance. Des
informations incrémentielles sont ajoutées aux données de base, comme le suivi
des modifications (aussi appelé "récapitulatif des modifications”), les
informations de contexte associées a la maniére dont 1’objet ou les données ont
été créé(e)s, ainsi que les en-tétes et pieds de page d'un message.

Métadonnées type correspond généralement aux informations propres a une
application, comme les mappages de niveau attribut vers des colonnes de
données (par exemple, le mappage du nom d’une zone d'un BO en un nom de
colonne de table SAP) de systémes d’information d’entreprise (EIS - Enterprise
Information System) cibles.

Services correspond généralement aux services auxiliaires qui obtiennent et

définissent les données, modifient les récapitulatifs ou fournissent un acces type
pour la définition de données.

Le tableau suivant indique comment les types de données de base sont
implémentés dans la plateforme WebSphere.

Tableau 2. Abstractions des données et implémentations correspondantes

Abstraction des données Implémentation

Données d’instance Objet métier (SDO)

Meétadonnées d’instance Graphique métier

Meétadonnées type Métadonnées d’entreprise, métadonnées type
de 'objet métier

Services Services de 'objet métier

Utilisation de I'infrastructure d’objets métier IBM

Comme nous 'avons vu précédemment, la structure d’'un BO WebSphere Process
Server correspond a une extension de la norme SDO. Par conséquent, les objets
métier échangés entre les composants WebSphere Process Server correspondent a
des instances de la classe commonj.sdo.DataObject. Toutefois, la structure d’'un BO
WebSphere Process Server ajoute plusieurs services et fonctions qui simplifient et
enrichissent la fonctionnalité DataObject de base.

Pour faciliter la création et la manipulation d’objets métier, la structure d’un BO
WebSphere étend les spécifications d'un objet SDO en fournissant un ensemble de
services Java. Ces services font partie du package com.ibm.websphere.bo :

BOFactory : Service clé qui indique plusieurs méthodes permettant de créer des
instances d’objets métier.

BOXMLSerializer : Indique plusieurs méthodes permettant de "développer” un
objet métier depuis un flux ou d’écrire le contenu d’un objet métier, au format
XML, dans un flux.

BOCopy : Indique plusieurs méthodes permettant de copier des objets métier
(sémantique "profonde” et "superficielle”).

BODataObject : Vous permet d’accéder aux aspects de 1'objet de données d'un
objet métier, comme le récapitulatif des modifications, le graphique métier et le
récapitulatif de I'événement.

BOXMLDocument : Avant-guichet du service qui vous permet de manipuler
'objet métier comme un document XML.

Chapitre 1. Développement de solutions d’intégration métier 13

¢ BOChangeSummary et BOEventSummary : Facilite I'acces et la manipulation
du récapitulatif des modifications et de la partie récapitulative d’un événement
dans un objet métier.

* BOEquality : Service qui vous permet de déterminer si deux objets métier
contiennent des informations identiques. Il prend en charge 1'égalité profonde et
superficielle.

* BOType et BOTypeMetaData : Ces services matérialisent des instances de
commonj . sdo.Type et vous permettent de manipuler les métadonnées associées.
Les instances Type peuvent ensuite étre utilisées pour créer des objets métier
"par type”.

* BOlInstanceValidator : Valide les données composant un objet métier, afin de
vérifier sil est conforme aux éléments XSD.

Concepts associés

[Architecture et modeles d’intégration métier|

Un projet d’intégration métier classique implique la coordination de plusieurs
actifs informatiques différents qui peuvent étre en cours d’exécution sur différentes
plateformes et qui ont été développés a différentes périodes via diverses
technologies. La capacité a manipuler et échanger facilement des informations a
l'aide d’un ensemble de composants divers représente un défi technique énorme.
Le modele de programmation utilisé pour développer des solutions d’intégration
métier permet de relever ce défi.

Architecture de composants de service

L’architecture SCA est un concept que vous pouvez implémenter de différentes
manieres. Elle n’exige aucune technologie, langage de programmation, protocole
d’appel ou mécanisme de transport particulier. Les composants SCA sont décrits a
l'aide du langage SCDL (Service Component Definition Language) qui est un
langage basé sur XML.

Un composant SCA dispose des caractéristiques suivantes :

* Il encapsule un artefact d'implémentation qui contient la logique que le
composant peut exécuter.

* Il offre une ou plusieurs interfaces.

* Il peut offrir une ou plusieurs références aux autres composants. La logique
d’implémentation détermine si un composant affiche une référence. Si
I'implémentation exige 1’appel d’autres services, le composant SCA doit afficher
une référence.

14 Développement et déploiement

Les informations suivantes traitent essentiellement de I'implémentation de
I'architecture SCA que WebSphere Process Server met a disposition et de I'outil
WebSphere Integration Developer qui permet de créer et de combiner des
composants SCA. WebSphere Process Server et WebSphere Integration Developer
prennent en charge les artefacts d’implémentation suivants :

* Objets Java simples

* Processus métier

* Machines d’état métier

* Taches utilisateur

* Regles métier

* Flux de médiation

L’architecture SCA distingue la logique métier de l'infrastructure afin que les
programmeurs d’application puissent se consacrer a la résolution d’incidents

métier. WebSphere Process Server d'IBM se base sur ce méme principe. La
affiche le modele architectural de WebSphere Process Server.

Une sfructire 8 base de composants pour tous les styles dindegration.

Composants Prcessus Taches
de service mmetasr uilisaleur

Services Flus ——— —
Flus e Mappes Mapoes ~ . =4
3 . . 3 . e d=lalions =] =
Auxiliaires médiaion dinlerfaces i’ ohijpets i lisr Lolvey bl
Moyau SO,

thﬂimiun Server [anvironnement d on J2EE)

Figure 2. Structure a base de composants WebSphere Process Server

Dans I'environnement WebSphere, la structure SCA se base sur 1’environnement
d’exécution Java 2 Platform, Enterprise Edition (J2EE) de WebSphere Application
Server. La structure générale de WebSphere Process Server se compose d"un noyau
SOA, de services auxiliaires et de composants de service. La méme structure dotée
d’un sous-ensemble de cette capacité globale, axée plus spécifiquement sur les
besoins de connectivité et d’intégration des applications de l'intégration métier, est
disponible dans WebSphere Enterprise Service Bus.

L’interface d'un composant SCA, comme illustrée dans la [figure 3, 4 la page 16}
peut étre représentée de 1'une des manieres suivantes :

* Une interface Java

¢ Un type de port WSDL (dans WSDL 2.0, le type de port correspond a une
interface)

Chapitre 1. Développement de solutions d’intégration métier ~ 15

Interface

] i Java

Réféarencel”
Service BY,
L3

™ Interface

Type de port

Composant = Service A WSsDL

Implémentation

Type de port
WSDL

Interface
Java .

Reférence]
Service C

b
“\q. "4._‘.‘.‘.
-\-" “h_‘
-“ ‘-.“‘ I'-u-,| _
- \“n. ““"u. “"*-“u
"“‘ \‘ -"‘ . R ""-.,,‘
Processus Machine Régle Téche Sélectaur Mappes Flux de
métier d'état métier utilisateur d'interfaces médiation

Figure 3. SCA dans WebSphere Process Server

Un module SCA est un groupe de composants connectés les uns aux autres apres
avoir directement relié les références et les implémentations. Dans WebSphere
Integration Developer, chaque module SCA dispose d'un diagramme d’assemblage
qui lui est associé et qui représente I’application métier intégrée contenant des
composants SCA et des fils de connexion. L'une des principales missions du
développeur d’intégration est de créer le diagramme d’assemblage en connectant
les composants qui forment la solution. WebSphere Integration Developer fournit
un éditeur d’assemblage graphique pour vous aider dans cette tache. Lors de la
création d'un diagramme d’assemblage, le développeur d’intégration dispose de
deux moyens d’action :

* Approche descendante définit les composants, leurs interfaces et leurs
interactions avant de créer I'implémentation. Le développeur d’intégration peut
définir la structure du processus, identifier les composants requis et leurs types
d’implémentation, puis générer un squelette d’implémentation.

* Approche ascendante associe des composants existants. Dans ce cas, le
développeur d’intégration doit uniquement faire glisser et déposer les
implémentations existantes dans le diagramme d’assemblage.

L’approche ascendante est plus couramment utilisée lorsque les clients disposent
de services existants qu’ils veulent réutiliser et combiner. Lorsque vous souhaitez
créer de nouveaux objets métier, vous utiliserez certainement 1’approche
descendante.

Modeéle de programmation SCA : Principes

Le concept dun composant logiciel est a la base du modele de programmation SCA.
Comme nous 'avons mentionné précédemment, un composant est une unité qui
implémente une logique et qui la rend disponible aux autres composants via une
interface. Un composant peut également exiger les services rendus disponibles par
les autres composants. Dans ce cas, le composant affiche une référence pour ces
services.

16 Développement et déploiement

Dans SCA, chaque composant doit afficher au moins une interface. Le diagramme
d’assemblage de la dispose de trois composants : C1, C2 et C3. Chacun
d’entre eux dispose d'une interface représentée par la lettre I entourée d'un cercle.
Un composant peut également se référer a d’autres composants. Les références sont
représentées par la lettre R entourée d'un carré. Les références et les interfaces sont
ensuite liées dans un diagramme d’assemblage. En regle générale, le développeur
d’intégration "résout” les références en les connectant aux interfaces de composants
qui implémentent la logique requise.

| Co R —— = Impaortation ™

= -
Expartation | C1i \

Figure 4. Diagramme d’assemblage

Appel de composants SCA

Pour fournir un acces aux services a appeler, le modele de programmation SCA
contient une classe ServiceManager qui permet aux développeurs de rechercher les
services disponibles par nom. Voici un fragment de code Java type illustrant la
recherche d’un service. La classe ServiceManager permet d’obtenir une référence
au service BOFactory qui est un service fourni par le systéeme :
//Get service manager singleton
ServiceManager smgr = new ServiceManager();
//Access BOFactory service
BOFactory bof =(BOFactory)

smgr.locateService("com/ibm/websphere/bo/BOFactory");

Remarque : Le package de la classe ServiceManager est com.ibm.websphere.sca.

Les développeurs peuvent utiliser un mécanisme similaire pour obtenir les
références de leurs propres services en spécifiant le nom du service référence dans
la méthode locateService. Aprés avoir obtenu la référence d'un service a l'aide de la
classe ServiceManager, vous pouvez invoquer n'importe quelle opération
disponible sur ce service indépendamment du protocole d’appel et du type
d’implémentation.

Chapitre 1. Développement de solutions d’intégration métier ~ 17

Pour appeler des composants SCA, il existe trois styles d’appel différents :

* Appel synchrone : Lorsque vous utilisez ce style d’appel, I'appelant attend de
fagon synchrone que la réponse soit envoyée. Il s’agit du mécanisme d’appel
classique.

* Appel asynchrone : Ce mécanisme permet a 'appelant d’appeler un service sans
attendre 'envoi immédiat d'une réponse. Au lieu d’obtenir une réponse,
I'appelant obtient un "ticket” qui peut étre utilisé ultérieurement pour récupérer
la réponse. L’appelant récupere la réponse en appelant une opération spéciale
qui doit étre fournie par l’appelé dans ce cas de figure.

* Appel asynchrone avec rappel : Ce style d’appel est identique au précédent,
mais 1'appelé est chargé de 1'envoi de la réponse. L’appelant doit afficher une
opération spéciale (opération de rappel) que 1’appelé peut appeler lorsque la
réponse est préte.

Importations

Parfois, les composants ou les fonctions disponibles sur des systemes externes
indiquent la logique métier, comme les applications existantes ou d’autres
implémentations externes. Dans ce cas, le développeur d’intégration ne peut pas
résoudre la référence en connectant une référence a un composant qui contient
I'implémentation dont il/elle a besoin pour connecter la référence a un composant
qui "pointe vers” I'implémentation externe. Ce composant est appelé importation.
Lors de la définition d'une importation, vous devez spécifier la méthode d’acces a
un service externe (emplacement), ainsi que le protocole d’appel.

Exportations

De méme, si l'accés a votre composant s’effectue via des applications externes, ce
qui est souvent le cas, vous devez le rendre accessible. Pour cela, utilisez un
composant spécial qui affiche votre logique au "monde externe”. Ce composant est
appelé exportation. Il peut étre appelé de fagcon synchrone ou asynchrone.

Références autonomes

Dans WebSphere Process Server, un module de service SCA est intégré comme
fichier EAR J2EE qui contient plusieurs autres sous-modules J2EE. Les éléments
J2EE, comme un fichier WAR, peuvent étre intégrés au module SCA. Les artefacts
autres que SCA, comme les JSP, peuvent également étre intégrés a un module de
service SCA. Ce dernier leur permet d’appeler des services SCA a l'aide du modele
de programmation client SCA grace a un type de composant spécial appelé
"référence autonome”.

Le modele de programmation SCA est hautement déclaratif. Les développeurs
d’intégration peuvent configurer des aspects, comme le comportement
transactionnel des appels, la propagation des données d’identification de sécurité,
si un appel doit étre synchrone ou asynchrone de facon déclarative, directement
dans le diagramme d’assemblage. L’exécution SCA, non pas les développeurs, doit
se charger de 'implémentation du comportement spécifié dans ces modificateurs.
La flexibilité déclarative de SCA est I'une des fonctions les plus puissantes de ce
modele de programmation. Les développeurs peuvent se consacrer a implémenter
la logique métier, au lieu de répondre aux aspects techniques, comme faciliter les
mécanismes d’appel asynchrone. Tous ces aspects sont automatiquement gérés par
I'exécution SCA.

18 Développement et déploiement

Qualificateurs

Les qualificateurs régissent l'interaction entre un client de service et un service
cible. Des qualificateurs peuvent étre spécifiés dans les références de composant de
service, les interfaces et les implémentations. Ils sont généralement externes a une
implémentation.

Les différentes catégories de qualificateurs sont les suivantes :

* Transaction, qui spécifie la maniere dont les contextes transactionnels sont gérés
dans un appel SCA.

* Session d’activité, qui spécifie la maniere dont les contextes de session d’activité
sont propageés.
* Sécurité, qui spécifie les autorisations.

* La fiabilité asynchrone fournit des regles pour la distribution de messages
asynchrones.

SCA autorise l'application de ces qualificateurs de qualité de service (QoS - Quality
of Service) aux composants de fagon déclarative (sans aucune programmation ou
modification du code d’implémentation des services). Ceci peut étre effectué dans
WebSphere Integration Developer. En général, les qualificateurs QoS sont appliqués
lorsque vous étes prét a envisager le déploiement d’une solution. Pour plus
d’informations, reportez-vous a la section [Référence du qualificateur pour la|
lqualité de servicel

Concepts associés

[Architecture et modeles d’intégration métier|

Un projet d’intégration métier classique implique la coordination de plusieurs
actifs informatiques différents qui peuvent étre en cours d’exécution sur différentes
plateformes et qui ont été développés a différentes périodes via diverses
technologies. La capacité a manipuler et échanger facilement des informations a
l'aide d’un ensemble de composants divers représente un défi technique énorme.
Le modele de programmation utilisé pour développer des solutions d’intégration
métier permet de relever ce défi.

Processus métier

Processus métier, plus précisément, processus métier basés sur BPEL, qui
constituent la base des composants de service dans 1’architecture SCA.

Qu’il s’agisse d'une simple approbation de commande ou d'un processus de
fabrication complexe, les entreprises ont toujours utilisé des processus métier. Un
processus métier est un ensemble d’activités, associées a une activité commerciale,
oul chacune est appelée dans un ordre spécifique pour atteindre un objectif
commercial. Dans le cadre de I'intégration métier, un processus métier est défini
avec un langage de balisage.

Ces processus métier peuvent avoir recours a d’autres services auxiliaires ou
d’autres composants de service, comme des machines d’état métier, des taches
utilisateur, des regles métier ou des mappes de données. Puis, une fois développés,
ces processus peuvent étre rapidement terminés ou exécutés pendant une durée
prolongée. Il arrive parfois que ces processus soient exécutés pendant plusieurs
années.

Comme la plupart des composants utilisés dans J2EE, les processus métier sont
exécutés dans un conteneur. Dans la plateforme IBM WebSphere, ce conteneur

Chapitre 1. Développement de solutions d’intégration métier 19

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.wbit.612.help.addev.doc/topics/aqosref.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.wbit.612.help.addev.doc/topics/aqosref.html

spécial porte le nom de "Business Process Choreographer”. Dans WebSphere
Process Server, Business Process Choreographer est chargé de 1’exécution des
processus métier et des tadches humaines.

Concepts associés

|Architecture et modeles d’intégration métier|

Un projet d'intégration métier classique implique la coordination de plusieurs
actifs informatiques différents qui peuvent étre en cours d’exécution sur différentes
plateformes et qui ont été développés a différentes périodes via diverses
technologies. La capacité a manipuler et échanger facilement des informations a
I'aide d’un ensemble de composants divers représente un défi technique énorme.
Le modele de programmation utilisé pour développer des solutions d’intégration
métier permet de relever ce défi.

Taches utilisateur

Une tache utilisateur est un composant impliquant I'interaction des personnes et
des services.

Certaines taches utilisateur correspondent a des taches a effectuer. Elles peuvent
étre lancées par un utilisateur ou par un service automatique. Les taches utilisateur
permettent notamment d’intégrer des activités dans des processus métier
nécessitant une intervention humaine, par exemple le traitement et 'approbation
manuels d"une exception. D’autres taches utilisateur permettent d’appeler un
service, ou de coordonner la collaboration entre les utilisateurs. Toutefois, quel que
soit le mode de lancement d’une tache, c’est une personne membre d'un groupe et
a laquelle la tache est affectée qui effectue le travail associé a la tache.

Les taches utilisateur sont affectées soit de maniere statique, soit a ’aide de criteres
(par exemple rdle ou groupe) qui sont résolus lors de 1'exécution a partir d'un
répertoire d’utilisateurs. Dans d’autres cas, les données en entrée d'une tache
utilisateur ou d’un processus métier sont utilisées pour rechercher les personnes
qualifiées pour travailler sur une tache précise.

Concepts associés

[Architecture et modeles d’intégration métier|

Un projet d’intégration métier classique implique la coordination de plusieurs
actifs informatiques différents qui peuvent étre en cours d’exécution sur différentes
plateformes et qui ont été développés a différentes périodes via diverses
technologies. La capacité a manipuler et échanger facilement des informations a
I'aide d’un ensemble de composants divers représente un défi technique énorme.
Le modele de programmation utilisé pour développer des solutions d’intégration
métier permet de relever ce défi.

20 Développement et déploiement

Création d’applications d’intégration métier

Intégration métier implique l'intégration d’applications, de données et de processus
dans une ou plusieurs entreprises. L'intégration implique également le
développement de processus, car il existe une certaine logique dans la séquence
d’applications assemblées, afin de les intégrer. WebSphere Integration Developer
permet de créer des applications d’intégration métier.

Cette section fournit des informations générales concernant le processus de
développement d'un module d’intégration métier.

Le flux de développement classique des modules et des modules de médiation est
le suivant :

1. Démarrez WebSphere Integration Developer et ouvrez un espace de travail.

2. Basculez vers la perspective Business Integration pour effectuer le
développement.

3. Créez une bibliotheque pour stocker des artefacts, comme les objets métier et
les interfaces qui sont partagés entre plusieurs modules.

4. Créez un nouveau module ou un module de médiation.

5. Créez des objets métier pour contenir des données d’application, par exemple
: des données client ou les données d'une commande.

6. Créez l'interface et définissez les opérations d’interface pour chaque
composant. L’interface détermine les données pouvant étre transférées d'un
composant a un autre.

7. Créez et implémentez des composants de service.

8. Créez un assemblage de modules en ajoutant des composants de service, des
importations et des exportations au diagramme d’assemblage. Connectez les
composants. Associez les importations et les exportations a un protocole.

9. Testez le module dans 'environnement de tests intégré.
10. Déployez le module dans WebSphere Process Server.

11. Partagez le module testé avec les autres membres de 1’équipe en le placant
dans un référentiel.

Concepts associés

[Développement de solutions d’intégration métier|

Cette section évoque les principes du modele de programmation pour l'intégration
métier. Elle présente 1’architecture SCA (Service Component Architecture) et les
modeles associés a l'intégration métier.

Chapitre 1. Développement de solutions d’intégration métier ~ 21

22 Développement et déploiement

Chapitre 2. Développement de modules de service

Un composant de service doit étre contenu dans un module de service. Le
développement de modules destinés a contenir des composants est essentiel pour
permettre la fourniture de services a d’autres modules.

Avant de commencer

Cette tache suppose qu'une analyse des exigences montre que l'implémentation
d’un composant de service que d’autres modules utiliseront est avantageuse.

A propos de cette tache

Apres avoir analysé vos besoins, vous pouvez décider que la fourniture et
l'utilisation de composants de service constituent un moyen efficace de traiter les
informations. Si vous déterminez que des composants de service réutilisables
présenteraient un avantage pour votre environnement, créez un module de service
destiné a contenir les composants de service.

Procédure
1. Identifiez les composants de service que d’autres modules peuvent utiliser.

Une fois que vous avez identifié les composants de service, passez a la section
«Développement de composants de service».

2. Identifiez des composants de service dans une application qui pourraient
utiliser des composants de service dans d’autres modules de service.

Une fois que vous avez identifié les composants de service et les composants
cibles correspondants, passez a la section «Appel de composants» ou «Appel
dynamique des composants »

3. Reliez les composants client aux composants cible par le biais de connexions.

© Copyright IBM Corp. 2005, 2009 23

Concepts associés

[Présentation du développement de moduleg|

Un module est une unité de déploiement de base pour une application WebSphere
Process Server. Un module peut contenir des composants, des bibliotheques et des
modules de transfert utilisés par 1’application.

IPrésentation de I'isolement des modules et des cibles|

Lors du développement de modules, vous étes amené a identifier des services
exploités par plusieurs modules. Cette méthode d’optimisation des services permet
de raccourcir le cycle de développement et de réduire les cofits. Lorsqu'un service
est utilisé par de nombreux modules, il convient d’isoler les modules appelants de
la cible afin que, dans le cas ot la mise a niveau d’une cible est effectuée, le
basculement sur le nouveau service puisse s’effectuer de maniere transparente
vis-a-vis du module appelant. La présente rubrique compare le modele d’appel
simple et le modele d’appel isolé, en illustrant par un exemple les avantages offerts
par la technique d’isolement. Bien que 'exemple décrit soit spécifique, il existe
d’autres méthodes pour isoler les modules et les cibles.

La liaison HTTP permet de relier une architecture SOA a HTTP. Cela permet
d’intégrer les applications HTTP existantes ou récemment développées aux
environnements d’architecture SOA (Service Oriented Architecture).

TAaches associées

[Développement de composants de servicel
Développez des composants de service pour fournir une logique réutilisable a
plusieurs applications dans votre serveur.

[Appel de composants|
Les composants avec modules peuvent utiliser des composants sur n’importe quel
noeud d'un cluster WebSphere Process Server.

[Appel dynamique d’un composant]

Lorsqu'un module appelle un composant qui a une interface de type de port
WSDL (Web Service Descriptor Language), il doit appeler le composant de fagon
dynamique a 'aide de la méthode invoke().

Présentation du développement de modules

Un module est une unité de déploiement de base pour une application WebSphere
Process Server. Un module peut contenir des composants, des bibliotheques et des
modules de transfert utilisés par 1’application.

Le développement de modules consiste notamment a assurer que les composants,
les modules de transfert et les bibliotheques (collections d’artefacts référencés par
le module) requis par 1’application sont disponibles sur le serveur de production.

WebSphere Integration Developer est 1'outil principal de développement des
modules destinés a étre déployés sur WebSphere Process Server. Bien qu’il soit
possible de développer des modules dans d’autres environnements, il est
préférable d’utiliser WebSphere Integration Developer.

WebSphere Process Server prend en charge les modules de service métier et les
modules de médiation. Les deux modules et les modules de médiation sont des
types de module SCA (Service Component Architecture). Un module de
communication permet les communications entre applications en transformant
I'appel de service dans un format compris par la cible, en transmettant la demande
a la cible et en renvoyant le résultat au module émetteur. Un module de service

24 Développement et déploiement

métier implémente la logique d’'un processus métier. Toutefois, un module peut
également inclure la méme logique de médiation qui peut étre intégrée a un
module de médiation.

Les sections suivantes décrivent comment implémenter et mettre a jour des
modules sous WebSphere Process Server.

Composants

Les modules SCA contiennent des composants qui forment la structure de base
permettant d’encapsuler la logique métier réutilisable. Les composants fournissent
et consomment des services qui sont associés a des interfaces, des références et des
implémentations. L’interface définit un contrat entre un composant de service et un
composant appelant.

Avec WebSphere Process Server, un module peut soit exporter un composant de
service pour qu’il soit utilisé par d’autres modules, soit importer un composant de
service pour l'utiliser. Pour appeler un composant de service, un module appelant
fait référence a l'interface du composant de service. Les références aux interfaces
sont résolues a travers la configuration des références du module appelant a leurs
interfaces respectives.

Pour développer un module, vous devez effectuer les activités suivantes :
1. Définir ou identifier des interfaces pour les composants du module.
2. Définir ou manipuler des objets métier utilisés par les composants.

3. Définir ou modifier des composants via leurs interfaces.

Remarque : Un composant est défini par le biais de son interface.
4. Facultatif : Exporter ou importer des composants de service.

5. Créez un fichier d’archive d’entreprise (EAR - Enterprise Archive) a déployer
dans la phase d’exécution. Créez le fichier a 1’aide de la fonction EAR
d’exportation dans WebSphere Integration Developer ou de la commande
serviceDeploy.

Types de développement

WebSphere Process Server comprend un modele de programmation de composant
afin de faciliter un paradigme de programmation orientée services. Pour utiliser ce
modeéle, un fournisseur exporte les interfaces d’'un composant de service de fagon a
ce qu'un client puisse importer ces interfaces et utiliser le composant de service
comme s'il était local. Un développeur utilise soit des interfaces fortement typées,
soit des interfaces dynamiquement typées pour implémenter ou appeler le
composant de service. Les interfaces et leurs méthodes sont décrites dans la section
Références de ce centre de documentation.

Apres avoir installé des modules de service sur vos serveurs, vous pouvez utiliser
la console d’administration pour modifier le composant cible pour une référence
d’une application. La nouvelle cible doit accepter le méme type d’objet métier et
effectuer la méme opération que ce que la référence de 1’application demande.

Remarques concernant le développement de composants de
service

Lorsque vous développez un composant de service, posez-vous les questions
suivantes :

Chapitre 2. Développement de modules de service 25

* Ce composant de service va-t-il étre exporté et utilisé par un autre module ?

Si c’est le cas, assurez-vous que la définition portant sur le composant va
pouvoir étre utilisée par un autre module.

* L’exécution de ce composant de service prendra-t-elle relativement longtemps ?

Si c’est le cas, envisagez d’implémenter une interface asynchrone pour le
composant de service.

* Est-ce avantageux de décentraliser le composant de service ?

Si c’est le cas, envisagez de placer une copie du composant de service dans un
module de service qui est déployé sur un cluster de serveurs afin de bénéficier
du traitement parallele.

* L’application nécessite-t-elle un mélange de ressources a une phase et a deux
phases ?

Si c’est le cas, assurez-vous d’activer le support du dernier participant pour
I'application.

Remarque : Si vous créez votre application a 1'aide de WebSphere Integration
Developer ou créez le fichier EAR installable a I'aide de la commande
serviceDeploy, ces outils activent automatiquement le support pour 1'application.
Consultez la rubrique consacrée a '«utilisation de ressources de validation a une
phase et de ressources de validation a deux phases dans la méme transaction»
dans le centre de documentation de WebSphere Application Server Network
Deployment.

TAaches associées

[Développement de modules de service]

Un composant de service doit étre contenu dans un module de service. Le
développement de modules destinés a contenir des composants est essentiel pour
permettre la fourniture de services a d’autres modules.

Développement de composants de service

Développez des composants de service pour fournir une logique réutilisable a
plusieurs applications dans votre serveur.

Avant de commencer

Cette tache suppose que vous avez déja développé et identifié le traitement qui est
utile pour plusieurs modules.

A propos de cette tache

Plusieurs modules peuvent utiliser un composant de service. L’exportation d'un
composant de service rend celui-ci disponible pour les autres modules qui se
référent a lui par le biais d'une interface. Cette tache explique comment compiler le
composant de service de maniere a ce que d’autres modules puissent 1'utiliser.

Remarque : Un composant de service unique peut contenir plusieurs interfaces.

Procédure

1. Définir 1'objet de données permettant de déplacer des données entre I'appelant
et le composant de service.

L’objet de données et son type font partie de l'interface entre les appelants et le
composant de service.

26 Développement et déploiement

Définir une interface que les appelants utiliseront pour référencer le composant
de service.

La définition de cette interface nomme le composant de service et répertorie
toutes les méthodes disponibles dans ce composant de service.

Générer la classe implémentant 1’appel du service.
Développer I'implémentation de la classe générée.

Sauvegarder les interfaces et les implémentations du composant dans des
fichiers dotés d’une extension .java.

Empaqueter le module de service et les ressources nécessaires dans un fichier
JAR.

Reportez-vous a la section «Déploiement d’un module sur un serveur de
production» de ce centre de documentation pour obtenir une description des
étapes El a @

Exécuter la commande serviceDeploy pour créer un fichier EAR installable
contenant l"application.

Installer I’application sur le noeud du serveur.

Facultatif : Configurer les connexions entre les appelants et le composant de
service correspondant, en cas d’appel d'un composant de service d'un autre
module de service.

La section «Administration» de ce centre de documentation explique comment
configurer ces connexions.

Exemples de développement de composants

Cet exemple montre un composant de service synchrone qui implémente une
méthode unique, CustomerInfo. La premiere section définit l'interface du
composant de service qui implémente une méthode appelée getCustomerInfo.

public interface CustomerInfo {
public interface CustomerInfo { public Customer getCustomerInfo(String
customerID);

Le bloc de code suivant implémente le composant de service.

public class CustomerInfolmpl implements CustomerInfo {
public Customer getCustomerInfo(String customerID) {

Customer cust = new Customer();

cust.setCustNo(customerID);
cust.setFirstName("Victor");
cust.setLastName("Hugo");
cust.setSymbol ("IBM");
cust.setNumShares (100) ;
cust.setPostalCode(10589);
cust.setErrorMsg("");

return cust;

La section suivante est I'implémentation de la classe associée a StockQuote.

public class StockQuoteImpl implements StockQuote {

public float getQuote(String symbol) {

Chapitre 2. Développement de modules de service 27

return 100.0f;
1
}

Que faire ensuite

Appelez le service.
Taches associées

IDéveloppement de modules de service]

Un composant de service doit étre contenu dans un module de service. Le
développement de modules destinés a contenir des composants est essentiel pour
permettre la fourniture de services a d’autres modules.

Appel de composants

Les composants avec modules peuvent utiliser des composants sur n’importe quel
noeud d'un cluster WebSphere Process Server.

Avant de commencer

Avant d’appeler un composant, assurez-vous que le module qui contient le
composant est installé sur WebSphere Process Server.

A propos de cette tache

Les composants peuvent utiliser n'importe quel composant de service disponible
dans un cluster WebSphere Process Server en utilisant le nom du composant et en
transférant le type de données qu’attend le composant. L’appel d"un composant
dans cet environnement implique la localisation, puis la création de la référence
vers le composant nécessaire.

Remarque : Un composant de module peut appeler un composant a l'intérieur du
méme modele : cette opération s’appelle un appel intra-module. Implémentez les
appels externes (appels inter-modules) en exportant l'interface dans le composant
fournisseur et en important l'interface dans le composant appelant.

Important : Lors de I'appel d'un composant résidant sur un serveur autre que le
serveur sur lequel s’exécute le module appelant, vous devez apportez des
modifications de configuration a ces deux serveurs. Les configurations requises
dépendent du mode d’appel du composant (appel asynchrone ou appel
synchrone). La procédure de configuration spécifique des serveurs d’applications
est décrite dans les taches associées.

Procédure
1. Déterminer les composants requis par le module appelant.

Notez le nom de l'interface dans un composant et le type de données dont
l'interface a besoin.

2. Définir un objet de données.

Bien que l'entrée ou le retour puisse étre une classe Java, l'idéal est un objet de
données de service.

3. Localiser le composant.

a. Utiliser la classe ServiceManager pour obtenir les références disponibles
pour le module appelant.

28 Développement et déploiement

b. Utiliser la méthode locateService() pour trouver le composant.

En fonction du composant, I'interface peut étre soit un type de port WSDL
(Web Service Descriptor Language), soit une interface Java.

4. Appeler le composant de maniere synchrone.

Vous pouvez soit appeler le composant par le biais d'une interface Java, soit
utiliser la méthode invoke() pour appeler le composant de maniere dynamique.

5. Traiter le retour.

Le composant peut générer une exception, aussi le client doit-il étre capable de
traiter cette possibilité.

Exemple d’appel d’un composant

L’exemple suivant permet de créer une classe ServiceManager.
ServiceManager serviceManager = new ServiceManager();

Cet exemple utilise la classe ServiceManager pour obtenir une liste de composants
a partir d'un fichier contenant les références des de composants.

InputStream myReferences = new FileInputStream("MyReferences.references");
ServiceManager serviceManager = new ServiceManager(myReferences);

Le code suivant localise un composant qui implémente l'interface Java StockQuote.
StockQuote stockQuote = (StockQuote)serviceManager.locateService("stockQuote");

Le code suivant localise un composant qui implémente soit une interface Java, soit
une interface de type de port WSDL. Le module appelant utilise 1'interface Service
afin d’interagir avec le composant.

Conseil : Si le composant implémente une interface Java, il peut étre appelé a
I'aide de l'interface ou de la méthode invoke().

Service stockQuote = (Service)serviceManager.locateService("stockQuote");

L’exemple suivant illustre le code MyValue, qui appelle un autre composant.
public class MyValueImpl implements MyValue {

public float myValue throws MyValueException {
ServiceManager serviceManager = new ServiceManager();
// variables
Customer customer = null;

float quote = 0;
float value = 0;

// invoke
CustomerInfo cInfo = (CustomerInfo)serviceManager.locateService("customerInfo");
customer = cInfo.getCustomerInfo(customerID);

if (customer.getErrorMsg().equals("")) {

// invoke
StockQuote sQuote =
(StockQuote)serviceManager.locateService("stockQuote");
Ticket ticket = sQuote.getQuote(customer.getSymbol());
// ... do something else ...
quote = sQuote.getQuoteResponse(ticket, Service.WAIT);

// assign
value = quote * customer.getNumShares();

Chapitre 2. Développement de modules de service 29

} else {

// throw
throw new MyValueException(customer.getErrorMsg());

}
/] reply
return value;

}
}

Que faire ensuite

Configurez les connexions entre les références de module appelant et les interfaces
de composant.

Taches associées

[Développement de modules de service]

Un composant de service doit étre contenu dans un module de service. Le
développement de modules destinés a contenir des composants est essentiel pour
permettre la fourniture de services a d’autres modules.

Appel dynamique d’un composant

Lorsqu'un module appelle un composant qui a une interface de type de port
WSDL (Web Service Descriptor Language), il doit appeler le composant de fagon
dynamique a l'aide de la méthode invoke().

Avant de commencer

Cette tache suppose quun composant appelant appelle un composant de fagon
dynamique.

A propos de cette tache

Avec une interface de type de port WSDL, un composant appelant doit utiliser la
méthode invoke() pour appeler le composant. Un composant appelant peut
également appeler un composant ayant une interface Java de cette facon.

Procédure
1. Déterminez le module qui contient le composant nécessaire.
2. Déterminez le tableau dont le composant a besoin.

Le tableau d’entrée peut étre de 1'un des trois types suivants :

* Des types Java haut de casse primitifs ou des tableaux de ce type
* Des classes Java ordinaires ou des tableaux de ces classes

* Service Data Objects (SDO)

3. Définissez un tableau pour contenir la réponse du composant.
Le tableau de réponse peut étre des mémes types que le tableau d’entrée.

4. Utilisez la méthode invoke() pour appeler le composant nécessaire et transférer
'objet tableau vers le composant.

5. Traitez le résultat.
Exemples d’appel dynamique d’un composant
Dans 'exemple suivant, un module utilise la méthode invoke() pour appeler un

composant qui utilise des types de données Java haut de casse primitives.

30 Développement et déploiement

Service service = (Service)serviceManager.locateService("multiParamInf");
Reference reference = service.getReference();

OperationType methodMultiType =
reference.getOperationType("methodWithMultiParameter");

Type t = methodMultiType.getInputType();

BOFactory boFactory = (BOFactory)serviceManager.locateService
("com/1ibm/websphere/bo/BOFactory");

DataObject paramObject = boFactory.createbyType(t);

paramObject.set(0,"inputl")
paramObject.set(1,"input2")
paramObject.set(2,"input3")

service.invoke("methodMultiParamater",paramObject);

L’exemple suivant utilise la méthode d’appel via une interface de port WSDL
configurée en tant que cible.

Service serviceOne = (Service)serviceManager.locateService("multiParamInfWSDL");

DataObject dob = factory.create("http://MultiCallWSServerOne/bos", "SameB0");
dob.setString("attributel", stringArg);

DataObject wrapBo = factory.createByElement
("http://MultiCallWSServerOne/wsdl/ServerOneInf", "methodOne");
wrapBo.set("inputl", dob); //wrapBo encapsule tous les paramétres de methodOne
wrapBo.set ("input2", "XXXX");
wrapBo.set("input3", "yyyy");

DataObject resBo= (DataObject)serviceOne.invoke("methodOne", wrapBo);

TAaches associées

[Développement de modules de service]

Un composant de service doit étre contenu dans un module de service. Le
développement de modules destinés a contenir des composants est essentiel pour
permettre la fourniture de services a d’autres modules.

Présentation de I'isolement des modules et des cibles

Lors du développement de modules, vous étes amené a identifier des services
exploités par plusieurs modules. Cette méthode d’optimisation des services permet
de raccourcir le cycle de développement et de réduire les cofits. Lorsqu'un service
est utilisé par de nombreux modules, il convient d’isoler les modules appelants de
la cible afin que, dans le cas ol la mise a niveau d’une cible est effectuée, le
basculement sur le nouveau service puisse s’effectuer de maniere transparente
vis-a-vis du module appelant. La présente rubrique compare le modele d’appel
simple et le modéle d’appel isolé, en illustrant par un exemple les avantages offerts
par la technique d’isolement. Bien que 1’'exemple décrit soit spécifique, il existe
d’autres méthodes pour isoler les modules et les cibles.

Chapitre 2. Développement de modules de service 31

Modele d’appel simple

Lors du développement d'un module, vous pouvez étre amené a utiliser des
services situés dans d’autres modules. Pour ce faire, vous devez importer le service
dans le module, puis appeler ce service. Le service importé est «connecté» au
service exporté via l’autre module, soit sous WebSphere Integration Developer, soit
par 1'établissement d’une liaison avec le service via la console d’administration. Le
Imodéle d’appel simple| illustre cette configuration.

DifferentModule

MyModule

ServiceA

Invoke ServiceA

o

H"H-_

ServiceB

Figure 5. Modéle d’appel simple
Modele d’appel isolé

Pour changer la cible d’appel sans impliquer 'arrét des modules d’appel, vous
pouvez isoler ces derniers de la cible concernée par 1’appel. Ceci permet aux
modules de poursuivre le traitement durant le changement de cible, puisque le
changement affecte non pas le module lui-méme, mais la cible située en aval. La
figure [Exemple d’isolement d’applications|indique comment I'isolement permet de
modifier la cible sans influer sur 1'état du module appelant.

Exemple d’isolement d’applications

Lorsque le modele d’appel simple est appliqué, I'appel d'un méme service par
plusieurs modules équivaut pratiquement a un |[Appel de service unique par deg
lapplications multiples| Les modules MODA, MODB et MODC appellent

conjointement CalculateFinalCost.

32 Développement et déploiement

DifferentMod

ModA

CalculateFinalCost

ModB

ModC

Figure 6. Appel de service unique par des applications multiples

Le service fourni par CalculateFinalCost nécessite une mise a jour, de sorte que les
nouveaux colts soient reflétés dans tous les modules exploitant ce service.
L’équipe de développement met au point et teste un nouveau service
(UpdatedCalculateFinal) visant & incorporer les modifications. Le nouveau service
est des lors prét a entrer en phase de production. Si aucun isolement n’est effectué,
vous devez mettre a jour 'ensemble des modules appelant CalculateFinalCost, afin
de définir I'appel de UpdateCalculateFinal. Grace a l'isolement, la seule
modification nécessaire porte sur la liaison entre le module tampon et la cible.

Remarque : En utilisant cette méthode pour modifier le service, vous pouvez

continuer a fournir le service d’origine aux autres modules ayant besoin de
I'exploiter.

Chapitre 2. Développement de modules de service 33

L’isolement permet de créer un module tampon entre les applications et la cible
(voir [Modele d’appel isolé du service UpdateCalculateFinal)).

Buffervod ActualMod

ModA CalculateFinalCost

CalculateFinalCost

L

ModB

UpdateFinalCost

E
Q \
Q
] O 1
&

Figure 7. Modele d’appel isolé du service UpdateCalculateFinal

Suivant ce modele, les modules d’appel restent inchangés, la seule modification
portant sur la liaison entre l'interface d’importation du module tampon et la cible
(voir [Modele d’appel isolé du service UpdatedCalculateFinall).

34 Développement et déploiement

BufferMod ActualMod

ModA CalculateFinalCost

CalculateFinalCost

ModB \

UpdateFinalCost
|

f
1

ModC

Figure 8. Modeéle d’appel isolé du service UpdatedCalculateFinal

Si le module tampon procede a 1’appel synchrone de la cible, le résultat renvoyé
vers 'application d’origine lors du redémarrage du module tampon (qu'il s’agisse
d’un module de médiation ou d'un service pour module métier) provient de la
nouvelle cible. En cas d’appel asynchrone de la cible par le module tampon, les
résultats renvoyés vers 'application d’origine proviendront de la nouvelle cible deés
I'appel suivant.

Taches associées

IDéveloppement de modules de service|

Un composant de service doit étre contenu dans un module de service. Le
développement de modules destinés a contenir des composants est essentiel pour
permettre la fourniture de services a d’autres modules.

Liaisons HTTP

La liaison HTTP permet de relier une architecture SOA a HTTP. Cela permet
d’intégrer les applications HTTP existantes ou récemment développées aux
environnements d’architecture SOA (Service Oriented Architecture).

De plus, un réseau d’environnements d’exécution SCA peuvent communiquer via
une infrastructure HTTP existante.

Chapitre 2. Développement de modules de service 35

La liaison HTTP offre plusieurs fonctions HTTP :

* Dans les messages présentés sur les composants de communication, le format
HTTP et les informations de I'en-téte sont conservés. Ce mode d’affichage
correspond a ce que les programmeurs d’applications HTTP, les utilisateurs et
les administrateurs ont I’habitude de voir.

* Une structure de liaisons de données existante développée selon les conventions
HTTP permet de mapper les messages SCA aux en-tétes de message HTTP et
aux corps des messages.

* Les importations et les exportations peuvent étre configurées de fagon a prendre
en charge un ensemble de fonctions HTTP courantes.

* Lorsque vous installez un module SCA contenant des importations ou des
exportations HTTP, I'environnement d’exécution est automatiquement configuré
pour permettre la connectivité vers HTTP.

Vous trouverez des instructions détaillées sur la création d’importations et
d’exportations HTTP dans le centre de documentation dans WebSphere
Integration Developer > Développement des applications d’intégration >
Liaisons de données HTTP.

TAaches associées

[Développement de modules de service]

Un composant de service doit étre contenu dans un module de service. Le
développement de modules destinés a contenir des composants est essentiel pour
permettre la fourniture de services a d’autres modules.

36 Développement et déploiement

Chapitre 3. Guides et techniques de programmation

Cette section comprend des guides et des exemples de programmation.

Les sous-rubriques ci-aprés fournissent des informations pour la programmation
de divers composants, applications et solutions d’intégration métier.

Important: Voir la section Référence du centre de documentation pour obtenir des
détails sur les API (interfaces de programme d’application) et les SPI a(interfaces
de programmation de systeme) qui sont prises en charge par WebSphere Process
Server et WebSphere Enterprise Service Bus.

Concepts associés

[Programmation d’objets métier|

L’infrastructure d’objets métier (BO) WebSphere Process Server est une extension
de la norme SDO (Service Data Object). Cette section fournit des informations sur
la programmation d’objets métier et SDO.

[Validation de document XML|

II est possible de valider les documents XML et les objets métier a 1’aide du service
de validation.

[Propagation d’en-téte de protocole a partir de liaisons d’exportation non SCA|

Le service de contexte est chargé de la propagation du contexte (y compris les
en-tétes de protocole comme 'en-téte JMS et le contexte utilisateur comme I'ID de
compte) tout au long du chemin d’appel SCA (Service Component Architecture).
Le service de contexte offre un ensemble d’API et de parameétres configurables.

(Gestion des régles métier|

Des classes de gestion des regles métier sont fournies pour permettre de créer des
clients de gestion personnalisés ou d’automatiser les changements apportés aux
régles métier.

Programmation d’objets métier

L’infrastructure d’objets métier (BO) WebSphere Process Server est une extension
de la norme SDO (Service Data Object). Cette section fournit des informations sur
la programmation d’objets métier et SDO.

Les sous-rubriques ci-aprées contiennent des informations pour la programmation
d’objets métier et SDO.

© Copyright IBM Corp. 2005, 2009 37

Concepts associés

(Guides et techniques de programmation|
Cette section comprend des guides et des exemples de programmation.

[Tableaux dans les objets métier|
Vous pouvez définir des tableaux pour un élément dans un objet métier afin que
cet élément puisse contenir plus dune instance de données.

(Création d’objets métier imbriqués|
La fonction setWithCreate permet de créer des objets métier imbriqués au sein
d’un objet métier parent.

Objets métier : renforcement du schéma et prise en charge du schéma industriel|
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server

[Regles en exécution de la conversion de Java en objets SDO|

Pour une substitution correcte du code généré ou l'identification des éventuelles
exceptions d’exécution liées aux conversions de Java en SDO (Service Data Object),
il est important de bien comprendre les régles en jeu. La plus grande partie des
conversions se font directement, mais il existe des cas complexes oli
I'environnement d’exécution offre les meilleures possibilités de conversion du code
généré.

TAaches associées

[Remplacement d’une conversion d’objet SDO en Java|

Il se peut que la conversion d'un objet SDO (Service Data Object) en objet de type
Java effectuée par le systeme ne réponde pas a vos besoins. Suivez cette procédure
pour remplacer I'implémentation par défaut par celle de votre choix.

[Remplacement de I'implémentation d’architecture SCA générée|

11 se peut que la conversion de code Java en objet SDO (Service Data Object)
effectuée par le systéme ne réponde pas a vos besoins. Suivez cette procédure pour
remplacer I'implémentation d’architecture SCA (Service Component Architecture)
par défaut par celle de votre choix.

Tableaux dans les objets métier

Vous pouvez définir des tableaux pour un élément dans un objet métier afin que
cet élément puisse contenir plus d’une instance de données.

Vous pouvez utiliser une Liste pour créer un tableau pour un seul élément nommé
dans un objet métier. Vous pourrez ainsi utiliser cet élément pour contenir des
instances multiples de données. Par exemple, vous pouvez utiliser un tableau pour
stocker plusieurs numéros de téléphone dans un élément nommé telephone et
défini en tant que chaine dans l’encapsuleur d’objet métier. Vous pouvez également
définir la taille du tableau en précisant le nombre d’instances de données. Pour
cela, vous utiliserez la valeurmaxOccurs. L’'exemple de code suivant montre
comment créer un tel tableau comportant trois instances de données pour cet
élément :

<xsd:element name="telephone" type="xsd:string" maxOccurs="3"/>

Cela va créer un index pour I'élément telephone qui peut contenir jusqu’a trois
instances de données. Vous pouvez également utiliser la valeur minOccurs si vous
envisagez d’avoir un élément dans le tableau.

Le tableau créé se compose de deux éléments :
* son contenu
* le tableau lui-méme.

38 Développement et déploiement

Pour créer ce tableau, cependant, vous devez effectuer une opération intermédiaire
consistant a définir un encapsuleur. Celui-ci remplace en effet la propriété de
I’élément par un objet tableau. Dans I'exemple ci-dessus, vous pouvez créer un
objet ArrayOfTelephone pour définir I’élément telephone en tant que tableau.
L’exemple de code suivant indique comment accomplir cette tache :
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customer">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="ArrayOfTelephone" type="ArrayOfTelephone"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:complexType name="ArrayOfTelephone">
<xsd:sequence maxOccurs="3">
<xsd:element name="telephone" type="xsd:string" nillable="true"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

L’élément telephone apparait maintenant en tant qu’enfant de I'objet encapsuleur
ArrayOfTelephone.

Vous remarquerez que dans 1’exemple ci-dessus, ’élément telephone comprend la
propriété nillable. Vous pouvez définir cette valeur sur true si vous voulez que
certains éléments dans l'indice de tableau ne contiennent aucune donnée.
L’exemple de code suivant indique comment les données d’un tableau peuvent
étre représentées :
<Customer>
<name>Bob</name>
<ArrayOfTelephone>
<telephone>111-1111</telephone>
<telephone xsi:nil="true"/>
<telephone>333-3333</telephone>
</Array0fTelephone>
</Customer>

Dans ce cas, le premier et le troisieme éléments dans l'indice de tableau de
I’élément telephone contiennent des données contrairement au deuxiéme. Si vous
n’aviez pas utilisé la propriété nillable pour I'élément telephone, vous auriez
alors les deux premiers éléments qui contiennent des données.

Vous pouvez utiliser les API de séquence Service Data Object (SDO) dans
WebSphere Process Server comme alternative au traitement des séquences dans les
tableaux d’objet métier. L’exemple de code suivant permet de créer un tableau
pour l'élément telephone avec des données identiques a celles indiquées plus haut

DataObject customer = ...
customer.setString("name", "Bob");

DataObject tele_array = customer.createDataObject("ArrayOfTelephone");
Sequence seq = tele_array.getSequence(); // The array is sequenced
seq.add("telephone", "111-1111");

seq.add("telephone", null);

seq.add("telephone", "333-3333");

Chapitre 3. Guides et techniques de programmation 39

Vous pouvez renvoyer les données d’un indice de tableau d’élément donné en
utilisant un code semblable a I'exemple ci-dessous :

String tele3 = tele array.get("telephone[3]"); // tele3 = "333-3333"
Dans cet exemple, la chaine tele3 va renvoyer les données "333-3333".

Vous pouvez remplir les éléments données du tableau dans I'index en utilisant une
largeur fixe ou des données délimitées placées dans une file d’attente de messages
JMS ou MQ. Vous pouvez également accomplir cette tdche en utilisant un fichier
texte a plat contenant les données correctement formatées.

Concepts associés

[Programmation d’objets métier|

L’infrastructure d’objets métier (BO) WebSphere Process Server est une extension
de la norme SDO (Service Data Object). Cette section fournit des informations sur
la programmation d’objets métier et SDO.

Création d’objets métier imbriqués
La fonction setWithCreate permet de créer des objets métier imbriqués au sein
d’un objet métier parent.

Vous pouvez créer des objets métier imbriqués a partir d’un objet métier parent
sans écrire de code détaillant les objets enfant intermédiaires. Par exemple, vous
pouvez créer un objet métier imbriqué deux niveaux sous l'objet parent sans avoir
a définir un objet métier dépendant entre les deux, c’est-a-dire un niveau sous
I'objet parent. La fonction setWithCreate permet d’accomplir cette tache pour :

* une seule instance

* plusieurs instances

* une valeur de caractere générique
* un groupe de modeles

Les rubriques suivantes expliquent comment procéder.
Concepts associés

[Programmation d’objets métier|

L’infrastructure d’objets métier (BO) WebSphere Process Server est une extension
de la norme SDO (Service Data Object). Cette section fournit des informations sur
la programmation d’objets métier et SDO.

TAaches associées

[[nstance unique d’un objet métier imbriqué|
La fonction setWithCreate permet de créer une instance unique d’un objet métier
imbriqué.

(Création de plusieurs instances d’objets métier imbriqués|
La fonction setWithCreate permet de créer des instances multiples d’un objet
métier imbriqué.

[Utilisation d"un objet métier imbriqué défini par un caractére génériquel
Vous pouvez spécifier le type xsd:any dans un objet parent pour indiquer un objet
enfant, mais uniquement si cet objet enfant existe déja.

[Utilisation des objets métier dans les groupes de modéled
Vous devriez utiliser les modeles de chemin de groupe de modéles lorsque vous
utilisez des objets métier imbriqués faisant partie d'un groupe de modeles.

Instance unique d’un objet métier imbriqué
La fonction setWithCreate permet de créer une instance unique d’un objet métier
imbriqué.

40 Développement et déploiement

Avant de commencer

L’exemple suivant montre comment vous devriez normalement créer du code pour
un objet intermédiaire (enfant) a partir d’un objet de niveau plus élevé (parent)
afin de créer un objet de troisiéme niveau (grand-enfant). Le fichier XSD aurait la
forme suivante :

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:complexType name="Parent">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="child" type="Child"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Child">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="grandChild" type="GrandChild"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="GrandChild">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>
A propos de cette tache

Si vous utilisiez la méthode traditionnelle "descendante” pour définir les données
d’objet métier, il vous faudrait traiter le code suivant précisant les objets enfant et
grand-enfant avant de définir les données dans 1’objet grand-enfant :

DataObject parent = ...

DataObject child = parent.createDataObject("child");

DataObject grandchild = child.createDataObject("grandChild");
grandchild.setString("name", "Bob");

I1 existe une méthode plus efficace qui consiste a utiliser la fonction setWithCreate.
Celle-ci permet en effet de définir simultanément 1’objet grand-enfant et ses
données, sans avoir a préciser I'objet enfant intermédiaire. L’'exemple de code
suivant indique comment accomplir cette tache :

DataObject parent = ...
parent.setString("child/grandchild/name", "Bob");

Résultats

L’objet métier de niveau inférieur est définir sans avoir a définir 1’objet métier de
niveau intermédiaire. Une exception est émise toutefois si le chemin est incorrect.

Concepts associés

(Création d’objets métier imbriqués
La fonction setWithCreate permet de créer des objets métier imbriqués au sein
d’un objet métier parent.

Création de plusieurs instances d’objets métier imbriqués
La fonction setWithCreate permet de créer des instances multiples d'un objet
métier imbriqué.

Chapitre 3. Guides et techniques de programmation 41

Avant de commencer

L’exemple suivant représente un fichier XSD contenant des objets imbriqués se
trouvant un niveau (enfant) et deux niveaux (petit-enfant) sous 1’objet métier
supérieur (parent) :

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:complexType name="Parent">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="child" type="Child" maxOccurs="5"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Child">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="grandChild" type="GrandChild"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="GrandChild">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Vous remarquerez que l'objet parent peut avoir jusqu’a cinq objets enfant, comme
l'indique la valeur maxOccurs.

A propos de cette tache

Vous pouvez créer une liste avec une régle plus rigoureuse ne permettant pas que
des séquences soient absentes d’un tableau. Vous pouvez utiliser la méthode
setWithGet et, en méme temps, préciser les données qui apparaitront dans un
élément de I'index de liste particulier :

DataObject parent = ...
parent.setString("child[3]/grandchild/name", "Bob");

Dans cet exemple, vous obtenez un tableau de taille trois, mais les valeurs des
éléments de l'index de liste chi1d[1] et child[2] ne sont pas définies. Vous
voudrez peut-étre leur attribuer la valeur null ou la valeur d'une donnée associée.
Dans le scénario ci-dessus, une exception sera émise car la valeur des deux
premiers éléments du tableau n’est pas définie.

Vous pouvez remédier a cette situation en définissant ces valeurs dans I'index de la
liste. Si I’élément de l'index fait référence a un élément existant du tableau et que
la valeur de cet élément n’est pas null (c’est-a-dire qu’il contient des données),
celui-ci sera utilisé. Si sa valeur est null, il sera créé puis utilisé. Si I'index de la
liste est plus grand que la taille de celle-ci, une nouvelle valeur sera créée et
ajoutée. L'exemple suivant illustre le fonctionnement dans une liste de taille deux,
out I'élément child[1] est désigné comme null et 'élément child[2] contient des
données :

DataObject parent = ...

// child[1] = null

// child[2] = existing Child

// Ce code fonctionne car 1'élément child[1] est null et sera créeé.

42 Développement et déploiement

parent.setString("child[1]/grandchild/name", "Bob");

// Ce code fonctionne car 1'é@lément child[2] existe et sera utiliseé.
parent.setString("child[2]/grandchild/name", "Dan");

// Ce code fonctionne car la Tiste enfant est de taille 2 et 1'ajout
// d'un élément de liste supplémentaire va accroitre la taille de la Tliste.
parent.setString("child[3]/grandchild/name", "Sam");

Résultats

Vous avez remplacé les valeurs des deux éléments existants et ajouté un troisieme
a I'index de la liste. Néanmoins, si vous ajoutez un autre élément qui n’est pas de
taille quatre, ou qui est plus grand que la taille précisée dans maxOccurs, une
exception sera émise. La regle plus rigoureuse de cette méthode est démontrée
dans l'exemple suivant.

Remarque : Le code qui suit est ajouté au code utilisé ci-dessus :

// Ce code entrafne une exception car la Tiste est de taille 3
// et vous n'avez pas créé d'élément pour augmenter la taille a 4.
parent.setString("child[5]/grandchild/name", "Billy");

Concepts associés

[Création d’objets métier imbriquég
La fonction setWithCreate permet de créer des objets métier imbriqués au sein
d’un objet métier parent.

Utilisation d’un objet métier imbriqué défini par un caractere
générique

Vous pouvez spécifier le type xsd:any dans un objet parent pour indiquer un objet
enfant, mais uniquement si cet objet enfant existe déja.

A propos de cette tache

La fonction setWithCreate utilisée pour définir des objets métier imbriqués pour
une seule ou plusieurs instances ne fonctionne pas si vous utilisez la valeur
générique xsd:any dans l'objet de données de service. L’exemple suivant illustre
cette situation :

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:complexType name="Parent">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="child" type="xsd:anyType"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>
Résultats

Une exception sera émise si l'objet données enfant n’existe pas.

Chapitre 3. Guides et techniques de programmation 43

Concepts associés

[Création d’objets métier imbriquég
La fonction setWithCreate permet de créer des objets métier imbriqués au sein
d’un objet métier parent.

Utilisation des objets métier dans les groupes de modéles
Vous devriez utiliser les modeles de chemin de groupe de modeéles lorsque vous
utilisez des objets métier imbriqués faisant partie d’'un groupe de modeles.

A propos de cette tache

Les groupes de modeéles utilisent la balise xsd:choice que vous pouvez utiliser
pour créer des objets métier a partir d'un objet métier parent. Eclipse Modeling
Framework (EMF), cependant, peut entrainer des conflits de dénomination qui
peuvent alors générer une exception. L’exemple suivant illustre comment une telle
situation peut se produire :

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://MultipleGroup">
<xsd:complexType name="MultipleGroup">
<xsd:sequence>
<xsd:choice>
<xsd:element name="childl" type="Child"/>
<xsd:element name="child2" type="Child"/>
</xsd:choice>
<xsd:element name="separator" type="xsd:string"/>
<xsd:choice>
<xsd:element name="childl" type="Child"/>
<xsd:element name="child2" type="Child"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Vous remarquerez qu’il peut y avoir plusieurs instances des éléments "child1” et
"child2"”,

Vous devez utiliser les modeles de chemin Service Data Object (SDO) pour les
groupes de modeles pour résoudre ces conflits.

Résultats

Vous obtiendrez des tableaux qui utilisent le modele de chemin SDO utilisé pour
traiter les groupes de modeles, comme indiqué dans I'exemple de code ci-dessous :

set("childl/grandchild/name", "Bob");

set("childll/grandchild/name", "Joe");
Concepts associés

(Création d’objets métier imbriqués
La fonction setWithCreate permet de créer des objets métier imbriqués au sein
d’un objet métier parent.

Objets métier : renforcement du schéma et prise en charge du
schéma industriel

La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server

44 Développement et déploiement

Ce manuel contient des informations sur les incidents relatifs a la gestion des
constructions de schéma pour certaines fonctions. Pour obtenir des informations
sur la procédure de définition d'un objet métier, des instructions de
développement d’objets métier et sur 1'utilisation des API de programmation
d’objets métier, reportez-vous aux articles de la section "Informations connexes”
ci-dessous.

Concepts associés

[Programmation d’objets métier]

L’infrastructure d’objets métier (BO) WebSphere Process Server est une extension
de la norme SDO (Service Data Object). Cette section fournit des informations sur
la programmation d’objets métier et SDO.

IDifférenciation d’éléments portant le méme nom|
Vous devez donner des noms uniques aux éléments et attributs d’objet de données.

Différenciation de propriétés portant le méme nom|
Lorsque plusieurs XSD avec le méme espace de nom définissent des types portant
le méme nom, un type incorrect peut étre accidentellement référencé.

[Résolution de noms de propriétés contenant des points|

Les noms des propriétés dans un XSD peuvent contenir un point (".") comme un
des nombreux caractéres valides, alors que, dans un SDO, ils sont également
utilisés pour montrer I'indexation dans une propriété a cardinalité multiple. Dans
certaines situations, ceci peut entrainer des problémes de résolution.

[Utilisation de 1’objet de séquence pour définir I’ordre des données|
Certains XSD sont définis de telle sorte que 1’'ordre des données dans le XML a une
importance significative.

[Utilisation de AnySimpleType pour les types simples|
AnySimpleType est traité de la méme maniere que les autres types simples (chaine,
int, booléen, etc.) par les API SDO.

[Utilisation de AnyType pour les types complexes|
La balise anyType est traitée de la méme maniere que les autres types complexes
par les API SDO.

[Utilisation de la balise Any pour définir des éléments globaux de types complexes|
Vous pouvez utiliser la balise <any/> pour définir des éléments globaux sur un
type complexe.

[Utilisation de AnyAttribute pour définir les attributs globaux de types complexes|
La balise <anyAttribute/> permet de définir nimporte quel ensemble d’attributs
globaux sur un type complexe.

Information associée

[+ [Web Services Description Language (WSDL) 1.1|

[[Introduction aux objets SDO (Service Data Objects)|

[[Examen des objets métier dans WebSphere Process Server|

Différenciation d’éléments portant le méme nom
Vous devez donner des noms uniques aux éléments et attributs d’objet de données.

Dans l'infrastructure SDO, les éléments et les attributs sont créés en tant que
propriétés. Dans les exemples de code suivants, les XSD créent des types
comportant une propriété nommée foo :
<xsd:complexType name="ElementFoo">
<xsd:sequence>
<xsd:element name="foo" type="xsd:string" default="elem_value"/>
</xsd:sequence>

Chapitre 3. Guides et techniques de programmation 45

http://www.w3.org/TR/wsdl
http://www.ibm.com/developerworks/java/library/j-sdo/
http://www.ibm.com/developerworks/websphere/library/techarticles/0603_tung/0603_tung.html

</xsd:complexType>

<xsd:complexType name="AttributeFoo">
<xsd:attribute name="foo" type="xsd:string" default="attr_value"/>
</xsd:complexType>

Dans ces cas-la, vous pouvez accéder a la propriété en utilisant le langage XML
Path (XPath). Cependant, les types de schéma valides peuvent comporter un
attribut et un élément qui portent le méme nom, comme dans I'exemple suivant :
<xsd:complexType name="DuplicateNames">

<xsd:sequence>

<xsd:element name="foo" type="xsd:string" default="elem value"/>

</xsd:sequence>

<xsd:attribute name="foo" type="xsd:string" default="attr_value"/>
</xsd:complexType>

Dans XPath, vous devez pouvoir différencier des éléments portant le méme nom
des attributs. Pour cela, on ajoute au début des noms le symbole (@). Le fragment
suivant montre comment accéder a un élément et un attribut portant le méme nom

1 DataObject duplicateNames = ...

2 /] Affiche "elem_value"
3 System.out.printin(duplicateNames.get("foo"));

4 /] Affiche "attr_value"
5 System.out.printin(duplicateNames.get("@foo"));

Utilisez ce schéma de désignation pour toutes les méthodes prenant une valeur de
chaine dans un XPath SDO.

Concepts associés

Objets métier : renforcement du schéma et prise en charge du schéma industriel|
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server

Prise en charge de groupes de modeles (tous, choix, séquence et références de
grouges)|

La spécification SDO nécessite que les groupes de modeles (tous, choix, séquence
et références de groupes) soient développés et ne décrit pas les types ni les
propriétés.

Prise en charge de groupes de modeéles (tous, choix, séquence et références de
groupes) :

La spécification SDO nécessite que les groupes de modeles (tous, choix, séquence
et références de groupes) soient développés et ne décrit pas les types ni les
propriétés.

Pratiquement, cela signifie que toutes les structures qui se trouvent dans les mémes

structures sont "mises a plat”. Cette "mise a plat” met tous les enfants de ces

structures au méme niveau. Ceci peut entrainer des problemes de noms dupliqués

dans un SDO dont la structure est dérivée des données mises a plat. Lorsqu'un

XSD ne met pas a plat les groupes, les noms dupliqués contenus par des parents

différents restent séparés.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://MultipleGroup">

<xsd:complexType name="MultipleGroup">
<xsd:sequence>

46 Développement et déploiement

<xsd:choice>
<xsd:element name="optionl" type="xsd:string"/>
<xsd:element name="option2" type="xsd:string"/>
</xsd:choice>
<xsd:element name="separator" type="xsd:string"/>
<xsd:choice>
<xsd:element name="optionl" type="xsd:string"/>
<xsd:element name="option2" type="xsd:string"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Les occurrences multiples de optionl et option2 se trouvant dans des blocs de
choix distincts, et comportant méme un élément de séparation entre eux, le XSD et
le XML les distingue sans probleme. Mais lorsque le SDO met a plat ces groupes,
toutes les propriétés d’option sont maintenant sous le méme conteneur de groupe
multiple.

Méme sans noms dupliqués, la mise a plat de ces groupes entraine un probleme
d’ordre sémantique. Par exemple, pour le XSD suivant :

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://SimpleChoice">
<xsd:complexType name="SimpleChoice">
<xsd:sequence>
<xsd:choice>
<xsd:element name="optionl" type="xsd:string"/>
<xsd:element name="option2" type="xsd:string"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Demander a l'utilisateur de renommer les noms dupliqués ou d’ajouter des
annotations spéciales aux XSD n’est pas possible dans beaucoup de cas, comme les
schémas de normes ou industriels, car 1'utilisateur ne contrdle pas les XSD avec
lesquels il travaille.

Pour que toutes les propriétés soient cohérentes, les objets métier incluent une
méthode pour accéder a chaque occurrence individuelle des propriétés portant le
méme nom via la balise XPath. Selon la convention de dénomination EMF, le
chiffre non utilisé suivant sera ajouté a tous les noms dupliqués trouvés ; par
exemple, le XSD suivant :

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://TieredGroup">
<xsd:complexType name="TieredGroup">
<xsd:sequence>
<xsd:choice minOccurs="0">
<xsd:sequence>
<xsd:eTement name="Tlow" minOccurs="1"
maxOccurs="1" type="xsd:string"/>
<xsd:choice minOccurs="0">
<xsd:element name="width" minOccurs="0"
maxOccurs="1" type="xsd:string"/>
<xsd:element name="high" minOccurs="0"
maxOccurs="1" type="xsd:string"/>
</xsd:choice>
</xsd:sequence>
<xsd:element name="high" minOccurs="1"
maxOccurs="1" type="xsd:string"/>

Chapitre 3. Guides et techniques de programmation 47

<xsd:sequence>
<xsd:element name="width" minOccurs="1"
maxOccurs="1" type="xsd:string"/>
<xsd:element name="high" minOccurs="0"
maxOccurs="1" type="xsd:string"/>
</xsd:sequence>
<xsd:sequence>
<xsd:element name="center" minOccurs="1"
maxOccurs="1" type="xsd:string"/>
<xsd:element name="width" minOccurs="0"
maxOccurs="1" type="xsd:string"/>
</xsd:sequence>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Le XSD précédent produit le modele d’objet de données suivant :

DataObject - TieredGroup
Property[0] - low - string
Property[1] - width - string
Property[2] - high - string
Property[3] - highl - string
Property[4] - widthl - string
Property[5] - high2 - string
Property[6] - center - string
Property[7] - width2 - string

Ot width, width1 et width2 sont les noms des propriétés nommées "width” en
commengant par la premiere dans le XSD et ainsi de suite, et de méme pour high,
high1, high2.

Les nouveaux noms des propriétés sont les noms utilisés pour référence et XPath
et n’affectent pas le contenu sérialisé. Les noms "vrais” de chacune de ces
propriétés apparaissant dans le XML sérialisé sont les valeurs données dans le
XSD. Ainsi, pour 'instance XML :
<?xml version="1.0" encoding="UTF-8"?>
<p:TieredGroup xsi:type="p:TieredGroup"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:p="http://TieredGroup">
<width>foo</width>
<high>bar</high>
</p:TieredGroup>

Pour accéder a ces propriétés, vous devez utiliser le code suivant :
DataObject tieredGroup = ...

// Affiche "foo"
System.out.printin(tieredGroup.get("widthl"));

// Affiche "bar"
System.out.printin(tieredGroup.get("high2"));

Concepts associés

IDifférenciation d’éléments portant le méme nom|
Vous devez donner des noms uniques aux éléments et attributs d’objet de données.

Différenciation de propriétés portant le méme nom
Lorsque plusieurs XSD avec le méme espace de nom définissent des types portant
le méme nom, un type incorrect peut étre accidentellement référencé.

Address1.xsd:

48 Développement et déploiement

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:complexType name="Address">

<xsd:sequence>
<xsd:element minOccurs="0" name="city" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>
</xsd:schema>

Address2.xsd:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:complexType name="Address">
<xsd:sequence>
<xsd:element minOccurs="0" name="state" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Les objets métier ne prennent pas en charge les noms dupliqués pour des
structures XSD globales (telles que complexType, simpleType, element, attribute,

etc.) par le biais des API BOFactory.create(). Il est cependant possible de créer ces

structures globales dupliquées comme enfants d’autres structures si les API
correctes sont utilisées, comme indiqué dans les exemples suivants

Customerl.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:tns="http://Customerl”
targetNamespace="http://Customerl">

<xsd:import schemalLocation="./Addressl.xsd"/>

<xsd:complexType name="Customer">

<xsd:sequence>
<xsd:element minOccurs="0" name="address" type="Address"/>

</xsd:sequence>

</xsd:complexType>
</xsd:schema>

Customer2.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:tns="http://Customer2"
targetNamespace="http://Customer2">

<xsd:import schemalocation="./Address2.xsd"/>

<xsd:complexType name="Customer">

<xsd:sequence>
<xsd:element minOccurs="0" name="address" type="Address"/>

</xsd:sequence>

</xsd:complexType>
</xsd:schema>

Lorsque les champs "Customer address” sont renseignés et que I’API

BOFactory.create() est appelée pour créer 1’adresse, les types d’objets métier enfants

qui en résultent peuvent étre définis d’une manieére incorrecte. Pour éviter cela,
vous pouvez appeler 1’API createDataObject("address”) sur 1’objet de données
"Customer”. Un enfant de type correct sera ainsi créé, car les objets métier
correspondront a I'emplacement de schéma de I'importation.

DataObject customerl = ...
// Maniére incorrecte de créer un enfant "Address"
// Un type d'adresse Addressl.xsd ou Address2.xsd risquerait d'étre créé

DataObject incorrect = boFactory.create("", "Address");
customerl.set("address", incorrect);

Chapitre 3. Guides et techniques de programmation

49

// Maniére correcte de créer un enfant "Address"
// Le type d'adresse Addressl.xsd sera ainsi forcément créé
customerl.createDataObject ("address");

Concepts associés

Objets métier : renforcement du schéma et prise en charge du schéma industriell
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server

Résolution de noms de propriétés contenant des points

Les noms des propriétés dans un XSD peuvent contenir un point (".") comme un
des nombreux caractéres valides, alors que, dans un SDO, ils sont également
utilisés pour montrer 1'indexation dans une propriété a cardinalité multiple. Dans

certaines situations, ceci peut entrainer des problemes de résolution.

Les noms des propriétés dans les objets de données de service (SDO) sont basés
sur les noms des éléments et de l'attribut a partir desquels ils sont générés dans le
XSD. Les objets métier traiteront le caractere ".” correctement, avec une exception :
si un XSD comporte une propriété a cardinalité unique dont le nom est

"<name>.<#>" et une propriété a cardinalité multiple dont le nom est "<name>".

Une balise XPath telle que "f00.0"” ne sera pas résolue correctement s’il y a une
propriété a cardinalité unique nommée "fo0.0” et une propriété a cardinalité
multiple appelée "foo”. Dans ce cas, la propriété a cardinalité unique portant le
nom "f00.0" est celle qui sera résolue. Bien que cela ne risque de se produire que
rarement, vous pouvez l'éviter entierement si vous utilisez la syntaxe "foo[1]"” pour
accéder a leur propriété a cardinalité multiple. Les SDO ne prendront pas en

nn

charge la syntaxe ".” pour l'indexation, et vous devez donc utiliser "[]" pour
l'indexation.

Concepts associés

[Objets métier : renforcement du schéma et prise en charge du schéma industriel|
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server

[Sérialisation et désérialisation d’unions portant xsi:type]
Dans le XSD, une union est un moyen de fusionner les espaces lexicaux de
plusieurs types de données simples connus comme membres.

Sérialisation et désérialisation d’unions portant xsi:type :

Dans le XSD, une union est un moyen de fusionner les espaces lexicaux de
plusieurs types de données simples connus comme membres.

L’exemple de XSD suivant montre une union comportant les membres d'un
nombre entier et d'une date.
<xsd:simpleType name="integerOrDate">

<xsd:union memberTypes="xsd:integer xsd:date"/>
</xsd:simpleType>

Cette saisie multiple peut entrainer une confusion lors de la désérialisation et de la
manipulation des données.

Les objets métier prennent en charge les SDO utilisant xsi:type pour la sérialisation

et suivront le méme algorithme pour déterminer le type lors d'une désérialisation
si le xsi:type n’est pas présent dans les données XML.

50 Développement et déploiement

Ainsi, pour garantir que les données (le nombre "42" dans cet exemple) seront
désérialisées comme un nombre entier, vous pouvez utiliser le xsi:type spécifié
dans le XML d’entrée. Vous pouvez également ordonner la liste des membres de
l"'union dans le XSD de telle sorte que le nombre entier soit avant la chaine.
L’exemple suivant montre comment les deux méthodes sont mises en oeuvre :

<integerOrString xsi:type="xsd:integer">42</integerOrString>

<xsd:simpleType name="integerOrString">
<xsd:union memberTypes="xsd:integer xsd:string"/>
</xsd:simpleType>

De méme, si l'utilisateur souhaitait que les données soient désérialisées en tant que
chaine, 'une ou l'autre des modifications suivantes entrainerait le comportement
suivant :

<integerOrString xsi:type="xsd:string">42</integerOrString>

<xsd:simpleType name="integerOrString">
<xsd:union memberTypes="xsd:string xsd:integer"/>
</xsd:simpleType>

Remarque : si un type de chaine est le premier membre de l'union, aucune de ses
informations n’est jamais perdue. Il peut également contenir toutes les données qui
seront toujours choisies par 1’algorithme no xsi:type. Si vous souhaitez utiliser un
autre type qu'une chaine, vous devez soit utiliser xsi:type dans le XML soit
réorganiser les types de membre dans le XSD pour donner aux autres membres la
possibilité d’accepter les données.

Concepts associés

[Résolution de noms de propriétés contenant des points|

Les noms des propriétés dans un XSD peuvent contenir un point (".”) comme un
des nombreux caracteres valides, alors que, dans un SDO, ils sont également
utilisés pour montrer l'indexation dans une propriété a cardinalité multiple. Dans
certaines situations, ceci peut entrainer des problémes de résolution.

Utilisation de I'objet de séquence pour définir I'ordre des
données

Certains XSD sont définis de telle sorte que 1'ordre des données dans le XML a une
importance significative.

Par exemple, I'ordre est important dans les XSD si le contenu est mixte. Si les
données de texte apparaissent avant ou aprés un élément, la signification peut étre
différente que si elles apparaissent dans un autre emplacement. Pour ces situations,
le SDO génere un objet connu sous le nom de Séquence, qui est utilisé pour définir
les données d’une maniere ordonnée.

Les séquences SDO ne doivent pas étre confondues avec les séquences XSD. Les
séquences XSD ne sont que des groupes de modeles mis a plat avant la génération
du modele SDO. La présence d'une séquence XSD n’a pas de rapport avec la
présence d'une séquence SDO.

Avec les conditions suivantes, un XSD dans une séquence SDO est généré :

Un type complexe avec du contenu mixte :

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:tns="http://MixedContent"
targetNamespace="http://MixedContent">
<xsd:complexType name="MixedContent" mixed="true">

Chapitre 3. Guides et techniques de programmation 51

<xsd:sequence>
<xsd:element name="elementl" type="xsd:string" minOccurs="0"/>
<xsd:element name="element2" type="xsd:string" minOccurs="0"/>
<xsd:element name="element3" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="MixedContent" type="tns:MixedContent"/>
</xsd:schema>

Un schéma comportant 1 ou plusieurs balises <any/> :

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:tns="http://AnyETemAny"
targetNamespace="http://AnyElemAny">
<xsd:complexType name="AnyElemAny">
<xsd:sequence>
<xsd:any/>
<xsd:element name="markerl" type="xsd:string"/>
<xsd:any/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Un tableau de groupes de modeles (tous, choix, séquence ou référence de groupe
avec maxOccurs > 1) :

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://ModelGroupArray">
<xsd:complexType name="ModelGroupArray">
<xsd:sequence maxOccurs="3">
<xsd:element name="elementl" type="xsd:string"/>
<xsd:element name="element2" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Une balise <all/> de maxOccurs <= 1 contenant plusieurs éléments :

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://A11">
<xsd:complexType name="A11">
<xsd:all>
<xsd:element name="elementl" type="xsd:string"/>
<xsd:element name="element2" type="xsd:string"/>
</xsd:all>
</xsd:complexType>
</xsd:schema>

Vous trouverez des informations spécifiques sur 1'utilisation de <any/> avec une
séquence dans la rubrique référencée en bas de cette page. Les informations
d’ordre général qui suivent dans le reste de cette section expliquent comment
travailler avec les autres conditions de séquence, mais s’appliquent également a
<any/>.

52 Développement et déploiement

Concepts associés

[Objets métier : renforcement du schéma et prise en charge du schéma industriel|
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server

Comment savoir si mon objet de données posséde une séquence 7|
Deux API simples permettent de déterminer si un objet de données est mis en
séquence : DataObject noSequence et DataObject withSequence.

[Pourquoi dois-je savoir si un objet de données posséde une séquence ?|

Si vous travailler sur un objet de données comportant une séquence, il est
important de connaitre I'ordre dans lequel les données sont définies. Vous devez
donc faire attention a I'ordre dans lequel les données sont définies.

Comment utiliser des contenus mixtes ?|
Pour les contenus mixtes, la séquence comporte une API spécifique pour ajouter
du texte : addText(...).

Comment utiliser un tableau de groupes de modéles 7
Un tableau de groupes de modeles est créé lorsque la valeur maxOccurs d'un
groupe de modeles est > 1.

Comment savoir si mon objet de données posséde une séquence ?:

Deux API simples permettent de déterminer si un objet de données est mis en
séquence : DataObject noSequence et DataObject withSequence.

Vous pouvez utiliser DataObject noSequence et DataObject withSequence de la
maniére indiquée dans 1’exemple suivant :

DataObject noSequence = ...

DataObject withSequence = ...

// Affiche la valeur faux
System.out.printin(noSequence.getType().isSequenced());

// Affiche 1a valeur vrai
System.out.printin(withSequence.getType().isSequenced());

// Affiche la valeur vrai
System.out.printin(noSequence.getSequence() == null);

// Affiche la valeur faux
System.out.printin(withSequence.getSequence() == null);

Concepts associés

[Utilisation de 1’objet de séquence pour définir 1'ordre des données|
Certains XSD sont définis de telle sorte que 1’ordre des données dans le XML a une
importance significative.

Pourquoi dois-je savoir si un objet de données posséde une séquence ? :

Si vous travailler sur un objet de données comportant une séquence, il est
important de connaitre 1'ordre dans lequel les données sont définies. Vous devez
donc faire attention a I'ordre dans lequel les données sont définies.

Un objet de données qui n’est pas mis en séquence permet 1’accés a un ensemble
dans un ordre aléatoire. Le fonctionnement est identique a un mappage dans
lequel toutes les clés sont définies sur les mémes valeurs. L’ordre dans lequel les
clés sont définies n’a pas d’importance, les données au sein du mappage étant
identiques et étant sérialisées en XML d’une maniére identique.

Chapitre 3. Guides et techniques de programmation 53

Lorsqu’un objet de données est mis en séquence, 1’ordre dans lequel les données
ont été définies est enregistré dans la séquence, comme s’il s’agissait d’ajouter des
données a une liste. Ainsi, deux manieres d’accéder aux données sont possibles :
par paires nom/valeur (les API d’objet de données) et selon I'ordre dans lequel
elles ont été définies (les API de séquence). Vous pouvez utiliser les API d’objet de
données set(...) ou de séquence add(...) pour conserver la structure. Cet ordre a un
incidence sur la maniere dont le XML est sérialisé.

Prenons par exemple le XSD de la balise <all/> ci-dessous. Lorsque les méthodes
set sont appelées dans 1’ordre suivant, le XML suivant est produit lorsqu’il est
sérialisé :

DataObject all = ...

all.set("elementl", "foo");
all.set("element2", "bar");

<?xml version="1.0" encoding="UTF-8"?>
<p:A1l xsi:type="p:A11"
xmins:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xmins:p="http://A11">

<element1>foo</element1>

<element2>bar</element2>
</p:All1>

S5i, a la place, les méthodes set sont appelées dans 'ordre inverse, le XML suivant
est produit lorsque 1'objet métier est sérialisé :
DataObject all = ...

all.set("element2", "bar");
all.set("elementl", "foo");

<?xml version="1.0" encoding="UTF-8"?>
<p:Al1l xsi:type="p:Al1"
xmins:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xmins:p="http://A11">

<element2>bar</element2>

<elementl>foo</element1>
</p:Al1>

Si l'ordre de la séquence doit étre modifié, la classe de la séquence a les méthodes
add, remove et move pour permettre a 1'utilisateur de modifier 1’ordre de la
séquence.

Concepts associés

[Utilisation de 1’objet de séquence pour définir 1'ordre des données|
Certains XSD sont définis de telle sorte que 1’ordre des données dans le XML a une
importance significative.

Comment utiliser des contenus mixtes ? :

Pour les contenus mixtes, la séquence comporte une API spécifique pour ajouter
du texte : addText(...).

Toutes les autres API fonctionnent de la méme maniere avec du texte comme avec
les propriétés. L’API getProperty(int) renverra la valeur null pour les données de
texte avec des contenus mixtes. L’exemple suivant de code de contenu mixte peut
étre utilisé pour imprimer tout le texte avec des contenus mixtes depuis un objet
de données :

DataObject mixedContent = ...
Sequence seq = mixedContent.getSequence();

for (int i=0; i < seq.size(); i++)

54 Développement et déploiement

Property prop = seq.getProperty(i);
Object value = seq.getValue(i);

si (prop == null)
{
System.out.printin("Found mixed content text: "+value);
}
else

{
}

System.out.printin("Found Property "+prop.getName()+": "+value);

}

Concepts associés

[Utilisation de 1'objet de séquence pour définir I'ordre des données|
Certains XSD sont définis de telle sorte que 1’ordre des données dans le XML a une
importance significative.

Comment utiliser un tableau de groupes de modeles ? :

Un tableau de groupes de modeles est créé lorsque la valeur maxOccurs d"un
groupe de modeles est > 1.

Les groupes de modeles étant mis a plat et n’étant pas exprimés dans un objet de
données, les propriétés au sein du groupe de modeles deviennent des propriétés a
cardinalité multiple et leurs méthodes isMany() renvoient la valeur vrai si elles ne
l'ont pas déja. Leurs facettes minOccurs et maxOccurs sont alors multipliées par
celles du groupe de modeles qui les contient. Le choix multipliera la facette
maxQOccurs de la méme maniere que les autres groupes de modeles, mais utilisera
toujours 0 comme valeur de multiplication pour minOccurs, car toutes les données
dans le choix peuvent ne pas étre sélectionnées.

Par exemple, le XSD suivant comporte un tableau de groupes de modeles :

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlins:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://ModelGroupArray">
<xsd:complexType name="ModelGroupArray">
<xsd:sequence minOccurs="2" maxOccurs="5">
<xsd:element name="elementl" type="xsd:string"/>
<xsd:element name="element2" type="xsd:string"
minOccurs="0" maxOccurs="3"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Comme indiqué, elementl et element2 seront maintenant une cardinalité multiple
et un mécanisme d’acces get(...) renverra donc une liste. Element1 a par défaut la
valeur minOccurs 1 et la valeur maxOccurs 1. Element2 a la valeur minOccurs 0 et
la valeur maxOccurs 3. Dans 'exemple suivant, leurs nouvelles valeurs minOccurs
et maxOccurs seront les suivantes :
Data Object - ModelGroupArray

Property[0] - elementl - minOccurs=(2*1)=2 - maxOccurs=(5%1)=5

Property[1] - element2 - minOccurs=(2%0)=0 - maxOccurs=(5%3)=15

Si le type était Choix :

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://ModelGroupArray">
<xsd:complexType name="ModelGroupArray">
<xsd:choice minOccurs="2" maxOccurs="5">

Chapitre 3. Guides et techniques de programmation 55

<xsd:element name="elementl" type="xsd:string"/>
<xsd:element name="element2" type="xsd:string"
minOccurs="0" maxOccurs="3"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

La valeur minOccurs suivante serait générée, en raison de 1’exclusion du choix
indiquant que seul elementl puisse étre extrait a chaque fois ou que seul element2
puisse étre extrait a chaque fois, et les deux doivent pouvoir avoir 0 occurrence
pour réussir la validation :
DataObject - ModelGroupArray

Property[0] - elementl - minOccurs=(0%1)=0 - maxOccurs=(5%1)=5

Property[1] - element2 - minOccurs=(0*0)=0 - maxOccurs=(5%3)=15

Concepts associés

[Utilisation de 1'objet de séquence pour définir I'ordre des données|
Certains XSD sont définis de telle sorte que 1'ordre des données dans le XML a une
importance significative.

Utilisation de AnySimpleType pour les types simples
AnySimpleType est traité de la méme maniere que les autres types simples (chaine,
int, booléen, etc.) par les API SDO.

Les seules différences entre anySimpleType et les autres types simples sont dans
ses données d’instance et la sérialisation/désérialisation. Elles doivent étre des
concepts internes pour les objets métier uniquement, et elles sont utilisées pour
déterminer si les données mappées vers ou depuis le champ sont valides. Si une
méthode set(...) devait étre appelée sur un type de chaine, les données seraient
d’abord converties en une chaine, et les données d’origine seraient perdues :

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://StringType">

<xsd:complexType name="StringType">

<xsd:sequence>
<xsd:element name="foo" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>
</xsd:schema>

DataObject stringType = ...

// Définir les données sur une chafne
stringType.set("foo", "bar");

// Les données d'instance seront toujours du type chafne,

// quelles que soient les données définies
// Affiche "java.lang.String"
System.out.printin(stringType.get("foo").getClass().getName());

// Définir les données sur un nombre entier
stringType.set("foo", new Integer(42));

// Les données d'instance seront toujours du type chafne,

// quelles que soient les données définies
// Affiche "java.lang.String"
System.out.printin(stringType.get("foo").getClass().getName());

Un élément anySimpleType a la place ne perd pas le type de données d’origine de
ce qui est défini :

56 Développement et déploiement

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://AnySimpleType">

<xsd:complexType name="AnySimpleType">

<xsd:sequence>
<xsd:element name="foo" type="xsd:anySimpleType"/>

</xsd:sequence>

</xsd:complexType>
</xsd:schema>

DataObject anySimpleType = ...

// Définir Tes données sur une chafne
stringType.set("foo", "bar");

// Les données d'instance seront toujours du type date utilisé dans 1'ensemble
// Affiche "java.lang.String"
System.out.printin(stringType.get("foo").getClass().getName());

// Définir les données sur un nombre entier
stringType.set("foo", new Integer(42));

// Les données d'instance seront toujours du type date utilisé dans 1'ensemble
// Affiche "java.lang.Integer"
System.out.printIn(stringType.get("foo").getClass().getName());

Ce type de données est également préservé lors de la sérialisation et désérialisation
par xsi:type. En conséquence, a chaque fois que vous sérialisez un élément
anySimpleType, il aura un xsi:type qui correspond a celui défini dans la
spécification SDO en fonction de son type Java :

Dans 'exemple suivant, vous sérialisez 1’objet métier ci-dessus de telle sorte que
les données ressembleront a :
<?xml version="1.0" encoding="UTF-8"?>
<p:StringType xsi:type="p:StringType"
xmins:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xmins:xsd=http://www.w3.0rg/2001/XMLSchema
xmins:p="http://StringType">
<foo xsi:type="xsd:int">42</foo>
<p:StringType></p:StringType>

Le xsi:type sera utilisé lors de la désérialisation pour charger les données comme
classe d’instance Java appropriée. Si aucun xsi:type n’est spécifié, le type de
désérialisation par défaut sera une chaine.

Pour les autres types simples, déterminer la mappabilité est une constante. Par
exemple, un élément booléen peut toujours mapper une chaine. AnySimpleType
peut contenir n’importe quel type simple, mais un mappage peut étre possible ou
non, en fonction des données d’instance dans le champ.

Utilisez le type de propriété URI et Nom pour déterminer si une propriété est du
type anySimpleType. Il s’agira de "commonj.sdo” et "Object”. Pour déterminer si
des données sont valides pour étre insérées dans anySimpleType, vérifiez s’il ne
s’agit pas d'une instance d’un objet de données. Toutes les données pouvant étre
représentées sous la forme d'une chaine et n’étant pas un objet de données
peuvent étre définies dans un champ anySimpleType.

Les régles de mappage sont donc les suivantes :
* anySimpleType peut toujours étre mappé sur anySimpleType.
* n’importe quel autre type simple peut toujours étre mappé sur anySimpleType.

Chapitre 3. Guides et techniques de programmation 57

* anySimpleType peut toujours étre mappé sur une chaine car tous les types
simples doivent pouvoir étre convertis en une chaine.

* anySimpleType peut ou ne peut pas étre mappé sur un des autres types simples,
en fonction de sa valeur dans l'objet métier. Cela signifie que ce mappage ne
peut pas étre déterminé au moment de la conception, mais uniquement lors de
I'exécution.

Concepts associés

Objets métier : renforcement du schéma et prise en charge du schéma industriell
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server

Information associée

[|Affectation depuis et vers xs:any]|

Utilisation de AnyType pour les types complexes
La balise anyType est traitée de la méme maniere que les autres types complexes
par les API SDO.

Les seules différences entre anyType et les autres types complexes sont dans leurs
données d’instance et la sérialisation/désérialisation, qui doivent étre des concepts
internes pour 1’objet métier uniquement, et déterminant si les données mappées
vers ou depuis le champ sont valides. Les types complexes sont limités a un type
unique : Client, Adresse, etc. La balise anyType, cependant, permet n'importe quel
objet de données quel que soit le type. Si maxOccurs > 1, chaque objet de données
de la liste peut étre d’un type différent.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://AnyType">

<xsd:complexType name="AnyType">

<xsd:sequence>
<xsd:element name="person" type="xsd:anyType"/>

</xsd:sequence>

</xsd:complexType>
</xsd:schema>

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://Customer">

<xsd:complexType name="Customer">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>
</xsd:schema>

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:tns="http://Employee" targetNamespace="http://Employee">

<xsd:complexType name="Employee">

<xsd:sequence>
<xsd:element name="id" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>
</xsd:schema>

DataObject anyType = ...
DataObject customer = ...
DataObject employee = ...

// Définir la personne sur Customer
anyType.set("person", customer);

58 Développement et déploiement

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.wbit.620.help.bpel.ui.doc/topics/cxsany.html

// Les données d'instance seront un client
// Affiche "Customer"
System.out.printin(anyType.getDataObject ("person").getName());

// Définir la personne sur Employee
anyType.set("person", employee);

// Les données d'instance seront un employé
// Affiche "Employee"
System.out.printin(anyType.getDataObject ("person").getName());

Comme anySimpleType, anyType utilise I'élément xsi:type lors de la sérialisation
afin d’assurer que le type d’objet de données voulu est conservé lorsqu’il est
désérialisé. Ainsi, si vous le définissez sur "Customer”, le XML se présente comme
suit :

<?xml version="1.0" encoding="UTF-8"?>
<p:AnyType xsi:type="p:AnyType"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmIns:customer="http://Customer"
xmins:p="http://AnyType">
<person xsi:type="customer:Customer">
<name>foo</name>
</person>
</p:AnyType>

Et, si vous le définissez sur "Employee” :
<?xml version="1.0" encoding="UTF-8"?>
<p:AnyType xsi:type="p:AnyType"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:employee="http://Employee"
xmins:p="http://AnyType">
<person xsi:type="employee:Employee">
<id>foo</id>
</person>
</p:AnyType>

La balise AnyType permet également de définir des valeurs de type simple par le
biais d’objets de données encapsuleurs. Ces objets de données encapsuleurs
possédent une propriété unique appelée "value” (élément) qui contient la valeur de
type simple. Les API SDO ont été écrasées pour encapsuler et désencapsuler
automatiquement ces objets de données de types simples et encapsuleurs lorsque
les API de <Type>get/set<> sont utilisées. Les API get/set de transtypage
non-type n’effectueront pas cet encapsulage.

DataObject anyType = ...

// Appeler une API de <Type> set sur une propriété anyType entrafne la création
// automatique d'un objet de données encapsuleur
anyType.setString("person", "foo");

// Les API get/set classiques ne sont pas écrasées, et renverront donc
// 1'objet de données encapsuleur
DataObject wrapped = anyType.get("person");

// L'objet de données encapsulé aura la propriété "value"
// Affiche "foo"
System.out.printin(wrapped.getString("value"));

// L'API de <Type> get désencapsulera automatiquement 1'objet de données

// Affiche "foo"
System.out.printin(anyType.getString("person"));

Chapitre 3. Guides et techniques de programmation 59

Lorsque 1'objet de données encapsuleur est sérialisé, il est sérialisé de la méme
maniere qu'un mappage anySimpleType de classes d’instance Java en types XSD
dans le champ xsi:type. Ce parametre doit donc étre sérialisé de la maniere
suivante :
<?xml version="1.0" encoding="UTF-8"?>
<p:AnyType xsi:type="p:AnyType"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:p="http://AnyType">
<person xsi:type="xsd:string">foo</person>
</p:AnyType>

Si aucun élément xsi:type n’est donné ou si un élément xsi:type incorrect est
donné, une exception est émise. En plus de I'encapsulage automatique,
I'encapsuleur peut étre créé manuellement pour étre utilisé avec 1’API set() via
BOFactory createDataTypeWrapper(Type, Object), ot Type est le type simple de
SDO des données a encapsuler et Object représente les données a encapsuler.

Type stringType = boType.getType("http://www.w3.0rg/2001/XMLSchema", "string");
DataObject stringType = boFactory.createByMessage(stringType, "foo");

Pour déterminer si un objet de données est du type encapsuleur, I'élément BOType
isDataTypeWrapper(Type) peut étre appelé.

DataObject stringType = ...
boolean isWrapper = boType.isDataTypeWrapper(stringType.getType());

Pour les autres types complexes, pour pouvoir déplacer les données d'un champ a
l'autre, les données doivent étre du méme type. La balise AnyType peut contenir
n’importe quel type complexe, mais un déplacement direct sans mappage peut étre
basé sur les données d’instance dans le champ ou non.

Vous pouvez utiliser I'URI et le Nom du type de propriété pour déterminer si une
propriété est du type anyType. Il s’agira de "commonj.sdo” et "DataObject”. Toutes
les données sont valides pour étre insérées dans une balise anyType. Les régles de
mappage sont donc les suivantes :

* anylype peut toujours étre mappé sur anyType.
* n'importe quel type complexe peut toujours étre mappé sur anyType.
* n'importe quel type simple peut toujours étre mappé sur anyType.

* anylIype peut ou ne peut pas étre mappé sur un des autres types simples ou
complexes, en fonction de sa valeur dans l'instance d’objet métier. Cela signifie
que ce mappage ne peut pas étre déterminé au moment de la conception, mais
uniquement au moment de 'exécution.

Concepts associés

Objets métier : renforcement du schéma et prise en charge du schéma industriel|
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server

Utilisation de la balise Any pour définir des éléments globaux de
types complexes

Vous pouvez utiliser la balise <any/> pour définir des éléments globaux sur un
type complexe.

Avec une occurrence de la balise any, les méthodes DataObject Type isOpen() et
isSequenced() renvoient la valeur vrai. Si la valeur de maxOccurs est > 1 sur une
balise any, cela n’a aucune incidence sur la structure de 1’objet de données ; elle est
utilisée unigement comme information lors de la validation. De la méme maniere,

60 Développement et déploiement

l'occurrence de balises any multiples dans un type ne modifie pas la structure de
I'objet de données ; elles sont utilisées uniquement pour valider 'emplacement des
données ouvertes qui ont été définies.

Concepts associés

Objets métier : renforcement du schéma et prise en charge du schéma industriell
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server

IComment savoir si mon objet de données posséde une balise 2|

Vous pouvez déterminer facilement si des valeurs sont définies au sein d’un objet
de données en vérifiant leurs propriétés pour voir si des propriétés ouvertes sont
des attributs.

Comment obtenir/définir des valeurs ?|

Vous pouvez exécuter une instruction get sur des données qui ont été définies dans
un champ de la méme maniere que pour une autre valeur d’élément si le nom est
connu.

Quels sont les mappages de données valides pour la valeur Any 7|

Une balise <any/> est un ensemble de paires nom/valeur. Le seul mappage valide
pouvant étre déterminé au moment de la conception pour <any/> est une autre
balise <any/> ou anyType ayant la méme valeur maxOccurs.

Comment savoir si mon objet de données possede une balise ?:

Vous pouvez déterminer facilement si des valeurs sont définies au sein d’un objet
de données en vérifiant leurs propriétés pour voir si des propriétés ouvertes sont
des attributs.

L’objet de données ne posséde pas de mécanisme permettant de déterminer si un
type d’objet de données comporte des balises. Les objets de données possédent
uniquement le concept "ouvert” qui s’applique a la balise any et a la balise
anyAttribute, et qui permet d’ajouter librement des propriétés. Alors que la
présence d’une balise implique qu'un objet de données a la valeur isOpen() = vrai
et isSequenced() = vrai, il peut comporter uniquement une balise anyAttribute et
une des raisons pour lesquelles il est mis en séquence décrite dans la rubrique
Séquences. L’exemple suivant explique ces concepts :

DataObject dobj = ...

// Vérifiez si le type est "ouvert" ; dans le cas contraire, aucune valeur ne peut
// @étre définie pour cet objet de données.
boolean isOpen = dobj.getType().isOpen();

si (!isOpen) renvoie la valeur faux ; // Aucune valeur n'est définie pour cet
objet de données

// Les propriétés ouvertes sont ajoutées a la liste des propriétés de 1'instance,
// mais pas la Tiste des propriétés. Ainsi, comparer Teurs tailles permet de

// déterminer facilement si des données ouvertes sont définies

int instancePropertyCount = dobj.getInstanceProperties().size();

int definedPropertyCount = dobj.getType().getProperties().size();

// Si elles sont égales, aucun contenu ouvert n'est défini
si (instancePropertyCount == definedPropertyCount) renvoie la valeur faux ;

// Vérifiez les propriétés du contenu ouvertes pour déterminer si certaines d'entre
elles sont des éléments
for (int i=definedPropertyCount; i < instancePropertyCount; i++)
{
Property prop = (Property)dobj.getInstanceProperties().get(i);
si (boXsdHelper.isElement (prop))
{

Chapitre 3. Guides et techniques de programmation 61

renvoie la valeur vrai ; // Une valeur any a été trouvée

}

renvoie la valeur faux ; // Aucune valeur n'est définie

Concepts associés

[Utilisation de la balise Any pour définir des éléments globaux de types complexes|
Vous pouvez utiliser la balise <any/> pour définir des éléments globaux sur un
type complexe.

Comment obtenir/définir des valeurs ?:

Vous pouvez exécuter une instruction get sur des données qui ont été définies dans
un champ de la méme maniére que pour une autre valeur d’élément si le nom est
connu.

Vous pouvez envoyer une instruction get avec la balise XPath "<name>" pour la
résoudre. Si le nom est inconnu, il est possible de trouver la valeur en vérifiant les
propriétés de l'instance comme ci-dessus. Sil y a plusieurs balises any, ou une
balise any avec maxOccurs > 1, la séquence de 'objet de données devra étre
utilisée a la place s’il est important de déterminer quelle balise any est a 1’origine
des données.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:tns="http://AnyElemAny"
targetNamespace="http://AnyElemAny">
<xsd:complexType name="AnyETlemAny">
<xsd:sequence>
<!-- Handle all these any one way -->
<xsd:any maxOccurs="3"/>
<xsd:element name="markerl" type="xsd:string"/>
<!-- Handle this any in another -->
<xsd:any/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

La balise <any/> entrainant la mise en séquence de 1'objet de données, il est
possible de déterminer quelle valeur any a été définie en vérifiant dans la séquence
la position des propriétés any.

Vous pouvez déterminer a quelle balise any les données d’instance appartiennent
pour le XSD suivant en utilisant le code suivant :

DataObject anyElemAny = ...
Seqgeuence seq = anyElemAny.getSequence();

// Jusqu'a ce que 1'élément markerl ait été trouvé, toutes les données ouvertes
// trouvées appartiennent & la premiére balise any
boolean foundMarkerl = false;

for (int i=0; i<seq.size(); i++)
{
Property prop = seq.getProperty(i);

// Vérifiez si la propriété est une propriété ouverte
si (prop.isOpenContent())
{

si (!foundMarkerl)

// Doit étre la premiére balise any car elle survient
// avant 1'é1ément markerl

62 Développement et déploiement

System.out.printIn("Found first any data: "+seq.getValue(i));
}
else
{
// Doit étre la seconde balise any car elle survient
// aprés 1'élément markerl
System.out.printIn("Found second any data: "+seq.getValue(i));
1
}
else
{
// Doit étre 1'él1ément markerl
System.out.printIn("Found markerl data: "+seq.getValue(i));
foundMarkerl = true;

}

Définir une valeur <any/> est effectué en créant une propriété d’élément global et
en ajoutant cette valeur a la séquence.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:tns="http://GlobalElems"
targetNamespace="http://GlobalElems">
<xsd:element name="globalElementl" type="xsd:string"/>
<xsd:element name="globalElement2" type="xsd:string"/>
</xsd:schema>

DataObject anyElemAny = ...
Seqgeuence seq = anyElemAny.getSequence();

// Obtenir la propriété de 1'élement global pour globalElementl
Property globalPropl = boXsdHelper.getGlobalProperty(http://GlobalElems,
"globalElementl", true);

// Obtenir la propriété de 1'él1ément global pour globalElement2
Property globalProp2 = boXsdHelper.getGlobalProperty(http://GlobalElems,
"globalElement2", true);

// Ajouter les données a la séquence pour la premiére balise any
seq.add(globalPropl, "foo");
seq.add(globalPropl, "bar");

// Ajouter les données pour le markerl
seq.add("markerl", "separator"); // ou anyElemAny.set("markerl", "separator")

// Ajouter Tes données a la séquence pour la seconde balise any
seq.add(globalProp2, "baz");

// 11 est maintenant possible d'accéder aux données avec une instruction get
System.out.printin(dobj.get("globalElement1"); // Affiche "[foo, bar]"
System.out.printin(dobj.get("markerl"); // Affiche "separator"
System.out.printin(dobj.get("globalElement2"); // Affiche "baz"

Concepts associés

[Utilisation de la balise Any pour définir des éléments globaux de types complexes|
Vous pouvez utiliser la balise <any/> pour définir des éléments globaux sur un
type complexe.

Quels sont les mappages de données valides pour la valeur Any ?:
Une balise <any/> est un ensemble de paires nom/valeur. Le seul mappage valide

pouvant étre déterminé au moment de la conception pour <any/> est une autre
balise <any/> ou anyType ayant la méme valeur maxQOccurs.

Chapitre 3. Guides et techniques de programmation 63

Individuellement, les valeurs contenues dans une instance d’un objet de données
pour la balise any sont des types complexes de base respectant les regles d'un
mappage de type complexe. Certains de ces types complexes peuvent étre des
types simples encapsulés, et ils suivront les regles du mappage de type simple.

Concepts associés

IUtﬂisation de la balise Any pour définir des éléments globaux de types complexes|
Vous pouvez utiliser la balise <any/> pour définir des éléments globaux sur un
type complexe.

Utilisation de AnyAttribute pour définir les attributs globaux de
types complexes

La balise <anyAttribute/> permet de définir n'importe quel ensemble d’attributs
globaux sur un type complexe.

Comme pour la balise <any/>, 'occurrence de la balise <anyAttribute/> entraine
le renvoi par la méthode DataObject Type isOpen() de la valeur true. Toutefois,
contrairement a la balise <any/>, <anyAttribute/> n’implique pas le séquencement
de 'objet données, car les attributs de XSD ne sont pas des constructions
ordonnées.

Concepts associés

[Objets métier : renforcement du schéma et prise en charge du schéma industriell
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server

[Comment savoir si mon objet de données posseéde une balise AnyAttribute ?|

Vous pouvez aisément déterminer si des instances d’un objet données comportent
un ensemble de valeurs anyAttribute en vérifiant leurs propriétés pour savoir si les
propriétés ouvertes représentent des attributs.

[Comment obtenir/définir des valeurs AnyAttribute ?|
Définir une valeur <anyAttribute/> est effectué de la méme maniere que pour une
balise <any/>, mais un attribut global est utilisé a la place d’un élément global.

Quels sont les mappages de données valides pour la valeur AnyAttribute ?|

La balise AnyAttribute est similaire a la balise any, et comprend un ensemble de
paires nom/valeur. En conséquence, le seul mappage valide pour anyAttribute est
une autre balise anyAttribute.

Comment savoir si mon objet de données posséde une balise AnyAttribute ?:

Vous pouvez aisément déterminer si des instances d’un objet données comportent
un ensemble de valeurs anyAttribute en vérifiant leurs propriétés pour savoir si les
propriétés ouvertes représentent des attributs.

L’objet données ne prévoit pas de mécanisme pour déterminer si un type d’objet
données inclut une balise anyAttribute. Seuls les objets données comportent un
concept d’ouverture qui s’applique aux balises any et <anyAttribute/> et qui
permet 'ajout de propriétés supplémentaires. S’il est vrai que si un objet données a
défini isOpen() = true et isSequenced() = false, il doit inclure une balise
anyAttribute, si isOpen() = true et isSequenced() = true, le type d’objet données
pouvant ou non inclure une balise anyAttribute.

L’objet données fournit des méthodes d’interrogation des métadonnées pour
répondre a l'aide d’un programme a cette question et bien d’autres sur la structure
XSD qui a servi a le générer. Le modéle InfoSet peut étre interrogé pour déterminer
si nécessaire I'existence de la balise anyAttribute. Parce que la balise anyAttribute
est unique et que sa valeur peut étre ou non true, les objets métier fournissent

64 Développement et déploiement

également une méthode BOXSDHelper hasAnyAttribute(Type) pour déterminer si
la définition d'un attribut ouvert sur cet objet données produira un résultat valide.
L’exemple de code suivant illustre ces concepts :

DataObject dobj = ...

// Vérifiez si le type est ouvert. S'il ne 1'est pas, aucune
// valeur anyAttribute ne peut y étre définie.
boolean isOpen = dobj.getType().isOpen() ;

si (!isOpen) return false ; // Aucune valeur anyAttribute définie

// Les propriétés ouvertes sont ajoutées a la liste des propriétés de 1'instance,

// mais pas la Tiste des propriétés. Par conséquent, la comparaison de leurs tailles
// peut permettre de déterminer facilement si des données ouvertes sont définies
int instancePropertyCount = dobj.getInstanceProperties().size();

int definedPropertyCount = dobj.getType().getProperties().size();

// Si leur taille est identique, aucun contenu ouvert n'est défini
si (instancePropertyCount == definedPropertyCount) return false ;

// Vérifiez les propriétés du contenu ouvert pour déterminer 1'une d'elles
constituent des attributs
pour (int i=definedPropertyCount; i<instancePropertyCount; i++)
{
Property prop = (Property)dobj.getInstanceProperties().get(i);
si (boXsdHelper.isAttribute(prop))
{

}

return true ; // Valeur anyAttribute trouvée

}

return false ; // Aucune valeur anyAttribute définie

Concepts associés

[Utilisation de AnyAttribute pour définir les attributs globaux de types complexes|
La balise <anyAttribute/> permet de définir n'importe quel ensemble d’attributs
globaux sur un type complexe.

Comment obtenir/définir des valeurs AnyAttribute ?:

Définir une valeur <anyAttribute/> est effectué de la méme maniere que pour une
balise <any/>, mais un attribut global est utilisé a la place d’'un élément global.

Exécuter une instruction get sur des données qui ont été définies dans un champ
anyAttribute peut étre effectué de la méme maniere que pour une autre valeur
d’attribut si le nom est connu. Vous pouvez envoyer une instruction get avec la
balise XPath "@<name>" pour la résoudre. Si le nom est inconnu, vous pouvez
utiliser le code ci-dessus pour itérer les valeurs et y accéder une par une.
L’exemple de code suivant montre comment procéder :

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:tns="http://AnyAttrOnlyMixed"
targetNamespace="http://AnyAttrOnly">
<xsd:complexType name="AnyAttrOnly">
<xsd:sequence>
<xsd:element name="element" type="xsd:string"/>
</xsd:sequence>
<xsd:anyAttribute/>
</xsd:complexType>
</xsd:schema>

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

Chapitre 3. Guides et techniques de programmation 65

targetNamespace="http://GlobalAttrs">
<xsd:attribute name="globalAttribute" type="xsd:string"/>
</xsd:schema>

Data Object dobj = ...

// Obtenir Ta propriété de 1'attribut global qui va étre défini
Property globalProp = boXsdHelper.getGlobalProperty(http://GlobalAttrs,
"globalAttribute", false);

// Définir Ta valeur sur 1'objet de données, comme n'importe quelle autre donnée
dobj.set(globalProp, "foo");

// 11 est maintenant possible d'accéder aux données avec une instruction get
System.out.printin(dobj.get("@globalAttribute")); // Affiche "foo"

Concepts associés

[Utilisation de AnyAttribute pour définir les attributs globaux de types complexes|
La balise <anyAttribute/> permet de définir n'importe quel ensemble d’attributs
globaux sur un type complexe.

Quels sont les mappages de données valides pour la valeur AnyAttribute ? :

La balise AnyAttribute est similaire a la balise any, et comprend un ensemble de
paires nom/valeur. En conséquence, le seul mappage valide pour anyAttribute est
une autre balise anyAttribute.

Individuellement, les valeurs contenues dans les données anyAttribute sont des
types simples de base respectant les régles du mappage de type simple

Concepts associés

[Utilisation de AnyAttribute pour définir les attributs globaux de types complexes|
La balise <anyAttribute/> permet de définir nimporte quel ensemble d’attributs
globaux sur un type complexe.

Remplacement d’une conversion d’objet SDO en Java

I se peut que la conversion d’un objet SDO (Service Data Object) en objet de type
Java effectuée par le systeme ne réponde pas a vos besoins. Suivez cette procédure
pour remplacer 'implémentation par défaut par celle de votre choix.

Avant de commencer

Vérifiez que vous avez généré la conversion de type WSDL vers Java a 'aide de
WebSphere Integration Developer ou la commande genMapper.

A propos de cette tache

Pour remplacer un composant généré qui mappe un type WSDL a un type Java,
remplacez le code généré par le code qui répond a vos besoins. Vous pouvez
utiliser votre propre mappe si vous avez défini vos propres classes Java. Suivez
cette procédure pour effectuer les modifications.

Procédure

1. Localisez le composant généré. Le nom du composant est
java_classMapper.component.

2. Editez le composant dans un éditeur de texte.
3. Mettez en commentaires le code généré et insérez votre méthode.

Ne modifiez pas le nom du fichier qui contient I'implémentation du composant.

66 Développement et déploiement

Exemple

Voici un exemple de composant généré a remplacer :

private Object datatojava_get customerAcct(DataObject myCustomerID,
String integer)
{

// Vous pouvez remplacer ce code par un mappage personnalisé.
// Mettez en commentaire ce code et écrivez le code personnalisé.
// Vous pouvez également changer le type Java transmis au

// convertisseur que le convertisseur tente de convertir.

return SDOJavaObjectMediator.data2Java(customerID, integer) ;

}
Que faire ensuite

Copiez le composant et les autres fichiers dans le répertoire ot se trouve le module
conteneur et connectez le composant dans WebSphere Integration Developer ou
générez un fichier EAR a l'aide de la commande serviceDeploy.

Concepts associés

[Programmation d’objets métier|

L’infrastructure d’objets métier (BO) WebSphere Process Server est une extension
de la norme SDO (Service Data Object). Cette section fournit des informations sur
la programmation d’objets métier et SDO.

Remplacement de I'implémentation d’architecture SCA
générée
I se peut que la conversion de code Java en objet SDO (Service Data Object)
effectuée par le systeme ne réponde pas a vos besoins. Suivez cette procédure pour
remplacer I'implémentation d’architecture SCA (Service Component Architecture)
par défaut par celle de votre choix.

Avant de commencer

Vérifiez que vous avez généré la conversion de type Java vers WSDL (Web
Services Definition Language) en utilisant WebSphere Integration Developer ou la
commande genMapper.

A propos de cette tache

Pour remplacer un composant généré qui mappe un type Java a un type WSDL,
remplacez le code généré par le code qui répond a vos besoins. Vous pouvez
utiliser votre propre mappe si vous avez défini vos propres classes Java. Suivez
cette procédure pour effectuer les modifications.

Procédure

1. Localisez le composant généré. Le nom du composant est
java_classMapper.component.

2. Editez le composant dans un éditeur de texte.
3. Mettez en commentaires le code généré et insérez votre méthode.

Ne modifiez pas le nom du fichier qui contient I'implémentation du composant.

Chapitre 3. Guides et techniques de programmation 67

Exemple

Voici un exemple de composant généré a remplacer :
private DataObject javatodata setAccount output(Object myAccount) {

// Vous pouvez remplacer ce code par un mappage personnalisé.
// Mettez en commentaire ce code et écrivez le code personnalisé.

// Vous pouvez également changer le type Java transmis au
// convertisseur que le convertisseur tente de convertir.

return SDOJavaObjectMediator.java2Data(myAccount);

}
Que faire ensuite

Copiez le composant et les autres fichiers dans le répertoire ot se trouve le module
conteneur et connectez le composant dans WebSphere Integration Developer ou
générez un fichier EAR a l'aide de la commande serviceDeploy.

Concepts associés

[Programmation d’objets métier|

L’infrastructure d’objets métier (BO) WebSphere Process Server est une extension
de la norme SDO (Service Data Object). Cette section fournit des informations sur
la programmation d’objets métier et SDO.

Regles en exécution de la conversion de Java en objets SDO

Pour une substitution correcte du code généré ou l'identification des éventuelles
exceptions d’exécution liées aux conversions de Java en SDO (Service Data Object),
il est important de bien comprendre les régles en jeu. La plus grande partie des
conversions se font directement, mais il existe des cas complexes ot
I'environnement d’exécution offre les meilleures possibilités de conversion du code
généré.

Types et classes de base

L’environnement d’exécution effectue une conversion directe entre Service Data
Objects et types et classes Java de base. Types et classes de base :
* Char or java.lang.Character

* Boolean

* Java.lang.Boolean

* Byte ou java.lang.Byte

* Short ou java.lang.Short

* Int ou java.lang.Integer

* Long ou java.lang.Long

* Float ou java.lang.Float

* Double ou java.lang.Double

* Java.lang.String

* Java.math.BigInteger

* Java.math.BigDecimal

e Java.util.Calendar

* Java.util.Date

* Java.xml.namespace.QName

* Java.net.URI

* Byte][]

68 Développement et déploiement

Classes et tableaux Java définis par I'utilisateur

Lors de la conversion d’une classe ou d’un tableau (array) Java en SDO,
I'environnement d’exécution crée un objet de données possédant un URI généré en
inversant le nom de package du type Java et ayant un type égal au nom de la
classe Java. Par exemple, si la classe Java com.ibm.xsd.Customer est convertie en
objet SDO, I'URI est http://xsd.ibm.com et le type est Customer. L’environnement
d’exécution inspecte ensuite le contenu des membres de la classe Java et affecte les
valeurs aux propriétés du SDO.

Lors de la conversion d'un SDO en un type Java, l'environnement d’exécution
génere le nom du package en inversant I'URI et le nom du type est égal au type
du SDO. Par exemple, I'objet de données de type Customer et dont 'URI est
http://xsd.ibm.com génere une instance du module Java com.ibm.xsd.Customer.
L’environnement d’exécution extrait ensuite les valeurs des propriétés du SDO et
affecte ces propriétés aux zones de l'instance de la classe Java.

Lorsque la classe Java est une interface définie par l'utilisateur, vous devez
substituer le code généré et offrir une classe concrete que 1’environnement
d’exécution puisse instancier. Si ’environnement d’exécution ne peut créer de
classe concrete, une exception se produira.

Java.lang.Object

Si le type Java est java.lang.Object, le type généré est xsd:anyType. Un module
peut appeler cette interface avec tout objet SDO. L’environnement d’exception
tente d’instancier une classe concrete de la méme fagcon que pour les classes et
tableaux (arrays) Java définis par 1'utilisateur lorsqu’il ne peut trouver cette classe.
Autrement, I'environnement d’exécution passe le SDO a l'interface Java.

Méme si la méthode renvoie un objet java.lang.Object, I’environnement d’exécution
effectuera la conversion seulement en un SDO, si la méthode renvoie un type
concret. L’environnement d’exécution emploie une conversion semblable a celle des
classes et tableaux Java définis par 'utilisateur en SDO, tel que décrit dans le
paragraphe suivant.

Lors de la conversion d’une classe ou d’un tableau (array) Java en SDO,
I'environnement d’exécution crée un objet de données possédant un URI généré en
inversant le nom de package du type Java et ayant un type égal au nom de la
classe Java. Par exemple, si la classe Java com.ibm.xsd.Customer est convertie en
objet SDO, I'URI est http://xsd.ibm.com et le type est Customer. L’environnement
d’exécution inspecte ensuite le contenu des membres de la classe Java et affecte les
valeurs aux propriétés du SDO.

Dans un cas ou l'autre, si I’environnement d’exécution est incapable d’accomplir la
conversion, une exception se produit.

Classes de conteneur Java.util

Lors de la conversion en une classe de conteneur Java concrete telle que Vector,
HashMap, HashSet et autres du méme genre, 'environnement d’exécution
instanciera la classe de conteneur appropriée. L’environnement d’exécution
emploie une méthode semblable a celle des classes et tableaux Java définis par
l'utilisateur pour renseigner la classe de conteneur. Si I’environnement d’exécution
ne peut localiser de classe Java concrete, 'environnement d’exécution injectera la
classe de conteneur dans le SDO.

Chapitre 3. Guides et techniques de programmation 69

Lors de la conversion de classes de conteneur Java concretes en SDO,
I'environnement d’exécution utilise les schémas générés montrés dans la
conversion de «Java en XML.»

Interfaces Java.util

Pour certaines interfaces de conteneur du package java.util, I'environnement
d’exécution instancie les classes concretes suivantes :

Tableau 3. Conversion de type WSDL en classe Java

Interface Classes concretes par défaut
Collection HashSet

Map HashMap

List ArrayList

Set HashSet

Concepts associés

[Programmation d’objets métier|

L’infrastructure d’objets métier (BO) WebSphere Process Server est une extension
de la norme SDO (Service Data Object). Cette section fournit des informations sur
la programmation d’objets métier et SDO.

Validation de document XML

11 est possible de valider les documents XML et les objets métier a 1’aide du service
de validation.

Par ailleurs, d’autres services requierent un certain nombre de standards minimum
sinon une exception d’exécution est émise. BOXMLSerializer est I'un de ces
services.

Vous pouvez utiliser BOXMLSerializer pour valider des documents XML avant
qu’ils ne soient traités par une demande de service. BOXMLSerializer valide la
structure des documents XML pour déterminer s’il comporte 1'un des types
d’erreur suivants :

¢ Documents XML non valides, comme ceux pour lesquels il manque certaines
balises d’éléments.

* Documents XML syntaxiquement incorrects, comme ceux pour lesquels il
mangque des balises fermantes.

* Documents contenant des erreurs d’analyse syntaxique, comme les erreurs dans
les déclarations d’entité.

Lorsque BOXMLSerializer identifie une erreur, une exception est émise avec une
analyse détaillée de I'incident.

Vous pouvez valider I'importation et/ou l’exportation des documents XML pour
les services suivants :

e HTTP

* Services Web JAXRPC
* Services Web JAX-WS
* Services JMS

* Services MQ

70 Développement et déploiement

Pour les services HTTP, JAXRPC et JAX-WS, BOXMLSerializer génére les exceptions
de la maniere suivante :

¢ Importations —

1. Le composant SCA appelle le service.

2. Le service appelle 'URL d’une destination.

3. L’URL cible répond avec une exception XML non valide.

4. Le service échoue avec une exception d’exécution et un message.
* Exportations —

1. Le client de service appelle 'exportation de service.

2. Le client de service envoie un XML non valide

3. L’exportation échoue pour le service et génere une exception et un message.

Pour les services de messagerie JMS et MQ, les exceptions sont générées de la
maniére suivante :

¢ Importations -
1. L’importation appelle le service JMS ou MQ.
2. Le service renvoie une réponse.
3. Le service renvoie une exception XML non valide.
4. L’importation échoue et génére un message.
* Exportations —
1. Le client MQ ou JMS appelle une exportation.
2. Le client envoie un XML non valide.

3. L’exportation échoue et génére une exception et un message.

Vous pouvez afficher les journaux pour tout message généré par une exception de
validation XML. Les exemples ci-dessous représentent des messages générés par
du code XML incorrect qui a été validé par BOXMLSerializer

e Importation JAXWS

javax.xml.ws.WebServiceException: org.apache.axiom.om.OMException:
javax.xml.stream.XMLStreamException: Element type "TestResponse" must be
followed by either attribute specifications, ">" or "/>".

javax.xml.ws.WebServiceException: org.apache.axiom.soap.SOAPProcessingException:
First Element must contain the local name, Envelope

* Importation JAXRPC

[9/11/08 15:16:27:417 CDT] 0000003e ExceptionUtil E

CNTROO20E: EJB threw an unexpected (non-declared)
exception during invocation of method
"transactionNotSupportedActivitySessionNotSupported" on bean
"BeanId(WSXMLValidationApp#WSXMLValidationEJB.jar#Module, null)".

Exception data: WebServicesFault
faultCode: {http://schemas.xmlsoap.org/soap/envelope/}Server.generalException
faultString: org.xml.sax.SAXParseException: Element type "TestResponse"
must be followed by either
attribute specifications, ">" or "/>". Message being parsed:
<?xml version="1.0"?><TestResponse
xmlns="http://WSXMLValidation"<firstName>Bob</firstName>
<lastName>Smith</lastName></TestResponse>

faultActor: null

faultDetail:

[9/11/08 15:16:35:135 CDT] 0000003f ExceptionUtil E CNTROO20E: EJB threw an
unexpected (non-declared) exception during invocation of method
"transactionNotSupportedActivitySessionNotSupported" on bean
"BeanId(WSXMLValidationApp#WSXMLValidationEJB.jar#Module, null)".

Exception data: WebServicesFault

Chapitre 3. Guides et techniques de programmation 71

faultCode: {http://schemas.xmlsoap.org/soap/envelope/}Server.generalException

faultString: org.xml.sax.SAXException: WSWS3066E: Error: Expected 'envelope'
but found TestResponse

Message being parsed: <?xml version="1.0"?><TestResponse
xmins="http://WSXMLValidation">
<firstName>Bob</firstName><middleName>John</midd1eName>
<lastName>Smith</TastName>
</TestResponse>

faultActor: null

faultDetail:

* Exportation JAXRPC/JAXWS

[9/11/08 15:35:13:401 CDT] 00000064 WebServicesSe E
com.ibm.ws.webservices.engine.transport.http.WebServicesServlet
getSoapAction WSWS3112E:

Error: Generating WebServicesFault due to missing SOAPAction.
WebServicesFault

faultCode: Client.NoSOAPAction

faultString: WSWS3147E: Error: no SOAPAction header!

faultActor: null

faultDetail:

Pour plus d’informations sur les services de validation, voir l'interface de
BOInstanceValidator dans la documentation sur l'interface SPI et I'interface de
programme d’application générées de la section Référence.

Concepts associés

(Guides et techniques de programmation|
Cette section comprend des guides et des exemples de programmation.

Propagation d’en-téte de protocole a partir de liaisons d’exportation

non SCA

Le service de contexte est chargé de la propagation du contexte (y compris les
en-tétes de protocole comme l'en-téte JMS et le contexte utilisateur comme I'ID de
compte) tout au long du chemin d’appel SCA (Service Component Architecture).
Le service de contexte offre un ensemble d’API et de parametres configurables.

Lorsque la propagation du service de contexte est bidirectionnelle, le contexte de
réponse écrasera systématiquement le contexte en cours. Lorsque vous exécutez un
appel d'un composant SCA a un autre, la réponse présentera un contexte différent.
Un composant de service aura un contexte entrant, mais si vous appelez un autre
service, celui-ci écrasera le contexte sortant d’origine. Le contexte de réponse
deviendra alors le nouveau contexte.

Lorsque la propagation du service de contexte est unidirectionnelle, le contexte
d’origine reste a l'identique.

Le cycle de vie du service de contexte est associé a un appel. Une demande
dispose d'un contexte associé et le cycle de vie de ce context est lié au traitement
de cette demande particuliere. Lorsque le traitement de cette demande se termine,
le cycle de vie de ce contexte s’acheve.

Dans le cas d'un processus BPEL (Business Process Execution Language) a court
terme, le contexte de réponse écrasera le contexte de demande. Il récupérera le
contexte de réponse aupres de la premiére demande et le passera a la demande
suivante. Dans le cas d'un d’un processus BPEL au long cours, le contexte de
réponse est éliminé par le framework BPEL. Celui-ci stocke le contexte d’origine et
utilise ce contexte pour faire d’autres appels sortants.

72 Développement et déploiement

Exemple

Exemple : un contexte incluant un en-téte de protocole est propagé a travers tout le
chemin d’appel partant d'une demande entrant dans BPEL en provenance d'un
service web SOAP. BPEL traite ce contexte, et les appels en provenance de BPEL
sont effectués séquentiellement vers une liaison de service web sortante, puis une
autre liaison de service web sortante. Une demande issue du service web SOAP
utilise le service de contexte pour transmettre 1’en-téte de protocole. Le service de
contexte est extrait de la demande entrante et I’en-téte de protocole est transmis a
I'extérieur.

Vous pourrez voir le méme type de comportement avec un autre composant SCA
en lieu et place du BPEL de cet exemple.

En-lite de l_,-"'
proiocol | pyecation 1
4“{\:“ ECA

En-sha do
PAEcci®) m partation 1(

™ ron SCA
A M

Figure 9. Propagation de contexte comprenant un en-téte de protocole

BFEL .

Voici un exemple de code.

//Import the necessary classes;

import com.ibm.bpm.context.ContextService;

import com.ibm.websphere.sca.ServiceManager;

import com.ibm.bpm.context.cobo.ContextObject;

import com.ibm.bpm.context.cobo.ContextObjectFactory;
import com.ibm.bpm.context.cobo.HeaderInfoType;

import com.ibm.bpm.context.cobo.UserDefinedContextType;

//Locate ContextService;
ContextService contextService = (ContextService)ServiceManager.INSTANCE.locateService
("com/ibm/bpm/context/ContextService");

// Get header info

HeaderInfo headerInfo = contextService.getHeaderInfo();

// Get user defined context in current execution context

UserDefinedContextType userDefinedContext = contextService.getUserDefinedContext();
if(userDefinedContext == null){ // create a new context if context is null
userDefinedContext = ContextObjectFactory.eINSTANCE.createUserDefinedContextType()
1

// Do some modification to header info and userDefinedContext

// Set user defined context back to the current execution context.
contextService.setUserDefinedContext (userDefinedContext);

// Set header info back to the current execution context.
contextService.setHeaderInfo(headerInfo);

Remarque : Dans le composant de flux de médiation, les API ContextService ne

doivent pas étre employées. Utilisez le modéle de programmation SMO pour
accéder au contexte.

Chapitre 3. Guides et techniques de programmation 73

Les services de contexte posseédent des regles et des tables configurables qui
dictent le comportement de la liaison. Pour plus d’informations, voir la
documentation API et SPI générées disponible a la section Référence. Lors du
développement dans WebSphere Integration Developer, vous pouvez définir le
service de contexte sur les propriétés d'importation ou d’exportation. Pour plus de
détails, reportez-vous aux informations relatives aux liaisons d’importation et
d’exportation dans le centre de documentation de WebSphere Integration
Developer.

Concepts associés

(Guides et techniques de programmation|
Cette section comprend des guides et des exemples de programmation.

Gestion des regles métier

Des classes de gestion des regles métier sont fournies pour permettre de créer des
clients de gestion personnalisés ou d’automatiser les changements apportés aux
régles métier.

Les classes de gestion des regles métier peuvent étre utilisées dans une application
Web, ot elles sont combinées a d’autres capacités de gestion pour des processus
métier ou des taches utilisateur, afin de gérer tous les composants d’'un méme
client. Vous pouvez utiliser tout client de gestion personnalisé avec l'application
Web Business Rule Manager contenue dans WebSphere Process Server. Les classes
peuvent également étre utilisées pour 1’automatisation des modifications apportées
aux regles métier au sein d’une application. Par exemple, certaines régles métier
peuvent étre modifiées si les résultats d’un processus métier utilisant ces regles
dépassent un seuil ou une limite spécifique.

Les classes de gestion des regles métier doivent étre utilisées dans une application
installée surWebSphere Process Server. Les classes n’incluent pas d’interface
distante, mais elles peuvent étre encapsulées dans une facade, qui est ensuite
exposée via un protocole spécifique, a des fins d’exécution a distance.

Console metier

Client de gestion Gestionnaire
des régles métier de régles métier
personnalisées
Requéte, Requéte,
Modification, Modification,
Publication Publication
Facade - Y
Planning
Client ——m Client de gestion p des régles métier
distant des régles métier
personnalisees

74 Développement et déploiement

Ce guide de programmation se compose de deux sections principales et d’une
annexe. La premiere section explique le modele de programmation, et indique
comment utiliser les différentes classes. Des diagrammes de classes sont fournis
pour illustrer les relations existant entre les classes. La deuxiéme section contient
des exemples d’utilisation des classes pour I'exécution d’opérations telles que la
recherche de groupes de régles métier, la planification de la destination d'une
nouvelle regle, ou encore la modification d’un ensemble de regles ou d"une table
de décision. L’annexe contient des classes supplémentaires, qui ont été utilisées
dans les exemples pour simplifier des opérations courantes, et d’autres exemples
de création de requétes complexes servant a rechercher des groupes de regles
métier en utilisant des caracteres génériques.

Ce guide de programmation consacré aux classes est également disponible au
format HTML Javadoc inclus dans WebSphere Process Server v6.1 et dans
I'environnement de test de WebSphere Integration Developer v6.1. Cette
documentation Javadoc est figure dans le répertoire ${Répertoire d’installation de
WebSphere Process Server}\web\apidocs ou dans ${Répertoire d’installation de
WebSphere Integration Developer}\runtimes\bi_v61\web\apidocs. Les packages
com.ibm.wbiserver.brules.mgmt.* contiennent toutes les informations.

Concepts associés

(Guides et techniques de programmation|
Cette section comprend des guides et des exemples de programmation.

Modele de programmation|

Les regles métier de WebSphere Business Integration sont créées a ’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de regles.
Tous trois partagent le méme modele d’artefacts de regles métier.

Exemple

Des exemples illustrent 1'utilisation possible des différentes classes pour I'extraction
des groupes de regles métier et pour I'apport de modifications a des ensembles de
régles et a des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Référence associée

[Classes d’opérations communes|
Cette section contient des classes supplémentaires, qui ont été utilisées dans les
exemples pour simplifier des opérations communes.

Modeéle de programmation

Les regles métier de WebSphere Business Integration sont créées a 1’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de regles.
Tous trois partagent le méme modele d’artefacts de regles métier.

Le partage d'un méme modele a été jugé essentiel pour des raisons de
maintenance future, et également dans le but d’offrir a l'utilisateur final un modele
de programmation cohérent. Le partage de ce modéle a nécessité des compromis
entre les besoins d’outils, ’exécution et la création : en effet, tous ces aspects
possédent leurs propres exigences en fonction de leur environnement respectif ; or,
ces exigences entraient parfois en conflit. Les artefacts décrits ci-dessous en tant
que partie intégrante du modéle de programmation global représentent un
équilibre entre toutes les exigences de ces environnements différents.

Chapitre 3. Guides et techniques de programmation 75

La modification des regles métier est limitée aux seuls éléments définis a l'aide de
modeles dans les ensembles de regles, dans les tables de décision et dans la table
de sélection des opérations (dates d’entrée en vigueur et cibles). La création de
nouveaux ensembles de regles et de nouvelles tables de décisions n’est prise en
charge que via la copie d'un ensemble de regles ou dune table de décision
existant(e). Le composant de groupe de régle métier lui-méme ne peut pas étre créé
dynamiquement lors de I'exécution, a I'exception des propriétés définies par
l'utilisateur et des valeurs de description. Pour apporter les modifications requises
au composant (ajout d’une nouvelle opération, par exemple), vous devez utiliser
WebSphere Integration Developer, puis redéployer ces modifications ou les
réinstaller sur le serveur.

76 Développement et déploiement

Concepts associés

[Gestion des régles métier|

Des classes de gestion des regles métier sont fournies pour permettre de créer des
clients de gestion personnalisés ou d’automatiser les changements apportés aux
régles métier.

(Groupe de régles métier|

La classe BusinessRuleGroup représente le composant de groupe de regles métier.
Cette classe peut étre considérée comme 1'objet racine contenant les ensembles de
régles et les tables de décision.

IPropriétés de groupes de régles métier|

Les propriétés des groupes de regles métier servent a gérer ces groupes. Les
propriétés définies dans les groupes de regles métier peuvent étre utilisées dans les
requétes, pour renvoyer uniquement un sous-ensemble de groupes de regles métier
a afficher puis a modifier.

Les opérations représentent le point de départ d’accés aux ensembles de regles et
aux tables de décisions a modifier. Les opérations d'un groupe de regles métier
correspondent aux opérations répertoriées dans le langage WSDL associé au
composant de groupes de regles métier.

Les classes RuleSet et DecisionTable sont basées sur une classe générique
BusinessRule et contiennent des méthodes fournissant les informations disponibles
dans les ensembles de regles et les tables de décision.

[Ensemble de régles|

Un ensemble de regles constitue un type de régle métier. Les ensembles de regles
sont généralement utilisés lorsque plusieurs regles doivent étre exécutées sur la
base de différentes valeurs conditionnelles. Les ensembles de regles se composent
d’un bloc de regles et de modeéles de regles. Le bloc de regles (RuleBlock) contient
les différentes regles if-then et action qui composent la logique de I'ensemble de
régles.

ftable de décision|

Les tables de décision représentent un autre type de regle métier que vous pouvez
gérer et modifier. Elles sont généralement utilisées lorsque de nombreuses
conditions doivent étre évaluées et qu'un ensemble spécifique d’actions doivent
étre émises une fois les conditions remplies.

Modeles et paramétreq

Les modeles inclus dans les ensembles de regles et dans les tables de décision
prennent comme base une définition commune. Les modeles possédent des
parametres et une présentation de l'utilisateur. Les valeurs de parametres inclus
dans les modeles sont définis pour permettre d’apporter des modifications a la
régle une fois que celle-ci a été déployée.

Parmi les objets principaux, nombreux sont ceux qui possédent une méthode de
validation ; elle permet de vérifier si les artefacts sont corrects et complets avant
leur publication.

Suivi des modifications|
Pour tous les objets, vous pouvez utiliser une méthode hasChanges afin de vérifier
si des modifications ont été apportées a 1’objet et aux objets qu’il contient.

|BusinessRuleManager|
La classe BusinessRuleManager est la principale classe d’utilisation des groupes de
régles, des ensembles de regles et des tables de décision.

[Traitement des exceptions|
Des exceptions peuvent étre générées lors d'un appel de validation pour un

Chapitre 3. Guides et techniques de programmation 77

artefact ou lors de sa publication. En cas d’erreur de validation, I'exception
ValidationException est générée ; elle s'Taccompagne de la liste des problemes
rencontrés. Si un probleme survient au cours de la publication car une autre
transaction publie les mémes artefacts, 1’exception ChangeConflictException est
générée. A chaque détection de la modification d'un artefact par une autre
transaction, I’exception ChangeConflictException est générée.

Les classes ne prennent en charge aucun niveau d’autorisation. L’application client
utilisant les classes doit ajouter sa propre méthode d’autorisation.

Groupe de regles métier
La classe BusinessRuleGroup représente le composant de groupe de regles métier.
Cette classe peut étre considérée comme 1’objet racine contenant les ensembles de
régles et les tables de décision.

Les ensembles de régles et les tables de décision sont accessibles uniquement par le
groupe de regles métier auquel elles sont associées. La classe contient des
méthodes permettant d’extraire les informations liées au groupe de regles métier et
d’accéder aux ensembles de regles et aux tables de décision. Les méthodes
permettent d’extraire les informations suivantes :

* Espace de nom cible

¢ Nom de groupe de regles métier
* Nom affiché

* Synchronisation nom/nom affiché
* Description

* Fuseau horaire de présentation indiquant si les dates doivent étre affichées au
format UTC (temps universel coordonné) ou en local sur le systeme

* Opérations définies dans l'interface associée au groupe de regles métier

* Propriétés personnalisées définies dans le groupe de regles métier

Les différents ensembles de regles et tables de décision associés au groupe de
régles métier sont accessibles par 1'opération du groupe de regles métier.

Des méthodes permettent également de mettre a jour les informations dans le
groupe de régles métier. Les informations suivantes peuvent étre mises a jour via
les méthodes :

* Description
* Nom affiché
* Synchronisation nom/nom affiché

* Propriétés personnalisées définies dans le groupe de regles métier

Le nom affiché du groupe de regles métier peut étre défini de maniére explicite ou
sur la valeur du nom a l'aide de la méthode
setDisplayNamelsSynchronizedToName.

Les autres valeurs ne peuvent pas étre modifiées puisqu’elles font partie de la

définition du composant de groupe de regles métier. Leur modification
nécessiterait un redéploiement ainsi qu'une réinstallation.

78 Développement et déploiement

La classe du groupe de regles métier offre également une méthode d’actualisation.
Cette méthode effectue un appel vers la mémoire persistante ou le référentiel dans
lesquels les régles métier sont stockées et renvoie le groupe de regles métier ainsi
que tous les ensembles de regles et les tables de décision avec les informations
conservées. Le groupe de regles métier renvoyé représente la derniére copie et
'objet précédent devient obsoleéte.

La méthode isShell permet de dire si la version d'une instance de groupe de regles
métier est prise en charge par 1'exécution en cours. Par exemple, si un client Web a
été créé avec les classes de gestion de regles métier en cours, et que de nouvelles
fonctions ajoutées ultérieurement au groupe de regles métier ne sont pas prises en
charge par les classes, un groupe de régles métier interpréteur de commandes est
créé une fois le groupe de regles métier récupéré. Cela permet au client Web de
continuer a utiliser les regles métier prises en charge et a récupérer les groupes de
régles métier avec des fonctions et des attributs limités. Lorsque la méthode isShell
est vraie, seules les méthodes getName, getTargetNameSpace, getProperties,
getPropertyValue et getProperty renvoient des valeurs. Toutes les autres méthodes
conduisent a 1’exception UnsupportedOperationException. Outre l'utilisation de la
méthode isShell, le type de BusinessRuleGroup peut également étre vérifié s’il
s’agit d’une instance de BusinessRuleGroupShell, afin de déterminer si la version
est prise en charge.

Chapitre 3. Guides et techniques de programmation 79

«Java Interfaces
3 BusinessRuleChangeDetector
o COPYRIGHT : Strng
@ hzsChanges ()

«Jzva Intarfaces

«Java Interfaces

€3 BusinessRuleValidateable

C

COPYRIGHT : 5tring

o ur;_zlidate ()

Operation
— o - — «Java Interface»
o COPYRIGHT : Strng g & BusinessRuleGroup
g gig;ﬂ;;t?m ‘] 5 COPYRIGHT : Stiing
@ getTargethamesSpace ()
@ gerDefaultBusinesshule () @ getame [)
@ setDefauftBusinessRule () e getﬁlsnlwﬂame ()
@ getAva_ilahleTargets()} @ setDisplayName ()
2 gigﬂﬂgz ig::iﬁg?ﬁé {:Ij “euse». | @ isDisplayNameSynchronized ToName ()
© getBusinessRulesByTHSAndName () g siﬁﬁgrﬁ:ﬂeﬁ ynchrangedTotame ()
@ getOperstionSelectionRecordlist (} 77, o getnesc'n;tlnn ()
® gstAssocitedBugnessuleGroup {) ® getPresentation Timezone ()
- @ getOperations {)
«Java Interfaces & getOpertion {)
o Propertylist " @ getProparties {)
@ COPYRIGHT : 5tring _HUsE® | @ getPropertyValue ()
@ iterator [) @ getProperty ()
@ get () @& setPropertyVaklie ()
& getByName () & getSaveDate ()
& newlsarDefinedProperty) @ refresh ()
@ addProparty () @ isShel ()
@ removeProperty [) bt ol
& removePropertyByName () ; wlgan
@ setPropertyValue {) «Java Class»
@ size () (3 BusinessRuleManagementExcepti
ption
® isEmoty () . 2

o COPYRIGHT : String

& seriglVersionUID : long

& BusmnessRuleManagementException ()
& BusinessRuleManzgemeantException ()
& BushessRuleManzgementException {)
@ BusinessRuleManagementException {)

Figure 10. Diagramme de classes de BusinessRuleGroup et classes associées

Concepts associés

Modele de programmation|

Les regles métier de WebSphere Business Integration sont créées a 1'aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de regles.
Tous trois partagent le méme modele d’artefacts de regles métier.

Propriétés de groupes de regles métier

Les propriétés des groupes de regles métier servent a gérer ces groupes. Les
propriétés définies dans les groupes de regles métier peuvent étre utilisées dans les
requétes, pour renvoyer uniquement un sous-ensemble de groupes de regles métier
a afficher puis a modifier.

Toutes les propriétés sont du type chaine et sont définies en tant que paires
valeur-nom. Chaque propriété ne peut étre définie qu'une seule fois dans un
groupe de regles métier. Pour chaque propriété définie, une valeur doit également
lui étre définie. La valeur de propriété peut étre une chaine vide ou de longueur
zéro, mais pas NULL. Définir une propriété sur NULL revient a la supprimer.

80 Développement et déploiement

Les propriétés d'un groupe de regles métier sont également accessibles dans un
ensemble de régles ou une table de décision au moment de 'exécution. Cela
permet a une valeur unique, a définir dans le groupe de regles métier, d’étre
utilisée au sein de plusieurs ensembles de regles ou de tables de décision du
groupe de regles métier. Seules les propriétés définies dans le groupe de regles
métier sont disponibles pour les ensembles de régles et les tables de décision joints.

Il existe deux types de propriétés, systéme et définies par 'utilisateur. Le nombre
de propriétés systeme ou de propriétés définies par 'utilisateur n’est pas limité
dans un groupe de regles métier. Les propriétés systeme permettent de détenir des
informations spécifiques liées a un composant telles que la version du modele de
régle utilisée lors de la définition de la logique de regle. Ces informations systéme
apparaissent dans les propriétés pour permettre les requétes sur ces zones. Les
propriétés systeme commencent par un préfixe IBMSystem et sont en lecture seule
dans le groupe de regles métier et les classes de propriétés. Les propriétés systeme
peuvent étre ajoutées, modifiées ou supprimées. Voici un exemple de propriété
systeme :

Nom de la propriété Valeur de la propriété

IBMSystemVersion 6.2.0

Remarque : les valeurs du nom, de I’espace de nom et du nom affiché d'un
groupe de regles métier sont traitées en tant que propriétés systéme dans le cadre
de requétes, et font partie de la liste de propriétés a extraire pour un groupe de
regles métier a l'aide de la méthode getProperties. Toutefois, ces propriétés ne sont
pas définies en tant qu’éléments de propriétés en cours dans l’artefact de groupe
de regles métier et n’apparaissent pas comme propriétés dans WebSphere
Integration Developer, dans la mesure ot elles sont définies avec des éléments
uniques et distincts dans le groupe de régles métier. Elles sont fournies
uniquement pour offrir davantage d’options de requéte.

Les propriétés définies par 1'utilisateur peuvent étre utilisées pour détenir des
informations spécifiques aux utilisateurs, ainsi que dans les requétes relatives aux
groupes de régles métier. Ces propriétés sont disponibles en lecture-écriture.

Les propriétés d'un groupe de régles métier peuvent étre extraites
individuellement ou sous forme de liste (objet PropertyList). Avec I'onglet
PropertyList, les méthodes de récupération des propriétés individuelles, d’ajout et
de suppression des propriétés définies par l'utilisateur sont fournies.

Chapitre 3. Guides et techniques de programmation 81

«]ava Interface=
9 BusinessRuleChangeDetector
o COPYRIGHT : String
@ hasChanges ()

«Java Interface»

&9 Propertylist
COPYRIGHT : String
iterator ()
get ()
getByName ()
newlUserDefinedProperty ()
addProperty ()
removeProperty ()
removePropertyByMName ()
setPropertyValue ()
size ()
isEmpty ()

T T TTITTETEO

aysen

O Property

o COPYRIGHT : String

o PROPERTY_MNAME _TARGET MAME_SPACE : String
o PROPERTY MNAME MAME : String puse»
o PROPERTY_MNAME__DISPLAY MAME : String :
o PROPERTY MNAME__VERSION : String :
o PROPERTY_MNAME__SHELL : String 5
@ getMame (}

«]ava Interfaces

& getValue ()

. W
«Java Interfaces «lava Interface=
& SystemDefinedProperty € UserDefinedProperty
o COPYRIGHT : Skring | © COPYRIGHT : String
| @ setValue ()

Figure 11. Diagramme de classes de Property et classes associées

82 Développement et déploiement

Concepts associés

Modele de programmation|

Les régles métier de WebSphere Business Integration sont créées a 1’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de regles.
Tous trois partagent le méme modele d’artefacts de regles métier.

Opération

Les opérations représentent le point de départ d’acces aux ensembles de regles et
aux tables de décisions a modifier. Les opérations d'un groupe de régles métier
correspondent aux opérations répertoriées dans le langage WSDL associé au
composant de groupes de regles métier.

Pour chaque opération, il existe différentes cibles, chacune d’entre elles constituant
une régle métier (ensemble de regles ou table de décision) :

* Cible par défaut (facultatif)
* Liste des cibles planifiées par plages de date/heure (OperationSelectionRecord)
* Liste de toutes les cibles disponibles pouvant étre utilisées pour cette opération

Pour chaque opération, une cible de régle métier doit étre spécifiée au minimum.
Cette cible peut étre OperationSelectionRecord et comporter une date de début et
une date de fin spécifiques, correspondant a la période d’activation planifiée de la
cible. Une cible unique par défaut peut également étre définie pour l'opération,
puis utilisée au cours de I'exécution si aucune cible de regle métier planifiée
correspondante n’est trouvée. La classe Operation fournit des méthodes
d’extraction et de définition de cible de regle métier par défaut, ainsi que des
méthodes d’extraction de la liste (OperationSelectionRecordList) des cibles de
régles métier planifiées. Outre la cible de régle métier par défaut et les cibles de
régles métier planifiées, il existe une liste de toutes les cibles de regles métier
disponibles pour 1’opération. Cette liste répertorie les cibles de regles métier
planifiées, la cible de regle métier par défaut, ainsi que les autres ensembles de
régles ou tables de décisions non planifiés pour cette opération. Un ensemble de
régles ou une table de décision non planifié(e) est associé(e) a 1'opération via la
liste des cibles disponibles, car elle partage implicitement les informations relatives
a l'opération. Toutes les cibles de regles métier doivent prendre en charge les
messages entrants et sortants de leur opération. Chaque opération étant unique sur
une interface donnée, les ensembles de regles et les tables de décisions d'une
opération sont uniques.

Vous pouvez planifier I'activation des ensembles de régles et tables de décisions de
la liste des cibles disponibles via la création d'une
méthodeOperationSelectionRecord. Dans ce cas, vous devez spécifier une date de
début et une date de fin pour chaque ensemble de régles ou table de décision de la
liste des cibles disponibles. La date de début doit étre antérieure a la date de fin.
Ces dates peuvent représenter une période incluant la date du jour, ou encore une
période passée ou future. La période indiquée par ces dates ne peut pas
chevaucher une autre période spécifiée par OperationSelectionRecords, une fois
ajoutée a OperationSelectionRecordList et publiée. Les valeurs de date de début et
de date de fin sont de type java.util.Date. Les valeurs spécifiées seront considérées
comme des valeurs UTC, selon la classe java.util.Date. Une fois
OperationSelectionRecord terminée, elle peut étre ajoutée a
OperationSelectionRecordList en vue d’étre planifiée avec d’autres cibles de regles
métier. Il peut exister des écarts entre les périodes spécifiées par différentes
méthodes OperationSelectionRecords. Lorsqu'un écart est constaté au cours de

Chapitre 3. Guides et techniques de programmation 83

I'exécution, la cible par défaut est utilisée. Si aucune cible par défaut n’a été
spécifiée, une exception est générée. Il est recommandé de toujours spécifier une
cible de régle métier par défaut.

Une cible de regle métier par défaut peut étre supprimée de la liste des cibles
planifiées, via la suppression de la méthodeOperationSelectionRecord de
OperationSelectionRecordList. Si vous supprimez un élément
OperationSelectionRecord, cela ne supprime pas la cible de regle métier
correspondante de la liste des cibles de regles métier disponibles, et cela ne
supprime pas non plus les autres éléments OperationSelectionRecords portant la
méme cible de regle métier planifiée.

Outre l'extraction d’un ensemble de régles ou d'une table de décision via la
méthode OperationSelectionRecordList ou via la liste des cibles disponibles, la
classe Operation permet également d’extraire les cibles de régles métier par nom et
par valeur de propriété d’espace de nom cible. Grace aux méthodes de la classe
Operation, les ensembles de regles et tables de décisions qui figurent parmi les
cibles disponibles pour cette opération peuvent faire l'objet d’'une requéte. Les
ensembles de regles et tables de décisions susceptibles de porter des valeurs de
nom et d’espace de nom cible correspondantes, mais qui font partie des listes des
cibles disponibles d’autres opérations ne sont pas inclus dans 'ensemble de
résultats. Les méthodes getBusinessRulesByName, getBusinessRulesByTNS et
getBusinessRulesByTNSAndName sont fournies pour simplifier 1’extraction
d’ensembles de régles et de tables de décisions spécifiques.

La classe Operation fournit les méthodes qui permettent d’effectuer les opérations
suivantes :

* Extraction du nom de l'opération

 Extraction de la description de 'opération

* Extraction et définition de la cible de regle métier par défaut

* Extraction des cibles de régles métier planifiées (OperationSelectionRecordList)
* Extraction de la liste de toutes les cibles de régles métier disponibles

* Extraction d'un ensemble de regles ou d'une table de décision de la liste des
cibles disponibles, par nom ou par espace de nom cible

* Extraction du groupe de regles métier associé a 1’opération

La classe OperationSelectionRecordList fournit les méthodes qui permettent
d’effectuer les opérations suivantes :

* Extraction d'un élément de la classe OperationSelectionRecord par valeur
d’index

e Suppression d'un élément spécifique de la classe OperationSelectionRecord par
valeur d’index

* Ajout d’un nouvel élément de la classe OperationSelectionRecord a la liste

La classe OperationSelectionRecord fournit les méthodes qui permettent d’effectuer
les opérations suivantes :

e Extraction et définition de la date de début
e Extraction et définition de la date de fin
* Extraction et définition de la cible de regle métier

* Extraction de l'opération a laquelle 1’élément de la classe
OperationSelectionRecord est associé

84 Développement et déploiement

«Java Interface»
€ BusinessRuleChangeDetector
o COPYRIGHT : Sfring
@ hasChanges [}

«Java Interface»
& Operation

COPYRIGHT : Sftring
getMame ()
getDescription |)
getDeﬁuttBusirjessFlule ()
setDefaultBusinessRule [)
getivailable Targets)
getBusinessRulesBy TNS [)
getBusinessRulesByMame [)
getBusinessRulesBy THNSAndMame ([)
getOperationSelectionRecordlist [)

L R R R T T R

ieisen

«Java Interfaces»
€9 OperationSelectionRecordlist

o COPYRIGHT : String

@ iberator [)

@ get ()

@ addOperationSelectionRecord ()

@ removeQperationSelectionRecord [)
@ newOperationSelectionRecord [)

@ newlperationSelectionRecord [)

@ size [)

@ isEmpty [)

getAssociatedBusinessRuleGroup () |

“USEP @ setStartDate ()

«Java Interfaces
£ BusinessRuleValidateable

' o COPYRIGHT : String |
| | @ vabdate () |

AELUSER

«Java Interfaces
& OperationSelectionRecord
| © COPYRIGHT : String
@ getStartDate ()

@ getEndDate ()

@ setEndDate ()

@ getBusinessRule Target [)

@ setBusinessRule Target [)
@ getAssociatedOperation ()

Figure 12. Diagramme de classes de Operation et classes associées

Concepts associés

Modele de programmation|

Les regles métier de WebSphere Business Integration sont créées a 1'aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de regles.

Tous trois partagent le méme modele d’artefacts de regles métier.

Regle métier

Les classes RuleSet et DecisionTable sont basées sur une classe générique
BusinessRule et contiennent des méthodes fournissant les informations disponibles
dans les ensembles de regles et les tables de décision.

A l'instar des artefacts de groupe de régles métier, les ensembles de regles et les
tables de décision possédent un nom et un espace de nom cible. La combinaison
de ces valeurs doit étre unique par rapport aux autres ensembles de regles et tables

85

Chapitre 3. Guides et techniques de programmation

de décision. Par exemple, deux ensembles de regles peuvent partager la méme
valeur d’espace de nom cible, mais leur nom doit étre différent. De méme, un
ensemble de régles et une table de décision peuvent porter le méme nom mais ils
doivent détenir des valeurs d’espace de nom cible différentes.

La copie d'une regle métier peut étre réalisée a partir d’'une regle métier existante
lorsqu’une regle similaire doit étre planifiée a une heure spécifique, avec
différentes valeurs de parametres pour les regles construites a partir de modéles.
Dans la mesure ol une classe de sauvegarde Java est nécessaire a I'implémentation
de la regle métier, les regles ne peuvent pas étre créés a partir de rien. La classe de
sauvegarde Java est créée seulement au moment du déploiement. Lors de la
création d’une regle, cette derniere est ajoutée a la liste des cibles disponibles pour
l'opération associée a la regle d’origine. Toutefois, la regle additionnelle n’est pas
conservée sauf en cas de publication du groupe de regles métier auquel 1'opération
est associée.

La nouvelle régle métier doit comporter un espace de nom cible ou un nom
différent de la regle d’origine. Le nom affiché de la nouvelle regle métier peut
rester identique a celui de la regle d’origine puisque la combinaison du nom et de
I'espace de nom fournissent une valeur clé permettant d’identifier la regle métier.
Dans le cadre de la regle métier, les différentes valeurs de parametre,
précédemment définies avec un modele, peuvent étre modifiées. La planification
de la regle métier a une heure spécifique peut étre réalisée avec
OperationSelectionRecordList ou en tant que destination par défaut avec
I'Opération associée a la regle métier.

La classe BusinessRule fournit des méthodes permettant de :

* Extraire l'espace de nom cible

 Extraire le nom de I’ensemble de regles ou la table de décision

* Extraire et définir le nom affiché de 1’ensemble de regles ou de la table de
décision

* Extraire le type de la régle métier : ensemble de regles ou table de décision

* Extraire et définir la description de la régle métier

* Extraire 'opération a laquelle la regle métier est associée.

* Créer une copie de la regle métier avec un nom et/ou un espace de nom cible
différent

86 Développement et déploiement

«Java Interface= ' «Java Interface»
© BusinessRuleChangeDetector © BusinessRuleValidateable

o COPYRIGHT : Sftring | o COPYRIGHT : String
@ hasChanges () _ @ validate ()
«Java Interfaces
€9 BusinessRule
o COPYRIGHT : String
@ getTargetNameSpace ()
@ getiame ()
@ getDisplayName () .
@ setDisplyMame {) ¢u5ér:-
@ isDisplayMameSynchronized TolName () :
@ setDisplyNamelsSynchronized ToName () |
@ getType [)
@ getDescription {)
@ setDescription [)
@ getAssocatedOperation ()
@ getSaveDate ()
@ createCopy ()
«Java Interfaces» «Java Interface»
€ RuleSet &9 DecisionTable

o COPYRIGHT : String o COPYRIGHT : String

@ getRuleBlocks {) - @ getInitRule [)

@ getFirstRuleBlock [) @ getInitTemplate [)

@ getRule Termplates {) | @ getTreeBlock [)

Figure 13. Diagramme de classes de BusinessRule et classes associées

Concepts associés

Modele de programmation|

Les regles métier de WebSphere Business Integration sont créées a 1'aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de regles.
Tous trois partagent le méme modele d’artefacts de regles métier.

Ensemble de régles

Un ensemble de regles constitue un type de régle métier. Les ensembles de regles
sont généralement utilisés lorsque plusieurs regles doivent étre exécutées sur la
base de différentes valeurs conditionnelles. Les ensembles de regles se composent
d’un bloc de regles et de modeéles de regles. Le bloc de regles (RuleBlock) contient
les différentes regles if-then et action qui composent la logique de I'ensemble de
régles.

La classe RuleSet fournit les méthodes qui prennent en charge les aspects
suivants :

* Extraction d’'une liste de blocs de regles pour I'ensemble de regles

Chapitre 3. Guides et techniques de programmation 87

* Extraction d’une liste de modéles de regles définis dans 1’ensemble de regles

A I'heure actuelle, chaque ensemble de regles ne peut contenir qu'un bloc de
régles, tandis que plusieurs modeéles de regles peuvent étre définis dans ’ensemble
de regles. Le bloc de régles contient 'ensemble de regles qui sera exécuté lors de
l'appel de I'ensemble de regles. Le bloc de régles permet de modifier 1’ordre des
régles. Un bloc de regles doit contenir au minimum une regle définie. Les regles
(Rule) peuvent étre définies comme des régles d’instance de modele
(TemplatelnstanceRule) ou codées en dur. Si une regle if-then ou une regle action a
été définie avec un modele, elle peut étre supprimée du bloc de regles. Si une
nouvelle instance de regle a été créée avec un modele, elle peut étre ajoutée au
bloc de régles.

Si une regle est codée en dur et qu’elle n’a pas été définie avec un modele, elle ne
peut étre ni modifiée, ni supprimée du bloc de régles. Ces regles ont été congues
pour faire systématiquement partie de la logique des ensembles de régles et ne
doivent pas étre modifiées ou répétées au sein de cette logique.

Lorsqu’une nouvelle regle est créée avec un modele, elle doit porter une valeur de
nom unique. La liste des regles existantes peut étre extraite et vérifiée avant la
création de la regle.

Pour les régles codées en dur if-then et action, seuls le nom et la présentation
peuvent étre extraits. La présentation représente une chaine que vous pouvez
utiliser pour afficher les informations relatives a la régle dans les applications
client. Pour les régles if-then ou action définies avec un modeéle, vous pouvez
extraire le nom et la présentation, ainsi que des informations supplémentaires. Les
valeurs de parametres spécifiques peuvent étre extraites et modifiées. Si un modele
(RuleSetRuleTemplate) a été défini dans I’ensemble de regles, vous pouvez créer
une autre instance de la regle au sein de I'ensemble de regles et définir des valeurs
de parametres. Par exemple, une regle peut indiquer qu'un client d’un niveau
spécifique doit recevoir une remise d’un montant donné. Cette logique peut étre
définie avec un modele de reégle unique, puis répétée en modifiant les valeurs des
parameétres de niveau de client (or, argent, bronze, etc.), et de montant de la remise
(15 %, 10 %, 5 %, etc.).

Les parametres d'une régle ayant été définis avec un modele sont propres a
I'instance de regle correspondante. Le modele définit uniquement une présentation
standard, ainsi que le nombre de parametres applicables a la regle. Chaque regle
définie avec un modele peut posséder des valeurs différentes, comme l'explique
I'exemple de remises appliquées a différents niveaux de clients.

La classe RuleBlock fournit les méthodes qui permettent d’effectuer les opérations
suivantes :

 Extraction d’une régle par index
* Ajout d’une regle définie avec un modele
* Suppression d'une régle définie avec un modéle

* Modification de I'ordre établi (d"une place ou a un emplacement d’index
spécifique)

La classe RuleSetRule fournit les méthodes qui permettent d’effectuer les
opérations suivantes :

* Extraction du nom de la regle

* Extraction du nom affiché de la regle

88 Développement et déploiement

* Extraction de la présentation de l'utilisateur
* Extraction du bloc de regle

La classe RuleSetRuleTemplate fournit les méthodes qui permettent d’effectuer les
opérations suivantes :

* Création d'une instance de modele de régle a partir de la définition de modele
correspondante

* Extraction de I’ensemble de regles parent

La classe TemplateInstanceRule fournit les méthodes qui permettent d’effectuer les
opérations suivantes :

* Extraction des parametres de la regle

* Extraction de la définition de modele qui a permis de définir la regle

La classe Template fournit les méthodes qui permettent d’effectuer les opérations
suivantes :

* Extraction de I'ID de modele

* Extraction du nom

* Extraction et définition du nom affiché
 Extraction et définition de la description

* Extraction des parametres de ce modele
 Extraction de la présentation de l'utilisateur

Chapitre 3. Guides et techniques de programmation 89

«Java Interfaces «Java Interfaces «Java Interface»

© RuleSet) BusinessRuleChangeDetector 0 Template
o QOPYRIGHT : Sfring o COPYRIGHT : Sfring o COPYRIGHT : String
@ getRuleBlocks () @ hasChanges () @ gethName [)
@ getFirstRuleBlock () @ getld {)
@ getRuleTemplates () #uses @ getlserPresentation ()
«USE® alsen «Java Interface» @ getDescription ()
O RuleSetRufeTemplate @ getDsplayhame [)
«lava Interfacas © COPYRIGHT : String @ getParameters ()
€ RuleBlock @ createRuleFromTemplte () @ getParameter ()
o COPYRIGHT : String © getParentRuleset ()
@ ftorator ([)] Interfa
«Java Interfaces
g gj;ﬁtllee([:!1 wUSER yzen & RuleTemplate
@ addRule () —_— @ COPYRIGHT : STing
@ removeRule ()
@ movelp () «Java Interfaces
@ moveDown (] € RuleSatTemplatelnstanceRule
@ move () o COPYRIGHT : String
@ numberOfRules () @ getRuleSetRuleTemplzte [)
@ getParentRuleSet ()
“LIS@ga»
«Java Interfacex «Java Interfaces
0 RuleSatRufe) BusinessRuleValidateable
o COPYRIGHT : String o COPYRIGHT : String
@ getParentRuleBlock () @ validate ()

Figure 14. Diagramme de classes de BusinessRule et classes associées

Concepts associés

Modéle de programmation|

Les régles métier de WebSphere Business Integration sont créées a 1'aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de regles.
Tous trois partagent le méme modele d’artefacts de regles métier.

90 Développement et déploiement

Table de décision

Les tables de décision représentent un autre type de regle métier que vous pouvez
gérer et modifier. Elles sont généralement utilisées lorsque de nombreuses
conditions doivent étre évaluées et qu'un ensemble spécifique d’actions doivent
étre émises une fois les conditions remplies.

Les tables de décision sont semblables aux arborescences de décision, mais elles
sont équilibrées. Elles comportent toujours le méme nombre de conditions a
évaluer et d’actions a exécuter, quelles que soient les branches résolues sur true.
Une arborescence de décision peut comporter une branche ayant plus de
conditions a évaluer qu’une autre.

Les tables de décision sont structurées sous la forme d’une arborescence de noeuds
et sont définies par un TreeBlock. Différents TreeNodes composent le TreeBlock.
Les TreeNodes peuvent étre des noeuds de condition ou d’action. Les noeuds de
condition sont les branches d’évaluation. A la fin des branches, les noeuds d’action
contiennent les actions d’arborescence appropriées a émettre et pour lesquelles
toutes les conditions doivent avoir pour résultat true. Le nombre de niveaux de
noeuds de condition est illimité, mais il ne peut y avoir qu'un seul niveau de
noeuds d’action.

Bloc arborescence
Moeud de
! diti
@ condifion Condition Condition Condition
/II |'I\ I|I
A | 1
A | N N
Moeud de / \ MNoeud de | \ MNoeud de | \
la condition 4 la condition ¢ la condition §
Condition | Condition Condition | Condition Condition | Condition
Moeud Moeud Moeud Noesud Moeud Moeud
de l'action de l'action de l'action de I'action de l'action de ['action

Les tables de décision peuvent également comporter une regle d’initialisation
(regle init) qui peut étre émise avant vérification des conditions de la table.

La classe DecisionTable contient des méthodes permettant de :

» Extraire le bloc d’arborescence de noeuds d’arborescences (noeuds de condition
et d’action)

* Extraire l'instance de régle init

* Extraire le modele de régle s’il est défini

Chapitre 3. Guides et techniques de programmation 91

«]ava Interfaces
€ DecisionTable
o COPYRIGHT : 5tring
@ getlnithule ()
@ getInitTemplate () wLse®
@ getTreeBlock [)

«Java Interfaces

9 DedisionTableRule
¢ COPYRIGHT : Sfring
@ getParentTreeBlock [)

all5e

sLigEw
«lava Interfaces

& TresBlock
o COPYRIGHT : String
@ getTreeConditionDefinitions |)
@ getRootNode ()
@ getTreeActionTermDefinitions)

«Java Interfaces «Java Interface=
€ BusinessRuleValidateable €9 BusinessRuleChangeDetector

o COPYRIGHT : String o COPYRIGHT : 5tring
@ validate [) @ hasChanges [)

Figure 15. Diagramme de classes de DecisionTable et classes associées

Le TreeBlock d'une table de décision contient les différents noeuds de condition et
d’action. Chaque noeud de condition (ConditionNode) abrite une définition de
terme (TreeConditionTermDefinition) et de un a n résultats de cas (CaseEdge). La
définition de terme contient I’opérande situé a gauche de I'expression de condition.
Les résultats de cas contiennent les définitions de valeurs représentant les
opérandes situés a droite, a utiliser dans I’expression de condition. Par exemple,
dans l'expression (statut == “or”) la définition de terme est “statut” et “or” est la
définition de valeur dans le résultat de cas. L’ensemble des résultats de cas d'un
noeud de condition partagent la définition du terme et différent uniquement par
leur valeur (TreeConditionValueDefinition). Pour poursuivre avec cet exemple, un
autre résultat de cas dans le noeud de condition peut présenter la valeur “argent”.
Elle est alors également utilisée dans une expression (statut == “argent”). La seule
exception a ce comportement est la définition d’une clause OTHERWISE dans le
noeud de condition. Avec cette clause, il n'y a aucune définition de valeur
puisqu’elle est utilisée si tous les autres résultats de cas dans le noeud de condition
ont pour résultat false. Bien qu'une OTHERWISE ne soit pas un résultat de cas,
elle possede un TreeNode impossible a extraire.

92 Développement et déploiement

Moeud de

la condition Condition Condition Condition
Definition Définition Définition Définition
de terme de valeur de valeur de valeur

En ce qui concerne la définition de terme, la présentation utilisateur peut étre
extraite et utilisée dans les applications client. La présentation de la définition de
terme est généralement une simple représentation de 'opérande situé a gauche
(statut, dans notre exemple) et ne contient aucune marque de réservation. En ce
qui concerne les résultats de cas, un modéle peut étre utilisé pour définir la
définition de valeur (TreeConditionValueTemplate). Une instance de définition de
valeur de modele (TemplateInstanceExpression) contient les valeurs de parametres
utilisées pour I'exécution, qui sont modifiables. Si une tentative de récupération de
la définition de modele de valeur est réalisée pour TreeConditionValueDefinition,
non défini avec un modele, une valeur NULL est renvoyée. Si aucun modele n’a
été utilisé pour définir la condition de valeur, une présentation utilisateur peut
toujours étre extraite et utilisée dans les applications client si cela a été spécifié lors
de la création.

La classe TreeBlock contient des méthodes permettant de :
* Extraire le noeud racine de 1’arborescence
* Extraire les définitions de terme de condition pour le bloc d’arborescence

e Extraire les définitions de terme d’action du bloc d’arborescence

Le noeud racine de 'arborescence est du type TreeNode et il représente le point de
départ de la navigation dans la table de décision. La classe TreeNode contient des
méthodes permettant de :

e Déterminer si un noeud est une clause OTHERWISE

* Extraire le noeud parent du noeud d’arborescence en cours (noeud de condition
ou d’action)

e Extraire le noeud racine de l'arborescence contenant le noeud d’arborescence en
cours

La classe ConditionNode contient des méthodes permettant de :
» Extraire les résultats de cas

* Extraire la définition de terme

* Extraire le cas OTHERWISE

* Extraire les modeles des conditions de valeur des résultats de cas pour le noeud
de condition

* Ajouter au noeud une valeur de condition basée sur un modele

* Supprimer une valeur de condition basée sur un modele

La classe CaseEdge contient des méthodes permettant de :

* Extraire la liste des modeles de valeur disponibles pour la définition de valeur
» Extraire le noeud enfant (noeud de condition ou d’action)

* Extraire l'instance de la définition de modele associée a la définition de valeur

e Extraire directement la définition de valeur sans extraire le modéle

Chapitre 3. Guides et techniques de programmation 93

* Définir la valeur de la définition pour utiliser une définition d’instance de
modele spécifique

La classe TreeConditionTermDefinition contient des méthodes permettant de :
* Extraire les modeles de définition de valeur définis pour le noeud de condition

* Extraire la présentation utilisateur du terme de condition

La classe TreeConditionDefinition contient des méthodes permettant de :
* Extraire la définition de terme du noeud de condition

* Extraire les définition de valeur de condition pour le noeud de condition, a
partir de tous les résultats de cas

* Extraire l'orientation (ligne ou colonne)

La classe TreeConditionValueDefinition contient des méthodes permettant de :
¢ Extraire l'expression d’instance de modéle spécifique définie pour la valeur

e Extraire 1'utilisateur

La classe Template contient des méthodes permettant de :
* Extraire I'ID systeme du modele

¢ Extraire le nom du modele

* Extraire les parameétres définis pour le modele

* Extraire la présentation du modele

La classe TreeConditionValueTemplate contient une méthode permettant de :
¢ Créer une nouvelle instance de valeur de condition de modele

La classe TemplateInstanceExpression contient des méthodes permettant de :
* Extraire les parametres de I'instance de modele

* Extraire le modele (TreeConditionValueTemplate dans le cas d'un résultat de cas
dans une table de décision) utilisé pour définir I'instance

94 Développement et déploiement

«Java Interfaces «Jgva Interfaces

3 TreaBlock) BusinassRuloChangeDeatactor
o COPYRIGHT : String o COPYRIGHT : String
@ getTreeConditionDefinitions |) @ hasChanges {)
@ getRootNode ()
@ getTreehctionTermDefinitions ()
«]ava Interfacas
*USER yigew 0 BusinessRuleValidateable
o COPYRIGHT : String
«Jave Interfaces @ validate {)
) Treelode
o COPYRIGHT : String LAV : "
@ getContziningTreeBlock SEE G REIE e
@ Esother'.n'iSngSe () v o C'E'E"E"_j'ge
@ gEtPEFEHtNDdE E :] “USEh = CGPYRIGHT ::Etrll'lg
@ gEtRDDtHDdE (:] L] gEtChlldNDdE | :]
@ getContainingCondiionMode ()
@ getValueDefingion ()
@ getUsePresentation [)
@ getValueTemplatelnstance ()
«Java I”_tﬂmE* @ setValueTemplatelnstance [)
O ActionNode @ getAvaiablevalueTemplates [)
o COPYRIGHT : Skring cUsan
getTreeActions () “ly5e
«Java Interfaces
—— (1] Tmefam%]ﬁgwfuemfmrtm
© conditionNode = CGPYRI@HT : 3tring
- CoPmT: S e
@ getCaseEdges () O
@ ramoveConditionValue [) «Java Interfaces
@ ad|:ICu:undrtlnn'-.-_'alueTnTh|5LeveI ()| *usex © TempiatelnstanceExpression
@ getTermmDefinition () -
. o COPYRIGHT : 5fring
@ getAvaikbleValue Templates () :
@ getOtherwiseCase [) ® getParametervalues |)
Pl @ getTemplate ()
@ getUserPresentation [)
«Java Interfaces @ getExpandedUserPresentation ()
O TreecCondition TermDelinition ¥USEw
o COPYRIGHT : String «Java Interfaces
@ getCondtionValueTemplates() 0 Template
@ getUserPresentation () o COPYRIGHT : String
wll5E @ getName ()
@ gekidds)
«lzva Interfaces @ getUserPresentation ()
O TreeConditionDefinition @ getDescription ()
o COPYRIGHT : String @ getDispayName ()
@ getCondtionTermDefinition {) ® getParameters ()
@ getCondtionValueDefnitions {) @ getParameter [)

@ getOrientation [)
«Java Interface»
3 TreeConditionValuaTemplate

o COPYRIGHT : String
@ create TemplateInstanceBxpression ()

Figure 16. Diagramme de classes de TreeNode et classes associées

Lorsqu'un nouveau résultat de cas est ajouté a un noeud de condition, il doit
utiliser un modele pour la définition de la valeur. Par exemple, si un nouveau cas
“bronze” doit étre ajouté pour la vérification de ‘statut’, le modele approprié

Chapitre 3. Guides et techniques de programmation 95

(TreeConditionValueTemplate) devra étre utilisé pour créer un nouveau
TemplatelnstanceExpression, en définissant la valeur de parametre sur “bronze”.

Lors de l'ajout d'un nouveau résultat de cas, un noeud de condition enfant lui est
également ajouté automatiquement. Ce noeud de condition enfant contient des
résultats de cas basés sur les définitions de résultats de cas définies pour les
noeuds de condition situés au méme niveau. Si des modéles ou des valeurs codées
en dur sont utilisés dans les résultats de cas, ils sont ensuite également utilisés
dans les résultats de cas du noeud de condition enfant. Ce noeud, ajouté
automatiquement, possede également ses propres noeuds de condition enfant,
créés automatiquement. Ces noeuds de condition enfant possedent a leur tour des
noeuds de condition enfant et ainsi de suite, jusqu’a ce que tous les niveaux de
noeuds de condition aient été recréés.

Outre les noeuds de condition, une table de décision et plus spécifiquement un
bloc d’arborescence contient également un niveau de noeuds d’action (ActionNode).
Les noeuds d’action sont des noeuds terminaux qui résident a la fin de la branche
de noeuds de condition et des résultats de cas. Si toutes les valeurs de condition
d’une ligne de résultats de cas ont pour résultat true, un noeud d’action est atteint.
Le noeud d’action possede au moins une action (TreeAction) définie. Cette action a
une définition de terme et une définition de valeur. A 1'instar des noeuds de
condition, la définition de terme (TreeActionTermDefinition) se situe a gauche de
I'expression et la définition de valeur (TemplateInstanceExpression) a droite. Par
exemple, pour les différents noeuds de condition procédant a une vérification du
statut, des actions peuvent définir la remise. Si la condition est (statut == “or”),
I'action peut étre (valeurRemise = 0.90). Pour 'action, “valeurRemise” est la
définition de terme, et “= 0.90” est la définition de valeur.

La définition de terme d’une action d’arborescence est partagée avec d’autres
actions d’arborescence dans d’autres noeuds d’action. Dans la mesure o1 chaque
branche de résultats de cas acceéde a une action, les mémes définitions de terme
sont utilisées. Toutefois, ces dernieres peuvent différer par 'action d’arborescence
et le noeud d’action. Par exemple, la valeurRemise avec le statut “or” peut étre
“0.90”, et “0.95” pour un statut “argent”.

Les noeuds d’action peuvent comporter plusieurs actions d’arborescence avec une
définition de terme distincte et une définition de valeur distincte. Par exemple, si
la remise est fixée pour un véhicule de location, outre la définition de
valeurRemise, vous pouvez également affecter un niveau de véhicule spécifique.
Une autre action d’arborescence peut étre créée pour définir le terme
“qualitéVéhicule” sur “haut de gamme” si le statut est “or”, et “valeurRemise” sur
“0.90”.

La définition de valeur dans une action d’arborescence peut étre créée a partir d'un
modele (TreeActionValueTemplate). La définition de modele contient une
expression (TemplateInstanceExpression) contenant des parametres.

En plus des parameétres, la définition de valeur entiére peut étre modifiée par une
nouvelle instance de définition de valeur, créée avec un autre modele défini pour
I’action d’arborescence.

Si une définition de valeur n’est pas créée a partir d'un modele, elle ne peut pas

étre modifiée. En ce qui concerne les applications client, la présentation utilisateur
peut étre utilisée dans l'affichage si cela a été précisé au moment de la création.

96 Développement et déploiement

Pour les définitions de terme des actions d’arborescence, si une présentation
utilisateur a été spécifiée, elle peut également étre utilisée par les applications
client.

Lorsqu’un nouveau résultat de cas est ajouté a un noeud de condition et que
différents noeuds de condition enfant sont créés, des noeuds d’action sont
également créés. Contrairement aux noeuds de condition enfant et aux résultats de
cas créés en fonction de la définition des résultats de cas déja définis pour ce
niveau, les noeuds d’action n’héritent pas automatiquement d’une conception
existante. Seuls les marques de réservation TreeActions vides sont créées dans le
noeud d’action. Un modele (TreeActionValueTemplate) doit étre utilisé pour
compléter la définition d’action en créant une TemplateInstanceExpression pour
au moins une définition de terme du noeud d’action. Avant que 'action
d’arborescence soit définie avec TemplateInstanceExpression, elle possede des
valeurs NULL spécifiées pour la valeur de présentation utilisateur et la valeur
d’instance de modele.

Lors de la création d’une nouvelle condition ayant pour résultat de nouveaux
ActionNodes, les noeuds d’action sont ajoutés a droite des actions existantes pour
le noeud de condition parent immédiat. Par exemple, si un statut “rubis” est ajouté
a la table de décision et est censé disposer d'une remise spécifique, la condition de
vérification du statut est ajoutée a droite de “or”, “argent” et “bronze”. Le noeud
d’action de la remise associée a “rubis” est ajouté a droite des noeuds d’action
correspondant aux résultats de cas “or”, “argent” et “bronze” .

Lors de la définition de nouvelles actions d’arborescence pour des noeuds d’action,
un algorithme basé sur le noeud d’action de droite du dernier résultat de cas
renvoie le noeud d’action avec une action d’arborescence vide. Vous pouvez
également vérifier si I'action d’arborescence possede des valeurs NULL pour la
valeur de présentation utilisateur et la valeur d’instance de modeéle. Une fois
I'action d’arborescence obtenue, elle peut étre définie avec I'instance adéquate de
TreeActionValueTemplate.

Moeud Moeud
de |'action de |'action
Action de l'arborescence Action de 'arborescence
Deéfinition Definition Definition Definition
de terme de valeur de terme de valeur
Action de l'arborescence Action de I'arborescence
Dé&finition Definition Definition Definition
de terme de valeur de terme de valeur

La classe ActionNode contient une méthode permettant de :

e Extraire la liste des actions d’arborescences définies

Chapitre 3. Guides et techniques de programmation 97

La classe TreeAction contient des méthodes permettant de :

* Extraire la liste des modeles de valeurs disponibles, définies pour 1’action
d’arborescence

* Extraire la définition de terme

* Extraire l'instance de modele de valeur définie pour l'action d’arborescence

* Extraire la présentation utilisateur de la valeur si un modéle de valeur n’a pas
été utilisé

* Vérifier si I'action est un appel de service SCA (méthode isValueNotApplicable)

* Remplacer l'instance de modéle de valeur par une nouvelle instance

La classe TreeActionTermDefinition contient des méthodes permettant de :
 Extraire la présentation utilisateur pour la définition de valeur de terme
* Extraire la liste des modeles de valeurs disponibles pour 1’action d’arborescence
* Vérifier si I'action est un appel de service SCA (méthode isTermNotApplicable)

La classe Template contient des méthodes permettant de :
* Extraire I'ID systéme du modele

* Extraire le nom du modéle

* Extraire les parameétres définis pour le modele

* Extraire la présentation du modele

La classe TreeActionValueTemplate contient une méthode permettant de :

* Créer une nouvelle instance de modele de valeur a partir de la définition de
modeéle

La classe TemplateInstanceExpression contient des méthodes permettant de :
* Extraire les parameétres de 'instance de modéle

* Extraire le modele (TreeActionValueTemplate dans le cas d'une action
d’arborescence dans une table de décision) utilisé pour définir l'instance

98 Développement et déploiement

=

«Java Interfaces
i TreeAction

COPYRIGHT : 5fring
get TermDefinition ()
isValueMotApplicable [)
getValua Templatelnstance |)
satWalue Templatelnstance () 1) Hu&gigjgﬁgﬁﬁateabk
getAvaiableValue Templates [) - —
getValusllserPrasantation () ; E;::|E;I:REI?-:|IT : String

«|5en e

«Java Interfaces
€3 BusinessRuleChangeDetector

o COPYRIGHT : Sfring
@ hasChanges [)

s Ce@OBE®OCO

«]ava Interfaces
€ TreeActionTermDefinition
o COPYRIGHT : String
@ getlUserPresentation [)
@ get\ValueTemplates ()
@ isTermMotapolicable ()

«Java Interface»
0 TemplatelnstanceExpression
o COPYRIGHT : Siring
@ getParametervalues ()
@ getTemplte ()
@ getUserPresentztion [)
@ getExpandedUserPresentation [)
“lsen

*LUS5E%

«lava Interface»
6 TreeActionValueTempiate
- «Java Interfaces
o COPYRIGHT : String & Template
@ createTemplztelnstanceBExpression [) COPYRIGHT : 5tring

getMame ()

getId [}
getlserPresantation {)
getDescription ()
getDiplayMame [)
getPzrameters [)
getPzrameter [)

e eeeo

Figure 17. Diagramme de classes de TreeAction et classes associées

La définition d’'une regle init pour une table de décision suit la méme structure
que celle d'un ensemble de regles. La regle init peut étre définie avec un modele
(DecisionTableRuleTemplate).

Si une regle init n’a pas été créée au moment de la création, elle ne peut pas étre
ajoutée une fois la regle déployée.

La classe Rule contient des méthodes permettant de :
* Extraire le nom de la regle
 Extraire la présentation utilisateur pour la regle

* Extraire la présentation utilisateur pour la regle avec les différents parameétres
définis de la regle

La classe DecisionTableRule contient une méthode permettant de :

* Extraire le bloc d’arborescence contenant la regle init

Chapitre 3. Guides et techniques de programmation

99

La classe DecisionTableRuleTemplate contient une méthode permettant de :
* Extraire la table de décision contenant le modéle

«Java Interfaces «Java Interfaces
€3 DecisionTable) BusinessRuleChangeDetector
o COPYRIGHT : String o COPYRIGHT : 5tring
@ getInitRule () @ hasChanges ()
@ getInitTemplate ()
@ getTreeBlock () «Java Interfaces
9 Rule
«Java Intarfacas ¢ COPYRIGHT : String
3 RuleTemplate @ getMame ()
o COPYRIGHT : String | “USe” @ getDisplayMame ()
@ setDsplyMame []
wlisew @ isDisplayMameSynchronized Tolzme ()
Use | @ setDisplyMamelsSynchronized ToMame [)
@ getDescription ()
sJava Interfaces @ setDescription ()
3 DecisionTableRuleTemplate @ getUserPresentation [)
o COPYRIGHT : String @ getExpandedUserPresentation ()

@ getParentDecisionTable ()
«Java Intarfaces

€3 BusinessRuleValidateable
<Java Interfaces -
€9 DecisionTableRule o COPYRIGHT : Sfring
@ wvalidate)

o COPYRIGHT : 5Iring
@ getParentTreeBlock ()

«Java Interfaces
0 PecisionTableTemplatelnstanceRule

@ COPYRIGHT : String
@ getParentTreeBlock ()

Figure 18. Diagramme de classes de DecisionTableRule et classes associées

Concepts associés

Modele de programmation|

Les regles métier de WebSphere Business Integration sont créées a 1’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de regles.
Tous trois partagent le méme modele d’artefacts de régles métier.

Modeéles et parametres

Les modeles inclus dans les ensembles de regles et dans les tables de décision
prennent comme base une définition commune. Les modeles possédent des
parametres et une présentation de l'utilisateur. Les valeurs de parametres inclus
dans les modeles sont définis pour permettre d’apporter des modifications a la
régle une fois que celle-ci a été déployée.

La valeur de présentation utilisateur fournit une valeur de chaine qui peut étre
utilisée pour l'affichage de la regle et de différents parametres de fagon conviviale.
Cette présentation sous forme de chaine possede des marques de réservation qui
permettent le remplacement des différentes valeurs de parametres, ainsi que leur
affichage. Ces marques de réservation figurent au format (<parametre index>}. Par
exemple, si la chalne de présentation de la regle init est “Base discount is {0} %" (la
remise de base s’éleve a x), la marque de réservation {0} doit étre remplacée par la

100 Développement et déploiement

valeur de parametre correspondante. La chaine de présentation ne peut pas étre
modifiée pour la regle ou la définition de modele. Toutefois, les valeurs de marque
de réservation peuvent étre modifiées avec les valeurs de parametre figurant dans
une application client, selon la définition figurant dans le modele. Les différents
modeles incluent une méthode de simplification (getExpandedUserPresentation)
qui renvoie une chaine contenant toutes les valeurs de parametre, correctement
placées dans la chaine.

Toutes les valeurs de parametres possedent un type de données spécifique ;
toutefois, lors de 1’extraction et de la définition d’une valeur de parameétre, un objet
string est utilisé. La valeur de parametre peut étre considérée comme une chaine
lors du remplacement de la valeur dans la présentation utilisateur, ou encore lors
de l'affectation d’une nouvelle valeur au parametre. Le parametre est converti dans
le type de données approprié au moment de I'exécution, afin d’émettre la regle
correctement. Au cours de la validation, la valeur de parameétre est comparée au
type de données afin de vérifier qu’il est correct. Par exemple, si un parametre est
de type boolean et porte la valeur “T”, la validation ne reconnait pas cette valeur
et renvoie un message d’erreur.

Dans la définition de modele, les valeurs de parametres peuvent étre limitées par
des contraintes. Ces contraintes peuvent étre définies sous forme de plage ou
d’énumération. Les contraintes du parametre seront mises en oeuvre une fois la
régle validée. Si aucun modele n’a été utilisé pour définir la valeur, seule une
présentation utilisateur sera disponible. Une définition de valeur ne peut pas
utiliser a la fois un modele et une présentation utilisateur. En cas d’utilisation d’un
modele, la présentation issue de la définition de modele est la seule présentation
disponible.

La classe Template fournit les méthodes qui permettent d’effectuer les opérations
suivantes :

e Extraction de I'ID de modele
e Extraction du nom
* Extraction des parametres

* Extraction de la présentation de l'utilisateur

La classe Parameter fournit les méthodes qui permettent d’effectuer les opérations
suivantes :

* Extraction du nom du parametre

 Extraction du type de données du parametre

* Extraction de la contrainte associée au parametre
* Extraction du modeéle définissant le parametre

 Création d’une valeur de parametre

La classe ParameterValue fournit les méthodes qui permettent d’effectuer les
opérations suivantes :

 Extraction du nom du parametre
* Extraction de la valeur du parametre
* Définition de la valeur du parametre

Chapitre 3. Guides et techniques de programmation 101

«Java Interfaces
€9 remplate
COPYRIGHT : String
getMame ()
getId ()
getUserPrasentation () «Java Interfaces
getDescription () €9 Constraint

getDisplayMame () o COPYRIGHT : String
getPararmeters [)

getPararmeter {)

dedOeoRPO®@RPOO

s
RS

«lava Interfaces

€3 Parameter
COPYRIGHT : String
getiame ()
getDeccription [)
getDisplayMame [)
getDatz Type []
getConstraint ([)
getDefining Template ()
@ createParameterValue ()

de0eR R0

wpsen *USEF

=Java Interfaces «]ava Interfacas
€ ParameterValue € BusinessRufeValidateable
o COPYRIGHT : String o COPYRIGHT : String
@ getParameter [) @ validate [)
@ getVale ()
@ setValue ()

Figure 19. Diagramme de classes de Template et de Parameter, et classes associées

Concepts associés

Modele de programmation|

Les regles métier de WebSphere Business Integration sont créées a 1’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de regles.
Tous trois partagent le méme modele d’artefacts de régles métier.

Validation

Parmi les objets principaux, nombreux sont ceux qui possédent une méthode de
validation ; elle permet de vérifier si les artefacts sont corrects et complets avant
leur publication.

La validation qui a lieu au moment de 'apport de modifications via les classes

d’API ne représente qu'un sous-ensemble de la validation globale effectuée lors de
I'exécution de la commande serviceDeploy ou au moment de 1’édition des artefacts

102 Développement et déploiement

dans WebSphere Integration Developer. Cela est dfi aux contraintes déja associées
au groupe de régles métier (limitation des aspects modifiables au moment de
I'exécution). L'utilisateur des classes peut valider la table de sélection des groupes
de régles métier, la table des ensembles de regles ou la table de décision chaque
fois que nécessaire (le composant de groupes de regles lui-méme n’est pas
modifiable au moment de I'exécution). Lorsqu'un groupe de regles métier est
publié, la table de sélection de groupes de regles, la table d’ensembles de régles et
la table de décision sont validées avant leur publication dans le référentiel.

Si les artefacts sont incorrects, une exception ValidationException est générée,
accompagnée de la liste des probléemes de validation rencontrés. Les différents
problémes de validation rencontrés sont documentés dans la section consacrée au
traitement des exceptions.

Concepts associés

Modeéle de programmation|

Les régles métier de WebSphere Business Integration sont créées a 1'aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de regles.
Tous trois partagent le méme modele d’artefacts de regles métier.

Suivi des modifications
Pour tous les objets, vous pouvez utiliser une méthode hasChanges afin de vérifier
si des modifications ont été apportées a 1'objet et aux objets qu’il contient.

Cette méthode peut étre utilisée pour vérifier les modifications et pour publier un
groupe de regles métier (uniquement si certains de ses éléments ont été modifiés).

Concepts associés

Modele de programmation|

Les regles métier de WebSphere Business Integration sont créées a 1'aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de regles.
Tous trois partagent le méme modeéle d’artefacts de regles métier.

BusinessRuleManager
La classe BusinessRuleManager est la principale classe d’utilisation des groupes de
régles, des ensembles de regles et des tables de décision.

La classe BusinessRuleManager comporte des méthodes permettant d’extraire les
groupes de régles métier par nom, par espace de nom cible ou par propriétés
personnalisées. Elle contient également une méthode de publication des
modifications apportées aux groupes de regles métier, aux ensembles de regles ou
aux tables de décision.

La classe BusinessRuleManager contient des méthodes permettant de :

* Extraire tous les groupes de regles métier

* Extraire les groupes de regles métier d’'un espace de nom cible spécifique

 Extraire les groupes de regles métier d’un nom spécifique

* Extraire les groupes de regles métier d'un espace de nom cible et d'un nom
spécifiques

* Extraire les groupes de regles métier contenant une propriété spécifique

 Extraire les groupes de regles métier contenant des propriétés spécifiques

* Publier des groupes de regles métier

Chapitre 3. Guides et techniques de programmation 103

«Java Package»
£ com.ibm.wbiserver.brules. mgmt

«Java Class»
{9 BusinessRuleManager
getBusinessRuleGroups ()
getBRGSBYTNS ()
getBRGsByName ()
getBRGsBY THNSAndMame [)
getBRGsBySingleProperty ()
getBRGsByProperties ()

publish ()

I S

wLlSE

Figure 20. Diagramme de classes de BusinessRuleManager et module

Requéte du composant de groupe de régles

Le composant de groupe de regles peut posséder des propriétés définies par
l'utilisateur (paires nom/valeur) permettant d’affiner la liste des groupes de regles
métier renvoyés par la classe. Les zones utilisables dans la requéte et dans toute
combinaison sont les suivantes :

* Espace de nom cible du composant de groupe de regles métier
¢ Nom du composant de groupe de regles métier
* Nom de propriété

* Valeur de propriété

Chaque nom de propriété ne peut étre défini qu'une seule fois pour chaque
composant de groupe de regles métier.

La fonction de requéte prise en charge par cette classe représente un petit
sous-ensemble du langage SQL entier. L'utilisateur ne fournit pas l'instruction SQL
mais les valeurs des parametres d'une propriété unique ou d’une structure
arborescente contenant les informations liées a une requéte a propriétés multiples
sous forme de noeuds. Des noeuds d’opérateur logique et des noeuds de requéte
de propriété implémentent l'interface QueryNode. Les noeuds d’opérateur logique
spécifient les opérateurs booléens (AND, OR, NOT). Ces derniers sont créés via
QueryNodeFactory. Dans le cadre de la création de ces noeuds d’opérateur logique,
les cotés gauche et droit de 'opérateur doivent étre spécifiés avec des classes
QueryNode supplémentaires. Ces noeuds peuvent étre soit un noeud de requéte de
propriété, soit un autre noeud d’opérateur logique. Si un noeud de requéte de
propriété est transmis, il contient le nom, la valeur et I'opérateur (EQUAL (==),

104 Développement et déploiement

NOT_EQUAL (!=), LIKE ou NOTLIKE) de propriété. L’ensemble de l'interface
QueryNode est analysée par la classe et une requéte est effectuée sur les données
sous-jacentes de la mémoire persistante.

Les recherches génériques sont prises en charge lors de l'utilisation des opérateurs
LIKE et NOTLIKE. Les caractéres “%’ et *_" sont pris en charge dans les recherches
génériques. Le caractere ‘%’ est utilisé lorsqu'un nombre infini de caracteres sont
inconnus ou ne doivent pas étre pris en compte dans la recherche. Par exemple, si
une recherche doit étre lancée pour tous les groupes de régles métier possédant
une propriété avec un nom de Service et une valeur commengant par “Nord”, la
valeur doit étre indiquée comme suit : “Nord%”. Autre exemple, supposons que
tous les services dont la valeur se termine par “Région” sont souhaités. La valeur
sera alors “%Région”. Le caractere ‘%’ peut également étre utilisé au milieu d'une
chaine. Par exemple, dans le cas de groupes de regles métier dont les propriétés
ont les valeurs “RégionCentreNord”, “RégionEstNord” et “RégionOuestNord”,
vous pouvez spécifier la valeur “Région%Nord”.

Le caractere “_’ est utilisé lorsqu’un seul caractére est inconnu ou qu’il ne doit pas
étre pris en compte dans la recherche. Par exemple, si une recherche porte sur tous
les groupes de regles métier pour lesquels les propriétés Service ont les valeurs
“SrvlNord”, “Srv2Nord”, “Srv3Nord” et “Srv4Nord”, la valeur “Srv_Nord” peut
étre spécifiée, et les 4 groupes de régles métier comportant ces propriétés sont
renvoyés. Le caractere “_’ peut étre utilisé plusieurs fois dans une valeur de
recherche, et chaque instance indique un caractere unique a ignorer. Le caractere ‘_
peut étre utilisé au début ou a la fin d’'une valeur. Par exemple, si deux caracteres
doivent étre ignorés dans une valeur, vous pouvez utiliser deux ‘_" comme dans
“Sve__ud”.

7

Pour pouvoir traiter ‘%’ et _’ en tant que caracteres littéraux plutét qu’en tant que
caracteres génériques, spécifiez le caractere d’échappement ‘\” avant ‘%’ ou ‘_’". Par
exemple, si le nom de propriété est “%Remise”, pour pouvoir 'utiliser dans une
requéte, spécifiez “\%Remise”. Si le caractere “\” doit étre utilisé en tant que
caractere littéral, un autre caractere d’échappement “\” doit étre utilisé, comme
dans “Commandes\\Client”. Si un seul caractére “\” est placé, sans étre suivi de
“%’, ’_" ou “\’, une exception Illegal ArgumentException est émise.

Les caracteres génériques peuvent étre utilisés uniquement du coté gauche (valeur
de propriété). IIs ne peuvent pas étre utilisés dans un nom de propriété.

Au cours de recherches portant sur la valeur d'une propriété spécifique ou lors
d’une recherche de valeurs, si aucune propriété n’est renvoyée, l'artefact est ignoré
de la recherche. Par exemple, si parmi 3 groupes de régles métier (A, B et C),
seulement deux (A et B) ont une propriété intitulée “Service” avec des valeurs
différentes (respectivement “Comptabilité” et “Expédition”), et qu'une recherche
est lancée sur tous les groupes de regles métier ne comportant pas de propriété
“Service” définie sur “Comptabilité”, seul le groupe de regles métier dont la
propriété “Service” est définie, mais n’équivaut pas a “Comptabilité” (groupe de
régles métier B), est renvoyé. Le groupe de régles métier (C), qui ne comporte pas
de propriété “Service”, n’est pas renvoyé puisque cette propriété n’est pas définie.

En cas d’utilisation de propriétés de recherche, deux propriétés spéciales intitulées
IBMSystemName et IBMSystemTnrgetNameSpace servent aux recherches basées sur le
nom et I'espace de nom d’un artefact. Ces valeurs peuvent également étre extraites
a 'aide des méthodes getName et getTargetNameSpace.

La classe prend en charge les méthodes de requéte suivantes :

Chapitre 3. Guides et techniques de programmation 105

List getBRGsByTNS (string tNSName, Operator op, int skip, int threshold)
List getBRGByName (string Name, Operator op, int skip, int threshold)
List getBRGsByTNSAndName (string tNSName, Operator, tNSOp, string

name, Operator nameOp, int skip, int threshold)

List getBRGsBySingleProperty (string propertyName, string propertyValue,
Operator op, int skip, int threshold)

List getBRGsByProperties (QueryNode queryTree, int skip, int threshold)

Les parametres ‘skip” et ‘threshold” permettent a 1'utilisateur d’extraire une liste
partielle de résultats jusqu’au seuil spécifié. La valeur zéro pour ces deux
parametres renvoie la liste entiére de résultats. Le curseur n’est pas maintenu dans
I'ensemble de résultats a partir d'un appel de requéte. Si une valeur de saut est
utilisée, il est possible que des ajouts ou des suppressions aient été apportés a
I'ensemble de résultats et qu'une demande ultérieure renvoie alors des groupes de
régles métier situés dans un précédant ensemble de résultats.

«Java Class»
) QueryNodeFactory

o COPYRIGHT = 5fring

o PROPERTY_MAME__TARGET MAME SPACE : String
o PROPERTY_MNAME__MAME : String

o PROPERTY_MNAME__DISPLAY MAME : String

o PROPERTY _NAME _VERSION : 5tring

@ createPropertyQueryiode [)

@ createPropertylsDefinedQueryMode ()

@ createAndiode (

@ createAndiode (LIS p—

@ createAndiode («Java Interface=

@ createOriode [) 1) mfwﬂenﬂode

@ createOriode (] o COPYRIGHT : 5tring

@ crzateOrlode () @ getPropertylame ()

@ createllotNode | ® gerQuerydperator |)
@ getProperyValue ()

«Se» «lsem USSR
«Java Interfaces «Jave Interfaces «Java Interfaces
O Wothode =ise») Andilode 0 PropertylsDefinedQuaryNode
o COPYRIGHT : String o COPYRIGHT : String @ COPYRIGHT : String

TSRS getPropertylame ()

«Java Interface»
OrNode

o COPYRIGHT : Strin «Java Interfacas» «Java Interface»
© logicaloperatorfode O QueryNode
o COPYRIGHT : Strin o COPYRIGHT : String

@ getSubMNodes [)

Figure 21. Diagramme de classes de QueryNodeFactory et classes associées

Les noeuds de I’arborescence permettent a 1'utilisateur de spécifier une expression
de recherche a 'aide des opérateurs booléens, des caracteres génériques (% et
échappement) et de la paire propriété/valeur. L'opérateur est valide uniquement
pour les valeurs, I'opérateur de la propriété est toujours représenté par les signes
égal (==).

106 Développement et déploiement

Publication

La publication des modifications de régles métier est réalisée au niveau du
composant de groupe de regles métier. L'utilisateur peut publier 1..n composants
de groupe de régles métier. Avant 1’exécution d’une opération de publication, une
action de validation est réalisée sur le groupe de regles métier et sur les différents
objets présents dans ce groupe (table de sélection d’opération, ensembles de regles,
tables de décision, etc). Chaque demande de publication survient dans une
transaction unique. En cas d’exception au cours de la validation ou de la
publication de la base de données, la transaction est annulée et aucune
modification de groupe de regles métier n’est publiée dans le référentiel. Cela
permet aux modifications dépendantes les unes des autres dans un composant
unique (par exemple, la table de sélection d’opération et un ensemble de régles) ou
aux dépendances entre des composants de survenir au sein d'une opération
atomique.

Au moment de la publication, une vérification est réalisée pour veiller a ce que les
éléments a publier n'aient pas été modifiés par une autre transaction. Pour réduire
les risques de conflit, la méthode de publication offre a 1'utilisateur la possibilité de
publier tous les artefacts, qu'ils soient modifiés ou non, ou uniquement les artefacts
modifiés dans le groupe de regles métier. Le comportement par défaut instaure la
publication de tous les artefacts. Si I'option est définie sur la publication de tous
les artefacts et qu'une autre transaction a modifié les artefacts entre-temps, une
exception ChangeConflictException est émise. Pour réduire le risque de conflit,
spécifiez la publication des artefacts modifiés uniquement. En procédant ainsi, il
est possible que deux utilisateurs apportent des modifications au référentiel pour
deux artefacts différents dans un groupe de regles métier (par exemple, deux
ensembles de regles), ce qui peut insérer des modifications incompatibles dans le
groupe de regles métier. En raison de 'éventualité de cette situation, cette option
doit étre utilisée avec précaution.

Concepts associés

Modele de programmation|

Les regles métier de WebSphere Business Integration sont créées a 1'aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de regles.
Tous trois partagent le méme modele d’artefacts de regles métier.

Traitement des exceptions

Des exceptions peuvent étre générées lors d'un appel de validation pour un
artefact ou lors de sa publication. En cas d’erreur de validation, I'exception
ValidationException est générée ; elle s’Taccompagne de la liste des problémes
rencontrés. Si un probleme survient au cours de la publication car une autre
transaction publie les mémes artefacts, I'exception ChangeConflictException est
générée. A chaque détection de la modification d’un artefact par une autre
transaction, ’exception ChangeConflictException est générée.

Par ailleurs, une exception SystemPropertyNotChangeableException est générée en
cas de tentative de modification d'une propriété qui duplique un nom de propriété

systéme. En effet, les propriétés systeme ne peuvent pas étre modifiées.

Une exception ChangesNotAllowedException est générée en cas de tentative
d’exécution de I'opération set sur un artefact pendant sa publication.

Chapitre 3. Guides et techniques de programmation 107

«lava Classs
() BusinessRuleManagementException

o COPYRIGHT : String

& serizlVersionlJID @ long

@ BusinessRuleManagementException [)
@ BusinessRuleManagementException [)
]
@

BusinessRuleManagementException [)
BusinessRuleManagementException [)

«Java Class» «Java Class#
{3 validationException {5 ChangeConflictException
o COPYRIGHT : String o COPYRIGHT : String
o sgrialVersionUID : long o serialVersionlID : long
@ Validation Exception [) @ ChangeConfictException ()
& getProblems () @ ChangeConfictException [)

@ ChangeConfictException ()
@ ChangeConfictException [)

Figure 22. Diagramme de classes de BusinessRuleManagementException et classes

associées

Problémes liés aux groupes de régles métier

Ces problémes peuvent se poser lorsqu’un groupe de regles métier est validé ou
qu'une tentative de publication de ce groupe de regles métier a lieu alors qu'une
partie de ce groupe est incorrecte.

Tableau 4. Problemes liés aux groupes de regles métier

Exception

Description

ProblemBusRuleNotInAvailTargetList

Ce probléme se pose lorsqu’une régle est spécifiée en tant que
régle métier par défaut pour une table de sélection d’opération,
mais que l'artefact correspondant a cette régle ne figure pas dans
la liste des cibles disponibles pour cette opération. Pour éviter ce
probleme, spécifiez une regle métier valide parmi la liste des
cibles disponibles pour cette opération.

ProblemDuplicatePropertyName

Ce probléme se pose en cas de tentative de création d'une
propriété qui représente le double d'une propriété définie par
l'utilisateur pour un groupe de regles métier spécifique. Pour
éviter ce probleme, vous devez utiliser un nom unique de
propriété.

ProblemOperationContainsNoTargets

Ce probléme se pose lorsqu’une opération n’est pas associée a
une destination de regle par défaut ou a un ensemble de
destinations de regle planifié. Pour éviter ce probleme, vous
devez définir I'opération en spécifiant au minimum une
destination de régle en tant que valeur par défaut ou en tant que
période planifiée.

108 Développement et déploiement

Tableau 4. Problémes liés aux groupes de régles métier (suite)

Exception

Description

ProblemOverlappingRanges

Ce probleme se pose lorsque la date de début ou la date de fin
d’un enregistrement de sélection d’opération chevauche la plage
correspondante d'un autre enregistrement de sélection
d’opération. Ce chevauchement de plages de dates empéche la
localisation de la destination de regle a appeler. Pour éviter ce
probléme, vous devez vérifier la date de début ou la date de fin
des autres enregistrements de sélection d’opération afin de vous
assurer qu’il n’existe pas de chevauchement.

ProblemStartDateAfterEndDate

Ce probléme se pose lorsque la date de début d'un
enregistrement de sélection d’opération est ultérieure a la date de
fin de cet enregistrement. Ce probleme peut se poser pour tous
les enregistrements de sélection d’opération, a I’exception de
I'enregistrement par défaut, qui ne possede ni date de début, ni
date de fin. Pour éviter ce probleme, vous devez spécifier une
date de début apres avoir spécifié la date de fin d'un
enregistrement de sélection d’opération.

ProblemTargetBusRuleNotSet

Ce probleme se pose lorsque la regle spécifiée dans un
enregistrement de sélection d’opération ne figure pas dans la liste
des regles cibles disponibles. Pour éviter ce probleme, vous devez
spécifier une régle figurant dans la liste des cibles disponibles.

ProblemTNSAndNameAlreadyInUse

Ce probleme se pose lorsqu’une nouvelle regle métier est créée et
qu’elle porte un nom et un espace de nom cible déja utilisé par
un ensemble de regles ou par une table de décision. Dans ce cas,
un controle est effectué au niveau de tous les ensembles de regles
et de toutes les tables de décisions associés au groupe de regles
métier en cours d’utilisation, et au niveau de tous les artefacts de
regles stockés dans le référentiel. Pour éviter ce probleme, vous
devez utiliser un autre nom ou espace de nom cible.

ProblemWrongOperationForOpSelectionRecord

Ce probléme se pose lorsqu’un nouvel enregistrement de sélection
d’opération est ajouté a une liste d’enregistrements de sélection
d’opération et que le fonctionnement du nouvel enregistrement ne
correspond pas a celui des autres enregistrements de la liste. Pour
éviter ce probleme, vous devez créer une nouvelle opération a
I'aide de la méthodenewOperationSelectionRecord au niveau de
'objet approprié de la liste des enregistrement de sélection
d’opération.

Problémes liés aux ensembles de régles et aux tables de décisions

Tableau 5. Problémes lieés aux ensembles de regles et aux tables de décisions

Exception

Description

ProblemInvalidBooleanValue

Ce probleme se pose lorsqu’un parametre de modele de regle
figurant dans un ensemble de regles ou qu'une valeur d’action ou
de condition figurant dans une table de décision recoit une valeur
autre que "true” ou "false” alors qu’il s’agit d'un parametre de
type booléen. Par exemple, il peut s’agir d’une valeur "T" ou "F".
Pour éviter ce probleme, vous devez utiliser les valeurs "true” ou
"false” lorsque vous recourez a un parametre de type booléen.

ProblemParmNotDefinedInTemplate

Ce probléeme se pose lorsqu’une valeur est spécifiée pour un
parametre de modele et que ce parametre n’est pas défini dans la
liste des parametres valides pour ce modéle. Les parametres
doivent étre vérifiés avant la configuration du modele. Cela peut
se produire pour les modeéles RuleTemplate,
TreeActionValueTemplate, ou encore TreeConditionValueTemplate.

Chapitre 3. Guides et techniques de programmation 109

Tableau 5. Problémes liés aux ensembles de regles et aux tables de décisions (suite)

Exception

Description

ProblemParmValueListContainsUnexpectedValue

Ce probleme se pose lorsque des parameétres valides sont transmis
avec un modele, mais que le nombre de parametres soit trop
élevé. Dans ce cas, le nombre de parametres doit étre diminué.
Cela peut se produire pour les modéles RuleTemplate,
TreeActionValueTemplate, ou encore TreeConditionValueTemplate.

ProblemRuleBlockContainsNoRules

Ce probléme se pose lorsque toutes les regles d"un bloc
d’ensemble de régles sont supprimées et qu'une tentative de
validation ou de publication de cet ensemble de régles a lieu.
Dans ce cas, le bloc de régles de cet ensemble doit comporter au
minimum une regle.

ProblemTemplateNotAssociatedWithRuleSet

Ce probléeme se pose en cas de tentative d’ajout d’une régle a un
ensemble de regles, alors que cette regle a été créée avec un
modele non défini au sein de cet ensemble. Pour éviter ce
probleme, lorsque vous créez une nouvelle régle, vous devez
utiliser un modele défini au sein de 1’ensemble de régles
correspondant.

ProblemRuleNameAlreadyInUse

Ce probleme se pose en cas de tentative d’ajout d’une regle a un
bloc d’ensemble de regles et que cette regle porte le méme nom
qu’une regle déja existante au sein de ce bloc de regles. Pour
éviter ce probleme, vous devez vérifier les noms des regles avant
I'ajout de nouvelles regles.

ProblemTemplateParameterNotSpecified

Ce probleme se pose lorsqu'un parametre est absent lors d'une
mise a jour de modele pour 1'une des regles d’'un ensemble de
regles ou d’une valeur d’action ou de condition d’une table de
décision. Pour éviter ce probléme, vous devez spécifier tous les
parameétres d'un modele.

ProblemTypeConversionError

Ce probléme se pose lorsqu’un parametre de modele ne peut pas
étre converti dans le type approprié ; tous les parametres sont
considérés comme des objets String, puis convertis dans le type
du parametre (boolean, byte, short, int, long, float et double). Si la
chaine de la valeur de parameétre ne peut pas étre convertie dans
le type spécifié pour ce parametre, cette erreur se produit. Pour
éviter ce probleme, vous devez spécifier une chaine pouvant étre
convertie dans le type du parametre (boolean, byte, short, int,
long, float et double).

ProblemValueViolatesParmConstraints

Ce probleme se pose lorsqu’un parametre ne se trouve pas dans
I’énumération ou dans la plage de valeurs définie dans le modele
de ce parametre. Ce probléme peut concerner les parametres
limités au niveau des énumérations ou des plages (modeles de
regles d’un ensemble de régles ou valeur d’action ou de condition
d’une table de décision). Pour éviter ce probleme, vous devez
utiliser une valeur contenue dans la plage d’énumération.

ProblemInvalid ActionValueTemplate

Ce probléme se pose en cas de tentative de définition d'une
instance de modele dans une opération de I’arborescence, mais
que le modeéle correspondant n’est pas disponible pour cette
opération. Pour éviter ce probleme, vous devez utiliser le modele
approprié lors de la création d'une définition de valeur pour une
opération de 1’arborescence.

ProblemInvalidConditionValueTemplate

Ce probleme se pose en cas de tentative de définition d'une
instance de modele pour une condition de cas, alors que le
modele correspondant n’est pas disponible pour ce cas. Pour
éviter ce probleme, utilisez le modele approprié lors de la création
d’une définition de condition pour un cas spécifique.

110 Développement et déploiement

Tableau 5. Problémes liés aux ensembles de regles et aux tables de décisions (suite)

Exception

Description

ProblemTreeActionIsNull Ce probleme se pose lorsqu’une valeur de condition est créée et

qu’aucune action n’a pas été définie avec une instance de modele.
Dans ce cas, vous devez utiliser un modéle provenant de
ActionNode, créer une nouvelle instance de modele et la définir
dans la liste TreeActions.

Concepts associés

Modéle de programmation|

Les regles métier de WebSphere Business Integration sont créées a 1'aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de regles.
Tous trois partagent le méme modele d’artefacts de regles métier.

Autorisation
Les classes ne prennent en charge aucun niveau d’autorisation. L’application client
utilisant les classes doit ajouter sa propre méthode d’autorisation.

Concepts associés

Modéle de programmation|

Les regles métier de WebSphere Business Integration sont créées a 1’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de regles.
Tous trois partagent le méme modele d’artefacts de regles métier.

Exemples

Des exemples illustrent 1'utilisation possible des différentes classes pour I'extraction
des groupes de regles métier et pour I'apport de modifications a des ensembles de
régles et a des tables de décisions. Ces exemples sont regroupés au sein d'un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

IIs contiennent plusieurs projets.

¢ BRMgmtExamples — Projet de module contenant des artefacts de regles métier
utilisés dans les différents exemples.

* BRMgmt - Projet Java dont les exemples figurent dans le package
com.ibm.websphere.sample.brules. mgmt.

* BRMgmtDriverWeb — Projet Web avec interface pour 'exécution des exemples.

Les exemples sont également fournis sous forme de fichier EAR
(BRMgmtExamples.ear) qui peuvent étre émis apres leur installation dans
WebSphere Process Server. Une interface Web est fournie avec les exemples. Cette
interface est volontairement simple, car les exemples concernent 'utilisation des
classes pour l'extraction d’artefacts, I’apport de modifications et la publication de
celles-ci. Elle n’est pas destinée a étre une interface Web hautes performances. Les
classes peuvent cependant étre facilement utilisées pour I'élaboration d’interfaces
Web robustes, ou encore dans d’autres applications Java pour la modification des
régles métier.

Remarque : Vous pouvez télécharger les fichiers d’échange de projet (.zip) et EAR
des exemples a partir de la page [Business Rule Management Programming Guide]
ffor WebSphere Process Server V6.1{

Chapitre 3. Guides et techniques de programmation 111

http://www.ibm.com/support/docview.wss?rs=2307&uid=swg27011687
http://www.ibm.com/support/docview.wss?rs=2307&uid=swg27011687

L’application d’exemples peut étre installée surWebSphere Process Server v6.1 ; la
page d’index est accessible a 'adresse suivante :

http:/ /<nom_hote>:<port>/BRMgmtDriverWeb /

Par exemple : http:/ /localhost:9080/ BRMgmtDriverWeb /

Au fur et a mesure de 1’émission des exemples, des modifications seront apportées
aux artefacts des regles. Si tous les exemples sont émis, 1’application devra étre

réinstallée afin d’afficher de nouveau les mémes résultats pour tous les exemples.

Les exemples sont détaillés, avec des exemples de code et le résultat tel qu'il
s’affiche dans un navigateur Web.

Des classes supplémentaires ont été créées pour l'exécution d’opérations courantes
et pour faciliter I'affichage des informations dans I'exemple d’application Web.
Pour plus d’informations sur les classes Formatter et RuleArtifactUtility, voir
I'annexe.

Pour bien comprendre ces exemples, il convient d’examiner les différents artefacts
contenus dans WebSphere Integration Developer.

112 Développement et déploiement

Concepts associés

[Gestion des régles métier|

Des classes de gestion des regles métier sont fournies pour permettre de créer des
clients de gestion personnalisés ou d’automatiser les changements apportés aux
régles métier.

IExemple 1 : extraction et impression de ’ensemble des groupes de regles métierl
Cet exemple présente 1'extraction de tous les groupes de regles métier et
I'impression des attributs, des propriétés et des opérations de chaque groupe de
régles métier.

Exemple 2 : Extraire et afficher tous les groupes de régles métier, les jeux de regles|
et les tables de décision]

Outre la fonction de 'exemple 1, cet exemple permet d'imprimer la table de
sélection pour chaque opération, puis la destination des regles métier par défaut
(jeu de regles ou table de décision) et les autres regles métier planifiées pour
I'opération. Il imprime a la fois les jeu de regles et les tables de décision.

Exemple 3 : extraction de groupes de régles métier par propriétés multiples, aved|
|'opérateur AND|

Cet exemple est également similaire a I’'exemple 1, mais il permet uniquement
d’extraire les groupes de regles métier possédant la propriété Department et la
valeur “accounting”, ainsi que la propriété RuleType et la valeur “regulatory”.

Exemple 4 : extraction de groupes de régles métier par propriétés multiples, aved|
|'opérateur OR)

Cet exemple est similaire a 'exemple 3 ; toutefois, il permet uniquement d’extraire
les groupes de regles métier possédant la propriété Department et la valeur
“accounting”, ou encore la propriété RuleType et la valeur “monetary”.

[Exemple 5 : extraction de groupes de régles métier a I'aide d’une requéte complexe
Cet exemple constitue une combinaison des exemples 3 et 4 ; il a pour but
d’illustrer la création de requétes plus complexes. Dans cet exemple, une recherche
est effectuée a I'aide d'une requéte qui associe 2 conditions de requéte. La premiére
condition de requéte consiste a extraire les groupes de régles métier possédant la
propriété Department et la valeur “General”, ou encore la propriété
MissingProperty et la valeur “somevalue”. Cette condition de requéte est ensuite
associée, a 'aide d'un opérateur AND, a une condition contenant la propriété
RuleType et la valeur “messages”.

Exemple 6 : mise a jour d’une propriété de groupe de régles métier et publication|
du groupe de régles métier]

Dans cet exemple, 'une des propriétés d'un groupe de regles métier est mise a
jour, puis le groupe de regles métier correspondant est publié.

Exemple 7 : mise a jour des propriétés contenues dans plusieurs groupes de régles|
métier et publication des groupes de régles métier correspondants.|

Dans cet exemple, les propriétés de plusieurs groupes de régles métier sont mises a
jour avant la publication des groupes de régles métier correspondants.

Exemple 8 : modification de la régle métier par défaut d’un groupe de régles|

métier]
Dans cet exemple, la régle métier par défaut est remplacée par une autre régle
métier faisant partie de la liste de cibles disponibles d’une opération spécifique.

Exemple 9 : planification d’une autre régle d’opération au sein d’un groupe de|
regles métier]|

Dans cet exemple, une regle métier est planifiée en vue d’étre active pendant une
durée d’une heure a compter de I'heure de la publication d"une opération
spécifique.

Exemple 10 : modification d’une valeur de paramétre dans un modeéle d’un|
ensemble de regles|

Chapitre 3. Guides et techniques de programmation 113

Dans cet exemple, une instance de regle définie avec un modele est modifiée en
changeant une valeur de parameétre, puis publiée.

[Exemple 11 : Ajouter une nouvelle régle depuis un modele vers un jeu de reégles|

Dans cet exemple, une nouvelle regle est ajoutée a un jeu de regles, a partir d'un
modele. Avant la création de l'instance de regle, des parametres sont définis pour
cette instance.

Exemple 12 : Modifier et publier un modéle d’une table de décision en changeant]
la valeur d’un paramétre]

Dans cet exemple, une condition et une action (toutes deux définies avec des
modeles) sont modifiées dans une table de décision, en changeant les valeurs des
parametres avant publication.

Exemple 13 : Ajout d’une valeur de condition et d’actions dans une table de]
décision|

Dans cet exemple, une valeur de condition et une action vont étre ajoutées a une
table de décision. Pour ajouter une valeur de condition a une table de décision,
vous pouvez utiliser un modele.

[Exemple 14 : Gestion des erreurs dans un jeu de régles|

Cet exemple explique comment identifier des incidents dans un jeu de regles et
déterminer la nature de l'incident, afin d’afficher le message approprié ou de
mettre en oeuvre 'action nécessaire pour corriger la situation.

[Exemple 15 : Gestion des erreurs dans un groupe de régles métier|

Cet exemple est similaire a 1’'exemple 14, car il montre comment gérer les incidents
qui peuvent se produire lors de la publication d’un groupe de regles métier. Il
montre comment déterminer la nature de l'incident afin d’imprimer le message
correspondant ou d’exécuter 1'action appropriée.

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de regles métier.

Exemple 1 : extraction et impression de I’ensemble des groupes
de regles métier

Cet exemple présente l'extraction de tous les groupes de regles métier et
I'impression des attributs, des propriétés et des opérations de chaque groupe de
régles métier.

package com.ibm.websphere.sample.brules.mgmt;

import java.util.Iterator;
import java.util.List;

En ce qui concerne les classes de gestion des regles métier, veillez a les utiliser
dans le module com.ibm.wbiserver.brules.mgmt, et pas dans le module
com.ibm.wbiserver.brules ou dans tout autre module. Ces autres modules
concernent les classes internes IBM.

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;

import
com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagers;
import com.ibm.wbiserver.brules.mgmt.Operation;

import com.ibm.wbiserver.brules.mgmt.Property;

import com.ibm.wbiserver.brules.mgmt.PropertylList;

public class Examplel {

static Formatter out = new Formatter();
static public String executeExamplel()

114 Développement et déploiement

{
try
{

out.clear();

La classe BusinessRuleManager est la principale classe d’extraction des groupes de
regles métier et de publication des modifications des groupes de regles métier. Cela
inclut l'utilisation et la modification des artefacts de regle tels que les ensembles de
régles et les tables de décision. La classe BusinessRuleManager comporte de
nombreuses méthodes permettant de simplifier 'extraction de groupes de regles
métier spécifiques par nom, espace de nom et propriétés.

// Récupérer tous les groupes de régles métier

List<BusinessRuleGroup> brglList = BusinessRuleManager
.getBusinessRuleGroups (0, 0);

Iterator<BusinessRuleGroup> iterator = brglList.iterator();

BusinessRuleGroup brg = null;
// Procéder & une itération via la liste des groupes de régles métier
while (iterator.hasNext())
{
brg = iterator.next();
// Sortir les attributs de chaque groupe de régles métier
out.printinBold("Business Rule Group");

Les attributs de base du groupe de regles métier peuvent étre extraits et affichés.
out.printin("Nom : " + brg.getName());

out.printin("Espace de nom : " +
brg.getTargetNameSpace());

out.printin("Nom affichée : " +
brg.getDisplayName());

out.printin("Description : " + brg.getDescription());

out.printin("Fuseau horaire de présentation : "
+ brg.getPresentationTimezone());
out.printin("Date de sauvegarde : " + brg.getSaveDate());

Les propriétés du groupe de regles métier peuvent également étre extraites et
modifiées.
PropertyList propList = brg.getProperties();

Iterator<Property> propIterator =
propList.iterator();

Property prop = null;

// Sortir des valeurs et des noms de propriétés
while (propIterator.hasNext())

{

prop = proplterator.next();
out.printin("Nom de propriété : " +
prop.getName());

out.printin("vValeur de propriété : " +
prop.getValue());

}

Les opérations du groupe de regles métier sont également disponibles, et
permettent d’extraire les artefacts de regles métier tels que les ensembles de regles
et les tables de décision.

List<Operation> opList = brg.getOperations();

Iteration<Operation> opIterator = opList.iterator();

Operation op = null;

// Sortir les opérations du groupe de régles métier
while (opIterator.hasNext())

Chapitre 3. Guides et techniques de programmation 115

{

op = oplterator.next();
out.printin("Opération : " + op.getName());
1

out.printin("");}

} catch (BusinessRuleManagementException e)
{

e.printStackTrace();
out.printin(e.getMessage());

1

return out.toString();

1

1

Sortie du navigateur Web pour 'exemple 1.
Exécution de 1'exemple 1

Groupe de régles métier

Nom : ApprovalValues

Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules
Nom affiché : ApprovalValues

Description : null

Fuseau horaire de présentation : LOCAL

Date de sauvegarde : Sun Jan 06 17:56:51 CST 2008

Nom de propriété : IBMSystemVersion

Valeur de propriété : 6.2.0

Nom de propriété : Department

Valeur de propriété : Accounting

Nom de propriété : RuleType

Valeur de propriété : regulatory

Nom de propriété : IBMSystemTargetNameSpace

Valeur de propriété : http://BRSamples/com/ibm/websphere/sample/brules
Nom de propriété : IBMSystemName

Valeur de propriété : ApprovalValues

Nom de propriété : IBMSystemDisplayName

Valeur de propriété : ApprovalValues

Opération : getApprover

Groupe de régles métier

Nom : ConfigurationValues

Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules
Nom affiché : ConfigurationValues

Description : null

Fuseau horaire de présentation : LOCAL

Date de sauvegarde : Sun Jan 06 17:56:51 CST 2008

Nom de propriété : IBMSystemVersion

Valeur de propriété : 6.2.0

Nom de propriété : Department

Valeur de propriété : General

Nom de propriété : RuleType

Valeur de propriété : messages

Nom de propriété : IBMSystemTargetNameSpace

Valeur de propriété : http://BRSamples/com/ibm/websphere/sample/brules
Nom de propriété : IBMSystemName

Valeur de propriété : ConfigurationValues

Nom de propriété : IBMSystemDisplayName

Valeur de propriété : ConfigurationValues

Opération : getMessages

Groupe de régles métier

Nom : DiscountRules

Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules
Nom affiché : DiscountRules

Description : null

Fuseau horaire de présentation : LOCAL

Date de sauvegarde : Sun Jan 06 17:56:51 CST 2008

116 Développement et déploiement

Nom de propriété : Department

Valeur de propriété : Accounting

Nom de propriété : IBMSystemVersion

Valeur de propriété : 6.2.0

Nom de propriété : RuleType

Valeur de propriété : monetary

Nom de propriété : IBMSystemTargetNameSpace
Valeur de propriété : http://BRSamples/com/ibm/websphere/sample/brules
Nom de propriété : IBMSystemName

Valeur de propriété : DiscountRules

Nom de propriété : IBMSystemDisplayName
Valeur de propriété : DiscountRules
Opération : calculateOrderDiscount
Opération : calculateShippingDiscount

Concepts associés

Exemple

Des exemples illustrent 1'utilisation possible des différentes classes pour I’extraction
des groupes de regles métier et pour I'apport de modifications a des ensembles de
régles et a des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 2 : Extraire et afficher tous les groupes de régles
métier, les jeux de regles et les tables de décision

Outre la fonction de I'exemple 1, cet exemple permet d'imprimer la table de
sélection pour chaque opération, puis la destination des regles métier par défaut
(jeu de regles ou table de décision) et les autres regles métier planifiées pour
I'opération. Il imprime a la fois les jeu de regles et les tables de décision.

La majeure partie de 'exemple est identique, mais répétée a des fins
d’exhaustivité.

import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.OperationSelectionRecord;
import com.ibm.wbiserver.brules.mgmt.OperationSelectionRecordList;
import com.ibm.wbiserver.brules.mgmt.Property;
import com.ibm.wbiserver.brules.mgmt.PropertylList;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;
public class Example2
{
status Formatter out = new Formatter();
static public String executeExample2()
{
try

out.clear();

Un groupe de regles métier spécifique est extrait par son nom pour cet exemple.

// Extraction de tous les groupes de régles métier

List<BusinessRuleGroup> brglList = BusinessRuleManager
.getBRGsByName ("DiscountRules",
QueryOperator.EQUAL, 0, 0);

Iterator<BusinessRuleGroup> iterator = brglList.iterator();

Chapitre 3. Guides et techniques de programmation 117

BusinessRuleGroup brg = null;
// Ttération dans la liste des groupes de régles métier
while (iterator.hasNext())
{
brg = iterator.next();
// Extraction des attributs pour chaque groupe de régles métier
out.printinBold("Groupe de régles métier");
out.printin("Nom: " + brg.getName());
out.printin("Espace de nom: " +
brg.getTargetNameSpace());
out.printin("Nom affiché: " +
brg.getDisplayName());
out.printin("Description: " + brg.getDescription());
out.printin("Fuseau horaire de présentation: "
+ brg.getPresentationTimezone());
out.printin("Date d'enregistrement: " + brg.getSaveDate());

PropertyList propList = brg.getProperties();

Iterator<Property> proplterator =

propList.iterator();

Property prop = null;

// Extraction des noms et des valeurs des propriétés

while (propIterator.hasNext())

{
prop = proplterator.next();
out.printin("Nom de la propriété: " +
prop.getName());
out.printin("valeur de la proprité: " +
prop.getValue());

}

Pour chaque opération, une table de sélection comporte une liste des différents
artefacts de regle et leurs périodes d’activité planifiées. Une regle métier par défaut
peut étre spécifiée pour chaque opération. Il n’est pas obligatoire de spécifier une
régle métier par défaut ou d’avoir une régle métier planifiée. Toutefois, vous devez
avoir au moins une régle métier par défaut ou une régle métier spécifiée. Par
conséquent, il est conseillé de rechercher les valeurs null avant d’utiliser la regle
métier par défaut, ou de vérifier la taille de la liste OperationSelectionRecordList.

List<Operation> opList = brg.getOperations();

Iterator<Operation> opIterator = oplList.iterator();
Operation op = null;

out.printin("");

out.printinBold("Opérations");

// Extraction des opérations pour le groupe de régles métier
while (opIterator.hasNext())

op = oplterator.next();
out.printBold("Opération: ");
out.printin(op.getName());

// Extraction de la régle métier par défaut pour 1'opération
BusinessRule defaultRule =

op.getDefaultBusinessRule();

// Si la régle par défaut est localisée, imprimer cette régle
// a 1'aide de Ta méthode appropriée pour le type de régle

if (defaultRule != null)

{

out.printinBold("Destination par défaut:");

La regle métier par défaut est de type RuleSet ou DecisionTable, et peut étre
convertie dans le type approprié pour traiter 1’artefact de regle.

118 Développement et déploiement

if (defaultRule instanceof RuleSet)
out.printin(RuleArtifactUtility.
intRuleSet (defaultRule));
else
out.print(RuleArtifactUtility.
tDecisionTable(defaultRule));
}
OperationSelectionRecordList
opSelectionRecordList = op
.getOperationSelectionRecordList()

Iterator<OperationSelectionRecord>

opSelRecordIterator = opSelectionRecordList
.iterator();

OperationSelectionRecord record = null;

L’élément OperationSelectionRecord est composé de l'artefact de regle et des
périodes d’activité de cet artefact de regle.

while (opSelRecordIterator.hasNext())

out.printinBold("Destination
planifiée:");
record = opSelRecordIterator.next();

out.printin("Date de début: " +
record.getStartDate()
+ " - Date de fin: " +
record.getEndDate());
BusinessRule ruleArtifact = record
.getBusinessRuleTarget();

if (ruleArtifact instanceof RuleSet)
out.printin(RuleArtifactUtility.pr
intRuleSet(ruleArtifact));

else
out.print(RuleArtifactUtility.prin
tDecisionTable(ruleArtifact));

1

}

}
out.printin("");
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.printin(e.getMessage());
return out.toString();
1
1

Exemple

Sortie du navigateur Web pour I'exemple 2.

Groupe de régles métier

Nom : DiscountRules

Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules
Nom affiché : DiscountRules

Description : null

Fuseau horaire de présentation : LOCAL

Date d'enregistrement : Sun Jan 06 17:56:51 CST 2008
Nom de Ta propriété : Department

Valeur de la propriété : Accounting

Nom de Ta propriété : IBMSystemVersion

Valeur de Ta propriété : 6.2.0

Nom de Ta propriété : RuleType

Chapitre 3. Guides et techniques de programmation

119

Valeur de Ta propriété : monetary

Nom de Ta propriété : IBMSystemTargetNameSpace

Valeur de la propriété : http://BRSamples/com/ibm/websphere/sample/brules
Nom de Ta propriété : IBMSystemName

Valeur de Ta propriété : DiscountRules

Nom de Ta propriété : IBMSystemDisplayName

Valeur de la propriété : DiscountRules

Opérations

Opération : calculateOrderDiscount

Destination par défaut :

Jeu de régles

Nom : calculateOrderDiscount

Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules
Régle : CopyOrder

Nom affiché : CopyOrder

Description : null

Présentation utilisateur détaillée : null

Présentation utilisateur : null

Régle : FreeGiftInitialization

Nom affiché : FreeGiftInitialization

Description : null

Présentation utilisateur détaillée : ID produit pour la cadeau gratuit = 5001AE80
Quantité = 1 Colt =

Description 0.0 = Cadeau gratuit pour une commande avec remise
Présentation utilisateur : ID produit pour le cadeau gratuit = {0}
Quantité = {1} Colt = {2}

Description = {3}Parameter Name: param@

Valeur du paramétre : 5001AE80

Nom du paramétre : paraml

Valeur du paramétre : 1

Nom du paramétre : param?

Valeur du paramétre : 0.0

Nom du paramétre : param3

Valeur du paramétre : Cadeau gratuit pour une commande avec remise
Régle : Rulel

Nom affiché : Rulel

Description : null

Présentation utilisateur détaillée : Si le client a le statut gold, appliquer
une remise de 20,0 et ajouter un cadeau gratuit

Présentation utilisateur : Si le client a le statut {0}, appliquer une remise de {1}
et ajouter un cadeau gratuit

Nom du paramétre : param0

Valeur du paramétre : gold

Nom du paramétre : paraml

Valeur du paramétre : 20.0

Régle : Rule2

Nom affiché : Rule2

Description : null

Présentation utilisateur détaillée : Si customer.status == silver, appliquer
une remise de 15,0
Présentation utilisateur : Si customer.status == {0}, appliquer une remise de {1}

Nom du paramétre : param0

Valeur du paramétre : silver

Nom du paramétre : paraml

Valeur du paramétre : 15.0

Régle : Rule3

Nom affiché : Rule3

Description : Modéle pour les clients qui n'ont pas le statut gold
Présentation utilisateur détaillée : Si customer.status == bronze, appliquer
une remise de 10,0

Présentation utilisateur : Si customer.status == {0}, appliquer une remise de {1}
Nom du paramétre : param0

Valeur du paramétre : bronze

Nom du paramétre : paraml

Valeur du paramétre : 10.0

120 Développement et déploiement

Opération : calculateShippingDiscount

Destination par défaut :

Table de décision

Nom : calculateShippingDiscount

Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules

Régle d'initialisation : Rulel

Nom affiché : Rulel

Description : null

Présentation utilisateur détaillée : null
Présentation utilisateur : null

Concepts associés

Des exemples illustrent 1'utilisation possible des différentes classes pour l'extraction
des groupes de regles métier et pour 'apport de modifications a des ensembles de
régles et a des tables de décisions. Ces exemples sont regroupés au sein d’'un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 3 : extraction de groupes de régles métier par
propriétés multiples, avec I'opérateur AND

Cet exemple est également similaire a 1’'exemple 1, mais il permet uniquement
d’extraire les groupes de regles métier possédant la propriété Department et la
valeur “accounting”, ainsi que la propriété RuleType et la valeur “regulatory”.

package com.ibm.websphere.sample.brules.mgmt;

import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;

import com.ibm.wbiserver.brules.mgmt.Property;

import com.ibm.wbiserver.brules.mgmt.PropertylList;

import com.ibm.wbiserver.brules.mgmt.query.AndNode;

import com.ibm.wbiserver.brules.mgmt.query.PropertyQueryNode;

import com.ibm.wbiserver.brules.mgmt.query.QueryNodeFactory;

import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example3
{
static Formatter out = new Formatter();
static public String executeExample3()
{

try

{

out.clear();

Les requétes de groupes de regles métier sont composées de noeuds de requétes
qui suivent une arborescence. Chaque noeud de requéte contient un terme gauche
et un terme droit. Chacun de ces termes peut représenter un autre noeud de
requéte. Dans cet exemple, le groupe de régles métier est extrait via la combinaison
de deux valeurs de propriété.

// Extrait les groupes de régles métier sur la base de deux conditions

// Crée des noeuds PropertyQueryNodes pour chaque condition

PropertyQueryNode propertyNodel = QueryNodeFactory
.createPropertyQueryNode("Department",
QueryOperator.EQUAL,"Accounting");

PropertyQueryNode propertyNode2 = QueryNodeFactory
.createPropertyQueryNode("RuleType", QueryOperator.EQUAL,
"regulatory");

// Associe les deux noeuds PropertyQueryNodes & un noeud AND

Chapitre 3. Guides et techniques de programmation 121

AndNode andNode =
QueryNodeFactory.createAndNode (propertyNodel, propertyNode?2);

// Utilise andNode lors des recherches de groupes de régles métier
List<BusinessRuleGroup> brglList = BusinessRuleManager
.getBRGsByProperties(andNode, 0, 0);

Iterator<BusinessRuleGroup> iterator = brglList.iterator();

BusinessRuleGroup brg = null;
// Effectue une itération dans la liste des groupes de régles métier
while (iterator.hasNext())
{
brg = iterator.next();
// Permet d'obtenir les attributs de sortie de chaque groupe de régles métier
out.printinBold("Business Rule Group");
out.printin("Name: " + brg.getName());
out.printTn("Namespace: " +
brg.getTargetNameSpace());
out.printin("Display Name: " + brg.getDisplayName());
out.printin("Description: " + brg.getDescription());
out.printin("Presentation Time zone: "
+ brg.getPresentationTimezone());
out.printin("Save Date: " + brg.getSaveDate());

PropertyList propList = brg.getProperties();

Iterator<Property> proplterator =

propList.iterator();

Property prop = null;

// Permet d'obtenir les noms et valeurs des propriétés
while (propIterator.hasNext())

prop = proplterator.next();
out.printin("\t Property Name: " +
prop.getName());
out.printin("\t Property Value: " +
prop.getValue());

}

}
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.printin(e.getMessage());
}
return out.toString();
1
}

Exemple

Résultat de navigateur Web pour I'exemple 3.
Exécution de 1'exemple 3

Groupe de régles métier

Nom : ApprovalValues

Espace de noms : http://BRSamples/com/ibm/websphere/sample/brules
Nom affiché : ApprovalValues

Description : null

Fuseau horaire de présentation : LOCAL

Date de sauvegarde : Sun Jan 06 17:56:51 CST 2008
Nom de Ta propriété : IBMSystemVersion

Valeur de Ta propriété : 6.2.0

Nom de Ta propriété : Department

Valeur de Ta propriété : Accounting

Nom de Ta propriété : RuleType

122 Développement et déploiement

Valeur de Ta propriété : regulatory

Nom de Ta propriété : IBMSystemTargetNameSpace

Valeur de la propriété : http://BRSamples/com/ibm/websphere/sample/brules
Nom de Ta propriété : IBMSystemName

Valeur de Ta propriété : ApprovalValues

Nom de Ta propriété : IBMSystemDisplayName

Valeur de la propriété : ApprovalValues

Concepts associés

Exemple

Des exemples illustrent l'utilisation possible des différentes classes pour I'extraction
des groupes de regles métier et pour I'apport de modifications a des ensembles de

régles et a des tables de décisions. Ces exemples sont regroupés au sein d'un

fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour

les visualiser et les réutiliser.

Exemple 4 : extraction de groupes de régles métier par
propriétés multiples, avec I'opérateur OR

Cet exemple est similaire a I'exemple 3 ; toutefois, il permet uniquement d’extraire

les groupes de regles métier possédant la propriété Department et la valeur

“accounting”, ou encore la propriété RuleType et la valeur “monetary”.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;

import com.ibm.wbiserver.brules.mgmt.Property;

import com.ibm.wbiserver.brules.mgmt.PropertylList;

import com.ibm.wbiserver.brules.mgmt.query.OrNode;

import com.ibm.wbiserver.brules.mgmt.query.PropertyQueryNode;

import com.ibm.wbiserver.brules.mgmt.query.QueryNodeFactory;

import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example4

{
static Formatter out = new Formatter();
static public String executeExample4()

{
try

out.clear();

Différentes propriétés composent la requéte et permettent de renvoyer différents

groupes de régles métier.

// Retrieve business rule groups based on two conditions

// Crée des noeuds PropertyQueryNodes pour chaque condition

PropertyQueryNode propertyNodel = QueryNodeFactory
.createPropertyQueryNode ("Department",
QueryOperator.EQUAL,"Accounting");

PropertyQueryNode propertyNode2 = QueryNodeFactory
.createPropertyQueryNode ("RuleType",
QueryOperator.EQUAL, "monetary");

// Associe Tes deux noeuds PropertyQueryNodes & un noeud OR

OrNode orNode =

QueryNodeFactory.createOrNode (propertyNodel,
propertyNode2) ;

// Utilise orNode dans les recherches de groupes de régles métier

List<BusinessRuleGroup> brglList = BusinessRuleManager
.getBRGsByProperties(orNode, 0, 0);

Iterator<BusinessRuleGroup> iterator = brglList.iterator();

Chapitre 3. Guides et techniques de programmation

123

BusinessRuleGroup brg = null;
// Effectue une itération dans la Tiste des groupes de régles métier
while (iterator.hasNext())
{
brg = iterator.next();
// Permet d'obtenir Tes attributs de chaque groupe de régles métier
out.printinBold("Business Rule Group");
out.printin("Name: " + brg.getName());
out.printin("Namespace: " +
brg.getTargetNameSpace());
out.printin("Display Name: " + brg.getDisplayName());
out.printin("Description: " + brg.getDescription());
out.printin("Presentation Time zone: "
+ brg.getPresentationTimezone());
out.printin("Save Date: " + brg.getSaveDate());

PropertyList propList = brg.getProperties();

Iterator<Property> proplterator =
propList.iterator();

Property prop = null;

// Permet d'obtenir les noms et valeurs de propriétés
while (propIterator.hasNext())

{

prop = proplterator.next();
out.printin("\t Property Name: " +
prop.getName());

out.printin("\t Property Value: " +
prop.getValue());

out.printin("");
1
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.printin(e.getMessage());

return out.toString();
}
1

Exemple

Résultat de navigateur Web pour I'exemple 4.
Exécution de 1'exemple 4

Groupe de régles métier

Nom : ApprovalValues

Espace de noms : http://BRSamples/com/ibm/websphere/sample/brules
Nom affiché : ApprovalValues

Description : null

Fuseau horaire de présentation : LOCAL

Date de sauvegarde : Sun Jan 06 17:56:51 CST 2008

Nom de Ta propriété : IBMSystemVersion

Valeur de Ta propriété : 6.2.0

Nom de Ta propriété : Department

Valeur de Ta propriété : Accounting

Nom de Ta propriété : RuleType

Valeur de la propriété : regulatory

Nom de Ta propriété : IBMSystemTargetNameSpace

Valeur de la propriété : http://BRSamples/com/ibm/websphere/sample/brules
Nom de Ta propriété : IBMSystemName

Valeur de Ta propriété : ApprovalValues

Nom de Ta propriété : IBMSystemDisplayName

Valeur de Ta propriété : ApprovalValues

124 Développement et déploiement

Groupe de régles métier

Nom : DiscountRules

Espace de noms : http://BRSamples/com/ibm/websphere/sample/brules
Nom affiché : DiscountRules

Description : null

Fuseau horaire de présentation : LOCAL

Date de sauvegarde : Sun Jan 06 17:56:51 CST 2008

Nom de Ta propriété : Department

Valeur de Ta propriété : Accounting

Nom de Ta propriété : IBMSystemVersion

Valeur de Ta propriété : 6.2.0

Nom de Ta propriété : RuleType

Valeur de la propriété : monetary

Nom de Ta propriété : IBMSystemTargetNameSpace

Valeur de la propriété : http://BRSamples/com/ibm/websphere/sample/brules
Nom de Ta propriété : IBMSystemName

Valeur de la propriété : DiscountRules

Nom de Ta propriété : IBMSystemDisplayName

Valeur de la propriété : DiscountRules

Concepts associés

Des exemples illustrent 1'utilisation possible des différentes classes pour l'extraction
des groupes de regles métier et pour l'apport de modifications a des ensembles de
régles et a des tables de décisions. Ces exemples sont regroupés au sein d’'un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 5 : extraction de groupes de régles métier a I’'aide d’'une
requéte complexe

Cet exemple constitue une combinaison des exemples 3 et 4 ; il a pour but
d’illustrer la création de requétes plus complexes. Dans cet exemple, une recherche
est effectuée a 1’aide d’une requéte qui associe 2 conditions de requéte. La premiére
condition de requéte consiste a extraire les groupes de regles métier possédant la
propriété Department et la valeur “General”, ou encore la propriété
MissingProperty et la valeur “somevalue”. Cette condition de requéte est ensuite
associée, a 'aide d’un opérateur AND, a une condition contenant la propriété
RuleType et la valeur “messages”.

D’autres exemples de requétes de groupes de regles métier figurent dans 1I’Annexe.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;

import com.ibm.wbiserver.brules.mgmt.Property;

import com.ibm.wbiserver.brules.mgmt.PropertylList;

import com.ibm.wbiserver.brules.mgmt.query.AndNode;

import com.ibm.wbiserver.brules.mgmt.query.OrNode;

import com.ibm.wbiserver.brules.mgmt.query.PropertyQueryNode;

import com.ibm.wbiserver.brules.mgmt.query.QueryNodeFactory;

import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Exampleb

{
static Formatter out = new Formatter();
static public String executeExample5()

{
try

Chapitre 3. Guides et techniques de programmation 125

out.clear();

// Extrait les groupes de régles métier sur la base de trois conditions ;

// deux de celles-ci sont combinées au sein d'un noeud OR

// Crée des noeuds PropertyQueryNodes pour chaque condition du noeud OR

PropertyQueryNode propertyNodel = QueryNodeFactory
.createPropertyQueryNode("Department",
QueryOperator.EQUAL, "General");

PropertyQueryNode propertyNode2 = QueryNodeFactory
.createPropertyQueryNode ("MissingProperty",

QueryOperator.EQUAL, "SomeValue");

// Combine Tes deux PropertyQueryNodes au sein d'un noeud OR

OrNode orNode =

QueryNodeFactory.createOrNode(propertyNodel, propertyNode?2);

// Crée le troisiéme noeud PropertyQueryNode
PropertyQueryNode propertyNode3 = QueryNodeFactory
.createPropertyQueryNode ("RuleType",

QueryOperator.EQUAL, "messages") ;

La partie gauche de la condition est combinée a la partie droite a l'aide d’un noeud
AND. AndNode constitue la racine de ’arborescence de requéte.

// Combine Te noeud OR avec le troisiéme PropertyQueryNode a 1'aide de :
AndNode AndNode andNode =
QueryNodeFactory.createAndNode (propertyNode3, orNode);

List<BusinessRuleGroup> brgList = BusinessRuleManager
.getBRGsByProperties(andNode, 0, 0);

Iterator<BusinessRuleGroup> iterator = brglList.iterator();

BusinessRuleGroup brg = null;
// Effectue une itération dans la Tiste des groupes de régles métier
while (iterator.hasNext())
{
brg = iterator.next();
// Permet d'obtenir les attributs de chaque groupe de régles métier
out.printinBold("Business Rule Group");
out.printin("Name: " + brg.getName());
out.printin("Namespace: " +
brg.getTargetNameSpace());
out.printin("Display Name: " + brg.getDisplayName());
out.printin("Description: " + brg.getDescription());
out.printin("Presentation Time zone: "
+ brg.getPresentationTimezone());
out.printin("Save Date: " + brg.getSaveDate());
PropertylList propList = brg.getProperties();

Iterator<Property> proplterator =
propList.iterator();

Property prop = null;

// Permet d'obtenir Tes noms et valeurs de propriétés
while (propIterator.hasNext())

prop = proplterator.next();
out.printin("\t Property Name: " +
prop.getName());
out.printin("\t Property Value: " +
prop.getValue());
}
1
} catch (BusinessRuleManagementException e)
i
e.printStackTrace();
out.printin(e.getMessage());

126 Développement et déploiement

}
return out.toString();
}
}

Exemple

Résultat de navigateur Web pour I'exemple 5.
Exécution de 1'exemple 5

Groupe de régles métier

Nom : ConfigurationValues

Espace de noms : http://BRSamples/com/ibm/websphere/sample/brules
Nom affiché : ConfigurationValues

Description : null

Fuseau horaire de présentation : LOCAL

Date de sauvegarde : Sun Jan 06 17:56:51 CST 2008

Nom de Ta propriété : IBMSystemVersion

Valeur de Ta propriété : 6.2.0

Nom de Ta propriété : Department

Valeur de la propriété : General

Nom de Ta propriété : RuleType

Valeur de la propriété : messages

Nom de Ta propriété : IBMSystemTargetNameSpace

Valeur de la propriété : http://BRSamples/com/ibm/websphere/sample/brules
Nom de Ta propriété : IBMSystemName

Valeur de Ta propriété : ConfigurationValues

Nom de Ta propriété : IBMSystemDisplayName

Valeur de la propriété : ConfigurationValues

Concepts associés

Des exemples illustrent 1'utilisation possible des différentes classes pour l'extraction
des groupes de regles métier et pour l'apport de modifications a des ensembles de
régles et a des tables de décisions. Ces exemples sont regroupés au sein d'un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 6 : mise a jour d’'une propriété de groupe de régles
métier et publication du groupe de regles métier

Dans cet exemple, 'une des propriétés d'un groupe de regles métier est mise a
jour, puis le groupe de régles métier correspondant est publié.

package com.ibm.websphere.sample.brules.mgmt;

import java.util.Arraylist;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;

import com.ibm.wbiserver.brules.mgmt.UserDefinedProperty;

import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Exampleb

{

static Formatter out = new Formatter();

static public String executeExample6()
{
try
{
out.clear();
out.printinBold("Business Rule Group before publish:");
// Extrait les groupes de régles métier a 1'aide d'une seule valeur de propriété

Chapitre 3. Guides et techniques de programmation 127

List<BusinessRuleGroup> brglList = BusinessRuleManager
.getBRGsBySingleProperty ("Department",
QueryOperator.EQUAL, "General", 0, 0);

if (brgList.size() > 0)

{
// Extrait le premier groupe de régles métier de la Tiste
BusinessRuleGroup brg = brglList.get(0);
// Extrait la propriété du groupe de régles métier
UserDefinedProperty userDefinedProperty =
(UserDefinedProperty) brg

.getProperty("Department");

out.printin("Business Rule Group: " + brg.getName());
out.printin("Department Property value: "
+ brg.getProperty("Department").getValue());

La méthode getProperty renvoie une propriété par référence ; les modifications
apportées a la propriété sont directement répercutées au niveau du groupe de
regles métier.

// Modification de la valeur de propriété du groupe de régles métier

// Cela permet de mettre & jour la valeur de Ta propriété directement dans
1'objet du groupe de régles métier
userDefinedProperty.setValue("GeneralConfig");

// Utilise la liste d'origine ou crée une nouvelle liste

// de groupes de régles métier

List<BusinessRuleGroup> publishList = new

ArrayList<BusinessRuleGroup>();

// Ajoute le groupe de régles métier modifié a la liste
publishList.add(brg);

La classe BusinessRuleManager est utilisée pour la publication des modifications
apportées a un groupe de régles métier. Pour publier ces modifications, une liste
est transférée a la méthode de publication BusinessRuleManager, méme si un seul
élément est publié.

// Publie la liste contenant Te groupe de régles métier modifié
BusinessRuleManager.publish(publishList, true);

out.printin("");

// Extrait de nouveau le groupe de régles métier pour vérifier que les
// modifications ont été publiées

out.printinBold("Business Rule Group after publish:");

brglList = BusinessRuleManager

.getBRGsBySingleProperty("Department",

QueryOperator.EQUAL, "GeneralConfig", 0, 0);

brg = brglList.get(0);

out.printin("Business Rule Group: " + brg.getName());
// Affiche la valeur de propriété pour indiquer la modification apportée
out.printin("Department Property value: "
+ brg.getProperty("Department").getValue());
}
}c
{

e.printStackTrace();
out.printin(e.getMessage());

atch (BusinessRuleManagementException e)

return out.toString();

}
}

128 Développement et déploiement

Exemple

Résultat de navigateur Web pour I'exemple 6.
Exécution de 1'exemple 6

Groupe de régles métier avant la publication :
Groupe de régles métier : ConfigurationValues
Valeur de Ta propriété Department : General

Groupe de régles métier aprés la publication :
Groupe de régles métier : ConfigurationValues
Valeur de Ta propriété Department : GeneralConfig

Concepts associés

Des exemples illustrent 1'utilisation possible des différentes classes pour l'extraction
des groupes de regles métier et pour I'apport de modifications a des ensembles de
régles et a des tables de décisions. Ces exemples sont regroupés au sein d’'un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 7 : mise a jour des propriétés contenues dans plusieurs
groupes de regles métier et publication des groupes de regles
métier correspondants.

Dans cet exemple, les propriétés de plusieurs groupes de regles métier sont mises a
jour avant la publication des groupes de regles métier correspondants.

package com.ibm.websphere.sample.brules.mgmt;

import java.util.Arraylist;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;

import com.ibm.wbiserver.brules.mgmt.UserDefinedProperty;

import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example?

{

static Formatter out = new Formatter();

static public String executeExample7()
{
try
{
out.clear();
out.printinBold("Business Rule Group before publish:");
// Extrait les groupes de régles métier a 1'aide d'une seule valeur de propriété
List<BusinessRuleGroup> brgList = BusinessRuleManager
.getBRGsBySingleProperty("Department",
QueryOperator.EQUAL, "Accounting", 0, 0);

Iterator<BusinessRuleGroup> iterator = brglList.iterator();
BusinessRuleGroup brg = null;

// Utilise Ta liste d'origine ou crée une nouvelle liste
// de groupes de régles métier

List<BusinessRuleGroup> publishList = new

ArrayList<BusinessRuleGroup>();

// Effectue une itération au sein de tous les groupes de régles métier et
// modifie la propriété

Chapitre 3. Guides et techniques de programmation 129

while (iterator.hasNext())

{
// Extrait la propriété du groupe de régles métier
brg = iterator.next();

out.printIn("Business Rule Group: " + brg.getName());

// Extrait la propriété du groupe de régles métier

UserDefinedProperty prop = (UserDefinedProperty) brg
.getProperty("Department");

out.printin("Department Property value: "

+

brg.getProperty("Department").getValue())

B

// Modifie Ta valeur de propriété dans le groupe de régles métier

// Cela permet de mettre & jour la valeur de la propriété directement dans
1'objet du groupe de régles métier

prop.setValue("Finance");

Chaque groupe de regles métier modifié est ajouté a la liste.

// Ajoute le groupe de régles métier modifié a la liste
publishList.add(brg);
}

// Publie Ta liste contenant le groupe de régles métier
modifié
BusinessRuleManager.publish(publishList, true);

out.printin("");

// Extrait de nouveau les groupes de régles métier afin de vérifier que
// les modifications ont été publiées

out.printinBold("Business Rule Group after

publish:");

brglList = BusinessRuleManager
.getBRGsBySingleProperty("Department",
QueryOperator.EQUAL,
"Finance", 0, 0);

iterator = brglList.iterator();

while (iterator.hasNext())

{
brg = iterator.next();
out.printin("Business Rule Group:
brg.getName());
out.printin("Department Property value:
+
brg.getProperty("Department").getVa

Tue());

LS

}

} catch (BusinessRuleManagementException e)

e.printStackTrace();
out.printin(e.getMessage());
}

return out.toString();

}
}

Exemple

Résultat de navigateur Web pour I'exemple 7.

130 Développement et déploiement

Exécution

Groupe
Groupe
Valeur
Groupe
Valeur

Groupe
Groupe
Valeur
Groupe
Valeur

de
de
de
de
de

de
de
de
de
de

Concepts

Des exemples illustrent 1'utilisation possible des différentes classes pour l'extraction
des groupes de régles métier et pour l'apport de modifications a des ensembles de
régles et a des tables de décisions. Ces exemples sont regroupés au sein d’'un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

de 1'exemple 7

régles métier avant la publication :
régles métier : ApprovalValues
la propriété Department : Accounting
régles métier : DiscountRules
la propriété Department : Accounting

régles métier aprés la publication :
régles métier : ApprovalValues

la propriété Department : Finance
régles métier : DiscountRules

la propriété Department : Finance

associés

Exemple 8 : modification de la régle métier par défaut d’'un
groupe de régles métier

Dans cet exemple, la régle métier par défaut est remplacée par une autre regle
métier faisant partie de la liste de cibles disponibles d’une opération spécifique.

package com.ibm.websphere.sample.brules.mgmt;

import
import
import

import
import
import
import
import
import

public
{

static

static

{
try

jav
jav
jav

com
com
com
com
com
com

cla

a.util.ArraylList;
a.util.Iterator;
a.util.List;

.ibm.wbiserver.brules.mgmt.BusinessRule;
.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
.ibm.wbhiserver.brules.mgmt.Operation;
.ibm.wbiserver.brules.mgmt.query.QueryOperator;

ss Example8

Formatter out = new Formatter();

pub

lic String executeExample8()

out.clear();

// Extrait un groupe de régles métier par espace de nom et nom cible
List<BusinessRuleGroup> brglList = BusinessRuleManager
.getBRGsByTNSAndName (

"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"DiscountRules",
QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)

{
out.printinBold("Business Rule Group before publish:");
// Extrait le premier groupe de régles métier de la liste
// 11 doit s'agir du seul groupe de régles métier de la liste, car
// 1a combinaison d'espace de nom et de nom cible est unique
BusinessRuleGroup brg = brglList.get(0);

Chapitre 3. Guides et techniques de programmation

131

out.print("Business Rule Group: ");
out.printin(brg.getName());

// Extrait le fonctionnement du groupe de régles métier dont
// 1a régle métier par défaut doit étre mise & jour
Operation op =
brg.getOperation("calculateShippingDiscount");

La regle métier par défaut est extraite avant d’étre mise a jour a I'aide d’une autre
régle métier faisant partie de la liste de cibles disponibles de I'opération. Les Les
ensembles de régles et les tables de décisions sont spécifiques aux opérations ;
seuls les artefacts de regles métier relatifs a une opération peuvent étre définis en
tant qu’artefacts par défaut ou étre programmés a un autre moment pour cette
opération.

// Extrait la régle métier par défaut de 1'opération

BusinessRule defaultRule =

op.getDefaultBusinessRule();

out.print("Default Rule: ");
out.printin(defaultRule.getName());

// Extrait Ta liste des régles métier disponibles pour cette
opération

List<BusinessRule> rulelist =

op.getAvailableTargets();

Iterator<BusinessRule> iterator =
ruleList.iterator();
BusinessRule rule = null;

// Recherche une régle métier différente de la régle
en cours d'utilisation

// régle métier

// par défaut

while (iterator.hasNext())

{
rule = iterator.next();
if
('defaultRule.getName().equals(rule.getName()))
{

La regle métier par défaut est définie pour 1'objet de 1'opération. L’affectation de la
valeur Null a la régle métier par défaut a pour effet de supprimer la regle métier
par défaut de l'opération ; toutefois, il est recommandé de spécifier une regle
métier par défaut pour chaque opération.

// Définit une autre régle
// métier par défaut
// Cette modification concerne directement
// 1'objet de 1'opération
op.setDefaultBusinessRule(rule);
break;
}
1
// Utilise Ta liste d'origine ou crée une nouvelle Tiste
// de groupes de régles métier
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();
// Ajoute le groupe de régles métier modifié & la liste
publishList.add(brg);
// Publie l1a Tiste contenant le groupe de régles
métier modifié
BusinessRuleManager.publish(publishList, true);

out.printin("");

132 Développement et déploiement

// Extrait de nouveau les groupes de régles métier, afin de vérifier que
// les modifications ont été publiées

out.printinBold("Business Rule Group after publish:");

brgList = BusinessRuleManager

.getBRGsByTNSAndName (
"http://BRSamples/com/ibm/websphere/sample/brules",
QueryOperator.EQUAL, "DiscountRules",
QueryOperator.EQUAL, 0, 0);

brg = brglList.get(0);
out.printTn("Business Rule Group: " + brg.getName());
op = brg.getOperation("calculateShippingDiscount");

// Extrait la régle métier par défaut de 1'opération
defaultRule = op.getDefaultBusinessRule();
out.print("Default Rule: ");
out.printin(defaultRule.getName());

} catch (BusinessRuleManagementException e)

e.printStackTrace();
out.printin(e.getMessage());
1

return out.toString();
}
}

Exemple

Résultat de navigateur Web pour I'exemple 8.
Exécution de 1'exemple 8

Groupe de régles métier avant la publication :
Groupe de régles métier : DiscountRules
Régle par défaut : calculateShippingDiscount

Groupe de régles métier aprés la publication :
Groupe de régles métier : DiscountRules
Régle par défaut : calculateShippingDiscountHoliday

Concepts associés

Des exemples illustrent 1'utilisation possible des différentes classes pour l'extraction
des groupes de regles métier et pour 'apport de modifications a des ensembles de
régles et a des tables de décisions. Ces exemples sont regroupés au sein d’'un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 9 : planification d’une autre régle d’opération au sein
d’un groupe de regles métier

Dans cet exemple, une regle métier est planifiée en vue d’étre active pendant une
durée d'une heure & compter de I'heure de la publication d"une opération
spécifique.

package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArraylList;

import java.util.Date;

import java.util.Iterator;

import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;

Chapitre 3. Guides et techniques de programmation 133

import
import
import
import
import
import
import
import

public
static

static

{
try

out.

com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
com.ibm.wbiserver.brules.mgmt.Operation;
com.ibm.wbhiserver.brules.mgmt.OperationSelectionRecordList;
com.ibm.wbiserver.brules.mgmt.OperationSelectionRecord;
com.ibm.wbiserver.brules.mgmt.problem.Problem;
com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

class Example9
Formatter out = new Formatter();

public String executeExample9()

clear();

// Extrait un groupe de régles métier par espace de nom et nom cible
List<BusinessRuleGroup> brglList = BusinessRuleManager

.getBRGsByTNSAndName (

"http://BRSamples/com/ibm/websphere

/sample/brules",

QueryOperator.EQUAL,

"DiscountRules",

QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)

{

out.printin("");

out.printinBold("Business Rule Group before publish:");

// Extrait le premier groupe de régles métier de la liste

// 11 doit s'agir du seul groupe de régles métier de la liste, car

la

// combinaison d'espace de nom et de nom cible est unique
BusinessRuleGroup brg = brglList.get(0);

// Extrait le fonctionnement du groupe de régles métier dont
// une nouvelle régle métier doit &tre planifiée

Operation op =
brg.getOperation("calculateShippingDiscount");

printOperationSelectionRecord(op);

// Extrait la liste des régles métier disponibles pour cette opération
List<BusinessRule> rulelist =

op.getAvailableTargets();

// Extrait la premiére régle de la Tiste, qui sera planifiée
// pour 1'opération
BusinessRule rule = rulelList.get(0);

// Extrait la liste des régles métier planifiées
OperationSelectionRecordList opList = op

.getOperationSelectionRecordList();

// Crée une date de fin pour la régle métier
Date future = new Date();
long futureTime = future.getTime() + 3600000;

Pour les nouvelles régles planifiées, il est possible de spécifier une date de début et
une date de fin. Si une valeur Null est affectée pour la date de début, cela indique
que la regle sera active immédiatement au moment de la publication. Si une valeur
Null est affectée a la date de fin, la régle ne comportera pas de date de fin. Les
chevauchements de planification ne sont pas autorisés et peuvent étre contrdlés via
I'appel de la méthode validate au niveau de I'opération.

134 Développement et déploiement

// Crée la nouvelle régle métier planifiée en indiquant 1a date

// actuelle, ce qui signifie que cette régle deviendra immédiatement active

// au moment de la
// publication, ainsi que la date future.
newOperationSelectionRecord(new Date(),

new Date(futureTime), rule);
// Ajoute la nouvelle régle métier planifiée a la liste des
// régles planifiées
opList.addOperationSelectionRecord(newRecord);

Validation de l'opération afin de vérifier qu'il n’existe aucun chevauchement.

// Valide la liste afin de vérifier 1'absence de chevauchements
List<Problem> problems = op.validate();
if (problems.size() == 0)
{
// Utilise Ta liste d'origine ou crée une nouvelle Tiste
// de groupes de régles métier
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();
// Ajoute le groupe de régles métier modifié a la liste
publishList.add(brg);
// Publie la liste contenant le groupe de régles
métier mis a jour
BusinessRuleManager.publish(publishList, true);
out.printin("");

// Extrait de nouveau les groupes de régles métier afin de
vérifier que les

// modifications ont été publiées
out.printinBold("Business Rule Group after

publish:");

brglList =
BusinessRuleManager.getBRGsByTNSAndName (
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"DiscountRules",
QueryOperator.EQUAL, 0, 0);
brg = brglList.get(0);

op =
brg.getOperation("calculateShippingDiscount");

printOperationSelectionRecord(op);
1
// Gére 1'erreur de validation
}
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.printin(e.getMessage());
1
return out.toString();
1
/*

Méthode d'impression de 1'enregistrement de sélection d'opération. La

date de début et la date de fin sont imprimées, ainsi que Te nom de 1'artefact

de régle correspondant a 1'heure planifiée.
*/
private static void printOperationSelectionRecord(Operation op)
{

OperationSelectionRecordList opSelectionRecordList = op

.getOperationSelectionRecordList();

Iterator<OperationSelectionRecord> opSelRecordIterator =
opSelectionRecordList

Chapitre 3. Guides et techniques de programmation

135

.iterator();
OperationSelectionRecord record = null;
while (opSelRecordIterator.hasNext())

out.printinBold("Scheduled Destination:");

record = opSelRecordIterator.next();

out.printin("Start Date: " + record.getStartDate()

+ " - End Date: " + record.getEndDate());

BusinessRule ruleArtifact = record.getBusinessRuleTarget();
out.printin("Rule: " + ruleArtifact.getName());

}
}

Exemple

Résultat de navigateur Web pour I'exemple 9.
Exécution de 1'exemple 9

Groupe de régles métier avant la publication :
Destination planifiée :

Date de début : Thu Dec 01 00:00:00 CST 2005 -
Date de fin : Sun Dec 25 00:00:00 CST 2005
Régle : calculateShippingDiscountHoliday

Groupe de régles métier aprés la publication :
Destination planifiée :

Date de début : Thu Dec 01 00:00:00 CST 2005 -
Date de fin : Sun Dec 25 00:00:00 CST 2005
Régle : calculateShippingDiscountHoliday
Destination planifiée :

Date de début : Mon Jan 07 21:08:31 CST 2008 -
Date de fin : Mon Jan 07 22:08:31 CST 2008
Régle : calculateShippingDiscount

Concepts associés

Des exemples illustrent 1'utilisation possible des différentes classes pour l'extraction
des groupes de régles métier et pour l'apport de modifications a des ensembles de
régles et a des tables de décisions. Ces exemples sont regroupés au sein d’'un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 10 : modification d’une valeur de parameétre dans un
modéle d’un ensemble de regles

Dans cet exemple, une instance de régle définie avec un modele est modifiée en
changeant une valeur de parameétre, puis publiée.

package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArraylList;

import java.util.Iterator;

import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;

import com.ibm.wbiserver.brules.mgmt.Operation;

import com.ibm.wbiserver.brules.mgmt.ParameterValue;

import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;

import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRule;

import
com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetTemplateInstanceRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRule;

import com.ibm.wbiserver.brules.mgmt.ruleset.RuleBlock;

136 Développement et déploiement

public class Examplel0

{

static Formatter out = new Formatter();

static public String executeExamplel0()
{

try

{

out.clear();

// Extraire un groupe de régles métier par espace de nom cible et
par nom
List<BusinessRuleGroup> brglList = BusinessRuleManager
.getBRGsByTNSAndName (
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ApprovalValues",
QueryOperator.EQUAL, 0, 0);
if (brgList.size() > 0)
{
// Obtenir le premier groupe de régles métier depuis Ta liste
// 11 doit étre le seul groupe de régles métier de Tla
liste puisque
// 1a combinaison de 1'espace de nom cible et du nom est
unique
BusinessRuleGroup brg = brglList.get(0);
// Obtenir 1'opération du groupe de régles métier comportant
// la régle métier a modifier puisque
// les régles métier sont associées a une opération
// spécifique
Operation op = brg.getOperation("getApprover");

// Obtenir la régle métier de 1'opération qui
sera modifiée
List<BusinessRule> rulelList =
op.getBusinessRulesByName (

"getApprover", QueryOperator.EQUAL, O,

0);

if (ruleList.size() > 0)

{
out.printin("");
out.printinBold("Rule set before publish:");
// Obtenir l1a régle a modifier. Les régles sont
uniques par
// espace de nom cible et par nom, mais cet
exemple
// comporte une seule régle métier intitulée
"getApprover"
RuleSet ruleSet = (RuleSet) ruleList.get(0);
out.print(RuleArtifactUtility.printRuleSet(rule
Set));

Toutes les regles d'un ensemble de régles sont dans un bloc de régles. Un seul bloc
de régles est pris en charge et la méthode getFirstRuleBlock doit étre utilisée pour
extraire le bloc de regles.

// Un ensemble de régles comporte toutes les régles définies dans un

bloc de régles

RuleBlock ruleBlock =
ruleSet.getFirstRuleBlock();

Iterator<RuleSetRule> rulelterator =
ruleBlock.iterator();

// Procéder a 1'itération via les régles du bloc de régles

Chapitre 3. Guides et techniques de programmation 137

pour trouver
// 1'instance de régle intitulée "LargeOrderApprover"
while (rulelterator.hasNext())

RuleSetRule rule = rulelterator.next();

Si une regle n’est pas définie avec un modele de regle, seule sa présentation Web
peut étre extraite. Aucune mise a jour ne peut étre réalisée sur une regle non
définie avec un modele. Si le nom de la régle est inconnu, il est recommandé de
vérifier si elle a été définie avec un modele.

// La régle doit avoir été définie avec un
modéle

// pour pouvoir étre modifiée. Vérifier

si la régle en

// cours est basée sur un modéle.

if (rule instanceof
RuleSetTemplateInstanceRule)

{

Utilisez I'objet Templatelnstance pour créer la régle.

// Obtenir 1'instance du modéle de régle
RuleSetTemplateInstanceRule
templatelnstance =
(RuleSetTemplateInstanceRule) rule;

// Rechercher 1'instance de régle

correspondant

// & la régle a modifier

if

(templateInstance.getName().equals(
"LargeOrderApprover"))

{

Pour l'instance de modele, seules les valeurs de parametre peuvent étre modifiées.
Les parametres sont modifiés en extrayant ParameterValue et en le définissant sur
la valeur appropriée. Dans la mesure ou ParameterValue est validé par référence, la
mise a jour est effectuée directement sur la regle, 'ensemble de régles et le groupe
de régles métier.

// Obtenir Te paramétre de

1'instance de régle

ParameterValue parameter =

templatelnstance
.getParameterValue("par
am2") s

// Modifier Ta valeur du
paramétre
parameter.setValue("superviso

}

}
}
// Utiliser la Tiste d'origine ou créer une nouvelle liste de
// groupes de régles métier
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Ajouter le groupe de régles métier modifié a la liste
publishList.add(brg);

// Publier la liste avec Te groupe de régles métier mis &
jour

138 Développement et déploiement

BusinessRuleManager.publish(publishList, true);

out.printin("");

// Extraire de nouveau les groupes de régles métier pour vérifier
que les

// modifications ont été publiées

out.printinBold("Rule set after publish:");

brgList = BusinessRuleManager
.getBRGsByTNSAndName (
"http://BRSamples/com/ibm/websphere/sample/brules",
QueryOperator.EQUAL, "ApprovalValues",
QueryOperator.EQUAL, 0, 0);

brg = brglList.get(0);

op = brg.getOperation("getApprover");

ruleList = op.getBusinessRulesByName(
"getApprover", QueryOperator.EQUAL, 0,0);

ruleSet = (RuleSet) ruleList.get(0);
out.print(RuleArtifactUtility.printRuleSet(ruleSet));
1

} catch (BusinessRuleManagementException e)

e.printStackTrace();
out.printin(e.getMessage());
}
return out.toString();
}
}

Exemple

Sortie du navigateur Web pour 'exemple 10.
Exécution de 1'exemple 10

Ensemble de régles avant 1a publication :

Ensemble de régles

Nom : getApprover

Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules

Régle : LargeOrderApprover

Nom affiché : LargeOrderApprover

Description : null

Présentation utilisateur détaillée : si le nombre d'éléments Commande est
supérieur a 10 et que la commande dépasse 5000 $, 1'approbation du responsable est
nécessaire

Présentation utilisateur : si Te nombre d'éléments Commande est supérieur a {0} et
que la commande dépasse {1} §, 1'approbation de {2} est nécessaire

Nom de paramétre : param0

Valeur de paramétre : 10

Nom de paramétre : paraml

Valeur de paramétre : 5000

Nom de paramétre : param2

Valeur de paramétre : manager

Régle : DefaultApprover

Nom affiché : DefaultApprover

Description : null

Présentation utilisateur détaillée : approver = peer

Présentation utilisateur : approver = {0}

Nom de paramétre : param0

Valeur de paramétre : peer

Ensemble de régles une fois terminé :

Ensemble de régles
Nom : getApprover

Chapitre 3. Guides et techniques de programmation 139

Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules

Régle : LargeOrderApprover

Nom affiché : LargeOrderApprover

Description : null

Présentation utilisateur détaillée : si Te nombre d'éléments Commande est
supérieur a 10 et que la commande dépasse 5000 $, 1'approbation du superviseur est
nécessaire

Présentation utilisateur : si le nombre d'éléments Commande est supérieur a {0} et
que Ta commande dépasse {1} $, 1'approbation de {2} est nécessaire

Nom de paramétre : param0

Valeur de paramétre : 10

Nom de paramétre : paraml

Valeur de paramétre : 5000

Nom de paramétre : param2

Valeur de paramétre : supervisor

Régle : DefaultApprover

Nom affiché : DefaultApprover

Description : null

Présentation utilisateur détaillée : approver = peer

Présentation utilisateur : approver = {0}

Nom de paramétre : param0

Valeur de paramétre : peer

Concepts associés

Exemple

Des exemples illustrent 1'utilisation possible des différentes classes pour l'extraction
des groupes de regles métier et pour I'apport de modifications a des ensembles de
régles et a des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 11 : Ajouter une nouvelle régle depuis un modele vers
un jeu de regles

Dans cet exemple, une nouvelle regle est ajoutée a un jeu de regles, a partir d’'un
modele. Avant la création de l'instance de regle, des parameétres sont définis pour
cette instance.

package com.ibm.websphere.sample.brules.mgmt;

import java.util.Arraylist;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;

import com.ibm.wbiserver.brules.mgmt.Operation;

import com.ibm.wbiserver.brules.mgmt.Parameter;

import com.ibm.wbiserver.brules.mgmt.ParameterValue;

import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

import com.ibm.wbiserver.brules.mgmt.ruleset.RuleBlock;

import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;

import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRuleTemplate;
import
com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetTemplateInstanceRule;

public class Examplell
itatic Formatter out = new Formatter();
static public String executeExamplell()
{try

out.clear();

140 Développement et déploiement

// Extraction d'un groupe de régles métier par nom et espace de nom
cible

List<BusinessRuleGroup> brglList = BusinessRuleManager
.getBRGsByTNSAndName (

"http://BRSamples/com/ibm/websphere

/sample/brules",

QueryOperator.EQUAL,

"ApprovalValues",

QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)

// Extraction du premier groupe de régles métier de la Tiste
// Cela doit étre le seul groupe de régles métier de Ta
liste car

// 1a combinaison de nom et d'espace de nom cible est

unique

BusinessRuleGroup brg = brgList.get(0);

// Extraction de 1'opération du groupe de régles métier qui comporte
// 1a régle métier qui sera modifiée lorsque Tes

// régles métier seront associées & une opération

// spécifique

Operation op = brg.getOperation("getApprover");

// Extraction de la régle métier pour 1'opération qui
sera modifiée

List<BusinessRule> rulelList =
op.getBusinessRulesByName (

"getApprover", QueryOperator.EQUAL, 0,0);

if (ruleList.size() > 0)

out.printin("");

out.printinBold("Jeu de régles avant publication:");

// Extraction de la régle a modifier. Les régles sont uniques par
// nom et espace de nom cible, mais cet exemple utilise

// une seule régle métier appelée

"getApprover"

RuleSet ruleSet = (RuleSet) ruleList.get(0);
out.print(RuleArtifactUtility.printRuleSet(rule

Set));

Pour ajouter une nouvelle regle au jeu de regles, le modéle approprié doit étre

identifié dans le jeu de régles et une instance doit étre créée a partir de ce modele.

Le modele peut étre localisé grace a son nom.

// Extraction de la Tiste des modéles de régles
ListRuleSetRuleTemplate> ruleTemplates =
ruleSet

.getRuleTemplates();

Iterator<RuleSetRuleTemplate> templatelterator
= ruleTemplates
.iterator();

while (templatelterator.hasNext())
{

RuleSetRuleTemplate template =
templatelterator.next();

// Localisation du modéle a utiliser pour créer une
nouvelle régle

if

(template.getName().equals("Template_Larg

eOrder"))

{

Chapitre 3. Guides et techniques de programmation

141

Pour une instance de modele, une liste de parametres doit étre créée.

// Création d'une liste pour Tes paramétres
de cette instance de régle

// modéle

List<ParameterValue> paramList =

new ArraylList<ParameterValue>();

// A partir de la définition de modéle,
extraction d'un paramétre spécifique
// et définition d'une valeur
Parameter param =
template.getParameter("param@");
ParameterValue paramValue = param
.createParameterValue("

20");

// Ajout d'un paramétre a la liste
paramList.add(paramValue);

// Extraction du paramétre suivant et définition
de Ta valeur

param = template.getParameter("paraml");
paramValue =

param.createParameterValue("7500");

// Ajout d'un paramétre a la liste
paramList.add(paramValue);

// Extraction du paramétre suivant et définition
de la valeur
param =
template.getParameter("param2");

paramValue = param

.createParameterValue("

Responsable de niveau 2");

// Ajout d'un paramétre a la liste
paramList.add(paramValue);

A partir des parametres créés, I'instance de modele peut étre créée.

// Création de 1'instance de régle

modéle avec la liste de

// paramétres
RuleSetTemplateInstanceRule
templateInstance = template
.createRuleFromTemplate
("ExtralLargeOrder",

paramList);

// Extraction du bloc de régles correspondant au jeu
de régles

RuleBlock ruleBlock =

ruleSet.getFirstRuleBlock();

Une fois l'instance de modele créée, elle peut étre ajoutée au bloc de regles. Elle
peut ensuite étre organisée parmi les autres instances de regle modele.

// Ajout de la régle de modéle au
bloc de régle
ruleBlock.addRule(templateInstance)

break;
}
}

// Utilisation de Ta Tiste d'origine ou création d'une nouvelle liste

142 Développement et déploiement

// de groupes de régles métier
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Ajout du groupe de régles métier modifié a la
liste
publishList.add(brg);

// Publication de 1a liste avec le groupe de régles métier
mis a jour
BusinessRuleManager.publish(publishList, true);

out.printTn("");

// Extraction des groupes de régles métier pour
s'assurer que

// les modifications ont été publiées
out.printinBold("Jeu de régles aprés publication:");

brgList = BusinessRuleManager

.getBRGsByTNSAndName (
"http://BRSamples/com/ibm/websphere
/sample/brules”,
QueryOperator.EQUAL,
"ApprovalValues",
QueryOperator.EQUAL, 0, 0);

brg = brglList.get(0);

op = brg.getOperation("getApprover");

ruleList = op.getBusinessRulesByName(
"getApprover", QueryOperator.EQUAL,
0, 0);

ruleSet = (RuleSet) rulelList.get(0);
out.print(RuleArtifactUtility.printRuleSet(rule
Set));
1
}
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.printin(e.getMessage());
}
return out.toString();
}
1

Exemple

Sortie du navigateur Web pour 'exemple 11.
Exécution de 1'exemple 11

Jeu de régles avant publication :

Jeu de régles

Nom : getApprover

Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules

Régle : LargeOrderApprover

Nom affiché : LargeOrderApprover

Description : null

Présentation utilisateur détaillée : Si Te nombre d'articles commandés excéde 10
et que la commande excéde 5 000 §, 1'approbation du superviseur est nécessaire
Présentation utilisateur : Si le nombre d'articles commandés excéde {0} et que
la commande excéde {1} §, 1'approbation du {2} est nécessaire

Nom du paramétre : param0

Valeur du paramétre : 10

Nom du paramétre : paraml

Chapitre 3. Guides et techniques de programmation 143

Valeur du paramétre : 5000

Nom du paramétre : param2

Valeur du paramétre : superviseur

Régle : DefaultApprover

Nom affiché : DefaultApprover

Description : null

Présentation utilisateur détaillée : approver = peer
Présentation utilisateur : approver = {0}

Nom du paramétre : param0

Valeur du paramétre : peer

Jeu de régles aprés publication :

Jeu de régles

Nom : getApprover

Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules

Régle : LargeOrderApprover

Nom affiché : LargeOrderApprover

Description : null

Présentation utilisateur détaillée : Si Te nombre d'articles commandés excéde 10
et que la commande excéde 5 000 $, 1'approbation du superviseur est nécessaire
Présentation utilisateur : Si Te nombre d'articles commandés excéde {0} et que
la commande excéde {1} §, 1'approbation du {2} est nécessaire

Nom du paramétre : param0

Valeur du paramétre : 10

Nom du paramétre : paraml

Valeur du paramétre : 5000

Nom du paramétre : param2

Valeur du paramétre : superviseur

Régle : DefaultApprover

Nom affiché : DefaultApprover

Description : null

Présentation utilisateur détaillée : approver = peer

Présentation utilisateur : approver = {0}

Nom du paramétre : param0

Valeur du paramétre : peer

Régle : ExtralLargeOrder

Nom affiché :

Description : null

Présentation utilisateur détaillée : Si le nombre d'articles commandés excéde 20
et que la commande excéde 7 500 $, 1'approbation du responsable de niveau 2 est nécessaire
Présentation utilisateur : Si le nombre d'articles commandés excéde {0} et que
la commande excéde {1} §, 1'approbation du {2} est nécessaire

Nom du paramétre : param0

Valeur du paramétre : 20

Nom du paramétre : paraml

Valeur du paramétre : 7500

Nom du paramétre : param?2

Valeur du paramétre : responsable de niveau 2

Concepts associés

Exemple

Des exemples illustrent 1'utilisation possible des différentes classes pour l'extraction
des groupes de regles métier et pour I'apport de modifications a des ensembles de
régles et a des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 12 : Modifier et publier un modeéle d’une table de
décision en changeant la valeur d’un paramétre

Dans cet exemple, une condition et une action (toutes deux définies avec des
modeles) sont modifiées dans une table de décision, en changeant les valeurs des
parametres avant publication.

144 Développement et déploiement

La méthode la plus simple pour modifier des conditions et des actions dans une
table de décision consiste a utiliser des noms uniques pour les modeles a chaque
niveau de condition et pour chaque action. Cela permet d’effectuer des recherches
sur les noms uniques, puis d’apporter des modifications aux instances de modele
définies a partir de ce modele. Lorsque des modifications sont apportées a une
instance d'un modele particulier, toutes les valeurs de condition définies avec ce
modele a ce niveau seront mises a jour. Pour les expressions d’action, chaque
instance est unique et les modifications apportées a une instance n’affectent pas les
autres instances.

Pour cet exemple, un certain nombre de méthodes supplémentaires ont été créées
pour simplifier la localisation d'un cas spécifique pour mise a jour, la recherche de
la valeur de parametre spécifique, et la recherche de l'expression d’action définie
avec un modele spécifique.

package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArraylList;
import java.util.Iterator;
import java.util.List;
import java.util.Vector;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;

import com.ibm.wbiserver.brules.mgmt.Operation;

import com.ibm.wbiserver.brules.mgmt.ParameterValue;

import com.ibm.wbiserver.brules.mgmt.Template;

import com.ibm.wbiserver.brules.mgmt.dtable.ActionNode;

import com.ibm.wbiserver.brules.mgmt.dtable.CaseEdge;

import com.ibm.wbiserver.brules.mgmt.dtable.ConditionNode;

import com.ibm.wbiserver.brules.mgmt.dtable.DecisionTable;

import com.ibm.wbiserver.brules.mgmt.dtable.TemplateInstanceExpression;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeAction;

import com.ibm.wbiserver.brules.mgmt.dtable.TreeBlock;

import
com.ibm.wbiserver.brules.mgmt.dtable.TreeConditionValueDefinition;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeNode;

import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Examplel2 {
static Formatter out = new Formatter();

static public String executeExamplel2()
{
try
{
out.clear();
// Extraction d'un groupe de régles métier par nom et espace de nom
cible
List<BusinessRuleGroup> brglList = BusinessRuleManager
.getBRGsByTNSAndName (
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ConfigurationValues",
QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)

{

// Extraction du premier groupe de régles métier de la liste
// Ce doit étre le seul groupe de régles métier de la

liste car

// les combinaisons nom/espace de nom sont

Chapitre 3. Guides et techniques de programmation 145

uniques
BusinessRuleGroup brg = brglList.get(0);

// Extraction de 1'opération du groupe de régles métier qui
// 1a régle métier qui sera modifiée lorsque les

// régles métier seront associées a une opération

// spécifique

Operation op = brg.getOperation("getMessages");

// Extraction de toutes les régles métier disponibles pour cette
opération

List<BusinessRule> rulelist =

op.getAvailableTargets();

// Pour cette opération, i1 n'existe qu'une seule régle métier
et
// i1 s'agit de celle que nous souhaitons mettre a jour
DecisionTable decisionTable = (DecisionTable)
rulelList.get(0);
out.printin("");
out.printinBold("Table de décision avant publication:");
out
.print(RuleArtifactUtility
.printDecisionTable(decisionT
able));

La regle, les conditions et les actions sont contenues dans une arborescence. Il est
possible d’extraire le noeud racine de 1’arborescence.

// Extraction de 1'arborescence contenant toutes les
conditions

// et les actions pour la table de décision

TreeBlock treeBlock = decisionTable.getTreeBlock();

// Dans 1'arborescence, extraction du noeud qui

constitue

// Te point de départ pour la navigation dans la table de
décision

TreeNode treeNode = treeBlock.getRootNode();

La condition a mettre a jour a été définie a partir d'un modéle appelé “Condition
Value Template 2.1”. La méthode getCaseEdge permet d’effectuer des recherches
récursives a partir du noeud jusqu’au niveau cas, afin de localiser le modele. Cette
méthode suppose que le niveau auquel le modele est défini soit connu, ainsi que le
niveau actuel. Elle peut étre utilisée pour rechercher le cas associé a un modele
donné, au cas ot un méme nom soit utilisé pour différents cas.

// Extraction du cas au niveau 1 sous la racine, associé

// & un modéle spécifique avec une valeur de paramétre portant un nom

// spécifique. Etant donné que nous partons d'en haut,

// 1a profondeur actuelle est 0

CaseEdge caseEdge = getCaseEdge(treeNode, "param@",
"Condition Value Template 2.1", 1, 0);

A partir du cas trouvé, il est possible d’extraire 1'objet
ConditionValueTemplateInstance pour la condition.

if (caseEdge != null)
{

// Cas localisé. Extraction de la
définition de valeur
// du cas
TreeConditionValueDefinition condition =

casekEdge

.getValueDefinition();
// Extraction de 1'expression de condition définie & 1'aide d'un
correspondant

146 Développement et déploiement

TemplateInstanceExpression conditionExpression
= condition
.getConditionValueTemplateInstance(

)s

Avec l'objet ConditionValueTemplatelnstance, la valeur de parametre appropriée
peut étre extraite, puis mise a jour a 'aide de la méthode getParameterValue.

// Extraction du modéle pour 1'expression
Template conditionTemplate =
conditionExpression

.getTemplate();

// Vérification du modéle car i1 est possible

d'avoir

// plusieurs modéles pour une valeur de condition,

mais un seul peut étre

// appliqué

if (conditionTemplate.getName().equals(
"Condition Value Template 2.1"))

{

// Extraction de la valeur de paramétre
ParameterValue parameterValue =
getParameterValue("param0",
conditionExpression);

// Définition de la nouvelle valeur de paramétre
parameterValue.setValue("info");

}

I1 est alors possible d’extraire les différentes expressions d’action définies a l'aide
de modeles, afin de les mettre a jour. La méthode getActionExpressions renvoie
toutes les actions définies avec le modeéle Action Value Template 1.

ConditionNode conditionNode = (ConditionNode)
treeNode;

// Extraction de 1'arborescence de cas
ListCaseEdge> caseEdges =
conditionNode.getCaseEdges();

// Création d'une liste contenant toutes Tes expressions
d'action qui devront

// également étre mises d& jour. Etant donné que chaque
action est

// indépendante des autres actions méme si elles partagent
le méme modéle,

// toutes les actions doivent étre mises a jour.
List<TemplatelnstanceExpression> expressions =

new Vector<TemplateInstanceExpression>();

// Extraction de toutes les expressions
pour (CaseEdge edge : caseEdges)
{
getActionExpressions("Action Value
Template 1", edge,
expressions);

}

Avec la liste des expressions d’action, chaque élément peut étre mis a jour. Pour les
expressions d’action définies a partir de modeéles, la valeur de parametre
appropriée peut étre mise a jour.

// Mise & jour du paramétre approprié dans chaque

expression

pour (TemplateInstanceExpression expression
expressions)

Chapitre 3. Guides et techniques de programmation 147

{
for (ParameterValue parameterValue :
expression
.getParameterValues())
{
// Vérification du paramétre
bien qu'il n'y ait
// qu'un seul paramétre dans
notre modéle
if
(parameterValue.getParameter().getN
ame().equals("param@")) {
String value =
parameterValue.getValue();
parameterValue.setValue("Info
+
value.substring(value.
index0f(":"),
value.length()));
1
}
}
// Une fois la valeur de condition et les actions
mises a jour, le
// groupe de régles métier peut étre publié.
// Utilisez la Tiste d'origine ou créez une liste de
// groupes de régles métier
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Ajout du groupe de régles métier modifié a la
liste
publishList.add(brg);

// Publication de l1a liste avec le groupe de régles métier
mis a jour
BusinessRuleManager.publish(publishList, true);

out.printin("");

// Extraction des groupes de régles métier pour
s'assurer que

// les modifications ont été publiées
out.printinBold("Table de décision aprés
publication:");

brglList =
BusinessRuleManager.getBRGsByTNSAndName (
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ConfigurationValues",
QueryOperator.EQUAL, 0, 0);

brg = brglList.get(0);
op = brg.getOperation("getMessages");
ruleList = op.getAvailableTargets();

decisionTable = (DecisionTable)

ruleList.get(0);

out.print(RuleArtifactUtility
.printDecisionTable(decisionTable))
1

1

} catch (BusinessRuleManagementException e)

148 Développement et déploiement

{
e.printStackTrace();
out.printin(e.getMessage());
1
return out.toString();

}
/*

Méthode permettant de naviguer de facon récursive dans une table de décision et de
localiser un cas associé & un modéle portant un nom spécifique et contenant un
paramétre spécifique a modifier. Cette méthode suppose que le niveau (depth) auquel
se trouve Ta valeur a modifier dans Ta table de décision est connu, et que
le niveau actuel (currentDepth) est connu aussi *
*/
static private CaseEdge getCaseEdge(TreeNode node, String pName,
String templateName, int depth, int currentDepth)
{
// Vérification de 1'activité du noeud actuel. Ceci indique que
// cette branche de 1a table de décision a été entiérement analysée dans le cadre
// de Ta recherche de cas
if (node instanceof ActionNode)
{
return null;

}

// Extraction des cas pour ce noeud

List<CaseEdge> caseEdges = ((ConditionNode) node).getCaseEdges();
for (CaseEdge caseEdge : caseEdges)

{

// Vérification afin de savoir si le niveau approprié a été atteint
if (currentDepth < depth)

// Descente d'un niveau et appel de getCaseEdge
pour

// traiter ce niveau

currentDepth++;

return getCaseEdge(caseEdge.getChildNode(), pName,
templateName, depth, currentDepth);

} else

// Le niveau approprié a été atteint. Extraction

de la condition pour

// vérifier si les modéles de cette condition

correspondent

// au modéle recherché

TreeConditionValueDefinition condition = caseEdge
.getValueDefinition();

// Extraction de 1'expression pour la condition qui a
été définie
// avec un modéle
TemplatelnstanceExpression expression = condition
.getConditionValueTemplateInstance();
// Extraction du modéle dans 1'expression
Template template = expression.getTemplate();

// Vérification afin de déterminer si le modéle trouvé est bien celui recherché
if (template.getName().equals(templateName))
{
// Le modéle trouvé est bien celui recherché

return caseEdge;

} else
caseEdge = null;

1

}

return null;

Chapitre 3. Guides et techniques de programmation 149

}
/*

Cette méthode permet de rechercher une expression dans les différentes valeurs de

paramétre et si cette expression est trouvée, de renvoyer la valeur de paramétre

concernée.

*/

private static ParameterValue getParameterValue(String pName,
TemplateInstanceExpression expression)

{

// Vérification pour s'assurer que 1'expression n'est pas nulle, car une valeur
// nulle indiquerait que 1'expression qui a été transmise n'a probablement pas
// été définie avec un modéle et qu'il n'y a donc aucun paramétre a // vérifier.
if (expression != null) {
// Extraction des valeurs de paramétre pour 1'expression
List<ParameterValue> parameterValues = expression
.getParameterValues();

for (ParameterValue parameterValue : parameterValues)

// Vérification pour s'assurer que les différents paramétres
correspondent a la valeur
// de paramétre recherchée

if
(parameterValue.getParameter().getName().equals(pName
)
{
// Retour de Ta valeur de paramétre appropriée
return parameterValue;
}

}
}
return null;
}
/*
Cette méthode permet de trouver toutes Tes expressions d'action définies
avec un modéle spécifique. Elle fonctionne de maniére récursive
et ajoute Tes expressions d'action qui correspondent au
paramétre d'expression.

*/

private static void getActionExpressions(String templateName,
CaseEdge next, List<TemplatelInstanceExpression>
expressions)

ActionNode actionNode = null;
TreeNode treeNode = next.getChildNode();

// Vérification de 1'activité du noeud actuel.
if (treeNode instanceof ConditionNode)

{
List<CaseEdge> caseEdges = ((ConditionNode) treeNode)
.getCaseEdges();

Iterator<CaseEdge> caseEdgesIterator =
caseEdges.iterator();

// Analyse de tous les cas pour trouver les expressions

// d'action
while (caseEdgesIterator.hasNext())
{

getActionExpressions(templateName,
caseEdgesIterator.next(),
expressions);

} else {

150 Développement et déploiement

// ActionNode trouvé
actionNode = (ActionNode) treeNode;

List<TreeAction> treeActions = actionNode.getTreeActions();

// Vérification de la présence d'au moins un élément treeAction
pour

// 1'expression et analyse des expressions pour vérifier

// si elles ont été définies avec le modéle spécifique

// indiqué.

if (!treeActions.isEmpty())

{

Iterator<TreeAction> iterator =
treeActions.iterator();

while (iterator.hasNext())
{

TreeAction treeAction = iterator.next();
TemplateInstanceExpression expression =
treeAction

.getValueTemplatelnstance();

Template template = expression.getTemplate();
if (template.getName().equals(templateName))

// Expression trouvée avec modéle
correspondant
expressions.add(expression);

Exemple

Sortie du navigateur Web pour 'exemple 12.
Exécution de 1'exemple 12

Jeu de régles avant publication :

Table de décision

Nom : getMessages

Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules

Table de décision aprés publication :

Table de décision

Nom : getMessages

Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules

Concepts associés

Exemple

Des exemples illustrent 1'utilisation possible des différentes classes pour I'extraction
des groupes de regles métier et pour I'apport de modifications a des ensembles de
régles et a des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 13 : Ajout d’une valeur de condition et d’actions dans
une table de décision

Dans cet exemple, une valeur de condition et une action vont étre ajoutées a une
table de décision. Pour ajouter une valeur de condition a une table de décision,
vous pouvez utiliser un modele.

Chapitre 3. Guides et techniques de programmation 151

Lorsque vous ajoutez une valeur de condition a un noeud de condition, vous
ajoutez un cas. Ce nouveau cas est ajouté a la fin de la liste de cas. Pour la valeur
de condition, vous devez spécifier une expression d’instance de modele qui
présente les valeurs de parameétre appropriées. Pour spécifier 1’expression
d’instance de modele, vous devez utiliser un modele spécifique. Il est recommandé
de choisir des noms uniques pour les modeles a chaque niveau de noeud de
condition, afin de pouvoir retrouver les modeles appropriés pour chaque type de
condition. Si une définition de modéle unique est utilisée, il peut s’avérer difficile
de déterminer le niveau auquel la condition est ajoutée.

Lorsque vous définissez une valeur de condition pour un noeud de condition,
vous ajoutez une valeur de condition avec la méme instance de modele pour tous
les noeuds de condition de méme niveau. Cela est effectué dans le cadre de
I'équilibrage de la table de décision. Lorsqu’une valeur de condition est ajoutée, de
nouveaux noeuds d’action sont également ajoutés. Ces noeuds d’action comportent
trois actions, qui ont des valeurs null pour la présentation utilisateur et pour
I'expression d’instance de modéle. Etant donné que la valeur de condition peut
étre ajoutée a un noeud de condition qui n’a pas de noeud d’action en tant que
noeud enfant, I'ajout d’'un noeud de condition peut entrainer la création d’un
grand nombre de noeuds d’action. Le nombre de noeuds d’action est basé sur le
niveau auquel le noeud de condition est ajouté, et sur le nombre de noeuds de
condition a ce niveau ainsi que sur le niveau et le nombre de noeuds de condition
au niveau enfant.

Pour localiser les noeuds d’action qui ont été créés, vous pouvez effectuer une
recherche sur les noeuds d’action avec des actions d’arborescence qui ont des
valeurs null pour les présentations utilisateur et les expressions d’instance de
modele. La méthode TreeActionValueTemplate peut étre utilisée pour créer une
expression qui peut étre définie dans TreeAction. Cette opération doit étre répétée
pour tous les nouveaux noeuds d’action.

Dans cet exemple, deux méthodes sont fournies pour définir les nouvelles actions
d’arborescence. La méthode getEmptyActionNode permet de rechercher de fagon
récursive un noeud d’action vide a partir du noeud de condition en cours et la
méthode getParameterValue permet de renvoyer la valeur d'un parametre qui a été
spécifié par son nom.

package com.ibm.websphere.sample.brules.mgmt;

import java.util.Arraylist;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;

import com.ibm.wbiserver.brules.mgmt.Operation;

import com.ibm.wbiserver.brules.mgmt.Parameter;

import com.ibm.wbiserver.brules.mgmt.ParameterValue;

import com.ibm.wbiserver.brules.mgmt.Template;

import com.ibm.wbiserver.brules.mgmt.ValidationException;

import com.ibm.wbiserver.brules.mgmt.dtable.ActionNode;

import com.ibm.wbiserver.brules.mgmt.dtable.CaseEdge;

import com.ibm.wbiserver.brules.mgmt.dtable.ConditionNode;

import com.ibm.wbiserver.brules.mgmt.dtable.DecisionTable;

import com.ibm.wbiserver.brules.mgmt.dtable.TemplateInstanceExpression;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeAction;

import com.ibm.wbiserver.brules.mgmt.dtable.TreeActionTermDefinition;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeActionValueTemplate;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeBlock;

152 Développement et déploiement

import com.ibm.wbiserver.brules.mgmt.dtable.TreeConditionValueTemplate;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeNode;

import com.ibm.wbiserver.brules.mgmt.problem.Problem;

import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Examplel3

{

static Formatter out = new Formatter();

static public String executeExamplel3()

{
try

out.clear();

// Extraction d'un groupe de régles métier par nom et espace de nom
// cible
List<BusinessRuleGroup> brglList = BusinessRuleManager
.getBRGsByTNSAndName (
"http://BRSamples/com/ibm/websphere/sample/brules",
QueryOperator.EQUAL, "ConfigurationValues",
QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)
{
// Extraction du premier groupe de régles métier de la
// Tiste. Ce doit étre le seul groupe de régles métier
// de la liste car les combinaisons nom/espace
// de nom sont uniques
BusinessRuleGroup brg = brglList.get(0);

// Extraction de 1'opération du groupe de régles métier
// qui comporte Ta régle métier qui sera

// modifiée lors de 1'association des régles métier

// avec une opération spécifique

Operation op = brg.getOperation("getMessages");

// Extraction de toutes les régles métier disponibles pour
// cette opération

List<BusinessRule> rulelist =

op.getAvailableTargets();

// Pour cette opération, il n'existe qu'une seule régle
// métier et il s'agit de celle que nous souhaitons
// mettre & jour

DecisionTable decisionTable = (DecisionTable)
ruleList.get(0);
out.printinBold("Table de décision avant
publication:");
out.print(RuleArtifactUtility
.printDecisionTable(decisionTable));

Vous devez localiser le niveau auquel la valeur de condition va étre ajoutée. Cette
information est généralement transmise en tant que parametre, afin que l'interface

utilisateur ou l'application qui utilise les classes sache ol ajouter la condition.

// Extraction du bloc d'arborescence contenant toutes les
// conditions et les actions pour la table de

// décision

TreeBlock treeBlock =

decisionTable.getTreeBlock();

// Dans le bloc d'arborescence, extraction du noeud qui
// constitue Te point de départ pour la navigation dans
// la table de décision

ConditionNode conditionNode = (ConditionNode)

Chapitre 3. Guides et techniques de programmation

153

treeBlock.getRootNode();

// Extraction des cas pour ce noeud, qui est
// le premier niveau de conditions
List<CaseEdge> caseEdges =
conditionNode.getCaseEdges();

// Extraction du cas auquel la nouvelle condition
// sera ajoutée
CaseEdge caseEdge = caseEdges.get(0);

// Pour le cas, extraction du noeud de condition afin

// d'extraire les modéles pour la

// condition

conditionNode = (ConditionNode)
caseEdge.getChildNode();

// Extraction des modéles pour la condition

List<TreeConditionValueTemplate>
treeValueConditionTemplates = conditionNode
.getAvailableValueTemplates();

Iterator<TreeConditionValueTemplate>
treeValueConditionTemplatelterator =
treeValueConditionTemplates.iterator();

TreeConditionValueTemplate conditionTemplate =
null;

En utilisant des noms de modele uniques pour chaque niveau de noeud de
condition dans la table de décision, vous pouvez vous assurer que la valeur de
condition est ajoutée au noeud de condition approprié.

// Recherche du modéle a utiliser
while
(treeValueConditionTemplatelterator.hasNext())
{
conditionTemplate =
treeValueConditionTemplatelterator
.next();
if (conditionTemplate.getName().equals(
"Condition Value Template
2.1"))
{
// Modéle trouvé
break;

conditionTemplate = null;

}

if (conditionTemplate != null)

{

Une fois que vous avez trouvé le modele approprié, une instance peut étre créée et
la valeur de parametre appropriée peut étre définie avant ’ajout au noeud de
condition.

// Extraction de la définition de paramétre a partir
// du modéle

Parameter conditionParameter =
conditionTemplate.getParameter("paramd");

// Création d'une instance de valeur de paramétre a

// utiliser dans une nouvelle instance de modéle

// de condition

ParameterValue conditionParameterValue =
conditionParameter
.createParameterValue("fatal");

154 Développement et déploiement

List<ParameterValue>
conditionParameterValues = new
ArraylList<ParameterValue>();

// Ajout de la valeur de paramétre a une liste

conditionParameterValues
.add(conditionParameterValue);

// Création d'une instance de modéle de condition
// avec cette valeur de paramétre
TemplateInstanceExpression

newConditionValue =

conditionTemplate

.createTemplateInstanceExpression(c

onditionParameterValues);
// Ajout de 1'instance de modéle de condition a
// ce noeud de condition
conditionNode

.addConditionValueToThisLevel (newConditionValue);
// Lorsqu'un noeud de condition est ajouté,

// de nouveaux noeuds d'action vides sont

// créés. I1 faut ensuite leur ajouter des

// instances de modéle d'action. En exécutant

// une recherche sur les noeuds d'action vides

// & partir du niveau parent, vous pouvez localiser
// tous les nouveaux noeuds d'action vides.
conditionNode = (ConditionNode)
conditionNode.getParentNode();

Une fois la valeur de condition ajoutée au noeud de condition, les actions
d’arborescence dans les nouveaux noeuds d’action doivent étre définies via la
méthode TreeActionValueTemplate. Tous d’abord, vous devez localiser le noeud
d’action vide pour chaque cas. Utilisez le noeud de condition parent pour vous
assurer que, lors des itérations dans les différents noeuds de condition, vous
récupérerez tous les noeuds d’action.

// Extraction des cas pour le noeud parent
caseEdges = conditionNode.getCaseEdges();

Iterator<CaseEdge> caseEdgesIterator =
caseEdges.iterator();

while (caseEdgesIterator.hasNext())
{
// Pour chaque cas, extraction d'un
// noeud d'action vide s'il en existe un
ActionNode actionNode =
getEmptyActionNode (caseEdgesIterator
.next());

// Vérification pour s'assurer que toutes les actions sont remplies
if (actionNode != null)

{

Lorsqu'un noeud d’action avec des actions d’arborescence vides est localisé,
I'action d’arborescence doit étre définie via la méthode TreeActionValueTemplate.
Tout d’abord, localisez le modele, puis spécifiez les parametres avant de créer une
instance de modele. Une fois l'instance de modele créée, I’action d’arborescence
peut étre mise a jour. Pour cet exemple, le parametre a été défini sur une valeur
issue d’une autre action d’arborescence d’un autre noeud d’action, sous le méme
noeud de condition. Pour les autres tables de décision pour lesquelles une autre
action d’arborescence n’aura peut-étre pas une valeur susceptible d’étre utilisée

Chapitre 3. Guides et techniques de programmation 155

pour créer les nouvelles valeurs de parametre, cette valeur devra étre transmise en
tant que parametre a partir de 1’application.

// Extraction de la liste

// d'actions d'arborescence. I1 ne

// s'agit pas des actions

// elles-mémes, mais

// des marques de

// réservation

List<TreeAction>

treeActionlList = actionNode
.getTreeActions();

List<TreeActionTermDefinition>
treeActionTermDefinitions =
treeBlock
.getTreeActionTermDefinitions();

List<TreeActionValueTemplate>
treeActionValueTemplates =
treeActionTermDefinitions
.get(0).getValueTemplates();

TreeActionValueTemplate
actionTemplate = null;

for (TreeActionValueTemplate
tempActionTemplate :
treeActionValueTemplates)

{

if
(tempActionTemplate.get
Name () .equals(

"Action Value

Template 1"))

{

actionTemplate =
tempActionTemplate;
break;

}

}

if (actionTemplate != null)
{
// Extraction d'une autre action
// qui se trouve sous
// 1e noeud de condition
// parent afin
// d'utiliser la valeur comme
// base pour le
// message d'erreur dans
// e nouveau
// noeud d'action. Remontez
// d'abord jusqu'au
// noeud de condition
// parent
ConditionNode
parentNode =
(ConditionNode)
actionNode
.getParentNode();

// Extraction du premier
// cas du noeud

// parent, car cette

// action sera

156 Développement et déploiement

// remplie au fur et a mesure

// de 1'ajout de nouvelles

// actions & la fin

// de la liste de

// cas.

CaseEdge caseE =
parentNode.getCas
eEdges () .get(

0);

// Le noeud enfant est un
// noeud d'action

// et se trouve au méme
// niveau que le nouveau
// noeud d'action.
ActionNode aNode =
(ActionNode) caseE

.getChildNode();

// Extraction de la Tiste d'actions
// d'arborescence
TreeAction

existingTreeAction =

aNode

.getTreeActions()

.get(0);

// Extraction de 1'expression
// d'instance

// de modéle pour

// 1'action d'arborescence

// & partir de laquelle

// vous pouvez extraire le

// paramétre

TemplateInstanceExpression

existingExpression =
existingTreeAction
.getValueTemplatelnstance();

ParameterValue
existingParameterValue =
getParameterValue(
"param@",
existingExpression);

String actionValue =
existingParameterValue
.getValue();

// Création du nouveau
// message a partir du
// message de
// 1'action d'arborescence
// 1'action d'arborescence
actionValue = "Fatal"
+
actionValue.substring(actionValue
.index0f(":"), actionValue
.length());
Parameter
actionParameter =
actionTemplate
.getParameter("param0");

// Extraction du paramétre
// & partir du modéle

Chapitre 3. Guides et techniques de programmation

157

ParameterValue
actionParameterValue =
actionParameter
.createParameterValue(actionValue);

// Ajout du paramétre a

// une Tiste de modéles
List<ParameterValue>
actionParameterValues = new
ArraylList<ParameterValue>();

actionParameterValues.add(actionParameterValue);

// Création d'une nouvelle
// instance d'action d'arborescence

TemplateInstanceExpression
treeAction = actionTemplate
.createTemplatelnstanceExpression(actionParameterValues);

// Définition de 1'action d'arborescence
// dans le noeud d'action

// en la définissant dans la

// liste d'actions d'arborescence

Ici, 'action d’arborescence dans le noeud d’action est mise a jour.

treeActionList.get(0)
.setValueTemplateInstance(
treeAction);
1
}
1
1
// Une fois la valeur de condition et les actions
// mises a jour, le groupe de régles métier peut étre
// publié.
// Utilisez la liste d'origine ou créez une nouvelle liste
// de groupes de régles métier
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Ajout du groupe de régles métier modifié a la
// liste
publishList.add(brg);

// Publication de la liste contenant le groupe de régles
// métier mis a jour

BusinessRuleManager.publish(publishList, true);

brglList =
BusinessRuleManager.getBRGsByTNSAndName (
"http://BRSamples/com/ibm/websphere/sample/brules",
QueryOperator.EQUAL, "ConfigurationValues",
QueryOperator.EQUAL, 0, 0);
brg = brglList.get(0);
op = brg.getOperation("getMessages");
ruleList = op.getAvailableTargets();
decisionTable = (DecisionTable)
ruleList.get(0);
out.printinBold("Table de décision aprés
publication:");
out
.print(RuleArtifactUtility
.printDecisionTable(decisionTable));
}

158 Développement et déploiement

} catch (ValidationException e)
List<Problem> problems = e.getProblems();

out.printin("Incident = " +
problems.get(0).getErrorType().name());

e.printStackTrace();
out.printin(e.getMessage());
} catch (BusinessRuleManagementException e)

e.printStackTrace();
out.printin(e.getMessage());
}

return out.toString();

}

*

Cette méthode permet de rechercher le cas actuel pour tous

les noeuds d'action qui ont des actions d'arborescence vides. Pour trouver
un noeud d'action vide, vous devez examiner la fin de Ta liste

de cas et vérifier si le noeud d'action comporte des actions d'arborescence
qui ont des présentations utilisateur et des expressions
TemplateInstanceExpression nulles.

EE T B

*/

private static ActionNode getEmptyActionNode(CaseEdge next)
{

ActionNode actionNode = null;

TreeNode treeNode = next.getChildNode();

if (treeNode instanceof ConditionNode)

{

List<CaseEdge> caseEdges = ((ConditionNode) treeNode)
.getCaseEdges();

if (caseEdges.size() > 1)

// Extraction du cas situé complétement a droite en tant que
// nouvelle condition. Les actions vides se situent donc complétement & droite
// des cas
actionNode = getEmptyActionNode(caseEdges
.get(caseEdges.size() - 1));

if (actionNode != null)

{

return actionNode;
}
1

} else

{

actionNode = (ActionNode) treeNode;

List<TreeAction> treeActions =
actionNode.getTreeActions();

if (!treeActions.isEmpty())

{

if

((treeActions.get(0).getValueUserPresentation() == null)
&&

(treeActions.get(0).getValueTemplatelnstance() == null))

return actionNode;
}
}

“actionNode = null;

}

Chapitre 3. Guides et techniques de programmation 159

return actionNode;
}
/*
* Cette méthode permet de rechercher une expression dans les différentes valeurs
* de paramétre et si cette expression est trouvée, de renvoyer la valeur de
* paramétre concernée.
*
/
private static ParameterValue getParameterValue(String pName,
TemplateInstanceExpression expression)

{

ParameterValue parameterValue = null;

// Vérification pour s'assurer que 1'expression n'est pas nulle,
// car une valeur nulle indiquerait

// que 1'expression qui a été transmise n'a probablement pas &té
// définie avec un modéle et qu'il n'y a donc aucun

// paramétre a vérifier.

if (expression != null)

// Extraction des valeurs de paramétre pour 1'expression
List<ParameterValue> parameterValues = expression
.getParameterValues();
Iterator<ParameterValue> parameterlterator =
parameterValues
.iterator();

// Vérification pour s'assurer que les différents paramétres
// correspondent a la valeur de paramétre recherchée
while (parameterIterator.hasNext())

{

parameterValue = parameterIterator.next();

if
(parameterValue.getParameter().getName().equals(pName))

// Retour de Ta valeur de paramétre
// appropriée
return parameterValue;
1
}

1

return parameterValue;

1

1

Exemple

Sortie du navigateur Web pour 'exemple 13.
Exécution de 1'exemple 13

Table de décision avant publication :

Table de décision

Nom : getMessages

Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules

Table de décision aprés publication :

Table de décision

Nom : getMessages

Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules

160 Développement et déploiement

Concepts associés

Des exemples illustrent 1'utilisation possible des différentes classes pour l'extraction
des groupes de regles métier et pour 'apport de modifications a des ensembles de
régles et a des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 14 : Gestion des erreurs dans un jeu de regles

Cet exemple explique comment identifier des incidents dans un jeu de regles et
déterminer la nature de l'incident, afin d’afficher le message approprié ou de
mettre en oeuvre l’action nécessaire pour corriger la situation.

package com.ibm.websphere.sample.brules.mgmt;

import java.util.Arraylist;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;

import com.ibm.wbiserver.brules.mgmt.Operation;

import com.ibm.wbiserver.brules.mgmt.ParameterValue;

import com.ibm.wbiserver.brules.mgmt.ValidationException;

import com.ibm.wbiserver.brules.mgmt.problem.Problem;

import
com.ibm.wbiserver.brules.mgmt.problem.ProblemStartDateAfterEndDate;
import com.ibm.wbiserver.brules.mgmt.problem.ValidationError;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

import com.ibm.wbiserver.brules.mgmt.ruleset.RuleBlock;

import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;

import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRule;

import
com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetTemplateInstanceRule;

public class Exampleld {
static Formatter out = new Formatter();
static public String executeExampleld() {

try {
out.clear();

// Extraction d'un groupe de régles métier par nom et espace de nom
cible
List<BusinessRuleGroup> brglList = BusinessRuleManager
.getBRGsByTNSAndName (
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ApprovalValues",
QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0) {
// Extraction du premier groupe de régles métier de la Tiste
// Cela doit étre le seul groupe de régles métier de la
liste car
// les combinaisons nom/espace de nom sont
uniques
BusinessRuleGroup brg = brglList.get(0);
out.printin("Groupe de régles métier extrait");

// Extraction de 1'opération du groupe de régles métier qui
// comporte la régle métier qui sera modifiée lorsque les

Chapitre 3. Guides et techniques de programmation 161

// régles métier seront associées a une opération
// spécifique
Operation op = brg.getOperation("getApprover");

// Extraction d'une régle spécifique par son nom
List<BusinessRule> rulelList =
op.getBusinessRulesByName (

"getApprover", QueryOperator.EQUAL, 0O,

0);

// Extraction de la régle spécifique
RuleSet ruleSet = (RuleSet) rulelList.get(0);
out.printin("Jeu de régles extrait");

RuleBlock ruleBlock = ruleSet.getFirstRuleBlock();

Iterator<RuleSetRule> rulelterator =
ruleBlock.iterator();

// Recherche de la régle a

modifier

while (rulelterator.hasNext()) {
RuleSetRule rule = rulelterator.next();

// Vérification pour s'assurer que la régle a été définie avec un
modéle
// afin de permettre les modifications.
if (rule instanceof
RuleSetTemplateInstanceRule) {
// Extraction de 1'instance de régle du modéle
RuleSetTemplateInstanceRule
templatelInstance =
(RuleSetTemplateInstanceRule) rule;
// Vérification pour s'assurer qu'il s'agit de 1'instance de régle de modéle
appropriée
if (templateInstance.getName().equals(
"LargeOrderApprover")) {

Pour provoquer un incident, cet exemple définir pour un parametre une valeur qui
n’est pas valide pour I'expression. En effet, le parametre attend un entier, mais une
chaine est spécifiée.
// Extraction du paramétre de 1'instance de
modéle
ParameterValue parameter =
templatelnstance
.getParameterValue("par
aml");

// Définition d'une valeur incorrecte pour ce
paramétre
// Cela provoque une erreur de
validation
parameter.setValue("3500 $");
out.printin("Valeur incorrecte saisie
pour un paramétre");
break;
1
}
1
// I1 n'est pas possible d'accéder & ce code en raison
de T'erreur
// introduite
// ci-dessus

// Une fois la valeur de condition et les actions mises a jour, le
groupe de

162 Développement et déploiement

// régles

// métier peut étre publié.

// Utilisez la liste d'origine ou créez une nouvelle liste
// de groupes de régles métier

List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Ajout du groupe de régles métier modifié & la liste
publishList.add(brg);

// Publication de la liste avec le groupe de régles métier
mis a jour
BusinessRuleManager.publish(publishList, true);

}

Une erreur ValidationException est émise et a partir de cette exception, les
incidents peuvent étre extraits. Pour chaque incident, il est alors possible de

déterminer la nature de l’erreur. Un message peut étre imprimé ou une action

approprié peut étre exécutée.

} catch (ValidationException e) {
out.printin("Erreur de validation");

List<Problem> problems = e.getProblems();
Iterator<Problem> problemIterator = problems.iterator();

// Recherche de 1'erreur concernée dans la liste des incidents et
// exécution de 1'action appropriée (signaler 1'erreur, corriger
// 1'erreur, etc.)
while (problemIterator.hasNext()) {

Problem problem = problemIterator.next();

ValidationError error = problem.getErrorType();

// ldentification de la valeur de 1'erreur
if (error == ValidationError.TYPE_CONVERSION_ERROR) {
// Gestion de 1'erreur en signalant
1'incident
.printIn("Incident : Valeur incorrecte
saisie pour un paramétre");
return out.toString();
1
/] else if....
// Possibilité de rechercher d'autres erreurs et d'imprimer
// 1e message correspondant ou d'exécuter 1'action
appropriée pour
// corriger la situation
}
} catch (BusinessRuleManagementException e) {
out.printin("Erreur");
e.printStackTrace();
1
return out.toString();
1
1

Exemple

Sortie du navigateur Web pour 'exemple 14.
Exécution de 1'exemple 14

Groupe de régles métier extrait

Jeu de régles extrait

Erreur de validation

Incident : Valeur incorrecte saisie pour un paramétre

Chapitre 3. Guides et techniques de programmation

163

Concepts associés

Des exemples illustrent 1'utilisation possible des différentes classes pour l'extraction
des groupes de regles métier et pour I'apport de modifications a des ensembles de
régles et a des tables de décisions. Ces exemples sont regroupés au sein d’'un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 15 : Gestion des erreurs dans un groupe de regles
métier

Cet exemple est similaire a 1’exemple 14, car il montre comment gérer les incidents
qui peuvent se produire lors de la publication d’un groupe de regles métier. Il
montre comment déterminer la nature de l'incident afin d’imprimer le message
correspondant ou d’exécuter I'action appropriée.

package com.ibm.websphere.sample.brules.mgmt;

import java.util.Arraylist;
import java.util.Date;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;

import com.ibm.wbiserver.brules.mgmt.Operation;

import com.ibm.wbiserver.brules.mgmt.OperationSelectionRecord;
import com.ibm.wbiserver.brules.mgmt.OperationSelectionRecordList;
import com.ibm.wbiserver.brules.mgmt.ParameterValue;

import com.ibm.wbiserver.brules.mgmt.ValidationException;

import com.ibm.wbiserver.brules.mgmt.problem.Problem;

import
com.ibm.wbiserver.brules.mgmt.problem.ProbTemStartDateAfterEndDate;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

import com.ibm.wbiserver.brules.mgmt.ruleset.RuleBlock;

import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;

import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRule;

import
com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetTemplateInstanceRule;

public class Examplelb

{

static Formatter out = new Formatter();

static public String executeExamplel5()
{

try

{

out.clear();

// Extraction d'un groupe de régles métier par nom et espace de nom
cible
List<BusinessRuleGroup> brglList = BusinessRuleManager
.getBRGsByTNSAndName (

"http://BRSamples/com/ibm/websphere

/sample/brules",

QueryOperator.EQUAL,

"ApprovalValues",

QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)

// Extraction du premier groupe de régles métier de la Tiste
// Cela doit étre le seul groupe de régles métier de Ta
liste car

164 Développement et déploiement

// 1a combinaison de nom et d'espace de nom cible est
unique

BusinessRuleGroup brg = brglList.get(0);
out.printin("Groupe de régles métier extrait");

// Extraction de 1'opération du groupe de régles métier qui comporte
// 1a régle métier qui sera modifiée lorsque les

// régles métier seront associées a une opération

// spécifique

Operation op = brg.getOperation("getApprover");

// Extraction d'une régle spécifique par son nom
List<BusinessRule> rulelist =
op.getBusinessRulesByName (

"getApprover", QueryOperator.EQUAL, 0,

0);

// Extraction de la régle spécifique
RuleSet ruleSet = (RuleSet) rulelList.get(0);
out.printin("Jeu de régles extrait");

RuleBlock ruleBlock = ruleSet.getFirstRuleBlock();

Iterator<RuleSetRule> rulelterator =
ruleBlock.iterator();

// Recherche de la régle a
modifier

while (rulelterator.hasNext())
{

RuleSetRule rule = rulelterator.next();

// Vérification pour s'assurer que la régle a été définie avec un
modéle

// afin de permettre les modifications.

if (rule instanceof
RuleSetTemplateInstanceRule)

{

// Extraction de 1'instance de régle du modéle
RuleSetTemplateInstanceRule

templatelnstance =

(RuleSetTemplateInstanceRule) rule;

// Vérification pour s'assurer qu'il s'agit de 1'instance de régle de modéle

appropriée
if (templatelInstance.getName().equals(
"LargeOrderApprover"))
{
// Extraction du paramétre de 1'instance de
modéle
ParameterValue parameter =
templatelnstance
.getParameterValue("par
aml");

// Définition de la valeur de ce paramétre

// Cette valeur est au format

approprié et ne

// provoquera pas d'erreur de validation
parameter.setValue("4000");

out.printin("Valeur de paramétre de jeu de régle
définie correctement");

break;

}

Chapitre 3. Guides et techniques de programmation

165

Pour vérifier si un jeu de regles est correct, vous pouvez appeler la méthode
validate. La méthode validate est disponible pour tous les objets et renvoie une
liste d’incidents permettant d’identifier les erreurs. Lorsque vous appelez la
méthode validate pour un objet, elle est également exécutée pour tous les
sous-objets qu’il contient.

// Vérification des modifications apportées au jeu de régles
List<Problem> problems = ruleSet.validate();
out.printin("Jeu de régles validé");

// Normalement, ce jeu d'essai ne contient aucune erreur,
// mais recherchez quand méme les éventuels problémes, puis
// prenez les mesures nécessaires pour corriger ou signaler
// 1'erreur

if (problems != null)

Iterator<Problem> problemlIterator =
problems.iterator();

while (problemIterator.hasNext())
{

Problem problem = problemIterator.next();

if (problem instanceof
ProblemStartDateAfterEndDate)
{
out
.printIn("valeur
incorrecte saisie pour un
paramétre");
return out.toString();
1
1

} else

out.printin("Aucun incident détecté pour Te jeu de
régles");

}

// Extraction de la liste des régles cible disponibles
List<BusinessRule> rulelList2 =
op.getAvailableTargets();

// Extraction de la premiére régle planifiée
1'é1ément comportant une
BusinessRule rule = rulelList2.get(0);

// Pour créer une condition d'erreur, nous allons définir 1'heure de fin
d'une régle

// planifiée 1 heure avant 1'heure de début

// Cela provoque une erreur de validation

Date future = new Date();

long futureTime = future.getTime() - 360000;

// Extraction de la liste de sélection d'opération pour ajouter
1'élément comportant une

// erreur de planification

OperationSelectionRecordList opList = op
.getOperationSelectionRecordList();

// Création d'une nouvelle instance de régle planifiée
// Aucune erreur n'est renvoyée jusqu'a la validation ou la publication,
// car d'autres modifications peuvent étre apportées
OperationSelectionRecord newRecord = oplList
.newOperationSelectionRecord(new Date(),
new Date(
futureTime), rule);

166 Développement et déploiement

Lorsque I'enregistrement est ajouté avec des dates incorrectes, aucune erreur n’est
renvoyée. Des chevauchements peuvent se produire ou aucun enregistrement de
sélection n’est défini pour 1'opération, tandis que des modifications sont en cours.

L’erreur sera identifiée lors de la publication du groupe de regles métier

comportant 1'enregistrement de sélection d’opération en question. La méthode

validate est appelée avant la publication des objets et des exceptions sont émises si

des erreurs sont identifiées.

// Ajout de 1'instance de régle planifiée & 1'opération

// Aucune erreur identifiée
opList.addOperationSelectionRecord(newRecord);
out.printin("Nouvel enregistrement de sélection ajouté avec
une planification incorrecte");

// Une fois la valeur de condition et les actions mises a jour, le
groupe

// de régles

// métier peut &tre publié.

// Utilisez la Tiste d'origine ou créez une nouvelle liste

// de groupes de régles métier

List<BusinessRuleGroup> publishList = new
ArraylList<BusinessRuleGroup>();

// Ajout du groupe de régles métier modifié a la liste
publishList.add(brg);

// Publication de la Tiste avec le groupe de régles métier
mis a jour
BusinessRuleManager.publish(publishList, true);

}
} catch (ValidationException e)
out.printin("Erreur de validation");

List<Problem> problems = e.getProblems();

Iterator<Problem> problemIterator = problems.iterator();
// 11 peut y avoir plusieurs incidents

// Passez en revue tous les incidents, et traitez chacun d'entre eux ou

// signalez 1'incident
while (problemIterator.hasNext())

Problem problem = problemIterator.next();

// Chaque incident est de type différent et i1 est possible de Tes
comparer
if (problem instanceof ProblemStartDateAfterEndDate)
{
out
.printIn("La planification de la régle est
incorrecte. La date de début est postérieure & la date de
fin.");
return out.toString();
}
/] else if....
// Possibilité de rechercher d'autres erreurs et d'imprimer
// 1e message correspondant ou d'exécuter 1'action
appropriée pour
// corriger la situation
}

}catch (BusinessRuleManagementException e)

out.printin("Erreur");
e.printStackTrace();

Chapitre 3. Guides et techniques de programmation

167

}

return out.toString();
}
}

Exemple

Sortie du navigateur Web pour 'exemple 15.
Exécution de 1'exemple 15

Groupe de régles métier extrait

Jeu de régles extrait

Valeur de paramétre de jeu de régle définie correctement
Jeu de régles validé

Erreur de validation

Planification incorrecte de la régle.

La date de début est postérieure a T1a date de fin.

Concepts associés

Des exemples illustrent 1'utilisation possible des différentes classes pour l'extraction
des groupes de regles métier et pour I'apport de modifications a des ensembles de
régles et a des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Autres exemples de requétes

Les exemples suivants ne figurent pas dans 'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Dans ces exemples, différentes propriétés et caracteres génériques (°_’, ‘%) sont
utilisés avec différents opérateurs (AND, OR, LIKE, NOT_LIKE, EQUAL et
NOT_EQUAL).

Exemple

Pour les besoins de ces exemples, les requétes renverront différentes combinaisons
de 4 groupes de régles métier. Il est important de bien comprendre les différents
attributs et propriétés des groupes de régles métier, car ils sont utilisés dans les
requétes.

Nom : BRG1

Espace de nom cible : http://BRG1/com/ibm/br/rulegroup
Propriétés :

organization, 8JAA

department, claims

ID, 00000567

region: SouthCentralRegion

manager: Joe Bean

Nom : BRG2

Espace de nom cible : http://BRG2/com/ibm/br/rulegroup
Propriétés :

organization, 7GAA

department, accounting

ID, 0000047

ID _cert45, ABC

region: NorthRegion

Nom : BRG3
Espace de nom cible : http://BRG3/com/ibm/br/rulegroup

168 Développement et déploiement

Propriétés :

organization, 7FAB
department, finance

ID, 0000053

ID_app45, DEF

region: NorthCentralRegion

Nom : BRG4

Espace de nom cible : http://BRG4/com/ibm/br/rulegroup
Propriétés :

organization, 7HAA

department, shipping

1D, 0000023

ID_app45, GHI

region: SouthRegion

Chapitre 3. Guides et techniques de programmation 169

Concepts associés

Des exemples illustrent 1'utilisation possible des différentes classes pour l'extraction
des groupes de regles métier et pour I'apport de modifications a des ensembles de
régles et a des tables de décisions. Ces exemples sont regroupés au sein d’'un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Référence associée

[[Interrogation par une propriété unique|
Ceci est un exemple d’interrogation par une propriété unique.

[nterrogation de groupes de régles métier par des propriétés et des caracterey
génériques (%) au début et a la fin de la valeur]|

Ceci est un exemple d’interrogation de groupes de regles métier par des propriétés
et des caracteres génériques (%) au début et a la fin de la valeur

[nterrogation de groupes de régles métier par des propriétés et un caractere|
générique (“_)

Ceci est un exemple d’interrogation de groupes de regles métier par des propriétés
et un caractere générique ("_").

[nterrogation de groupes régles métier par des propriétés avec plusieurs caractéres|

énériques (‘" et ‘%)
Ceci est un exemple d’interrogation de groupes regles métier par des propriétés
avec plusieurs caracteres génériques (*_" et “%’)

[nterrogation de groupes de régles métier par 1'opérateur NOT_LIKE et un|
caractere générique (*_”)|

Ceci est un exemple d’interrogation de groupes de regles métier par I'opérateur
NOT_LIKE et un caractére générique (‘).

[nterrogation de groupes de régles métier par I'opérateur NOT_EQUAILJ
Ceci est un exemple d’interrogation de groupes de regles métier par I'opérateur
NOT_EQUAL.

[[Interrogation de groupes de régles métier par PropertylsDefined|
Ceci est un exemple d’interrogation de groupes de regles métier par
PropertylsDefined.

[nterrogation de groupes de régles métier par NOT PropertylsDefined|
Ceci est un exemple d’interrogation de groupes de regles métier par NOT
PropertylsDefined.

[nterrogation de groupes de régles métier par plusieurs propriétés avec un noeud|

INOT unigugl

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés avec un noeud NOT unique.

[nterrogation de groupes de régles métier par plusieurs propriétés avec plusieurs|
noeuds NOT combinés avec un opérateur AND|

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés avec plusieurs noeuds NOT combinés avec un opérateur AND.

[nterrogation de groupes de régles métier par plusieurs propriétés avec plusieurs|
noeuds NOT combinés avec un opérateur OR|

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés avec plusieurs noeuds NOT combinés avec un opérateur OR.

Interrogation de groupes de régles métier par plusieurs propriétés combinées avec
lusieurs opérateurs AND|

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs

propriétés combinées avec plusieurs opérateurs AND.

[[Interrogation de groupes de régles métier par plusieurs propriétés combinées avec

170 Développement et déploiement

(des opérateurs AND et OR)|
Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs AND et OR.

[nterrogation de groupes de reégles métier par plusieurs propriétés combinées aveq
des opérateurs AND et NOT]

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs AND et NOT.

Interrogation de groupes de regles métier par plusieurs propriétés combinées avec
des opérateurs NOT et OR)

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs NOT et OR.

Interrogation de groupes de regles métier par plusieurs propriétés combinées avec|
des opérateurs AND imbriqués|

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs AND imbriqués.

[Interrogation de groupes de regles métier par plusieurs propriétés combinées avec
des opérateurs AND imbriqués|

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs AND imbriqués.

[nterrogation de groupes de régles métier par plusieurs propriétés combinées aved|
des opérateurs AND imbriqués et un noeud NOT]|

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs AND imbriqués et un noeud NOT.

[nterrogation de groupes de régles métier par plusieurs propriétés combinées avec|
des opérateurs AND imbriqués|

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs AND imbriqués.

[nterrogation de groupes de regles métier par plusieurs propriétés combinées aveg
des opérateurs OR imbriqués|

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs OR imbriqués.

[nterrogation de groupes de regles métier par plusieurs propriétés combinées avec
des opérateurs OR imbriqués|

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs OR imbriqués.

[nterrogation de groupes de regles métier par plusieurs propriétés combinées avec
des opérateurs OR imbriqués et un noeud NOT]

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs OR imbriqués et un noeud NOT.

[nterrogation de groupes de regles métier par plusieurs propriétés combinées avec
des opérateurs OR imbriqués et un noeud NOT]

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs OR imbriqués et un noeud NOT.

[nterrogation de groupes de régles métier par une liste de noeuds combinés avec|
un opérateur AND|

Ceci est un exemple d’interrogation de groupes de regles métier par une liste de
noeuds combinés avec un opérateur AND.

[nterrogation de groupes de regles métier par une liste de noeuds et un noeud|
combiné avec un opérateur ANDJ

Ceci est un exemple d’interrogation de groupes de regles métier par une liste de
noeuds et un noeud NOT combiné avec un opérateur AND.

[nterrogation de groupes de régles métier par une liste de noeuds combinés aved|
un opérateur O

Chapitre 3. Guides et techniques de programmation 171

Ceci est un exemple d’interrogation de groupes de regles métier par une liste de
noeuds combinés avec un opérateur OR.

[nterrogation de groupes de régles métier par une liste de noeuds et un noeud|
INOT combiné avec un opérateur OR|

Ceci est un exemple d’interrogation de groupes de regles métier par une liste de
noeuds et un noeud NOT combiné avec un opérateur OR.

Interrogation par une propriété unique :

Ceci est un exemple d’interrogation par une propriété unique.

List<BusinessRuleGroup> brgList = null;

brgList = BusinessRuleManager.getBRGsBySingleProperty(
"department", QueryOperator.EQUAL,

"accounting", 0, 0);
// Returns BRG2

Concepts associés

|Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de regles métier.

Interrogation de groupes de regles métier par des propriétés et des caracteres
génériques (%) au début et a la fin de la valeur:

Ceci est un exemple d’interrogation de groupes de regles métier par des propriétés
et des caracteres génériques (%) au début et a la fin de la valeur

// Query Prop AND Prop

QueryNode leftNode =

QueryNodeFactory.createPropertyQueryNode (
"region", QueryOperator.LIKE,
"%Region");

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode (
"ID", QueryOperator.LIKE,
"000005%") ;

QueryNode queryNode =
QueryNodeFactory.createAndNode (TeftNode,
rightNode) ;

brglList =
BusinessRuleManager.getBRGsByProperties(queryNode, 0, 0);
// Returns BRG1l and BRG3

Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans 'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Interrogation de groupes de régles métier par des propriétés et un caractére
générique (“_"):

Ceci est un exemple d’interrogation de groupes de regles métier par des propriétés
et un caractere générique ("_").

172 Développement et déploiement

brgList = BusinessRuleManager.getBRGsBySingleProperty("ID",
QueryOperator.LIKE, "00000_3", 0, 0);

// Returns BRG3 and BRG4
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Interrogation de groupes regles métier par des propriétés avec plusieurs
caracteres génériques (‘_" et “%’) :

Ceci est un exemple d’interrogation de groupes régles métier par des propriétés
avec plusieurs caracteres génériques ("_" et “%’)

brglList =

BusinessRuleManager.getBRGsBySingleProperty("region",

QueryOperator.LIKE, "__uth%Region",
0, 0);

// Returns BRG1 and BRG4
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Interrogation de groupes de regles métier par 'opérateur NOT_LIKE et un
caractere générique (“_") :

Ceci est un exemple d’interrogation de groupes de regles métier par 'opérateur
NOT_LIKE et un caractere générique ('_").
brglList =
BusinessRuleManager.getBRGsBySingleProperty("organization”,
QueryOperator.NOT_LIKE,

"7_A", 0, 0);

// Returns BRG1 and BRG3

brglList =
BusinessRuleManager.getBRGsBySingleProperty("organization",
QueryOperator.NOT_LIKE,

"75", 0, 0);

// Returns BRG1
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans 'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Interrogation de groupes de régles métier par 'opérateur NOT_EQUAL :

Ceci est un exemple d’interrogation de groupes de regles métier par I'opérateur
NOT_EQUAL.

Chapitre 3. Guides et techniques de programmation 173

brglList =
BusinessRuleManager.getBRGsBySingleProperty ("department",
QueryOperator.NOT_EQUAL,

"claims", 0, 0);
// Returns BRG1

Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans 'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de regles métier.

Interrogation de groupes de regles métier par PropertylsDefined :

Ceci est un exemple d’interrogation de groupes de regles métier par
PropertylsDefined.

PropertyIsDefinedQueryNode node =
QueryNodeFactory.createPropertyIsDefinedQueryNode("manager"

)s

brgList = BusinessRuleManager.getBRGsByProperties(node, 0,
0);

// Returns BRG1
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans 'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Interrogation de groupes de régles métier par NOT PropertylsDefined :

Ceci est un exemple d’interrogation de groupes de regles métier par NOT
PropertylsDefined.

// NOT Prop
QueryNode node =
QueryNodeFactory.createPropertyIsDefinedQueryNode("manager"

)s
NotNode notNode = QueryNodeFactory.createNotNode(node);

brgList = BusinessRuleManager.getBRGsByProperties(notNode,
0, 0);

// Returns BRG1
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Interrogation de groupes de regles métier par plusieurs propriétés avec un
noeud NOT unique :

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés avec un noeud NOT unique.
// Prop AND NOT Prop

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode ("department",

174 Développement et déploiement

QueryOperator.EQUAL, "accounting");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode) ;

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("ID",
QueryOperator.LIKE, "00000%");

AndNode andNode = QueryNodeFactory.createAndNode(TeftNode,
notNode) ;

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG2
Concepts associés

|Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des

groupes de régles métier.

Chapitre 3. Guides et techniques de programmation

175

Interrogation de groupes de régles métier par plusieurs propriétés avec plusieurs
noeuds NOT combinés avec un opérateur AND :

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés avec plusieurs noeuds NOT combinés avec un opérateur AND.

// NOT Prop AND NOT Prop

QueryNode rightNode =

QueryNodeFactory.createPropertyQueryNode("department",
QueryOperator.EQUAL, "accounting");

NotNode notNode =
QueryNodeFactory.createNotNode (rightNode) ;

QueryNode TleftNode =
QueryNodeFactory.createPropertyQueryNode("department",
QueryOperator.LIKE, "cla%");

NotNode notNode2 =
QueryNodeFactory.createNotNode (TeftNode) ;

AndNode andNode = QueryNodeFactory.createAndNode(notNode,
notNode2) ;

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG1 and BRG2
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans 'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de regles métier.

Interrogation de groupes de regles métier par plusieurs propriétés avec plusieurs
noeuds NOT combinés avec un opérateur OR :

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés avec plusieurs noeuds NOT combinés avec un opérateur OR.
// NOT Prop OR NOT Prop
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("department",
QueryOperator.LIKE, "acc%");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode) ;

QueryNode TeftNode =

QueryNodeFactory.createPropertyQueryNode (
"department", QueryOperator.EQUAL,
"claims");

NotNode notNode2 =
QueryNodeFactory.createNotNode (TeftNode) ;

OrNode orNode = QueryNodeFactory.createOrNode(notNode,
notNode2) ;

brglList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

//Returns BRG1, BRG2, BRG3, and BRG4

176 Développement et déploiement

Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Interrogation de groupes de regles métier par plusieurs propriétés combinées
avec plusieurs opérateurs AND :

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec plusieurs opérateurs AND.

// (Prop AND Prop) AND (Prop AND Prop)

QueryNode rightNode =

QueryNodeFactory.createPropertyQueryNode ("department",
QueryOperator.LIKE, "acc%");

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.EQUAL, "7GAA");

AndNode andNodeleft =
QueryNodeFactory.createAndNode (1eftNode, rightNode) ;

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("ID",
QueryOperator.LIKE,"000004 ");

QueryNode TeftNode2 =
QueryNodeFactory.createPropertyQueryNode("region",
QueryOperator.EQUAL,

"NorthRegion");

AndNode andNodeRight =
QueryNodeFactory.createAndNode (1eftNode2, rightNode2);

AndNode andNode =
QueryNodeFactory.createAndNode (andNodeLeft,andNodeRight);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG2
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Interrogation de groupes de regles métier par plusieurs propriétés combinées
avec des opérateurs AND et OR:

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs AND et OR.
// (Prop AND Prop) OR (Prop AND NOT Prop)
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode ("department",
QueryOperator.LIKE, "acc%");

QueryNode TleftNode =

QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.EQUAL, "7GAA");

Chapitre 3. Guides et techniques de programmation 177

AndNode andNodeleft =
QueryNodeFactory.createAndNode (TeftNode, rightNode) ;

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.EQUAL, "8JAA");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode?2) ;

QueryNode TeftNode2 =
QueryNodeFactory.createPropertyQueryNode("region",
QueryOperator.LIKE, "%1Region");

AndNode andNodeRight =
QueryNodeFactory.createAndNode (TeftNode2, notNode);

OrNode orNode = QueryNodeFactory.createOrNode(andNodelLeft,
andNodeRight);

brglList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

// Returns BRG2 and BRG3
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de regles métier.

Interrogation de groupes de regles métier par plusieurs propriétés combinées
avec des opérateurs AND et NOT :

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs AND et NOT.

// Prop AND NOT (Prop AND Prop)

QueryNode leftNode =

QueryNodeFactory.createPropertyQueryNode("ID",
QueryOperator.LIKE, "000005%");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.EQUAL,

||8JAA||);
QueryNode TeftNode2 =
QueryNodeFactory.createPropertyQueryNode("region",QueryOper
ator.LIKE,

"%1Region");

AndNode andNodeRight =
QueryNodeFactory.createAndNode (TeftNode2, rightNode2);

NotNode notNode =
QueryNodeFactory.createNotNode (andNodeRight) ;

AndNode andNode = QueryNodeFactory.createAndNode(TeftNode,
notNode) ;

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG3

178 Développement et déploiement

Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Interrogation de groupes de regles métier par plusieurs propriétés combinées
avec des opérateurs NOT et OR:

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs NOT et OR.

// NOT (Prop AND Prop) OR Prop
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.LIKE,
II8_A_II);

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.LIKE,
"70/0");

QueryNode TeftNode2 =
QueryNodeFactory.createPropertyQueryNode("region",QueryOper
ator.LIKE,

"%1Region");

AndNode andNodeRight =
QueryNodeFactory.createAndNode (1eftNode2,rightNode2) ;

NotNode notNode =
QueryNodeFactory.createNotNode (andNodeRight) ;

OrNode orNode = QueryNodeFactory.createOrNode(notNode,
rightNode) ;

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

// Returns BRG3
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Interrogation de groupes de régles métier par plusieurs propriétés combinées
avec des opérateurs AND imbriqués :

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs AND imbriqués.

// Prop AND (Prop AND (Prop AND Prop))
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",
QueryOperator.LIKE,
" thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.LIKE,
"70/0");

Chapitre 3. Guides et techniques de programmation 179

QueryNode TeftNode2 =
QueryNodeFactory.createPropertyQueryNode("department",
QueryOperator.LIKE,
Ila/a.i ngll);
AndNode andNodeRight =
QueryNodeFactory.createAndNode (TeftNode2,rightNode2) ;

AndNode andNodeleft =
QueryNodeFactory.createAndNode(rightNode,andNodeRight) ;

PropertyIsDefinedQueryNode node2 =
QueryNodeFactory.createPropertyIsDefinedQueryNode("ID cert4
5");

AndNode andNode = QueryNodeFactory.createAndNode(node2,
andNodeLeft);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);
// Returns BRG2

Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans 'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Interrogation de groupes de regles métier par plusieurs propriétés combinées
avec des opérateurs AND imbriqués :

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs AND imbriqués.

// (Prop AND (Prop AND Prop)) AND Prop

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",QueryOper
ator.LIKE,

" thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.LIKE,

u7%n);

QueryNode TeftNode2 =
QueryNodeFactory.createPropertyQueryNode ("department",
QueryOperator.LIKE,

"%1ng");

AndNode andNodeRight =
QueryNodeFactory.createAndNode(TeftNode2,rightNode2);

AndNode andNodeleft =
QueryNodeFactory.createAndNode(rightNode,andNodeRight);

QueryNode TleftNode =
QueryNodeFactory.createPropertyQueryNode("ID_app45",QueryOp
erator.LIKE, "GH_");

AndNode andNode =
QueryNodeFactory.createAndNode (andNodeLeft, leftNode);

180 Développement et déploiement

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG4
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Interrogation de groupes de regles métier par plusieurs propriétés combinées
avec des opérateurs AND imbriqués et un noeud NOT :

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs AND imbriqués et un noeud NOT.

// Prop AND (Prop AND (Prop AND NOT Prop))
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.LIKE,
"70/0");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("region",
QueryOperator.LIKE,
"%1Region");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode?2) ;

QueryNode TeftNode2 =
QueryNodeFactory.createPropertyQueryNode("department",
QueryOperator.LIKE,
"%'ing");
AndNode andNodeRight =
QueryNodeFactory.createAndNode (TeftNode2,notNode) ;

AndNode andNodeleft =
QueryNodeFactory.createAndNode(rightNode,andNodeRight) ;

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("ID cert45",
QueryOperator.LIKE,
"AB_”);

AndNode andNode = QueryNodeFactory.createAndNode(TeftNode,
andNodeLeft)

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG2
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Interrogation de groupes de régles métier par plusieurs propriétés combinées
avec des opérateurs AND imbriqués :

Chapitre 3. Guides et techniques de programmation 181

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs AND imbriqués.

// (Prop AND (Prop AND Prop)) AND Prop - Return empty
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",
QueryOperator.LIKE,
" thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.LIKE,
||7a/0||) ;

QueryNode TeftNode2 =
QueryNodeFactory.createPropertyQueryNode("department",
QueryOperator.LIKE,
"a/a.i ng");
AndNode andNodeRight =
QueryNodeFactory.createAndNode (TeftNode2,rightNode2) ;

AndNode andNodeleft =
QueryNodeFactory.createAndNode(rightNode,andNodeRight) ;

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("ID cert45",
QueryOperator.LIKE,
"GH_");

AndNode andNode =
QueryNodeFactory.createAndNode (andNodeLeft, leftNode);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

//Returns no BRGs
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans 'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Interrogation de groupes de régles métier par plusieurs propriétés combinées
avec des opérateurs OR imbriqués :

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs OR imbriqués.

// (Prop OR (Prop OR Prop)) OR Prop

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",
QueryOperator.LIKE,
" thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.LIKE,
||7o/0||) ;

QueryNode TeftNode2 =
QueryNodeFactory.createPropertyQueryNode("department",
QueryOperator.LIKE,

no

%ing");

182 Développement et déploiement

OrNode orNodeRight =
QueryNodeFactory.createOrNode(leftNode2,rightNode?2);

OrNode orNodelLeft =
QueryNodeFactory.createOrNode(rightNode,orNodeRight);

QueryNode TleftNode =
QueryNodeFactory.createPropertyQueryNode("ID cert45",
QueryOperator.LIKE,
IIGH_II);

OrNode orNode = QueryNodeFactory.createOrNode(orNodelLeft,
TeftNode) ;

brglList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

// Returns BRG1
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des

groupes de régles métier.

Interrogation de groupes de régles métier par plusieurs propriétés combinées

avec des opérateurs OR imbriqués :

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs OR imbriqués.

// (Prop OR (Prop OR NOT Prop)) OR Prop
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",
QueryOperator.LIKE,
" thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.LIKE,
II7O/0II);

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode?2) ;

QueryNode TeftNode2 =
QueryNodeFactory.createPropertyQueryNode ("department",
QueryOperator.LIKE,
"D/oing");
OrNode orNodeRight =
QueryNodeFactory.createOrNode (TeftNode2,notNode) ;

OrNode orNodelLeft =
QueryNodeFactory.createOrNode(rightNode,orNodeRight);

QueryNode TleftNode =
QueryNodeFactory.createPropertyQueryNode("ID cert45",
QueryOperator.LIKE,
"GH_") ;

OrNode orNode = QueryNodeFactory.createOrNode (orNodeLeft,
leftNode);

Chapitre 3. Guides et techniques de programmation

183

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

// Returns BRG3
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de regles métier.

Interrogation de groupes de regles métier par plusieurs propriétés combinées
avec des opérateurs OR imbriqués et un noeud NOT :

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs OR imbriqués et un noeud NOT.

// Prop OR NOT(Prop OR Prop)
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",
QueryOperator.LIKE,
" thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode (
"organization",
QueryOperator.LIKE,
||7o/0||) ;

QueryNode TleftNode =
QueryNodeFactory.createPropertyQueryNode (
"department",
QueryOperator.LIKE,
llo/o.i ng");
OrNode orNodeRight =
QueryNodeFactory.createOrNode(rightNode2,
rightNode) ;

NotNode notNode =
QueryNodeFactory.createNotNode (orNodeRight) ;

OrNode orNodelLeft = QueryNodeFactory.createOrNode(TeftNode,
notNode) ;

brglList =
BusinessRuleManager.getBRGsByProperties(orNodeLeft, 0, 0);

// Returns BRG3
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de regles métier.

Interrogation de groupes de régles métier par plusieurs propriétés combinées
avec des opérateurs OR imbriqués et un noeud NOT :

Ceci est un exemple d’interrogation de groupes de regles métier par plusieurs
propriétés combinées avec des opérateurs OR imbriqués et un noeud NOT.
// NOT(Prop OR Prop) OR Prop

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

184 Développement et déploiement

QueryOperator.LIKE,
"%1Region");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode (
"organization",
QueryOperator.LIKE,
||7a/0||);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode (
"department",
QueryOperator.LIKE,

no

%ing");

OrNode orNodeRight =
QueryNodeFactory.createOrNode(rightNode2,rightNode);

NotNode notNode =
QueryNodeFactory.createNotNode (orNodeRight) ;

OrNode orNodelLeft =
QueryNodeFactory.createOrNode(notNode,leftNode);

brglList =
BusinessRuleManager.getBRGsByProperties (orNodeLeft, 0, 0);

// Returns BRG2 and BRG4
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Interrogation de groupes de régles métier par une liste de noeuds combinés avec
un opérateur AND :

Ceci est un exemple d’interrogation de groupes de regles métier par une liste de
noeuds combinés avec un opérateur AND.

// AND Tist
List<QueryNode> Tist = new ArraylList<QueryNode>();

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",
QueryOperator.LIKE,
"%thRegion");

list.add(rightNode);

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.LIKE,
"70/0");

list.add(rightNode2);
QueryNode leftNode =

QueryNodeFactory.createPropertyQueryNode ("department",
QueryOperator.LIKE,

"D/aing") ;
list.add(1eftNode);

QueryNode TleftNode2 =

Chapitre 3. Guides et techniques de programmation 185

QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.LIKE,
|I7Ha/0||) ;

list.add(1eftNode2);

AndNode andNode = QueryNodeFactory.createAndNode(1list);

brglList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG4
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de regles métier.

Interrogation de groupes de régles métier par une liste de noeuds et un noeud
combiné avec un opérateur AND :

Ceci est un exemple d’interrogation de groupes de regles métier par une liste de
noeuds et un noeud NOT combiné avec un opérateur AND.

// AND list with a notNode
List<QueryNode> 1list = new ArrayList<QueryNode>();

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",
QueryOperator.LIKE,
"%thRegion");
list.add(rightNode);
QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.LIKE,
"80/0");
NotNode notNode =
QueryNodeFactory.createNotNode(rightNode?2) ;
list.add(notNode);
QueryNode leftNode =

QueryNodeFactory.createPropertyQueryNode ("department",
QueryOperator.LIKE,

"D/oing") ;
list.add(1eftNode);

QueryNode TeftNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

list.add(1eftNode2);
AndNode andNode = QueryNodeFactory.createAndNode(list);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Return BRG4

186 Développement et déploiement

Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Interrogation de groupes de regles métier par une liste de noeuds combinés avec
un opérateur OR :

Ceci est un exemple d’interrogation de groupes de regles métier par une liste de
noeuds combinés avec un opérateur OR.

// OR Tist
List<QueryNode> Tist = new ArraylList<QueryNode>();

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",
QueryOperator.LIKE,
"%thRegion");

list.add(rightNode);

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.LIKE,
"80/0");

list.add(rightNode2);
QueryNode leftNode =

QueryNodeFactory.createPropertyQueryNode("department",
QueryOperator.LIKE,

llo/o.ingll) ;
list.add(1eftNode);

OrNode orNode = QueryNodeFactory.createOrNode(list);

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

//Returns BRG3
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans l'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Interrogation de groupes de régles métier par une liste de noeuds et un noeud
NOT combiné avec un opérateur OR :

Ceci est un exemple d’interrogation de groupes de regles métier par une liste de
noeuds et un noeud NOT combiné avec un opérateur OR.

// OR Tist with Not node
List<QueryNode> 1ist = new ArrayList<QueryNode>();
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",
QueryOperator.LIKE,
"%thRegion");

Tist.add(rightNode);

Chapitre 3. Guides et techniques de programmation 187

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.LIKE,
II80/0II) ;

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode?2) ;
list.add(notNode);

QueryNode TleftNode =
QueryNodeFactory.createPropertyQueryNode ("department",
QueryOperator.LIKE,

llo/o.ingll);

list.add(1eftNode);

QueryNode TeftNode2 =

QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.LIKE,
"80/0");

list.add(1eftNode2);

OrNode orNode = QueryNodeFactory.createOrNode(Tist);

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

//Returns BRG1, BRG2, BRG3, and BRG4
Concepts associés

[Autres exemples de requétes|

Les exemples suivants ne figurent pas dans 'application contenant les exemples 1
a 15 ; toutefois, ils illustrent la création de requétes qui permettent d’extraire des
groupes de régles métier.

Classes d’opérations communes

Cette section contient des classes supplémentaires, qui ont été utilisées dans les
exemples pour simplifier des opérations communes.

Concepts associés

[Gestion des régles métier|

Des classes de gestion des regles métier sont fournies pour permettre de créer des
clients de gestion personnalisés ou d’automatiser les changements apportés aux
régles métier.

Référence associée

(Classe Formatter|
Cette classe fournit diverses méthodes permettant d’afficher les différents
exemples. Elle ajoute diverses balises HTML pour formater la sortie.

(Classe RuleArtifactUtility]

Cette classe utilitaire comporte deux méthodes publiques. La premiére sert a
imprimer une table de décision. Cette méthode exploite une méthode privée qui
utilise la récursivité pour imprimer les conditions et les actions de la table de
décision. La seconde méthode publique sert a imprimer un jeu de régles.

Classe Formatter
Cette classe fournit diverses méthodes permettant d’afficher les différents
exemples. Elle ajoute diverses balises HTML pour formater la sortie.

188 Développement et déploiement

package com.ibm.websphere.sample.brules.mgmt;

public class Formatter {
private StringBuffer buffer;

public Formatter()

{
buffer = new StringBuffer();

}

public void printin(Object o)
{
buffer.append(o);
buffer.append("
\n");
}

public void print(Object o)
{

buffer.append(o);
}

public void printinBold(Object o)
{
buffer.append("");
buffer.append(o);
buffer.append("<brbr>\n");
}

public void printBold(Object o)

{
buffer.append("");
buffer.append(o);
buffer.append("");

}

public String toString()

{
return buffer.toString();

}

public void clear()

{
buffer = new StringBuffer();

}
}

Référence associée

[Classes d’opérations communes|

Cette section contient des classes supplémentaires, qui ont été utilisées dans les
exemples pour simplifier des opérations communes.

Classe RuleArtifactUtility

Cette classe utilitaire comporte deux méthodes publiques. La premiére sert a

imprimer une table de décision. Cette méthode exploite une méthode privée qui

utilise la récursivité pour imprimer les conditions et les actions de la table de
décision. La seconde méthode publique sert a imprimer un jeu de regles.

package com.ibm.websphere.sample.brules.mgmt;

import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.Parameter;
import com.ibm.wbiserver.brules.mgmt.ParameterValue;

Chapitre 3. Guides et techniques de programmation

189

import com.ibm.wbiserver.brules.mgmt.RuleTemplate;

import com.ibm.wbiserver.brules.mgmt.Template;

import com.ibm.wbiserver.brules.mgmt.dtable.ActionNode;

import com.ibm.wbiserver.brules.mgmt.dtable.CaseEdge;

import com.ibm.wbiserver.brules.mgmt.dtable.ConditionNode;

import com.ibm.wbiserver.brules.mgmt.dtable.DecisionTable;

import com.ibm.wbiserver.brules.mgmt.dtable.DecisionTableRule;

import
com.ibm.wbiserver.brules.mgmt.dtable.DecisionTableTemplateInstanceRule;
import com.ibm.wbiserver.brules.mgmt.dtable.TemplateInstanceExpression;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeAction;

import com.ibm.wbiserver.brules.mgmt.dtable.TreeActionTermDefinition;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeBlock;

import
com.ibm.wbiserver.brules.mgmt.dtable.TreeConditionTermDefinition;
import
com.ibm.wbiserver.brules.mgmt.dtable.TreeConditionValueDefinition;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeNode;

import com.ibm.wbiserver.brules.mgmt.ruleset.RuleBlock;

import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;

import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRule;

import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRuleTemplate;
import
com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetTemplatelnstanceRule;

public class RuleArtifactUtility

{

static Formatter out = new Formatter();

/*

Method to print out a decision table with the conditions and
actions printed out in a HTML tabular format. The conditions
and actions are printed out with a separate method that
recursively works through the case edges of the decision
tables.

*/

public static String printDecisionTable(BusinessRule
ruleArtifact)

{

out.clear();

out.printinBold("Decision Table");
DecisionTable decisionTable = (DecisionTable)
ruleArtifact;

out.printin("Name: " +
decisionTable.getName());
out.printin("Namespace: " +
decisionTable.getTargetNameSpace());

// Output the init rule for the decision table
before
// working through the table of conditions and
actions
DecisionTabTeRule initRule =
decisionTable.getInitRule();
if (initRule != null)
{
out.printBold("Init Rule: ");
out.printin(initRule.getName());
out.printin("Display Name: " +
initRule.getDisplayName());
out.printin("Description: " +
initRule.getDescription());
// The expanded user presentation
will automatically populate the
// presentation with the parameter
values and can be used for

190 Développement et déploiement

// display if the init rule was
defined with a template. If no
// template was defined the
expanded user presentation
// is the same as the regular
presentation.
out.printin("Extended User
Presentation: "
+
initRule.getExpandedUse
rPresentation());
// The regular user presentation
will have placeholders in the
// string where the
// parameter can be substituted if
the init rule was defined with a
// template
// 1If the rule was not defined with
a template, the user
// presentation will only
// be a string without
placeholders. The placeholders are
of a
// format of {n} where
// n is the index (zero-based) of
the parameter in the template. This
// value
// can be used to create an
interface for editing where there
are
// fields with
// the parameter values available
for editing
out.printin("User Presentation: " +
initRule.getUserPresentation());
// Init rules might be defined with
or without a template
// Check to make sure a template
was used before trying
// to access the parameters
if (initRule instanceof
DecisionTableTemplateInstanceRule)
{
DecisionTableTemplateln
stanceRule
templatelnstance =
(DecisionTableTemplatel
nstanceRule) initRule;

RuleTemplate template =
templatelnstance.getRul
eTemplate();

List<Parameter>
parameters =
template.getParameters (

Iterator<Parameter>
paramIterator =
parameters.iterator();

Parameter parameter =
null;

while
(paramIterator.hasNext (

) A

Chapitre 3. Guides et techniques de programmation

191

parameter =
paramIterator.next();

out.printin("Parameter
Name: " +
parameter.getName());
out.printin("Parameter
Value: "

+
templateInstance.getPar
ameterValue(parameter
.getName()));

}

}
1
// For the rest of the decision table, start at
the root and
// recursively work through the different case
edges and
// actions
TreeBlock treeBlock =
decisionTable.getTreeBlock();
TreeNode treeNode = treeBlock.getRootNode();

printDecisionTableConditionsAndActions (treeNode
» 0);
out.printin("");
return out.toString();
}
/*Method to recursively work through the case edges and print
out the conditions and actions.
*/
static private void printDecisionTableConditionsAndActions(
TreeNode treeNode, int indent)

out.print("<table border=\"1\">");
if (treeNode instanceof ConditionNode)
{
// Get the case edges for the
current TreeNode
// and for each case edge print out
the conditions
ConditionNode conditionNode =
(ConditionNode) treeNode;

List<CaseEdge> caseEdges =
conditionNode.getCaseEdges();
Iterator<CaseEdge> caseEdgelterator
= caseEdges.iterator();

CaseEdge caseEdge = null;

while (caseEdgelterator.hasNext())
{

out.print("<tr>");

// If this is the start

of the conditions for the

// condition node,

print out the condition term

if (indent == 0)

{

out.print("<td>");

TreeConditionTermDefinition
termDefinition =
conditionNode
.getTermDefinition();

192 Développement et déploiement

out.print(termDefinitio
n.getUserPresentation()
)s

out.print("</td>");
indent++;

} else {

// After the condition
term has been printed
for a

// case edge skip for
the rest of the case
edges
out.print("<td></td>");

casekdge =
caseEdgelterator.next()

out.print("<td>");

// Check if the
casekEdge is defined by
a template

if
(caseEdge.getValueDefin
ition() != null)

{
TemplateInstanceExpress
ion templatelnstance =
casekdge
.getValueTemplatelnstan
ce();

out.printin(templatelns
tance.getExpandedUserPr
esentation());

TreeConditionValueDefin
ition valueDef =
casekdge
.getValueDefinition();

out.printin(valueDef.ge
tUserPresentation());

Template template =
templatelnstance.getTem
plate();

// Get the parameters
for the template
definition and

// print out the
parameter names and
values

List<Parameter>
parameters =
template.getParameters (
Iterator<Parameter>
paramlterator =
parameters.iterator();

List<ParameterValue>
parameterValues =

Chapitre 3. Guides et techniques de programmation

193

templatelnstance
.getParameterValues();
Iterator<ParameterValue
> paramValues =
parameterValues
.iterator();

Parameter parameter =
null;

ParameterValue
parameterValue = null;

while
(paramIterator.hasNext (
) &&
paramValues.hasNext())
{

parameter =
paramIterator.next();
parameterValue =
paramValues.next();

out.printin("Parameter
Name: " +
parameter.getName());
out.printin("Parameter
Value: "

+
parameterValue.getValue
0)s
}

1

out.print("</td><td>");
// Print the child node
for the casekdge
printDecisionTableCondi
tionsAndActions (caseEdg
e.getChildNode(),

0);

out.print("</td></tr>")

B

}

// Add Otherwise condition if it
exists

TreeNode otherwise =
conditionNode.getOtherwiseCase();

if (otherwise != null)

{
out.print("<tr><td></td>
<td>Otherwise</td><td>
")

// Print the Otherwise

ConditionNode

printDecisionTableCondi

tionsAndActions (otherwi

se, 0);

out.print("</td></td>")

B

}
out.print("</table>");
} else {

// ActionNode has been found and

194 Développement et déploiement

different logic is needed

// to print out the TreeActions
ActionNode actionNode =
(ActionNode) treeNode;
List<TreeAction> treeActions =
actionNode.getTreeActions();

Iterator<TreeAction>
treeActionlterator =
treeActions.iterator();

TreeAction treeAction = null;

// The ActionNode can contain
multiple TreeActions to
// print out
while
(treeActionIterator.hasNext())
{
out.print("<tr>");
treeAction =
treeActionlterator.next

0

TreeActionTermDefinitio
n treeActionTerm =
treeAction
.getTermDefinition();

if (indent == 0) {
out.print("<td>");
out.print(treeActionTer
m.getUserPresentation()
)s

out.print("</td>");

1

out.print("<td>");
TemplateInstanceExpress
ion templatelnstance =
treeAction
.getValueTemplatelInstan
ce();

// Check that a
template was specified
for

// the TreeAction
before working with the
// parameter name and
values

if (templatelnstance !=
null) {
out.printin(templatelns
tance.getExpandedUserPr
esentation());

Template template =
templatelnstance.getTem
plate();

List<Parameter>
parameters =
template.getParameters (

Iterator<Parameter>
paramlterator =

Chapitre 3. Guides et techniques de programmation

195

parameters.iterator();

List<ParameterValue>
parameterValues =
templatelnstance
.getParameterValues();
Iterator<ParameterValue
> paramValues =
parameterValues
.iterator();

Parameter parameter =
null;

ParameterValue
parameterValue = null;

while
(paramIterator.hasNext(
) &&
paramValues.hasNext())
{

{parameter =
paramlterator.next();
parameterValue =
paramValues.next();

out.printin(" Parameter
Name: " +
parameter.getName());
out.printin(" Parameter
Value: "

+
parameterValue.getValue

0);
}

} else

{

// If a template was
not used, the only item
that is

// available is the
UserPresentation if it
was

// specified when the
rule was created
out.print(treeAction.ge
tValueUserPresentation(

))s
}
out.print("</td></tr>")
}
out.print("</table>");
}
/*
Method to print out a rule set
*/
public static String printRuleSet(BusinessRule
ruleArtifact)

{
out.clear();
out.printinBold("Rule Set");
RuleSet ruleSet = (RuleSet) ruleArtifact;
out.printin("Name: " + ruleSet.getName());

196 Développement et déploiement

out.printin("Namespace: " +
ruleSet.getTargetNameSpace());

// The rules in a rule set are contained in a
rule block

RuleBlock ruleBlock =
ruleSet.getFirstRuleBlock();

Iterator<RuleSetRule> rulelterator =
ruleBlock.iterator();

RuleSetRule rule = null;

// Iterate through the rules in the rule block.
while (rulelterator.hasNext())
{
rule = rulelterator.next();
out.printBold("Rule: ");
out.printin(rule.getName());
out.printin("Display Name: " +
rule.getDisplayName());
out.printin("Description: " +
rule.getDescription());
// The expanded user presentation
will automatically populate the
// presentation with the parameter
values and can be used for
// display if the rule was defined
with a template. If no
// template was defined the
expanded user presentation
// is the same as the regular
presentation.
out.printin("Expanded User
Presentation: "
+
rule.getExpandedUserPre
sentation());
// The regular user presentation
will have placeholders in the
// string where the parameter can
be substituted if the rule
// was defined with a template. If
the rule was not defined with
// a template, the user
presentation will only be a string
// without placeholders. The
placeholders are of a format of {n}
// where n is the index (zerobased)
of the parameter in the
// template. This value can be used
to create an interface for
// editing where there are fields
with the parameter values
// available for editing
out.printin("User Presentation: " +
rule.getUserPresentation());

// Check if the rule was defined
with a template
if (rule instanceof
RuleSetTemplateInstanceRule) {
RuleSetTemplatelnstance
Rule templatelnstance =
(RuleSetTemplateInstanc
eRule) rule;

Chapitre 3. Guides et techniques de programmation

197

RuleSetRuleTemplate
template =
templatelnstance
.getRuleSetRuleTemplate
0s

List<Parameter>
parameters =
template.getParameters (
Iterator<Parameter>
paramlterator =
parameters.iterator();

Parameter parameter =
null;

// Retrieve all of the
parameters and output
the name and value
while
(paramIterator.hasNext(
))

{

parameter =
paramlterator.next();

out.printin("Parameter
Name: " +
parameter.getName());
out.printin("Parameter
Value: "

+
templatelnstance.getPar
ameterValue(
parameter.getName()).ge
tValue());

}
1
}
out.printin("");
return out.toString();
}
1

Référence associée

[Classes d’opérations communes|
Cette section contient des classes supplémentaires, qui ont été utilisées dans les
exemples pour simplifier des opérations communes.

198 Développement et déploiement

Chapitre 4. Développement d’applications client pour les
taches et processus métier

Vous pouvez utiliser un outil de modélisation pour compiler et déployer des taches
et des processus métier. L'interaction avec ces processus et ces taches se produit
lors de I'exécution. Par exemple, un processus est lancé ou les taches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des taches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.

A propos de cette tache

Ces clients peuvent étre des clients EJB (Enterprise JavaBeans "), des clients de
service Web ou encore des clients Web exploitant les composants JSF (JavaServer
Faces) de Business Process Choreographer Explorer. Ce dernier fournit des API EJB
(Enterprise JavaBeans) et des interfaces pour les services Web pour vous permettre
de développer ces clients. L’API EJB est accessible via n’importe quelle application
Java, y compris une autre application EJB. Il est possible d’accéder aux interfaces
des services Web a partir des environnements Java ou Microsoft® .Net.

© IBM Corporation 2005, 2006 © IBM 2005, 2009 199

Concepts associés

Comparaison entre les interfaces de programmation visant a interagir avec leg
processus métier et les taches utilisateur]

Des interfaces de programmation génériques EJB (Enterprise JavaBeans), JMS (Java
Message Service), REST (Representational State Transfer Services) ainsi que des
interfaces de programmation de services Web sont disponibles pour la création
d’applications client interagissant avec des processus métier et des taches
utilisateur. Chacune de ces interfaces présente des caractéristiques différentes.

[Requétes portant sur les données des processus métier et des tiches|

Les données d’instance des processus métier et des tdches humaines a exécution
longue sont stockées de facon persistante dans la base de données et accessibles
par le biais de requétes. En outre, il est possible d’accéder aux données des
modeles de processus métier et de tiche humaine grace a une interface de requéte.

Taches associées

Développement d’applications client EJB pour des processus métier et des taches|
utilisateur|

Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d'utiliser des processus métier
et des taches utilisateur installées sur WebSphere Process Server.

[Développement d’applications API de service Web
Vous pouvez développer des applications client accédant a des applications de
processus métier et de taches utilisateur via des API de services Web.

Développement d’applications client a I'aide de I’API JMS de Business Process|

Choreograghed

Vous pouvez développer des applications client accédant aux applications de
processus métier de fagon asynchrone grace a '’API JMS (Java Messaging Service).

Développement d’applications Web pour les processus métier et tiches utilisateur 3
|'aide de composants JSF|

Business Process Choreographer offre un certain nombre de composants JavaServer
Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de taches utilisateur a des applications Web.

[Développement des pages JSP pour les messages de tache et de processus|

Business Process Choreographer Explorer fournit des formulaires d’entrée et de
sortie par défaut pour afficher et saisir les données métier. Vous pouvez utiliser des
pages JSP pour créer des formulaires d’entrée et de sortie définis par l'utilisateur.

Création de modules d’extension pour personnaliser les fonctionnalités des taches|
utilisateur|

Business Process Choreographer fournit une infrastructure permettant le traitement
des événements qui surviennent lors du traitement des taches utilisateur.
L’application des modules d’extension est également congue pour vous permettre
d’adapter les fonctionnalités a vos besoins. Vous pouvez utiliser les interfaces de
fournisseur de services SPI (Service Provider Interfaces) afin de créer des modules
d’extension personnalisés pour la gestion des événements et le post-traitement des
requétes de personnel.

Comparaison entre les interfaces de programmation visant a interagir
avec les processus métier et les taches utilisateur

Des interfaces de programmation génériques EJB (Enterprise JavaBeans), JMS (Java
Message Service), REST (Representational State Transfer Services) ainsi que des
interfaces de programmation de services Web sont disponibles pour la création
d’applications client interagissant avec des processus métier et des taches
utilisateur. Chacune de ces interfaces présente des caractéristiques différentes.

200 Développement et déploiement

L’interface de programmation que vous choisissez dépend de plusieurs facteurs,
dont la fonctionnalité devant étre fournie par votre application client, le fait que
vous disposez ou non d’une infrastructure de client final existante, ou encore que
vous souhaitiez ou non traiter les flux de taches utilisateur. Pour faciliter la
sélection de l'interface appropriée, le tableau suivant compare les caractéristiques
des interfaces de programmation EJB, J]MS, REST et de services Web.

Interface EJB

Interface de service Web

Interface de message JMS

Interface REST

Fonctionnalité

Cette interface est
disponible a la fois pour
les processus métier et les
taches utilisateur. Utilisez
cette interface pour créer
des clients fonctionnant de
maniere générique avec des
processus et des taches.

Cette interface est
disponible a la fois pour
les processus métier et les
taches utilisateur. Utilisez
cette interface pour créer
des clients destinés a un
ensemble connu de
processus et de taches.

Cette interface est
disponible uniquement
pour les processus métier.
Utilisez cette interface pour
créer des clients de
messagerie destinés a un
ensemble connu de
processus.

Cette interface est
disponible a la fois pour
les processus métier et les
taches utilisateur. Utilisez
cette interface pour créer
des clients de type Web 2.0
congus pour un ensemble
connu de processus et de
taches.

Traitement
des données

Prend en charge le
chargement de schémas
d’artefacts distants pour
accéder aux métadonnées
des objets métier.

Si I'application client EJB
est exécutée dans la méme
cellule que l'instance de
WebSphere Process Server
a laquelle elle est
connectée, les schémas
requis par les objets métier
des processus et des taches
ne doivent pas
nécessairement étre
disponibles au niveau du
client et peuvent étre
chargés depuis le serveur
via le chargeur d’artefacts
distants RAL (Remote
Artifact Loader).

Le chargeur RAL peut
également étre appliqué a
plusieurs cellules si
l'application client
s’exécute sur une
installation serveur
compleéte de WebSphere
Process Server. toutefois, le
chargeur RAL n’est pas
utilisable dans une
configuration inter-cellules
dans laquelle l'application
client s’exécute dans une
installation client de
WebSphere Process Server.

Les artefacts de schémas
relatifs aux données
d’entrée et de sortie, ainsi
qu’aux variables, doivent
étre disponibles dans un
format reconnu par le
client.

Les artefacts de schémas
relatifs aux données
d’entrée et de sortie, ainsi
qu’aux variables, doivent
étre disponibles dans un
format reconnu par le
client.

Les artefacts de schémas
relatifs aux données
d’entrée et de sortie, ainsi
qu’aux variables, doivent
étre disponibles dans un
format reconnu par le
client.

Environ-
nement client

Une installation de
WebSphere Process Server
ou une installation client
de WebSphere Process
Server.

Tout environnement
d’exécution prenant en
charge les appels de
services Web, y compris les
environnements Microsoft
NET.

Tout environnement
d’exécution prenant en
charge les clients JMS, y
compris les modules SCA
utilisant des importations
JMS SCA.

Tout environnement
d’exécution prenant en
charge les clients REST.

Chapitre 4. Développement d’applications client pour les taches et processus métier

201

Interface EJB

Interface de service Web Interface de message JMS | Interface REST

Sécurité
Edition (J2EE).

Sécurité Java 2, Enterprise

Sécurité des services Web. | Sécurité Java 2, Enterprise
Edition (J2EE) pour

I'installation WebSphere

Les applications client
appelant les méthodes
REST doivent utiliser un

Process Server. Vous mécanisme
pouvez également sécuriser | d’authentification HTTP
les files d’attente dans adapté.

lesquelles I'application
client JMS place les
messages d’interface API,
par exemple via les
mécanismes de sécurité de
WebSphere MQ.

Une opération peut étre exposée par plusieurs protocoles. Tenez compte des
remarques générales suivantes si vous utilisez la méme opération dans différents
protocoles.

Dans les interfaces Services Web et REST, tous les identificateurs d’objet, tels que
PIID, AIID et TKIID, sont représentés par un type chaine (string). Seule
I'interface API EJB attend un ID d’objet a type sécurisé.

La surcharge d’opération est seulement utilisée pour les méthodes EJB et non
pour les opérations WSDL. Dans certains cas, il existe plusieurs opérations
WSDL distinctes ; dans d’autres cas, il n’en existe qu'une seule, qui autorise
toutes les variantes de parametres soit par omission (minOccurs="0"), soit par
I'emploi de valeurs Null (nillable="true").

Dans certaines méthodes EJB, les espaces de noms XML et les noms locaux sont
passés dans des parametres distincts. La plupart des opérations WSDL utilisent
le type XML Schema QName pour passer ces parametres.

Les interactions asynchrones avec les opérations de demande-réponse WSDL a
exécution longue, telles que 1'opération callWithReplyContext dans l'interface
EJB ou l'opération callAsync dans l'interface WSDL, sont représentées par
l'opération call dans l'interface JMS.

L’interface E]JB renvoie un ensemble d’objets d’API, qui exposent les méthodes
d’acces get et set des champs contenus. Les interfaces Services Web et REST
renvoient des documents de types complexes (XML ou JSON) au client.

Certains services de Human Task Manager opérant sur des tdches humaines sont
également disponibles comme services Business Flow Manager opérant sur des
activités qui appellent une tiche humaine.

202 Développement et déploiement

Taches associées

[Développement d’applications client pour les taches et processus métier|

Vous pouvez utiliser un outil de modélisation pour compiler et déployer des taches
et des processus métier. L'interaction avec ces processus et ces taches se produit
lors de I'exécution. Par exemple, un processus est lancé ou les taches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des taches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.

Développement d’applications client EJB pour des processus métier et des taches|
utilisateur|

Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d'utiliser des processus métier
et des taches utilisateur installées sur WebSphere Process Server.

[Développement d’applications API de service Web|
Vous pouvez développer des applications client accédant a des applications de
processus métier et de taches utilisateur via des API de services Web.

Développement d’applications client 4 l'aide de I’API JMS de Business Procesd

Choreographer|

Vous pouvez développer des applications client accédant aux applications de
processus métier de fagon asynchrone grace a ’API JMS (Java Messaging Service).

Requétes portant sur les données des processus métier et des taches

Les données d’instance des processus métier et des tdches humaines a exécution
longue sont stockées de facon persistante dans la base de données et accessibles
par le biais de requétes. En outre, il est possible d’accéder aux données des
modeles de processus métier et de tiche humaine grace a une interface de requéte.

Les interfaces EJB d’interrogation, I’API de requéte et I’API de table de requétes,
sont disponibles avec Business Process Choreographer.

En fonction des clients qui accédent aux données relatives aux processus ou aux
taches, vous pouvez utiliser une ou plusieurs de ces interfaces. Les API REST et
Web Services (services Web) sont fournies dans Business Process Choreographer
pour vous permettre d’interroger les données des listes de taches et de processus.
Cependant, pour des raisons de performances, si vous devez interroger des listes
de processus et de taches particulierement volumineuses, utilisez I’API de table de
requétes EJB ou 1’API de table de requétes REST de Business Process
Choreographer.

Chapitre 4. Développement d’applications client pour les taches et processus métier 203

Concepts associés

Comparaison des interfaces de programmation destinées a l’extraction de données|
de processus et de tache|

Business Process Choreographer fournit deux interfaces de programmation (API)
spécialisées dans l'extraction des données de processus et de table : ’API de table
de requétes et I’API de requéte. Chacune de ces interfaces présente des
caractéristiques différentes.

[Tables de requétes dans Business Process Choreographer]

Les tables de requétes permettent d’interroger les données des listes de taches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requétes peuvent porter sur les données des taches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requétes
fournissent une abstraction des données de Business Process Choreographer qui
peut étre exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de I'implémentation proprement dite des tables. Les définitions des
tables de requétes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d'une API spécifique, appelée API de
table de requéte.

IAPI de requéte EJB de Business Process Choreographer]
Les méthodes query ou queryAll du service API vous permettent d’extraire des
informations stockées relatives aux processus métier et aux taches.

TAaches associées

[Développement d’applications client pour les tiches et processus métier|

Vous pouvez utiliser un outil de modélisation pour compiler et déployer des taches
et des processus métier. L'interaction avec ces processus et ces taches se produit
lors de I'exécution. Par exemple, un processus est lancé ou les taches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des taches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.

Comparaison des interfaces de programmation destinées a
I’extraction de données de processus et de tache

Business Process Choreographer fournit deux interfaces de programmation (API)
spécialisées dans l’extraction des données de processus et de table : 'API de table
de requétes et I’API de requéte. Chacune de ces interfaces présente des
caractéristiques différentes.

L’interface choisie dépendra de plusieurs facteurs, dont la fonctionnalité attendue
de votre application cliente, la disponibilité ou non d'une infrastructure de client
pour utilisateur final existante et, bien sfir, le niveau de performances visé. Pour
vous aider a faire le bon choix, le tableau suivant compare les caractéristiques des
API de table de requétes et de requéte.

Caractéristique

API de table de requétes API de requéte

Disponibilité

L’API de table de requétes est disponible pour L’API de requéte est disponible pour les interfaces
l'interface EJB de Business Flow Manager et pour |de programmation EJB, services Web, JMS et REST.
l'interface de programmation REST.

204 Développement et déploiement

Caractéristique

API de table de requétes

API de requéte

Méthodes dédiées a
I’extraction de contenus

L’API fournit les méthodes suivantes :
* queryEntities

* queryEntityCount

* queryRows

* queryRowCount

L’API fournit les méthodes suivantes :

* query
* queryAll

Méthodes dédiées a
I’extraction de
métadonnées

L’API fournit les méthodes suivantes :
* getQueryTableMetaData

* findQueryTableMetaData

* queryProcessTemplates

* queryTaskTemplates

Nom de la table de
requétes

Spécifie la table de requétes sur laquelle I’API de
table de requétes est exécutée. Il n’est possible
d’interroger qu’une seule table de requétes a la
fois.

Par exemple, queryEntities("CUST.TASKS", ...).

La clause SELECT spécifie les colonnes et les vues
de base de données prédéfinies sur lesquelles la
requéte est exécutée. Cette spécification est
similaire a une clause SQL SELECT.

Par exemple, query("TASK.TKIID, TASK.STATE,
WORK_ITEM.REASON", ...).

Clause SELECT et
attributs sélectionnés

Utilisez les options de filtrage de I’API de table de
requéte pour spécifier les attributs que la requéte
doit renvoyer dans ses résultats. Comme la requéte
s’exécute sur une seule table de requétes, les
attributs sont identifiables sans équivoque par
leurs noms respectifs.

Utilisez la clause SELECT pour spécifier les
attributs. Un nom d’attribut est spécifié avec une
syntaxe de la forme nom_vue.nom_attribut. Par
exemple, pour rechercher des états de tache,
spécifiez TASK.STATE dans votre requéte.

Clause WHERE et filtres

Avec I’API de table de requétes, utilisez la
propriété queryCondition pour filtrer encore plus
les résultats de vos requétes. Les tables de requétes
fournissent un contenu préfiltré si, dans leur
définition, des filtres de table de requéte
principale, des filtres d’autorisation ou des filtres
de table de requétes ont été spécifiés.

Utilisez la clause WHERE pour filtrer vos requétes.

Clause WHERE et
criteres de sélection

La clause WHERE de I’API de requéte n’est pas
nécessaire sous cette forme dans I’API de table de
requétes. Avec I’API de table de requétes, utilisez
la propriété queryCondition pour appliquer un
filtrage additionnel.

Les criteres de sélection spécifiés dans la définition
de table de requétes sélectionnent une propriété
particuliere de la table de requétes attachée. Ce
comportement est obtenu en plus du filtrage
exercé par la clause WHERE dans 1’API de
requéte.

Les criteres de sélection ne sont pas disponibles
pour ’API de requéte. Cependant, ils sont
similaires a la partie de la clause WHERE qui
définit, par exemple, le nom (colonne NAME) ou
I’environnement local (colonne LOCALE) de la
table ou vue QUERY_PROPERTY, TASK_CPROP
ou TASK_DESC.

Par exemple, une clause WHERE telle que
QUERY_PROPERTY.NAME="xyz"' revient au méme que
de spécifier NAME="'xyz' comme critere de sélection
dans la définition de la table de requétes attachée
QUERY_PROPERTY.

Eléments de travail et

Utilisez la table de requétes WORK_ITEM pour

Utilisez la vue WORK_ITEM pour accéder aux

autorisation accéder aux éléments de travail. Vous pouvez éléments de travail. Les quatre types d’éléments de
personnaliser 'emploi des éléments de travail travail sont pris en compte pour les résultats d"une
dans la définition d"une table de requétes au requéte : ‘everybody’, individual’, ‘groups’ et
moment o1 vous la développez, ainsi que dans ‘inherited’. Pour filtrer les éléments de travail
I’API de table de requétes, en utilisant 1'objet d’apres un type spécifique, personnalisez la clause
AuthorizationOptions ou 1’objet WHERE.
AdminAuthorizationOptions.

Par exemple, pour exclure les éléments de travail

Par exemple, pour exclure les éléments de travail | ’everybody’, spécifiez WORK_ITEM.EVERYBODY=0 dans
‘everybody’ lors de l'interrogation de la table de la clause WHERE.
requétes TASK, spécifiez WI.EVERYBODY=0 pour la
propriété queryCondition, ou alors spécifiez
setUseEverbody (Boolean.FALSE) sur 1’objet
AuthorizationOptions.

Parametres Vous pouvez utiliser des parametres dans les Les parametres ne sont pas disponibles pour I’API

filtres et les criteres de sélection pour les tables de
requétes composites.

de requéte, sauf si des requétes stockées sont
utilisées.

Chapitre 4. Développement d’applications client pour les taches et processus métier

205

Caractéristique

API de table de requétes

API de requéte

Requétes stockées et
tables de requétes

La différence entre une requéte stockée et une
table de requétes est que la premiére est définie
pour une requéte particuliere, tandis que la table
de requétes est définie pour un ensemble
particulier de requétes. Par exemple, la définition
d’une table de requétes n’autorise pas la
spécification d'une clause ORDER BY, car les
informations correspondantes ne sont
généralement disponibles qu’au moment ot la
requéte est exécutée.

Les requétes stockées permettent d’interroger les
données en utilisant des ensembles prédéfinis
d’options.

Vues matérialisées

Les vues matérialisées ne sont pas disponibles
pour I’API de table de requétes.

Les vues matérialisées utilisent des technologies
propres aux bases de données pour améliorer les
performances des requétes.

Tables personnalisées

Les tables de requétes supplémentaires offrent la
méme fonctionnalité que les tables personnalisées.

Les tables personnalisées servent a inclure, dans
les requétes, des données qui sont externes au
schéma de base de données de Business Process
Choreographer.

queryAll et options
d’autorisation

La fonctionnalité queryAll est fournie par 1'objet
AdminAuthorizationOptions, lequel peut étre
passé a ’API de table de requétes a la place de
l'objet AuthorizationOptions. L’appelant doit faire
partie du role J2EE BPESystemAdministrator.

La méthode queryAll permet aux utilisateurs
ayant le role J2EE BPESystemAdministrator
d’obtenir tous les objets dans les résultats d'une
requéte sans étre limités par les éléments de travail
d’un utilisateur ou d’un groupe particulier.

Internationalisation

Lors de l'utilisation de tables de requéts, il est
possible de choisir la langue dans laquelle doivent
étre présentés les noms et les descriptions des
tables en question et de leurs attributs.

Les noms des colonnes des vues sélectionnées sont
affichés tels qu’ils apparaissent dans la base de
données.

Concepts associés

[Requétes portant sur les données des processus métier et des taches|

Les données d’instance des processus métier et des tdches humaines a exécution
longue sont stockées de fagon persistante dans la base de données et accessibles
par le biais de requétes. En outre, il est possible d’accéder aux données des
modeles de processus métier et de tiche humaine grace a une interface de requéte.

Tables de requétes dans Business Process Choreographer

Les tables de requétes permettent d’interroger les données des listes de taches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requétes peuvent porter sur les données des taches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requétes
fournissent une abstraction des données de Business Process Choreographer qui
peut étre exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de I'implémentation proprement dite des tables. Les définitions des
tables de requétes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d'une API spécifique, appelée API de

table de requéte.

11 existe trois types de tables de requétes : les tables prédéfinies, les tables

supplémentaires et les tables composites.

206 Développement et déploiement

Query table

‘ .
% B d%

Predefined [«--------- Composite |- » Supplemental

e — e —

Figure 23. Tables de requétes dans Business Process Choreographer

Les tables de requétes sont représentées au moyen de modeles similaires dans
I'environnement d’exécution et peuvent étre interrogées a 1’aide de 1’API de table
de requéte. Tandis que les tables de requétes prédéfinies et supplémentaires
pointent directement sur des tables ou des vues dans la base de données, les tables
composites sont constituées de parties de ces données, qu’elles mettent a
disposition sous forme de table unique.

Les tables de requétes étendent les possibilités offertes par les vues de base de
données prédéfinies et les interfaces de requéte existantes de Business Process
Choreographer. Leurs points forts sont les suivants :

* Elles sont optimisées pour exécuter des requétes de liste de processus et de
taches en utilisant des modeles d’acces eux-mémes optimisés pour délivrer les
meilleures performances.

¢ Elles simplifient et consolident 1’acces aux informations nécessaires.

* Elles permettent de configurer tres précisément les options d’autorisation et de
filtrage.

11 est possible de personnaliser des tables de requétes. Les options de configuration
peuvent par exemple stipuler qu'une table de requéte doit contenir uniquement les
taches ou les instances de processus relatives a un scénario particulier. Lorsque les
performances sont primordiales, par exemple dans le cas de requétes concernant
une liste de processus ou de taches volumineuse, utilisez des tables de requétes.

L’outil Query Table Builder est fourni sous forme de plug-in Eclipse pour vous
permettre :

* de développer des tables de requétes composites et supplémentaires ;
¢ d’importer et d’exporter des définitions de tables de requétes au format XML.

L’outil Query Table Builder peut étre téléchargé a partir du site des SupportPacs
WebSphere Business Process Management. Recherchez le SupportPac PA71
WebSphere Process Server - Query Table Builder. Pour accéder au lien, consultez la
section consacrée aux références de cette rubrique.

Chapitre 4. Développement d’applications client pour les taches et processus métier 207

Concepts associés

[Requétes portant sur les données des processus métier et des taches|

Les données d’instance des processus métier et des tdches humaines a exécution
longue sont stockées de fagon persistante dans la base de données et accessibles
par le biais de requétes. En outre, il est possible d’accéder aux données des
modeles de processus métier et de tiche humaine grace a une interface de requéte.

[Tables de requétes prédéfinies|

Les tables de requétes prédéfinies fournissent ’accés aux données dans la base de
données de Business Process Choreographer. Elles correspondent a une
représentation, sous forme de tables de requétes, des vues de la base de données
de Business Process Choreographer, telles que TASK ou PROCESS_INSTANCE.

[Tables de requétes supplémentaires|

Les tables de requétes supplémentaires que vous définissez dans Business Process
Choreographer fournissent a I'’API de table de requétes un acces a des données
métier dites "externes”, c’est-a-dire qui ne sont pas gérées par Business Process
Choreographer. Grace a ces tables de requétes supplémentaires, les données
externes correspondantes peuvent étre utilisées en association avec les données des
tables de requétes prédéfinies pour extraire des informations sur des instances de
processus métier ou sur des tdches humaines.

[Tables de requétes composites|

Dans Business Process Choreographer, les tables de requétes composites sont
congues a partir de tables de requétes prédéfinies et de tables de requétes
supplémentaires. Elles regroupent des données issues de tables ou de vues
existantes. Utilisez-les pour obtenir les informations d"une liste d’instances de
processus ou d'une liste de taches (liste Mes taches, par exemple).

[Développement des tables de requéteq

Dans Business Process Choreographer, le développement des tables de requétes
supplémentaires et des tables de requétes composites s’effectue au cours du
développement de l'application, a 'aide de 1'outil Query Table Builder. Les tables
de requétes prédéfinies ne peuvent pas étre développées ni déployées. Disponibles
lorsque Business Process Choreographer est installé, elles fournissent une vue
simplifiée des artefacts du schéma de base de données Business Process
Choreographer.

[Filtres et critéres de sélection des tables de requétes|

Les filtres et les criteres de sélection sont définis pendant la phase de
développement des tables de requétes, a I'aide de 'outil Query Table Builder, qui
utilise une syntaxe similaire aux clauses SQL WHERE. En définissant clairement
des filtres et des criteres de sélection, vous pouvez spécifier des conditions basées
sur les attributs des tables de requétes.

[Autorisation pour les tables de requétes|

L’exécution de requétes sur des tables de requétes peut s’effectuer avec plusieurs
types d’autorisation : autorisation par instance, autorisation par rdle ou absence de
contrdle d’autorisation.

[Types d’attribut pour les tables de requétes

Dans Business Process Choreographer, les types d’attribut sont nécessaires lors de
la définition de tables de requétes, lors de 'utilisation de valeurs littérales dans les
requétes, ainsi que lors de 1’acces aux valeurs dans un résultat de requéte. Des
régles et des mappages sont disponibles pour chacun des types d’attribut.

[Requétes sur des tables de requéted|

L’exécution de requétes sur les tables de requétes définies dans Business Process
Choreographer s’effectue au moyen de I’API de table de requétes, qui est
disponible pour I'interface EJB de Business Flow Manager et I’API REST.

[Requétes sur des tables de requétes pour l'extraction de métadonnées|

208 Développement et déploiement

L’exécution de requétes sur les tables de requétes définies dans Business Process
Choreographer s’effectue au moyen de 1’API de table de requétes. Des méthodes
sont disponibles pour permettre 1’extraction de métadonnées des tables de
requétes.

[Internationalisation pour les métadonnées des tables de requétes|
L’internationalisation est prise en charge pour les métadonnées des tables de
requétes.

[Tables de requétes et performances des requétes|

Les tables de requétes offrent un nouveau modele de programmation propre, congu
pour le développement d’applications clientes qui extraient des listes de taches
humaines et de processus métier dans Business Process Choreographer. Les tables
de requétes ont un effet bénéfique sur les performances des requétes. Vous
trouverez ci-apres une description des options applicables aux tables de requétes et
des parameétres de I’API de tables de requétes qui ont une incidence sur les
performances des requétes. Des informations sont également fournies a propos
d’autres facteurs qui influent sur les performances.

TAaches associées

[[Administration des tables de requétes|

Utilisez le script wsadmin manageQueryTable.py pour administrer les tables de
requétes de Business Process Choreographer qui ont été développées a 'aide de
Query Table Builder. Contrairement aux tables de requétes prédéfinies, qui sont
prétes a I’emploi, les tables de requétes composites et supplémentaires doivent étre
déployées sur WebSphere Process Server avant de pouvoir étre utilisées avec 1’API
de table de requétes.

[[Déploiement de tables de requétes|

Utilisez le script manageQueryTable.py pour déployer des tables de requétes
composites et supplémentaires dans Business Process Choreographer. Les tables de
requétes doivent étre déployées sur un serveur autonome en cours d’exécution ou
dans un cluster dont au moins un des membres est en cours d’exécution.
L’annulation du déploiement des tables supplémentaires et composites doit
également étre réalisée sur les serveurs en cours d’exécution. Pour les tables de
requétes supplémentaires, les objets physiques de base de données associés (vue de
base de données ou table de base de données, par exemple) doivent le cas échéant
étre créés avant 'utilisation de la table de requétes.

Référence associée

[[Vue de la base de données Business Process Choreographer|
Ces informations de référence décrivent les colonnes disponibles dans les vues de
base de données prédéfinies.

Tables de requétes prédéfinies
Les tables de requétes prédéfinies fournissent ’accés aux données dans la base de
données de Business Process Choreographer. Elles correspondent a une

représentation, sous forme de tables de requétes, des vues de la base de données
de Business Process Choreographer, telles que TASK ou PROCESS_INSTANCE.

Les tables de requétes prédéfinies utilisent les mémes données physiques
sous-jacentes que les vues de base de données prédéfinies et présentent donc la
méme structure. Cependant, elles étendent les fonctionnalités des vues de base de
données prédéfinies et en améliorent les performances, car elles sont optimisées
pour exécuter des requétes portant sur les listes de processus et de taches.

Chapitre 4. Développement d’applications client pour les taches et processus métier 209

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=t4querytables_admin
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=t3querytables_installing
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=r6bpc_dbviews

Les tables de requétes prédéfinies peuvent étre interrogées directement a 1'aide de
I’API de table de requétes. Lorsque vous accédez aux tables en utilisant cette AP,
vous avez un plus grand choix d’options de configuration qu’avec I'’API de
requéte. Vous pouvez développer une table de requétes composite qui contient
toutes les informations a récupérer lors de 'exécution de la requéte, et non
seulement les informations d’une seule table.

L’autorisation est activée pour tous les éléments de travail : éléments de travail
everybody, individual, group et inherited. Sauf mention du contraire, pour les
tables de requétes prédéfinies contenant des données d’instance, 'API de table de
requétes utilise par défaut les éléments de travail everybody, individual et group.

Propriétés

Les tables de requétes prédéfinies ont les propriétés suivantes :

Tableau 6. Propriétés des tables de requétes prédéfinies

Propriété

Description

Nom

Le nom de la table de requétes est le nom, en majuscules, de 1'une
des vues prédéfinies de la base de données ; par exemple, TASK.

Attributs

Les attributs des tables de requétes prédéfinies définissent les
éléments d’information disponibles pour les requétes. Il s’agit des
noms en majuscules des colonnes spécifiées par les vues
prédéfinies de la base de données.

Les attributs sont définis avec un nom et un type. Le type est I'un
des suivants :

* Boolean : une valeur booléenne

¢ Decimal : un nombre en virgule flottante

e ID : un ID d’objet, tel que le TKIID de la table de requétes TASK
* Number : un entier, court (type short) ou long (type long)

* String : une chaine

¢ Timestamp : un horodatage

Autorisation

Les tables de requétes prédéfinies utilisent soit I’autorisation par
instance, soit I’autorisation par role.

¢ Pour les tables de requétes prédéfinies qui contiennent des
données d’instance, I’autorisation par instance est obligatoire.
Cela signifie que la requéte renvoie seulement les objets avec des
éléments de travail destinés a l'utilisateur qui exécute la requéte.
Cependant, en utilisant 1’objet AdminAuthorizationOptions, vous
pouvez limiter cette vérification a un simple contréle de
'existence d’un élément de travail pour tout utilisateur.
L’utilisateur doit avoir le réle J2EE BPESystem Administrator
pour les requétes ainsi configurées.

* DPour les tables de requétes prédéfinies qui contiennent des
données de modele, 'autorisation par role est obligatoire ; cela
signifie que leur contenu n’est accessible qu’aux utilisateurs qui
font partie du réle J2EE BPESystem Administrator.

210 Développement et déploiement

Tables de requétes prédéfinies avec des données d’instance

Le tableau suivant présente les tables de requétes prédéfinies qui contiennent des

données d’instance. Ces tables de requétes se caractérisent par ce qui suit :
* Elles peuvent étre utilisées comme table de requéte principale d'une table

composite.

* Elles utilisent 1’autorisation par instance si elles sont interrogées directement. La

technique utilisée a cet effet est une jointure (SQL-) avec la vue qui stocke les

informations d’autorisation, c’est-a-dire la vue ou la table de requétes prédéfinie

WORK_ITEM.

* Elles contiennent des données d’instance ; par exemple, celles d’instances de

tache ou d’instances de processus.

Tableau 7. Tables de requétes prédéfinies contenant des données d’instance

Données d’instance

Nom de la table de requétes

Informations sur les activités d’une instance
de processus.

ACTIVITY

ACTIVITY_ATTRIBUTE

ACTIVITY_SERVICE

Informations sur les escalades appartenant
aux taches humaines.

ESCALATION

ESCALATION_CPROP

ESCALATION_DESC

Informations sur les instances de processus.

PROCESS_ATTRIBUTE

PROCESS_INSTANCE

QUERY_PROPERTY

Informations sur les tiches humaines.

TASK

TASK_CPROP

TASK_DESC

La table de requétes WORK_ITEM contient aussi des données d’instance, mais elle
n’est pas utilisable comme table de requétes principale ni comme table de requétes
attachée. Les données d’élément de travail sont disponibles implicitement lors de

I'interrogation des tables de requétes qui utilisent l'autorisation par instance.

Autrement dit, lorsque vous interrogez une table de requétes utilisant ’autorisation

par instance, vous pouvez utiliser comme criteres les attributs de la table

WORK_ITEM, méme s’ils ne sont pas explicitement spécifiés par la table que vous

interrogez.

Chapitre 4. Développement d’applications client pour les taches et processus métier

211

Tables de requétes prédéfinies avec des données de modeéle

Pour les tables de requétes prédéfinies qui contiennent des données de modeéle,
I'autorisation par role est obligatoire. Elles ne peuvent étre interrogées que par les
administrateurs, a I'aide de 'objet AdminAuthorizationOptions.

Le tableau suivant présente les tables de requétes prédéfinies qui contiennent des
données de modele. Ces tables de requétes se caractérisent par ce qui suit :

* Elles peuvent étre utilisées comme table de requéte principale d’une table
composite.

* Elles utilisent 1’autorisation par role si elles sont interrogées directement. Cela
signifie que I'appelant doit faire partie du réle J2EE BPESystem Administrator et
que l'objet AdminAuthorizationOptions doit étre utilisé.

* Elles contiennent des données de modele ; par exemple, celles des modeles de
tache ou des modeles de processus.

Tableau 8. Tables de requétes prédéfinies contenant des données de modéle

Données de modele Nom de la table de requétes
Informations sur les composants APPLICATION_COMP
d’application.

Informations sur les modeles d’escalade. ESC_TEMPL

ESC_TEMPL_CPROP

ESC_TEMPL_DESC

Informations sur les modeles de processus. | PROCESS_TEMPLATE

PROCESS_TEMPL_ATTR

Informations sur les modeles de tache. TASK_TEMPL

TASK_TEMPL_CPROP

TASK_TEMPL_DESC

212 Développement et déploiement

Concepts associés

[Tables de requétes dans Business Process Choreographer|

Les tables de requétes permettent d’interroger les données des listes de taches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requétes peuvent porter sur les données des taches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requétes
fournissent une abstraction des données de Business Process Choreographer qui
peut étre exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de I'implémentation proprement dite des tables. Les définitions des
tables de requétes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’'une API spécifique, appelée API de
table de requéte.

[Tables de requétes supplémentaires

Les tables de requétes supplémentaires que vous définissez dans Business Process
Choreographer fournissent a I’API de table de requétes un acces a des données
métier dites "externes”, c’est-a-dire qui ne sont pas gérées par Business Process
Choreographer. Grace a ces tables de requétes supplémentaires, les données
externes correspondantes peuvent étre utilisées en association avec les données des
tables de requétes prédéfinies pour extraire des informations sur des instances de
processus métier ou sur des tdches humaines.

[Tables de requétes composites|

Dans Business Process Choreographer, les tables de requétes composites sont
congues a partir de tables de requétes prédéfinies et de tables de requétes
supplémentaires. Elles regroupent des données issues de tables ou de vues
existantes. Utilisez-les pour obtenir les informations d’une liste d’instances de
processus ou d’une liste de taches (liste Mes taches, par exemple).

[Développement des tables de requéted

Dans Business Process Choreographer, le développement des tables de requétes
supplémentaires et des tables de requétes composites s’effectue au cours du
développement de I'application, a 'aide de l'outil Query Table Builder. Les tables
de requétes prédéfinies ne peuvent pas étre développées ni déployées. Disponibles
lorsque Business Process Choreographer est installé, elles fournissent une vue
simplifiée des artefacts du schéma de base de données Business Process
Choreographer.

[Requétes sur des tables de requétes|

L’exécution de requétes sur les tables de requétes définies dans Business Process
Choreographer s’effectue au moyen de I’API de table de requétes, qui est
disponible pour l'interface EJB de Business Flow Manager et 1’API REST.

[Autorisation pour les tables de requétes|

L’exécution de requétes sur des tables de requétes peut s’effectuer avec plusieurs
types d’autorisation : autorisation par instance, autorisation par role ou absence de
contréle d’autorisation.

Référence associée

[[Vue de la base de données Business Process Choreographer|
Ces informations de référence décrivent les colonnes disponibles dans les vues de
base de données prédéfinies.

Tables de requétes supplémentaires

Les tables de requétes supplémentaires que vous définissez dans Business Process
Choreographer fournissent a I’API de table de requétes un acces a des données
métier dites "externes”, c’est-a-dire qui ne sont pas gérées par Business Process
Choreographer. Grace a ces tables de requétes supplémentaires, les données

Chapitre 4. Développement d’applications client pour les tiches et processus métier 213

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=r6bpc_dbviews

externes correspondantes peuvent étre utilisées en association avec les données des
tables de requétes prédéfinies pour extraire des informations sur des instances de
processus métier ou sur des taches humaines.

Les tables de requétes supplémentaires sont associées a des tables ou des vues
dans la base de données de Business Process Choreographer. Il s’agit de tables de
requétes qui contiennent des données métier supplémentaires, tenues a jour par
des applications externes (celles du client). Les tables de requétes supplémentaires
fournissent des informations dans une table composite qui vient en complément
du contenu d’une table de requétes prédéfinie.

Les tables de requétes supplémentaires ont les propriétés suivantes :

Tableau 9. Propriétés des tables de requétes supplémentaires

Propriété Description

Nom Le nom d’une table de requétes doit étre unique au sein d'une
méme installation Business Process Choreographer. A I'exécution
de la requéte, c’est ce nom qui est utilisé pour identifier la table de
requétes interrogée.

Une table de requétes est identifiée de maniére unique par son
nom, qui est de la forme préfixe.nom. La longueur de préfixe.nom ne
doit pas dépasser 28 caracteres. Le préfixe 'IBM' est réservé et ne
doit pas étre utilisé ; par exemple, 'COMPANY.BUS_DATA' est un nom

correct.
Nom de base de Le nom de la table ou vue associée dans la base de données. Seules
données des lettres majuscules sont acceptées.
Schéma de base de Le schéma de la table ou vue associée dans la base de données.
données Seules des lettres majuscules sont acceptées. Ce schéma doit étre

différent de celui de la base de données de Business Process
Choreographer. Cependant, la table ou la vue doit étre accessible
avec la méme source de données JDBC que celle qui est utilisée
pour accéder a la base de données de Business Process
Choreographer.

Attributs Les attributs des tables de requétes supplémentaires définissent les
éléments d’information disponibles pour les requétes. Ces attributs
doivent avoir le méme nom que les colonnes auxquelles ils
correspondent dans la table ou la vue de base de données.

Les attributs sont définis avec un nom et un type. Le nom est
défini en majuscules. Le type est 1'un des suivants :

* Boolean : une valeur booléenne
¢ Decimal : un nombre en virgule flottante

e ID : un ID d’objet d’une longueur de 16 octets, tel que le TKIID
de la table de requétes TASK

¢ Number : un entier, court (type short) ou long (type long)
* String : une chaine

¢ Timestamp : un horodatage

Jointures Des jointures doivent étre définies sur les tables supplémentaires si
elles sont attachées a une table dite "principale” pour former des
tables de requétes composites. Une jointure définit quels attributs
sont utilisés pour corréler les informations de la table de requétes
supplémentaire avec celles de la table de requétes principale.
Lorsqu’une jointure est définie, I’attribut source et I'attribut cible
doivent étre du méme type.

214 Développement et déploiement

Tableau 9. Propriétés des tables de requétes supplémentaires (suite)

Propriété Description

Autorisation Aucun controle d’autorisation n’est spécifié pour les tables de
requétes supplémentaires ; par conséquent, tous les utilisateurs
authentifiés peuvent voir leur contenu.

Concepts associés

[Tables de requétes dans Business Process Choreographer]

Les tables de requétes permettent d’interroger les données des listes de taches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requétes peuvent porter sur les données des taches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requétes
fournissent une abstraction des données de Business Process Choreographer qui
peut étre exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de I'implémentation proprement dite des tables. Les définitions des
tables de requétes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requéte.

[Tables de requétes prédéfinies|

Les tables de requétes prédéfinies fournissent I'acces aux données dans la base de
données de Business Process Choreographer. Elles correspondent a une
représentation, sous forme de tables de requétes, des vues de la base de données
de Business Process Choreographer, telles que TASK ou PROCESS_INSTANCE.

[Tables de requétes composites|

Dans Business Process Choreographer, les tables de requétes composites sont
congues a partir de tables de requétes prédéfinies et de tables de requétes
supplémentaires. Elles regroupent des données issues de tables ou de vues
existantes. Utilisez-les pour obtenir les informations d’une liste d’instances de
processus ou d’une liste de taches (liste Mes taches, par exemple).

[Développement des tables de requétes

Dans Business Process Choreographer, le développement des tables de requétes
supplémentaires et des tables de requétes composites s’effectue au cours du
développement de I'application, a 'aide de 1'outil Query Table Builder. Les tables
de requétes prédéfinies ne peuvent pas étre développées ni déployées. Disponibles
lorsque Business Process Choreographer est installé, elles fournissent une vue
simplifiée des artefacts du schéma de base de données Business Process
Choreographer.

[Requétes sur des tables de requétes|

L’exécution de requétes sur les tables de requétes définies dans Business Process
Choreographer s’effectue au moyen de I’API de table de requétes, qui est
disponible pour l'interface EJB de Business Flow Manager et I’API REST.

[Autorisation pour les tables de requétes|

L’exécution de requétes sur des tables de requétes peut s’effectuer avec plusieurs
types d’autorisation : autorisation par instance, autorisation par role ou absence de
contrdle d’autorisation.

Tables de requétes composites

Dans Business Process Choreographer, les tables de requétes composites sont
congues a partir de tables de requétes prédéfinies et de tables de requétes
supplémentaires. Elles regroupent des données issues de tables ou de vues
existantes. Utilisez-les pour obtenir les informations d"une liste d’instances de
processus ou d’une liste de taches (liste Mes taches, par exemple).

Chapitre 4. Développement d’applications client pour les taches et processus métier 215

Les tables de requétes composites autorisent une configuration fine des filtres et
des options d’autorisation, permettant ainsi d’optimiser l'accés aux données lors de
I'exécution des requétes. Elles n’ont pas de représentation spécifique de données
dans la base de données ; elles accedent simplement au contenu correspondant aux
tables prédéfinies et supplémentaires dont elles sont constituées. Les tables de
requétes composites sont créées au moyen de code SQL, qui est optimisé pour les
requétes sur les listes de taches et de processus.

Les tables de requétes composites sont congues par les développeurs d’applications
clientes. Dans les scénarios de production, leur utilisation est a privilégier par
rapport a 'emploi des API de requétes standard de Business Process
Choreographer, car elles fournissent une abstraction de I'implémentation
proprement dite des requétes et permettent donc d’optimiser celles-ci. En outre, les
tables de requétes composites autorisent des changements a 1’exécution sans que
cela nécessite de redéployer le client qui y accéde.

La figure suivante offre une vue d’ensemble du contenu des tables de requétes
composites :

\

query table query (selected attributes): result set structure

\T\ N \ o

\ \
query tablg definition (defined columns@ributes)
)\
defined
attributes
Fal Fal ad pal L3 .
additional ‘ _
attributes | A available
at query time attributes
authorization primary query table attached query tables
work item . predefined
query table predefined
supplemental
i i ttached attached
WORK_ITEM view primary query table uorymble| " |query tale

Figure 24. Contenu des tables de requétes composites

Toutes les tables de requétes composites sont définies avec une table de requétes
principale et zéro, une ou plusieurs tables de requétes attachées.

216 Développement et déploiement

La table de requétes principale :

* Constitue I'information principale contenue dans une table de requétes
composite.

* Doit étre l'une des tables de requétes prédéfinies.

* Identifie de maniére unique, par sa clé primaire, chaque objet contenu dans la
table de requétes composites. Par exemple, dans le cas de la table de requétes
prédéfinie TASK, il s’agit de I'ID de tache TKIID.

* Controle l'acces au contenu d’une table de requétes en utilisant les éléments de
travail qui figurent dans la table de requétes WORK_ITEM, si l'autorisation par
instance est utilisée.

* Détermine la liste des objets retournés comme lignes d’une table lorsque la table
composite est interrogée.

Les tables de requétes attachées :

¢ Peuvent étre des tables de requétes prédéfinies ou supplémentaires déja
déployées sur le systeme.

* Ont pour objectif de fournir des informations complémentaires de celles qui sont
fournies par la table de requétes principale. Par exemple, si TASK est la table de
requétes principale, la description de chaque tache fournie dans la table de
requétes TASK_DESC peut étre ajoutée au contenu de la table de requétes
composite.

En général, la table de requétes principale est choisie en fonction de 1’objectif de la
table de requétes composite.

* Si la table composite doit décrire une liste de taches, la table de requétes TASK
sera désignée comme table principale.

* Si la table composite doit décrire une liste de processus, la table de requétes
PROCESS_INSTANCE sera désignée comme table principale.

e Les listes d’activités sont obtenues en utilisant ACTIVITY comme table de
requétes principale.

e Les listes d’escalades de tiches humaines sont obtenues en utilisant
ESCALATION comme table de requétes principale.

La relation entre table de requétes principale et tables attachées

La relation entre la table principale et une table attachée est du type un a un ou un
a zéro, ce qui signifie que, dans la table principale, chaque ligne doit correspondre
au plus a une ligne de la table attachée. Si le type de relation un a un ou un a zéro
n’est pas respecté, une exception d’exécution (RuntimeException) se produira a
I'exécution de la requéte.

La corrélation entre table principale et chaque table attachée est réalisée par un
attribut de jointure qui est défini sur la table attachée. Pour les tables de requétes
prédéfinies, cet attribut de jointure ne peut pas étre changé, car il décrit la relation
entre les données dans les différentes tables de requétes de Process Choreographer.
Cet attribut de jointure est généralement suffisant pour maintenir la relation un a
un ou un a zéro. Par exemple, 1'attribut CONTAINMENT_CTX_ID est utilisé sur la
table de requétes TASK pour attacher les données de l'instance de processus
associée, laquelle est identifiée par I'attribut PIID dans la table de requétes
PROCESS_INSTANCE. Cependant, lorsque la relation créée par la jointure est du
type un a plusieurs, un critere additionnel doit étre spécifié afin retrouver une
relation du type un a un ou un a zéro. C’est ce qu’on appelle le critere de sélection.

Chapitre 4. Développement d’applications client pour les taches et processus métier 217

Les criteres de sélection sont spécifiés pendant la phase de développement des
tables de requétes, a I'aide de I'outil Query Table Builder. IIs sont utilisés dans la
définition des tables de requétes pour choisir un élément d’information parmi les
multiples éléments d’une relation un a plusieurs. Par exemple, il peut s’agir de
I'expression "LOCALE='fr_FR'". Une tache peut avoir plusieurs descriptions
identifiées chacune par un code d’environnement local différent.

Exemple 1 :

La figure suivante illustre 'emploi de criteres de sélection spécifiés sur les tables
de requétes attachées :

query table definition (defined columns/attributes) with sample values
ID STATE NAME CUSTOMER DESCRIPTION
TK2 2 TSK-2 IBM The Task
/ TASK
TKIID | STATE | NAME | --- TASK_CPROP
TK1 3 / TASK 1 TKIID | NAME VALUE selection criterion
< | CUSTOMER='IBM’ |
TK2 | 2 TSK 2 | ™"
TK1 DueDate -
TK3 | 2 TASK_3 TK2 | id 7234
TK2 customer | IBM Im
- TK2 | id
primary TK3 DueDate TKIID | LOCALE | DESC
TKk3 | customer | ——T— =]
selection criterion
TK1 en_US The Task LOCALE="en US'
attached 1 TK2 de_DE Der Task —en-
"L TK2 | en_US The Task
TK3 de DE Der Task
TK3 en_US The Task
attached

Figure 25. Table de requétes composite avec criteres de sélection

La table de requétes composite contient les attributs ID, STATE, NAME,
CUSTOMER et DESCRIPTION.

* Les attributs ID (le TKIID), STATE et NAME sont fournis par la table de
requétes principale TASK.

e CUSTOMER est une propriété personnalisée définie sur la table TASK. Les
propriétés personnalisées sont stockées dans la table de requétes TASK_CPROP.
Pour une tache particuliere, une propriété personnalisée est identifiée de manieére

unique par son nom. Ce point est reflété dans le critére de sélection
"CUSTOMER="IBM"".

218 Développement et déploiement

* DESCRIPTION est la description de la tache ; elle est stockée dans la table de
requétes TASK_DESC. La description de tache associée a une instance de tache
particuliere est identifiée de maniéere unique par son environnement local. Ce
point est reflété dans le critere de sélection "LOCALE="'en_US"'".

Exemple 2 :

Si TASK est la table de requétes principale et que TASK_DESC y est attachée, un
environnement local particulier doit étre choisi ; il s’agit ici de l'attribut LOCALE
de la table TASK_DESC. L’objectif de cet exemple est d’illustrer la relation entre la
table principale et la table attachée en utilisant TASK comme table principale et
TASK_DESC comme table attachée. Le tableau suivant montre des exemples de
contenus d’une table composite, avec un critere de sélection valide spécifié pour la
table attachée TASK_DESC.

Tableau 10. Contenus valides d’une table de requétes composite

Table principale TASK Table attachée TASK_DESC

NAME LOCALE DESCRIPTION
task_one en_US This is a description.
task_two en_US This is a description.

Le tableau suivant présente des contenus hypothétiques qui ne sont pas valides (en
gras) si le critere de sélection n’est pas défini correctement, ce qui signifie que la
relation un a un ou un a zéro n’est pas respectée.

Tableau 11. Contenus non valides d’une table de requétes composite

TASK (table de requétes

principale) TASK_DESC (table de requétes attachée)

NAME LOCALE DESCRIPTION

task_one en_US This is a description.
task_one de_DE Das ist eine Beschreibung.
Propriétés

Les tables de requétes composites ont les propriétés suivantes :

Tableau 12. Propriétés des tables de requétes composites

Propriété Description

Nom Le nom d’une table de requétes doit étre unique au sein d’une
méme installation Business Process Choreographer. A I'exécution
de la requéte, c’est ce nom qui est utilisé pour identifier la table de
requétes interrogée.

Une table de requétes est identifiée de maniére unique par son
nom, qui est de la forme préfixe.nom dans le cas d’une table de
requétes composite. La longueur de préfixe.nom ne doit pas
dépasser 28 caracteres. Le préfixe 'IBM’ est réservé et ne doit pas
étre utilisé ; par exemple, COMPANY.TODO_TASK_LIST” est un

nom correct.

Chapitre 4. Développement d’applications client pour les taches et processus métier 219

Tableau 12. Propriétés des tables de requétes composites (suite)

Propriété

Description

Attributs

Les attributs des tables de requétes composites définissent les
éléments d’information disponibles pour les requétes.

Les attributs sont définis avec un nom en majuscules. Leur type est
hérité de celui de l'attribut auquel ils font référence, qui est I'un
des suivants :

* Boolean : une valeur booléenne

¢ Decimal : un nombre en virgule flottante

e ID : un ID d’objet, tel que le TKIID de la table de requétes TASK
* Number : un entier, court (type short) ou long (type long)

* String : une chaine

¢ Timestamp : un horodatage

Les attributs d’une table de requétes composite sont définis via une
référence aux attributs de la table principale ou des tables
attachées. Les attributs des tables de requétes composites héritent
des types et des constantes des attributs auxquels ils font référence.

Outre les attributs qui font partie de la définition de la table de
requétes, les données d’élément de travail peuvent étre interrogées
a I'exécution. Les conditions a remplir sont que la table de requétes
principale contienne des données d’instance, (c’est le cas des tables
de requétes TASK et PROCESS_INSTANCE) et que l'autorisation
par instance soit utilisée sur la table de requétes composite. Par
exemple, la requéte peut étre définie de maniére a renvoyer
uniquement les taches humaines pour lesquelles 1'utilisateur est un
propriétaire potentiel.

220 Développement et déploiement

Tableau 12. Propriétés des tables de requétes composites (suite)

Propriété Description

Autorisation Chaque table de requétes composite définit si I’autorisation par
instance ou par role est utilisée lorsque des requétes sont exécutées
dessus (ou s’il n'y a pas de controle d’autorisation).

Si l'autorisation par instance est définie, la requéte renvoie
seulement les objets avec des éléments de travail destinés a
l'utilisateur qui exécute la requéte. Cependant, en utilisant 1’objet
AdminAuthorizationOptions, vous pouvez limiter cette vérification
a un simple contrdle de I’existence d'un élément de travail pour
tout utilisateur. L'utilisateur doit faire partie du role J2EE
BPESystemAdministrator pour les requétes ainsi configurées, et
I'objet AdminAuthorizationOptions doit étre passé a ’API de table
de requétes.

Si l'autorisation par role est définie, 1'utilisateur doit faire partie du
role J2EE BPESystemAdministrator pour les requétes ainsi
configurées, et I'objet AdminAuthorizationOptions doit étre passé a
I’API de table de requétes.

Si aucun contrdle d’autorisation n’est défini, I’exécution de la
requéte a lieu sans vérification préalable de l’existence des
éléments de travail des objets associés dans la table de requéte.
Tous les utilisateurs authentifiés peuvent voir le contenu de la table
de requétes.

L’autorisation par instance peut étre définie si la table de requétes
principale contient des données d’instance ; 'autorisation par role
peut étre définie si la table de requétes principale contient des
données de modele. L’absence de controle d’autorisation peut étre
définie sur les tables de requétes composites, quelle que soit leur
table principale.

Filtres

Les filtres servent a limiter le nombre d’objets ou de lignes contenus dans une
table de requétes composite.

Chapitre 4. Développement d’applications client pour les tiches et processus métier 221

query table definition (build-time conditions)

query table filter

additional
attributes
at query time

. en defined
attributes
|
work item filter primary query table
filter

authorization primary query table attached query tables

work item . predefined

query table predefined

supplemental
i i ttached attached

WORK_'TEM view SATAEE QR table :L}:?y (taable e query table

Figure 26. Filtres dans les tables de requétes composites

Pendant le développement d’une table de requétes composite, des filtres peuvent
étre définis et appliqués :
* a la table de requétes principale, comme filtre de la table de requétes principale ;

* a la table de requétes WORK_ITEM, laquelle est implicitement disponible et
assure le contrdle d’acceés (autorisation) si la table de requétes principale contient
des données d’instance. Ce filtre est appelé filtre d’autorisation ; il est disponible
uniquement si la table composite est configurée pour utiliser I'autorisation par
instance.

* a la table de requétes composite, comme filtre de table de requétes.

Les filtres sont définis durant le développement des tables de requétes. Par
exemple, avec une table de requétes composite dont la table principale est TASK, il
est possible de filtrer les taches de maniere a exclure toutes celles qui ne sont pas a
I'état prét (en utilisant 1’expression "STATE=STATE_READY" comme filtre de la table
de requétes principale).

Autorisation

L’autorisation d’accés au contenu d’une table de requétes composite est similaire a
celle qui réglemente 1'acces a la table utilisée comme table principale. La différence
est que la table composite peut étre configurée pour étre plus restrictive.

* Si l'autorisation par instance est utilisée, les données contenues dans la table
composite sont vérifiées par rapport aux éléments de travail dans la table de
requétes WORK_ITEM. Cette vérification s’effectue par rapport a la table de
requétes principale. Les éléments de travail ‘everybody’, ‘individual’, ‘group” et
‘inherited” sont utilisés pour la vérification, selon la configuration de la table de
requétes composite. Si des éléments de travail ‘inherited” sont spécifié, les objets
ayant comme parent une instance de processus (par exemple, une tdche humaine
participante) et qui sont liés a un élément de travail ‘everybody’, ‘individual” ou

222 Développement et déploiement

‘group’ (en fonction de la configuration), sont présents dans la table de requétes
composite. En général, les éléments de travail ‘inherited’ ne sont utiles qu’aux
administrateurs.

* Les tables composites dont la table principale contient des données de modele
ne doivent pas étre configurées pour utiliser I'autorisation par instance. Si
l'autorisation par rdle est utilisée, les requétes ne peuvent étre exécutées que par
les utilisateurs faisant partie du role J2EE BPESystemAdministrator, et 1’objet
AdminAuthorizationOptions doit étre utilisé.

Concepts associés

[Tables de requétes dans Business Process Choreographer|

Les tables de requétes permettent d’interroger les données des listes de taches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requétes peuvent porter sur les données des taches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requétes
fournissent une abstraction des données de Business Process Choreographer qui
peut étre exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de I'implémentation proprement dite des tables. Les définitions des
tables de requétes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d'une API spécifique, appelée API de
table de requéte.

[Tables de requétes prédéfinies|

Les tables de requétes prédéfinies fournissent ’accés aux données dans la base de
données de Business Process Choreographer. Elles correspondent a une
représentation, sous forme de tables de requétes, des vues de la base de données
de Business Process Choreographer, telles que TASK ou PROCESS_INSTANCE.

[Tables de requétes supplémentaire

Les tables de requétes supplémentaires que vous définissez dans Business Process
Choreographer fournissent a ’API de table de requétes un acces a des données
métier dites "externes”, c’est-a-dire qui ne sont pas gérées par Business Process
Choreographer. Grace a ces tables de requétes supplémentaires, les données
externes correspondantes peuvent étre utilisées en association avec les données des
tables de requétes prédéfinies pour extraire des informations sur des instances de
processus métier ou sur des tdches humaines.

[Développement des tables de requéted

Dans Business Process Choreographer, le développement des tables de requétes
supplémentaires et des tables de requétes composites s’effectue au cours du
développement de I'application, a 'aide de l'outil Query Table Builder. Les tables
de requétes prédéfinies ne peuvent pas étre développées ni déployées. Disponibles
lorsque Business Process Choreographer est installé, elles fournissent une vue
simplifiée des artefacts du schéma de base de données Business Process
Choreographer.

[Requétes sur des tables de requéte|

L’exécution de requétes sur les tables de requétes définies dans Business Process
Choreographer s’effectue au moyen de I’API de table de requétes, qui est
disponible pour l'interface EJB de Business Flow Manager et I’API REST.

[Autorisation pour les tables de requétes

L’exécution de requétes sur des tables de requétes peut s’effectuer avec plusieurs
types d’autorisation : autorisation par instance, autorisation par réle ou absence de
contréle d’autorisation.

Développement des tables de requétes
Dans Business Process Choreographer, le développement des tables de requétes
supplémentaires et des tables de requétes composites s’effectue au cours du

Chapitre 4. Développement d’applications client pour les tiches et processus métier 223

développement de I’application, a 'aide de l'outil Query Table Builder. Les tables
de requétes prédéfinies ne peuvent pas étre développées ni déployées. Disponibles
lorsque Business Process Choreographer est installé, elles fournissent une vue
simplifiée des artefacts du schéma de base de données Business Process

Choreographer.

L’outil Query Table Builder, disponible sous forme de plug-in Eclipse, peut étre
téléchargé sur le site des SupportPacs WebSphere Business Process Management.
Recherchez le SupportPac PA71 WebSphere Process Server - Query Table Builder.
Pour accéder au lien, consultez la section consacrée aux références de cette

rubrique.

L’utilisation de tables de requétes a une incidence sur le développement et le
déploiement des applications. Les étapes suivantes décrivent les roles mis en jeu
lorsque vous concevez et développez une application Business Process
Choreographer utilisant des tables de requétes.

Tableau 13. Etapes de développement de tables de requétes

Etape

Roéle

Description

1. Analyse

Analyste métier,
développeur de client

Analysez les besoins de 1’application cliente
et déterminez quelles tables de requétes
sont nécessaires. Posez-vous les questions
suivantes :

* Combien de listes de taches ou de
processus faut-il fournir a l'utilisateur ? Y
a-t-il des listes de taches ou de processus
qui pourraient partager la méme table de
requétes ?

* Quel type d’autorisation est utilisé ? Par
instance, par réle ou aucun ?

* Existe-t-il, dans le systeme, d’autres
tables de requétes déja prétes a I'emploi
qui pourraient étre réutilisées ?

* Les tables de requétes doivent-elles
fournir le contenu en plusieurs langues ?
Si oui, les criteres de sélection sur les
tables de requétes attachées doivent étre
LOCALE=$LOCALE.

2. Développement des
tables de requétes

Développeur de
client, analyste métier

Développez les tables de requétes a utiliser
dans l'application cliente. Efforcez-vous de
spécifier leur définition de maniere a
optimiser les performances obtenues avec
les requétes qu’elles fournissent.

3. Déploiement des
tables de requétes

Administrateur

Les tables de requétes doivent étre
déployées dans 1’environnement d’exécution
avant de pouvoir étre utilisées. Cette étape
est réalisée au moyen de la commande
wsadmin manageQueryTable.py.

4. Requétes sur les
tables de requétes

Développeur de client

La derniere étape du développement
consiste a exécuter des requétes sur les
tables. Le développeur de l'application
cliente doit connaitre le nom de la table a
interroger et ses attributs.

224 Développement et déploiement

L’exemple de code ci-dessous utilise I’API de table de requétes pour interroger une
table de requétes. Pour des raisons de simplification, les exemples 1 et 2 fournis
interrogent la table de requétes prédéfinie TASK. Les exemples 3 et 4 interrogent
une table de requétes composite et supposent que celle-ci a été préalablement
déployée sur le systeme. Dans le cadre du développement d’applications, il est
recommandé d’utiliser des tables de requétes composites au lieu d'interroger
directement les tables de requétes prédéfinies.

Exemple 1

// permet d'obtenir Te contexte d'affectation de nom et de rechercher 1'interface
// EJB home de Business Flow Manager ; cette interface
// doit étre mise en cache pour des raisons de performances
// nous supposons également qu'il existe une référence EJB
// & 1'EJB Tocal de Business Flow Manager
Context ctx = new InitialContext();
LocalBusinessFlowManagerHome home =

(LocalBusinessFlowManagerHome)

ctx.lookup("java:comp/env/ejb/BFM");

// crée le module de remplacement de Business Flow Manager coté client
LocalBusinessFlowManager bfm = home.create();

AR R R R e TS e
[] Fxxwkrxrkrrxmrrxkix eXEMple 1 #krxrsrkxksrrxkhkrs
AR R e R T T T

// exécute une requéte sur la table de requétes prédéfinie
// TASK ; i1 s'agit ici d'une simple liste Mes tdches
EntityResultSet ers = null;

ers = bfm.queryEntities("TASK", null, null, null);

// imprime le résultat dans STDOUT
EntityInfo entityInfo = ers.getEntityInfo();
List attList = entityInfo.getAttributeInfo();
int attSize = attlList.size();

Iterator iter = ers.getEntities().iterator();

while(iter.hasNext()) {

System.out.print("Entity: ");
Entity entity = (Entity) iter.next();

for (int i = attSize - 1; i >= 0; i--) {
AttributeInfo ai = (AttributeInfo) attList.get(i);
System.out.print(

entity.getAttributeValue(ai.getName()));

System.out.printin();
1

Exemple 2

[] Frrkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkk ok kk ok kkkkkkhkk
[wEExEE AR IR KKK exemple 2 Fkkkkkkkkkkkkkhkkkk
- -

// identique & 1'exemple 1, mais utilise des requétes
// par ligne

RowResultSet rrs = null;

rrs = bfm.queryRows ("TASK", null, null, null);

attList = rrs.getAttributeInfo();
attSize = attList.size();

// imprime le résultat dans STDOUT
while (rrs.next()) {
System.out.print("Row: ");

Chapitre 4. Développement d’applications client pour les taches et processus métier 225

for (int i = attSize - 1; i >= 0; i--) {

AttributeInfo ai = (AttributeInfo) attList.get(i);

System.out.print(
rrs.getAttributeValue(ai.getName()));

1

System.out.printin();
1

Exemple 3

[] FErkkkkkkkkkkhkkkhkkkhkkkkkkkh ok kh kR kkhkkkkkkkhkk
[] Fxxwkxxmkrrrrrrxkcx @XEMPle 3 wkkxkkrkxkdkkkkkhkkk
AR R e

// exécute une requéte sur une table de requétes composite
// préalablement déployée sur le systéme ;
// on suppose que le nom est COMPANY.TASK_LIST
ers = bfm.queryEntities(
"COMPANY.TASK_LIST", null, null, null);

// imprime le résultat dans STDOUT ...

Exemple 4

F A R R T A T
[] wEFExE AR KRR KK exemple 4 Fkkkkkkkkkkkkkkkhkk
]| FErkkkkkkkkkk ok ok ok k ok k ok k ko k ko kk ok kok ok *kkkkkk

// requéte sur Ta méme table de requétes que dans 1'exemple 3,
// mais utilise des options personnalisées
FilterOptions fo = new FilterOptions();

// renvoie uniquement les objets a 1'état Prét
fo.setQueryCondition("STATE=STATE_READY");

// trie les objets en fonction de leur ID
fo.setSortAttributes("ID");

// Timite & 50 Te nombre d'entités
fo.setThreshold(50);

// récupére uniquement un sous-ensemble des attributs définis
// au niveau de la table de requétes
fo.setSelectedAttributes("ID, STATE, DESCRIPTION");
AuthorizationOptions ao = new AuthorizationOptions();

// ne renvoie pas les objets que tous les utilisateurs sont
// autorisés a voir

ao.setEverybodyUsed(Boolean.FALSE);

ers = bfm.queryEntities(
"COMPANY.TASK_LIST", fo, ao, null);

// imprime le résultat dans STDOUT ...

226 Développement et déploiement

Concepts associés

[Tables de requétes dans Business Process Choreographer|

Les tables de requétes permettent d’interroger les données des listes de taches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requétes peuvent porter sur les données des taches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requétes
fournissent une abstraction des données de Business Process Choreographer qui
peut étre exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de I'implémentation proprement dite des tables. Les définitions des
tables de requétes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’'une API spécifique, appelée API de
table de requéte.

[Tables de requétes prédéfinies|

Les tables de requétes prédéfinies fournissent ’accés aux données dans la base de
données de Business Process Choreographer. Elles correspondent a une
représentation, sous forme de tables de requétes, des vues de la base de données
de Business Process Choreographer, telles que TASK ou PROCESS_INSTANCE.

[Tables de requétes supplémentaired

Les tables de requétes supplémentaires que vous définissez dans Business Process
Choreographer fournissent a ’API de table de requétes un acces a des données
métier dites "externes”, c’est-a-dire qui ne sont pas gérées par Business Process
Choreographer. Grace a ces tables de requétes supplémentaires, les données
externes correspondantes peuvent étre utilisées en association avec les données des
tables de requétes prédéfinies pour extraire des informations sur des instances de
processus métier ou sur des tdches humaines.

[Tables de requétes composites|

Dans Business Process Choreographer, les tables de requétes composites sont
congues a partir de tables de requétes prédéfinies et de tables de requétes
supplémentaires. Elles regroupent des données issues de tables ou de vues
existantes. Utilisez-les pour obtenir les informations d’une liste d’instances de
processus ou d’une liste de taches (liste Mes taches, par exemple).

[Requétes sur des tables de requétes|

L’exécution de requétes sur les tables de requétes définies dans Business Process
Choreographer s’effectue au moyen de I’API de table de requétes, qui est
disponible pour I'interface EJB de Business Flow Manager et I’API REST.

[Filtres et critéres de sélection des tables de requétes|

Les filtres et les criteres de sélection sont définis pendant la phase de
développement des tables de requétes, a I'aide de 'outil Query Table Builder, qui
utilise une syntaxe similaire aux clauses SQL WHERE. En définissant clairement
des filtres et des critéres de sélection, vous pouvez spécifier des conditions basées
sur les attributs des tables de requétes.

TAaches associées

[|Administration des tables de requétesl

Utilisez le script wsadmin manageQueryTable.py pour administrer les tables de
requétes de Business Process Choreographer qui ont été développées a 'aide de
Query Table Builder. Contrairement aux tables de requétes prédéfinies, qui sont
prétes a I'emploi, les tables de requétes composites et supplémentaires doivent étre
déployées sur WebSphere Process Server avant de pouvoir étre utilisées avec 1’API
de table de requétes.

[[Déploiement de tables de requétes|
Utilisez le script manageQueryTable.py pour déployer des tables de requétes

Chapitre 4. Développement d’applications client pour les taches et processus métier 227

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=t4querytables_admin
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=t3querytables_installing

composites et supplémentaires dans Business Process Choreographer. Les tables de
requétes doivent étre déployées sur un serveur autonome en cours d’exécution ou
dans un cluster dont au moins un des membres est en cours d’exécution.
L’annulation du déploiement des tables supplémentaires et composites doit
également étre réalisée sur les serveurs en cours d’exécution. Pour les tables de
requétes supplémentaires, les objets physiques de base de données associés (vue de
base de données ou table de base de données, par exemple) doivent le cas échéant
étre créés avant 'utilisation de la table de requétes.

Filtres et criteres de sélection des tables de requétes

Les filtres et les criteres de sélection sont définis pendant la phase de
développement des tables de requétes, a I'aide de 'outil Query Table Builder, qui
utilise une syntaxe similaire aux clauses SQL WHERE. En définissant clairement
des filtres et des critéres de sélection, vous pouvez spécifier des conditions basées
sur les attributs des tables de requétes.

Pour toute information sur l'installation de 1’outil Query Table Builder, consultez le
site des SupportPacs de WebSphere Business Process Management. Recherchez le
SupportPac PA71 WebSphere Process Server - Query Table Builder. Pour accéder au
lien, consultez la section consacrée aux références de cette rubrique.

Attributs

Lorsqu’il est question d’attributs dans une expression, il s’agit de ceux des tables
de requétes. Selon l'endroit ou se situe 1'expression, différents attributs sont
disponibles. Le développeur d’applications clientes ne peut utiliser des expressions
que dans les filtres de requéte qu’il passe a ’API de table de requétes. Le
développeur de tables de requétes composites a quant a lui la possibilité d'utiliser
des expressions en des endroits plus variés. Le tableau suivant décrit les attributs
disponibles et en quels endroits ils sont utilisables.

228 Développement et déploiement

Tableau 14. Les attributs des tables de requétes et leur utilisation dans les expressions

Ou Expression Attributs disponibles
API fle table de Filtre de requéte Tous les attributs définis dans la table de
requétes requétes.

Table de requétes
composite

Filtre de table de
requétes

* Si l'autorisation par instance est utilisée,
tous les attributs définis dans la table de
requétes WORK_ITEM, préfixés avec
"WI.L' .

Exemples :

* STATE=STATE_READY, si la table de requétes
contient un attribut STATE et si une
constante STATE_READY est définie pour
cet attribut

e STATE=STATE_READY AND
WI.REASON=REASON_POTENTIAL_OWNER, si la
table de requétes contient un attribut
STATE et si elle utilise I'autorisation par
instance

Filtre de la table de
requétes principale

* Tous les attributs définis pour la table de
requétes principale.

Exemple :

* STATE=STATE_READY, si la table de requétes
contient un attribut STATE et si une
constante STATE_READY est définie pour
cet attribut

Filtre d’autorisation

¢ Tous les attributs définis dans la table de
requétes prédéfinie WORK_ITEM,
préfixés avec 'WI.' .

Exemple :

* WI.REASON=REASON POTENTIAL OWNER

Critere de sélection

* Tous les attributs définis dans la table de
requétes attachée et associée.

Exemple :

* LOCALE='en_US', si la table de requétes
attachée contient un attribut LOCALE, ce
qui est le cas de la table TASK_DESC

La figure suivante montre les différents endroits ol les filtres et critéres de
sélection peuvent étre utilisés dans des expressions ; elle inclut également des

exemples :

Chapitre 4. Développement d’applications client pour les taches et processus métier 229

@ery table query (runtime)

CUSTOMER=’IBM’

FilterOptions fo = new FilterOptions ();
fo. setQueryCondition (’CUSTOMER="IBM"");

N— _

query table definition (build-time)

CUSTOMER="IBM’ OR CUSTOMER="OTHER’

‘ REASONS ID STATE

WI.REASON=READER STATE=STATE_READY

CUSTOMER| DISP

attached query tables

predefined
authorization primary query table
. NAME="xyz LOCAJ.SE’— en
WORK_ITEM view TASK =
TASK_ TASK_
CPROP DESC

Figure 27. Filtres et critéres de sélection dans des expressions

Expressions

Les expressions ont la syntaxe suivante :

expression ::= attribut op_binaire valeur |
attribut op_unaire |
attribut op_liste liste |
(expression) |
expression AND expression |
expression> OR expression

Les regles suivantes s’appliquent :

* L’opérateur AND est évalué avant l'opérateur OR. Les sous-expressions peuvent
étre reliées par des opérateurs AND et OR.

* Les expressions peuvent étre groupées au moyen de parentheses, qui doivent
étre appariées.

Exemples :

e STATE = STATE_READY

* NAME IS NOT NULL

» STATE IN (2, 5, STATE_FINISHED)

* ((PRIORITY=1) OR (WI.REASON=2)) AND (STATE=2)

230 Développement et déploiement

Une expression est prise en compte et évaluée dans une portée précise, qui
détermine les attributs valides pour cette expression. Les criteres de sélection ou
les filtres de requéte sont pris en compte et évalués dans la portée de la table de
requétes sur laquelle la requéte est exécutée.

L’exemple suivant s’applique a une requéte exécutée sur la table de requétes
prédéfinie TASK :

' (STATE=STATE_READY AND WI.REASON=REASON_POTENTIAL_OWNER)

OR (WI.REASON=REASON_OWNER)'

Opérateurs binaires

Les opérateurs binaires suivants sont disponibles :
op_binaire ::= = | < | > | <> | <= | >= | LIKE | NOT LIKE

Les régles suivantes s’appliquent :

* L’opérande coté gauche d'un opérateur binaire doit faire référence a un attribut
d’une table de requétes.

* L’opérande co6té droit d'un opérateur binaire doit étre une valeur littérale, une
valeur constante ou un parametre.

* Les opérateurs LIKE et NOT LIKE sont utilisables uniquement avec les attributs du
type d’attribut STRING.

* Les opérandes cotés gauche et droit doivent avoir des types d’attribut
compatibles.

* Les parametres utilisateur doivent étre compatibles avec le type d’attribut de
I'attribut c6té gauche.

Exemples :

e STATE > 2

* NAME LIKE 'start%’

» STATE <> PARAM(theState)

Opérateurs unaires

Les opérateurs unaires suivants sont disponibles :
op_unaire ::= IS NULL | IS NOT NULL

Les régles suivantes s’appliquent :

* L’opérande coté gauche d’un opérateur unaire doit faire référence a un attribut
d’une table de requétes. Les attributs valides dépendent de 1’endroit ot le filtre
ou le critere de sélection est utilisé.

* Tous les attributs peuvent étre testés pour déterminer s’ils sont NULL ; par
exemple : CUSTOMER IS NOT NULL.

Exemple :
DESCRIPTION IS NOT NULL

Opérateurs de liste

Les opérateurs de liste suivants sont disponibles :
op_liste ::= IN | NOT IN

Les regles suivantes s’appliquent :

Chapitre 4. Développement d’applications client pour les tiches et processus métier 231

* L’opérande coté droit d'un opérateur de liste ne doit pas étre remplacé par un
parametre utilisateur.

* Des parametres utilisateurs peuvent apparaitre dans la liste de I'opérande coté
droit.

Exemple :
STATE IN (STATE_READY, STATE_RUNNING, PARAM(st), 1)

Les listes sont représentées comme suit :
liste ::= valeur [, liste]

Les regles suivantes s’appliquent :

* L’opérande coté droit d'un opérateur de liste ne doit pas étre remplacé par un
parametre utilisateur.

* Des parametres utilisateurs peuvent apparaitre dans la liste de I'opérande coté
droit.

Exemples :
+ (2,5, 8)
» (STATE_READY, STATE_CLAIMED)

Valeurs

Dans les expressions, une valeur peut étre 'une des suivantes :

* Constante : une valeur constante, définie pour l’attribut concerné d’une table de
requétes prédéfinie. Par exemple, STATE_READY est une constante définie pour
l'attribut STATE de la table prédéfinie TASK.

e Littéral : toute valeur codée en dur.

* Parameétre : un parametre est remplacé par une valeur spécifique lors de
I'exécution de la requéte.

Des constantes sont disponibles pour certains attributs des tables de requétes
prédéfinies. Pour plus de détails sur ces constantes, reportez-vous a la description
des vues prédéfinies. Seules les constantes qui définissent des valeurs entieres sont
exposées dans les tables de requétes. Il est également possible d’utiliser, a la place
des constantes, les valeurs littérales correspondantes ou des parametres.

Exemples :

» STATE_READY, constante propre a l'attribut STATE de la table de requétes TASK,
peut étre utilisée dans un filtre pour déterminer si la tache est a 1'état prét.

e REASON_POTENTIAL_OWNER, constante propre a l'attribut REASON de la table de
requétes WORK_ITEM, peut étre utilisée dans un filtre pour tester si l'utilisateur
qui exécute la requéte sur une table de requétes est un propriétaire potentiel.

* Le filtre de requéte STATE=STATE_READY est identique a STATE=2, si la requéte est
exécutée sur la table de requétes TASK.

Des littéraux peuvent aussi étre utilisés dans les expressions. Une syntaxe spéciale
doit étre employée pour les horodatages et les ID.

Exemples :
e STATE=1
* NAME='theName'

232 Développement et déploiement

» CREATED > TS ('2008-11-26 T12:00:00")
* TKTID=ID('_TKT:801a0lle.9d57c52.ab886df6.1fcc0000")

L’utilisation de parametres dans les expressions permet de donner un caractere
dynamique aux tables de requétes composites. Il existe des parametres utilisateur
et des parametres systéme :

¢ Un parametre utilisateur est spécifié avec le format PARAM (nom). Ce parametre
(sa valeur) doit étre fourni au moment ot la requéte est exécutée. Il est passé a
I’API de table de requétes sous forme d’instance de la classe
com.ibm.bpe.api.Parameter.

* Les parametres systéme sont ainsi appelés parce que leurs valeurs sont fournies
par 'environnement d’exécution (runtime) de table de requétes, sans étre
spécifiées lors de 1’'exécution de la requéte. Les parametres systéme disponibles
sont $USER et $LOCALE.

— $USER est une chaine identifiant 1'utilisateur qui exécute la requéte.
— $LOCALE est une chaine spécifiant le code standard de 1’environnement local

en vigueur au moment ot la requéte est exécutée. 'fr_FR' est un exemple de
valeur utilisable pour le parametre $LOCALE.

Vous pouvez spécifier un parametre dans le critere de sélection d’une table de
requétes attachée afin de sélectionner un environnement local spécifique. Par
exemple, si TASK est la table principale d’une table de requétes composite et si
TASK_DESC est I'une des tables attachées, vous pouvez faire en sorte d’obtenir la
description de la tache dans une langue particuliere. Voici quelques exemples
d’utilisation de parametres :

e STATE=PARAM(theState)

* LOCALE=$LOCALE

* OWNER=$USER

Chapitre 4. Développement d’applications client pour les taches et processus métier 233

Concepts associés

[Tables de requétes dans Business Process Choreographer|

Les tables de requétes permettent d’interroger les données des listes de taches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requétes peuvent porter sur les données des taches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requétes
fournissent une abstraction des données de Business Process Choreographer qui
peut étre exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de I'implémentation proprement dite des tables. Les définitions des
tables de requétes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requéte.

[Développement des tables de requétes

Dans Business Process Choreographer, le développement des tables de requétes
supplémentaires et des tables de requétes composites s’effectue au cours du
développement de l'application, a 1'aide de l'outil Query Table Builder. Les tables
de requétes prédéfinies ne peuvent pas étre développées ni déployées. Disponibles
lorsque Business Process Choreographer est installé, elles fournissent une vue
simplifiée des artefacts du schéma de base de données Business Process
Choreographer.

[Requétes sur des tables de requétes

L’exécution de requétes sur les tables de requétes définies dans Business Process
Choreographer s’effectue au moyen de I’API de table de requétes, qui est
disponible pour I'interface EJB de Business Flow Manager et I’API REST.

Autorisation pour les tables de requétes

L’exécution de requétes sur des tables de requétes peut s’effectuer avec plusieurs
types d’autorisation : autorisation par instance, autorisation par role ou absence de
contrdle d’autorisation.

Le type d’autorisation utilisé lorsqu’une requéte est exécutée sur une table de
requétes est défini sur la table elle-méme.

* L’autorisation par instance indique que les objets dans la table de requétes sont
autorisés moyennant 1'utilisation d’un élément de travail. A cet effet, un controle
de l'existence d'un élément de travail adéquat est effectué.

¢ L’autorisation par role se fonde sur les roles J2EE. Cela signifie que 1'appelant
doit faire partie du role J2EE BPESystem Administrator pour voir le contenu de
la table de requétes. Ce type d’autorisation est disponible pour les tables de
requétes prédéfinies avec des données de modele et pour les tables composites
dont la table principale contient des données de modele. Les objets contenus
dans ces tables de requétes n’ont pas d’élément de travail associé.

* Si aucun contrdle d’autorisation n’est spécifié, tous les utilisateurs authentifiés
peuvent voir 'intégralité du contenu de la table de requétes, apres application
des filtres.

Les types d’autorisation appliqués aux tables de requétes prédéfinies, ainsi que les

types d’autorisation qu’il est possible de configurer sur les tables composites et sur
les tables supplémentaires, sont décrits dans le tableau suivant.

234 Développement et déploiement

Tableau 15. Types d’autorisation pour les tables de requétes

Table de Absence de contrdle

requétes Autorisation par instance Autorisation par role d’autorisation

Prédéfinie Requise pour les tables de Requise pour les tables de N/A
requétes prédéfinies qui requétes prédéfinies qui
contiennent des données contiennent des données de
d’instance. modele.

Composite Peut étre désactivée, auquel cas | Peut étre désactivée, par Tous les utilisateurs authentifiés
il n'y a pas de contrdle exemple pour les tables peuvent voir l'intégralité du
d’autorisation et les contraintes | composites dont la table contenu de la table de requétes,
de sécurité sont passées outre. | principale contient des données |apres application des filtres.
Cela signifie que chaque de modele. Dans ce cas, iln'y a
utilisateur authentifié peut pas de contrdle d’autorisation
utiliser la table de requétes et les contraintes de sécurité
pour extraire des données, qu’il | sont passées outre. Cela signifie
soit ou non autorisé a accéder | que chaque utilisateur
aux objets correspondants. authentifié peut utiliser la table

de requétes pour extraire des
Les tables composites dont la | données, qu'il soit ou non
table principale contient des autorisé a accéder aux objets
données de modele ne doivent | correspondants.
pas étre configurées pour
utiliser 1’autorisation par Les tables composites dont la
instance. table principale contient des
données d’instance ne doivent
pas étre configurées pour
utiliser 1’autorisation par role.
Supplémentaire | Les tables de requétes Les tables de requétes Tous les utilisateurs authentifiés

supplémentaires ne doivent pas
étre configurées pour utiliser
l'autorisation par instance, car
Business Process
Choreographer ne gere pas ces
tables lui-méme et il ne dispose
donc pas d’informations sur les
autorisations d’acces a leur
contenu.

supplémentaires ne doivent pas
étre configurées pour utiliser
'autorisation par role.

peuvent voir l'intégralité du
contenu de la table de requétes,
apres application des filtres.

La figure suivante offre une vue d’ensemble des options disponibles pour les types
d’autorisation, en fonction du type de table de requétes. Elle illustre aussi les
différents comportements obtenus avec I’API de table de requétes et ses options

d’autorisation.

Chapitre 4. Développement d’applications client pour les taches et processus métier

235

Composite primary query table all pr_imary query table

query table with instance data with template data
Predefined .
query tables instance data n/a template data
Supplemental

qupel::y tables n/a business data n/a

Authorization

(A)
Query with Query result
contains objects n/a
AuthorizationOptions with work items
related to the caller.
Query with
AdminAuthorization
Options*

Figure 28. Autorisation par instance pour les tables de requétes

*) Si le parametre onBehalfUser est défini explicitement, le comportement (A) s’applique

L’autorisation par instance utilisant les éléments de travail et s’exercant sur les
objets renvoyés dans les résultats d’une requéte dépend du parametre
d’autorisation qui est passé a 1’API de table de requétes, mais aussi de la valeur
(true ou false) de 'option Autorisation par instance spécifiée dans la définition de
la table de requétes interrogée.

* (A) Les requétes ciblant des tables prédéfinies ou composites et utilisant 1'objet
AuthorizationOptions renvoient les entités qui concordent avec un élément de
travail approprié a l'utilisateur désigné. C’est également le cas si 1’objet
AdminAuthorizationOptions est utilisé et si le parametre onBehalfUser est défini
avec une valeur explicite (I'ID d'un utilisateur). Les clients standard, qui

236 Développement et déploiement

présentent des listes de taches ou de processus aux utilisateurs, emploient
généralement cette combinaison de types de table de requétes et de parametres

d’APL

* (B) Le contenu intégral d’une table de requétes est constitué des entités qui ont
un élément de travail correspondant, tel que configuré avec l'autorisation par
instance de la table en question. L’autorisation par instance considere quatre
types d’éléments de travail : ‘everybody’, ‘individual’, ‘group’ et “inherited’.
L’appelant doit faire partie du réle J2EE BPESystem Administrator. Cette
combinaison de types de tables de requétes et de parametres d”API est destinée
aux scénarios d’administration, dans lesquels la liste complete des taches ou
processus disponibles doit pouvoir étre affichée ou parcourue.

* (C) Les requétes ciblant des tables de requétes qui n’utilisent pas 'autorisation
par instance ou par role renvoient les mémes résultats que si I'objet
AdminAuthorizationOptions ou AuthorizationOptions était passé a I’API de
table de requétes. Ce comportement est disponible pour les tables de requétes
supplémentaires ainsi que pour les tables composites. Aucune vérification des
éléments de travail ou des roles J2EE n’est effectuée ; par conséquent, tous les
utilisateurs authentifiés peuvent voir 'intégralité du contenu de la table
interrogée. Les clients qui ne veulent pas restreindre la visibilité des objets en
appliquant les contraintes d’autorisation par instance ou par role fournies par
Business Process Choreographer peuvent désactiver les vérifications
d’autorisation lors du développement des tables de requétes. En revanche, pour
les opérations de réclamation et d’achevement de taches, les utilisateurs doivent
avoir un élément de travail approprié.

* (D) Seule l'autorisation par role permet d’accéder aux données de modele dans
les tables de requétes prédéfinies ou dans les tables composites configurées avec
l'autorisation par réle. L’appelant doit faire partie du role J2EE
BPESystemAdministrator. L’API de table de requétes peut étre utilisée a la place
de I’API de requéte pour accéder aux données de modele.

Eléments de travail et autorisation par instance

Le mécanisme d’autorisation par instance fourni par Business Process
Choreographer est basé sur des éléments de travail. Chaque élément de travail
décrit qui a quels droits et sur quels objets. Cette information est accessible via la
table de requétes WORK_ITEM, si l'autorisation par instance est utilisée.

Le tableau suivant décrit les différents types d’éléments de travail pris en
considération si ’autorisation par instance est utilisée lors de 1’exécution d’une
requéte sur une table de requétes :

Tableau 16. Types d’éléments de travail

Type d’élément de travail

Description

everybody

Les éléments de travail du type ‘everybody” autorisent tous
les utilisateurs a accéder a un objet spécifique tel qu'une
tache ou une instance de processus. Dans ce cas, l'attribut
EVERYBODY de I'élément de travail concerné est mis a
TRUE.

individual

Les éléments de travail du type ‘individual” sont créés pour
des utilisateurs particuliers. L'ID d’un utilisateur spécifique
est affecté comme valeur a l’attribut OWNER_ID de
I'élément de travail concerné. Pour un méme objet (tel
qu’une tache), il peut exister plusieurs éléments de travail,
chacun avec un attribut OWNER_ID différent.

Chapitre 4. Développement d’applications client pour les taches et processus métier 237

Tableau 16. Types d’éléments de travail (suite)

Type d’élément de travail Description

group Les éléments de travail du type ‘group’ sont créés pour les
utilisateurs d’un groupe particulier. Le nom d’un groupe
spécifique est affecté comme valeur a I'attribut
GROUP_NAME de I'élément de travail concerné.

inherited Les lecteurs et les administrateurs des instances de
processus sont également autorisés a hériter de I'acces aux
taches humaines (y compris celles pour lesquelles il y a
escalade) qui appartiennent a ces instances de processus.
Dans les requétes sur les taches, les vérifications concernant
les éléments de travail hérités sont exécutées au moyen de
jointures SQL complexes ; ces jointures sont réalisées a
I'exécution et ont une incidence sur les performances.

Les éléments de travail sont créés par Business Process Choreographer dans
différents cas de figure. Par exemple, a la création d’une tache, des éléments de
travail sont créés pour les différents roles, tels que ceux de lecteur et de
propriétaire potentiel, si des criteres d’affectation de personnes ont été spécifiés.

Le tableau suivant décrit les différents types d’éléments de travail créés en fonction
des criteres d’affectation de personnes définis, si I’autorisation par instance est
utilisée lors de I'exécution d’une requéte sur une table de requétes. Les éléments de
travail hérités n’apparaissent pas dans ce tableau, car ils refletent des relations qui
ne peuvent étre modélisées explicitement dans la phase de développement.

Tableau 17. Eléments de travail et criteres d’affectation de personnes

Type d’élément de travail Criteres d’affectation de personnes associés
everybody Tous les utilisateurs
individual Tous les criteres d’affectation de personnes excepté les

instructions Personne (Nobody), Tous les utilisateurs
(Everybody) et Groupe (Group)

group Groupe

Filtre d’autorisation sur les tables de requétes composites

Pour les tables de requétes composites, un filtre d’autorisation peut étre spécifié si
l'autorisation par instance est utilisée. Ce filtre limite les éléments de travail
utilisables pour l'autorisation en fonction de certains de leurs attributs. Par
exemple, le filtre d’autorisation "WI.REASON=REASON_ POTENTIAL_OWNER" appliqué a
une table de requétes composite dont la table principale est TASK limite & certains
types les taches qui peuvent étre renvoyées lorsqu'une personne exécute une
requéte. Seules sont renvoyées les taches que cette personne peut avoir a effectuer ;
autrement dit, le résultat est limité aux taches que la personne est autorisée a
réclamer. Ce filtre peut aussi étre spécifié comme filtre de table de requétes ou
comme filtre de requéte. Il a aussi un effet bénéfique sur les performances des
requétes lorsqu’il est spécifié comme filtre d’autorisation.

238 Développement et déploiement

Concepts associés

[Tables de requétes dans Business Process Choreographer|

Les tables de requétes permettent d’interroger les données des listes de taches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requétes peuvent porter sur les données des taches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requétes
fournissent une abstraction des données de Business Process Choreographer qui
peut étre exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de I'implémentation proprement dite des tables. Les définitions des
tables de requétes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’'une API spécifique, appelée API de
table de requéte.

[Tables de requétes prédéfinies|

Les tables de requétes prédéfinies fournissent ’accés aux données dans la base de
données de Business Process Choreographer. Elles correspondent a une
représentation, sous forme de tables de requétes, des vues de la base de données
de Business Process Choreographer, telles que TASK ou PROCESS_INSTANCE.

[Tables de requétes supplémentaired

Les tables de requétes supplémentaires que vous définissez dans Business Process
Choreographer fournissent a ’API de table de requétes un acces a des données
métier dites "externes”, c’est-a-dire qui ne sont pas gérées par Business Process
Choreographer. Grace a ces tables de requétes supplémentaires, les données
externes correspondantes peuvent étre utilisées en association avec les données des
tables de requétes prédéfinies pour extraire des informations sur des instances de
processus métier ou sur des tdches humaines.

[Tables de requétes composites|

Dans Business Process Choreographer, les tables de requétes composites sont
congues a partir de tables de requétes prédéfinies et de tables de requétes
supplémentaires. Elles regroupent des données issues de tables ou de vues
existantes. Utilisez-les pour obtenir les informations d’une liste d’instances de
processus ou d’une liste de taches (liste Mes taches, par exemple).

Options d’autorisation pour I’API de table de requétes|

Lorsque vous exécutez une requéte sur une table de requétes dans Business
Process Choreographer, vous pouvez passer des options d’autorisation en guise de
parametres d’entrée aux méthodes de '’API de table de requétes.

Types d’attribut pour les tables de requétes

Dans Business Process Choreographer, les types d’attribut sont nécessaires lors de
la définition de tables de requétes, lors de 'utilisation de valeurs littérales dans les
requétes, ainsi que lors de 1’acces aux valeurs dans un résultat de requéte. Des
régles et des mappages sont disponibles pour chacun des types d’attribut.

Pour définir le type dun attribut dans une table de requétes, on a recours a un
sous-ensemble des types caractéristiques du langage de programmation Java et des
types propres aux technologies de base de données. Les types d’attribut sont une
abstraction des types Java concrets ou des types de données propres aux bases de
données. Pour les tables de requétes supplémentaires, vous devez utiliser un
mappage valide entre types de base de données et types d’attribut.

Chapitre 4. Développement d’applications client pour les taches et processus métier 239

Le tableau suivant décrit les types d’attribut :

Tableau 18. Types d’attribut

Type d’attribut

Description

ID

L’'ID servant a identifier une tache humaine (TKIID), une
instance de processus (PIID) ou d’autres objets. Par
exemple, pour réclamer ou effectuer une tache humaine
particuliere, 1'utilisateur doit spécifier celle-ci en
I'identifiant par son attribut TKIID.

STRING

Les descriptions des taches ou les propriétés des requétes
peuvent étre représentées par des chaines.

NUMBER

Les nombres sont utilisés pour les attributs tels que le
niveau de priorité d'une tache.

TIMESTAMP

Les horodatages décrivent un instant précis ; par exemple,
la date et I’heure de création d’une tiche humaine ou la
date et I’heure de fin d’exécution d’une instance de
processus.

DECIMAL

Le type DECIMAL peut étre utilisé pour les propriétés
d’une requéte ; par exemple, pour définir une propriété de
requéte avec une variable du type XSD "double’.

BOOLEAN

Les booléens peuvent prendre une valeur parmi deux : true
ou false. Par exemple, les tiches humaines ont un attribut,
autoClaim, qui précise si oui ou non une tache est réclamée
automatiquement lorsqu’il n’existe qu'un seul utilisateur
qui puisse étre son propriétaire.

240 Développement et déploiement

Concepts associés

[Tables de requétes dans Business Process Choreographer|

Les tables de requétes permettent d’interroger les données des listes de taches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requétes peuvent porter sur les données des taches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requétes
fournissent une abstraction des données de Business Process Choreographer qui
peut étre exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de I'implémentation proprement dite des tables. Les définitions des
tables de requétes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’'une API spécifique, appelée API de
table de requéte.

ICorrespondance entre types des bases de données et types d’attribut|

Utilisez des types d’attribut pour définir des tables de requétes dans Business
Process Choreographer et lorsque vous lancez des requétes sur ces tables, ainsi que
pour accéder aux valeurs d'un résultat de requéte.

[Correspondance entre types d’attribut et représentations littérales|

Utilisez des types d’attribut pour définir des tables de requétes dans Business
Process Choreographer et lorsque vous lancez des requétes sur ces tables, ainsi que
pour accéder aux valeurs d'un résultat de requéte. Cette rubrique décrit la
correspondance entre types d’attribut et représentations littérales.

[Correspondance entre types d’attribut et parameétres|

Utilisez des types d’attribut lorsque vous définissez des tables de requétes dans
Business Process Choreographer et lorsque vous lancez des requétes sur ces tables,
ainsi que pour accéder aux valeurs d'un résultat de requéte.

[Correspondance entre types d’attribut et types d’objet Javal

Utilisez des types d’attribut pour définir des tables de requétes dans Business
Process Choreographer et lorsque vous lancez des requétes sur ces tables, ainsi que
pour accéder aux valeurs d'un résultat de requéte. Cette rubrique décrit la
correspondance entre types d’attribut et types d’objet Java.

[Compatibilité entre types d’attribuf

Utilisez des types d’attribut lorsque vous définissez des tables de requétes dans
Business Process Choreographer et lorsque vous lancez des requétes sur ces tables,
ainsi que pour accéder aux valeurs d'un résultat de requéte.

Correspondance entre types des bases de données et types d’attribut :

Utilisez des types d’attribut pour définir des tables de requétes dans Business
Process Choreographer et lorsque vous lancez des requétes sur ces tables, ainsi que
pour accéder aux valeurs d'un résultat de requéte.

Le tableau suivant décrit les types propres aux bases de données et indique leur
correspondance avec les types d’attribut :

Tableau 19. Correspondance entre types des bases de données et types dattribut

Type de base de données Type d’attribut

Type binaire sur 16 octets. Il s’agit du type utilisé pour les |ID
ID tels que le TKIID des taches dans les tables de Business
Process Choreographer.

Type caractére. Sa longueur dépend de la colonne de table |STRING
de base de données qui est référencée par l'attribut dans la
table de requétes.

Chapitre 4. Développement d’applications client pour les tiches et processus métier 2471

Tableau 19. Correspondance entre types des bases de données et types d’attribut (suite)

Type de base de données Type d’attribut

Type d’entier de base de données, tel qu'un "integer’, un NUMBER
’short” ou un "long’.

Type d’horodatage de base de données. TIMESTAMP

Type décimal, tel qu'un 'float’ ou un "double’. DECIMAL

Type convertible en valeur booléenne telle qu'un nombre. 1 | BOOLEAN
est interprété comme frue (vrai) et tous les autres nombres,
comme false (faux).

Exemple :

Prenons le cas d'un environnement DB2. Une table appelée
CUSTOM.ADDITIONAL_INFO doit étre représentée en tant que table de requétes
supplémentaire dans Business Process Choreographer. L’instruction SQL suivante
crée la table de base de données :

CREATE TABLE CUSTOM.ADDITIONAL_INFO

(

PIID CHAR(16) FOR BIT DATA,
INFO VARCHAR (220),

COUNT INTEGER
)s

La correspondance suivante, entre les types des colonnes coté base de données et
les types d’attribut coté table de requétes, est utilisé pour définir une table de
requétes supplémentaire chargée de représenter la table
CUSTOM.ADDITIONAL_INFO.

Tableau 20. Exemple de mappage entre types de base de données et types d’attribut

Colonne et type de base de données Attribut et type de table de requéte
PIID CHAR(16) FOR BIT DATA PIID (ID)

INFO VARCHAR(220) INFO (STRING)

COUNT INTEGER COUNT (NUMBER)

Généralement, les tables de requétes supplémentaires font référence a des tables et
des vues existantes de la base de données ; lorsque c’est le cas, elles ne nécessitent
pas la création de tables ou de vues spécifiques.

Concepts associés

[Types d’attribut pour les tables de requétes|

Dans Business Process Choreographer, les types d’attribut sont nécessaires lors de
la définition de tables de requétes, lors de 'utilisation de valeurs littérales dans les
requétes, ainsi que lors de 'acces aux valeurs dans un résultat de requéte. Des
régles et des mappages sont disponibles pour chacun des types d’attribut.

Correspondance entre types d’attribut et représentations littérales :

Utilisez des types d’attribut pour définir des tables de requétes dans Business
Process Choreographer et lorsque vous lancez des requétes sur ces tables, ainsi que
pour accéder aux valeurs d’un résultat de requéte. Cette rubrique décrit la
correspondance entre types d’attribut et représentations littérales.

242 Développement et déploiement

Des valeurs littérales peuvent étre utilisées dans les expressions pour définir des
criteres de filtrage et de sélection, comme dans les filtres des tables de requétes
composites ainsi que dans les filtres passés a I’API de table de requétes.

Le tableau suivant décrit les types d’attribut et indique leur correspondance avec
les valeurs littérales. Les marques de réservation figurent en italigue. Notez que les
types d’attribut ID et TIMESTAMP, qui peuvent étre passés a I’API de table de
requétes, utilisent une syntaxe spéciale, également employée par I’API de requéte.

Tableau 21. Correspondance entre types d’attribut et valeurs littérales

Type d’attribut

Syntaxe et utilisation comme valeur littérale dans les
expressions

ID

ID ('représentation chaine d'un ID')

Lors du développement d’applications clientes, les ID sont
représentés soit comme des chaines, soit comme des
instances de l'interface com.ibm.bpe.api.OID. Il est possible
d’obtenir la représentation sous forme de chaine d'une
instance de l'interface com.ibm.bpe.api.OID en utilisant sa
méthode toString. La chaine doit étre encadrée
d’apostrophes.

STRING

'la chaine'

La chaine doit étre encadrée d’apostrophes.

NUMBER

nombre

Le nombre sous forme de texte, non délimité par des
apostrophes. Des constantes sont définies et utilisables pour
certains attributs du type NUMBER dans les tables de
requétes prédéfinies.

TIMESTAMP

TS ('AAAA-MM-JJThh:mm:ss"')

L’horodatage doit étre spécifié au format suivant :
* AAAA : les quatre chiffres de 'année

* MM: les deux chiffres du mois de 'année

* DD : les deux chiffres du jour du mois

* hh : les deux chiffres de I'heure (sur 24 heures)
e mm : les deux chiffres de la minute

* ss: les deux chiffres de la seconde. L'interprétation de
I'horodatage se fait par rapport au fuseau horaire de
l'utilisateur.

DECIMAL

nombre.fraction

Le nombre décimal sous forme de texte, non délimité par
des apostrophes ; la partie .fraction est optionnelle.

BOOLEAN

true, false

La valeur booléenne sous forme de texte.

Exemples :

e filterOptions.setQueryCondition("STATE=2");
« filterOptions.setQueryCondition("STATE=STATE READY");
* un critére de sélection sur une table de requétes attachée TASK DESC :

"LOCALE="en_US"'"

o filterOptions.setQueryCondition(
"PTID=ID(' PT:8001011le.1ldee8e51.247d6df6.29a60000')");

Chapitre 4. Développement d’applications client pour les tiches et processus métier 243

Concepts associés

[Types d’attribut pour les tables de requétes

Dans Business Process Choreographer, les types d’attribut sont nécessaires lors de
la définition de tables de requétes, lors de 'utilisation de valeurs littérales dans les
requétes, ainsi que lors de 'acces aux valeurs dans un résultat de requéte. Des
régles et des mappages sont disponibles pour chacun des types d’attribut.

Correspondance entre types d’attribut et parametres :

Utilisez des types d’attribut lorsque vous définissez des tables de requétes dans
Business Process Choreographer et lorsque vous lancez des requétes sur ces tables,
ainsi que pour accéder aux valeurs d'un résultat de requéte.

Le tableau suivant décrit les types d’attribut et leur correspondance avec les
valeurs de parametre qui peuvent étre utilisées dans les expressions pour définir
des criteres de filtrage et de sélection, comme dans les filtres des tables de requétes
composites ainsi que dans les filtres passés a I’API de table de requétes.

Tableau 22. Correspondance entre types d’attribut et valeurs de paramétre utilisateur

Utilisation comme valeur de parametre dans les
Type d’attribut expressions

1D PARAM (nom)

Lors du développement d’applications clientes, les ID sont
représentés soit comme des chaines, soit comme des
instances de l'interface com.ibm.bpe.api.OID.

Les deux représentations sont valides et acceptées comme
parametres. Un tableau d’octets (byte[]) reflétant un OID
valide peut également étre utilisé.

STRING PARAM (nom)

La représentation chaine de l’objet qui, a 1’exécution, est
passée a I’API de table de requétes par la méthode toString.

NUMBER PARAM (nom)

Une représentation du nombre sous forme de
java.lang.Long, java.lang.Integer, java.lang.Short ou
java.lang.String est passée a ’API de table de requétes. Les
noms des constantes définies pour certains attributs des
tables de requétes prédéfinies peuvent aussi étre passés.

TIMESTAMP PARAM (nom)

Les représentations suivantes sont valides :
* Une représentation java.lang.String de 1’horodatage
* Instances de com.ibm.bpe.api.UTCDate

¢ Instances de java.util.Calendar

DECIMAL PARAM (nom)

Une représentation du nombre décimal sous forme de
java.lang.Long, java.lang.Integer, java.lang.Short,
java.lang.Double, java.lang.Float ou java.lang.String est
passée a I’API de table de requétes.

244 Développement et déploiement

Tableau 22. Correspondance entre types d’attribut et valeurs de parametre utilisateur (suite)

Utilisation comme valeur de parameétre dans les
Type d’attribut expressions

BOOLEAN PARAM (nom)

Les valeurs admises sont :
* Une représentation java.lang.String du booléen

* Un java.lang.Short, java.lang.Integer ou java.lang.Long
avec des valeurs appropriées ; 0 (pour false) ou 1 (pour
true)

¢ Un objet java.lang.Boolean

Exemple :

// 1'exemple suivant illustre 1'exécution d'une requéte sur une table de
// requétes composite, COMP.TASKS, avec un paramétre "client"
java.util.List params = new java.util.ArrayList();

list.add(new com.ibm.bpe.api.Parameter("client", "IBM");
bfm.queryEntities("COMP.TASKS", null, null, params);

Concepts associés

[Types d’attribut pour les tables de requétes|

Dans Business Process Choreographer, les types d’attribut sont nécessaires lors de
la définition de tables de requétes, lors de 1'utilisation de valeurs littérales dans les
requétes, ainsi que lors de 1’acces aux valeurs dans un résultat de requéte. Des
régles et des mappages sont disponibles pour chacun des types d’attribut.

Correspondance entre types d’attribut et types d’objet Java:

Utilisez des types d’attribut pour définir des tables de requétes dans Business
Process Choreographer et lorsque vous lancez des requétes sur ces tables, ainsi que
pour accéder aux valeurs d'un résultat de requéte. Cette rubrique décrit la
correspondance entre types d’attribut et types d’objet Java.

Le tableau suivant décrit les types d’attribut et indique leur correspondance avec
les types d’objet Java dans les ensembles de résultats des requétes.

Tableau 23. Correspondance entre types d’attribut et types d’objet Java

Type d’attribut Type d’objet Java associé
ID com.ibm.bpe.api.OID
STRING java.lang.String
NUMBER java.lang.Long
TIMESTAMP java.util.Calendar
DECIMAL java.lang.Double
BOOLEAN java.lang.Boolean
Exemple :

// 1'exemple suivant illustre 1'exécution d'une requéte sur une table de
// requétes composite appelée COMP.TA ; 1'attribut "STATE" est du type d'attribut
NUMBER

Chapitre 4. Développement d’applications client pour les taches et processus métier 245

// exécution de la requéte
EntityResultSet rs = bfm.queryEntities("COMP.TA",nul1,null,params);

// obtenir Tes entités et itérer dessus
List entities = rs.getEntities();
for (int i =0 ; i < entities.size(); i++) {

// manipuler une entité particuliére
Entity en = (Entity) entities.get(i);

// notez que le code suivant pourrait &tre écrit d'une
// facon moins spécifique en utilisant les objets d'informations
// d'attributs renvoyés par la méthode ei.getAttributeInfo()

// obtenir 1'attribut STATE
Long state = (Long) en.getAttributeValue("STATE");

Concepts associés

[Types d’attribut pour les tables de requétes

Dans Business Process Choreographer, les types d’attribut sont nécessaires lors de
la définition de tables de requétes, lors de 'utilisation de valeurs littérales dans les
requétes, ainsi que lors de 'acces aux valeurs dans un résultat de requéte. Des
régles et des mappages sont disponibles pour chacun des types d’attribut.

Compatibilité entre types d’attribut :

Utilisez des types d’attribut lorsque vous définissez des tables de requétes dans
Business Process Choreographer et lorsque vous lancez des requétes sur ces tables,
ainsi que pour accéder aux valeurs d'un résultat de requéte.

Le tableau suivant dresse la liste des types d’attribut et indique leur compatibilité.
Utilisez ces informations pour définir des filtres et des critéres de sélection dans les
tables de requétes. La compatibilité entre types d’attribut est signalée par un X.

Tableau 24. Compatibilité entre types d’attribut

Type d’attribut

ID

STRING NUMBER TIMESTAMP | DECIMAL BOOLEAN

ID

X

STRING

NUMBER

TIMESTAMP

DECIMAL

BOOLEAN

Dans les expressions de table de requétes qui spécifient des filtres et des criteres de
condition, les types des attributs ou des valeurs comparés doivent étre
compatibles. Par exemple, WI.OWNER_ID=1 est un filtre non valide, car I'opérande
coté gauche est du type STRING alors que I'opérande coté droit est du type
NUMBER.

246 Développement et déploiement

Concepts associés

[Types d’attribut pour les tables de requétes|

Dans Business Process Choreographer, les types d’attribut sont nécessaires lors de
la définition de tables de requétes, lors de 'utilisation de valeurs littérales dans les
requétes, ainsi que lors de 'acces aux valeurs dans un résultat de requéte. Des
régles et des mappages sont disponibles pour chacun des types d’attribut.

Requétes sur des tables de requétes

L’exécution de requétes sur les tables de requétes définies dans Business Process
Choreographer s’effectue au moyen de I’API de table de requétes, qui est
disponible pour l'interface EJB de Business Flow Manager et 1’API REST.

Une requéte s’exécute toujours sur une seule table de requétes. Le contenu des
tables de requétes est extrait au moyen des méthodes de I’API qui, pour certaines,
sont basées sur les entités et pour d’autres, sur les lignes. Des parametres (ou
arguments) d’entrée sont passés aux méthodes de ’API de table de requétes.

Chapitre 4. Développement d’applications client pour les taches et processus métier 247

Concepts associés

[Tables de requétes dans Business Process Choreographer|

Les tables de requétes permettent d’interroger les données des listes de taches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requétes peuvent porter sur les données des taches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requétes
fournissent une abstraction des données de Business Process Choreographer qui
peut étre exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de I'implémentation proprement dite des tables. Les définitions des
tables de requétes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requéte.

[Méthodes de I’API de table de requéteq

L’exécution de requétes sur les tables de requétes définies dans Business Process
Choreographer s’effectue au moyen de 1’API de table de requétes. Le contenu des
tables de requétes est extrait au moyen des méthodes de I’API qui, pour certaines,
sont basées sur les entités et pour d’autres, sur les lignes.

[Parameétres de ’API de table de requétes|

Les méthodes de 1’API de table de requétes permettent d’extraire du contenu lors
de 'exécution de requétes sur une table de requétes dans Business Process
Choreographer.

[Résultats des requétes exécutées sur les tables de requétes|

Les méthodes de 1’API de table de requétes s’utilisent lors de 'exécution de
requétes sur une table de requétes dans Business Process Choreographer. Le
résultat de la méthode queryEntityCount ou de la méthode queryRowCount est un
simple nombre. En revanche, les méthodes queryEntities et queryRows renvoient
des ensembles de résultats.

[Tables de requétes prédéfinies|

Les tables de requétes prédéfinies fournissent ’acces aux données dans la base de
données de Business Process Choreographer. Elles correspondent a une
représentation, sous forme de tables de requétes, des vues de la base de données
de Business Process Choreographer, telles que TASK ou PROCESS_INSTANCE.

[Tables de requétes supplémentaires|

Les tables de requétes supplémentaires que vous définissez dans Business Process
Choreographer fournissent a I'’API de table de requétes un acces a des données
métier dites "externes”, c’est-a-dire qui ne sont pas gérées par Business Process
Choreographer. Grace a ces tables de requétes supplémentaires, les données
externes correspondantes peuvent étre utilisées en association avec les données des
tables de requétes prédéfinies pour extraire des informations sur des instances de
processus métier ou sur des tdches humaines.

[Tables de requétes composites|

Dans Business Process Choreographer, les tables de requétes composites sont
congues a partir de tables de requétes prédéfinies et de tables de requétes
supplémentaires. Elles regroupent des données issues de tables ou de vues
existantes. Utilisez-les pour obtenir les informations d"une liste d’instances de
processus ou d'une liste de taches (liste Mes taches, par exemple).

[Développement des tables de requétes

Dans Business Process Choreographer, le développement des tables de requétes
supplémentaires et des tables de requétes composites s’effectue au cours du
développement de I'application, a 'aide de 1'outil Query Table Builder. Les tables
de requétes prédéfinies ne peuvent pas étre développées ni déployées. Disponibles
lorsque Business Process Choreographer est installé, elles fournissent une vue
simplifiée des artefacts du schéma de base de données Business Process

248 Développement et déploiement

Choreographer.

[Filtres et critéres de sélection des tables de requétes|

Les filtres et les criteres de sélection sont définis pendant la phase de
développement des tables de requétes, a I'aide de 'outil Query Table Builder, qui
utilise une syntaxe similaire aux clauses SQL WHERE. En définissant clairement
des filtres et des criteres de sélection, vous pouvez spécifier des conditions basées
sur les attributs des tables de requétes.

Méthodes de 1’API de table de requétes :

L’exécution de requétes sur les tables de requétes définies dans Business Process
Choreographer s’effectue au moyen de I’API de table de requétes. Le contenu des
tables de requétes est extrait au moyen des méthodes de I’API qui, pour certaines,
sont basées sur les entités et pour d’autres, sur les lignes.

Les méthodes suivantes sont disponibles dans I’API de table de requétes pour
permettre 'exécution de requétes sur les tables de requétes dans Business Process
Choreographer :

Tableau 25. Méthodes pour les requétes exécutées sur les tables de requétes

Fonction Méthodes

Interrogation de contenu * queryEntities

* queryRows

Les deux méthodes renvoient du contenu de la table de
requétes. La méthode queryEntities renvoie un contenu
basé sur des entités et la méthode queryRows, un contenu
basé sur des lignes.

Interrogation du nombre

e queryEntityCount
d’objets queryEntity

¢ queryRowCount

Les deux méthodes renvoient le nombre d’objets présents
dans la table de requétes, mais ce nombre peut varier en
fonction de 'approche adoptée (requéte par entité ou par
ligne).

Les requétes par entité, exécutées a 1'aide des méthodes queryEntities et
queryEntityCount, supposent qu'une table de requétes contient des entités
identifiables de facon unique, tel que défini par la clé primaire dans la table de
requétes principale.

Les requétes par ligne, exécutées a 'aide des méthodes queryRows et
queryRowCount, renvoient un ensemble de résultats comme avec JDBC ; cet
ensemble de résultats est également a base de lignes et navigable au moyen des
méthodes first et next. L’ensemble de résultats obtenu lorsque vous exécutez une
requéte sur une table de requétes en utilisant I’API de table de requétes est
comparable aux ensembles QueryResultSet renvoyés par I’API de requétes. En
général, le nombre de lignes est supérieur au nombre d’entités contenues dans une
table de requétes. Une méme entité, par exemple une tiche humaine identifiée par
son ID de tache TKIID, peut apparaitre plusieurs fois dans ’ensemble de résultats
de lignes.

Chapitre 4. Développement d’applications client pour les taches et processus métier 249

Une instance particuliere contenue dans une table de requétes prédéfinie n’existe
qu’en un seul exemplaire dans un environnement Business Process Choreographer.
Les taches humaines et les processus métier sont des exemples de telles instances.
Chaque instance est identifiée de maniere unique par un ID ou un ensemble d’ID.
Il s’agit du TKIID pour les instances de tache humaine et du PIID pour les
instances de processus.

Les tables de requétes composites comprennent une table de requétes principale et
zéro, une ou plusieurs tables de requétes attachées. L’identification des objets dans
une table composite se fait par les ID unique des objets de la table de requétes
principale. C’est donc la table de requétes principale qui détermine le type d’entité
d’une table composite. Par exemple, une table de requétes composite dont la table
principale est TASK contiendra obligatoirement des entités du type TASK. La
relation un a un ou un a zéro qui existe entre la table principale et les tables
attachées garantit que les tables attachées n’introduisent pas d’entités en double.

Les requétes par entité tirent parti du fait qu'une table de requétes contient des
entités identifiables de facon unique, tel que défini par la clé primaire dans la table
de requétes principale. La garantie d’unicité des instances et d’absence de
doublons est une qualité particulierement appréciée par les développeurs
d’applications clientes, notamment ceux qui sont chargés de la partie interface
utilisateur. Par exemple, il est essentiel qu'une tache humaine ne soit affichée
qu’une seule fois dans l'interface utilisateur. Des instances uniques sont renvoyées
si ’API de table de requétes par entité est utilisée.

Les requétes par ligne peuvent renvoyer des doubles des lignes de la table de
requétes principale si I'autorisation par instance est utilisée.

* Les informations de la table de requétes WORK_ITEM sont récupérées avec la
requéte. Par exemple, si Iattribut WI.REASON est extrait en plus des attributs
définis dans la table de requétes, plusieurs lignes sont susceptibles d’étre
renvoyées comme résultat. En effet, cet attribut stocke le motif d’acces a une
entité telle qu'une tache ou une instance de processus ; or, un utilisateur peut
accéder a une telle entité pour plusieurs raisons.

* L’autorisation par instance est utilisée et I'opérateur "distinct’ n’est pas spécifié.
Bien qu'il ny ait pas d’extraction des données d’élément de travail, plusieurs
lignes peuvent étre renvoyées si 1’autorisation par instance est utilisée.

Si I’API de table de requétes par entité est utilisée :
* Les requétes par entité sont toujours exécutées avec 'opérateur SQL “distinct’.

* Les requétes par entité renvoient des résultats dans lesquels les informations
relatives aux éléments de travail peuvent étre fournies sous forme de valeurs de
tableau (array).

Concepts associés

[Requétes sur des tables de requéted|

L’exécution de requétes sur les tables de requétes définies dans Business Process
Choreographer s’effectue au moyen de I’API de table de requétes, qui est
disponible pour 'interface EJB de Business Flow Manager et I’API REST.

Parametres de 1’API de table de requétes :
Les méthodes de 1’API de table de requétes permettent d’extraire du contenu lors

de I'exécution de requétes sur une table de requétes dans Business Process
Choreographer.

250 Développement et déploiement

Les parametres d’entrée suivants sont passés aux méthodes de ’API de table de
requétes :

Tableau 26. Parametres de I'API de table de requétes

Parameétre Optionnel Type et description
Nom de la table de Non java.lang.String
requétes

Nom unique de la table de requétes.

Options de filtrage Oui com.ibm.bpe.api.FilterOptions

Options utilisables pour définir la requéte. Par
exemple, un seuil peut étre fixé dans ce
parametre pour limiter le nombre de résultats
renvoyeés.

Options d’autorisation | Oui com.ibm.bpe.api.AuthorizationOptions ou
com.ibm.bpe.api.AdminAuthorizationOptions

Si I'autorisation par instance est utilisée, ce
parametre permet d'imposer des contraintes
encore plus serrées. Pour les tables de requétes
nécessitant une autorisation par role, une
instance d’objet AdminAuthorizationOptions doit
étre passée.

Parametres Oui Une liste (java.util.List) d’objets
com.ibm.bpe.api.Parameter

Ce parametre sert a passer des parametres
utilisateur qui sont spécifiés dans un critere de
filtrage ou de sélection sur une table de requétes
composite.

Une requéte s’exécute toujours sur une seule table de requétes. La relation entre
plusieurs tables de requétes est définie au moyen d’une table de requétes
composite. Ce concept particulier a I’API de table de requétes correspond a la
notion de vues de base de données dans I’API de requéte.

Les filtres et les criteres de sélection sont spécifiés dans des expressions pendant la
phase de développement des tables de requétes, a 1’aide de 1’outil Query Table
Builder. Pour plus de détails a ce propos, consultez la rubrique du centre de
documentation relative aux tables de requétes composites, ainsi que la rubrique
consacrée aux filtres et aux criteres de recherche des tables de requétes. Pour toute
information sur 1’outil Query Table Builder, consultez le site des SupportPacs de
WebSphere Business Process Management. Recherchez le SupportPac PA71
WebSphere Process Server - Query Table Builder. Pour accéder au lien, consultez la
section consacrée aux références de cette rubrique.

Chapitre 4. Développement d’applications client pour les tiches et processus métier 251

Concepts associés

[Requétes sur des tables de requéted

L’exécution de requétes sur les tables de requétes définies dans Business Process
Choreographer s’effectue au moyen de I’API de table de requétes, qui est
disponible pour l'interface EJB de Business Flow Manager et I’API REST.

|Nom de la table de requétes|

Lorsque vous exécutez une requéte sur une table de requétes dans Business
Process Choreographer, le nom de cette table est passé comme parametre d’entrée
aux méthodes de I’API de table de requétes.

Options de filtrage]

Lorsque vous exécutez une requéte sur une table de requétes dans Business
Process Choreographer, vous pouvez passer des options de filtrage en guise de
parametres d’entrée aux méthodes de 1’API de table de requétes.

Options d’autorisation pour I’API de table de requétes|

Lorsque vous exécutez une requéte sur une table de requétes dans Business
Process Choreographer, vous pouvez passer des options d’autorisation en guise de
parametres d’entrée aux méthodes de 1’API de table de requétes.

Lorsque vous exécutez une requéte sur une table de requétes dans Business
Process Choreographer, vous pouvez passer des parametres utilisateur aux
méthodes de I’API de table de requétes. Dans une définition de table de requétes,
vous pouvez spécifier des parametres dans les filtres appliqués a la table de
requéte principale, aux autorisations et a la table de requéte elle-méme. Des
parametres peuvent aussi étre spécifiés dans les criteres de sélection sur les tables
de requétes attachées.

Nom de la table de requétes :

Lorsque vous exécutez une requéte sur une table de requétes dans Business
Process Choreographer, le nom de cette table est passé comme parametre d’entrée
aux méthodes de I’API de table de requétes.

Le nom de la table de requétes dont il est question ici est celui de la table
constituant la cible de 1’'exécution de la requéte.

* Lorsque la cible est une table de requétes prédéfinie, le nom spécifié est donc
celui de la table prédéfinie en question.

¢ Dans le cas d'une table composite ou supplémentaire, il s’agit du nom de la
table de requétes qui a été spécifié lors de la modélisation de la table. Le nom
d’une table composite ou supplémentaire est de la forme préfixe.nom ; la partie
préfixe ne doit pas étre 'IBM'.

Le nom de la table de requétes et le préfixe doivent tous les deux étre en lettres
majuscules. Le nom de la table de requétes ne doit pas dépasser 28 caracteres.

Concepts associés

IParamétres de I’API de table de requétesl

Les méthodes de I’API de table de requétes permettent d’extraire du contenu lors
de I'exécution de requétes sur une table de requétes dans Business Process
Choreographer.

Options de filtrage :
Lorsque vous exécutez une requéte sur une table de requétes dans Business
Process Choreographer, vous pouvez passer des options de filtrage en guise de

parametres d’entrée aux méthodes de 1’API de table de requétes.

252 Développement et déploiement

Une instance de la classe com.ibm.bpe.api.FilterOptions peut étre passée a I’API
de table de requétes. Les options de filtrage permettent de configurer une requéte
en agissant sur les caractéristiques suivantes :

* Un seuil et un décalage (skipCount)

* Des attributs de tri (similaires a la clause ORDER BY dans une requéte SQL)
¢ Un filtre de requéte additionnel

* L’ensemble d’attributs renvoyé, y compris les données d’élément de travail

* Autre

L’ensemble de résultats qui peut étre obtenu d’une table de requétes est spécifié
par la définition de cette table. Cependant, vous pouvez avoir besoin de spécifier
des options supplémentaires au moment d’exécuter la requéte. Le tableau suivant
décrit les options de filtrage qui peuvent étre spécifiées au moyen de 1’objet
com.ibm.bpe.api.FilterOptions.

Tableau 27. Parametres de I'API de table de requétes : options de filtrage

Option

Type

Description

Attributs sélectionnés

java.lang.String

* Une liste (séparée par des virgules) des
attributs de la table de requétes a
renvoyer dans I'ensemble de résultats.

* Si l'autorisation par instance est utilisée,
vous pouvez extraire les données
d’élément de travail en spécifiant les
attributs de la table de requétes
WORKL_ITEM, préfixés avec 'WI.'. Par
exemple, WI.REASON.

* Si‘null” est spécifié, tous les attributs de
la table de requétes sont renvoyés, sans
les données d’élément de travail.

Filtre de requéte

java.lang.String

Le filtre de requéte, qui complete 1’action
des filtres et des criteres de sélection déja
définis pour la table de requéte.

Attributs de tri

java.lang.String

Une liste (séparée par des virgules) des
attributs de la table de requétes
éventuellement suivis de ASC ou DESC
pour spécifier un tri par ordre croissant ou
décroissant, respectivement. Cette liste est
similaire a la clause SQL ORDER BY :
sortAttributes ::= attribut [ASC | DESC] [,
sortAttributes]. Si ASC ou DESC n’est pas
spécifié, 'ordre de tri croissant (ASC) est
appliqué par défaut. L’ordre dans lequel les
attributs de tri sont spécifiés a son
importance. Ainsi, dans cet exemple, les
taches de la table de requétes TASK sont
d’abord triées par état et dans l'ordre
décroissant (DESC), puis par nom et dans
I'ordre croissant (ASC) au sein de chaque
groupe de taches ayant le méme état :
"STATE DESC, NAME ASC".

Chapitre 4. Développement d’applications client pour les taches et processus métier 253

Tableau 27. Parametres de I'API de table de requétes : options de filtrage (suite)

Option

Type

Description

Seuil

java.lang.Integer

Définit une limite qui peut étre :
* Le nombre maximum de lignes renvoyées
si queryRows est utilisée.

* Le nombre maximum d’entités renvoyées
si queryEntities est utilisée. Le nombre
réel d’entités disponibles dans la table de
requétes concernée peut dépasser la
limite définie pour la requéte, méme si
I'ensemble de résultats ne contient pas
autant d’entités que le nombre
correspondant a cette limite. Cela est di
a des impératifs techniques qui entrent en
jeu lorsque les données d’élément de
travail sont sélectionnées.

* Le compte renvoyé si queryRowCount ou
queryEntityCount est utilisée.

La valeur par défaut est 'null’, ce qui
signifie qu'aucun seuil n’est défini.

Nombre d’éléments a
sauter (skipCount)

java.lang.Integer

Définit le nombre de lignes (requétes par
ligne) ou le nombre d’entités (requétes par
entité) a sauter. Comme pour le parametre
de seuil, skipCount peut manquer
d’exactitude dans le cas des requétes par
entité.

Le role du parametre skipCount est de
permettre la pagination lorsque de gros
ensembles de résultats sont renvoyés. La
valeur par défaut est 'null’, ce qui signifie
que skipCount n’est pas défini.

Fuseau horaire

java.util. TimeZone

Le fuseau horaire utilisé lors de la
conversion des horodatages. L'attribut
CREATED de la table requétes prédéfinie
TASK est un exemple d’horodatage affecté
par ce parametre. S'il n’est pas spécifié
(null), le fuseau horaire utilisé est celui du
serveur.

Environnement local

java.util.Locale

L’environnement local utilisé pour calculer
la valeur du parametre systeme $LOCALE.
Exemple d’utilisation de $LOCALE dans un
critére de sélection : 'LOCALE=$LOCALE".

Lignes distinctes

java.lang.Boolean

S’applique uniquement aux requétes par
ligne. Si la valeur est true, les requétes par
ligne renvoient des lignes distinctes. Cela
n’implique pas que des lignes uniques sont
renvoyées en raison de 1’éventuelle
multiplicité des données d’élément de
travail.

254 Développement et déploiement

Tableau 27. Parameétres de I'API de table de requétes : options de filtrage (suite)

Option Type Description

Condition de requéte |setQueryCondition Applique un filtrage supplémentaire a
I'ensemble de résultats. Les attributs définis
dans la table de requétes peuvent étre
référencés si une autorisation est requise.
Les colonnes définies dans la table de
requétes WORK_ITEM peuvent également
étre référencées a I'aide du préfixe 'WI.'
Exemple :
WI.REASON=REASON_POTENTIAL_OWNER.

Concepts associés

[Parameétres de 1’API de table de requétes|

Les méthodes de I’API de table de requétes permettent d’extraire du contenu lors
de I'exécution de requétes sur une table de requétes dans Business Process
Choreographer.

Options d’autorisation pour I’API de table de requétes :

Lorsque vous exécutez une requéte sur une table de requétes dans Business
Process Choreographer, vous pouvez passer des options d’autorisation en guise de
parametres d’entrée aux méthodes de I’API de table de requétes.

Utilisez une instance de la classe com.ibm.bpe.api.AuthorizationOptions ou de la
classe com.ibm.bpe.api.AdminAuthorizationOptions pour spécifier des options
d’autorisation supplémentaires lors de 'exécution de la requéte.

Si I'autorisation par instance est utilisée, les instances de la classe
com.ibm.bpe.api.AuthorizationOptions permettent de spécifier les types d’éléments
de travail identifiant les instances qui peuvent étre renvoyées par la requéte.

Une instance de la classe com.ibm.bpe.api.AuthorizationOptions peut étre passée a
I’API de table de requétes si la requéte est exécutée sur une table de requéte
prédéfinie qui contient des données d’instance. Elle peut aussi étre passée a I’API
si la requéte est exécutée sur une table composite dont la table principale contient
des données d’instance et si I'autorisation par instance est configurée pour étre
utilisée. Si la requéte est exécutée sur une table prédéfinie avec des données de
modeéle ou sur une table composite avec l'autorisation par réle configurée, une
exception EngineNotAuthorizedException est émise. Dans tous les autres cas, les
options d’autorisation passées a ’API de table de requétes sont ignorées.

Les tables de requétes composites peuvent restreindre les types d’éléments de
travail pris en compte lors de l'identification des objets (ou entités) qu’elles
contiennent. Par exemple, si les options d’autorisation passées a 1’API de table de
requétes sont configurées pour utiliser les éléments de travail ‘everybody’, elles ne
sont prises en compte que si l'utilisation de tels éléments de travail est prévue
dans la définition de la table de requétes composite. Voici une regle simple a
retenir : I’API de table de requétes ne peut pas forcer la prise en compte d'un type
d’élément de travail dont l'utilisation n’est pas spécifiée dans la définition de la
table de requétes ; en revanche, ’API n’est pas forcée de prendre en compte un
type d’élément de travail dont l'utilisation est spécifiée dans la définition de la
table de requétes. De méme, 1’API de table de requétes ne peut pas spécifier un
type d’autorisation différent de celui qui est défini pour une table de requétes
composite ou prédéfinie.

Chapitre 4. Développement d’applications client pour les taches et processus métier 255

En fonction du type de la table de requétes interrogée, différentes options
d’autorisation par défaut s’appliquent si l'objet d’autorisation n’est pas spécifié ou
si, comme c’est le cas par défaut, les attributs associés (everybody, individual,
group ou inherited) sont mis a ‘null’.

Le tableau suivant indique les options d’autorisation appliquées par défaut a
l'autorisation par instance, pour chaque combinaison de type de table de requéte et
de type d’élément de travail.

Tableau 28. Parametres de I'API de table de requétes : options d’autorisation par défaut
pour l'autorisation par instance

Elément de Elément de Elément de
Type de table de | travail travail Elément de travail
requétes ‘everybody’ ‘individual’ travail ‘group’ ‘inherited’

Prédéfinie avec | TRUE TRUE TRUE FALSE
des données
d’instance

Prédéfinie avec |N/A N/A N/A N/A
des données de
modele

Composite avec | TRUE TRUE TRUE TRUE
une table
principale
contenant des
données
d’instance

Composite avec | N/A N/A N/A N/A
une table
principale
contenant des
données de
modele

Supplémentaire |N/A N/A N/A N/A

N/A (non applicable) signifie que 'autorisation par instance n’est pas utilisée et
que, par conséquent, toute option concernant les éléments de travail dans !'objet
d’autorisation est ignorée.

Si TRUE est spécifié, la requéte résultante ne prend en compte le type d’élément de
travail concerné que si la table de requétes est définie pour utiliser ce type
d’élément de travail. Cette régle est valable pour toutes les tables de requétes
prédéfinies qui contiennent des données d’instance ; elle peut ne pas 1’étre pour
une table de requétes composite. En ce qui concerne 1'élément de travail ‘group’,
celui-ci doit étre activé sur le conteneur de taches humaines. Un exemple de cas ot
I'élément de travail est réglé a TRUE est celui out 'administrateur d’une instance
de processus peut voir les instances de taches humaines participantes qui sont
créées pour cette instance de processus.

Spécifiez une instance de la classe com.ibm.bpe.api.AdminAuthorizationOptions a
la place d"une instance de com.ibm.bpe.api.AuthorizationOptions dans les cas
suivants :

* Une requéte est exécutée sur une table de requétes configurée avec l'autorisation
par role. Les tables de requétes prédéfinies avec des données de modele

256 Développement et déploiement

requiérent ’autorisation par role ; de méme, les tables composites dont la table
principale contient des données de modéle peuvent étre configurées pour exiger
l'autorisation par role.

* Une requéte est exécutée sur une table de requétes contenant des données
d’instance ou sur une table composite dont la table principale contient des
données d’instance. Le contenu de cette table de requétes doit étre renvoyé, sans
considération des restrictions liées a ’autorisation d’un utilisateur particulier. Ce
comportement particulier a I’API de table de requétes correspond a l'utilisation
de la méthode queryAll dans I’API de requéte.

* Une requéte doit étre exécutée pour le compte d'un autre utilisateur.

Le tableau suivant décrit de quelle maniere les comportements décrits plus haut
sont obtenus :

Tableau 29. Parametres de I'API de table de requétes : AdminAuthorizationOptions

Situation Description

Valeur de onBehalfUser = .
null

Si une requéte est exécutée sur une table de requétes
configurée avec l'autorisation par réle, I'intégralité de son
contenu est renvoyée.

* Si la requéte est exécutée sur une table de requétes qui
utilise 1’autorisation par instance, les objets qu’elle
contient ne sont pas vérifiés par rapport aux éléments de
travail autorisés pour tel ou tel utilisateur. La requéte
renvoie donc tous les objets contenus dans la table de
requétes.

Valeur de onBehalfUser = un | La requéte est exécutée avec I'autorité de 1'utilisateur
utilisateur particulier spécifié, et les objets contenus dans la table de requétes
cible sont vérifiés par rapport aux éléments de travail
autorisés pour cet utilisateur, si I’autorisation par instance
est utilisée.

Si vous spécifiez com.ibm.bpe.api.AdminAuthorizationOptions, 1’appelant doit
faire partie du role J2EE BPESystemAdministrator.

Concepts associés
[Parameétres de ’API de table de requétes|
Les méthodes de I’API de table de requétes permettent d’extraire du contenu lors

de l'exécution de requétes sur une table de requétes dans Business Process
Choreographer.

[Autorisation pour les tables de requétes]

L’exécution de requétes sur des tables de requétes peut s’effectuer avec plusieurs
types d’autorisation : autorisation par instance, autorisation par rdle ou absence de
contrdle d’autorisation.

Parametres :

Lorsque vous exécutez une requéte sur une table de requétes dans Business
Process Choreographer, vous pouvez passer des parametres utilisateur aux
méthodes de I’API de table de requétes. Dans une définition de table de requétes,
vous pouvez spécifier des parametres dans les filtres appliqués a la table de
requéte principale, aux autorisations et a la table de requéte elle-méme. Des
parametres peuvent aussi étre spécifiés dans les criteres de sélection sur les tables
de requétes attachées.

Chapitre 4. Développement d’applications client pour les taches et processus métier 257

Les parametres systeme $USER et $LOCALE sont remplacés a I’exécution dans les
filtres et les criteres de sélection et n’ont pas besoin d’étre passés a ’API de table
de requétes. La valeur d’entrée utilisée pour le calcul du parameétre systeme
$LOCALE est fournie en définissant 1’environnement local dans les options de filtre.

Les parameétres utilisateur doivent étre passés a I’API de table de requétes au
moment ol la requéte est exécutée. Cette étape est réalisée en passant une liste
d’instances de la classe com.ibm.bpe.api.Parameter.

Les propriétés suivantes doivent étre spécifiées dans un objet Parameter :

Tableau 30. Parametres utilisateur destinés a I’API de table de requétes

Propriété Description

Nom Le nom du parametre tel qu’il est spécifié dans la définition
de table de requétes. Le nom est sensible a la casse.

Valeur La valeur du parametre. Le type du parametre doit étre
compatible avec le type de I'opérande coté gauche et de
tous les filtres et critéres de sélection ol ce parameétre est
utilisé. Les constantes définies pour certains attributs des
tables de requétes prédéfinies peuvent étre passés comme
des chaines ; par exemple, STATE_READY.

Voici quelques exemples d’utilisation de parametres :

// permet d'obtenir le contexte d'affectation de nom et de rechercher 1'interface
// EJB home de Business Flow Manager ; cette interface

// doit étre mise en cache pour des raisons de performances

// nous supposons également qu'il existe une référence EJB

// & 1'EJB Tlocal de Business Flow Manager

Context ctx = new InitialContext();

LocalBusinessFlowManagerHome home =

(LocalBusinessFlowManagerHome)

ctx.Tookup("java:comp/env/ejb/BFM");

// crée le module de remplacement de Business Flow Manager coté client
LocalBusinessFlowManager bfm = home.create();

// exécute une requéte sur une table de requétes composite
// CUST.CPM avec le filtre de table de requétes principale
// 'STATE=PARAM(theState)'

EntityResultSet ers = null;

List parameterList = new ArraylList();
parameterList.add(new Parameter

("theState", new Integer(2)));

ers = bfm.queryEntities
("CUST.CPM", null, null, parameterList);

// manipuler 1'ensemble de résultats

/...

Concepts associés

[Parametres de 1’API de table de requétes|

Les méthodes de I’API de table de requétes permettent d’extraire du contenu lors
de l'exécution de requétes sur une table de requétes dans Business Process
Choreographer.

Résultats des requétes exécutées sur les tables de requétes :

Les méthodes de I’API de table de requétes s’utilisent lors de I'exécution de
requétes sur une table de requétes dans Business Process Choreographer. Le

258 Développement et déploiement

résultat de la méthode queryEntityCount ou de la méthode queryRowCount est un
simple nombre. En revanche, les méthodes queryEntities et queryRows renvoient
des ensembles de résultats.

EntityResultSet

Une instance de la classe com.ibm.bpe.api.EntityResultSet est renvoyée par la
méthode queryEntities. Un ensemble de résultats d’entités a les propriétés
suivantes :

Tableau 31. Propriétés d’un ensemble de résultats d’entités renvoyé par I'API de table de
requétes

Propriété Description

queryTableName Nom de la table de requétes sur laquelle la requéte a été
exécutée.

entityTypeName * Si la requéte a été exécutée sur une table de requétes

composite, cette propriété est le nom de la table de
requétes principale.

* Sila requéte a été exécutée sur une table de requétes
prédéfinie ou supplémentaire, cette propriété est le nom
de la table en question ; autrement dit, elle a la méme
valeur que la propriété queryTableName.

entitylnfo Cette propriété contient les méta-informations des entités
contenues dans 1’ensemble de résultats. Une liste
java.util.List d’objets com.ibm.bpe.api.AttributeInfo peut
étre extraite de cet objet. Cette liste contient les noms et les
types d’attribut des informations contenues dans les entités
de I'ensemble de résultats. Elle contient également les
méta-informations relatives aux attributs qui constituent la
clé de ces entités.

entities Une liste java.util.List d’objets Entity.
locale L’environnement local calculé pour le parametre systeme
$LOCALE.

Les instances de la classe com.ibm.bpe.api.Entity contiennent les informations
extraites de la requéte lancée sur la table de requétes. Une entité représente un
objet identifiable de maniere unique ; par exemple, une tache, une instance de
processus, une activité ou une escalade. Les propriétés suivantes sont disponibles
pour les entités :

Tableau 32. Propriétés d’une entité renvoyée par I’API de table de requétes

Propriété Description

entitylnfo L’objet entityInfo qui est également contenu dans
I’ensemble de résultats d’entités.

attributeValue (attributeName) | La valeur de l'attribut spécifié qui est extrait pour cette
entité. Le type est contenu dans 1'objet AttributeInfo
correspondant de cet attribut.

attributeValuesOf Array Un tableau de valeurs. Utilisez cette propriété si la valeur
(attributeName) de la propriété array de I'objet AttributeInfo est "true’, ce
qui est actuellement le cas uniquement si I'attribut fait
référence a des données d’élément de travail.

Chapitre 4. Développement d’applications client pour les taches et processus métier 259

Le nombre d’entités contenues dans ’ensemble de résultats est obtenu en exécutant
la méthode size() de la liste d’entités.

Exemple : Requéte utilisant '’API de requéte par entité :

// L'exemple suivant illustre une requéte exécutée sur la
// table prédéfinie TASK et utilisant 1'API par entité

// exécution de la requéte
EntityResultSet rs = bfm.queryEntities("TASK", null, null, null);

// obtenir Tes méta-informations des entités
EntityInfo ei = rs.getEntityInfo();
List atts = ei.getAttributeInfo();

// obtenir les entités et itérer dessus
Iterator entitiesIter = rs.getEntities().iterator();
while (entitiesIter.hasNext()) {

// manipuler une entité particuliére
Entity en = (Entity) entitiesIter.next();

for (int i = 0; i < atts.size(); i++) {
AttributeInfo ai = (AttributeInfo) atts.get(i);
Serializable value = en.getAttributeValue(ai.getName()) ;

// traiter...

RowResultSet

Une instance de la classe com.ibm.bpe.api.RowResultSet est renvoyée par la
méthode queryRows. Ce type d’ensemble de résultats est similaire a un ensemble
de résultats JDBC. Un ensemble de résultats de lignes a les propriétés suivantes :

Tableau 33. Propriétés d’un ensemble de résultats de lignes renvoyé par I'API de table de
requétes

Propriété Description

primaryQueryTableName * Sila requéte a été exécutée sur une table de requétes

composite, cette propriété est le nom de la table de
requétes principale.

* Sila requéte a été exécutée sur une table de requétes
prédéfinie ou supplémentaire, cette propriété est le nom
de la table en question ; autrement dit, elle a la méme
valeur que la propriété queryTableName.

attributeInfo Cette propriété contient la liste des objets
com.ibm.bpe.api.AttributeInfo qui décrivent les
méta-informations de cet ensemble de résultats. Chaque
objet AttributeInfo contient le nom et le type d’un attribut.
Il ne contient pas de métadonnées relatives aux clés, car les
ensembles de résultats de lignes n’ont pas de clé.

attributeValue La valeur de l'attribut spécifié qui a été extrait pour cette
ligne. Le type est contenu dans 1’objet AttributeInfo
correspondant de cet attribut.

260 Développement et déploiement

Tableau 33. Propriétés d’un ensemble de résultats de lignes renvoyé par I'API de table de
requétes (suite)

Propriété Description

next, first, last, previous La navigation parmi les lignes de 1’ensemble de résultats se
fait au moyen de ces méthodes. Comparez leur utilisation a
celle des itérateurs, des énumérations ou des ensembles de
résultats JDBC.

Le nombre de lignes contenues dans I'ensemble de résultats est obtenu en
exécutant la méthode size() de la liste de lignes.

Exemple : Requéte utilisant I’API de requéte par ligne :

// L'exemple suivant illustre une requéte exécutée sur la
// table prédéfinie TASK et utilisant 1'API par ligne

// exécution de la requéte
RowResultSet rs = bfm.queryRows ("TASK", null, null, null);

// obtenir Tes méta-informations des entités
List atts = rs.getAttributeInfo();

// obtenir les entités et itérer dessus
while (rs.next()) {

// manipuler une ligne particuliére

for (int i = 0; i < atts.size(); i++) {
AttributeInfo ai = (AttributeInfo) atts.get(i);
Serializable value = rs.getAttributeValue(ai.getName()) ;

// traiter...

Concepts associés

[Requétes sur des tables de requétes

L’exécution de requétes sur les tables de requétes définies dans Business Process
Choreographer s’effectue au moyen de I’API de table de requétes, qui est
disponible pour l'interface EJB de Business Flow Manager et I’API REST.

Requétes sur des tables de requétes pour I’extraction de
métadonnées

L’exécution de requétes sur les tables de requétes définies dans Business Process
Choreographer s’effectue au moyen de 1I’API de table de requétes. Des méthodes
sont disponibles pour permettre 1’extraction de métadonnées des tables de
requétes.

Les méthodes suivantes sont disponibles pour 'extraction de métadonnées lorsque
vous exécutez des requétes sur les tables de requétes dans Business Process
Choreographer en utilisant 1’API de table de requétes :

Tableau 34. Méthodes pour I'extraction de métadonnées des tables de requétes

Objectif Méthode

Renvoyer les métadonnées d'une table de getQueryTableMetaData
requétes spécifique

Renvoyer la liste des métadonnées de table |findQueryTableMetaData
de requétes ayant des propriétés spécifiques

Chapitre 4. Développement d’applications client pour les tiches et processus métier 261

Tableau 34. Méthodes pour I'extraction de métadonnées des tables de requétes (suite)

Objectif

Méthode

Renvoyer le contenu d’une table de requétes
en fonction d’entités et d’un sous-ensemble
des métadonnées des attributs sélectionnés

queryEntities

Renvoyer le contenu d’une table de requétes
en fonction de lignes et d’un sous-ensemble
des métadonnées des attributs sélectionnés

queryRows

Les métadonnées des tables de requétes comprennent des informations en rapport

avec la structure des tables et d’autres informations en rapport avec

l'internationalisation.

Le tableau suivant présente les métadonnées relatives a la structure d’une table de

requétes.

Tableau 35. Métadonnées relatives a la structure d’une table de requétes

Renvoyées par

Renvoyées par

de requétes

getQuery- findQuery- Renvoyées par | Renvoyées par
Métadonnées | Description TableMetaData | TableMetaData | queryEntities | queryRows
Nom de la Le nom de la table de requétes |Oui Oui Oui Oui
table de
requétes
Nom de la Le nom de la table de requétes |Oui Oui Oui Oui
table de lorsqu’il s’agit d'une table
requétes prédéfinie ou supplémentaire,
principale ou le nom de la table
principale lorsque la table
interrogée est une table de
requétes composite
Type Le type de table de requétes : |Oui Oui Non Non
composite, prédéfinie ou
supplémentaire.
Autorisation L’autorisation qui est définie |Oui Oui Non Non
sur la table de requétes :
» Utilisation d’éléments de
travail
* Autorisation par instance ou
par role ou absence de
controle d’autorisation
Attributs Les métadonnées des attributs | Oui Oui Non. Les Non. Les
définis qui sont définis sur la table de métadonnées | métadonnées
requétes des attributs des attributs
sélectionnés sélectionnés
sont renvoyées. | sont renvoyées.
Attributs de clé | Les attributs de clé de la table |Oui Oui Oui Non. Ne

concerne pas
les requétes
par ligne.

Le tableau suivant présente les métadonnées relatives a I'internationalisation d"une

table de requétes.

262 Développement et déploiement

Tableau 36. Métadonnées relatives a l'internationalisation d’une table de requétes

Renvoyées par

Renvoyées par

getQuery- findQuery- Renvoyées par | Renvoyées par

Métadonnées | Description TableMetaData | TableMetaData | queryEntities | queryRows
locales[] Environnements locaux pour |Oui Oui Non Non

lesquels les noms d’affichage

et les descriptions de la table

de requétes et des attributs

sont définis.
Environnement | Valeur du parametre systeme |Oui Oui Oui Oui
local $LOCALE qui résulte de

l'environnement local qui est

transmis a I’APL
Nom Les noms d’affichage et les Oui Oui Non Non
d’affichage et descriptions de la table de
description de |requétes, fournis pour tous les
la table de environnements locaux définis.
requétes
Noms Les noms d’affichage et les Oui Oui Non Non
d’affichage et | descriptions des attributs,
descriptions fournis pour tous les

des attributs

environnements locaux définis.

Toutes les méthodes de I’API de table de requétes EJB qui renvoient des

métadonnées de table de requétes acceptent un parametre d’environnement local ;
par exemple, FilterOptions.setLocale et MetaDataOptions.setlLocale. Ce
parametre doit recevoir pour valeur 1’environnement local Java que le client utilise
pour présenter les informations a 'utilisateur. Ce parametre d’environnement local
sert a calculer la valeur du parametre systeme $LOCALE, lequel peut étre utilisé dans
les filtres et les criteres de sélection. L’environnement local renvoyé contient
’environnement local Java qui est utilisé pour $LOCALE.

Si votre requéte extrait les noms d’affichage et les descriptions d’une table de
requétes spécifique, passez getLocale aux méthodes concernées afin d’obtenir ces
noms et ces descriptions dans le méme environnement local que celui des
descriptions des taches. Par exemple, les descriptions suivantes sont attachées au
moyen du critére de sélection 'LOCALE=$LOCALE".

Exemple :

// 1'exemple suivant montre comment extraire
// les métadonnées d'une table de requétes composite particuliére

// exécution de la requéte
MetaDataOptions mdo = new MetaDataOptions("TASK", null, false, new Locale("en_US"));
List Tist = bfm.findQueryTableMetaData(mdo);

// pour obtenir les métadonnées d'une table de requétes spécifique
// utiliser bfm.getQueryTableMetaData(...)

// itérer sur la liste des tables de requétes dont Ta table principale est TASK
// => au moins une table de requétes est renvoyée : la table prédéfinie TASK

Iterator iter = list.iterator();

while (iter.hasNext()) {

QueryTableMetaData md = (QueryTableMetaData) iter.next();
Locale effectiveLocale = md.getLocale();

263

Chapitre 4. Développement d’applications client pour les taches et processus métier

String queryTableDisplayName = md.getDisplayName(effectivelocale);
System.out.printin("found query table: " + queryTableDisplayName);
List attributesList = md.getAttributeMetaData();

Iterator attrIter = attributesList.iterator();

while (attrIter.hasNext()) {
AttributeMetaData amd = (AttributeMetaData) attrIter.next();
String attributeDisplayName = amd.getDisplayName(effectivelocale);
System.out.printIn("\tattribute:" + attributeDisplayName);

}

1

Concepts associés

[Tables de requétes dans Business Process Choreographer]

Les tables de requétes permettent d’interroger les données des listes de taches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requétes peuvent porter sur les données des taches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requétes
fournissent une abstraction des données de Business Process Choreographer qui
peut étre exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de I'implémentation proprement dite des tables. Les définitions des
tables de requétes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requéte.

Internationalisation pour les métadonnées des tables de
requétes

L’internationalisation est prise en charge pour les métadonnées des tables de
requétes.

Les noms d’affichage et les descriptions des tables de requétes composites peuvent
étre fournis en différentes langues correspondant a différents codes
d’environnement local. Par exemple, il est possible de définir, pour une table de
requétes composite, un nom d’affichage en anglais (environnement local en_US), en
allemand (environnement de) et dans la langue de l'environnement local par
défaut. Cette configuration est réalisée durant le développement de la table de
requétes, a 1’aide de Query Table Builder. Pour déployer une table de requétes avec
des noms d’affichage et des descriptions en différentes langues, vous devez utiliser
l'option -deploy jarFile lorsque vous déployez la table dans le conteneur
Business Process Choreographer.

En termes de traitement des environnements locaux, le comportement des
méthodes de 1I’API de table de requétes, queryEntities et queryRows, et des
méthodes de manipulation des métadonnées fournies par cette méme API,
getQueryTableMetaData et findQueryTableMetaData, est similaire a celui qui est
obtenu avec les regroupements de ressources Java.

Pour que les noms d’affichage et les descriptions des métadonnées d’une table de
requétes restent cohérents avec le contenu de ladite table, la valeur du parametre
systeme $LOCALE dépend des environnements locaux pour lesquels les noms
d’affichage et les descriptions sont spécifiés dans la table de requétes.

Exemple :

Dans le scénario suivant, un client affiche des listes de taches et des listes de
processus et crée une demande pour interroger une table de requétes.

264 Développement et déploiement

* Le client n’a pas spécifié d’environnement local particulier a utiliser pour
présenter 'information a l'utilisateur. Il est probable que l'application n’est pas
congue pour fonctionner en différentes langues.

— Un environnement local par défaut est spécifié pour les noms d’affichage et
les descriptions des tables de requétes. C’est le cas pour toutes les tables
composites et supplémentaires construites avec la version actuelle de Query
Table Builder. Par conséquent la valeur de $LOCALE est default.

— Pour l'environnement local par défaut, aucun nom d’affichage ou description
n’est spécifié sur la table de requétes. C’est le cas pour toutes les tables de
requétes prédéfinies ainsi que pour toutes les tables de requétes déployées
avec 'option -deploy qtdFile. La valeur de $LOCALE est basée sur la méthode
du regroupement de ressources Java.

* Le client a spécifié I'environnement local a utiliser pour présenter l'information a
l'utilisateur. Par exemple, c’est le cas lorsque ’API REST pour les tables de
requétes est utilisée.

- Les noms d’affichage et les descriptions sont spécifiés sur la table de requétes.
La méthode du regroupement de ressources Java est utilisée pour calculer la
valeur de $LOCALE d’aprés I'environnement local qui est transmis par le client.

— Les noms d’affichage et les descriptions ne sont pas spécifiés sur la table de
requétes. La variable $LOCALE est réglée a la valeur qui est transmise par le
client.

Concepts associés

[Tables de requétes dans Business Process Choreographer]

Les tables de requétes permettent d’interroger les données des listes de taches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requétes peuvent porter sur les données des taches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requétes
fournissent une abstraction des données de Business Process Choreographer qui
peut étre exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de I'implémentation proprement dite des tables. Les définitions des
tables de requétes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requéte.

Tables de requétes et performances des requétes

Les tables de requétes offrent un nouveau modele de programmation propre, congu
pour le développement d’applications clientes qui extraient des listes de taches
humaines et de processus métier dans Business Process Choreographer. Les tables
de requétes ont un effet bénéfique sur les performances des requétes. Vous
trouverez ci-apres une description des options applicables aux tables de requétes et
des parametres de ’API de tables de requétes qui ont une incidence sur les
performances des requétes. Des informations sont également fournies a propos
d’autres facteurs qui influent sur les performances.

Les temps de réponse des requétes exécutées sur les tables de requétes dépendent
principalement des options d’autorisation, des filtres et des criteres de sélection
utilisés. Voici une liste de points a prendre en considération lorsqu’il est question
de performances.

* Les options d’autorisation influent de facon importante sur les performances.
Activez 'autorisation en utilisant le moins possible d’options et utilisez
principalement les éléments de travail de personne et de groupe. Evitez
d’utiliser des éléments de travail inherited. Les options d’autorisation peuvent
étre restreintes de maniere plus importante au moment de 'exécution de la

Chapitre 4. Développement d’applications client pour les taches et processus métier 265

requéte. En outre, si cela n’est pas nécessaire, indiquez que l'autorisation par le
biais des éléments de travail n’est pas requise.

* Si une autorisation par éléments de travail est requise, définissez un filtre
d’autorisation. Par exemple, pour autoriser uniquement les objets de la table de
requétes qui contiennent un élément de travail de propriétaire potentiel, utilisez
WIREASON=REASON_POTENTIAL_OWNER.

* Le filtrage de la table de requétes principale est par exemple utile pour autoriser
uniquement les taches a I'état Prét de la table de requétes lorsque TASK est la
table de requétes principale.

* En termes de performances, les filtres de table de requétes et les filtres de
requéte (filtres transmis a 1’exécution de la requéte) sont moins efficaces que les
filtres principaux.

* Lorsque cela est possible, évitez d’utiliser des parametres dans les filtres et les
criteres de sélection.

* Evitez également d’utiliser des opérateurs LIKE dans les filtres et les criteres de

sélection.

Définitions des tables de requétes composites

Le tableau suivant décrit I'impact qu’ont les options définies pour les tables de
requétes composites sur les performances des requétes. Il traite également d’autres
sujets en rapport avec les définitions des tables de requétes composites.
L’indication figurant dans la colonne Impact sur les performances est une moyenne
; les impacts réellement observés peuvent varier.

Tableau 37. Les options applicables aux tables de requétes composites et leur impact sur

les performances des requétes

Objet ou sujet

Impact sur les
performances

Description

Filtre de table
de requétes

Négatif

Les filtres appliqués aux tables de requétes sont ceux qui
ont I'impact le plus négatif sur les performances des
requétes. Généralement, ils ne peuvent pas utiliser les
index définis dans la base de données.

Filtre de la Positif Un filtre appliqué a la table principale intervient tres tot

table de dans le calcul des résultats de la requéte et se révele donc

requétes particulierement efficace en termes de performances. Pour

principale cette raison, il est conseillé de restreindre le contenu de la
table de requétes au moyen d’un filtre appliqué a la table
de requétes principale.

Filtre Positif Un filtre d’autorisation peut améliorer les performances de

d’autorisation la requéte dans des proportions comparables a celles du
filtre appliqué a la table de requétes principale. Dans la
mesure du possible, un filtre d’autorisation doit étre
appliqué. Par exemple, si les éléments de travail reader
(lecteur) ne doivent pas étre pris en compte, spécifiez
WI.REASON=REASON_READER.

Criteres de Aucun Pour certaines relations entre la table principale et les

sélection tables attachées, il faut définir un critére de sélection afin
de garantir que ces relations sont bien du type un a un ou
un a zéro. Généralement, un critere de sélection n’a qu'un
impact légerement négatif sur les performances, car il est
évalué pour un petit nombre de lignes uniquement.

Parametres Aucun Actuellement, I'emploi de parametres dans les tables de

requétes n’a pas d’impact négatif sur les performances. IIs
ne doivent cependant étre utilisés qu’en cas de nécessité.

266 Développement et déploiement

Tableau 37. Les options applicables aux tables de requétes composites et leur impact sur
les performances des requétes (suite)

Impact sur les

Objet ou sujet | performances | Description

Autorisation | Négatif Si l'autorisation par instance est utilisée, 1’existence d'un

par instance élément de travail doit étre vérifiée pour chaque objet
dans la table de requétes. Les éléments de travail sont
représentés par les entrées de la table de requétes
WORK_ITEM. Cette vérification affecte les performances.

Autorisation | Négatif Chaque type d’élément de travail dont l'utilisation est

par instance : spécifiée dans la table de requétes a un impact sur les

+ everybody performances. Les applications ayant a soumettre

o d’importants volumes de requétes doivent, si possible, se

e individuals limiter & I . £14 e i K
imiter a 'emploi des éléments de travail ‘individuals” et

° groups ‘groups’, voire a un seul de ces éléments. Les éléments de

¢ inherited travail ‘inherited” ne sont généralement pas nécessaires, en
particulier pour la définition de listes de taches renvoyant
des taches humaines qui représentent des taches a
effectuer. Ils doivent en revanche étre utilisés lorsqu’il est
clair qu’ils sont indispensables ; par exemple, pour
retourner des listes de taches qui appartiennent a un
processus métier, si une personne, compte tenu de son
autorisation, ne bénéficie que d'un accés en lecture au
processus métier englobant les taches en question.

Autorisation | Aucun Si l'autorisation par role est utilisée, ou si aucun contréle

par rdle ou d’autorisation n’est exercé, les vérifications par rapport

absence de aux éléments de travail n’ont pas lieu.

controle

d’autorisation

Nombre Actuellement |Le nombre d’attributs contenus dans une table de requétes

d’attributs aucun n’a pas d’incidence sur les performances. Néanmoins,

définis seuls les attributs véritablement nécessaires doivent faire

partie d'une table de requétes.

API de table de requétes

Le tableau suivant décrit I'impact qu’ont les options définies pour I’API de table de
requétes sur les performances des requétes. L'indication figurant dans la colonne
Impact sur les performances est une moyenne ; les impacts réellement observés

peuvent varier.

Tableau 38. Les options de I'API de table de requétes et leur impact sur les performances

des requétes

Impact sur les

Option performances | Description
Attributs Négatif Le nombre d’attributs sélectionnés lorsqu’une requéte est
sélectionnés (moins il y en |exécutée sur une table de requétes détermine directement

a, mieux c’est)

le nombre de données qui devront étre traitées a la fois
par la base de données et par 1’environnement d’exécution
de table de requétes de Business Process Choreographer.
De plus, pour les tables de requétes composites, les
informations des tables attachées n’ont besoin d’étre
extraites que si elles sont spécifiées par les attributs
sélectionnés ou référencées par le filtre de table de
requétes ou par le filtre de requéte.

Chapitre 4. Développement d’applications client pour les taches et processus métier

267

Tableau 38. Les options de I'API de table de requétes et leur impact sur les performances
des requétes (suite)

Impact sur les

Option performances | Description
Filtre de Négatif S’il est spécifié, le filtre de requéte a le méme impact sur
requéte les performances que le filtre de table de requétes.

Cependant, il est préférable de spécifier les filtres sur les
tables de requétes plutdt que de les passer a ’API de table
de requétes.

Attributs de | Négatif Le tri des résultats d’une requéte est cotliteux en temps de
tri traitement ; de plus, dés lors que le tri est utilisé, les
optimisations de la base de données sont restreintes. Le tri
doit étre évité s’il n’est pas indispensable. La plupart des
applications en ont toutefois besoin.

Seuil Positif La spécification d'un seuil peut améliorer significativement
les performances des requétes. Il est recommandé de
toujours spécifier un seuil.

Nombre Négatif Le saut d"un nombre particulier d’objets dans 1’ensemble

d’éléments a de résultats d’une requéte est cotiteux en temps de

sauter traitement ; il ne doit étre réalisé qu’en cas d’absolue

(skipCount) nécessité (par exemple, pour la pagination des résultats).

Fuseau horaire | Aucun Le réglage de fuseau horaire n’a pas d’incidence sur les
performances.

Environnement| Aucun Le réglage d’environnement local n’a pas d’incidence sur

local les performances.

Lignes Négatif L’emploi de 'opérateur "distinct’ dans les requétes a un

distinctes certain impact sur les performances, mais il est parfois

incontournable pour éviter 'extraction de lignes en
double. Cette option concerne uniquement les requétes par
ligne ; elle est ignorée dans les autres cas.

Requétes de | Positif Si seul le nombre total d’entités ou le nombre total de
comptage lignes d’une requéte particuliére est nécessaire (autrement
dit, s’il n’est pas nécessaire d’extraire le contenu de toutes
les entrées de la table de requétes), il convient d’utiliser la
méthode queryEntityCount ou la méthode
queryRowCount, respectivement. L’environnement
d’exécution de Business Process Choreographer peut
appliquer des optimisations valides uniquement pour les
requétes de comptage.

268 Développement et déploiement

Autres considérations

Les autres facteurs a prendre en considération en ce qui concerne les performances

sont les suivants :

Tableau 39. Performances des tables de requétes - Autres considérations

Elément

Description

Nombre de tables de
requétes sur le
systeme

Le nombre de tables de requétes déployées dans un conteneur
Business Process Choreographer n’influe pas sur les performances
des requétes exécutées sur ces tables. Il est également sans
conséquence sur la navigation des instances de processus métier et
n’a pas non plus d’impact sur les opérations de réclamation et
d’achevement des taches humaines. Maintenez-le quand méme a
un niveau raisonnable, sous peine de compliquer la maintenance
de votre environnement. Généralement, une table de requétes
particuliere représente une seule et méme liste de taches ou liste de
processus affichée dans l'interface utilisateur.

Réglage de la base de
données

Meéme si 1’acceés au contenu des tables de requétes est réalisé au
moyen de code SQL optimisé, les meilleures pratiques de réglage
des bases de données restent de mise lorsqu’il est question de la

base de données de Business Process Choreographer :

La mémoire réservée a la base de données doit étre réglée au
maximum, en tenant compte des besoins en mémoire des autres
processus exécutés sur le serveur de base de données et des
limites propres au matériel.

Les statistiques relatives a la base de données doivent étre le
plus a jour possible ; elles doivent donc étre actualisées a
intervalles réguliers. Généralement, les procédures a cet effet
sont déja implémentées dans les grandes topologies. Par
exemple, prévoyez une collecte hebdomadaire des statistiques
destinées a I'optimiseur pour refléter les changements des
données dans la base de données.

Les systemes de gestion de bases de données fournissent des
outils qui permettent de réorganiser (ou défragmenter) les
conteneurs de données. L’agencement physique des données
dans la base de données peut aussi influer sur les performances
des requétes et les voies d’acces qu’elles empruntent.

L’optimisation des index est 'un des facteurs clés en matiere de
performance des requétes. Business Process Choreographer est
fourni avec des index prédéfinis, optimisés pour conférer les
meilleures performances a la navigation des processus et aux
requétes dans des scénarios types. Dans les environnements
personnalisés, d’autres index peuvent étre nécessaires afin de
soutenir les requétes sur les listes de taches ou de processus qui
génerent ou manipulent de gros volumes de données. Utilisez
les outils fournis par la base de données pour prendre en charge
les requétes exécutées sur une table de requétes.

Chapitre 4. Développement d’applications client pour les taches et processus métier 269

Concepts associés

[Tables de requétes dans Business Process Choreographer|

Les tables de requétes permettent d’interroger les données des listes de taches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requétes peuvent porter sur les données des taches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requétes
fournissent une abstraction des données de Business Process Choreographer qui
peut étre exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de I'implémentation proprement dite des tables. Les définitions des
tables de requétes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requéte.

API de requéte EJB de Business Process Choreographer

Les méthodes query ou queryAll du service API vous permettent d’extraire des
informations stockées relatives aux processus métier et aux taches.

La méthode query peut étre appelée par tous les utilisateurs, elle renvoie les
propriétés des objets pour lesquels les éléments de travail existent. La méthode
queryAll ne peut étre appelée que par les utilisateurs avec les roles J2EE suivants :
BPESystem Administrator, TaskSystem Administrator, BPESystemMonitor ou
TaskSystemMonitor. Cette méthode renvoie les propriétés de tous les objets qui
sont stockés dans la base de données.

Toutes les requétes API sont mappées avec les requétes SQL. La forme de la
requéte SQL résultante dépend des aspects suivants :

* Sila requéte a été appelée par une personne ayant I'un des roles J2EE.

* Les objets qui sont interrogés. Des vues prédéfinies des bases de données sont
disponibles pour vous permettre de rechercher les propriétés de 1’objet.

* L’insertion d’une clause From, de conditions de jointure et de conditions propres
a l'utilisateur pour le contrdle d’acces.

Les requétes peuvent inclure a la fois des propriétés personnalisées et des
propriétés de variable. Si vous ajoutez plusieurs propriétés personnalisées ou
propriétés de variables a votre requéte, des jointures automatiques sont créées dans
la table de base de données correspondante. Suivant le systeme de base de
données utilisé, les appels de query() peuvent avoir des implications diverses sur
les performances.

Vous pouvez également stocker des requétes dans la base de données Business
Process Choreographer a 1'aide de la méthode createStoredQuery. Vous fournissez
les criteres de requéte lors de la définition de la requéte stockée. Les criteres sont
appliqués lors de l’exécution de la requéte stockée, ce qui signifie que les données
sont regroupées durant cette période. Si la requéte stockée contient des parametres,
ils sont également résolus lors de son exécution.

Pour plus d’informations sur les interfaces API de Business Process Choreographer,
consultez Javadoc dans le package com.ibm.bpe.api pour les méthodes relatives
aux processus et dans le package com.ibm.task.api pour les méthodes relatives aux
taches.

270 Développement et déploiement

Concepts associés

[Requétes portant sur les données des processus métier et des taches|

Les données d’instance des processus métier et des taches humaines a exécution
longue sont stockées de fagon persistante dans la base de données et accessibles
par le biais de requétes. En outre, il est possible d’accéder aux données des
modeles de processus métier et de tiche humaine grace a une interface de requéte.

Syntaxe de la méthode query dans I’AP]|

La syntaxe des requétes de I’API du Business Process Choreographer est similaire a
celle des requétes SQL. Une requéte peut inclure les clauses Select, Where et
Order-by ainsi que les parametres Skip-tuples, Threshold et Time-zone.

(Conditions d’acces propres a l'utilisateur]

Les conditions d’accés propres a l'utilisateur sont ajoutées lorsque l'instruction SQL
SELECT est générée par la requéte APIL Ces conditions garantissent que seuls ces
objets sont renvoyés a l’appelant parce que conformes a la condition spécifiée par
I'appelant et rendus accessibles a ce dernier.

[Exemples de méthodes query et queryAlll
Ces exemples montrent la syntaxe de diverses requétes API générales et des
instructions SQL associées qui sont générées lors du traitement de la requéte.

Référence associée

[[Vue de la base de données Business Process Choreographer]
Ces informations de référence décrivent les colonnes disponibles dans les vues de
base de données prédéfinies.

Syntaxe de la méthode query dans I’API

La syntaxe des requétes de 1’API du Business Process Choreographer est similaire a
celle des requétes SQL. Une requéte peut inclure les clauses Select, Where et
Order-by ainsi que les parametres Skip-tuples, Threshold et Time-zone.

La syntaxe de la requéte dépend du type d’objet. Le tableau suivant présente la
syntaxe correspondant aux différents types d’objet.

Tableau 40.
Objet Syntaxe

Modele de processus |ProcessTemplateData[] queryProcessTemplates
(java.lang.String whereClause,
java.lang.String orderByClause,
java.lang.Integer threshold,
java.util.TimeZone timezone);

Modele de tache TaskTemplate[] queryTaskTemplates

(java.lang.String whereClause,
java.lang.String orderByClause,
java.lang.Integer threshold,
java.util.TimeZone timezone);

Données relatives aux | QueryResultSet query (java.lang.String selectClause,
processus métier et java.lang.String whereClause,
aux taches java.lang.String orderByClause,
java.lang.Integer skipTuples
java.lang.Integer threshold,
java.util.TimeZone timezone);

Chapitre 4. Développement d’applications client pour les tiches et processus métier 271

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=r6bpc_dbviews

Concepts associés

IAPI de requéte EJB de Business Process Choreographer|
Les méthodes query ou queryAll du service API vous permettent d’extraire des
informations stockées relatives aux processus métier et aux taches.

La clause SELECT de la fonction identifie les propriétés de 1'objet qui doivent étre
renvoyées par une requéte.

La clause WHERE de la fonction de requéte décrit les criteres de filtrage a
appliquer au domaine de la requéte.

Clause Order-by|
La clause ORDER BY de la fonction de requéte spécifie les criteres de tri pour
I'ensemble de résultats de la requéte.

[Parametre Skip-tupled

Le parameétre skip-tuples spécifie le nombre de tuples dans 1’ensemble de résultats
de requéte, en partant du début, a ignorer et a ne pas renvoyer a l’appelant dans
I'ensemble des résultats de requéte.

[Paramétre Threshold|

Le parameétre threshold de la fonction de requéte restreint le nombre d’objets
renvoyés du serveur au client dans I’'ensemble de résultats de requéte.

[Parameétre Timezone|
Le parameétre time-zone de la fonction de requéte définit le fuseau horaire des
constantes d’horodatage de la requéte.

[Paramétres des requétes stockées|

Une requéte stockée est une requéte qui est enregistrée dans la base de données et
identifiée par un nom. Les uplets répondant aux criteres sont assemblés de
maniere dynamique lors de I'exécution de la requéte. Pour rendre les requétes
stockées réutilisables, vous pouvez utiliser les parametres de la définition de
requéte résolus lors de I'exécution.

[Résultats d’interrogation|
Un ensemble de résultats de requéte contient les résultats d’une requéte d’API de
Business Process Choreographer.

Clause Select :

La clause SELECT de la fonction identifie les propriétés de 1'objet qui doivent étre
renvoyées par une requéte.

La clause SELECT décrit le résultat de la requéte. Cette clause spécifie une liste de
noms identifiant les propriétés des objets (colonnes du résultat) a renvoyer. Sa
syntaxe est identique a celle de la clause SELECT de SQL ; utilisez la virgule pour
séparer les différentes parties de la clause. Chaque partie de la clause doit spécifier
une colonne d’une des vues prédéfinies. Les colonnes doivent étre entiérement
spécifiées par le nom de la vue et le nom de la colonne. Les colonnes renvoyées
dans I'objet QueryResultSet sont affichées dans le méme ordre que les colonnes
spécifiées dans la clause Select.

La clause SELECT ne prend pas en charge des fonctions d’agrégation SQL telles
AVG(), SUM(), MIN() ou MAX().

Pour sélectionner les propriétés de plusieurs paires nom-valeur, telles que des
propriétés personnalisées ou des propriétés de variables pouvant étre interrogées,
ajoutez un compteur a un chiffre au nom de la vue. Ce compteur peut adopter une
valeur comprise de 1 a 9.

272 Développement et déploiement

Exemples de clauses SELECT
e "WORK_ITEM.OBJECT_TYPE, WORK_ITEM.REASON"

Obtient les type des objets associés et les motifs d’attribution des éléments de
travail.

e "DISTINCT WORK_ITEM.OBJECT_ID"

Obtient tous les ID des objets, sans les doublons, pour lesquels I'appelant a un
élément de travail.

e "ACTIVITY.TEMPLATE_NAME, WORK_ITEM.REASON"

Obtient les noms des activités pour lesquelles 'appelant a des éléments de
travail, ainsi que leurs motifs d’attribution.

* "ACTIVITY.STATE, PROCESS_INSTANCE.STARTER"

Obtient les états des activités et les initiateurs des instances de processus y
associés.

» "DISTINCT TASK.TKIID, TASK. NAME"

Obtient tous les ID et les noms de taches, sans les doublons, pour lesquels
l'appelant a un élément de travail.

* "TASK_CPROP1.STRING_VALUE, TASK_CPROP2.STRING_VALUE"

Obtient les valeurs des propriétés personnalisées qui sont spécifiées dans la
clause WHERE.

* "QUERY_PROPERTY1.STRING_VALUE, QUERY_PROPERTY2.INT_VALUE

Extrait les valeurs des propriétés de variables pouvant étre interrogées. Ces
parties sont ensuite spécifiées dans la clause Where.

* "COUNT(DISTINCT TASK.TKIID)"

Compte le nombre de éléments de travail pour les taches uniques qui satisfont la
clause WHERE.

Concepts associés

[Syntaxe de la méthode query dans I’AP]|

La syntaxe des requétes de I’API du Business Process Choreographer est similaire a
celle des requétes SQL. Une requéte peut inclure les clauses Select, Where et
Order-by ainsi que les parameétres Skip-tuples, Threshold et Time-zone.

Clause Where :

La clause WHERE de la fonction de requéte décrit les criteres de filtrage a
appliquer au domaine de la requéte.

La syntaxe de la clause Where est identique a celle de la clause SQL WHERE. Vous
n’avez pas besoin d’ajouter explicitement une clause SQL a partir d'une clause ou
des prédicats de jointure a la clause Where de 1’AP]I, car ces constructions sont
ajoutées automatiquement lors de I'exécution de la requéte. Si vous ne désirez pas
appliquer de criteres de filtre, spécifiez nul1 comme valeur de la clause WHERE.

La syntaxe de la clause WHERE prend en charge :
e Mots clés : AND, OR, NOT
* Opérateurs de comparaison : =, <=, <, <>, >,>=, LIKE

L’opération LIKE prend en charge les caracteres génériques définis pour la base
de données interrogée.

e Opération SET : IN

Les regles suivantes s’appliquent également :

Chapitre 4. Développement d’applications client pour les tiches et processus métier 273

* Spécifiez les constantes ID d’objet comme ID('string-rep-of-oid').

* Spécifiez les constantes binaires comme BIN('UTF-8 string').

 Utilisez des constantes symboliques au lieu des énumérations d’entiers. Par
exemple, au lieu de spécifier une expression d’état d’activitéACTIVITY.STATE=2,
spécifiez ACTIVITY.STATE=ACTIVITY.STATE.STATE_READY.

* Si la valeur de la propriété de l'instruction de comparaison contient des
guillemets simples (), doublez ces guillemets ; par exemple,
"TASK_CPROP.STRING_VALUE='d''automatisation'".

* Faites référence aux propriétés de plusieurs paires nom-valeur, telles que des
propriétés personnalisées, en ajoutant un suffixe a un chiffre au nom de la vue.
Par exemple : "TASK_CPROP1.NAME="propl' AND "TASK_CPROPZ.NAME='prop2"'"

» Spécifiez les constantes d’horodatage comme TS('yyyy-mm-ddThh :mm :ss').
Pour faire référence a la date actuelle, spécifiez CURRENT_DATE comme
horodatage.

Au moins une valeur de date ou d’heure doit étre spécifiée dans 1'horodatage.
— Si vous spécifiez uniquement une date, la valeur de I’heure sera zéro.

— Si vous spécifiez uniquement une heure, la valeur de la date sera la date
actuelle.

— Si vous spécifiez une date, ’'année doit consister d’au moins quatre chiffres ;
les valeurs du mois et du jour sont optionnelles. Les valeurs du jour et du
mois manquantes seront remplacées par 01. Par exemple, TS('2003") et
identique a TS('2003-01-01T00 :00 :00').

— Si vous spécifiez une heure, cette valeur sera convertie en format 24 heures.
Par exemple, si la date actuelle est le premier janvier 2003, TS('T16 :04') ou
TS('16 :04') est identique a TS('2003-01-01T16 :04 :00').

Exemples de clauses WHERE
* Comparaison d'un ID d’objet avec un ID existant

"WORK_ITEM.WIID =
ID('_WI :800c00ed.df8d7e7c.feffff80.38')"

Ce type de clause WHERE est d’habitude créé de facon dynamique avec un ID
d’objet existant, obtenu d'un appel antérieur. Si cet ID d’objet est stocké dans
une variable wiidl, la clause peut étre générée comme :

"WORK_ITEM.WIID = ID('" + wiidl.String() +
|||)||

* Utilisation des horodatages
"ACTIVITY.STARTED >= TS('2002-06-1T16.00.00"')"
* Utilisation des constantes symboliques

"WORK_ITEM.REASON =
WORK_ITEM.REASON.REASON_OWNER"

e Utilisation des valeurs booléennes vrai et faux
"ACTIVITY.BUSINESS_RELEVANCE = TRUE"
 Utilisation de propriétés personnalisées

"TASK_CPROP1.NAME = 'propl' AND " TASK_CPROP1.STRING_VALUE

= 'vl' AND
TASK_CPROP2.NAME = 'prop2' AND " TASK_CPROP2.STRING_VALUE

lvzlll

274 Développement et déploiement

Concepts associés

[Syntaxe de la méthode query dans I’AP]|

La syntaxe des requétes de 1’API du Business Process Choreographer est similaire a
celle des requétes SQL. Une requéte peut inclure les clauses Select, Where et
Order-by ainsi que les parametres Skip-tuples, Threshold et Time-zone.

Clause Order-by :

La clause ORDER BY de la fonction de requéte spécifie les critéres de tri pour
I'ensemble de résultats de la requéte.

Vous pouvez spécifier la liste des colonnes a partir des vues servant de base de tri
du résultat. Ces colonnes doivent étre entierement qualifiées par le nom de la vue
et de la colonne.

La syntaxe de la clause Order-by est similaire a la syntaxe d’une clause SQL
Order-by. Utilisez une virgule pour séparer chaque partie de la clause. Vous
pouvez également spécifier la commande ASC pour trier les colonnes dans l'ordre
croissant et la commande DESC pour les trier dans 1’ordre décroissant. Si vous ne
désirez pas trier I'ensemble de résultats, spécifiez la valeur null pour la clause
ORDER BY.

Des criteres de tri sont appliqués au serveur ; en fait, ce sont les parametres
régionaux du serveur qui sont utilisés pour le tri. Si la requéte spécifie plusieurs
propriétés, I'ensemble de résultats est trié par les valeurs de la premiere colonne et
ensuite par les valeurs de la deuxiéme propriété, et ainsi de suite. Contrairement a
la requéte SQL, il est impossible de spécifier les colonnes dans la clause Order-by
par position.

Exemples de clauses ORDER BY
¢ "PROCESS_TEMPLATE.NAME"

Trie les résultats de la requéte alphabétiquement par le nom du modele de
processus.
* "PROCESS_INSTANCE.CREATED, PROCESS_INSTANCE.NAME DESC"

Trie les résultats de la requéte par date de création, et pour une date spécifique,
trie les résultats alphabétiquement pas le nom de l'instance du processus en

ordre inverse.
e "ACTIVITY.OWNER, ACTIVITY.TEMPLATE_NAME, ACTIVITY.STATE"

Trie les résultats de la requéte par le propriétaire de l'activité, ensuite par le nom
du modele d’activité et ensuite par I'état de l'activité.

Concepts associés

Syntaxe de la méthode query dans I’AP]|

La syntaxe des requétes de I’API du Business Process Choreographer est similaire a
celle des requétes SQL. Une requéte peut inclure les clauses Select, Where et
Order-by ainsi que les parametres Skip-tuples, Threshold et Time-zone.

Parametre Skip-tuples :

Le parametre skip-tuples spécifie le nombre de tuples dans I'ensemble de résultats
de requéte, en partant du début, a ignorer et a ne pas renvoyer a l’appelant dans
I'ensemble des résultats de requéte.

Utilisez ce parametre avec le parameétre threshold pour implémenter la pagination
dans une application client, par exemple, pour extraire les 20 premiers éléments,
puis les 20 éléments suivants, etc.

Chapitre 4. Développement d’applications client pour les taches et processus métier 275

Si ce parametre a pour valeur null et que le parametre threshold n’est pas défini,
tous les tuples correspondants sont renvoyés.

Exemple de parameétre skip-tuples
* new Integer(5)

Spécifie que les cinq premiers tuples correspondants ne seront pas renvoyés.
Concepts associés

Syntaxe de la méthode query dans I’AP]|

La syntaxe des requétes de I’API du Business Process Choreographer est similaire a
celle des requétes SQL. Une requéte peut inclure les clauses Select, Where et
Order-by ainsi que les parameétres Skip-tuples, Threshold et Time-zone.

Parametre Threshold :

Le parametre threshold de la fonction de requéte restreint le nombre d’objets
renvoyés du serveur au client dans I’'ensemble de résultats de requéte.

Dans un environnement de production, les ensembles de résultats d'une requéte
peuvent contenir des milliers voire des millions d’éléments. Pour cette raison, il est
recommandé de toujours définir un seuil. Si vous définissez le parametre threshold
correctement, la requéte dans la base de données est plus rapide et moins de
données sont transférées a partir du serveur vers le client. Le parametre threshold
peut s’avérer utile, par exemple, dans une interface utilisateur graphique ot seul
un petit nombre d’éléments peuvent étre affichés en méme temps.

Si ce parametre a pour valeur null et que le parametre skip-tuples n’est pas défini,
tous les objets correspondants sont renvoysés.

Exemple de parametre threshold
* new Integer(50)

Spécifie que 50 tuples correspondants doivent étre renvoyés.

Concepts associés

[Syntaxe de la méthode query dans I’AP]|

La syntaxe des requétes de I’API du Business Process Choreographer est similaire a
celle des requétes SQL. Une requéte peut inclure les clauses Select, Where et
Order-by ainsi que les parametres Skip-tuples, Threshold et Time-zone.

Parameétre Timezone :

Le parametre time-zone de la fonction de requéte définit le fuseau horaire des
constantes d’horodatage de la requéte.

Le fuseau horaire du client qui lance la requéte peut différer de celui du serveur
qui traite la requéte. Utilisez le parametre time-zone pour spécifier le fuseau
horaire des constantes d’horodatage dans la clause WHERE utilisées, par exemple,
pour spécifier 'heure locale. Les dates renvoyées dans I’ensemble de résultats de la
requéte sont dans le fuseau horaire spécifié pour la requéte.

Si le parametre a pour valeur null, les valeurs par défaut des constantes
d’horodatage sont en temps universel UTC.

276 Développement et déploiement

Exemples de parametres time-zone
* process.query("ACTIVITY.AIID",
"ACTIVITY.STARTED > TS('2005-01-01T17:40")",
(Chaine)null,
(Entier)null,
java.util.TimeZone.getDefault());
Renvoie les ID d’objet pour les activités démarrées apreés 17h40 heure locale, le
premier janvier 2005.
* process.query("ACTIVITY.AIID",
"ACTIVITY.STARTED > TS('2005-01-01T17:40')",
(Chaine)null, (Entier)null, (FuseauHoraire)null);
Renvoie les ID d’objet pour les activités démarrées apres 17h40 UTC, le premier
janvier 2005. Cette spécification est décalée de 6 heures en heure EST (Eastern
Standard Time).

Concepts associés

Syntaxe de la méthode query dans I’AP]|

La syntaxe des requétes de 1’API du Business Process Choreographer est similaire a
celle des requétes SQL. Une requéte peut inclure les clauses Select, Where et
Order-by ainsi que les parametres Skip-tuples, Threshold et Time-zone.

Parametres des requétes stockées :

Une requéte stockée est une requéte qui est enregistrée dans la base de données et
identifiée par un nom. Les uplets répondant aux criteres sont assemblés de
maniére dynamique lors de 1’exécution de la requéte. Pour rendre les requétes
stockées réutilisables, vous pouvez utiliser les parametres de la définition de
requéte résolus lors de I'exécution.

I1 existe par exemple des propriétés personnalisées pour stocker les noms de client.
Vous pouvez définir des requétes visant a renvoyer les taches associées a un client
donné, ACME Co. Pour faire la demande de ces informations, la clause where de
votre requéte devrait ressembler a ce qui est indiqué dans I'exemple suivant :
String whereClause =

"TASK.STATE = TASK.STATE.STATE_READY

AND WORK_ITEM.REASON = WORK ITEM.REASON.REASON_POTENTIAL_OWNER
AND TASK_CPROP.NAME = ‘'company' AND TASK_CPROP.STRING_VALUE = 'ACME Co.'";

Pour rendre cette requéte réutilisable afin de permettre également la recherche du
client BCME Ltd, vous pouvez configurer des parametres pour les valeurs de la
propriété personnalisée. Si vous ajoutez des parameétres a la requéte, celle-ci se
peut présenter comme suit :
String whereClause =

"TASK.STATE = TASK.STATE.STATE_READY

AND WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER
AND TASK_CPROP.NAME = 'company' AND TASK_CPROP.STRING_VALUE = '@paraml'";

Le parametre @paraml est résolu au moment de 1'exécution a partir de la liste des
parametres transmis a la méthode query. Les régles suivantes s’appliquent lors de
l'utilisation de parametres dans les requétes :

* Les parametres sont utilisables uniquement dans la clause where.
* Les parametres sont de type Chaine.

* Les parameétres sont remplacés au moment de 1’exécution via une substitution de
chaines. Si des caracteres spéciaux sont nécessaires, vous devez les spécifier dans
la clause where ou les insérer au moment de 'exécution en tant que partie du
parametre.

Chapitre 4. Développement d’applications client pour les taches et processus métier 277

* Les noms de parametre sont constitués de la chaine @param concaténée avec un
nombre entier. La valeur la plus faible est 1, ce qui renvoie au premier élément
de la liste des parameétres transmis a ’API de la requéte au moment de
I'exécution.

* Un parametre peut étre réutilisé plusieurs fois au sein d’une clause where ;
toutes les occurrences du parametre sont remplacées par la méme valeur.

Concepts associés

Syntaxe de la méthode query dans I’AP]|

La syntaxe des requétes de I’API du Business Process Choreographer est similaire a
celle des requétes SQL. Une requéte peut inclure les clauses Select, Where et
Order-by ainsi que les parameétres Skip-tuples, Threshold et Time-zone.

TAaches associées

Gestion des requétes stockées|

Les requétes stockées permettent d’enregistrer des requétes souvent exécutées. La
requéte stockée peut soit étre une requéte disponible pour tous les utilisateurs
(requéte publique), soit une requéte appartenant a un utilisateur spécifique
(requéte privée).

Résultats d’interrogation :

Un ensemble de résultats de requéte contient les résultats d’une requéte d’API de
Business Process Choreographer.

Les éléments de I'ensemble de résultats sont les propriétés des objets qui sont
conformes a la clause Where fournie par 1'appelant et que ce dernier est autorisé a
voir. Vous pouvez lire les éléments d’une maniere relative a 1’aide de la méthode
next de I’API ou d’une maniére absolue a 'aide des méthodes first et last. Le
curseur implicite d"un ensemble de résultats de requéte étant positionné, au départ,
avant le premier élément, vous devez appeler la méthode first ou next avant de
lire un élément. Vous pouvez utiliser la méthode size pour déterminer le nombre
d’éléments d’un ensemble.

Un élément de 1’ensemble de résultats de la recherche comprend les attributs
sélectionnés des éléments de travail et les objets référencés y associés, tels que les
instances d’activité et les instances de processus. Le premier attribut (colonne) d'un
élément QueryResultSet spécifie la valeur du premier attribut spécifié dans la
clause SELECT de la demande de requéte. Le deuxieme attribut (colonne) d'un
élément QueryResultSet spécifie la valeur du deuxieme attribut spécifié dans la
clause SELECT de la demande de requéte et ainsi de suite.

Vous pouvez extraire les valeurs des attributs en appelant une méthode compatible
avec le type d’attribut et en spécifiant I'indice de colonne correspondant. La
numérotation des indices de colonnes commence a 1.

Type d’attribut Méthode

Chaine getString

OID getOID

Horodatage getTimestamp
getString
getTimestampAsLong

278 Développement et déploiement

Type d’attribut Méthode

Entier getInteger
getShort
getLong
getString
getBoolean

Booléen getBoolean
getShort
getInteger
getLong
getString

byte[] getBinary

Exemple :

La requéte suivante est exécutée :

QueryResultSet resultSet = process.query("ACTIVITY.STARTED,
ACTIVITY.TEMPLATE_NAME AS NAME,
WORK_ITEM.WIID, WORK_ITEM.REASON",
(String)null, (String)null,
(Integer)null, (TimeZone)null);

L’ensemble de résultats renvoyé a quatre colonnes :
* La colonne 1 est I'horodatage

¢ La colonne 2 est une chaine

* La colonne 3 est un ID d’objet

* La colonne 4 est un entier

Les méthodes suivantes vous permettent d’obtenir les valeurs des attributs :

while (resultSet.next())

{
java.util.Calendar activityStarted = resultSet.getTimestamp(1);

String templateName = resultSet.getString(2);
WIID wiid = (WIID) resultSet.getOID(3);
Integer reason = resultSet.getInteger(4);

}

Vous pouvez utiliser les noms affichés de 1’ensemble de résultats, par exemple, en
tant qu’en-tétes d'un tableau imprimé. Ces noms sont les noms de colonnes de la
vue ou du nom défini par la clause AS dans la requéte. Cet exemple illustre
l'utilisation de la méthode suivante pour obtenir les noms affichés :
resultSet.getColumnDisplayName(1) returns "STARTED"
resultSet.getColumnDisplayName(2) returns "NAME"

resultSet.getColumnDisplayName(3) returns "WIID"
resultSet.getColumnDisplayName(4) returns "REASON"

Concepts associés

Syntaxe de la méthode query dans I’API|

La syntaxe des requétes de I'’API du Business Process Choreographer est similaire a
celle des requétes SQL. Une requéte peut inclure les clauses Select, Where et
Order-by ainsi que les parametres Skip-tuples, Threshold et Time-zone.

Conditions d’acces propres a l'utilisateur

Les conditions d’acces propres a l'utilisateur sont ajoutées lorsque I'instruction SQL
SELECT est générée par la requéte APL. Ces conditions garantissent que seuls ces
objets sont renvoyés a 'appelant parce que conformes a la condition spécifiée par
I'appelant et rendus accessibles a ce dernier.

Chapitre 4. Développement d’applications client pour les taches et processus métier 279

La condition d’acces n’est ajoutée que si l'utilisateur est un administrateur systeme.

Requétes appelées par les utilisateurs autres que les administrateurs
systeme

La clause SQL générée WHERE combine I’API avec la clause dotée d’une condition
de controle d’accés qui est propre a 'utilisateur. La requéte n’extrait que les objets
auxquels l'utilisateur est autorisé a accéder, autrement dit, uniquement les objets
pour lesquels l'utilisateur dispose d’un élément de travail. Un élément de travail
représente l'affectation du role d’autorisation d’un objet métier a un utilisateur ou
un groupe, comme une tache ou un processus. Par exemple, si l'utilisateur, John
Smith, est un membre doté du role de propriétaire potentiel d’une tache donnée,
un objet élément de travail existe pour représenter cette relation.

Par exemple, si un utilisateur autre quun administrateur systéme, requiert des
taches, la condition d’acces suivante est ajoutée a la clause WHERE si les éléments
de travail de groupe ne sont pas activés :
FROM TASK TA, WORK_ITEM WI
WHERE WI.OBJECT_ID = TA.TKIID
AND (WI.OWNER_ID = 'user'

OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

De ce fait, si John Smith souhaite obtenir la liste des taches dont il est propriétaire
potentiel, I'’API contenant la clause se présentera comme suit :

"WORK_ITEM.REASON == WORK_ITEM.REASON.REASON_POTENTIAL_OWNER"

Cette API contenant la clause génere la condition d’acces suivante dans
I'instruction SQL :

FROM TASK TA, WORK_ITEM WI

WHERE WI.OBJECT_ID = TA.TKIID

AND (WI.OWNER_ID = 'JohnSmith'

OR WI.OWNER_ID = null AND WI.EVERYBODY = true)
AND WI.REASON = 1

Cela signifie également que si John Smith souhaite voir les activités et les taches
dont il est lecteur de processus ou administrateur de processus et pour lesquelles il
dispose d’un élément de travail, une propriété provenant de la vue
PROCESS_INSTANCE doit étre ajoutée a la clause Select, Where, ou Order-by de la
requéte, telle que PROCESS_INSTANCE.PIID.

Si les éléments de travail de groupe sont activés, une autre condition d’acces est
ajoutée a la clause WHERE qui permet a un utilisateur d’accéder aux objets
auxquels le groupe a acces.

Requétes appelées par les administrateurs systéme

Les administrateurs systéme peuvent appeler la méthode query pour extraire des
objets dotés d’éléments de travail associés. Dans ce cas, un joint a la vue
WORKL_ITEM est ajouté a la requéte SQL générée, mais sans condition de contrdle
d’acces pour WORK_ITEM.OWNER_ID.

Dans ce cas, la requéte SQL des taches contient ce qui suit :

FROM TASK TA, WORK_ITEM WI
WHERE WI.OBJECT_ID = TA.TKIID

280 Développement et déploiement

queryAll queries

Ce type de requéte ne peut étre appelé que par les administrateurs systeme ou les
contrdleurs systeme. Ni les conditions de contrdle d’acces, ni un joint a la vue
WORK_ITEM ne sont ajoutés. Ce type de requéte renvoie toutes les données de
tous les objets.

Concepts associés

IAPI de requéte EJB de Business Process Choreographer|
Les méthodes query ou queryAll du service API vous permettent d’extraire des
informations stockées relatives aux processus métier et aux taches.

Exemples de méthodes query et queryAll
Ces exemples montrent la syntaxe de diverses requétes API générales et des
instructions SQL associées qui sont générées lors du traitement de la requéte.

Concepts associés

[API de requéte EJB de Business Process Choreographer|
Les méthodes query ou queryAll du service API vous permettent d’extraire des
informations stockées relatives aux processus métier et aux taches.

[Exemple : requéte de taches a 1’état Prét
Cet exemple indique comment utiliser la méthode query pour extraire les taches
que l'utilisateur connecté peut exploiter.

[Exemple : requéte de taches a 'état Réclamd
Cet exemple indique comment utiliser la méthode query pour extraire les taches
que l'utilisateur connecté a réclamées.

[Exemple : interrogation d’escalades|
Cet exemple indique comment utiliser la méthode query pour extraire les escalades
pour l'utilisateur connecté.

[Exemple : utilisation de la méthode queryAlll
Cet exemple indique comment utiliser la méthode queryAll pour extraire toutes les
activités propres a un modele de processus.

[Exemple : ajout de propriétés de requéte a une requéte|

Cet exemple indique comment utiliser la méthode query pour extraire les taches
propres a un processus métier. Le processus dispose de propriétés de requéte
spécifiques que vous pouvez inclure a la recherche.

[Exemple : ajout de propriétés personnalisées a une requéte|
Cet exemple montre comment utiliser la méthode query pour extraire les taches
dotées de propriétés personnalisées.

Exemple : requéte de taches a 1’état Prét:

Cet exemple indique comment utiliser la méthode query pour extraire les taches
que l'utilisateur connecté peut exploiter.

John Smith souhaite obtenir la liste des taches qui lui ont été affectées. Pour qu'un
utilisateur puisse travailler sur une tache, celle-ci doit étre a 'état Prét. L'utilisateur
connecté doit également avoir 1'élément de travail d"un propriétaire potentiel de la
tache. Le fragment de code suivant affiche I'appel de méthode query pour cette
requéte :
query("DISTINCT TASK.TKIID",
"TASK.KIND IN (TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING)
AND " +
"TASK.STATE = TASK.STATE.STATE_READY AND " +
"WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",
(String)null, (String)null, (Integer)null, (TimeZone)null)

Chapitre 4. Développement d’applications client pour les tiches et processus métier 281

Les actions suivantes sont prises lorsque l'instruction SQL SELECT est générée :

* Une condition pour le contrdle d’accés est ajoutée a la clause Where. Cet
exemple suppose que les éléments de travail de ce groupe ne sont pas activés.

* Les constantes, telles que TASK.STATE.STATE_READY sont remplacées par leurs
valeurs numériques.

* Une clause FROM et les conditions de joint sont ajoutées.

Le fragment de code suivant montre I'instruction SQL qui est générée a partir de la
requéte API :

SELECT DISTINCT TASK.TKIID
FROM TASK TA, WORK_ITEM WI,
WHERE WI.OBJECT_ID = TA.TKIID
AND TA.KIND IN (101, 105)
AND TA.STATE = 2
AND WI.REASON

=1
AND (WI.OWNER_ID =

'JohnSmith' OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

Pour restreindre la requéte API aux taches d'un processus spécifique, par exemple,
sampleProcess, la requéte ressemble a ce qui suit :

query("DISTINCT TASK.TKIID",
"PROCESS_TEMPLATE.NAME = 'sampleProcess' AND "+
"TASK.KIND IN (TASK.KIND.KIND HUMAN, TASK.KIND.KIND PARTICIPATING)
AND " +
"TASK.STATE = TASK.STATE.STATE_READY AND " +
"WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",
(String)null, (String)null, (Integer)null, (TimeZone)null)

Concepts associés

[Exemples de méthodes query et queryAll]|
Ces exemples montrent la syntaxe de diverses requétes API générales et des
instructions SQL associées qui sont générées lors du traitement de la requéte.

Exemple : requéte de tiches a 1’état Réclamé :

Cet exemple indique comment utiliser la méthode query pour extraire les taches
que l'utilisateur connecté a réclamées.

L’utilisateur, John Smith, souhaite rechercher des taches qu’il a réclamées et qui
sont toujours a 1’état Réclamé. La condition qui spécifie "réclamé par John Smith”
est TASK.OWNER = "JohnSmith'. Le fragment de code suivant indique I'appel de
méthode query pour la requéte :
query("DISTINCT TASK.TKIID",

"TASK.STATE = TASK.STATE.STATE_CLAIMED AND " +

"TASK.OWNER = 'JohnSmith'",
(String)null, (String)null, (Integer)null, (TimeZone)null)

Le fragment de code suivant montre I'instruction SQL qui est générée a partir de la
requéte API :
SELECT DISTINCT TASK.TKIID

FROM TASK TA, WORK_ITEM WI,

WHERE WI.OBJECT_ID = TA.TKIID

AND TA.STATE = 8

TA.OWNER = 'JohnSmith'

AND (WI.OWNER_ID = 'JohnSmith' OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

Lorsqu’une tache est réclamée, les éléments de travail sont créés pour le
propriétaire de la tache. Ainsi, ’autre fagon de former la requéte pour les taches
réclamées de John Smith consiste a ajouter la condition suivante a la requéte au
lieu d’utiliser TASK.OWNER = "JohnSmith':

282 Développement et déploiement

WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_OWNER

Alors la requéte ressemble au fragment de code suivant :

query("DISTINCT TASK.TKIID",
"TASK.STATE = TASK.STATE.STATE_CLAIMED AND " +
"WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_OWNER",
(String)null, (String)null, (Integer)null, (TimeZone)null)

Les actions suivantes sont prises lorsque 1'instruction SQL SELECT est générée :

* Une condition pour le contrdle d’acces est ajoutée a la clause Where. Cet
exemple suppose que les éléments de travail de ce groupe ne sont pas activés.

* Les constantes, telles que TASK.STATE.STATE_READY sont remplacées par leurs
valeurs numeériques.

* Une clause FROM et les conditions de joint sont ajoutées.

Le fragment de code suivant montre l'instruction SQL qui est générée a partir de la
requéte API :

SELECT DISTINCT TASK.TKIID
FROM TASK TA, WORK_ITEM WI,
WHERE WI.OBJECT_ID = TA.TKIID
AND TA.STATE = 8
AND WI.REASON

=4
AND (WI.OWNER_ID =

'JohnSmith' OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

John est sur le point de partir en congés, donc son responsable d’équipe, Anne
Grant, souhaite évaluer sa charge de travail actuelle. Anne dispose des droits
d’administration. La requéte qu’elle appelle est la méme que celle appelée par
John. Cependant, l'instruction SQL qui est générée est différente car Anne est
administrateur. Le fragment de code suivant indique l'instruction SQL générée :
SELECT DISTINCT TASK.TKIID

FROM TASK TA, WORK_ITEM WI,

WHERE TA.TKIID = WI.OBJECT_ID =

AND TA.STATE = 8
AND TA.OWNER = 'JohnSmith')

Du fait qu"Anne est administrateur, une condition de contrdle d’accés n’est pas
ajoutée a la clause WHERE.

Concepts associés

[Exemples de méthodes query et queryAll|
Ces exemples montrent la syntaxe de diverses requétes API générales et des
instructions SQL associées qui sont générées lors du traitement de la requéte.

Exemple : interrogation d’escalades :

Cet exemple indique comment utiliser la méthode query pour extraire les escalades
pour l'utilisateur connecté.

Lorsqu’une tache est escaladée, un élément de travail récepteur d’escalade est créé.
L’utilisateur Mary Jones souhaite voir la liste des taches qui lui ont été escaladées.
Le fragment de code suivant indique 'appel de méthode query pour la requéte :
query("DISTINCT ESCALATION.ESIID, ESCALATION.TKIID",

"WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_ESCALATION_RECEIVER",
(String)null, (String)null, (Integer)null, (TimeZone)null)

Les actions suivantes sont prises lorsque l'instruction SQL SELECT est générée :

Chapitre 4. Développement d’applications client pour les taches et processus métier 283

* Une condition pour le contrdle d’acces est ajoutée a la clause Where. Cet
exemple suppose que les éléments de travail de ce groupe ne sont pas activés.

* Les constantes, telles que TASK.STATE.STATE_READY sont remplacées par leurs
valeurs numériques.

* Une clause FROM et les conditions de joint sont ajoutées.

Le fragment de code suivant indique l'instruction SQL qui est générée a partir de
la requéte API :

SELECT DISTINCT ESCALATION.ESIID, ESCALATION.TKIID
FROM ESCALATION ESC, WORK_ITEM WI
WHERE ESC.ESIID = WI.OBJECT_ID
AND WI.REASON = 10
AND
(WI.OWNER_ID = 'MaryJones' OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

Concepts associés

[Exemples de méthodes query et queryAll
Ces exemples montrent la syntaxe de diverses requétes API générales et des
instructions SQL associ€es qui sont générées lors du traitement de la requéte.

Exemple : utilisation de la méthode queryAll :

Cet exemple indique comment utiliser la méthode queryAll pour extraire toutes les
activités propres a un modele de processus.

La méthode queryAll est disponible uniquement pour les utilisateurs avec des
droits d’administrateur systeme ou de controleur systeme. Le fragment de code
suivant indique 1’appel de méthode queryAll pour la requéte permettant d’extraire
toutes les activités propres au modéle de processus, sampleProcess :

queryAl11("DISTINCT ACTIVITY.AIID",

"PROCESS_TEMPLATE.NAME = 'sampleProcess'",
(String)null, (String)null, (Integer)null, (TimeZone)null)

Le fragment de code suivant montre la requéte SQL qui est générée a partir de la
requéte API :

SELECT DISTINCT ACTIVITY.AIID
FROM ACTIVITY AI, PROCESS_TEMPLATE PT
WHERE AI.PTID = PT.PTID
AND PT.NAME = 'sampleProcess'

Du fait que I'appel est invoqué par un administrateur, une condition de contrdle
d’accés n’est pas ajoutée a l'instruction SQL générée. Un joint a la vue
WORK_ITEM n’est pas ajouté non plus. Cela signifie que la requéte extrait toutes
les activités du modele de processus, y compris les activités sans élément de
travail.

Concepts associés

[Exemples de méthodes query et queryAlll
Ces exemples montrent la syntaxe de diverses requétes API générales et des
instructions SQL associées qui sont générées lors du traitement de la requéte.

Exemple : ajout de propriétés de requéte a une requéte :
Cet exemple indique comment utiliser la méthode query pour extraire les taches

propres a un processus métier. Le processus dispose de propriétés de requéte
spécifiques que vous pouvez inclure a la recherche.

284 Développement et déploiement

Par exemple, vous souhaitez rechercher toutes les taches utilisateur a 1’état Prét qui
sont propres a un processus métier. Le processus fournit la propriété de requéte
customerID qui est dotée de la valeur CID_12345 et d'un espace de nom. Le
fragment de code suivant indique 1'appel de méthode query pour la requéte :

query (" DISTINCT TASK.TKIID, TASK TEMPL.NAME, TASK.STATE,
PROCESS_INSTANCE.NAME",

" QUERY_PROPERTY.NAME = 'customerID' AND " +

" QUERY_PROPERTY.STRING_VALUE = 'CID_12345' AND " +

" QUERY_PROPERTY.NAMESPACE =
'http://www.ibm.com/xmlns/prod/websphere/mqwf/bpel/' AND " +

" TASK.KIND IN
(TASK.KIND.KIND_HUMAN, TASK.KIND.KIND PARTICIPATING) AND " +

" TASK.STATE = TASK.STATE.STATE_READY ",

(String)null, (String)null, (Integer)null, (TimeZone)null);

A présent, si vous souhaitez ajouter une deuxiéme propriété de requéte a la
requéte, comme par exemple, Priority, avec un espace de nom donné, 1'appel de
méthode query de la requéte ressemble a ce qui suit :
query (" DISTINCT TASK.TKIID, TASK_TEMPL.NAME, TASK.STATE,
PROCESS_INSTANCE.NAME",
" QUERY_PROPERTY1.NAME = 'customerID' AND " +
" QUERY_PROPERTY1.STRING_VALUE = 'CID_12345' AND " +
" QUERY_PROPERTY1.NAMESPACE =
"http://www.ibm.com/xmlins/prod/websphere/mqwf/bpel/' AND " +
" QUERY_PROPERTY2.NAME = 'Priority' AND " +
" QUERY_PROPERTY2.NAMESPACE =
"http://www.ibm.com/xmins/prod/websphere/mqwf/bpel/' AND " +
" TASK.KIND IN
(TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING) AND " +
" TASK.STATE = TASK.STATE.STATE_READY ",
(String)null, (String)null, (Integer)null, (TimeZone)null);

Si vous ajoutez plusieurs propriétés de requéte a la requéte, vous devez numéroter
chaque propriété que vous ajoutez comme indiqué dans le fragment de code.
Cependant, I'interrogation des propriétés personnalisées a une répercussion sur les
performances, car elles se réduisent du fait du nombre de propriétés personnalisées
dans la requéte.

Concepts associés

[Exemples de méthodes query et queryAll|
Ces exemples montrent la syntaxe de diverses requétes API générales et des
instructions SQL associées qui sont générées lors du traitement de la requéte.

Exemple : ajout de propriétés personnalisées a une requéte :

Cet exemple montre comment utiliser la méthode query pour extraire les taches
dotées de propriétés personnalisées.

Par exemple, vous souhaitez rechercher toutes les taches utilisateur a I'état Prét
avec la propriété personnalisée customerID et la valeur CID_12345. Le fragment de
code suivant indique 1’appel de méthode query pour la requéte :
query("DISTINCT TASK.TKIID",

" TASK_CPROP.NAME = 'customerID' AND " +

" TASK_CPROP.STRING_VALUE = 'CID_12345"' AND " +

" TASK.KIND IN

(TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING) AND " +
" TASK.STATE = TASK.STATE.STATE_READY ",
(String)null, (String)null, (Integer)null, (TimeZone)null);

A présent, si vous souhaitez extraire les taches et leurs propriétés personnalisées,
I'appel de méthode query de la requéte ressemble a ce qui suit :

Chapitre 4. Développement d’applications client pour les taches et processus métier 285

query (" DISTINCT TASK.TKIID, TASK_CPROP.NAME, TASK_CPROP.STRING_VALUE",
" TASK.KIND IN
(TASK.KIND.KIND HUMAN, TASK.KIND.KIND PARTICIPATING) AND " +
" TASK.STATE = TASK.STATE.STATE_READY ",
(String)null, (String)null, (Integer)null, (TimeZone)null);

L’instruction SQL qui est générée a partir de cette requéte API s’affiche dans le
fragment de code suivant :

SELECT DISTINCT TA.TKIID , TACP.NAME , TACP.STRING_VALUE
FROM TASK TA LEFT JOIN TASK_CPROP TACP ON (TA.TKIID = TACP.TKIID),
WORK_ITEM WI
WHERE WI.OBJECT_ID = TA.TKIID
AND TA.KIND IN (101, 105)
AND TA.STATE = 2
AND (WI.OWNER_ID = 'JohnSmith' OR WI.OWNER_ID IS NULL AND WI.EVERYBODY = 1)

Cette instruction SQL contient un joint extérieur entre la vue TASK et la vue
TASK_CPROP. Cela signifie que les taches qui répondent a la clause WHERE sont
extraites méme si elles ne comportent pas de propriété personnalisée.

Concepts associés

[Exemples de méthodes query et queryAlll
Ces exemples montrent la syntaxe de diverses requétes API générales et des
instructions SQL associées qui sont générées lors du traitement de la requéte.

Développement d’applications client EJB pour des processus métier et
des taches utilisateur

Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d'utiliser des processus métier
et des taches utilisateur installées sur WebSphere Process Server.

A propos de cette tache

Ces API E]JB (Enterprise JavaBeans) permettent de créer des applications client
pour effectuer les opérations suivantes :

* Gérer le cycle de vie des processus et des taches, depuis leur lancement jusqu’a
leur suppression finale

* Réparer des activités et des processus
* Gérer et distribuer la charge de travail entre les membres d’un groupe de travail

Les API EJB sont fournies sous forme de deux beans enterprise session sans état :

* L’interface BusinessFlowManagerService fournit les méthodes pour les
applications de processus métier.

* L’interface HumanTaskManagerService fournit les méthodes pour les
applications basées sur des taches.

Pour plus d’informations concernant les API EJB, voir la documentation Java dans
le package com.ibm.bpe.api et le package com.ibm.task.api.

La procédure suivante offre un apercu des actions a entreprendre pour développer
une application client EJB.

Procédure
1. Déterminez les fonctionnalités que 1’application doit offrir.
2. Décidez quels beans session vous souhaitez utiliser.

286 Développement et déploiement

En fonction des scénarios que vous souhaitez implémenter a 'aide de votre
application, vous pouvez choisir I'un des beans session ou les deux.

3. Déterminez quels sont les droits requis par les utilisateurs de 1’application.

Les utilisateurs de votre application doivent disposer des roles d’autorisation
appropriés pour pouvoir appeler les méthodes que vous incluez dans celle-ci et
pour visualiser les objets et les attributs des objets renvoyés par ces méthodes.
Si une instance du bean session approprié est créée, WebSphere Application
Server associe un contexte a cette instance. Le contexte contient des
informations relatives a I'ID principal de I’appelant, a la liste d’appartenance au
groupe et aux rdles. Ces informations sont utilisées a la vérification des droits
d’accés de 'appelant pour chaque appel.

Les informations d’autorisation relatives a chacune des méthodes sont décrites
dans Javadoc.

4. Déterminez de quelle facon rendre 'application.
Les interfaces APl EJB peuvent étre appelées a distance ou localement.
5. Développez l'application.
a. Accédez a 'API EJB.
b. Utilisez ’API E]JB pour interagir avec les processus ou les taches.
* Recherchez les données.
* Utilisez les données.

Chapitre 4. Développement d’applications client pour les taches et processus métier 287

Concepts associés

Comparaison entre les interfaces de programmation visant a interagir avec leg
processus métier et les taches utilisateur]

Des interfaces de programmation génériques EJB (Enterprise JavaBeans), JMS (Java
Message Service), REST (Representational State Transfer Services) ainsi que des
interfaces de programmation de services Web sont disponibles pour la création
d’applications client interagissant avec des processus métier et des taches
utilisateur. Chacune de ces interfaces présente des caractéristiques différentes.

Taches associées

IDéveloppement d’applications client pour les tiches et processus métier]

Vous pouvez utiliser un outil de modélisation pour compiler et déployer des taches
et des processus métier. L'interaction avec ces processus et ces tiches se produit
lors de I'exécution. Par exemple, un processus est lancé ou les taches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des taches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.

[Acces aux API EJB|

Les API EJB (Enterprise JavaBeans) sont fournies sous forme de deux beans
enterprise session sans état. Les applications de processus métier et les applications
de tache accedent au bean enterprise de session approprié via 'interface home du
bean.

[Requéte sur des objets liés aux processus métier et aux taches|

Les applications client fonctionnent avec des objets li€s a des processus métier et a
des taches. Vous pouvez effectuer des requétes de données sur les objets liés aux
processus métier et aux taches dans la base de données afin d’extraire les
propriétés spécifiques de ces objets.

[Développement d’applications pour les processus métier|

Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la fagon dont vous pourriez développer des
applications pour des actions typiques sur des processus.

[Développement d’applications pour des tiches utilisateur]

Une tache représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des taches utilisateur sont fournis.

[Développement d’applications pour les processus métier et les taches utilisateur|
La plupart des scénarios de processus métier nécessitent la participation de
personnes. Par exemple, un processus métier nécessite une interaction humaine
lorsque le processus est démarré ou géré ou lorsque des activités humaines sont
effectuées. Pour supporter de tels scénarios, vous devez utiliser a la fois ’API de
Business Flow Manager et I’API de Human Task Manager.

(Gestion des exceptions et des erreurs|
Un processus BPEL peut rencontrer une erreur a différents points du processus.

Référence associée

[[Vue de la base de données Business Process Choreographer|
Ces informations de référence décrivent les colonnes disponibles dans les vues de
base de données prédéfinies.

288 Développement et déploiement

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=r6bpc_dbviews

Acceés aux APl EJB

Les API E]JB (Enterprise JavaBeans) sont fournies sous forme de deux beans
enterprise session sans état. Les applications de processus métier et les applications
de tache accedent au bean enterprise de session approprié via l'interface home du
bean.

A propos de cette tache

L’interface BusinessFlowManagerService fournit les méthodes pour les applications
de processus métier et l'interface HumanTaskManagerService fournit les méthodes
pour les applications basées sur des taches. Il peut s’agir de n’importe quelle
application Java, y compris une autre application Enterprise JavaBeans (E]B).

Taches associées

Développement d’applications client EJB pour des processus métier et des taches|
utilisateur|

Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d'utiliser des processus métier
et des taches utilisateur installées sur WebSphere Process Server.

[Acces a linterface distante du bean session|

Une application client EJB de processus métier ou de taches utilisateur accede a
I'interface distante du bean session par le biais de l'interface home distante du
bean.

[Acces a l'interface locale du bean session|
Une application client E]B de processus métier ou de taches utilisateur accede a
l'interface locale du bean session par le biais de l'interface home locale du bean.

Acces a l'interface distante du bean session

Une application client EJB de processus métier ou de taches utilisateur accéde a
I'interface distante du bean session par le biais de l'interface home distante du
bean.

A propos de cette tache

Le bean session peut étre soit le bean session BusinessFlowManager pour les
applications de processus, soit le bean session HumanTaskManager pour les
applications de tache.

Procédure

1. Ajoutez a l'interface distante du bean session une référence pointant vers le
descripteur de déploiement d’applications. Ajoutez la référence a I'un des
fichiers suivants :

* Le fichier application-client.xml pour une application client Java 2 Platform
Enterprise Edition (J2EE)

* Le fichier web.xml pour une application Web

* Le fichier ejb-jar.xml pour une application Enterprise JavaBeans (E]JB)

La référence a I'interface home distante des applications de processus est
illustrée dans 1’exemple suivant :

<ejb-ref>
<ejb-ref-name>ejb/BusinessFlowManagerHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>

<home>com. ibm.bpe.api.BusinessFlowManagerHome</home>
<remote>com.ibm.bpe.api.BusinessFlowManager</remote>
</ejb-ref>

Chapitre 4. Développement d’applications client pour les taches et processus métier 289

La référence a l'interface home locale des applications de tache est illustrée
dans I'exemple suivant :
<ejb-ref>
<ejb-ref-name>ejb/HumanTaskManagerHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com. ibm.task.api.HumanTaskManagerHome</home>
<remote>com.ibm.task.api.HumanTaskManager</remote>
</ejb-ref>
Si vous utilisez WebSphere Integration Developer pour ajouter la référence EJB
au descripteur de déploiement, la liaison de la référence EJB est
automatiquement créée lors du déploiement de l'application. Pour plus
d’informations concernant l’ajout de références EJB, consultez la documentation
WebSphere Integration Developer.

2. Intégrez les substituts générés dans votre application.

a. Pour les applications de processus, intégrez les fichiers contenus dans le
fichier<racine_installation>/ProcessChoreographer/client/bpel37650.jar et le
fichier d’archive d’entreprise (EAR) de votre application.

b. Pour les applications de tache, intégrez le fichier <racine_installation>>/
ProcessChoreographer/client/task137650.jar avec le fichier EAR de votre
application.

c. Définissez le parametre de chemin de classes dans le fichier manifeste du
module d’application afin d’y inclure le fichier JAR.

Le module d’application peut étre une application J2EE, une application
Web ou une application E]B.

3. Décidez de la méthode adoptée pour fournir les définitions des objets métier.

Pour utiliser des objets métier dans une application client distante, vous devez
avoir acceés aux schémas correspondants pour les objets métier (fichiers XSD ou
WSDL) utilisés pour l'interaction avec un processus ou une tache. L’acces a ces
fichiers est possible de 1'une des maniéres suivantes :

* Si l'application client n’est pas exécutée dans un environnement géré J2EE,
incluez les fichiers dans le fichier EAR de 'application client.

* Si l'application client est une application Web ou un client EJB exécuté dans
un environnement géré J2EE, vous pouvez soit inclure les fichiers dans le
fichier EAR de l'application client, soit bénéficier du chargement des artefacts
distants.

a. Utilisez l'interface API EJB createMessage de Business Process
Choreographer et les méthodes ClientObjectWrapper.getObject pour
charger les définitions d’objet métier distantes de 1’application
correspondante vers le serveur, de fagcon transparente.

b. Utilisez l'interface de programmation Service Data Object pour créer ou
consulter un objet métier en tant que partie d'un objet métier déja
instancié. Pour cela, utilisez les méthodes
commonj.sdo.DataObject.createDataObject ou getDataObject sur l'interface
DataObject.

c. Lorsque vous souhaitez créer un objet métier en tant que valeur de
propriété d’un objet métier saisie a 1’aide du schéma XML any ou
anyType, utilisez les services Business Object pour créer ou lire votre
objet métier. Pour cela, vous devez définir le contexte de RAL de maniere
a pointer vers l’application a partir de laquelle les schémas seront
chargés. Vous pouvez ensuite les services des objets métier appropriés.

Créez par exemple un objet métier dans lequel "ApplicationName” est le
nom de l'application qui contient les définitions de vos objets métier.

290 Développement et déploiement

BOFactory bofactory = (BOFactory) new
ServiceManager().locateService("com/ibm/websphere/bo/BOFactory");

com.ibm.wsspi.al.ALContext.setContext
("RALTemplateName", "ApplicationName");

try {
DataObject dataObject = bofactory.create("uriName", "typeName");
} finally {
com.ibm.wsspi.al.ALContext.unset();
}

Lisez par exemple une entrée XML dans laquelle "ApplicationName” est
le nom de I'application qui contient les définitions de vos objets métier.
BOXMLSerializer serializerService =
(BOXMLSerializer) new ServiceManager().locateService
("com/ibm/websphere/bo/BOXMLSerializer");
ByteArrayInputStream input = new ByteArrayInputStream(<?xml1?>..);

com.ibm.wsspi.al.ALContext.setContext
("RALTemplateName", "ApplicationName");

try {
BOXMLDocument document = serializerService.readXMLDocument (input);
DataObject dataObject = document.getDataObject();
} finally {
com.ibm.wsspi.al.ALContext.unset();
}

4. Localisez l'interface home distante du bean session dans l'interface JNDI (Java
Naming and Directory Interface).

L’exemple suivant illustre cette étape pour une application de processus :

// Obtenir Te contexte JNDI initial par défaut
InitialContext initialContext = new InitialContext();

// Rechercher 1'interface home distante du bean BusinessFlowManager
Object result =
initialContext.lookup("java :comp/env/ejb/BusinessFlowManagerHome");

// Convertir le résultat de la recherche dans le type approprié
BusinessFlowManagerHome processHome =
(BusinessFlowManagerHome) javax.rmi.PortableRemoteObject.narrow
(result,BusinessFlowManagerHome.class);

L’interface home distante du bean session contient une méthode de création
pour les objets EJB. Cette méthode renvoie l'interface distante du bean session.

5. Accédez a l'interface distante du bean session.
L’exemple suivant illustre cette étape pour une application de processus :
BusinessFlowManager process = processHome.create();

L’acces au bean session ne garantit pas que 'appelant puisse effectuer toutes
les actions sur un certain processus ; l'appelant doit étre également autorisé a
effectuer l'action. Lorsqu’une instance du bean session est créée, elle est
associée a un contexte du bean session. Le contexte contient 1'ID principal de
l'appelant, la liste d’appartenance au groupe et indique si I'appelant est titulaire
d’un des roles J2EE de Business Process Choreographer. Le contexte est utilisé
pour vérifier I'autorisation de 'appelant pour chaque appel, méme lorsque la
sécurité administrative n’est pas configurée. Si la sécurité administrative n’est
pas configurée, la valeur de I'ID principal de 'appelant est UNAUTHENTICATED.

6. Appelez les fonctions métier exposées par l'interface de service.
L’exemple suivant illustre cette étape pour une application de processus :

process.initiate("MyProcessModel",input);

Chapitre 4. Développement d’applications client pour les tiches et processus métier 291

Les appels venant des applications sont exécutés comme des transactions. Une

transaction est établie et terminée de 1'une des fagons suivantes :

¢ Automatiquement par WebSphere Application Server (le descripteur de
déploiement spécifie TX_REQUIRED).

* De maniére explicite par l'application. Vous pouvez regrouper les appels
d’application a l'intérieur d"une seule transaction :
// Obtenir 1'interface de transaction utilisateur

UserTransaction transaction=
(UserTransaction)initialContext.lookup("java:comp/UserTransaction");

// Commencer une transaction
transaction.begin();

// Appels d'applications ...

// En cas d'aboutissement, valider la transaction
transaction.commit();

Conseil : Afin d’éviter tout conflit de verrouillage de la base de données, évitez
d’exécuter en parallele des instructions similaires a la suivante :
// Obtenir 1'interface de transaction utilisateur

UserTransaction transaction=
(UserTransaction)initialContext.lookup("java:comp/UserTransaction");

transaction.begin();

//Lire 1'instance d'activité
process.getActivityInstance(aiid);
//Réclamer 1'instance d'activité
process.claim(aiid);

transaction.commit();

La méthode getActivitylnstance ainsi que d’autres opérations de lecture
définissent un verrou en lecture. Dans cet exemple, un verrou en lecture sur
I'instance d’activité est mis a niveau vers un verrou U sur l'instance d’activité.
Ceci peut provoquer un blocage de la base de données lorsque ces transactions
sont exécutées en parallele.

Exemple

Voici un exemple illustrant les étapes 3 a 5 pour une application de tache.

// Obtenir le contexte JNDI initial par défaut
InitialContext initialContext = new InitialContext();

// Rechercher 1'interface home distante du bean HumanTaskManager
Object result =
initialContext.lookup("java:comp/env/ejb/HumanTaskManagerHome") ;

// Convertir le résultat de la recherche dans le type approprié
HumanTaskManagerHome taskHome =
(HumanTaskManagerHome) javax.rmi.PortableRemoteObject.narrow
(result,HumanTaskManagerHome.class)

//Accéder & 1'interface distante du bean session
HumanTaskManager task = taskHome.create();

//Appeler les fonctions métier exposées par 1'interface de service
task.callTask(tkiid,input);

292 Développement et déploiement

Taches associées

[Acces aux API EJB|

Les API E]JB (Enterprise JavaBeans) sont fournies sous forme de deux beans
enterprise session sans état. Les applications de processus métier et les applications
de tache accedent au bean enterprise de session approprié via l'interface home du
bean.

Acces a l'interface locale du bean session
Une application client EJB de processus métier ou de taches utilisateur accéde a
l'interface locale du bean session par le biais de l'interface home locale du bean.

A propos de cette tache

Le bean session peut étre soit le bean session BusinessFlowManager pour les
applications de processus, soit le bean session HumanTaskManager pour les
applications de tache utilisateur.

Procédure

1. Ajoutez a l'interface locale du bean session une référence pointant vers le
descripteur de déploiement d’applications. Ajoutez la référence a I'un des
fichiers suivants :

* Le fichier application-client.xml pour une application client Java 2 Platform
Enterprise Edition (J2EE)

* Le fichier web.xml pour une application Web

* Le fichier ejb-jar.xml pour une application Enterprise JavaBeans (E]B)

La référence a l'interface home locale des applications de processus est illustrée
dans l’'exemple suivant :
<ejb-Tocal-ref>
<ejb-ref-name>ejb/LocalBusinessFlowManagerHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>com.ibm.bpe.api.LocalBusinessFlowManagerHome</local-home>
<local>com.ibm.bpe.api.LocalBusinessFlowManager</local>
</ejb-local-ref>
La référence a I'interface home locale des applications de tache est illustrée
dans I'exemple suivant :
<ejb-local-ref>
<ejb-ref-name>ejb/LocalHumanTaskManagerHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>com.ibm.task.api.LocalHumanTaskManagerHome</Tlocal-home>
<local>com.ibm.task.api.LocalHumanTaskManager</local>
</ejb-local-ref>
Si vous utilisez WebSphere Integration Developer pour ajouter la référence EJB
au descripteur de déploiement, la liaison de la référence EJB est
automatiquement créée lors du déploiement de l'application. Pour plus
d’informations concernant l'ajout de références EJB, consultez la documentation
WebSphere Integration Developer.

2. Localisez l'interface home locale du bean session dans l'interface JNDI (Java
Naming and Directory Interface).

L’exemple suivant illustre cette étape pour une application de processus :
// Obtenir le contexte JNDI initial par défaut
InitialContext initialContext = new InitialContext();

// Lookup the local home interface of the BusinessFlowManager bean

LocalBusinessFlowManagerHome processHome =
(LocalBusinessFlowManagerHome)initialContext.lookup
("java :comp/env/ejb/LocalBusinessFlowManagerHome");

Chapitre 4. Développement d’applications client pour les taches et processus métier 293

L’interface home locale du bean session contient une méthode de création pour
les objets EJB. Cette méthode renvoie l'interface locale du bean session.

3. Accédez a l'interface locale du bean session.
L’exemple suivant illustre cette étape pour une application de processus :
LocalBusinessFlowManager process = processHome.create();

L’acces au bean session ne garantit pas que 'appelant puisse effectuer toutes
les actions sur un certain processus ; l'appelant doit étre également autorisé a
effectuer l'action. Lorsqu’une instance du bean session est créée, elle est
associée a un contexte du bean session. Le contexte contient 1'ID principal de
l'appelant, la liste d’appartenance au groupe et indique si 'appelant est titulaire
d’un des roles J2EE de Business Process Choreographer. Le contexte est utilisé
pour vérifier l'autorisation de 1’appelant pour chaque appel, méme lorsque la
sécurité administrative n’est pas configurée. Si la sécurité administrative n’est
pas configurée, la valeur de I'ID principal de l'appelant est UNAUTHENTICATED.

4. Appelez les fonctions métier exposées par l'interface de service.
L’exemple suivant illustre cette étape pour une application de processus :
process.initiate("MyProcessModel",input);

Les appels venant des applications sont exécutés comme des transactions. Une

transaction est établie et terminée de 1'une des fagons suivantes :

* Automatiquement par WebSphere Application Server (le descripteur de
déploiement spécifie TX_REQUIRED).

* De maniere explicite par l'application. Vous pouvez regrouper les appels
d’application a l'intérieur d’une seule transaction :
// Obtenir 1'interface de transaction utilisateur

UserTransaction transaction=
(UserTransaction)initialContext.lookup("java:comp/UserTransaction");

// Commencer une transaction
transaction.begin();

// Appels d'applications ...

// En cas d'aboutissement, valider la transaction
transaction.commit();

Conseil : Afin d’éviter tout blocage de la base de données, évitez d’exécuter en
paralléle des instructions similaires a la suivante :
// Obtain user transaction interface

UserTransaction transaction=
(UserTransaction)initialContext.lookup("java:comp/UserTransaction");

transaction.begin();

//read the activity instance
process.getActivityInstance(aiid);
//claim the activity instance
process.claim(aiid);

transaction.commit();

La méthode getActivitylnstance ainsi que d’autres opérations de lecture
définissent un verrou en lecture. Dans cet exemple, un verrou en lecture sur
I'instance d’activité est mis a niveau vers un verrou U sur l'instance d’activité.
Ceci peut provoquer un blocage de la base de données lorsque ces transactions
sont exécutées en paralléle

294 Développement et déploiement

Exemple

Voici un exemple illustrant les étapes 2 a 4 pour une application de tache.

//0btain the default initial JNDI context
InitialContext initialContext = new InitialContext();

//Lookup the Tocal home interface of the HumanTaskManager bean

LocalHumanTaskManagerHome taskHome =
(LocalHumanTaskManagerHome)initialContext.lookup
("java:comp/env/ejb/LocalHumanTaskManagerHome");

//Access the Tocal interface of the session bean
LocalHumanTaskManager task =
taskHome.create();

//Call the business functions exposed by the service interface
task.callTask(tkiid,input);

Taches associées

[Acces aux API EJB|

Les API E]JB (Enterprise JavaBeans) sont fournies sous forme de deux beans
enterprise session sans état. Les applications de processus métier et les applications
de tache accedent au bean enterprise de session approprié via l'interface home du
bean.

Requéte sur des objets liés aux processus métier et aux
taches

Les applications client fonctionnent avec des objets liés a des processus métier et a
des taches. Vous pouvez effectuer des requétes de données sur les objets liés aux
processus métier et aux taches dans la base de données afin d’extraire les
propriétés spécifiques de ces objets.

A propos de cette tache

Durant la configuration de Business Process Choreographer, une base de données
relationnelle est associée au conteneur de processus métier et au conteneur de
tache. La base de données stocke toutes les données de modele et d’instance
(programme d’exécution) nécessaires a la gestion des processus métier et des
taches. Utilisez une syntaxe SQL pour rechercher ces données.

Vous pouvez effectuer une requéte unique pour extraire une propriété particuliére

d’un objet. Vous pouvez également enregistrer les requétes que vous utilisez
souvent et inclure ces requétes stockées dans votre application.

Chapitre 4. Développement d’applications client pour les taches et processus métier 295

Taches associées

Développement d’applications client EJB pour des processus métier et des taches|
utilisateur]|

Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d'utiliser des processus métier
et des taches utilisateur installées sur WebSphere Process Server.

[Filtrage de données a I'aide de variables définies dans des requétes|
Un résultat de requéte renvoie 1'objet répondant aux criteres de la recherche. Vous
pouvez filtrer ces résultats selon les valeurs des variables.

(Gestion des requétes stockées|

Les requétes stockées permettent d’enregistrer des requétes souvent exécutées. La
requéte stockée peut soit étre une requéte disponible pour tous les utilisateurs
(requéte publique), soit une requéte appartenant a un utilisateur spécifique
(requéte privée).

Référence associée

[[Vue de la base de données Business Process Choreographer|
Ces informations de référence décrivent les colonnes disponibles dans les vues de
base de données prédéfinies.

Filtrage de données a I'aide de variables définies dans des
requétes

Un résultat de requéte renvoie 1’objet répondant aux criteres de la recherche. Vous
pouvez filtrer ces résultats selon les valeurs des variables.

A propos de cette tache

Vous pouvez définir des variables utilisées par un processus lors de I'exécution
dans son modele de processus. Vous pouvez, pour ces variables, déclarer sur
quelles parties porte la requéte.

Voici un exemple : John Smith appelle sa société d’assurance afin de connaitre le
statut de sa demande d’indemnisation suite a un accident de la circulation.
L’administrateur des demandes d’indemnisation recherche le dossier du client par
le biais de son ID client.

Procédure

1. Facultatif : Répertoriez les propriétés des variables dans un processus pouvant
faire 1’objet d"une requéte.

Identifiez le processus par le biais de I'ID du modéle de processus. Vous
pouvez omettre cette étape si vous connaissez les variables pouvant faire 1’objet
de requétes.
List variableProperties = process.getQueryProperties(ptid);
for (int i = 0; i < variableProperties.size(); i++)
{

QueryProperty queryData = (QueryProperty)variableProperties.get(i);

String variableName = queryData.getVariableName();

String name = queryData.getName();

int mappedType queryData.getMappedType();

}

2. Dressez la liste des instances de processus contenant les variables conformes
aux criteres de filtrage.

296 Développement et déploiement

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=r6bpc_dbviews

Pour ce processus, I'ID client est modélisé en tant que partie de la variable
customerClaim pouvant étre soumise a la requéte. Ainsi, vous pouvez
rechercher la demande d’indemnisation par l'intermédiaire de 1'ID client.
QueryResultSet result = process.query
("PROCESS_INSTANCE.NAME, QUERY_PROPERTY.STRING_VALUE",
"QUERY_PROPERTY.VARIABLE_NAME = 'customerClaim' AND " +
"QUERY_PROPERTY.NAME = 'customerID' AND " +
"QUERY_PROPERTY.STRING_VALUE Tlike 'Smith%'",
(String)null, (Integer)null,
(Integer)null, (TimeZone)null);

Cette opération renvoie un ensemble de résultats de requéte contenant les noms
d’instance de processus et les valeurs d’ID des clients dont l'identifiant
commence par 'Smith’.

TAaches associées

[Requéte sur des objets liés aux processus métier et aux taches|

Les applications client fonctionnent avec des objets liés a des processus métier et a
des taches. Vous pouvez effectuer des requétes de données sur les objets liés aux
processus métier et aux taches dans la base de données afin d’extraire les
propriétés spécifiques de ces objets.

Gestion des requétes stockées

Les requétes stockées permettent d’enregistrer des requétes souvent exécutées. La
requéte stockée peut soit étre une requéte disponible pour tous les utilisateurs
(requéte publique), soit une requéte appartenant a un utilisateur spécifique
(requéte privée).

A propos de cette tache

Une requéte stockée est une requéte qui est enregistrée dans la base de données et
identifiée par un nom. Une requéte privée et une requéte publique peuvent étre
sauvegardées sous le méme nom. Les requétes enregistrées par différents

utilisateurs peuvent également avoir un nom identique.

Vous pouvez avoir stocké des requétes pour des objets de processus métier, des
objets de tache ou une combinaison de ces deux types d’objets.

Chapitre 4. Développement d’applications client pour les taches et processus métier 297

Concepts associés

[Parametres des requétes stockées|

Une requéte stockée est une requéte qui est enregistrée dans la base de données et
identifiée par un nom. Les uplets répondant aux criteres sont assemblés de
maniere dynamique lors de I'exécution de la requéte. Pour rendre les requétes
stockées réutilisables, vous pouvez utiliser les parametres de la définition de
requéte résolus lors de I'exécution.

Taches associées

[Requéte sur des objets liés aux processus métier et aux taches|

Les applications client fonctionnent avec des objets liés a des processus métier et a
des taches. Vous pouvez effectuer des requétes de données sur les objets liés aux
processus métier et aux taches dans la base de données afin d’extraire les
propriétés spécifiques de ces objets.

(Gestion des requétes stockées publiques|
Les requétes stockées publiques sont créées par 'administrateur systeme. Ces
requétes sont accessibles a tous les utilisateurs.

(Gestion des requétes stockées privées d’autres utilisateurs]
Tout utilisateur peut créer des requétes privées. Seul le propriétaire d'une requéte
et I'administrateur systeme peuvent les utiliser.

(Gestion des requétes stockées privées|

Si vous n’étes pas un administrateur systeme, vous pouvez créer, exécuter et
supprimer vos propres requétes stockées privées. Vous pouvez également utiliser
les requétes stockées publiques créées par 1’administrateur systeme.

Gestion des requétes stockées publiques :

Les requétes stockées publiques sont créées par I'administrateur systéeme. Ces
requétes sont accessibles a tous les utilisateurs.

A propos de cette tiche

En tant qu’administrateur systéme, vous pouvez créer, visualiser et supprimer des
requétes stockées publiques. Si vous ne spécifiez aucun ID utilisateur dans 'appel
d’API, on suppose que la requéte stockée est une requéte stockée publique.

Procédure
1. Créez une requéte stockée publique.

Par exemple, le fragment de code suivant crée une requéte stockée pour les
instances de processus et 1’enregistre sous le nom
CustomerOrdersStartingWithA.
process.createStoredQuery("CustomerOrdersStartingWithA",

"DISTINCT PROCESS_INSTANCE.PIID, PROCESS_INSTANCE.NAME",

"PROCESS_INSTANCE.NAME LIKE 'A%'",

"PROCESS_INSTANCE.NAME",

(Integer)null, (TimeZone)null);

Le résultat de la requéte stockée consiste en une liste triée de tous les noms
d’instance de processus commencgant par la lettre A et de leurs identifiants
d’instance de processus associés (PIID).

2. Exécutez la requéte définie par la requéte stockée.

QueryResultSet result = process.query("CustomerOrdersStartingWithA",
new Integer(0), null);

Cette action renvoie les objets qui répondent aux criteres. Dans le cas présent,
toutes les commandes client commengant par A.

298 Développement et déploiement

3. Répertoriez les requétes stockées publiques disponibles.

Le fragment de code suivant vous permet de restreindre aux requétes publiques
la liste des requétes renvoyées.
String[] storedQuery = process.getStoredQueryNames (StoredQueryData.KIND_PUBLIC);

4. Facultatif : Vérifiez la requéte définie par une requéte stockée spécifique.

Une requéte stockée privée peut porter le méme nom qu’'une requéte stockée
publique. Si ces noms sont identiques, la requéte stockée renvoyée est la
requéte privée. Le fragment de code suivant montre comment renvoyer la
requéte publique portant le nom spécifié. Si vous utilisez ’API de Human Task
Manager pour extraire des informations sur une requéte stockée, utilisez
StoredQuery au lieu de StoredQueryData pour 1'objet renvoyé.

StoredQueryData storedQuery = process.getStoredQuery
(StoredQueryData.KIND_PUBLIC, "CustomerOrdersStartingWithA");

String selectClause = storedQuery.getSelectClause();

String whereClause = storedQuery.getWhereClause();

String orderByClause = storedQuery.getOrderByClause();

Integer threshold = storedQuery.getThreshold();

String owner = storedQuery.getOwner();

5. Supprimez une requéte stockée publique.

Le fragment de code suivant montre comment supprimer la requéte stockée
que vous avez créée a 'étape 1.

process.deleteStoredQuery("CustomerOrdersStartingWithA");
Taches associées

(Gestion des requétes stockées|

Les requétes stockées permettent d’enregistrer des requétes souvent exécutées. La
requéte stockée peut soit étre une requéte disponible pour tous les utilisateurs
(requéte publique), soit une requéte appartenant a un utilisateur spécifique
(requéte privée).

Gestion des requétes stockées privées d’autres utilisateurs :

Tout utilisateur peut créer des requétes privées. Seul le propriétaire d'une requéte
et 'administrateur systeme peuvent les utiliser.

A propos de cette tache

En tant qu’administrateur systeme, vous pouvez gérer des requétes stockées
privées qui appartiennent a un utilisateur spécifique.

Procédure
1. Créez une requéte stockée privée pour I'ID utilisateur Smith.

Par exemple, le fragment de code suivant crée une requéte stockée pour les
instances de processus et 1'enregistre sous le nom
CustomerOrdersStartingWithA pour I'ID utilisateur Smith.
process.createStoredQuery("Smith", "CustomerOrdersStartingWithA",
"DISTINCT PROCESS_INSTANCE.PIID, PROCESS_INSTANCE.NAME",
"PROCESS_INSTANCE.NAME LIKE 'A%'",
"PROCESS_INSTANCE.NAME",
(Integer)null, (TimeZone)null,
(List)null, (String)null);
La requéte stockée renvoie une liste triée de tous les noms d’instance de
processus commencant par la lettre A et de leurs identifiants d’instance de
processus associés (PIID).

2. Exécutez la requéte définie par la requéte stockée.

Chapitre 4. Développement d’applications client pour les taches et processus métier 299

QueryResultSet result = process.query
("Smith", "CustomerOrdersStartingWithA",
(Integer)null, (Integer)null, (List)null);
new Integer(0));

Cette action renvoie les objets qui répondent aux criteres. Dans le cas présent,
toutes les commandes client commengant par A.

3. Accédez a la liste des noms des requétes privées appartenant a un utilisateur
donné.

Par exemple, le fragment de code suivant montre comment obtenir la liste des
requétes privées appartenant a l'utilisateur Smith.

String[] storedQuery = process.getStoredQueryNames("Smith");
4. Affichez les détails d'une requéte spécifique.

Le fragment de code suivant montre comment afficher les détails de la requéte
CustomerOrdersStartingWithA qui appartient a 1'utilisateur Smith.

StoredQueryData storedQuery = process.getStoredQuery
("Smith", "CustomerOrdersStartingWithA");

String selectClause = storedQuery.getSelectClause();

String whereClause = storedQuery.getWhereClause();

String orderByClause = storedQuery.getOrderByClause();

Integer threshold = storedQuery.getThreshold();

String owner = storedQuery.getOwner();

Si vous utilisez ’API de Human Task Manager pour extraire des informations
sur une requéte stockée, utilisez StoredQuery au lieu de StoredQueryData pour
'objet renvoyé.

5. Supprimez une requéte stockée privée.

Le fragment de code suivant montre comment supprimer une requéte privée
qui appartient a l'utilisateur Smith.

process.deleteStoredQuery("Smith", "CustomerOrdersStartingWithA");
TAaches associées

(Gestion des requétes stockées|

Les requétes stockées permettent d’enregistrer des requétes souvent exécutées. La
requéte stockée peut soit étre une requéte disponible pour tous les utilisateurs
(requéte publique), soit une requéte appartenant a un utilisateur spécifique
(requéte privée).

Gestion des requétes stockées privées :

Si vous n’étes pas un administrateur systeme, vous pouvez créer, exécuter et
supprimer vos propres requétes stockées privées. Vous pouvez également utiliser
les requétes stockées publiques créées par 1’administrateur systeme.

Procédure
1. Créez une requéte stockée privée.

Par exemple, le fragment de code suivant crée une requéte stockée pour les
instances de processus et 1’'enregistre sous un nom spécifique. Si aucun ID
utilisateur n’est spécifié, on suppose que la requéte stockée est une requéte
stockée privée de l'utilisateur connecté.
process.createStoredQuery("CustomerOrdersStartingWithA",
"DISTINCT PROCESS_INSTANCE.PIID, PROCESS_INSTANCE.NAME",
"PROCESS_INSTANCE.NAME LIKE 'A%'",

"PROCESS_INSTANCE.NAME",
(Integer)null, (TimeZone)null);

300 Développement et déploiement

Cette requéte renvoie une liste triée de tous les noms d’instance de processus
commengant par la lettre A et de leurs identifiants d’instance de processus
associés (PIID).

2. Exécutez la requéte définie par la requéte stockée.

QueryResultSet result = process.query("CustomerOrdersStartingWithA",
new Integer(0));

Cette action renvoie les objets qui répondent aux criteres. Dans le cas présent,
toutes les commandes client commencant par A.

3. Extrayez une liste des noms de requétes stockées auxquelles 1'utilisateur
connecté peut accéder.

Le fragment de code suivant montre comment extraire les requétes stockées
auxquelles 'utilisateur connecté peut accéder.

String[] storedQuery = process.getStoredQueryNames();
4. Affichez les détails d'une requéte spécifique.

Le fragment de code suivant montre comment afficher les détails de la requéte
CustomerOrdersStartingWithA dont l'utilisateur Smith est le propriétaire.

StoredQueryData storedQuery = process.getStoredQuery
("CustomerOrdersStartingWithA");

String selectClause = storedQuery.getSelectClause();

String whereClause = storedQuery.getWhereClause();

String orderByClause = storedQuery.getOrderByClause();

Integer threshold = storedQuery.getThreshold();

String owner = storedQuery.getOwner();

Si vous utilisez I’API de Human Task Manager pour extraire des informations
sur une requéte stockée, utilisez StoredQuery au lieu de StoredQueryData pour
'objet renvoyé.

5. Supprimez une requéte stockée privée.
Le fragment de code suivant indique comment supprimer une requéte stockée
privée.
process.deleteStoredQuery("CustomerOrdersStartingWithA");

Taches associées

Gestion des requétes stockées|

Les requétes stockées permettent d’enregistrer des requétes souvent exécutées. La
requéte stockée peut soit étre une requéte disponible pour tous les utilisateurs
(requéte publique), soit une requéte appartenant a un utilisateur spécifique
(requéte privée).

Développement d’applications pour les processus métier
Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la facon dont vous pourriez développer des
applications pour des actions typiques sur des processus.

A propos de cette tache

Un processus métier peut étre soit un microflux, soit un processus de longue
durée :

* Les microflux sont des processus métier de courte durée exécutés de maniere
synchrone. Apres un court moment, le résultat est renvoyé a l’appelant.

* Les processus interruptibles de longue durée sont exécutés en tant que
séquences d’activités chalnées. L'utilisation de certaines constructions dans un
processus engendre des interruptions dans le flux de processus, notamment

Chapitre 4. Développement d’applications client pour les taches et processus métier 301

I'appel d'une tache utilisateur, d’un service utilisant une liaison synchrone ou
encore l'utilisation d’activités automatiques.

Les branches paralléles du processus sont généralement accessibles de maniére
asynchrone, ce qui signifie que les activités des branches paralléles sont
exécutées simultanément. En fonction du type et du parametre de transaction de
I'activité, une activité peut étre exécutée au sein de sa propre transaction.

302 Développement et déploiement

Taches associées

Développement d’applications client EJB pour des processus métier et des taches|
utilisateur]|

Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d'utiliser des processus métier
et des taches utilisateur installées sur WebSphere Process Server.

Gestion du cycle de vie d’un processus métier|

Une instance de processus est créé lorsqu'une méthode API de Business Process
Choreographer pouvant démarrer un processus est appelée. La navigation de
I'instance de processus continue jusqu’a ce que I'ensemble de ses activités se
trouvent a 1’état final. Plusieurs actions peuvent étre entreprises sur 'instance de
processus afin de gérer son cycle de vie.

[Traitement des activités humaines|

Les activités humaines sont attribuées aux différentes personnes de votre
organisation par l'intermédiaire des taches élémentaires. Au démarrage d'un
processus, des éléments de travail sont créés pour les propriétaires potentiels.

[Traitement d’un flux de travaux par une seule personne]

Certains flux de travaux sont exécutés par une seule personne, par exemple une
commande d’ouvrages sur une librairie en ligne. Ce type de flux de travaux ne
comporte pas de chemins d’acces paralleles. L’API completeAndClaimSuccessor
prend en charge le traitement de ce type de flux de travaux.

[Envoi d’un message a une activité en attente|

Les activités de messages entrants (également appelées activités de réception,
onMessage dans des activités de sélection, onEvent dans les gestionnaires
d’événements) peuvent étre utilisées pour synchroniser un processus d’exécution
avec des événements du "monde extérieur”. Par exemple, la réception d'un
courrier électronique provenant d’un client en réponse a une demande
d’informations peut correspondre a ce type d’événement.

(Gestion des événements|

L’ensemble d"un processus métier et chacune de ses portées peuvent étre associés a

des gestionnaires d’événements qui sont appelés si I'événement associé se produit.

Les gestionnaires d’événements sont similaires aux activités de réception ou de

sélection en cela qu'un processus peut fournir des opérations de service Web a
aide de gestionnaires d’événements.

l'aide d t d’ t

[Analyse des résultats d’un processus

Un processus peut afficher des opérations de services Web modélisées sous forme
d’opérations WSDL (Web Services Description Language) asynchrones ou de type
requéte-réponse. Les résultats des processus interruptibles a interface
unidirectionnelle ne peuvent étre obtenus par la méthode getOutputMessage, car
ces processus ne produisent pas de résultat. Cependant, vous pouvez interroger le
contenu des variables.

[Réparation d’activités|

Un processus de longue durée peut contenir des activités dont 1’exécution est
également longue. Ces activités peuvent rencontrer des erreurs non interceptées et
se trouver ainsi a l’état arrété. Une activité a 'état actif peut également sembler ne
plus répondre. Dans les deux cas, un administrateur de processus peut intervenir
sur l'activité de plusieurs manieres afin que la navigation du processus puisse se
poursuivre.

Roles nécessaires pour effectuer des actions sur des instances
de processus

L’acces a l'interface BusinessFlowManager ne garantit pas que l'appelant puisse
effectuer toutes les actions sur un processus donné. L’appelant doit étre également
autorisé a effectuer 'action en étant titulaire d"un role approprié.

Chapitre 4. Développement d’applications client pour les taches et processus métier 303

Le tableau suivant indique les actions qu’un role spécifique peut effectuer sur une
instance de processus.

Action Role principal de 1’appelant
Lecteur Initiateur Administrateur

createMessage X X X
createWorkItem X
delete X
deleteWorkItem X
forceTerminate X
getActiveEventHandlers X X
getActivityInstance X X
getAllActivities X X
getAllWorkItems X X
getClientUISettings X X X
getCustomProperties X X X
getCustomProperty X X X
getCustomPropertyNames | x X X
getFaultMessage X X X
getInputClientUISettings X X X
getlnputMessage X X X
getOutputClientUISettings | x X X
getOutputMessage X X X
getProcessInstance X X X
getVariable X X X
getWaitingActivities X X X
getWorkItems X X
restart X
resume X
setCustomProperty X X
setVariable X
suspend X
transferWorkItem X

Roles nécessaires pour effectuer des actions sur les activités de
processus métier

L’acces a l'interface BusinessFlowManager ne garantit pas que 1'appelant puisse
effectuer toutes les actions sur une activité donnée. L’appelant doit étre également
autorisé a effectuer 'action en étant titulaire d’un role approprié.

Le tableau suivant indique les actions qu’un role spécifique peut effectuer sur une
instance d’activité.

304 Développement et déploiement

Action Roéle principal de ’appelant
Lecteur Editeur Propriétaire Propriétaire | Administrateur
potentiel

cancelClaim X X
claim X X
complete X X
createMessage X X X X X
createWorkItem X
deleteWorkItem X
forceComplete X
forceRetry X
getActivityInstance X X X X X
getAllWorkItems X X X X X
getClientUISettings X X X X X
getCustomProperties X X X X X
getCustomProperty X X X X X
getCustomPropertyNames X X X X X
getFaultMessage X X X X X
getFaultNames X X X X X
getInputMessage X X X X X
getOutputMessage X X X X X
getVariable X X X X X
getVariableNames X X X X X
getInputVariableNames X X X X X
getOutputVariableNames X X X X X
getWorklItems X X X X X
setCustomProperty X X X
setFaultMessage X X X
setOutputMessage X X X
setVariable X
transferWorkItem X X

Réservé au

propriétaires

ou

administra-

teurs

potentiels

Gestion du cycle de vie d’un processus

métier

Une instance de processus est créé lorsqu'une méthode API de Business Process
Choreographer pouvant démarrer un processus est appelée. La navigation de
I'instance de processus continue jusqu’a ce que I'ensemble de ses activités se
trouvent a 1’état final. Plusieurs actions peuvent étre entreprises sur 'instance de
processus afin de gérer son cycle de vie.

Chapitre 4. Développement d’applications client pour les taches et processus métier

305

A propos de cette tache

Des exemples fournis illustrent la facon dont vous pourriez développer des
applications pour les actions de cycle de vie typiques sur les processus.

Taches associées

IDéveloppement d’applications pour les processus métier]

Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la fagon dont vous pourriez développer des
applications pour des actions typiques sur des processus.

[Démarrage de processus métier|

La fagon dont un processus métier est démarré varie selon que le processus est un
microflux ou un processus de longue durée. Le service qui démarre le processus
est également important par rapport a la fagon dont un processus est démarré ; le
processus peut avoir soit un service de démarrage unique, soit plusieurs services
de démarrage.

[Mise en suspens et reprise d’un processus métier]

Vous pouvez mettre en suspens une instance de processus de niveau supérieur de
longue durée pendant qu’elle est en cours d’exécution, puis la relancer
ultérieurement.

[Redémarrage d’un processus métier]
Vous pouvez redémarrer une instance de processus se trouvant a 1’état terminé,
arrété, échoué ou compensé.

[Arrét d’une instance de processus]

Il s’avere parfois nécessaire pour quelqu'un disposant de droits d’administrateur
de processus d’arréter une instance de processus de niveau supérieur dans un état
irrécupérable. Etant donné qu’une instance de processus se termine
immédiatement, sans attendre 1’arrét de sous processus ou d’activités en cours,
vous ne devez terminer une instance de processus que dans des situations
exceptionnelles.

[Suppression d’instances de processus|

Les instances de processus terminées sont automatiquement supprimées de la base
de données de Business Process Choreographer si la propriété correspondante est
définie pour le modele de processus dans le modéle de processus. Vous pouvez
choisir de conserver les instances de processus dans votre base de données, par
exemple, pour rechercher des données relatives aux instances de processus qui ne
sont pas consignées dans le journal d’audit. Cependant, les données d’instance de
processus stockées n’ont pas seulement une incidence sur l’'espace disque et les
performances mais elles empéchent la création d’instances de processus utilisant
les mémes valeurs d’ensembles de corrélation. Vous devez par conséquent
supprimer régulierement les données d’instances de processus de la base de
données.

Démarrage de processus métier :

La fagon dont un processus métier est démarré varie selon que le processus est un
microflux ou un processus de longue durée. Le service qui démarre le processus
est également important par rapport a la fagon dont un processus est démarré ; le
processus peut avoir soit un service de démarrage unique, soit plusieurs services
de démarrage.

306 Développement et déploiement

A propos de cette tache

Des exemples sont fournis pour illustrer la fagon dont vous pouvez développer des
applications pour les scénarios de démarrage habituels des microflux et des
processus longue durée.

TAaches associées

Gestion du cycle de vie d’un processus métier|

Une instance de processus est créé lorsqu'une méthode API de Business Process
Choreographer pouvant démarrer un processus est appelée. La navigation de
I'instance de processus continue jusqu’a ce que I'ensemble de ses activités se
trouvent a 1’état final. Plusieurs actions peuvent étre entreprises sur l'instance de
processus afin de gérer son cycle de vie.

[Exécution d’un microflux contenant un service de démarrage unique

Un microflux peut étre lancé par une activité de réception ou une activité de
sélection. Le service de démarrage est unique si le microflux démarre avec une
activité de réception ou lorsque l'activité de sélection n’a qu'une définition
onMessage.

[Exécution d’un microflux contenant un service de démarrage non unique|

Un microflux peut étre lancé par une activité de réception ou une activité de
sélection. Le service de démarrage n’est pas unique si le microflux démarre avec
une activité de sélection possédant plusieurs définitions onMessage.

Démarrage d’un processus de longue durée contenant un service de démarrage|
unique]

Si le service de démarrage est unique, vous pouvez utiliser la méthode de
déclenchement et transmettre le nom du modele de processus en tant que
parametre. C’est le cas lorsque le processus de longue durée démarre avec une
activité de sélection ou de réception unique et lorsque l'activité de sélection unique
n’a qu'une définition onMessage.

Démarrage d’un processus de longue durée contenant un service de démarrage|
non unique]

Un processus de longue durée peut étre lancé par le biais de plusieurs activités de
sélection ou de réception déclenchantes. Vous pouvez utiliser la méthode de
déclenchement pour lancer le processus. Si le service de démarrage n’est pas
unique, par exemple si le processus démarre avec plusieurs activités de réception
ou de sélection ou avec une activité de sélection possédant plusieurs définitions
onMessage, vous devez identifier le service a appeler.

Exécution d’un microflux contenant un service de démarrage unique :

Un microflux peut étre lancé par une activité de réception ou une activité de
sélection. Le service de démarrage est unique si le microflux démarre avec une
activité de réception ou lorsque l'activité de sélection n’a qu'une définition
onMessage.

A propos de cette tiche

Si le microflux implémente une opération de requéte-réponse, c’est a dire si le
processus contient une réponse, vous pouvez utiliser la méthode d’appel pour
exécuter le processus transmettant le nom de modéle de processus comme
parametre d’appel.

Si le micro-flux est une opération unidirectionnelle, exécutez le processus via la
méthode sendMessage. Cette méthode n’est pas traitée dans I'exemple.

Procédure

Chapitre 4. Développement d’applications client pour les taches et processus métier 307

1. Facultatif : Répertoriez les modeles de processus pour trouver le nom du
processus que vous voulez exécuter.

Cette étape est facultative si vous connaissez déja le nom du processus.

ProcessTemplateData[] processTemplates = process.queryProcessTemplates
("PROCESS_TEMPLATE.EXECUTION MODE =
PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_MICROFLOW",
"PROCESS_TEMPLATE.NAME",
new Integer(50),
(TimeZone)null);

Les résultats sont classés par nom. La requéte renvoie un tableau contenant les
50 premiers modeéles classés pouvant étre lancés par la méthode d’appel.

2. Lancez le processus avec un message de sortie du type approprié.

Lorsque vous créez le message, vous devez spécifier le nom de son type de
message de maniére a ce qu’il contienne la définition du message.

ProcessTemplateData template = processTemplates[0];
//create a message for the single starting receive activity
ClientObjectWrapper input = process.createMessage
(template.getID(),
template.getInputMessageTypeName());
DataObject myMessage = null;
if (input.getObject()!= null && input.getObject() instanceof DataObject)

myMessage = (DataObject)input.getObject();
//set the strings in the message, for example, a customer name
myMessage.setString("CustomerName", "Smith");

}

//run the process

ClientObjectWrapper output = process.call(template.getName(), input);
DataObject myOutput = null;

if (output.getObject() !'= null &% output.getObject() instanceof DataObject)
{

myOutput (DataObject)output.getObject();

int order = myOutput.getInt("OrderNo");
}
Cette opération crée une instance du modeéle de processus, CustomerTemplate,
et transfere quelques données client. L’opération renvoie uniquement lorsque le
processus est terminé. Le résultat du processus, OrderNo, est renvoyé a
l'appelant.

Taches associées

[Démarrage de processus métier|

La fagcon dont un processus métier est démarré varie selon que le processus est un
microflux ou un processus de longue durée. Le service qui démarre le processus
est également important par rapport a la fagcon dont un processus est démarré ; le
processus peut avoir soit un service de démarrage unique, soit plusieurs services
de démarrage.

Exécution d’un microflux contenant un service de démarrage non unique :
Un microflux peut étre lancé par une activité de réception ou une activité de

sélection. Le service de démarrage n’est pas unique si le microflux démarre avec
une activité de sélection possédant plusieurs définitions onMessage.

308 Développement et déploiement

A propos de cette tache

Si le microflux implémente une opération de requéte-réponse, c’est a dire si le
processus contient une réponse, vous pouvez utiliser la méthode d’appel pour
exécuter le processus transmettant 1'ID du service de démarrage comme parameétre
d’appel.

Si le micro-flux est une opération unidirectionnelle, exécutez le processus via la
méthode sendMessage. Cette méthode n’est pas traitée dans I'exemple.

Procédure

1.

Facultatif : Répertoriez les modeles de processus pour trouver le nom du
processus que vous voulez exécuter.

Cette étape est facultative si vous connaissez déja le nom du processus.

ProcessTemplateData[] processTemplates = process.queryProcessTemplates
("PROCESS_TEMPLATE.EXECUTION_MODE =
PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_MICROFLOW",
"PROCESS_TEMPLATE.NAME",
new Integer(50),
(TimeZone)null);

Les résultats sont classés par nom. La requéte renvoie un tableau contenant les
50 premiers modeéles classés pouvant étre lancés en tant que microflux.

Déterminez le service de démarrage a appeler.
Cet exemple utilise le premier modeéle trouvé.

ProcessTemplateData template = processTemplates[0];
ActivityServiceTemplateData[] startActivities =
process.getStartActivities(template.getID());

Lancez le processus avec un message de sortie du type approprié.

Lorsque vous créez le message, vous devez spécifier le nom de son type de
message de maniere a ce qu’il contienne la définition du message.

ActivityServiceTemplateData activity = startActivities[0];

//create a message for the service to be called

ClientObjectWrapper input =

process.createMessage(activity.getServiceTemplateID(),

activity.getActivityTemplatelID(),
activity.getInputMessageTypeName());

DataObject myMessage = null;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

myMessage = (DataObject)input.getObject();
//set the strings in the message, for example, a customer name
myMessage.setString("CustomerName", "Smith");
}
//run the process
ClientObjectWrapper output = process.call(activity.getServiceTemplatelID(),
activity.getActivityTemplatelID(),
input);
//check the output of the process, for example, an order number
DataObject myOQutput = null;
if (output.getObject() !'= null &% output.getObject() instanceof DataObject)
{
myOutput
int order
}
Cette opération crée une instance du modeéle de processus, CustomerTemplate,
et transfere quelques données client. L’opération renvoie uniquement lorsque le
processus est terminé. Le résultat du processus, OrderNo, est renvoyé a
l'appelant.

(DataObject)output.getObject();
myOutput.getInt("OrderNo");

Chapitre 4. Développement d’applications client pour les taches et processus métier 309

Taches associées

[Démarrage de processus métier|

La fagon dont un processus métier est démarré varie selon que le processus est un
microflux ou un processus de longue durée. Le service qui démarre le processus
est également important par rapport a la fagon dont un processus est démarré ; le
processus peut avoir soit un service de démarrage unique, soit plusieurs services
de démarrage.

Démarrage d'un processus de longue durée contenant un service de démarrage unique :

Si le service de démarrage est unique, vous pouvez utiliser la méthode de
déclenchement et transmettre le nom du modele de processus en tant que
parametre. C’est le cas lorsque le processus de longue durée démarre avec une
activité de sélection ou de réception unique et lorsque l'activité de sélection unique
n‘a qu'une définition onMessage.

Procédure

1. Facultatif : Répertoriez les modéles de processus pour trouver le nom du
processus que vous voulez lancer.

Cette étape est facultative si vous connaissez déja le nom du processus.

ProcessTemplateData[] processTemplates = process.queryProcessTemplates
("PROCESS_TEMPLATE.EXECUTION MODE =
PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_LONG_RUNNING",
"PROCESS_TEMPLATE.NAME",

new Integer(50),

(TimeZone)null);
Les résultats sont classés par nom. La requéte renvoie un tableau contenant les
50 premiers modeles classés pouvant étre lancés par la méthode de
déclenchement.

2. Lancez le processus avec un message de sortie du type approprié.

Lorsque vous créez le message, vous devez spécifier le nom de son type de
message de maniere a ce qu'il contienne la définition du message. Si vous
spécifiez un nom d’instance de processus, il ne doit pas commencer par un trait
de soulignement. Si aucun nom d’instance de processus n’est spécifié,
Iidentifiant d’instance de processus (PIID) au format chaine est utilisé en tant
que nom.
ProcessTemplateData template = processTemplates[0];
//create a message for the single starting receive activity
ClientObjectWrapper input = process.createMessage
(template.getID(),
template.getInputMessageTypeName());
DataObject myMessage = null;
if (input.getObject()!= null && input.getObject() instanceof DataObject)

myMessage = (DataObject)input.getObject();
//set the strings in the message, for example, a customer name
myMessage.setString("CustomerName", "Smith");

}

//start the process

PIID piid = process.initiate(template.getName(), "CustomerOrder", input);
Cette opération crée une instance, CustomerOrder, et transfere quelques
données client. Lorsque le processus démarre, I'opération renvoie a I'appelant
Iidentifiant objet de la nouvelle instance de processus.

L’initiateur de 'instance de processus est défini pour I’appelant de la requéte.
Cette personne recoit un élément de travail pour l'instance de processus. Les
administrateurs du processus, les lecteurs et les éditeurs de l'instance de
processus sont déterminés et recoivent des éléments de travail pour l'instance

310 Développement et déploiement

de processus. Les instances d’activité suivie sont déterminées. Elles sont lancées
automatiquement, ou, si ce sont des activités manuelles, de réception ou de
sélection, des éléments de travail sont créés pour les éventuels propriétaires.

Taches associées

|Démarrage de processus métier|

La fagon dont un processus métier est démarré varie selon que le processus est un
microflux ou un processus de longue durée. Le service qui démarre le processus
est également important par rapport a la fagon dont un processus est démarré ; le
processus peut avoir soit un service de démarrage unique, soit plusieurs services
de démarrage.

Démarrage d’un processus de longue durée contenant un service de démarrage non
unique :

Un processus de longue durée peut étre lancé par le biais de plusieurs activités de
sélection ou de réception déclenchantes. Vous pouvez utiliser la méthode de
déclenchement pour lancer le processus. Si le service de démarrage n’est pas
unique, par exemple si le processus démarre avec plusieurs activités de réception
ou de sélection ou avec une activité de sélection possédant plusieurs définitions
onMessage, vous devez identifier le service a appeler.

Procédure

1. Facultatif : Répertoriez les modéles de processus pour trouver le nom du
processus que vous voulez lancer.

Cette étape est facultative si vous connaissez déja le nom du processus.

ProcessTemplateData[] processTemplates = process.queryProcessTemplates
("PROCESS_TEMPLATE.EXECUTION_MODE =
PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_LONG_RUNNING",
"PROCESS_TEMPLATE.NAME",
new Integer(50),
(TimeZone)null);

Les résultats sont classés par nom. La requéte renvoie un tableau contenant les
50 premiers modeéles classés pouvant étre lancés en tant que processus de
longue durée.

2. Déterminez le service de démarrage a appeler.

ProcessTemplateData template = processTemplates[0];
ActivityServiceTemplateData[] startActivities =
process.getStartActivities(template.getID());

3. Lancez le processus avec un message de sortie du type approprié.

Lorsque vous créez le message, vous devez spécifier le nom de son type de
message de maniere a ce qu'il contienne la définition du message. Si vous
spécifiez un nom d’instance de processus, il ne doit pas commencer par un trait
de soulignement. Si aucun nom d’instance de processus n’est spécifi€,
Iidentifiant d’instance de processus (PIID) au format chaine est utilisé en tant
que nom.

ActivityServiceTemplateData activity = startActivities[0];
//create a message for the service to be called
ClientObjectWrapper input = process.createMessage
(activity.getServiceTemplateID(),
activity.getActivityTemplateID(),
activity.getInputMessageTypeName());
DataObject myMessage = null;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{
myMessage = (DataObject)input.getObject();
//set the strings in the message, for example, a customer name

Chapitre 4. Développement d’applications client pour les taches et processus métier 311

myMessage.setString("CustomerName", "Smith");

5/star‘t the process
PIID piid = process.sendMessage(activity.getServiceTemplateID(),
activity.getActivityTemplateID(),
input);
Cette opération crée une instance et transfere quelques données client. Lorsque
le processus démarre, 1’opération renvoie a 'appelant I'identifiant objet de la
nouvelle instance de processus.

L’initiateur de 'instance de processus est défini pour l’appelant de la requéte et
recoit un élément de travail pour l'instance de processus. Les administrateurs
du processus, les lecteurs et les éditeurs de 'instance de processus sont
déterminés et recoivent des éléments de travail pour l'instance de processus.
Les instances d’activité suivie sont déterminées. Elles sont lancées
automatiquement, ou, si ce sont des activités manuelles, de réception ou de
sélection, des éléments de travail sont créés pour les éventuels propriétaires.

Taches associées

[Démarrage de processus métier]

La fagon dont un processus métier est démarré varie selon que le processus est un
microflux ou un processus de longue durée. Le service qui démarre le processus
est également important par rapport a la fagcon dont un processus est démarré ; le
processus peut avoir soit un service de démarrage unique, soit plusieurs services
de démarrage.

Mise en suspens et reprise d’un processus métier :

Vous pouvez mettre en suspens une instance de processus de niveau supérieur de
longue durée pendant qu’elle est en cours d’exécution, puis la relancer
ultérieurement.

Avant de commencer

L’appelant doit étre un administrateur de l'instance de processus ou un
administrateur de processus métier. Pour qu'une instance de processus puisse étre
mise en suspens, elle doit se trouver a 1’état exécution en cours ou échec en cours.

A propos de cette tache

Vous pouvez avoir besoin de mettre en suspens une instance de processus, par
exemple, pour pouvoir configurer 1’acces a un systeme dorsal qui est utilisé
ultérieurement dans le processus. Une fois que les conditions prérequises pour le
processus sont remplies, vous pouvez reprendre l'instance de processus. Vous
pouvez également souhaiter interrompre un processus afin de résoudre un
probléeme engendrant 1’échec de l'instance de processus, puis le reprendre une fois
le probleme résolu.

Procédure

1. Obtenez le processus en cours d’exécution, CustomerOrder, que vous souhaitez
mettre en suspens.

ProcessInstanceData processInstance =
process.getProcessInstance("CustomerOrder");

2. Mettez I'instance de processus en suspens.

PIID piid = processInstance.getID();
process.suspend(piid);

312 Développement et déploiement

Cette action suspend l'instance de processus de niveau supérieur spécifiée.
L’instance de processus passe a l’état mis en suspens. Les sous-processus dont
I'attribut autonomy est défini sur enfant (child) sont également suspendus, s’ils
étaient en cours d’exécution, en état d’échec, terminés ou en cours de
compensation. Les taches en ligne associées a cette instance de processus sont
également interrompues, ce qui n’est pas le cas des taches autonomes.

Dans cet état, des activités lancées peuvent étre terminées mais aucune nouvelle
activité n’est activée, par exemple, une activité humaine associée a 1’état
réclamé peut étre terminée.

3. Reprenez l'instance de processus.
process.resume(piid);

Cette action met l'instance de processus et ses sous processus dans 1’état ot ils
se trouvaient avant d’étre mis en suspens.

TAaches associées

Gestion du cycle de vie d"un processus métier|

Une instance de processus est créé lorsquune méthode API de Business Process
Choreographer pouvant démarrer un processus est appelée. La navigation de
I'instance de processus continue jusqu’a ce que I'ensemble de ses activités se
trouvent a 1’état final. Plusieurs actions peuvent étre entreprises sur l'instance de
processus afin de gérer son cycle de vie.

Redémarrage d’un processus métier :

Vous pouvez redémarrer une instance de processus se trouvant a 1’état terminé,
arrété, échoué ou compensé.

Avant de commencer

L’appelant doit étre un administrateur de l'instance de processus ou un
administrateur de processus métier.

A propos de cette tache

Le redémarrage d’une instance de processus est similaire au démarrage initial
d’une instance de processus. Toutefois, lorsqu'une instance de processus est
redémarrée, I'identifiant de 1'instance de processus est connu et le message d’entrée
pour l'instance est disponible.

Si le processus posséde plusieurs activités de réception ou activités de sélection
(également appelées activités de choix de réception) capables de créer 'instance de
processus, tous les messages qui appartiennent a ces activités sont utilisés pour le
redémarrage de l'instance de processus. Si I'une de ces activités implémentent une
opération de requéte-réponse, la réponse est envoyée a nouveau lors du survol de
I'activité de réponse associée.

Procédure
1. Obtenez le processus que vous souhaitez redémarrer.

ProcessInstanceData processIinstance =
process.getProcessInstance("CustomerOrder");

2. Redémarrez l'instance de processus.

PIID piid = processInstance.getID();
process.restart(piid);

Cette action redémarrez l'instance de processus spécifiée.

Chapitre 4. Développement d’applications client pour les taches et processus métier 313

Taches associées

(Gestion du cycle de vie d’un processus métier|

Une instance de processus est créé lorsquune méthode API de Business Process
Choreographer pouvant démarrer un processus est appelée. La navigation de
I'instance de processus continue jusqu’a ce que I'ensemble de ses activités se
trouvent a 1’état final. Plusieurs actions peuvent étre entreprises sur 'instance de
processus afin de gérer son cycle de vie.

Arrét d’une instance de processus:

Il s’avere parfois nécessaire pour quelqu'un disposant de droits d’administrateur
de processus d’arréter une instance de processus de niveau supérieur dans un état
irrécupérable. Etant donné qu’une instance de processus se termine
immédiatement, sans attendre 1’arrét de sous processus ou d’activités en cours,
vous ne devez terminer une instance de processus que dans des situations
exceptionnelles.

Procédure
1. Procédez a l'extraction de l'instance de processus devant étre arrétée.

ProcessInstanceData processInstance =
process.getProcessInstance("CustomerOrder");

2. Arrétez I'instance de processus.

Si vous arrétez une instance de processus, vous pouvez arréter l'instance de
processus avec ou sans compensation.

Pour arréter I'instance de processus avec compensation :

PIID piid = processInstance.getID();
process.forceTerminate(piid, CompensationBehaviour.INVOKE _COMPENSATION);

Pour arréter I'instance de processus sans compensation :

PIID piid = processInstance.getID();

process.forceTerminate(piid);

Si vous arrétez l'instance de processus avec compensation, la compensation du
processus est exécutée comme si une erreur était survenue sur la portée de
niveau supérieur. Si vous arrétez l'instance de processus sans compensation,
Iinstance de processus est arrétée aussitot sans attendre que les activités en
cours, les taches a effectuer ou les tiches d’appel intégrées ne se terminent
normalement.

Les applications démarrées par le processus et les taches autonomes liées au
processus ne sont pas arrétées par la requéte d’arrét forcé. Si 'arrét de ces
applications est prévu, vous devez ajouter a I’application du processus les
déclarations destinées a mettre fin explicitement aux applications initiées par le
processus.

TAaches associées

(Gestion du cycle de vie d’un processus métier|

Une instance de processus est créé lorsqu’une méthode API de Business Process
Choreographer pouvant démarrer un processus est appelée. La navigation de
I'instance de processus continue jusqu’a ce que I'ensemble de ses activités se
trouvent a I’état final. Plusieurs actions peuvent étre entreprises sur l'instance de
processus afin de gérer son cycle de vie.

Suppression d’instances de processus :

Les instances de processus terminées sont automatiquement supprimées de la base
de données de Business Process Choreographer si la propriété correspondante est
définie pour le modeéle de processus dans le modéle de processus. Vous pouvez

314 Développement et déploiement

choisir de conserver les instances de processus dans votre base de données, par
exemple, pour rechercher des données relatives aux instances de processus qui ne
sont pas consignées dans le journal d’audit. Cependant, les données d’instance de
processus stockées n’ont pas seulement une incidence sur 'espace disque et les
performances mais elles empéchent la création d’instances de processus utilisant
les mémes valeurs d’ensembles de corrélation. Vous devez par conséquent
supprimer régulierement les données d’instances de processus de la base de
données.

A propos de cette tache

Pour supprimer une instance de processus, vous devez traiter les droits
d’administrateur et I'instance de processus doit étre une instance de processus de
niveau supérieur.

L’exemple suivant montre comment supprimer toutes les instances de processus
terminées.

Procédure

1. Répertoriez les instances de processus qui sont terminées.

QueryResultSet result =
process.query ("DISTINCT PROCESS_INSTANCE.PIID",
"PROCESS_INSTANCE.STATE =
PROCESS_INSTANCE.STATE.STATE_FINISHED",
(String)null, (Integer)null, (TimeZone)null);

Cette opération renvoie un ensemble de résultats de requéte qui répertorie les
instances de processus terminées.

2. Supprimez les instances de processus terminées.
while (result.next())

{
PIID piid = (PIID) result.getOID(1);
process.delete(piid);

}

Cette action supprime l'instance de processus sélectionnée et ses taches en ligne
de la base de données.

Taches associées

(Gestion du cycle de vie d"un processus métier|

Une instance de processus est créé lorsquune méthode API de Business Process
Choreographer pouvant démarrer un processus est appelée. La navigation de
I'instance de processus continue jusqu’a ce que I'ensemble de ses activités se
trouvent a 1’état final. Plusieurs actions peuvent étre entreprises sur 'instance de
processus afin de gérer son cycle de vie.

Traitement des activités humaines

Les activités humaines sont attribuées aux différentes personnes de votre
organisation par l'intermédiaire des tiches élémentaires. Au démarrage d'un
processus, des éléments de travail sont créés pour les propriétaires potentiels.

A propos de cette tache

Lorsqu’une activité humaine est activée, une instance d’activité et une tache a
effectuer associée sont créées en méme temps. Le traitement de 'activité humaine
et la gestion de 1’'élément de travail sont délégués a 1'application Human Task
Manager. Toute modification d’état au niveau de l'instance d’activité est reflétée
dans l'instance d’activité et inversement.

Chapitre 4. Développement d’applications client pour les taches et processus métier 315

Un propriétaire potentiel réclame l'activité. Cette personne est responsable de
fournir les informations pertinentes et de mener l'activité a terme.

Procédure

1. Répertoriez les activités appartenant a une personne connectée et qui sont
prétes a étre traitées :
QueryResultSet result =
process.query ("ACTIVITY.AIID",
"ACTIVITY.STATE = ACTIVITY.STATE.STATE_READY AND
ACTIVITY.KIND = ACTIVITY.KIND.KIND_STAFF AND
WORK_ITEM.REASON =
WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

(String)null, (Integer)null, (TimeZone)null);

Cette action renvoie un ensemble de résultats de requéte contenant les activités
pouvant étre gérées par la personne connectée.

2. Réclamez l'activité a gérer :
if (result.size() > 0)

result.first();

ATID aiid = (AIID) result.getOID(1);

ClientObjectWrapper input = process.claim(aiid);

DataObject activityInput = null ;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

activityInput = (DataObject)input.getObject();
// lire les valeurs

=
}

Une fois 'activité réclamée, le message d’entrée de 'activité est renvoyé.

3. Une fois la gestion de l'activité terminée, terminez celle-ci. L'activité peut se
terminer correctement, ou produire un message d’erreur. En cas de succes de
I'activité, un message de sortie est transmis. En cas d’échec de l'activité, celle-ci
est mise en état d’échec ou d’arrét et un message d’erreur est transmis. Vous
devez créer les messages appropriés pour ces opérations. Lorsque vous créez le
message, vous devez spécifier le nom de son type de message de maniere a ce
qu’il contienne la définition du message.

a. Pour terminer l'activité correctement, créez un message de sortie.
ActivityInstanceData activity = process.getActivityInstance(aiid);
ClientObjectWrapper output =

process.createMessage(aiid, activity.getOutputMessageTypeName());
DataObject myMessage = null ;

if (output.getObject()!= null && output.getObject() instanceof DataObject)
{
myMessage = (DataObject)output.getObject();
//définir les parties du message d'erreur, par exemple un numéro d'ordre
myMessage.setInt("OrderNo", 4711);
1

//fin de 1'activité
process.complete(aiid, output);

Cette opération définit un message de sortie contenant le numéro de
commande.

b. Pour terminer l'activité lorsque se produit une erreur, créez un message
d’erreur.

316 Développement et déploiement

//retrieve the faults modeled for the human task activity
List faultNames = process.getFaultNames(aiid);

//create a message of the appropriate type
ClientObjectWrapper myFault =
process.createMessage(aiid, faultNames.get(0));

// set the parts in your fault message, for example, an error number
DataObject myMessage = null ;
if (myFault.getObject()!= null && input.getObject() instanceof DataObject)

{
myMessage = (DataObject)myFault.getObject();
//set the parts in the message, for example, a customer name
myMessage.setInt("error",1304);

process.complete(aiid, myFault, (String)faultNames.get(0));

Cette action définit 'activité comme ayant 1’état en échec ou arrété. Si le
parametre continueOnError de 'activité contenue dans le modéle de
processus est défini sur la valeur true, l'activité est mise en état d’échec et la
navigation se poursuit. Si le parametre continueOnError est défini sur false
et que 'erreur n’est pas traitée dans la portée environnante, 'activité est
mise a 'état arrété. Lorsque l'activité se trouve dans cet état, elle peut étre
réparée via un arrét ou un redémarrage forcé.

TAaches associées

[Développement d’applications pour les processus métien]

Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la facon dont vous pourriez développer des
applications pour des actions typiques sur des processus.

Traitement d’un flux de travaux par une seule personne
Certains flux de travaux sont exécutés par une seule personne, par exemple une
commande d’ouvrages sur une librairie en ligne. Ce type de flux de travaux ne
comporte pas de chemins d’acces paralleles. L’API completeAndClaimSuccessor
prend en charge le traitement de ce type de flux de travaux.

A propos de cette tache

Dans une librairie en ligne, I'acheteur accomplit une série d’actions afin de
commander un ouvrage. Cette séquence d’actions peut étre implémentée comme
une série d’activités humaines (tiches a accomplir). Si I'acheteur décide de
commander plusieurs livres, cela équivaut a réclamer l'activité humaine suivante.
Ce type de flux de travaux est également appelé flux de pages du fait que les
définitions d’interface sont associées aux activités de contrdle portant sur le flux
des boites de dialogue dans l'interface utilisateur.

L’API complete AndClaimSuccessor effectue une activité humaine et demande la
suivante dans la méme instance de processus pour l'utilisateur connecté. L’API
renvoie ensuite les informations sur l’activité réclamée suivante, y compris le
message d’entrée a traiter. L’activité suivante étant disponible dans la méme
transaction que celle de I'activité terminée, le comportement transactionnel de
toutes les activités humaines du modele de processus doit étre défini sur
participates.

Comparez cet exemple avec celui qui utilise a la fois I’API de Business Flow
Manager et '’API de Human Task Manager.

Chapitre 4. Développement d’applications client pour les taches et processus métier 317

Procédure
1. Réclamez la premiére activité dans la séquence d’activités.

//

//Requéte portant sur la liste des activités pouvant étre réclamées par

//1'utilisateur connecté

QueryResultSet result =

process.query("ACTIVITY.AIID",
"PROCESS_INSTANCE.NAME = 'CustomerOrder' AND
ACTIVITY.STATE = ACTIVITY.STATE.STATE_READY AND
ACTIVITY.KIND = ACTIVITY.KIND.KIND_STAFF AND
WORK_ITEM.REASON =
WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

(String)null, (Integer)null, (TimeZone)null);

//

//Réclamer Ta premiére activité

//
if (result.size() > 0)

result.first();

AIID aiid = (AIID) result.getOID(1);

ClientObjectWrapper input = process.claim(aiid);

DataObject activityInput = null ;

if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

activityInput = (DataObject)input.getObject();
// lire les valeurs

=
}

Une fois l'activité réclamée, le message d’entrée de l'activité est renvoyé.

2. Une fois la gestion de l'activité terminée, terminez celle-ci et réclamez l'activité
suivante.

Pour terminer l'activité, un message de sortie est créé. Lorsque vous créez le
message de sortie, vous devez spécifier le nom de son type de message de
maniére a ce qu'il contienne la définition du message.
ActivityInstanceData activity = process.getActivityInstance(aiid);
ClientObjectWrapper output =

process.createMessage(aiid, activity.getOutputMessageTypeName());
DataObject myMessage = null ;
if (output.getObject()!= null && output.getObject() instanceof DataObject)
{

myMessage = (DataObject)output.getObject();
//définir les parties du message d'erreur, par exemple un numéro d'ordre
myMessage.setInt("OrderNo", 4711);

}

//Fin de 1'activité et réclamation de Ta suivante
CompleteAndCTaimSuccessorResult successor =
process.completeAndClaimSuccessor(aiid, output);

Cette opération définit un message de sortie contenant le numéro de
commande et réclame l'activité suivante de la séquence. Si AutoClaim est défini
pour les activités de succession et que plusieurs chemins d’acces peuvent étre
utilisés, toutes les activités de succession sont réclamées et une activité aléatoire
est renvoyée en tant qu’activité suivante. Si aucune activité de succession
supplémentaire ne peut étre affectée a cet utilisateur, la valeur Null est
renvoyée.

Si le processus contient des chemins paralleles pouvant étre suivis, que ces
chemins contiennent des activités humaines et que 'utilisateur connecté est le

318 Développement et déploiement

propriétaire potentiel de plusieurs de ces activités, une activité aléatoire est
automatiquement réclamée et renvoyée comme activité suivante.

3. Traitement de l'activité suivante.
String name = successor.getActivityName();
ClientObjectWrapper nextInput = successor.getInputMessage();

if (nextInput.getObject()!=
null && nextInput.getObject() instanceof DataObject)
{

activityInput = (DataObject)input.getObject();
// Tire les valeurs

L

aiid = successor.getAIID();
4. Poursuivez a l’étape 2 pour terminer l'activité.
Taches associées

[Développement d’applications pour les processus métien]

Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la facon dont vous pourriez développer des
applications pour des actions typiques sur des processus.

Traitement par une seule personne d’un flux de travaux contenant des tiches|
utilisateur|

Certains flux de travaux sont exécutés par une seule personne, par exemple une
commande d’ouvrages sur une librairie en ligne. Cet exemple démontre comment
implémenter sous forme d'une série d’activités humaines (taches a effectuer) la
séquence d’actions nécessaires pour commander un livre. Les API de Business
Flow Manager et Human Task Manager sont toutes les deux utilisées pour traiter
le flux de travaux.

Envoi d’un message a une activité en attente

Les activités de messages entrants (également appelées activités de réception,
onMessage dans des activités de sélection, onEvent dans les gestionnaires
d’événements) peuvent étre utilisées pour synchroniser un processus d’exécution
avec des événements du "monde extérieur”. Par exemple, la réception d'un
courrier électronique provenant d'un client en réponse a une demande
d’informations peut correspondre a ce type d’événement.

A propos de cette tache
Vous pouvez utiliser des taches d’origine pour envoyer le message a l'activité.

Procédure

1. Répertoriez les modeéles de services d’activité attendant un message de
l'utilisateur connecté dans une instance de processus avec un ID d’instance de
processus spécifique.

ActivityServiceTemplateData[] services = process.getWaitingActivities(piid);

2. Envoyez un message au premier service en attente.

On suppose que le premier service est celui que vous souhaitez servir.
L’appelant doit étre un démarreur potentiel de ’activité recevant le message ou
un administrateur de l'instance de processus.

VTID vtid = services[0].getServiceTemplateID();
ATID atid = services[0].getActivityTemplateID();
String inputType = services[0].getInputMessageTypeName();

Chapitre 4. Développement d’applications client pour les taches et processus métier 319

// créer un message pour le service & appeler
ClientObjectWrapper message =
process.createMessage(vtid,atid,inputMessageTypeName) ;
DataObject myMessage = null;
if (message.getObject()!= null && message.getObject() instanceof DataObject)

myMessage = (DataObject)message.getObject();
//set the strings in the message, for example, chocolate is to be ordered
myMessage.setString("Order", "chocolate");

}

// envoi du message & 1'activité en attente

process.sendMessage(vtid, atid, message);
1
Cette opération envoie le message spécifié au service d’activité en attente et
transfere certaines données de commande.

Vous pouvez également spécifier I'identifiant de I'instance de processus afin de
veiller a ce que le message soit envoyé a l'instance de processus spécifiée. Si
I'identifiant de I'instance de processus n’est pas spécifié, le message est envoyé
au service d’activité et a I'instance de processus identifiée par les valeurs de
corrélation du message. Si l'identifiant de 1'instance de processus est spécifié,
lIinstance de processus trouvée a l'aide des valeurs de corrélation est vérifiée
afin de veiller a ce qu’elle possede bien l'identifiant de 1'instance de processus
spécifiée.

Taches associées

[Développement d’applications pour les processus métier]

Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la fagcon dont vous pourriez développer des
applications pour des actions typiques sur des processus.

Gestion des événements

L’ensemble d’'un processus métier et chacune de ses portées peuvent étre associés a
es gestionnaires d’événements qui sont appelés si I'événement associé se produit.

d t d’ t t 1 I t duit
es gestionnaires d’événements sont similaires aux activités de réception ou de

L t d’ t t 1 tivités d t d

sélection en cela qu'un processus peut fournir des opérations de service Web a

l'aide de gestionnaires d’événements.

A propos de cette tache

Vous pouvez appeler un gestionnaire d’événements autant de fois que vous le
souhaitez tant que la portée correspondante est en cours d’exécution. Par ailleurs,
plusieurs instances d’un gestionnaire d’événements peuvent étre activées en méme
temps.

Le fragment de code suivant montre comment obtenir les gestionnaires
d’événements actifs pour une instance de processus donnée et comment envoyer
un message d’entrée.

Procédure

1. Déterminez les données de l'identifiant d’instance de processus et répertoriez
les gestionnaires d’événements actifs pour le processus.

ProcessInstanceData processInstance =
process.getProcessInstance("CustomerOrder2711");
EventHandlerTemplateData[] events = process.getActiveEventHandlers(
processInstance.getID());

2. Envoyez le message d’entrée.

320 Développement et déploiement

Cet exemple utilise le premier gestionnaire d’événements trouvé.

EventHandlerTemplateData event = null;

if (events.length > 0)

{
event = events[0];
// créer un message pour le service a appeler
ClientObjectWrapper input = process.createMessage(
event.getID(), event.getInputMessageTypeName());

if (input.getObject() !'= null && input.getObject() instanceof DataObject)
{

DataObject inputMessage = (DataObject)input.getObject();

// définir le contenu du message, par exemple, un nom de client, numéro
de commande

inputMessage.setString("CustomerName", "Smith");
inputMessage.setString("OrderNo", "2711");

// envoyer le message
process.sendMessage(event.getProcessTemplateName(),
event.getPortTypeNamespace(),
event.getPortTypeName(),
event.getOperationName(),
input);
}
}

Cette opération envoie le message spécifié au gestionnaire d’événements actif
pour le processus.

TAaches associées

[Développement d’applications pour les processus métier|

Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la facon dont vous pourriez développer des
applications pour des actions typiques sur des processus.

Analyse des résultats d’un processus

Un processus peut afficher des opérations de services Web modélisées sous forme
d’opérations WSDL (Web Services Description Language) asynchrones ou de type
requéte-réponse. Les résultats des processus interruptibles a interface
unidirectionnelle ne peuvent étre obtenus par la méthode getOutputMessage, car
ces processus ne produisent pas de résultat. Cependant, vous pouvez interroger le
contenu des variables.

A propos de cette tache

Les résultats du processus ne sont stockés dans la base de données que si le
modele de processus dont dérive I'instance de processus ne spécifie pas une
suppression automatique des instances de processus dérivées.

Procédure

Analysez les résultats des processus. Vérifiez par exemple le numéro de
commande.

QueryResultSet result = process.query
("PROCESS_INSTANCE.PIID",
"PROCESS_INSTANCE.NAME = 'CustomerOrder' AND
PROCESS_INSTANCE.STATE =
PROCESS_INSTANCE.STATE.STATE_FINISHED",
(String)null, (Integer)null, (TimeZone)null);
if (result.size() > 0)

Chapitre 4. Développement d’applications client pour les tiches et processus métier 321

result.first();

PIID piid = (PIID) result.getOID(1);

ClientObjectWrapper output = process.getOutputMessage(piid);

DataObject myOutput = null;

if (output.getObject() !'= null && output.getObject() instanceof DataObject)
{

myOutput (DataObject)output.getObject();
int order = myOutput.getInt("OrderNo");
}

}

Taches associées

[Développement d’applications pour les processus métier|

Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la fagon dont vous pourriez développer des
applications pour des actions typiques sur des processus.

Réparation d’activités

Un processus de longue durée peut contenir des activités dont 1’exécution est
également longue. Ces activités peuvent rencontrer des erreurs non interceptées et
se trouver ainsi a l’état arrété. Une activité a I'état actif peut également sembler ne
plus répondre. Dans les deux cas, un administrateur de processus peut intervenir
sur l'activité de plusieurs manieres afin que la navigation du processus puisse se
poursuivre.

A propos de cette tache

L’API de Business Process Choreographer propose les méthodes de réparation
d’activité forceRetry et forceComplete. Plusieurs exemples illustrent 1'ajout et la
réparation d’actions pour des activités de vos applications.

TAaches associées

[Développement d’applications pour les processus métier|

Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la fagon dont vous pourriez développer des
applications pour des actions typiques sur des processus.

[Forcer une activité a se terminer|

Les activités situées dans des processus de longue durée rencontrent parfois des
erreurs. Si ces erreurs ne sont pas interceptes par un gestionnaire d’erreurs dans la
portée et si le modeéle d’activité associé spécifie que l'activité doit s’arréter
lorsqu'une erreur se produit, l’activité est mise a 1’état arrété de maniére a pouvoir
étre réparée. Dans cet état, vous pouvez forcer l'activité a se terminer.

Nouvelle tentative d’exécution d’une activité arrétéel

Si une activité d'un processus de longue durée rencontre une erreur non
interceptée dans la portée et si le modele d’activité associé spécifie que l'activité
doit s’arréter lorsqu’une erreur se produit, ’activité est mise a 1’état arrété de
maniere a pouvoir étre réparée. Vous pouvez tenter d’exécuter a nouveau l'activité.

Forcer une activité a se terminer :

Les activités situées dans des processus de longue durée rencontrent parfois des
erreurs. Si ces erreurs ne sont pas interceptes par un gestionnaire d’erreurs dans la
portée et si le modéle d’activité associé spécifie que l'activité doit s’arréter
lorsqu’une erreur se produit, I'activité est mise a I'état arrété de maniére a pouvoir
étre réparée. Dans cet état, vous pouvez forcer l'activité a se terminer.

322 Développement et déploiement

A propos de cette tache

Vous pouvez également forcer 'achevement des activités en cours d’exécution si,
par exemple, une activité ne répond pas.

Des exigences supplémentaires existent pour certains types d’activités.
y

Activités humaines
Vous pouvez transmettre des parametres dans I'appel forcer a terminer,
comme le message qui aurait du étre envoyé ou l'erreur qui aurait dé étre
détectée.

Activités de script
Vous ne pouvez pas transmettre de parametres dans 1’appel forcer a
terminer. Cependant, vous devez définir les variables qui doivent étre
réparées.

Activités d’appel
Vous pouvez également forcer 1’achévement des activités d’appel appelant
un service asynchrone qui n’est pas un sous-processus si ces activités sont
dans ’état en cours d’exécution. Vous pouvez en avoir besoin, par
exemple, si le service asynchrone est appelé et ne répond pas.

Procédure
1. Répertoriez les activités arrétées qui se trouvent a 1’état arrété.

QueryResultSet result =
process.query ("DISTINCT ACTIVITY.AIID",
"ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND
PROCESS_INSTANCE.NAME='CustomerOrder'",
(String)null, (Integer)null, (TimeZone)null);

Cette opération renvoie les activités arrétées pour l'instance de processus
CustomerOrder.

2. Achevez l'activité ; une activité humaine arrétée, par exemple.
Dans cet exemple, un message de sortie est transmis.

if (result.size() > 0)
{
result.first();
ATIID aiid = (AIID) result.getOID(1);
ActivityInstanceData activity = process.getActivityInstance(aiid);
ClientObjectWrapper output =
process.createMessage(aiid, activity.getOutputMessageTypeName());
DataObject myMessage = null;
if (output.getObject()!= null && output.getObject() instanceof DataObject)
{
myMessage = (DataObject)output.getObject();
//set the parts in your message, for example, an order number
myMessage.setInt("OrderNo", 4711);

boolean continueOnError = true;

process.forceComplete(aiid, output, continueOnError);
}
Cette action effectue l'activité. Si une erreur survient, le parametre
continueOnError détermine 'action a entreprendre en cas d’erreur lors du
traitement de la requéte forceComplete.

Dans 'exemple, continueOnError est vrai. Cette valeur signifie que si une
erreur se produit, I'activité est mise a I'état d’échec. L’erreur se propage aux

Chapitre 4. Développement d’applications client pour les taches et processus métier 323

portées de l'activité jusqu’a ce qu’elle soit gérée ou que la portée du processus
soit atteinte. Le processus est alors mis a 1’état d’échec en cours avant
d’atteindre finalement I'état d’échec.

Taches associées

[Réparation d’activités|

Un processus de longue durée peut contenir des activités dont 1’exécution est
également longue. Ces activités peuvent rencontrer des erreurs non interceptées et
se trouver ainsi a I'état arrété. Une activité a 'état actif peut également sembler ne
plus répondre. Dans les deux cas, un administrateur de processus peut intervenir
sur l'activité de plusieurs manieres afin que la navigation du processus puisse se
poursuivre.

Nouvelle tentative d’exécution d’une activité arrétée :

Si une activité d’un processus de longue durée rencontre une erreur non
interceptée dans la portée et si le modele d’activité associé spécifie que l'activité
doit s’arréter lorsqu’une erreur se produit, 'activité est mise a 1’état arrété de
maniere a pouvoir étre réparée. Vous pouvez tenter d’exécuter a nouveau l'activité.

A propos de cette tiche

Vous pouvez définir des variables utilisées par l'activité. a 'exception des activités
de script, vous pouvez également transmettre des parametres dans l’appel forcer la
nouvelle tentative, comme le message qui était attendu par l'activité.

Procédure
1. Répertoriez les activités arrétées.

QueryResultSet result =
process.query ("DISTINCT ACTIVITY.AIID",
"ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND
PROCESS_INSTANCE.NAME='CustomerOrder'",
(String)null, (Integer)null, (TimeZone)null);

Cette opération renvoie les activités arrétées pour l'instance de processus
CustomerOrder.

2. Tentez a nouveau d’exécuter I'activité, une activité humaine, par exemple.

if (result.size() > 0)
{
result.first();
AIID aiid = (AIID) result.getOID(1);
ActivityInstanceData activity = process.getActivityInstance(aiid);
ClientObjectWrapper input =
process.createMessage(aiid, activity.getOutputMessageTypeName());
DataObject myMessage = null;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{
myMessage = (DataObject)input.getObject();
//set the strings in your message, for example, chocolate is to be ordered
myMessage.setString("OrderNo", "chocolate");

}

boolean continueOnError = true;

process.forceRetry(aiid, input, continueOnError);
}
Cette opération tente a nouveau d’exécuter l'activité. Si une erreur se produit,
le parameétre continueOnError détermine I'action a entreprendre en cas d’erreur
lors du traitement de la requéte forceRetry.

324 Développement et déploiement

Dans 'exemple, continueOnError est vrai. Cela signifie que si une erreur se
produit durant le traitement de la requéte forceRetry, l'activité est mise en état
échec. L’erreur se propage aux portées de 'activité jusqu’a ce qu’elle soit gérée
ou que la portée du processus soit atteinte. Le processus est alors mis a 1’état
d’échec en cours, puis un gestionnaire d’erreur au niveau du processus est
exécuté avant que le processus n’atteigne I'état d’échec.

TAaches associées

[Réparation d’activités|

Un processus de longue durée peut contenir des activités dont 1’exécution est
également longue. Ces activités peuvent rencontrer des erreurs non interceptées et
se trouver ainsi a I'état arrété. Une activité a 'état actif peut également sembler ne
plus répondre. Dans les deux cas, un administrateur de processus peut intervenir
sur l'activité de plusieurs manieres afin que la navigation du processus puisse se
poursuivre.

Interface BusinessFlowManagerService
L’interface BusinessFlowManagerService permet 1’acces aux fonctions de processus
métier pouvant étre appelées par une application client.

Les méthodes pouvant étre appelées par I'intermédiaire de l'interface
BusinessFlowManagerService varient selon 1'état du processus ou de l'activité et
des droits d’acces de 'utilisateur de 1’application qui contient la méthode. Les
méthodes principales de manipulation des objets de processus métier sont
répertoriées dans cette rubrique. Plus plus d’information sur ces méthodes et
d’autres méthodes fournies par l'interface BusinessFlowManagerService, consultez
Javadoc dans le package com.ibm.bpe.api.

Modeles de processus

Le modele de processus est un exemple de processus mis a niveau, déployé et
installé contenant la spécification d"un processus métier. Vous pouvez l'instancier
et le démarrer en lancant les demandes appropriées, par exemple, sendMessage().
L’exécution de l'instance de processus est automatiquement gérée par le serveur.

Tableau 41. Méthodes API pour les modéles de processus

Méthode Description

getProcessTemplate Extrait le modele de processus spécifié.

queryProcessTemplates Extrait des modéles de processus stockés
dans la base de données.

Traitement d’instances

Les méthodes API suivantes sont liées au démarrage des instances de processus.

Tableau 42. Les méthodes API sont liées au démarrage des instances de processus.

Méthode Description
call Crée et exécute un microflux.
callWithReplyContext Crée et exécute un microflux avec un service

a démarrage unique ou un processus longue
durée provenant du modele de processus
spécifié. L’appel attend le renvoi du résultat
en mode asynchrone.

Chapitre 4. Développement d’applications client pour les taches et processus métier 325

Tableau 42. Les méthodes API sont lies au démarrage des instances de processus. (suite)

Méthode Description

callWithUISettings Crée et exécute un processus et renvoie le
message de sortie et les parametres de
I'interface utilisateur (UI) du client.

initiate Crée et exécute une instance de processus et
démarre son traitement. Cette méthode est
adaptée aux processus longue durée. Vous
pouvez également appliquer cette méthode
aux microflux destinés a étre déclenchés,
puis laissés sans surveillance.

sendMessage Envoie le message spécifié au service
d’activité et a I'instance de processus
spécifiés. Si une instance de processus
possédant les mémes valeurs que 1’ensemble
de corrélations n’existe pas, celle-ci est créée.
Le processus peut posséder des services de
démarrage uniques ou non.

getStartActivities Renvoie des informations sur les activités
qui peuvent démarrer une instance de
processus a partir du modele de processus
spécifié.

getActivityServiceTemplate Extrait le modele de service de 'activité
spécifiée.

Tableau 43. Méthodes API pour le contréle du cycle de vie des instances de processus

Méthode Description

suspend Met en suspens l'exécution d’une instance
de processus de longue durée, de niveau
supérieur se trouvant a 1’état d’échec en
cours ou d’exécution en cours.

resume Reprend I'exécution d'une instance de
processus de longue durée, de niveau
supérieur se trouvant a 1’état mis en
suspens.

restart Redémarre une instance de processus de
longue durée, de niveau supérieur se
trouvant a 1’état terminé, échoué ou arrété.

forceTerminate Termine l'instance de processus de niveau
supérieur spécifiée, ses sous-processus avec
autonomie enfant et ses activités en cours
d’exécution, réclamées, ou en attente

delete Supprime l'instance de processus de niveau
supérieur spécifiée et ses sous-processus
avec autonomie enfant.

query Extrait a partir de la base de données les
propriétés correspondant aux criteres de
recherche.

Activités

Pour les activités d’appel, vous pouvez spécifier dans le modele de processus que
ces activités doivent continuer dans des situations d’erreur. Si I'indicateur

326 Développement et déploiement

continueOnError est défini sur false et qu'une erreur non gérée survient, l'activité
passe a l’état arrété. L’administrateur du processus peut ensuite réparer l'activité .
L’indicateur continueOnError et les fonctions de réparation associées peuvent étre
utilisés, par exemple, pour un processus de longue durée ou les activités d’appel
échouent occasionnellement mais ot I’effort requis pour modéliser la compensation
et la gestion des erreurs est trop important.

Les méthodes suivantes sont disponibles pour l'utilisation et la réparation des

activités.

Tableau 44. Méthodes API pour le contrdle du cycle de vie des instances d’activité

Méthode Description

claim Réclame une instance d’activité préte pour
permettre a un utilisateur d’utiliser I'activité.

cancelClaim Annule la réclamation de l'instance
d’activité.

complete Termine l'instance d’activité.

completeAndClaimSuccessor

Effectue une instance d’activité et demande
la suivante dans la méme instance de
processus pour l'utilisateur connecté.

forceComplete

Force I’exécution des éléments suivants :

e Une instance d’activité se trouvant a 1’état
en cours d’exécution ou arrété.

e Une activité de tache utilisateur se
trouvant a 1’état prét ou réclamé.

e Une attente d’attente se trouvant a 1’état
en attente.

forceRetry

Force la répétition des éléments suivants :
* Une instance d’activité se trouvant a I’état
en cours d’exécution ou arrété.

* Une activité de tache utilisateur se
trouvant a 1’état prét ou réclamé.

query

Extrait a partir de la base de données les
propriétés correspondant aux criteres de
recherche.

Variables et propriétés personnalisées

L’interface fournit une méthode get et une méthode set pour 'extraction et la
définition de valeurs pour les variables. Vous pouvez aussi associer les propriétés
mentionnées aux instances de processus et d’activité et les en extraire. Le noms de
propriétés personnalisées et des valeurs doivent étre de type java.lang.String.

Tableau 45. Méthodes API pour les variables et les propriétés personnalisées

Méthode Description

getVariable Extrait la variable spécifiée.

setVariable Définit la variable spécifiée.

getCustomProperty Extrait la propriété personnalisée indiquée
de l'activité ou instance de processus
indiqué.

Chapitre 4. Développement d’applications client pour les taches et processus métier 327

Tableau 45. Méthodes API pour les variables et les propriétés personnalisées (suite)

Méthode

Description

getCustomProperties

Extrait les propriétés personnalisées de
l'activité ou de l'instance de processus
indiquée.

getCustomPropertyNames

Extrait les noms des propriétés
personnalisées pour l'instance d’activité ou
de processus spécifiée.

setCustomProperty

Stocke les valeurs spécifiques aux propriétés
personnalisées correspondant a l'instance
d’activité ou de processus spécifiée.

Développement d’applications pour des taches utilisateur

Une tache représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des taches utilisateur sont fournis.

A propos de cette tache

Pour plus d’informations concernant ’API de Human Task Manager, voir la
documentation Java dans le package com.ibm.task.api.

328 Développement et déploiement

Taches associées

Développement d’applications client EJB pour des processus métier et des taches|
utilisateur]|

Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d'utiliser des processus métier
et des taches utilisateur installées sur WebSphere Process Server.

[Démarrage d’une tache d’appel qui appelle une interface synchrone|

Une tache d’appel est associée au composant SCA (Service Component
Architecture). Une fois la tiche démarrée, elle appelle le composant SCA. Ne
démarrez une tache d’appel synchrone que si le composant SCA associé peut étre
appelé de maniere synchrone.

IDémarrage d’une tache d’appel qui appelle une interface asynchrone|

Une tache d’appel est associée au composant SCA (Service Component
Architecture). Une fois la tiche démarrée, elle appelle le composant SCA. Ne
démarrez une tache d’appel asynchrone que si le composant SCA associé peut étre
appelé de maniere asynchrone.

(Création et lancement d’une instance de tachel

Ce scénario indique comment créer une instance de modele de tache permettant de
définir une tache de collaboration (également appelée tiche utilisateur et de
démarrer l'instance de tache.

[Traitement des taches a effectuer ou des tiches de collaboration|

Les taches a effectuer (également appelées tiches de participation dans I’API) ou les
taches de collaboration (également appelées tiches utilisateur dans 1’API) sont
attribuées a diverses personnes de votre organisation par le biais des éléments de
travail. Les taches a effectuer et leurs éléments de travail associés sont créés, par
exemple, lorsqu’un processus navigue jusqu’a une activité humaine.

[Mise en suspens et reprise d’une instance de tache|

Vous pouvez interrompre les instances de tache de collaboration (également
appelées tiches utilisateur dans 1’API) ou les instances de tache a effectuer
(également appelées tdches de participation dans 1’API).

[Analyse des résultats d’une tache|

Une tache a effectuer (également appelée tache de participation dans I’API) ou une
tache de collaboration (également appelée tiche utilisateur dans 1’API) fonctionne de
maniere asynchrone. Si un gestionnaire de réponses est indiqué lors du démarrage
d’une tache, le message de sortie est automatiquement retourné a la fin de celle-ci.
Dans le cas contraire, le message doit étre extrait explicitement.

[Arrét d’une instance de tache]

I s’avere parfois nécessaire pour quelqu'un disposant de droits d’administration
d’arréter une instance de tache dans un état irrécupérable. Etant donné qu’une
instance de tiche s’arréte instantanément, cette opération ne doit étre exécutée que
dans des situations exceptionnelles.

Suppression d’instances de tachd

Les instances de tache ne sont automatiquement supprimées que lorsqu’elles sont
terminées, a condition que cela soit spécifié dans le modele de tache associé dont
dérivent les instances. Cet exemple montre comment supprimer toutes les instances
de tache qui sont terminées mais ne sont pas supprimées automtiquement.

[Libération d’une tache réclamée]

Lorsqu'un propriétaire potentiel réclame une tache, il lui incombe de mener la
tache a son terme. Toutefois, certaines taches réclamées doivent étre libérées pour
afin qu'un autre propriétaire potentiel puisse la réclamer a son tour.

Gestion des taches élémentaires|
Durant la durée de vie d'une instance d’activité ou de tache, I'ensemble des
personnes associées a ’objet peut changer, par exemple, si une personne est en

Chapitre 4. Développement d’applications client pour les taches et processus métier 329

congé, si de nouvelles personnes sont engagées ou si la charge de travail doit étre
redistribuée. Pour autoriser ces modifications, vous devez développer des
applications afin de créer, supprimer ou transférer les taches élémentaires.

[Création de modeles de tache et d’instances de tache a I'exécution|

Un outil de modélisation, comme WebSphere Integration Developer, permet
habituellement de compiler des modeles de tache. Vous installez les modeles de
tache dans WebSphere Process Server et créez des instances a partir de ces modeles
en utilisant, par exemple, Business Process Choreographer Explorer. Cependant,
vous pouvez également créer des instances de tache utilisateur ou de participation
lors de I'exécution.

Référence associée

[nterface HumanTaskManagerService|
L’interface HumanTaskManagerService permet 1’acces aux fonctions relatives aux
taches pouvant étre appelées par des clients locaux ou distants.

Démarrage d’une tache d’appel qui appelle une interface
synchrone

Une tache d’appel est associée au composant SCA (Service Component
Architecture). Une fois la tiche démarrée, elle appelle le composant SCA. Ne
démarrez une tache d’appel synchrone que si le composant SCA associé peut étre
appelé de maniere synchrone.

A propos de cette tache

Un tel composant SCA peut, par exemple, étre implémenté en tant que microflux
ou en tant que classe Java simple.

Ce scénario crée une instance d’un modele de tache et transmet certaines données
client. La tache reste a l'état actif jusqu’a la fin de I'opération bidirectionnelle. Le
résultat de la tache, OrderNo, est renvoyé a 'appelant.

Procédure

1. Facultatif : Répertoriez les modeéles de tache pour trouver le nom de la tache
d’appel que vous voulez exécuter.

Cette étape est facultative si vous connaissez déja le nom de la tache.

TaskTemplate[] taskTemplates = task.queryTaskTemplates
("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND _ORIGINATING",
"TASK_TEMPL.NAME",

new Integer(50),

(TimeZone)null);

Les résultats sont classés par nom. La requéte renvoie un tableau contenant les
50 premiers modeles d’origine classés.

2. Créez un message d’entrée pour le type approprié.
TaskTemplate template = taskTemplates[0];

// créer un a message pour la tache sélectionnée

ClientObjectWrapper input = task.createInputMessage(template.getID());
DataObject myMessage = null ;

if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)input.getObject();
//définir les parties du message, par exemple, un nom de client
myMessage.setString("CustomerName", "Smith");

}

3. Créez la tache et exécutez la tache de facon synchrone.

330 Développement et déploiement

Pour qu’une tache s’exécute de facon synchrone, il doit s’agir d’une opération
bidirectionnelle. L’exemple utilise la méthode createAndCallTask pour créer et
exécuter la tache.

ClientObjectWrapper output = task.createAndCallTask(template.getName(),
template.getNamespace(),
input);

4. Analysez le résultat de la tache.

DataObject myOQutput = null;
if (output.getObject() !'= null && output.getObject() instanceof DataObject)
{
myOutput = (DataObject)output.getObject();
int order = myOutput.getInt("OrderNo");
1

TAaches associées

[Développement d’applications pour des taches utilisateur|

Une tache représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des taches utilisateur sont fournis.

Démarrage d’une tache d’appel qui appelle une interface
asynchrone

Une tache d’appel est associée au composant SCA (Service Component
Architecture). Une fois la tiche démarrée, elle appelle le composant SCA. Ne
démarrez une tache d’appel asynchrone que si le composant SCA associé peut étre
appelé de maniere asynchrone.

A propos de cette tache

Un tel composant SCA peut, par exemple, étre implémenté en tant que processus a
long terme ou en tant qu’opération unidirectionnelle.

Ce scénario crée une instance d’un modeéle de tache et transmet certaines données
client.

Procédure

1. Facultatif : Répertoriez les modeéles de tache pour trouver le nom de la tache
d’appel que vous voulez exécuter.

Cette étape est facultative si vous connaissez déja le nom de la tache.

TaskTemplate[] taskTemplates = task.queryTaskTemplates
("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_ORIGINATING",
"TASK_TEMPL.NAME",

new Integer(50),
(TimeZone)null);

Les résultats sont classés par nom. La requéte renvoie un tableau contenant les
50 premiers modeles d’origine classés.

2. Créez un message d’entrée pour le type approprié.
TaskTemplate template = taskTemplates[0];

// créer un a message pour la tdche sélectionnée
ClientObjectWrapper input = task.createInputMessage(template.getID());
DataObject myMessage = null ;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{
myMessage = (DataObject)input.getObject();
//définir les parties du message, par exemple, un nom de client
myMessage.setString("CustomerName", "Smith");

Chapitre 4. Développement d’applications client pour les taches et processus métier 331

3. Créez la tache et exécutez-la de fagon asynchrone.
L’exemple utilise la méthode createAndStartTask pour créer et exécuter la
tache.

task.createAndStartTask(template.getName(),
template.getNamespace(),
input,
(ReplyHandlerWrapper)null);

TAaches associées

[Développement d’applications pour des taches utilisateur|

Une tache représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des taches utilisateur sont fournis.

Création et lancement d’une instance de tache

Ce scénario indique comment créer une instance de modele de tache permettant de
définir une tache de collaboration (également appelée tiche utilisateur et de
démarrer l'instance de tache.

Procédure

1. Facultatif : Répertoriez les modéles de tache pour trouver le nom de la tache de
collaboration que vous voulez exécuter.

Cette étape est facultative si vous connaissez déja le nom de la tache.

TaskTemplate[] taskTemplates = task.queryTaskTemplates
("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_HUMAN",
"TASK_TEMPL.NAME",
new Integer(50),
(TimeZone)null);
Les résultats sont classés par nom. La requéte renvoie un tableau contenant les
50 premiers modeles de tache classés.

2. Créez un message d’entrée pour le type approprié.
TaskTemplate template = taskTemplates[0];

// créer un a message pour la tdche sélectionnée

ClientObjectWrapper input = task.createInputMessage(template.getID());
DataObject myMessage = null ;

if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)input.getObject();
//définir les parties du message, par exemple, un nom de client
myMessage.setString("CustomerName", "Smith");
1
3. Création et démarrage de la tache de collaboration (aucun gestionnaire de
réponse n’est spécifié dans cet exemple).

L’exemple utilise la méthode createAndStartTask pour créer et démarrer la
tache.
TKIID tkiid = task.createAndStartTask(template.getName(),
template.getNamespace(),
input,
(ReplyHandlerWrapper)null);
Des éléments de travail sont créés pour les personnes concernées par l'instance
de tache. Un propriétaire potentiel, par exemple, peut réclamer la nouvelle
instance de tache.

4. Réclamation de l'instance de tache.

ClientObjectWrapper input2 = task.claim(tkiid);
DataObject taskInput = null ;
if (input2.getObject()!= null && input2.getObject() instanceof DataObject)

332 Développement et déploiement

{
taskInput = (DataObject)input2.getObject();
// lire les valeurs
}
Une fois l'instance de tache réclamée, le message d’entrée de la tache est
renvoyeé.
TAaches associées

IDéveloppement d’applications pour des taches utilisateur|

Une tache représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des taches utilisateur sont fournis.

Traitement des taches a effectuer ou des taches de collaboration
Les taches a effectuer (également appelées tiches de participation dans I’API) ou les
taches de collaboration (également appelées tiches utilisateur dans 1’API) sont
attribuées a diverses personnes de votre organisation par le biais des éléments de
travail. Les taches a effectuer et leurs éléments de travail associés sont créés, par
exemple, lorsqu’un processus navigue jusqu’a une activité humaine.

A propos de cette tache

L’un des propriétaires potentiels réclame la tache associée a 1'élément de travail.
Cette personne est responsable de fournir les informations pertinentes et de mener
la tache a terme.

Procédure

1. Répertoriez les taches appartenant a une personne connectée qui sont prétes a
étre effectuées.
QueryResultSet result =
task.query ("TASK.TKIID",
"TASK.STATE = TASK.STATE.STATE_READY AND
(TASK.KIND = TASK.KIND.KIND_PARTICIPATING OR
TASK.KIND = TASK.KIND.KIND_HUMAN)AND
WORK_ITEM.REASON =
WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",
(String)null, (Integer)null, (TimeZone)null);

Cette opération renvoie un ensemble de résultats de requéte contenant les
taches pouvant étre effectuées par la personne connectée.

2. Réclamez la tache a effectuer.

if (result.size() > 0)
{

result.first();

TKIID tkiid = (TKIID) result.getOID(1);

ClientObjectWrapper input = task.claim(tkiid);

DataObject taskInput = null ;

if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

taskInput = (DataObject)input.getObject();
// lire les valeurs

=
}

Une fois la tache réclamée, le message d’entrée de la tache est renvoyé.
3. Une fois le travail de la tache effectué, terminez la tache.

La tache peut se terminer correctement ou par un message d’erreur. Si la tache
s’exécute correctement, un message de sortie est transmis. Si la tache ne

Chapitre 4. Développement d’applications client pour les taches et processus métier 333

s’exécute pas correctement, un message d’erreur est transmis. Vous devez créer
les messages appropriés pour ces opérations.

a. Pour terminer la tache correctement, créez un message de sortie.

ClientObjectWrapper output =
task.createQutputMessage(tkiid);
DataObject myMessage = null ;
if (output.getObject()!= null && output.getObject() instanceof DataObject)
{
myMessage = (DataObject)output.getObject();
//set the parts in your message, for example, an order number
myMessage.setInt("OrderNo", 4711);
}

//fin de la tache
task.complete(tkiid, output);

Cette opération définit un message de sortie contenant le numéro de
commande. La tache est mise a l'état terminé.

b. Pour terminer la tache lorsque se produit une erreur, créez un message
d’erreur.

//retrieve the faults modeled for the task List faultNames =
task.getFaultNames (tkiid);
ListfaultNames input = task.getFaultNames(tkiid);

//create a message of the appropriate type
ClientObjectWrapper myFault =
task.createFaultMessage(tkiid, (String)faultNames.get(0));

// définir les parties du message d'erreur, par exemple un numéro d'erreur
DataObject myMessage = null ;
if (myFault.getObject()!= null && input.getObject() instanceof DataObject)
{
myMessage = (DataObject)myFault.getObject();
//définir les parties du message, par exemple, un nom de client
myMessage.setInt("error",1304);

}

task.complete(tkiid, (String)faultNames.get(0), myFault);

Cette action définit un message d’erreur qui contient le code d’erreur. La
tache est mise a I'état d’échec.

Taches associées

[Développement d’applications pour des taches utilisateur]

Une tache représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des taches utilisateur sont fournis.

Mise en suspens et reprise d’une instance de tache

Vous pouvez interrompre les instances de tache de collaboration (également
appelées tiches utilisateur dans 1’API) ou les instances de tache a effectuer
(également appelées tdches de participation dans 1’API).

Avant de commencer
L’instance de tache peut se trouver a l'état prét ou réclamé. Elle peut étre

transférée a un niveau supérieur. L’appelant doit étre le propriétaire, I'émetteur ou
I'administrateur de I'instance de tache.

334 Développement et déploiement

A propos de cette tache

Vous pouvez mettre une instance de tache en suspens durant son exécution. Il peut
également étre souhaitable d’effectuer cette opération dans le but de recueillir des
informations nécessaires pour achever la tache. Une fois ces informations
disponibles, vous pouvez reprendre 'exécution de l'instance de tache.

Procédure
1. Obtention de la liste des taches réclamées par l'utilisateur connecté.

QueryResultSet result = task.query("DISTINCT TASK.TKIID",
"TASK.STATE = TASK.STATE.STATE_CLAIMED",
(String)null,
(Integer)null,
(TimeZone)null);

Cette opération renvoie un ensemble de résultats de requéte contenant une liste
des taches réclamées par l'utilisateur connecté.

2. Met en suspens l'instance de tache.
if (result.size() > 0)
{
result.first();

TKIID tkiid = (TKIID) result.getOID(1);
task.suspend(tkiid);

Cette action met en suspens l'instance de tache spécifiée. L’instance de tache est
placée dans 1’état Interrompu.

3. Reprise de 'instance de processus.
task.resume(tkiid);

Cette action remet 'instance de tadche dans 1’état ol elle se trouvait avant sa
mise en suspens.

Taches associées

[Développement d’applications pour des tiches utilisateur]

Une tache représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des taches utilisateur sont fournis.

Analyse des résultats d’une tache

Une tache a effectuer (également appelée tache de participation dans 1’API) ou une
tache de collaboration (également appelée tiche utilisateur dans 1’API) fonctionne de
maniere asynchrone. Si un gestionnaire de réponses est indiqué lors du démarrage
d’une tache, le message de sortie est automatiquement retourné a la fin de celle-ci.
Dans le cas contraire, le message doit étre extrait explicitement.

A propos de cette tache

Les résultats de la tache ne sont stockés dans la base de données que si le modéle
de tache dont dérive l'instance de tache ne spécifie pas une suppression
automatique des instances de tache dérivées.

Procédure

Analysez les résultats de la tache.
L’exemple illustre le controle du numéro d’ordre d’une tache effectuée avec succes.

QueryResultSet result = task.query("DISTINCT TASK.TKIID",
"TASK.NAME = 'CustomerOrder' AND
TASK.STATE = TASK.STATE.STATE_FINISHED",

Chapitre 4. Développement d’applications client pour les taches et processus métier 335

(String)null, (Integer)null, (TimeZone)null);

if (result.size() > 0)
{

result.first();

TKIID tkiid = (TKIID) result.getOID(1);

ClientObjectWrapper output = task.getOutputMessage(tkiid);

DataObject myOQutput = null;

if (output.getObject() !'= null && output.getObject() instanceof DataObject)

{

myOutput = (DataObject)output.getObject();
int order = myOutput.getInt("OrderNo");
}

}

Taches associées

[Développement d’applications pour des taches utilisateur|

Une tache représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des taches utilisateur sont fournis.

Arrét d’une instance de tache

I s’avere parfois nécessaire pour quelqu'un disposant de droits d’administration
d’arréter une instance de tache dans un état irrécupérable. Etant donné qu’une
instance de tiche s’arréte instantanément, cette opération ne doit étre exécutée que
dans des situations exceptionnelles.

Procédure

1. Procédez a l'extraction de l'instance de tache devant étre arrétée.
Task taskInstance = task.getTask(tkiid);

2. Arrétez l'instance de tache.

TKIID tkiid = taskInstance.getID();
task.terminate(tkiid);

L’instance de tache est arrétée aussitot sans attendre les tiches en instance.
TAaches associées

[Développement d’applications pour des tiches utilisateur]

Une tache représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des taches utilisateur sont fournis.

Suppression d’instances de tache

Les instances de tache ne sont automatiquement supprimées que lorsqu’elles sont
terminées, a condition que cela soit spécifié dans le modele de tache associé dont
dérivent les instances. Cet exemple montre comment supprimer toutes les instances
de tache qui sont terminées mais ne sont pas supprimées automtiquement.

Procédure
1. Répertoriez les instances de tache qui sont terminées.

QueryResultSet result =
task.query("DISTINCT TASK.TKIID",
"TASK.STATE = TASK.STATE.STATE_FINISHED",
(String)null, (Integer)null, (TimeZone)null);

Cette opération renvoie un ensemble de résultats de requéte qui répertorie les
instances de tache terminées.

2. Supprimez les instances de tiche terminées.

336 Développement et déploiement

while (result.next())

{
TKIID tkiid = (TKIID) result.getOID(1);
task.delete(tkiid);

}

TAaches associées

IDéveloppement d’applications pour des tiches utilisateur|

Une tache représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des taches utilisateur sont fournis.

Libération d’une tache réclamée

Lorsqu’un propriétaire potentiel réclame une tache, il lui incombe de mener la
tache a son terme. Toutefois, certaines taches réclamées doivent étre libérées pour
afin qu’un autre propriétaire potentiel puisse la réclamer a son tour.

A propos de cette tache

11 s’avere parfois nécessaire pour un utilisateur disposant de droits
d’administration de libérer une tache réclamée. Cette situation peut se produire,
par exemple, lorsqu’une tache doit étre effectuée en I'absence du propriétaire de la
tache. Le propriétaire de la tiche peut également libérer une tache réclamée.

Procédure

1. Répertoriez les taches réclamées possédées par une personne spécifique, par

exemple, Smith.

QueryResultSet result =

task.query("DISTINCT TASK.TKIID",
"TASK.STATE = TASK.STATE.STATE_CLAIMED AND
TASK.OWNER = 'Smith'",
(String)null, (Integer)null, (TimeZone)null);
Cette opération renvoie un ensemble de résultats de requéte répertoriant les
taches réclamées par cette personne, Smith.

2. Libérez la tache réclamée.

if (result.size() > 0)
{

result.first();

TKIID tkiid = (TKIID) result.getOID(1);

task.cancelClaim(tkiid, true);
}
Cette opération renvoie la tiche a I’état prét de maniere a ce qu’elle puisse étre
réclamée par l'un des autres propriétaires éventuels. Toute donnée de sortie
définie par le propriétaire d’origine est maintenue.

TAaches associées

IDéveloppement d’applications pour des tiches utilisateur|

Une tache représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des taches utilisateur sont fournis.

Gestion des taches élémentaires

Durant la durée de vie d’une instance d’activité ou de tache, I’ensemble des
personnes associées a ’objet peut changer, par exemple, si une personne est en
congé, si de nouvelles personnes sont engagées ou si la charge de travail doit étre
redistribuée. Pour autoriser ces modifications, vous devez développer des
applications afin de créer, supprimer ou transférer les taches élémentaires.

Chapitre 4. Développement d’applications client pour les taches et processus métier 337

A propos de cette tache

Une tache élémentaire correspond a l’affectation d'un objet a un utilisateur ou a un
groupe d’utilisateurs pour un motif particulier. Cet objet est généralement une
instance d’activité humaine, une instance de processus ou une instance de tache.
Les motifs sont dérivés du role conféré a l'utilisateur pour 1’objet. Un objet peut
comporter plusieurs éléments de travail étant donné qu'un utilisateur peut avoir
différents roles associés a 1'objet, et qu'un élément de travail est créé pour chacun
de ces roles. Une instance de tache a effectuer peut par exemple avoir un élément
de travail administrateur, lecteur, éditeur et propriétaire en méme temps.

Les actions pouvant étre menées pour gérer les taches élémentaires dépendent du
role de l'utilisateur : par exemple, un administrateur peut créer, supprimer et
transférer des taches élémentaires, alors que le propriétaire de la tiche ne peut que
transférer des taches élémentaires.

¢ Créez une tache élémentaire.

// query the task instance for which an additional
// administrator is to be specified
QueryResultSet result = task.query("TASK.TKIID",
"TASK.NAME="'CustomerOrder'",
(String)null, (Integer)null,
(TimeZone)null);
if (result.size() > 0)

result.first();
// create the work item
task.createWorkItem((TKIID) (result.get0ID(1)),
Workltem.REASON_ADMINISTRATOR,"Smith");
1

Cette opération crée une tache élémentaire pour l'utilisateur Smith qui a un role
d’administration.

* Supprimez une tache élémentaire.

// query the task instance for which a work item is to be deleted
QueryResultSet result = task.query("TASK.TKIID",
"TASK.NAME="'CustomerOrder'",
(String)null, (Integer)null,
(TimeZone)null);
if (result.size() > 0)

result.first();
// delete the work item
task.deleteWorkItem((TKIID) (result.get0ID(1)),
WorkItem.REASON_READER,"Smith");
}

Cette opération supprime la tache élémentaire pour l'utilisateur Smith qui a un
role de lecteur.

¢ Transférez une tache élémentaire.

// query the task that is to be rescheduled
QueryResultSet result =
task.query ("DISTINCT TASK.TKIID",
"TASK.NAME="'CustomerOrder' AND
TASK.STATE=TASK.STATE.STATE_READY AND
WORK_ITEM.REASON=WORK_ITEM.REASON.REASON_POTENTIAL_OWNER AND
WORK_ITEM.OWNER_ID='Miller'",
(String)null, (Integer)null, (TimeZone)null);
if (result.size() > 0)
{
result.first();
// transfer the work item from user Miller to user Smith

338 Développement et déploiement

// so that Smith can work on the task
task.transferWorkItem((TKIID) (result.get0ID(1)),
WorkItem.REASON POTENTIAL OWNER,"Miller","Smith");
1

Cette opération transfere la tache élémentaire a 1'utilisateur Smith de maniere a
ce qu’il puisse travailler avec.

Taches associées

IDéveloppement d’applications pour des taches utilisateur|

Une tache représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des taches utilisateur sont fournis.

Création de modeles de tache et d’instances de tache a
I’exécution

Un outil de modélisation, comme WebSphere Integration Developer, permet
habituellement de compiler des modéles de tache. Vous installez les modéles de
tache dans WebSphere Process Server et créez des instances a partir de ces modeles
en utilisant, par exemple, Business Process Choreographer Explorer. Cependant,
vous pouvez également créer des instances de tache utilisateur ou de participation
lors de I'exécution.

A propos de cette tache

Cette opération peut étre nécessaire, par exemple, quand la définition de tache
n’est pas disponible lors du déploiement de l'application, quand les taches d'une
procédure ne sont pas encore connues ou quand une tache est requise pour mener
a bien une collaboration ad hoc dans un groupe.

Vous pouvez modéliser les taches a effectuer ou les taches de collaboration ad-hoc
en créant des instances de la classe com.ibm.task.api.TaskModel, et les utiliser pour
créer un modele de tache réutilisable ou créer directement une instance de tache a
exécution unique. Pour créer une instance de la classe TaskModel, un ensemble de
méthodes de fabrique est disponible dans la classe de fabrique
com.ibm.task.api.ClientTaskFactory. La modélisation des taches utilisateur lors de
I'exécution se base sur EMF (Eclipse Modeling Framework).

Procédure

1. Créez un ensemble de ressources org.eclipse.emf.ecore.resource.ResourceSet a
l'aide de la méthode de fabrique createResourceSet.

2. Facultatif : Si vous avez 'intention dutiliser des types de message complexes,
vous pouvez soit les définir a 'aide de org.eclipse.xsd.XSDFactory, que vous
pouvez obtenir grace a la méthode de fabrique getXSDFactory(), soit importer
directement un schéma XML existant a 1’aide de la méthode de fabrique
loadXSDSchema.

Pour rendre les types complexes disponibles au serveur WebSphere Process
Server, déployez-les dans le cadre d'une application d’entreprise.

3. Créez ou importez une définition WSDL (Web Services Definition Language)
du type javax.wsdl.Definition.
Vous pouvez créer une nouvelle définition WSDL a l'aide de la méthode
createWSDLDefinition. Puis vous pouvez lui ajouter un type de port et une
opération. Vous pouvez également importer directement une définition WSDL
existante a 'aide de la méthode de fabrique loadWSDLDefinition.

4. Créez la définition de tache a 1’aide de la méthode de fabrique createTTask.

Chapitre 4. Développement d’applications client pour les taches et processus métier 339

Si vous voulez ajouter ou manipuler des éléments de tache plus complexes,
vous pouvez utiliser la classe com.ibm.whbit.tel.TaskFactory que vous vous
pouvez récupérer a l'aide de la méthode de fabrique getTaskFactory.

5. Créez le modele de tache en utilisant la méthode de fabrique createTaskModel,
puis envoyez-lui le regroupement de ressources que vous avez créé a l'étape 1
et qui rassemble tous les autres artefacts que vous avez créés depuis lors.

6. Facultatif : Validez le modéle a 'aide de la méthode TaskModel validate.
Résultats

Utilisez 'une des méthodes create de I’API EJB Human Task Manager dont le
parametre TaskModel permet de créer un modele de tache réutilisable ou de créer
directement une instance de tache a exécution unique.

Taches associées

[Développement d’applications pour des taches utilisateur|

Une tache représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des taches utilisateur sont fournis.

[Création de taches d’exécution utilisant des types Java simples|
Cet exemple crée une tache d’exécution utilisant des types Java simples, comme un
objet String, dans son interface.

[Création de taches d’exécution utilisant des types complexes|

Cet exemple crée une tache d’exécution utilisant des types complexes dans son
interface. Les types complexes sont déja définis, c’est-a-dire que le systeme de
fichiers local du client possede des fichiers XSD contenant la description des types
complexes.

(Création de taches d’exécution utilisant une interface existante|

Cet exemple crée une tache d’exécution utilisant une interface déja définie,
c’est-a-dire que le systeme de fichiers local possede un fichier contenant la
description de l'interface.

Création de taches d’exécution utilisant une interface a partir d’une application|
d’appe

Cet exemple crée une tache d’exécution utilisant une interface appartenant a
I'application d’appel. Par exemple, une tache d’exécution est créée dans un
fragment de code Java d’un processus métier et utilise une interface a partir de
I'application de processus.

Création de taches d’exécution utilisant des types Java simples :

Cet exemple crée une tache d’exécution utilisant des types Java simples, comme un
objet String, dans son interface.

A propos de cette tache

L’exemple s’exécute uniquement a l'intérieur du contexte de 1’application
d’entreprise appelante pour laquelle les ressources sont chargées.

Procédure

1. Accédez a ClientTaskFactory et créez un ensemble de ressources contenant les
définitions du nouveau modele de tache.

ClientTaskFactory factory = ClientTaskFactory.newInstance();
ResourceSet resourceSet = factory.createResourceSet();

2. Créez la définition WSDL et ajoutez les descriptions des opérations.

340 Développement et déploiement

// Création de 1'interface WSDL
Definition definition = factory.createWSDLDefinition
(resourceSet, new QName("http://www.ibm.com/task/test/", "test"));

// Création d'un type de port
PortType portType = factory.createPortType(definition, "doItPT");

// Création d'une opération ; les messages d'entrée et de sortie sont de type
Chaine :
// aucun message d'erreur n'est spécifié
Operation operation = factory.createOperation
(definition, portType, "doIt",
new QName("http://www.w3.0rg/2001/XMLSchema", "string"),
new QName("http://www.w3.0org/2001/XMLSchema", "string"),
(Map)null);

Créez le modele EMF de la nouvelle taiche utilisateur.

Si vous créez une instance de tache, une date valid-from (UTCDate) n’est pas
obligatoire.
TTask humanTask = factory.createTTask(resourceSet,
TTaskKinds .HTASK_LITERAL,
"TestTask",
new UTCDate("2005-01-01T00:00:00"),
"http://www.ibm.com/task/test/",
portType,
operation);
Cette étape initialise les propriétés du modele de tache avec des valeurs par
défaut.
Modifiez les propriétés du modele de tache utilisateur.
// Utilisation des méthodes du package the com.ibm.wbit.tel package, par exemple :
humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// Extraction de la fabrique de taches pour créer ou modifier les éléments de
taches composites
TaskFactory taskFactory = factory.getTaskFactory();

// Spécification des paramétres d'escalade
TVerb verb = taskFactory.createTVerb();
verb.setName("John");

// Création de 'escalationReceiver' et ajout d'instruction

TEscalationReceiver escalationReceiver =
taskFactory.createTEscalationReceiver();

escalationReceiver.setVerb(verb);

// Création d'escalade et ajout de destinataire
TEscalation escalation = taskFactory.createTEscalation();
escalation.setEscalationReceiver(escalationReceiver);

Créez le modele de tache contenant toutes les définitions de ressources.
TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

Validez le modele de tache et corrigez les éventuels incidents de validation
rencontrés.

ValidationProblem[] validationProblems = taskModel.validate();
Créez l'instance ou le modele de tache d’exécution.

L’interface HumanTaskManagerService permet de créer 'instance de tache ou
le modele de tache. Du fait que 'application utilise des types Java simples
uniquement, il est inutile de spécifier un nom d’application.

* Le fragment de code suivant crée une instance de tache :
atask.createTask(taskModel, (String)null, "HTM");
* Le fragment de code suivant crée un modele de tache :

Chapitre 4. Développement d’applications client pour les tiches et processus métier 341

task.createTaskTemplate(taskModel, (String)null);
Résultats

Si une instance de tache d’exécution est créée, elle peut a présent étre démarrée. Si
un modele de tache d’exécution est créé, vous pouvez a présent créer des instances
de tache a partir du modele.

TAaches associées

(Création de modeles de tache et d’instances de tiche a l'exécution]

Un outil de modélisation, comme WebSphere Integration Developer, permet
habituellement de compiler des modeles de tache. Vous installez les modeles de
tache dans WebSphere Process Server et créez des instances a partir de ces modeles
en utilisant, par exemple, Business Process Choreographer Explorer. Cependant,
vous pouvez également créer des instances de tache utilisateur ou de participation
lors de I’exécution.

Création de tiches d’exécution utilisant des types complexes :

Cet exemple crée une tache d’exécution utilisant des types complexes dans son
interface. Les types complexes sont déja définis, c’est-a-dire que le systeme de
fichiers local du client possede des fichiers XSD contenant la description des types
complexes.

A propos de cette tache

L’exemple s’exécute uniquement a l'intérieur du contexte de I'application
d’entreprise appelante pour laquelle les ressources sont chargées.

Procédure

1. Accédez a ClientTaskFactory et créer un ensemble de ressources contenant les
définitions du nouveau modele de tache.
ClientTaskFactory factory = ClientTaskFactory.newInstance();
ResourceSet resourceSet = factory.createResourceSet();

2. Ajoutez les définitions XSD de vos types complexes a 1’ensemble de ressources
pour les mettre a votre disposition lors de la définition d’opérations.

Les fichiers sont relatifs a I'emplacement d’exécution du code.

factory.loadXSDSchema(resourceSet, "InputB0O.xsd");
factory.loadXSDSchema(resourceSet, "OutputBO.xsd");

3. Créez la définition WSDL et ajoutez les descriptions des opérations.

// Création de 1'interface WSDL
Definition definition = factory.createWSDLDefinition
(resourceSet, new QName("http://www.ibm.com/task/test/", "test"));

// Création d'un type de port
PortType portType = factory.createPortType(definition, "doItPT");

// Création d'une opération ; le message d'entrée est un objet InputBO,
// 1e message de sortie un objet OutputBO ;
// aucun message d'erreur n'est spécifié
Operation operation = factory.createOperation
(definition, portType, "doIt",

new QName("http://Input", "InputB0"),

new QName("http://Output", "OutputBO"),

(Map)null);

4. Créez le modele EMF de la nouvelle tache utilisateur.

342 Développement et déploiement

Si vous créez une instance de tache, une date valid-from (UTCDate) n’est pas
obligatoire.
TTask humanTask = factory.createTTask(resourceSet,
TTaskKinds .HTASK_LITERAL,
"TestTask",
new UTCDate("2005-01-01T00:00:00"),
"http://www.ibm.com/task/test/",
portType,
operation);
Cette étape initialise les propriétés du modele de tache avec des valeurs par
défaut.

5. Modifiez les propriétés du modele de tache utilisateur.

// Utilisation des méthodes du package the com.ibm.wbit.tel package,
par exemple :
humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// Extraction de la fabrique de taches pour créer ou modifier les éléments de
taches composites
TaskFactory taskFactory = factory.getTaskFactory();

// Spécification des paramétres d'escalade
TVerb verb = taskFactory.createTVerb();
verb.setName("John");

// Création de 'escalationReceiver' et ajout d'instruction

TEscalationReceiver escalationReceiver =
taskFactory.createTEscalationReceiver();

escalationReceiver.setVerb(verb);

// Création d'escalade et ajout de destinataire
TEscalation escalation = taskFactory.createTEscalation();
escalation.setEscalationReceiver(escalationReceiver);

6. Créer le modele de tiche contenant toutes les définitions de ressources.
TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

7. Validez le modele de tache et corrigez les éventuels incidents de validation
rencontrés.

ValidationProblem[] validationProblems = taskModel.validate();
8. Créez l'instance ou le modéle de tache d’exécution.

L’interface HumanTaskManagerService permet de créer 'instance de tache ou
le modele de tache. Vous devez fournir un nom d’application contenant les
définitions de type de données pour les rendre accessibles. L’application doit
également contenir une tdche ou un processus factice permettant son
chargement par Business Process Choreographer.

¢ Le fragment de code suivant crée une instance de tache :
task.createTask(taskModel, "BOapplication", "HTM");

* Le fragment de code suivant crée un modele de tache :
task.createTaskTemplate(taskModel, "BOapplication");

Résultats
Si une instance de tache d’exécution est créée, elle peut a présent étre démarrée. Si

un modele de tache d’exécution est créé, vous pouvez a présent créer des instances
de tache a partir du modele.

Chapitre 4. Développement d’applications client pour les taches et processus métier 343

Taches associées

[Création de modeles de tache et d’instances de tache a 'exécution|

Un outil de modélisation, comme WebSphere Integration Developer, permet
habituellement de compiler des modeles de tache. Vous installez les modeles de
tache dans WebSphere Process Server et créez des instances a partir de ces modeles
en utilisant, par exemple, Business Process Choreographer Explorer. Cependant,
vous pouvez également créer des instances de tache utilisateur ou de participation
lors de I'exécution.

Création de tiches d’exécution utilisant une interface existante :

Cet exemple crée une tache d’exécution utilisant une interface déja définie,
c’est-a-dire que le systeme de fichiers local possede un fichier contenant la
description de l'interface.

A propos de cette tiche

L’exemple s’exécute uniquement a l'intérieur du contexte de l'application
d’entreprise appelante pour laquelle les ressources sont chargées.

Procédure

1. Accédez a ClientTaskFactory et créez un ensemble de ressources contenant les
définitions du nouveau modele de tache.

ClientTaskFactory factory = ClientTaskFactory.newInstance();
ResourceSet resourceSet = factory.createResourceSet();

2. Accédez a la définition WSDL et aux descriptions des opérations.
La description d’interface est relative a 'emplacement d’exécution du code.

Definition definition = factory.loadWSDLDefinition(
resourceSet, "interface.wsdl");
PortType portType = definition.getPortType(
new QName(definition.getTargetNamespace(), "doItPT"));
Operation operation = portType.getOperation
("doIt", (String)null, (String)null);

3. Créez le modele EMF de la nouvelle tache utilisateur.

Si vous créez une instance de tache, une date valid-from (UTCDate) n’est pas
obligatoire.

TTask humanTask = factory.createTTask(resourceSet,
TTaskKinds .HTASK_LITERAL,
"TestTask",
new UTCDate("2005-01-01T00:00:00"),
"http://www.ibm.com/task/test/",
portType,
operation);

Cette étape initialise les propriétés du modele de tache avec des valeurs par
défaut.
4. Modifiez les propriétés du modele de tache utilisateur.

// Utilisation des méthodes du package the com.ibm.wbit.tel package, par exemple :
humanTask.setBusinessRelevance(TBoolean, YES LITERAL);

// Extraction de la fabrique de taches pour créer ou modifier les éléments de
taches composites
TaskFactory taskFactory = factory.getTaskFactory();

// Spécification des paramétres d'escalade

TVerb verb = taskFactory.createTVerb();
verb.setName("John");

344 Développement et déploiement

// Création de 'escalationReceiver' et ajout d'instruction

TEscalationReceiver escalationReceiver =
taskFactory.createTEscalationReceiver();

escalationReceiver.setVerb(verb);

// Création d'escalade et ajout de destinataire
TEscalation escalation = taskFactory.createTEscalation();
escalation.setEscalationReceiver(escalationReceiver);

5. Créez le modele de tache contenant toutes les définitions de ressources.
TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

6. Validez le modele de tache et corrigez les éventuels incidents de validation
rencontrés.

ValidationProblem[] validationProblems = taskModel.validate();
7. Créez l'instance ou le modele de tadche d’exécution.

L’interface HumanTaskManagerService permet de créer 'instance de tache ou
le modele de tache. Vous devez fournir un nom d’application contenant les
définitions de type de données pour les rendre accessibles. L’application doit
également contenir une tiche ou un processus factice permettant son
chargement par Business Process Choreographer.

* Le fragment de code suivant crée une instance de tache :
task.createTask(taskModel, "BOapplication", "HTM");

* Le fragment de code suivant crée un modele de tache :
task.createTaskTemplate(taskModel, "BOapplication");

Résultats

Si une instance de tache d’exécution est créée, elle peut a présent étre démarrée. Si
un modele de tache d’exécution est créé, vous pouvez a présent créer des instances
de tache a partir du modele.

Taches associées

[Création de modéles de tache et d’instances de tiche a I'exécution|

Un outil de modélisation, comme WebSphere Integration Developer, permet
habituellement de compiler des modeles de tache. Vous installez les modeles de
tache dans WebSphere Process Server et créez des instances a partir de ces modeles
en utilisant, par exemple, Business Process Choreographer Explorer. Cependant,
vous pouvez également créer des instances de tache utilisateur ou de participation
lors de I'exécution.

Création de taches d’exécution utilisant une interface a partir d"une application
d’appel :

Cet exemple crée une tache d’exécution utilisant une interface appartenant a
I'application d’appel. Par exemple, une tache d’exécution est créée dans un
fragment de code Java d’un processus métier et utilise une interface a partir de
l'application de processus.

A propos de cette tiche

L’exemple s’exécute uniquement a l'intérieur du contexte de 1’application
d’entreprise appelante pour laquelle les ressources sont chargées.

Procédure

1. Accédez a ClientTaskFactory et créez un ensemble de ressources contenant les
définitions du nouveau modele de tache.

Chapitre 4. Développement d’applications client pour les taches et processus métier 345

ClientTaskFactory factory = ClientTaskFactory.newInstance();

// Spécification du chargeur de classe de contexte pour rechercher les ressources
suivantes
ResourceSet resourceSet = factory.createResourceSet

(Thread.currentThread().getContextClassLoader());

2. Accédez a la définition WSDL et aux descriptions des opérations.
Indiquez le chemin d’acces a l'intérieur du fichier JAR de package contenant.

Definition definition = factory.loadWSDLDefinition(resourceSet,
"com/ibm/workflow/metaflow/interface.wsd1");
PortType portType = definition.getPortType(
new QName(definition.getTargetNamespace(), "doItPT"));
Operation operation = portType.getOperation
("doIt", (String)null, (String)null);

3. Créez le modele EMF de la nouvelle tache utilisateur.

Si vous créez une instance de tiache, une date valid-from (UTCDate) n’est pas
obligatoire.
TTask humanTask = factory.createTTask(resourceSet,
TTaskKinds.HTASK_LITERAL,
"TestTask",
new UTCDate("2005-01-01T00:00:00"),
"http://www.ibm.com/task/test/",
portType,
operation);
Cette étape initialise les propriétés du modele de tache avec des valeurs par
défaut.

4. Modifiez les propriétés du modele de tache utilisateur.
// Utilisation des méthodes du package the com.ibm.wbit.tel package, par exemple :
humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// Extraction de la fabrique de taches pour créer ou modifier les éléments de
taches composites
TaskFactory taskFactory = factory.getTaskFactory();

// Spécification des paramétres d'escalade
TVerb verb = taskFactory.createTVerb();
verb.setName("John")

// Création de 'escalationReceiver' et ajout d'instruction

TEscalationReceiver escalationReceiver =
taskFactory.createTEscalationReceiver();

escalationReceiver.setVerb(verb);

// Création d'escalade et ajout de destinataire
TEscalation escalation = taskFactory.createTEscalation();
escalation.setEscalationReceiver(escalationReceiver);

5. Créez le modele de tiche contenant toutes les définitions de ressources.
TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

6. Validez le modele de tache et corrigez les éventuels incidents de validation
rencontrés.

ValidationProblem[] validationProblems = taskModel.validate();
7. Créez l'instance ou le modele de tadche d’exécution.

L’interface HumanTaskManagerService permet de créer 'instance de tache ou
le modele de tache. Vous devez fournir un nom d’application contenant les
définitions de type de données pour les rendre accessibles.

* Le fragment de code suivant crée une instance de tache :
task.createTask(taskModel, "WorkflowApplication", "HTM");
* Le fragment de code suivant crée un modele de tache :

346 Développement et déploiement

task.createTaskTemplate(taskModel, "WorkflowApplication");
Résultats

Si une instance de tache d’exécution est créée, elle peut a présent étre démarrée. Si
un modele de tache d’exécution est créé, vous pouvez a présent créer des instances
de tache a partir du modele.

TAaches associées

(Création de modeles de tache et d’instances de tiche a l’exécution]

Un outil de modélisation, comme WebSphere Integration Developer, permet
habituellement de compiler des modeles de tache. Vous installez les modeles de
tache dans WebSphere Process Server et créez des instances a partir de ces modeles
en utilisant, par exemple, Business Process Choreographer Explorer. Cependant,
vous pouvez également créer des instances de tache utilisateur ou de participation
lors de I'exécution.

Interface HumanTaskManagerService
L’interface HumanTaskManagerService permet ’acces aux fonctions relatives aux
taches pouvant étre appelées par des clients locaux ou distants.

Différentes méthodes peuvent étre appelées selon 1’état de la tache et les droits
d’acces de l'utilisateur de I’application contenant la méthode en question. Les
méthodes principales de manipulation des objets de tache sont répertoriées dans
cette rubrique. Plus plus d’information sur ces méthodes et d’autres méthodes
fournies par l'interface HumanTaskManagerService, consultez Javadoc dans le
package com.ibm.task.api.

Modeéles de taches

Les méthodes suivantes sont disponibles pour les modeéles de taches.

Tableau 46. Méthodes API pour les modeéles de taches

Méthode Description
getTaskTemplate Extrait le modele de tache spécifié.
createAndCallTask Crée et exécute une instance de tache a

partir du modele de tache et attend le
résultat de fagon synchrone.

createAndStartTask Crée et démarre une instance de tache a
partir du modele de tache spécifié.

createTask Crée une instance de tache a partir du
modeéle de tache spécifié.

createlnputMessage Crée un message d’entré pour le modéle de
tache indiqué. Par exemple, crée un message
pouvant servir a démarrer une tache.

queryTaskTemplates Extrait des modeéles de tache stockés dans la
base de données.

Chapitre 4. Développement d’applications client pour les taches et processus métier 347

Instances de taches

Les méthodes suivantes sont disponibles pour les instances de taches.

Tableau 47. Méthodes API pour les modeéles de taches

Méthode Description

getTask Extrait une instance de tache ; l'instance de
tache peut se trouver dans n'importe quel
état.

callTask Démarre une tache d’appel en mode
synchrone.

startTask Démarre une tache qui a déja été créée.

suspend Interrompt la tache de collaboration ou la

tache a effectuer.

resume Reprend la tache de collaboration ou la
tache a effectuer.

terminate Arréte I'instance de tache spécifiée. Si une
tache d’appel est arrétée, cette action n’a
aucun impact sur le service appelé.

delete Supprime l'instance de tache spécifiée.
claim Réclame la tache en vue de son traitement.
update Met a jour l'instance de tache.

complete Termine l'instance de tache.

cancelClaim Libeére une instance de tache réclamée afin

de permettre son traitement par un autre
propriétaire potentiel.

createWorkItem Crée un élément de travail pour l'instance
de tache.
transferWorkItem Transfere I'élément de travail a un

propriétaire spécifié.

deleteWorkItem Supprime l'élément de travail.

Escalades

Les méthodes suivantes sont disponibles pour les escalades.

Tableau 48. Méthodes API de gestion des escalades

Méthode Description

getEscalation Extrait I'instance d’escalade spécifiée.

Propriétés personnalisées

Les taches, les modeles de tache et les escalades peuvent tous posséder des
propriétés personnalisées. L'interface fournit une méthode get et une méthode set
pour l'extraction et la définition de valeurs des propriétés personnalisées. Vous
pouvez aussi associer les propriétés mentionnées aux instances de tache et les en
extraire. Le noms de propriétés personnalisées et des valeurs doivent étre de type
java.lang.String. Les méthodes suivantes sont adaptées aux taches, modeles de
tache et escalades.

348 Développement et déploiement

Tableau 49. Méthodes API pour les variables et les propriétés personnalisées

Méthode Description

getCustomProperty Extrait la propriété personnalisée
mentionnée de l'instance de tache spécifiée.

getCustomProperties Extrait les propriétés personnalisées de
I'instance de tache spécifiée.

getCustomPropertyNames Extrait les noms des propriétés
personnalisées pour l'instance de tache.

setCustomProperty Stocke les valeurs spécifiques aux propriétés
personnalisées correspondant a l'instance de
tache spécifiée.

TAaches associées

[Développement d’applications pour des tiches utilisateur]

Une tache représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des taches utilisateur sont fournis.

Référence associée

[Actions autorisées pour les tAches|

Les actions pouvant étre effectuées sur une tache varient selon qu’il s’agit d’une
tache a effectuer, d’une tache collaborative, d’une tache d’appel ou d’une tache
d’administration.

Actions autorisées pour les taches:

Les actions pouvant étre effectuées sur une tache varient selon qu’il s’agit d'une
tache a effectuer, d’une tache collaborative, d’une tiche d’appel ou d’une tache
d’administration.

Vous ne pouvez pas utiliser toutes les actions disponibles a travers l'interface
HumanTaskManager sur tous les types de tache. Le tableau suivant indique les
actions que vous pouvez effectuer sur chaque type de tache.

Type de tache

Tache a effectuer |Tache de Tache d’appel Tache
Action collaboration d’administration
callTask X
cancelClaim X X!
claim X X!
complete X X! X
completeWithFollowOnTask* X X!
completeWithFollowOnTask® x? X3
createFaultMessage X X X X
createInputMessage X X X X
createOutputMessage X X X X
createWorkItem X X! X X
delete X! X! X X!
deleteWorkItem X X! X X
getCustomProperty X X! X X

Chapitre 4. Développement d’applications client pour les taches et processus métier 349

Type de tache

Tache a effectuer |Tache de Tache d’appel Tache
Action collaboration d’administration
getDocumentation X X! X X
getFaultNames X X!
getFaultMessage X X! X
getInputMessage X X! X
getOutputMessage X X! X
getUsersInRole X X! X X
getTask X X! X X
getUlISettings X X! X X
resume X X!
setCustomProperty X X! X X
setFaultMessage X X!
setOutputMessage X X!
startTask X! X! X X
startTask AsSubtask® X Xt
startTask AsSubtask’ X3 X3
suspend X X!
suspendWithCancelClaim X X!
terminate X X X!
transferWorkItem X X! X X
update X X! X X
Remarques :
1. Uniquement pour les taches autonomes, ad-hoc et les modeles de taches
2. Uniquement pour les taches autonomes, en ligne intégrées aux processus métier et ad-hoc
3. Uniquement pour les tiches autonomes et ad-hoc
4. Les types de taches pouvant comporter des taches de suivi
5. Les types de taches pouvant étre utilisés en tant que taches de suivi
6. Les types de taches pouvant posséder des sous-taches
7. Les types de taches pouvant étre utilisés en tant que sous-taches

Référence associée

[Interface HumanTaskManagerService|

L’interface HumanTaskManagerService permet 1’acces aux fonctions relatives aux

taches pouvant étre appelées par des clients locaux ou distants.

Développement d’applications pour les processus métier et
les taches utilisateur

La plupart des scénarios de processus métier nécessitent la participation de
personnes. Par exemple, un processus métier nécessite une interaction humaine
lorsque le processus est démarré ou géré ou lorsque des activités humaines sont
effectuées. Pour supporter de tels scénarios, vous devez utiliser a la fois ’API de
Business Flow Manager et '’API de Human Task Manager.

350 Développement et déploiement

A propos de cette tache

Pour impliquer des personnes dans des scénarios de processus métier, vous
pouvez inclure les types de tache suivants dans le processus métier :

Une tache d’appel en ligne (également appelée tiche de départ dans 1"’API).

Vous pouvez fournir une tache d’appel pour chaque activité de réception, pour
chaque élément onMessage de l'activité de sélection et pour chaque élément
onEvent du gestionnaire d’événements. Cette tache peut alors contrdler les
utilisateurs autorisés a démarrer un processus ou a communiquer avec une
instance de processus en cours d’exécution.

Une tache d’administration.

Vous pouvez fournir une tiche d’administration afin d’indiquer qui est autorisé
a administrer le processus ou a effectuer des opérations d’administration sur les
activité du processus qui ont échoué.

Une tache a effectuer (également appelée tiche de participation dans I’ API).

Les taches a effectuer implémentent une activité humaine. Ce type d’activité
vous permet de faire participer des utilisateurs au processus.

Les activités humaines du processus métier représentent les taches a effectuer
réalisées par les utilisateurs dans le scénario de processus métier. Pour réaliser de
tels scénarios, vous pouvez utiliser a la fois 1’API de Business Flow Manager et
I’API de Human Task Manager.

Le processus métier est le conteneur de toutes les activités appartenant au
processus, y compris les activités humaines qui sont représentées par les taches a
effectuer. Lorsqu’une instance de processus est créée, un ID objet unique (PIID)
lui est affecté.

Lorsqu’une activité humaine est activée au cours de 1’exécution de l'instance de
processus, une instance d’activité est créée, qui est identifiée par son ID objet
(AIID) unique. En méme temps, une instance de tache a effectuer en ligne est
également créée, qui est identifiée par son ID objet (TKIID). La relation entre
'activité humaine et I'instance de tache est créée par le biais des ID objet :

— L’ID tache a effectuer de l'instance d’activité est défini en fonction du TKIID
de la tache a effectuer associée.

— L’ID de contexte de confinement de l'instance de tache est défini en fonction
de l'instance de processus qui contient l'instance d’activité associée.

— L’ID de contexte parent de l'instance de tache est défini en fonction de I’AIID
de l'instance d’activité associée.

Les cycles de vie de toutes les instances de tache a effectuer en ligne sont gérés
par l'instance de processus. Lorsque l'instance de processus est supprimée, les
instances de taches le sont également. En d’autres termes, toutes les tdches dont
I'ID de contexte de confinement est défini en fonction du PIID de l'instance de
processus sont automatiquement supprimées.

Chapitre 4. Développement d’applications client pour les taches et processus métier 351

Taches associées

Développement d’applications client EJB pour des processus métier et des taches|
utilisateur]|

Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d'utiliser des processus métier
et des taches utilisateur installées sur WebSphere Process Server.

IDéterminer les modeles de processus ou les activités pouvant étre démarrés|

Un processus métier peut étre démarré en appelant les méthodes call, initiate ou
sendMessage de I’API de Business Flow Manager. Si le processus n’a qu'une seule
activité de démarrage, vous pouvez utiliser la signature de méthode dont le
parametre doit étre un nom de modele de processus. Si le processus comporte
plusieurs activités de démarrage, vous devez identifier I'activité de démarrage de
maniere explicite.

Traitement par une seule personne d’un flux de travaux contenant des tiches|
utilisateur
Certains flux de travaux sont exécutés par une seule personne, par exemple une
commande d’ouvrages sur une librairie en ligne. Cet exemple démontre comment
implémenter sous forme d’'une série d’activités humaines (taches a effectuer) la
séquence d’actions nécessaires pour commander un livre. Les API de Business
Flow Manager et Human Task Manager sont toutes les deux utilisées pour traiter
le flux de travaux.

Déterminer les modeles de processus ou les activités pouvant
étre démarrés

Un processus métier peut étre démarré en appelant les méthodes call, initiate ou
sendMessage de 1’API de Business Flow Manager. Si le processus n’a qu’une seule
activité de démarrage, vous pouvez utiliser la signature de méthode dont le
parametre doit étre un nom de modele de processus. Si le processus comporte
plusieurs activités de démarrage, vous devez identifier I’activité de démarrage de
maniere explicite.

A propos de cette tache

Lorsqu'un processus métier est modélisé, le modélisateur peut décider que seul un
sous-ensemble d’utilisateurs est autorisé a créer une instance de processus a partir
du modele de processus. Ceci est effectué en associant une tache d’appel en ligne a
une activité de démarrage du processus, puis en précisant les restrictions
d’autorisation appliquées a cette tache. Seuls les utilisateurs qui sont des
démarreurs ou des administrateurs potentiels de la tache sont autorisés a créer une
instance de la tache, et par conséquent, une instance du modele de processus.

Si aucune tache d’appel en ligne n’est associée a 'activité de démarrage, ou si les
restrictions d’autorisation ne sont pas indiquées pour la tache, tous les utilisateurs
peuvent créer une instance de processus a l'aide de 'activité de démarrage.

Un processus peut avoir plusieurs activités de démarrage, chacune avec différentes
requétes d’utilisateurs pour des démarreurs ou des administrateurs potentiels. Cela
signifie qu'un utilisateur peut étre autorisé a démarrer un processus avec l'activité

A, mais pas avec l'activité B.

Procédure

1. Utilisez I'’API de Business Flow Manager pour créer la liste des versions
courantes des modeles de processus qui sont a 1’état démarré.

352 Développement et déploiement

Conseil : La méthode queryProcessTemplates exclut uniquement les modeles
de processus qui font partie des applications n’ayant pas encore démarré. Par
conséquent, si vous utilisez cette méthode sans filtrer les résultats, vous
obtiendrez toutes les versions des modeéles de processus indépendamment de
I'état dans lequel ils se trouvent.

// current timestamp in UTC format, converted to yyyy-mm-ddThh:mm:ss

String now = (new UTCDate()).toXsdString();

String whereClause = "PROCESS_TEMPLATE.STATE =
PROCESS_TEMPLATE.STATE.STATE_STARTED AND
PROCESS_TEMPLATE.VALID_FROM =
(SELECT MAX(VALID_FROM) FROM PROCESS_TEMPLATE

WHERE NAME=PROCESS_TEMPLATE.NAME AND
VALID FROM <= TS('™ + now + "'))";

ProcessTemplateData[] processTemplates = process.queryProcessTemplates
(whereClause,
"PROCESS_TEMPLATE.NAME",
(Entier)null, (FuseauHoraire)null);

Les résultats sont triés par nom de modele de processus.

Créez la liste des modeles de processus et celle des activités de démarrage pour
lesquelles 1'utilisateur est autorisé.

La liste des modeles de processus contient les modeles de processus ayant une
activité de démarrage unique. Soit ces activités sont non protégées, soit
l'utilisateur connecté est autorisé a les démarrer. Sinon, vous pouvez regrouper
les modeles de processus qui peuvent étre démarrés par au moins une activité
de démarrage.

Conseil : Un administrateur de processus peut également créer une instance de
processus. Pour obtenir la liste complete des modeles, vous devez aussi lire le
modele de tache d’administration qui est associé au modele de processus, puis
vérifier si l'utilisateur est connecté en tant qu’administrateur.

List authorizedProcessTemplates = new ArraylList();
List authorizedActivityServiceTemplates = new ArraylList();

Déterminez les activités de démarrage pour chacun des modeles de processus.
for(int i=0; i<processTemplates.length; i++)

{
ProcessTemplateData template = processTemplates[i];
ActivityServiceTemplateData[] startActivities =
process.getStartActivities(template.getID());
Pour chaque activité de démarrage, récupérez I'ID du modele de tache d’appel
en ligne associé.
for(int j=0; j<startActivities.length; j++)
{

ActivityServiceTemplateData activity = startActivities[j];
TKTID tktid = activity.getTaskTemplateID();
a. Si un modele de tiche d’appel n’existe pas, cela signifie que le modele de
processus n’est pas sécurisé par cette activité de démarrage.

Dans pareil cas, tout utilisateur peut créer une instance de processus a l'aide
de cette activité de démarrage.
boolean isAuthorized = false;
if (tktid == null)
{
isAuthorized = true;
authorizedActivityServiceTemplates.add(activity);
}
b. Si un modele de tache d’appel existe, utilisez I’API de Human Task
Manager pour vérifier les autorisations dont dispose 1'utilisateur connecté.

Chapitre 4. Développement d’applications client pour les taches et processus métier 353

Dans 'exemple, l'utilisateur connecté s’appelle Smith. Il est impératif que
l'utilisateur connecté soit un démarreur potentiel de la tache d’appel ou un
administrateur.
if (tktid != null)

{

isAuthorized =
task.isUserInRole
(tkid, "Smith", WorkItem.REASON_POTENTIAL_ STARTER) ||
task.isUserInRole(tktid, "Smith", WorkItem.REASON_ADMINISTRATOR);

if (isAuthorized)
{

}
}
Si l'utilisateur correspond au rdle indiqué ou si les criteres d’affectation des
utilisateurs pour ce role ne sont pas définis, la méthode isUserInRole
renvoie la valeur true.

authorizedActivityServiceTemplates.add(activity);

5. Vérifiez s'il est possible de démarrer le processus a l'aide du nom du modele
de processus uniquement.

if (isAuthorized && startActivities.length == 1)
{

authorizedProcessTemplates.add(template);

}
6. Arrétez les boucles.

} // end of Toop for each activity service template
}// end of loop for each process template

Taches associées

[Développement d’applications pour les processus métier et les tiches utilisateur]
La plupart des scénarios de processus métier nécessitent la participation de
personnes. Par exemple, un processus métier nécessite une interaction humaine
lorsque le processus est démarré ou géré ou lorsque des activités humaines sont
effectuées. Pour supporter de tels scénarios, vous devez utiliser a la fois ’API de
Business Flow Manager et 'API de Human Task Manager.

Traitement par une seule personne d’un flux de travaux
contenant des taches utilisateur

Certains flux de travaux sont exécutés par une seule personne, par exemple une
commande d’ouvrages sur une librairie en ligne. Cet exemple démontre comment
implémenter sous forme d’une série d’activités humaines (tiches a effectuer) la
séquence d’actions nécessaires pour commander un livre. Les API de Business
Flow Manager et Human Task Manager sont toutes les deux utilisées pour traiter
le flux de travaux.

A propos de cette tache

Dans une librairie en ligne, I'acheteur accomplit une série d’actions afin de
commander un ouvrage. Cette séquence d’actions peut étre implémentée comme
une série d’activités humaines (tiches a accomplir). Si I'acheteur décide de
commander plusieurs livres, cela équivaut a réclamer l'activité humaine suivante.
Les informations sur la séquence de taches sont gérées par le Business Flow
Manager, alors que les taches elles-mémes sont gérées par le Human Task
Manager.

Comparez cet exemple avec celui qui utilise uniquement I’API de Business Flow
Manager.

354 Développement et déploiement

Procédure

1. Utilisez I’API de Business Flow Manager pour accéder a l'instance de processus
que vous voulez traiter.

Dans cet exemple, il s’agit d'une instance du processus CustomerOrder.

ProcessInstanceData processInstance =
process.getProcessInstance("CustomerOrder");
String piid = processInstance.getID().toString();

2. Utilisez I’API de Human Task Manager pour interroger les taches a effectuer
prétes (de type tache de participation) qui font partie de I'instance de processus
indiquée.

Utilisez I'ID de contexte de confinement de la tache pour spécifier I'instance du
processus de confinement. Pour un flux de travaux exécuté par une seule
personne, la requéte renvoie la tache a effectuer qui est associée a la premiere
activité manuelle dans la séquence d’activités manuelles.
//

// Query the list of to-do tasks that can be claimed by the Togged-on user

// for the specified process instance

//
QueryResultSet result =
task.query ("DISTINCT TASK.TKIID",

"TASK.CONTAINMENT CTX_ID = ID('" + piid + "') AND
TASK.STATE = TASK.STATE.STATE_READY AND
TASK.KIND = TASK.KIND.KIND_ PARTICIPATING AND
WORK_ITEM.REASON=WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",
(String)null, (Integer)null, (TimeZone)null);

3. Réclamez la tache a effectuer qui est renvoyée.
if (result.size() > 0)

{
result.first();
TKIID tkiid = (TKIID) result.getOID(1);
ClientObjectWrapper input = task.claim(tkiid);
DataObject activityInput = null ;
if (input.getObject()!= null && input.getObject() instanceof DataObject)

taskInput = (DataObject)input.getObject();
// read the values

=
}

Une fois la tache réclamée, le message d’entrée de la tache est renvoyé.
4. Déterminez l'activité humaine qui est associée a la tache a effectuer.
Pour établir une corrélation entre les activités et les taches correspondantes,
vous pouvez utiliser I'une des méthodes suivantes.
* La méthode task.getActivityID :
ATID aiid = task.getActivityID(tkiid);
* L’ID de contexte parent qui fait partie de I'objet tache :
AIID aiid = null;
Task taskInstance = task.getTask(tkiid);

0ID oid = taskInstance.getParentContextID();
if (oid != null and oid instanceof AIID)
{ aiid = (AIID)oid;
}
5. Lorsque vous avez terminé de traiter la tache, utilisez ’API de Business Flow
Manager pour terminer la tache ainsi que l'activité humaine qui lui est associée,
puis réclamez l’activité humaine suivante dans l'instance de processus.

Chapitre 4. Développement d’applications client pour les taches et processus métier 355

Pour terminer I’activité humaine, un message de sortie est transmis. Lorsque
vous créez le message de sortie, vous devez spécifier le nom de son type de
message de maniere a ce qu'il contienne la définition du message.
ActivityInstanceData activity = process.getActivityInstance(aiid);
ClientObjectWrapper output =

process.createMessage(aiid, activity.getOutputMessageTypeName());
DataObject myMessage = null ;
if (output.getObject()!= null && output.getObject() instanceof DataObject)

myMessage = (DataObject)output.getObject();
//set the parts in your message, for example, an order number
myMessage.setInt("OrderNo", 4711);

1

//complete the human task activity and its associated to-do task,

// and claim the next human task activity

CompleteAndCTaimSuccessorResult successor =
process.completeAndClaimSuccessor(aiid, output);

Cette opération définit un message de sortie contenant le numéro de
commande et réclame l’activité humaine suivante de la séquence. Si AutoClaim
est défini pour les activités de succession et que plusieurs chemins d’acces
peuvent étre utilisés, toutes les activités de succession sont réclamées et une
activité aléatoire est renvoyée en tant qu’activité suivante. Si aucune activité de
succession supplémentaire ne peut étre affectée a cet utilisateur, la valeur Null
est renvoyée.

Si le processus contient des chemins paralleles pouvant étre suivis, que ces
chemins contiennent des activités humaines et que 1'utilisateur connecté est le
propriétaire potentiel de plusieurs de ces activités, une activité aléatoire est
automatiquement réclamée et renvoyée comme activité suivante.

6. Exécutez l'activité humaine suivante.

ClientObjectWrapper nextInput = successor.getInputMessage();
if (nextInput.getObject()!=

null && nextInput.getObject() instanceof DataObject)
{

activityInput = (DataObject)input.getObject();
// read the values

.

aiid = successor.getAIID();

7. Passez a I'étape 5 afin de terminer I'activité humaine et de récupérer l'activité
humaine suivante.

356 Développement et déploiement

Taches associées

[Développement d’applications pour les processus métier et les taches utilisateur|
La plupart des scénarios de processus métier nécessitent la participation de
personnes. Par exemple, un processus métier nécessite une interaction humaine
lorsque le processus est démarré ou géré ou lorsque des activités humaines sont
effectuées. Pour supporter de tels scénarios, vous devez utiliser a la fois I’API de
Business Flow Manager et 'API de Human Task Manager.

[Traitement d’un flux de travaux par une seule personne|

Certains flux de travaux sont exécutés par une seule personne, par exemple une
commande d’ouvrages sur une librairie en ligne. Ce type de flux de travaux ne
comporte pas de chemins d’acces paralleles. L’API completeAndClaimSuccessor
prend en charge le traitement de ce type de flux de travaux.

Gestion des exceptions et des erreurs
Un processus BPEL peut rencontrer une erreur a différents points du processus.

A propos de cette tache

Les erreurs BPEL (Business Process Execution Language) proviennent des éléments
suivants :

* Appels de service Web (erreurs WSDL (Web Services Description Language))
* Activités d’émission

* Erreurs standard BPEL reconnues par Business Process Choreographer

II existe des mécanismes pour gérer ces erreurs : Pour résoudre les erreurs liées a
une instance de processus, utilisez I'un des mécanismes suivants :

* Transférez le contrdle aux gestionnaires d’erreur correspondants
¢ Effectuez une compensation du travail précédent du processus

 Arrétez le processus afin de laisser quelqu'un d’autre remédier a la situation
(forcer la nouvelle tentative, forcer a terminer)

Un processus BPEL peut également renvoyer des erreurs a 'appelant d’une
opération fournie par le processus. Vous pouvez modéliser 1’erreur dans le
processus sous forme d’activité de réponse avec un nom d’erreur et des données
d’erreur. Ces erreurs sont renvoyées a 'appelant API sous forme d’exceptions
vérifiées.

Si un processus BPEL ne gere pas d’erreurs BPEL ou si une exception API survient,
une exception d’exécution est renvoyée a l'appelant de 'APIL. Par exemple, une
exception API est lancée lorsque le modele de processus a partir duquel une
instance doit étre créée n’existe pas.

La gestion des erreurs et des exceptions est décrite dans les taches suivantes.

Chapitre 4. Développement d’applications client pour les taches et processus métier 357

Taches associées

Développement d’applications client EJB pour des processus métier et des taches|
utilisateur]|

Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d'utiliser des processus métier
et des taches utilisateur installées sur WebSphere Process Server.

(Gestion des exceptions de I’API EJB de Business Process Choreographer]

Si une méthode de l'interface BusinessFlowManagerService ou
HumanTaskManagerService ne se termine pas correctement, une exception est
générée, indiquant la cause de l'erreur. Vous pouvez gérer cette exception de
maniere spécifique pour guider 'appelant.

[Vérification de I'erreur définie pour une activité de tache utilisateur]
Lorsqu’une activité de tache utilisateur est traitée, elle peut s’exécuter
correctement. Dans ce cas, vous pouvez transmettre un message de sortie. Si
I'activité de tache utilisateur ne se termine pas correctement, vous pouvez
transmettre un message d’erreur.

[Vérification d’une erreur survenue lors d’une activité d’appel arrétée

Dans un processus congu de fagon appropriée, les exceptions et les erreurs sont
généralement gérées par des gestionnaires d’erreur. Vous pouvez extraire les
informations relatives a I'exception ou a l'erreur qui s’est produite pour une
activité d’appel provenant de l'instance d’activité.

Vérification de 'erreur ou de l’exception non gérée survenue lors de I’échec d’une]
instance de processus

Dans un processus congu de facon appropriée, les exceptions et les erreurs sont
généralement gérées par un gestionnaire d’erreur. Si le processus implémente une
opération bi-directionnelle, vous pouvez extraire des informations sur une erreur
ou une exception gérée a partir de la propriété du nom de l'erreur de 'objet de
I'instance de processus. Pour les erreurs, vous pouvez également extraire le
message d’erreur correspondant a 1’aide de 1’API getFaultMessage.

Gestion des exceptions de I’API EJB de Business Process
Choreographer

Si une méthode de l'interface BusinessFlowManagerService ou
HumanTaskManagerService ne se termine pas correctement, une exception est
générée, indiquant la cause de 'erreur. Vous pouvez gérer cette exception de
maniére spécifique pour guider 'appelant.

A propos de cette tache

Cependant, il est de coutume de gérer uniquement un sous-ensemble des
exceptions de maniere spécifique et de fournir un guide général pour les autres
exceptions potentielles. Toutes les exceptions spécifiques héritent d"une classe
générique ProcessException ou TaskException. Interceptez les exceptions
génériques avec une instruction finale catch(ProcessException) ou
catch(TaskException). Cette instruction permet de veiller a la compatibilité
ascendante de votre programme d’application car elle prend en compte toutes les
autres exceptions qui peuvent survenir.

358 Développement et déploiement

Taches associées

(Gestion des exceptions et des erreurs|
Un processus BPEL peut rencontrer une erreur a différents points du processus.

Vérification de I’erreur définie pour une activité de tache
utilisateur

Lorsqu'une activité de tache utilisateur est traitée, elle peut s’exécuter
correctement. Dans ce cas, vous pouvez transmettre un message de sortie. Si
I'activité de tache utilisateur ne se termine pas correctement, vous pouvez
transmettre un message d’erreur.

A propos de cette tache
Vous pouvez lire le message d’erreur pour déterminer la cause de l’erreur.

Procédure

1. Répertoriez les activités de tache se trouvant a 1’état d’échec ou arrété.

QueryResultSet result =
process.query ("ACTIVITY.AIID",
"(ACTIVITY.STATE = ACTIVITY.STATE.STATE_FAILED OR
ACTIVITY.STATE = ACTIVITY.STATE.STATE STOPPED) AND
ACTIVITY.KIND=ACTIVITY.KIND.KIND_STAFF",
(String)null, (Integer)null, (TimeZone)null);

Cette opération renvoie un ensemble de résultats de requéte contenant des
activités en échec ou arrétées.

2. Lisez le nom de l'erreur.

if (result.size() > 0)
{
result.first();
ATID aiid = (AIID) result.getOID(1);
ClientObjectWrapper faultMessage = process.getFaultMessage(aiid);
DataObject fault = null ;
if (faultMessage.getObject() != null && faultMessage.getObject() instanceof DataObject)
{
fault = (DataObject)faultMessage.getObject();
Type type = fault.getType();
String name = type.getName();
String uri = type.getURI();
}
1

Cela renvoie le nom de l'erreur. Vous pouvez aussi analyser 1'exception non
prise en charge d'une activité arrétée au lieu d’extraire le nom de l'erreur.

TAaches associées

(Gestion des exceptions et des erreurs|
Un processus BPEL peut rencontrer une erreur a différents points du processus.

Vérification d’une erreur survenue lors d’une activité d’appel
arrétée

Dans un processus congu de fagon appropriée, les exceptions et les erreurs sont
généralement gérées par des gestionnaires d’erreur. Vous pouvez extraire les
informations relatives a I'exception ou a l'erreur qui s’est produite pour une
activité d’appel provenant de l'instance d’activité.

Chapitre 4. Développement d’applications client pour les taches et processus métier 359

A propos de cette tache

Si une activité entraine une erreur, le type d’erreur détermine les actions que vous
pouvez effectuer pour réparer 'activité.

Procédure
1. Répertoriez les activités humaines qui sont en état arrété.

QueryResultSet result =
process.query ("ACTIVITY.AIID",
"ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND
ACTIVITY.KIND=ACTIVITY.KIND.KIND_INVOKE",
(String)null, (Integer)null, (TimeZone)null);

Cette opération renvoie un ensemble de résultats de requéte contenant des
activités d’appel arrétées.

2. Lisez le nom de l'erreur.

if (result.size() > 0)
{
result.first();
AIID aiid = (AIID) result.getOID(1);
ActivityInstanceData activity = process.getActivityInstance(aiid);

ProcessException excp = activity.getUnhandledException();
if (excp instanceof ApplicationFaultException)

ApplicationFaultException fault = (ApplicationFaultException)excp;
String faultName = fault.getFaultName();
}

}

TAaches associées

(Gestion des exceptions et des erreurs|
Un processus BPEL peut rencontrer une erreur a différents points du processus.

Vérification de I’erreur ou de I’exception non gérée survenue lors
de I'’échec d’une instance de processus

Dans un processus congu de fagon appropriée, les exceptions et les erreurs sont
généralement gérées par un gestionnaire d’erreur. Si le processus implémente une
opération bi-directionnelle, vous pouvez extraire des informations sur une erreur
ou une exception gérée a partir de la propriété du nom de l'erreur de l'objet de
I'instance de processus. Pour les erreurs, vous pouvez également extraire le
message d’erreur correspondant a 1’aide de 1I’API getFaultMessage.

A propos de cette tache

Si une instance de processus échoue parce qu'une exception n’est pas gérée par
l'un des gestionnaire d’erreur, vous pouvez extraire des informations sur
I'exception non gérée a partir de 'objet de I'instance de processus. En revanche, si
une erreur est interceptée par un gestionnaire d’erreur, les informations sur 'erreur
ne sont pas disponibles. Vous pouvez, cependant, extraire le message et le nom de
I'erreur et les renvoyer a I'appelant a I'aide de I'exception FaultReplyException.

Procédure

1. Répertoriez les instances de processus présentant 1’état Echoué.

QueryResultSet result =
process.query("PROCESS INSTANCE.PIID",
"PROCESS_INSTANCE.STATE =
PROCESS_INSTANCE.STATE.STATE_FAILED",
(String)null, (Integer)null, (TimeZone)null);

360 Développement et déploiement

Cette opération renvoie un ensemble de résultats de requéte contenant les
instances de processus ayant échoué.

2. Prenez connaissances des informations concernant l'exception non gérée.
if (result.size() > 0)

{

}

result.first();
PIID piid = (PIID) result.getOID(1);
ProcessInstanceData pInstance = process.getProcessInstance(piid);

ProcessException excp = pInstance.getUnhandledException();
if (excp instanceof RuntimeFaultException)

RuntimeFaultException xcp = (RuntimeFaultException)excp;
Throwable cause = xcp.getRootCause();

}

else if (excp instanceof StandardFaultException)

StandardFaultException xcp = (StandardFaultException)excp;
String faultName = xcp.getFaultName();

}

else if (excp instanceof ApplicationFaultException)

{

ApplicationFaultException xcp = (ApplicationFaultException)excp;
String faultName = xcp.getFaultName();

}

Résultats

Utilisez ces informations pour rechercher le nom de l'erreur ou la cause principale
du probléeme.

TAaches associées

(Gestion des exceptions et des erreurs|

Un processus BPEL peut rencontrer une erreur a différents points du processus.

Développement d’applications API de service Web

Vous pouvez développer des applications client accédant a des applications de

processus métier et de taches utilisateur via des API de services Web.

A propos de cette tache

Vous

pouvez développer des applications client dans n'importe quel

environnement client de service Web, y compris les services Web Java et Microsoft

.NET.

Chapitre 4. Développement d’applications client pour les taches et processus métier

361

Concepts associés

[Copie d’artefacts|

Un certain nombre doivent étre copiés depuis I'environnement WebSphere afin de
créer des applications client.

IDéveloppement d’applications client dans 'environnement de services Web]ava|
Vous pouvez utiliser n'importe quel environnement de développement Java
compatible avec les services Web Java pour développer des applications client
destinées aux API de service Web.

[Développement d’applications client dans 1’environnement .NET]
Microsoft .NET offre un puissant environnement de développement permettant de
connecter des applications via des services Web.

IComposants de service Web et séquence de controle|

Un certain nombre de composants coté client et co6té serveur font partie de la
séquence de contrdle qui représente une requéte et une réponse de service Web.
[Présentation des API des services Web|

Les API des services Web permettent de développer des applications client qui
accedent aux processus métier et aux taches utilisateur s’exécutant en
environnement Business Process Choreographer a 1'aide de services Web.

Comparaison entre les interfaces de programmation visant a interagir avec leg
processus métier et les tiches utilisateur]

Des interfaces de programmation génériques EJB (Enterprise JavaBeans), JMS (Java
Message Service), REST (Representational State Transfer Services) ainsi que des
interfaces de programmation de services Web sont disponibles pour la création
d’applications client interagissant avec des processus métier et des taches
utilisateur. Chacune de ces interfaces présente des caractéristiques différentes.

TAaches associées

[Développement d’applications client pour les taches et processus métier|

Vous pouvez utiliser un outil de modélisation pour compiler et déployer des taches
et des processus métier. L'interaction avec ces processus et ces taches se produit
lors de I'exécution. Par exemple, un processus est lancé ou les taches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des taches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.

[Développement d’applications client|
Le processus de développement d’applications client comprend un certain nombre
d’étapes.

[Requétes sur des obijets liés aux processus métier et aux taches|

Vous pouvez utiliser les API de services Web pour effectuer des requétes de
données sur les objets liés aux processus métier et aux taches dans la base de
données Business Process Choreographer, afin d’extraire les propriétés spécifiques
de ces objets.

Composants de service Web et séquence de controle

Un certain nombre de composants coté client et co6té serveur font partie de la
séquence de contrdle qui représente une requéte et une réponse de service Web.

Une séquence de contrdle typique se présente comme suit.
1. Coté client :

a. Une application client (fournie par l'utilisateur) émet une requéte de service
Web.

362 Développement et déploiement

b.

Un client proxy (également fourni par l'utilisateur, mais pouvant étre généré
automatiquement par des utilitaires coté client) encapsule la requéte de
service dans une enveloppe de requéte SOAP.

L’infrastructure de développement coté client réachemine la requéte vers
une adresse URL définie en tant que noeud final du service Web.

2. Le réseau transmet la requéte au noeud final de service Web via le protocole
HTTP ou HTTPS.

3. Coté serveur :

a.
b.

L’API de service Web générique recoit la requéte et la décode.

La requéte est soit gérée directement par les composants génériques
Business Flow Manager ou Human Task Manager, soit transmise au
processus métier ou a la tache utilisateur spécifiés.

Les données renvoyées sont encapsulées dans une enveloppe de réponse
SOAP.

4. Le réseau transmet la réponse a 1’'environnement coté-client via le protocole
HTTP ou HTTPS.

5. De retour coté client :

a.

C.

L’infrastructure de développement coté client décode I'enveloppe de
réponse SOAP.

Le client proxy extrait les données de la réponse SOAP et les transmet a
l'application client.

L’application client traite les données renvoyées selon les nécessités.

Taches associées

[Développement d’applications API de service Web|

Vous pouvez développer des applications client accédant a des applications de
processus métier et de taches utilisateur via des API de services Web.

Présentation des API des services Web

Les API des services Web permettent de développer des applications client qui
accedent aux processus métier et aux taches utilisateur s’exécutant en
environnement Business Process Choreographer a 1’aide de services Web.

L’API des services Web Business Process Choreographer dispose de deux interfaces
de services Web distinctes (types de port WSDL) :

* API Business Flow Manager. Elle permet aux applications client d’avoir une
interaction avec des microflux et des processus longue durée, par exemple :

Créer des modeles et des instances de processus
Réclamer des processus existants

Rechercher un processus a partir de son ID

Pour consulter la liste compléte des actions possibles, voir [<Développement|

[d’applications pour les processus métier», a la page 301}

* API Human Task Manager. Elle permet aux applications client d’effectuer les
opérations suivantes :

Créer et lancer des taches

Réclamer des taches existantes

Exécuter des taches

Rechercher une tache a partir de son ID
Rechercher un ensemble de taches.

Chapitre 4. Développement d’applications client pour les taches et processus métier 363

Pour consulter la liste compléte des actions possibles, voir [<Développement]
[d’applications pour des taches utilisateur», a la page 328|

Les applications client peuvent utiliser 'une des interfaces de service Web ou les
deux.

Exemple

La structure suivante peut convenir pour une application client qui accede a I’API

du service Web Human Task Manager afin de traiter une tache utilisateur de

participation :

1. L’application client envoie un appel de service Web query au serveur
WebSphere Process Server demandant la liste des taches de participation sur
lesquelles un utilisateur devra travailler.

2. La liste des taches de participation est renvoyée dans une enveloppe de
réponse SOAP/HTTP.

3. L’application client envoie alors un appel de service Web claim pour demander
l'une des taches de participation.

4. WebSphere Process Server renvoie le message d’entrée de la tache.

5. L’application client envoie un appel de service Web complete pour achever la
tache par un message de sortie ou d’erreur.

TAaches associées

[Développement d’applications API de service Web|
Vous pouvez développer des applications client accédant a des applications de
processus métier et de taches utilisateur via des API de services Web.

Exigences en termes de processus métier et de taches
utilisateur

Les processus métier et les taches utilisateur développés au moyen de WebSphere
Integration Developer pour étre exécutés dans 1’application Business Process
Choreographer doivent étre conformes a des regles spécifiques afin d’étre
accessibles via les API de services Web.

Les exigences sont les suivantes :

1. Les interfaces des processus métier et des taches utilisateur doivent étre
définies a I'aide du style "document/literal wrapped” défini dans I’API Java
pour la spécification XML-RPC (JAX-RPC 1.1). Il s’agit du style par défaut
défini pour 1’ensemble des processus métier et des taches utilisateur développés
avec I'ID de poste de travail.

2. Les messages d’erreur accessibles aux processus métier et aux taches utilisateur
des opérations de service Web doivent comprendre un seul composant de
message WSDL défini au moyen d'un élément de schéma XML. Par exemple :
<wsdl:part name="myFault" element="myNamespace:myFaultElement"/>

Information associée

[[Page de téléchargement d’API Java pour XML-RPC (JAX-RPC)|

[[Quel style de langage WSDL dois-je utiliser 2|

Développement d’applications client

Le processus de développement d’applications client comprend un certain nombre
d’étapes.

364 Développement et déploiement

http://java.sun.com/xml/downloads/jaxrpc.html
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/

Procédure

1. Décidez quelle API de services Web votre application client doit utiliser : I’/API
de Business Flow Manager, ’API de Human Task Manager ou les deux.

2. Exportez les fichiers nécessaires depuis I’'environnement de WebSphere Process
Server. Vous pouvez également copier les fichiers depuis le CD client
WebSphere Process Server.

3. Dans l'environnement de développement d’applications client que vous avez
sélectionné, générez un client proxy a I'aide des artefacts exportés.

4. Facultatif : Générez des classes auxiliaires. Les classes auxiliaires sont requises si
votre application client interagit directement avec des taches ou des processus
concrets présents sur le serveur WebSphere. Elles ne sont toutefois pas
obligatoires si votre application client est uniquement destinée a exécuter des
taches génériques telles que I’émission de requétes.

5. Développez le code de votre application client.

6. Ajoutez les mécanismes de sécurité nécessaires a votre application client.

TAaches associées

[Développement d’applications API de service Web|
Vous pouvez développer des applications client accédant a des applications de
processus métier et de taches utilisateur via des API de services Web.

Copie d’artefacts

Un certain nombre doivent étre copiés depuis I'environnement WebSphere afin de
créer des applications client.

Deux méthodes permettent d’obtenir ces artefacts :

* DPubliez et exportez-les depuis 1’environnement WebSphere Process Server.
* Copiez les fichiers depuis le CD client WebSphere Process Server.
Concepts associés

[Utilisation de fichiers sur le CD du clien{

Une solution alternative visant a exporter des artefacts depuis I'environnement du
serveur WebSphere consiste a copier les fichiers requis pour la génération d'une
application client a partir du CD du client WebSphere Process Server.

TAaches associées

[Développement d’applications API de service Web|
Vous pouvez développer des applications client accédant a des applications de
processus métier et de taches utilisateur via des API de services Web.

[Publication et exportation d’artefacts depuis I’environnement de serveurs|

Avant d’étre en mesure de développer des applications client pour accéder aux API
de services Web, vous devez publier et exporter un certain nombre d’artefacts a
partir de ’environnement de serveurs WebSphere.

Publication et exportation d’artefacts depuis I’environnement de
serveurs

Avant d’étre en mesure de développer des applications client pour accéder aux API
de services Web, vous devez publier et exporter un certain nombre d’artefacts a
partir de l’'environnement de serveurs WebSphere.

A propos de cette tache

Les artefacts a exporter sont les suivants :

* Fichiers WSDL (Web Service Definition Language) décrivant les types de port et
les opérations qui génerent les API de services Web.

Chapitre 4. Développement d’applications client pour les taches et processus métier 365

* Fichiers XSD (XML Schema Definition) contenant des définitions de types de
données référencés par des services et des méthodes dans les fichiers WSDL.

* Fichiers XSD et WSDL supplémentaires décrivant des objets métier. Les objets
métier décrivent des taches utilisateur ou des processus métier concrets
s’exécutant sur le serveur WebSphere. Ces fichiers supplémentaires sont requis
uniquement si votre application client doit interagir directement avec les taches
utilisateur ou les processus métier concrets via les API de services Web. IIs ne
sont pas nécessaires si votre application client est uniquement destinée a
exécuter des taches génériques, tels que I'émission de requétes.

Une fois ces artefacts publiés, vous devez les copier dans votre environnement de
programmation client, dans lequel ils sont utilisés pour générer un client proxy et
des classes auxiliaires.

Concepts associés

ICopie d’artefacts]

Un certain nombre doivent étre copiés depuis 1’environnement WebSphere afin de
créer des applications client.

Taches associées

Spécification de 'adresse du noeud final de service Web

L’adresse du noeud final de service Web est 'adresse URL qu’une application
client doit spécifier pour accéder aux API de services Web. L’adresse du noeud
final est inscrite dans le fichier WSDL que vous exportez pour générer un client
proxy pour votre application client.

[Publication des fichiers WSDI|

Un fichier WSDL (Web Service Definition Language) contient la description
détaillée de toutes les opérations accessibles avec une API de services Web. Des
fichiers WSDL séparés sont disponibles pour les API de services Web Business
Flow Manager et Human Task Manager. Vous devez d’abord publier ces fichiers
WSDL, puis les copier de I'environnement WebSphere vers votre environnement de
développement, ot ils serviront a générer un client proxy.

[Exportation des objets métier|

Les processus métier et les taches utilisateur disposent d’interfaces bien définies les
rendant accessibles depuis 'extérieur en tant que services Web. Si ces interfaces
font référence a des objets métier, vous devez exporter les définitions d’interface et
les objets métier vers votre environnement de programmation client.

Spécification de 1’adresse du noeud final de service Web :

L’adresse du noeud final de service Web est 'adresse URL qu’une application
client doit spécifier pour accéder aux API de services Web. L’adresse du noeud
final est inscrite dans le fichier WSDL que vous exportez pour générer un client
proxy pour votre application client.

A propos de cette tache

L’adresse du noeud final de service Web a utiliser dépend de la configuration de
votre serveur WebSphere :

* Scénario 1. Un seul serveur WebSphere. L’adresse du noeud final WebSphere a
spécifier est le nom d’héte et le numéro de port du serveur, par exemple
host1:9080.

* Scénario 2 : Un cluster WebSphere est composé de plusieurs serveurs. L’adresse
du noeud final WebSphere a spécifier est le nom d’hoéte et le numéro de port du
serveur hébergeant les API de services Web, par exemple host2:9081.

366 Développement et déploiement

* Scénario 3 : Un serveur Web est configuré en tant que systeme frontal. L’adresse
du noeud final WebSphere a spécifier est le nom d’hote et le numéro de port du
serveur Web, par exemple : host:80.

Par défaut, ’adresse du noeud final de service Web adopte le format
protocole: [[hote:port / racine_contexte/chemin d’acces fixe. Ou :

* protocole. Protocole de communication utilisé entre I'application client et le
serveur WebSphere. Le protocole par défaut est HTTP. Vous pouvez également
utiliser le protocole HTTPS (HTTP sur SSL), plus sécurisé. Il est recommandé
d’utiliser HTTPS.

* hote:port. Nom d’héte et numéro de port d’acces au systeme hébergeant les API
de service Web. Ces valeurs varient selon la configuration du serveur WebSphere
; si, par exemple, votre application client accede a 1’application directement ou
par l'intermédiaire d’un serveur Web frontal.

* racine_contexte. Vous pouvez affecter n'importe quelle valeur a la racine de
contexte. La valeur choisie doit néanmoins étre unique dans chaque cellule
WebSphere. La valeur par défaut utilise un suffixe "node_server/cluster” pour
éliminer les risques de conflit entre les noms.

* chemin_acces_fixe correspond a /sca/com/ibm/bpe/api/BFMWS (pour I’API de
Business Flow Manager) ou a /sca/com/ibm/task/api/HTMWS (pour I’API de
Human Task Manager) et ne peut pas étre modifié.

L’adresse du noeud final de service Web est initialement spécifiée lors de la
configuration du conteneur de processus métier ou du conteneur de tache
utilisateur :

Procédure

1. Connectez-vous a la console d’administration avec un ID utilisateur titulaire
des droits d’administrateur.

2. Sélectionnez Applications > Modules SCA.

Remarque : Vous pouvez également sélectionner Applications » Applications
d’entreprise pour afficher la liste de toutes les applications d’entreprise
disponibles.

3. Sélectionnez BPEContainer (pour le conteneur de processus métier) ou
TaskContainer (pour le conteneur de taches utilisateur) dans la liste des
modules ou applications SCA.

4. Sélectionnez I'option Fournir les informations URL du noeud final HTTP
(Fournir les informations URL du noeud final HTTP) dans la liste Propriétés
supplémentaires.

5. Sélectionnez 'un des préfixes par défaut dans la liste ou entrez un préfixe
personnalisé. Utilisez un préfixe issu de la liste de préfixes par défaut si vos
applications client doivent se connecter directement au serveur d’applications
hébergeant 1’API de services Web. Sinon, indiquez un préfixe personnalisé.

6. Cliquez sur Appliquer pour copier le préfixe sélectionné dans le module SCA.

7. Cliquez sur OK. Les données URL sont sauvegardées dans votre espace de
travail.

Résultats
Vous pouvez afficher la valeur en cours dans la console d’administration (par

exemple pour le conteneur de processus métier : Applications d’entreprise >
BPEContainer » Afficher le descripteur de déploiement).

Chapitre 4. Développement d’applications client pour les taches et processus métier 367

Dans le fichier WSDL exporté, l’attribut 1ocation de I'élément soap:address
contient 'adresse spécifiée pour le noeud final de services Web. Par exemple :

<wsdl:service name="BFMWSService">
<wsdl:port name="BFMWSPort" binding="this:BFMWSBinding">
<soap:address Tocation="https://myserver:9080/WebServicesAPIs/sca/com/ibm/bpe/api/BFMWS"/>

TAaches associées

[Publication et exportation d’artefacts depuis 1’environnement de serveurs|

Avant d’étre en mesure de développer des applications client pour accéder aux API
de services Web, vous devez publier et exporter un certain nombre d’artefacts a
partir de ’environnement de serveurs WebSphere.

Publication des fichiers WSDL :

Un fichier WSDL (Web Service Definition Language) contient la description
détaillée de toutes les opérations accessibles avec une API de services Web. Des
fichiers WSDL séparés sont disponibles pour les API de services Web Business
Flow Manager et Human Task Manager. Vous devez d’abord publier ces fichiers
WSDL, puis les copier de I'environnement WebSphere vers votre environnement de
développement, ot ils serviront a générer un client proxy.

Avant de commencer

Avant de publier les fichiers, assurez-vous que 1’adresse du noeud final de services
Web correcte est spécifiée. Il s’agit de I'adresse URL qu’une application client
utilise pour accéder aux API de services Web.

A propos de cette tiche

La publication des fichiers WSDL n’est nécessaire qu'une fois.

Remarque : Si vous disposez du CD client WebSphere Process Server, vous pouvez

copier les fichiers directement depuis cet emplacement vers votre environnement
de programmation client.

TAaches associées

[Publication et exportation d’artefacts depuis I’environnement de serveurs|

Avant d’étre en mesure de développer des applications client pour accéder aux API
de services Web, vous devez publier et exporter un certain nombre d’artefacts a
partir de I’environnement de serveurs WebSphere.

[Publication du WSDL des processus métier|
La console d’administration permet de publier le fichier WSDL.

[Publication du WSDL des taches utilisateur|
La console d’administration permet de publier le fichier WSDL.

Publication du WSDL des processus métier :
La console d’administration permet de publier le fichier WSDL.

Procédure

1. Connectez-vous a la console d’administration avec un ID utilisateur titulaire
des droits d’administrateur.

2. Sélectionnez Applications > Modules SCA

368 Développement et déploiement

Remarque : Vous pouvez également sélectionner Applications » Applications
d’entreprise pour afficher la liste de toutes les applications d’entreprise
disponibles.

3. Choisissez l'application BPEContainer dans la liste des applications ou
modules SCA.

4. Sélectionnez l'option Publier des fichiers WSDL dans la liste des Propriétés
supplémentaires

5. Cliquez sur le fichier zip dans la liste.

6. Dans la fenétre de téléchargement de fichiers qui s’affiche, cliquez sur
Enregistrer.

7. Accédez a un dossier local et cliquez sur Enregistrer.
Résultats

Le fichier zip exporté est nommé BPEContainer WSDLFiles.zip. Il contient un
fichier WSDL qui décrit les services Web, ainsi que tous les fichiers XSD référencés
dans le fichier WSDL.

Taches associées

[Publication des fichiers WSDLJ

Un fichier WSDL (Web Service Definition Language) contient la description
détaillée de toutes les opérations accessibles avec une API de services Web. Des
fichiers WSDL séparés sont disponibles pour les API de services Web Business
Flow Manager et Human Task Manager. Vous devez d’abord publier ces fichiers
WSDL, puis les copier de I'environnement WebSphere vers votre environnement de
développement, o1 ils serviront a générer un client proxy.

Publication du WSDL des tdches utilisateur :
La console d’administration permet de publier le fichier WSDL.

Procédure

1. Connectez-vous a la console d’administration avec un ID utilisateur titulaire
des droits d’administrateur.

2. Sélectionnez Applications > Modules SCA

Remarque : Vous pouvez également sélectionner Applications » Applications
d’entreprise pour afficher la liste de toutes les applications d’entreprise
disponibles.

3. Choisissez l'application TaskContainer dans la liste des applications ou
modules SCA.

4. Sélectionnez l'option Publier des fichiers WSDL dans la liste des Propriétés
supplémentaires

5. Cliquez sur le fichier zip dans la liste.

6. Dans la fenétre de téléchargement de fichiers qui s’affiche, cliquez sur
Enregistrer.

7. Accédez a un dossier local et cliquez sur Enregistrer.
Résultats
Le fichier zip exporté est nommé TaskContainer_ WSDLFiles.zip. Il contient un

fichier WSDL qui décrit les services Web, ainsi que tous les fichiers XSD référencés
dans le fichier WSDL.

Chapitre 4. Développement d’applications client pour les taches et processus métier 369

Taches associées

[Publication des fichiers WSDIJ

Un fichier WSDL (Web Service Definition Language) contient la description
détaillée de toutes les opérations accessibles avec une API de services Web. Des
fichiers WSDL séparés sont disponibles pour les API de services Web Business
Flow Manager et Human Task Manager. Vous devez d’abord publier ces fichiers
WSDL, puis les copier de I'environnement WebSphere vers votre environnement de
développement, ot ils serviront a générer un client proxy.

Exportation des objets métier :

Les processus métier et les taches utilisateur disposent d’interfaces bien définies les
rendant accessibles depuis l'extérieur en tant que services Web. Si ces interfaces
font référence a des objets métier, vous devez exporter les définitions d’interface et
les objets métier vers votre environnement de programmation client.

A propos de cette tiche

Cette procédure doit étre répétée pour chaque objet métier avec lequel votre
application client entre en interaction.

Dans WebSphere Process Server, les objets métier définissent le format des
messages de requéte, de réponse et d’erreur qui interagissent avec les processus
métier ou les taches utilisateur. Ces messages peuvent également contenir les
définitions des types de données complexes.

Par exemple, pour créer et démarrer une tache utilisateur, les éléments
d’information suivants doivent étre transmis a l'instance de tache :

* Le nom du modeéle de tache

* L’espace de nom du modele de tache.

* Un message d’entrée contenant les données métier mises en forme
* Un encapsuleur de réponse pour le renvoi du message de réponse
¢ Un message d’erreur pour le renvoi des erreurs et des exceptions

Ces éléments sont encapsulés dans un objet métier unique. Toutes les opérations de
I'interface du service Web sont modélisées sous forme d’opération
"document/littéral encapsulé”. Les parametres d’entrée et de sortie relatifs a ces
opérations sont encapsulés dans des documents d’encapsulation. Les autres objets
métier définissent la réponse correspondante et les formats des messages d’erreur.

Pour permettre la création et le démarrage du processus métier ou de la tache
utilisateur via un service Web, 1'application client c6té client doit pouvoir accéder a
ces objets d’encapsulation.

Cette configuration est réalisée en exportant les objets métier depuis
I'environnement WebSphere sous forme de fichiers WSDL (Web Service Definition
Language) et XSD (XML Schema Definition), en important les définitions des types
de données dans I'environnement de programmation client, puis en les
convertissant en classes auxiliaires en vue de leur utilisation par 1’application
client.

Procédure

1. Lancez l'espace de travail WebSphere Integration Developer sil n’est pas déja
en cours d’exécution.

370 Développement et déploiement

2. Sélectionnez le module de bibliotheque contenant les objets métier a exporter.
Un module de bibliotheque est un fichier compressé contenant les objets métier
requis.

3. Exportez le module de bibliotheque.

4. Copiez les fichiers exportés vers votre environnement de développement
d’applications client.

Exemple

En supposant qu'un processus métier expose 'opération de service Web suivante :

<wsdl:operation name="updateCustomer">
<wsd1:input message="tns:updateCustomerRequestMsg" name="updateCustomerRequest"/>
<wsdl:output message="tns:updateCustomerResponseMsg" name="updateCustomerResponse"/>
<wsdl:fault message="tns:updateCustomerFaultMsg" name="updateCustomerFault"/>
</wsd1:operation>

avec les messages WSDL définis comme suit :

<wsdl:message name="updateCustomerRequestMsg">

<wsdl:part element="types:updateCustomer" name="updateCustomerParameters"/>
</wsd1:message>
<wsd]:message name="updateCustomerResponseMsg">

<wsdl:part element="types:updateCustomerResponse" name="updateCustomerResult"/>
</wsd1:message>
<wsdl:message name="updateCustomerFaultMsg">

<wsdl:part element="types:updateCustomerFault" name="updateCustomerFault"/>
</wsd1:message>

Les éléments concrets définis par l'utilisateur types:updateCustomer,
types:updateCustomerResponse et types:updateCustomerFault doivent étre
transmis vers et depuis les API de services Web au moyen des parameétres
<xsd:any> dans toutes les opérations génériques (call, sendMessage etc.) exécutées
par l'application client. Ces éléments définis par le client sont créés, sérialisés et
désérialisés coté application client a 1’aide des classes auxiliaires générées par les
fichiers XSD exportés.

TAaches associées

[Publication et exportation d’artefacts depuis I’environnement de serveurs|

Avant d’étre en mesure de développer des applications client pour accéder aux API
de services Web, vous devez publier et exporter un certain nombre d’artefacts a
partir de I’environnement de serveurs WebSphere.

Utilisation de fichiers sur le CD du client

Une solution alternative visant a exporter des artefacts depuis I'environnement du
serveur WebSphere consiste a copier les fichiers requis pour la génération d'une
application client a partir du CD du client WebSphere Process Server.

Dans ce cas, vous devez modifier manuellement 1’adresse de noeud final des
services Web par défaut des API Business Flow Manager API ou Human Task

Manager.

Si l'application client doit pouvoir accéder aux deux API, vous devez éditer
I'adresse de noeud final par défaut pour les deux APL

Chapitre 4. Développement d’applications client pour les tiches et processus métier 371

Concepts associés

[Copie d’artefacts|
Un certain nombre doivent étre copiés depuis I'environnement WebSphere afin de
créer des applications client.

TAaches associées

ICopie de fichiers depuis le CD client|
Les fichiers requis pour accéder aux API de services Web sont disponibles sur le
CD client WebSphere Process Server.

(Changement manuel d’adresse du noeud final de service Web]|

Si vous copiez les fichiers depuis le CD-ROM du client, vous devez remplacer
I'adresse du noeud final du service Web spécifiée dans les fichiers WSDL par celle
du serveur hébergeant les API des services Web.

Copie de fichiers depuis le CD client :

Les fichiers requis pour accéder aux API de services Web sont disponibles sur le
CD client WebSphere Process Server.

Procédure
1. Accédez au CD client et au répertoire ProcessChoreographer\client.

2. Copiez les fichiers nécessaires a votre environnement de développement
d’applications client.

Pour I’API de Business Flow Manager, copiez :

BFMWS.wsdl
Décrit les services Web disponibles dans I’API de services Web Business
Flow Manager. Ce fichier contient 1’adresse du noeud final.

BFMIE.wsdl
Décrit les parametres et le type de données pour chaque service Web
dans I’API de services Web Business Flow Manager.

BFMIF.xsd
Décrit les types de données utilisés dans 1’API de services Web
Business Flow Manager.

BPCGEN.xsd
Contient des types de données communs entre les API de services Web
Business Flow Manager et Human Task Manager.

Pour I’API de Human Task Manager, copiez :
HTMWS.wsdl

Décrit les services Web disponibles dans I’API de services Web Human
Task Manager. Ce fichier contient 1’adresse du noeud final.

HTMIF.wsdl
Décrit les parametres et le type de données pour chaque service Web
dans I’API de services Web Human Task Manager.

HTMIE.xsd
Décrit les types de données utilisés dans I’API de services Web Human
Task Manager.

BPCGEN.xsd
Contient des types de données communs entre les API de services Web
Business Flow Manager et Human Task Manager.

Remarque : Le fichier BPCGen.xsd est commun aux deux APIL

372 Développement et déploiement

Que faire ensuite

Apres avoir copié les fichiers, vous devez modifier manuellement I'adresse du
noeud final de I’API de services Web dans les fichiers BEMWS.wsdl ou
HTMWS.wsdl par celle du serveur d’applications WebSphere hébergeant les API
de services Web.

Concepts associés

[Utilisation de fichiers sur le CD du client]

Une solution alternative visant a exporter des artefacts depuis I'environnement du
serveur WebSphere consiste a copier les fichiers requis pour la génération d'une
application client a partir du CD du client WebSphere Process Server.

Changement manuel d’adresse du noeud final de service Web :

Si vous copiez les fichiers depuis le CD-ROM du client, vous devez remplacer
I'adresse du noeud final du service Web spécifiée dans les fichiers WSDL par celle
du serveur hébergeant les API des services Web.

A propos de cette tiche

Vous pouvez utiliser la console d’administration pour définir I’adresse du noeud
final de service Web avant d’exporter les fichiers WSDL. Si, toutefois, vous copiez
les fichiers WSDL depuis le CD-ROM du client WebSphere Process Server, vous
devez modifier manuellement I'adresse par défaut du noeud final de service Web.

L’adresse du noeud final de service Web a utiliser dépend de la configuration de
votre serveur WebSphere :

* Scénario 1 : Une instance unique du serveur WebSphere est configurée. L’adresse
du noeud final WebSphere a spécifier est le nom d’hote et le numéro de port du
serveur, par exemple host1:9080.

* Scénario 2 : Un cluster WebSphere est composé de plusieurs serveurs. L’adresse
du noeud final WebSphere a spécifier est le nom d’hote et le numéro de port du
serveur hébergeant les API de services Web, par exemple host2:9081.

* Scénario 3 : Un serveur Web est configuré en tant que systeme frontal. L’adresse
du noeud final WebSphere a spécifier est le nom d’hoéte et le numéro de port du
serveur Web, par exemple : host:80.

Concepts associés

[Utilisation de fichiers sur le CD du client|

Une solution alternative visant a exporter des artefacts depuis 'environnement du

serveur WebSphere consiste a copier les fichiers requis pour la génération d'une

application client a partir du CD du client WebSphere Process Server.

Taches associées

IModification du noeud final de I’API de Business Flow Managed

Si vous copiez les fichiers de ’API de Business Flow Manager depuis le CD-ROM
WebSphere Process Server, vous devez modifier manuellement 1’adresse par défaut
du noeud final.

Modification du noeud final de I’API de Human Task Manager|

Si vous copiez les fichiers de I’API de Human Task Manager depuis le CD-ROM
WebSphere Process Server, vous devez modifier manuellement 1’adresse par défaut
du noeud final.

Modification du noeud final de I’API de Business Flow Manager :

Chapitre 4. Développement d’applications client pour les taches et processus métier 373

Si vous copiez les fichiers de I’API de Business Flow Manager depuis le CD-ROM
WebSphere Process Server, vous devez modifier manuellement 1’adresse par défaut
du noeud final.

Procédure

1. Accédez au répertoire contenant les fichiers copiés depuis le CD-ROM du
client.

2. Ouvrez le fichier BEMWS.wsdl dans un éditeur de texte ou un éditeur XML.
Localisez I'élément soap:address (vers la fin du fichier).

w

4. Remplacez la valeur de l'attribut lTocation par 'URL HTTP du serveur sur
lequel I’API du service Web fonctionne. Pour cela :

a. Vous pouvez remplacer http par https afin d’utiliser le protocole HTTPS,
plus sécurisé.

b. Remplacez localhost par 1’adresse IP ou le nom d’hote associé a 1’adresse de
noeud final du serveur de I’API des services Web.

c. Remplacez 9080 par le numéro de port du serveur d’applications.

d. Remplacez BPEContainer_N1_server] par la racine de contexte de
l'application exécutant 1’API des services Web. La racine de contexte par
défaut est composée comme suit :

* BPEContainer. Nom de 'application.

* NI1. Nom du noeud.

* serverl. Nom du serveur.
e. Ne modifiez pas la partie fixe de I'URL (/sca/com/ibm/bpe/api/BFMWS) .
Par exemple, si 'application s’exécute sur le serveur sl.nl.ibm.com et que le

serveur accepte les requétes SOAP/HTTP au port 9080, modifiez 1'élément
soap:address comme suit :

<soap:address location="http://si.nl.ibm.com:9080/
BPEContainer N1 _serverl/sca/com/ibm/bpe/api/BFMWS" />

TAaches associées

[Changement manuel d’adresse du noeud final de service Webl|

Si vous copiez les fichiers depuis le CD-ROM du client, vous devez remplacer
I'adresse du noeud final du service Web spécifiée dans les fichiers WSDL par celle
du serveur hébergeant les API des services Web.

Modification du noeud final de I’API de Human Task Manager :

Si vous copiez les fichiers de ’API de Human Task Manager depuis le CD-ROM
WebSphere Process Server, vous devez modifier manuellement 1’adresse par défaut
du noeud final.

Procédure

1. Accédez au répertoire contenant les fichiers copiés depuis le CD-ROM du
client.

2. Ouvrez le fichier HTMWS.wsdl dans un éditeur de texte ou un éditeur XML.
Localisez I'élément soap:address (vers la fin du fichier).

w

4. Remplacez la valeur de l'attribut Tocation par l'adresse de noeud final correcte.
Pour cela :

a. Vous pouvez remplacer http par https afin d’utiliser le protocole HTTPS,
plus sécurisé.

b. Remplacez localhost par I'adresse IP ou le nom d’hote associé a 1’adresse de
noeud final du serveur de I’API des services Web.

374 Développement et déploiement

c. Remplacez 9080 par le numéro de port du serveur d’applications.

d. Remplacez HTMContainer_N1_server] par la racine de contexte de
l'application exécutant ’API des services Web. La racine de contexte par
défaut est composée comme suit :

* HTMContainer. Nom de "application.
¢ NI1. Nom du noeud.
* serverl. Nom du serveur.

e. Ne modifiez pas la partie fixe de 'URL (/sca/com/ibm/task/api/HTMWS).

Par exemple, si 'application s’exécute sur le serveur sl.nl.ibm.com et que le
serveur accepte les requétes SOAP/HTTPS au port 9081, modifiez 1’élément
soap:address comme suit :
<soap:address location="https://si.nl.ibm.com:9081/
HTMContainer N1 serverl/sca/com/ibm/task/api/HTMWS"/>
Taches associées

(Changement manuel d’adresse du noeud final de service Webl|

Si vous copiez les fichiers depuis le CD-ROM du client, vous devez remplacer
I’adresse du noeud final du service Web spécifiée dans les fichiers WSDL par celle
du serveur hébergeant les API des services Web.

Développement d’applications client dans I’environnement de
services Web Java

Vous pouvez utiliser n'importe quel environnement de développement Java
compatible avec les services Web Java pour développer des applications client
destinées aux API de service Web.

Chapitre 4. Développement d’applications client pour les taches et processus métier 375

Taches associées

[Développement d’applications API de service Web|
Vous pouvez développer des applications client accédant a des applications de
processus métier et de taches utilisateur via des API de services Web.

(Génération d’un client proxy (services Web Java)
Les applications client de service Web utilisent un client proxy pour gérer
I'interaction avec les API de services Web.

(Création de classes auxiliaires pour les processus BPEL (services Web Java)

Les objets métier référencés dans les requétes d’API concretes (par exemple,
sendMessage, ou call) nécessitent que les applications client utilisent les éléments
de style "document/literal wrapped”. Les applications client requiérent des classes
auxiliaires pour leur permettre de générer les éléments d’encapsulation nécessaires.

(Création d"une application client (services Web Java))|

Une application client envoie des requétes et recoit des réponses vers et depuis les
API de services Web. En utilisant un client proxy pour gérer les communications et
des classes auxiliaires pour formater les types de données, une application client
peut appeler les méthodes de service Web comme s'il s’agissait de fonctions
locales.

[Renforcement de la sécurité (services Web Java)
Vous devez sécuriser les communications du service Web en mettant en oeuvre des
mécanismes de sécurité dans 1'application client.

[Ajout d’un support de transaction (services Web Java)|

Les applications client de service Web Java peuvent étre configurées pour
permettre au traitement de la requéte coté serveur de participer a la transaction
client, en transmettant un contexte d’application client en tant que requéte de
service. Ce support de transaction atomique est défini dans la spécification Web
Services-Atomic Transaction (WS-AT).

Génération d’un client proxy (services Web Java)
Les applications client de service Web utilisent un client proxy pour gérer
I'interaction avec les API de services Web.

A propos de cette tache

Un client proxy destiné aux services Web Java contient un certain nombre de
classes de Bean Java qui sont appelées par I'application client pour exécuter des
demandes de services Web. Le client proxy gere 1’assemblage des parametres de
services sous forme de messages SOAP, envoie des messages SOAP au service Web
via HTTP, recoit des réponses du service Web et transmet toutes les données
renvoyées a l'application client.

Par conséquent, un client proxy permet a une application d’appeler un service Web
comme s'il s’agissait d’une fonction locale.

Remarque : La génération d’un client proxy n’est nécessaire qu'une fois. Toutes les
applications client accédant aux mémes API de services Web peuvent alors utiliser
le méme client proxy.

Dans I’'environnement de services Web IBM, il existe deux fagons de générer un

client proxy :

* ATaide des environnements de développement intégrés Rational Application
Developer ou WebSphere Integration Developer.

e ATVlaide de 'outil de ligne de commande WSDL2Java.

376 Développement et déploiement

Les autres environnements de développement de services Web Java comprennent
généralement I'outil WSDL2Java ou des fonctions de génération d’applications
client de propriétés.

Concepts associés

IDéveloppement d’applications client dans 'environnement de services Web]aval
Vous pouvez utiliser n'importe quel environnement de développement Java
compatible avec les services Web Java pour développer des applications client
destinées aux API de service Web.

TAaches associées

[Utilisation de Rational Application Developer pour générer un client de proxy|
L’environnement de développement intégré Rational Application Developer vous
permet de générer un client proxy pour votre application client.

[Utilisation de WSDIL2Java pour générer un client proxy|
WSDL2Java est un outil de ligne de commande qui géneére un client proxy. Un
client proxy simplifie la programmation des applications client.

Utilisation de Rational Application Developer pour générer un client de proxy :

L’environnement de développement intégré Rational Application Developer vous
permet de générer un client proxy pour votre application client.

Avant de commencer

Avant de générer un client proxy, vous devez avoir préalablement exporté les
fichiers WSDL décrivant les API de services Web pour les processus métier et les
taches utilisateur depuis 1’environnement WebSphere (ou le CD client WebSphere
Process Server), puis les avoir copiés dans votre environnement de programmation
client.

Procédure
1. Ajoutez a votre projet le fichier WSDL approprié.
* Pour les processus métier :

a. Décompressez le fichier d’exportation
BPEContainer_nomnoeud_nomserveur_WSDLFiles.zip dans un répertoire
temporaire.

b. Importez le sous-répertoire META-INF a partir du répertoire décompressé
BPEContainer_nommnoeud_nomserveur.ear/b jar.

e Pour les tiches utilisateur:

a. Décompressez le fichier d’exportation
TaskContainer_nommnoeud_nomserveur_WSDLFiles.zip dans un répertoire
temporaire.

b. Importez le sous-répertoire META-INF a partir du répertoire décompressé
TaskContainer_nommnoeud_nomserveur.ear/h jar.

Un nouveau répertoire wsdl et une structure de sous-répertoire sont créés dans
votre projet.

2. Modifiez les propriétés de 'assistant de Service Web :

a. Dans Rational Application Developer, sélectionnez Préférences > Services
Web » Génération de code » Programme d’exécution IBM WebSphere.

b. Sélectionnez l'option Générer Java a partir de WSDL en style non
encapsulé (Generate Java from WSDL using the no wrapped style).

Chapitre 4. Développement d’applications client pour les taches et processus métier 377

Remarque : Si vous n’étes pas en mesure de sélectionner 'option Web services
(services web) dans le menuPreferences (Préférences), vous devez d’abord
activer les fonctions requises comme suit : Window (Fenétre) > Preferences
(Préférences) > Workbench (Workbench) ~» (Capabilities (Fonctions). Cliquez
sur Web Service Developer (Développeur de services web), puis sur OK.
Ensuite, ouvrez une nouvelle fois la fenétre Preferences (Préférences), puis
modifiez I'option Code Generation (Génération de code).

3. Sélectionnez le fichier BEMWS.WSDL ou le fichier HTMWS.WSDL situé dans le
répertoire wsdlnouvellement créé.

4. Cliquez avec le bouton droit et sélectionnez Web Services (Services web) -
Generate client (Générer un client).
Avant d’entamer le reste de la procédure, assurez-vous que le serveur a
démarré.

5. Dans la fenétre Web services (Services web), cliquez sur Next (Suivant) afin
d’accepter toutes les valeurs par défaut.

6. Dans la fenétre Web Service Selection (Sélection des services web), cliquez
également sur Next (Suivant) afin d’accepter toutes les valeurs par défaut.

7. Dans la fenétre Client Environment Configuration (Configuration de
I’environnement client) :
a. Cliquez sur Edit (Editer), puis sélectionnez la valeur IBM WebSphere pour

I'option Web service runtime (Exécution des services web)

b. Sélectionnez la valeur 1.4 pour l'option J2EE Version (Version J2EE).
c. Cliquez sur OK.
d. Cliquez sur Suivant.

8. Cette étape est nécessaire uniquement si vous devez générer un client de
services comportant a la fois des API de Business Process et des API de Human

Task Web Services, puisqu’il existe des méthodes en double dans les deux
fichiers WSDL.

a. Dans la fenétre Proxy des services web, sélectionnez Define custom
mapping for namespace to package (Définir le mappage personnalisé pour
I'espace de nom a compresser), puis cliquez sur OK.

b. Dans la fenétre de mappage de I'espace nom Web Service Client (Client de
service web) a compresser, ajoutez les espaces de nom et package suivants :

Pour BEMWS.wsdl :

Espace de nom Package

http:/ /www.ibm.com/xmlns/prod /websphere /business-process/ | com.ibm.sca.bpe
types/6.0

http:/ /www.ibm.com/xmlns/prod /websphere /business-process/ | com.ibm.sca.bpe
services/6.0

http:/ /www.ibm.com/xmlns/prod /websphere /business-process/ | com.ibm.sca.bpe
services/6.0/Binding

http:/ /www.ibm.com/xmlns/prod /websphere /bpc-common/ com.ibm.sca.bpe
types/6.0

Pour HTMWS.wsdl :

Espace de nom Package
http:/ /www.ibm.com /xmlns/prod /websphere/human-task/ com.ibm.sca.task
types/6.0

378 Développement et déploiement

Espace de nom Package

http:/ /www.ibm.com /xmlns/prod /websphere /human-task/ com.ibm.sca.task
services/6.0

http:/ /www.ibm.com /xmlns/prod /websphere /human-task/ com.ibm.sca.task
services/6.0/Binding

http:/ /www.ibm.com /xmlns/prod /websphere /bpc-common/ com.ibm.sca.task
types/6.0

Si vous étes invité a confirmer I'écrasement, cliquez sur YesToAll
(OuiPourTous).

9. Cliquez sur Finish (Terminer).
Résultats

Un client proxy contenant un certain nombre de classes Java proxy, locator et
helper est généré et ajouté a votre projet. Le descripteur de déploiement est
également mis a jour.

Taches associées

(Génération d’un client proxy (services Web Java)|
Les applications client de service Web utilisent un client proxy pour gérer
I'interaction avec les API de services Web.

Utilisation de WSDL2Java pour générer un client proxy :

WSDL2Java est un outil de ligne de commande qui géneére un client proxy. Un
client proxy simplifie la programmation des applications client.

Avant de commencer

Avant de générer un client proxy, vous devez avoir préalablement exporté les

fichiers WSDL décrivant les API de services Web pour les processus métier ou les
taches utilisateur depuis 1’environnement WebSphere (ou le CD client WebSphere
Process Server), puis les avoir copiés dans votre environnement de programmation

client.

A propos de cette tiche

Procédure

1. Utilisation de 1’outil WSDL2Java pour générer un client proxy : Entrez :
wsdl2java options WSDLfilepath
Ou :

options comprend :

-noWrappedOperations (-w)
Désactive la détection des opérations encapsulées. Des beans Java
sont générés pour les messages de requéte et de réponse.

Remarque : Il ne s’agit pas de la valeur par défaut.

-role (-r)
Spécifiez la valeur client pour générer les fichiers et établir des
liaisons de développement c6té client.

Chapitre 4. Développement d’applications client pour les taches et processus métier 379

-container (-c)
Conteneur c6té client a utiliser. Les arguments admis sont les
suivants :

client Conteneur client.
ejb Conteneur d’EJB (Enterprise JavaBeans).
none Aucun conteneur.
web Conteneur Web.
-output (-o)
Dossier dans lequel sont stockés les fichiers générés.

Pour obtenir la liste compléte des parametres WSDL2Java, utilisez le
commutateur de ligne de commande -help ou reportez-vous a l'aide en ligne
relative a 1'outil WSDL2Java dans WID/RAD.

* WSDLfilepath désigne le chemin d’acces et le nom du fichier WSDL exporté
depuis I'environnement WebSphere ou copié depuis le CD client.

L’exemple suivant permet de générer un client proxy pour 1’API de services
Web "Human Task Activities” :

call wsdl2java.bat -r client -c client -noWrappedOperations
-output c:\ws\proxyClient c:\ws\bin\HTMWS.wsd]1

2. Incluez a votre projet les fichiers classe générés.

Taches associées

(Génération d’un client proxy (services Web Java)
Les applications client de service Web utilisent un client proxy pour gérer
I'interaction avec les API de services Web.

Création de classes auxiliaires pour les processus BPEL
(services Web Java)

Les objets métier référencés dans les requétes d’API concretes (par exemple,
sendMessage, ou call) nécessitent que les applications client utilisent les éléments
de style "document/literal wrapped”. Les applications client requiérent des classes
auxiliaires pour leur permettre de générer les éléments d’encapsulation nécessaires.

Avant de commencer

Pour créer des classes auxiliaires, vous devez avoir préalablement exporté le fichier
WSDL de I’API des services Web depuis 'environnement WebSphere Process
Server.

A propos de cette tache

Les opérations call() et sendMessage() des API de services Web permettent
I'interaction avec les processus BPEL de WebSphere Process Server. Le message
d’entrée de 1'opération call() attend l'indication de 1’encapsuleur document/littéral
figurant dans le message d’entrée du processus.

II existe différentes techniques permettant de générer des classes auxiliaires pour

une tache utilisateur ou un processus BPEL, notamment :

1. Utilisez 'objet SoapElement.
Dans l'environnement Rational Application Developer disponible dans
WebSphere Integration Developer, le moteur de service Web prend en charge
JAX-RPC 1.1. Dans JAX-RPC 1.1, I'objet SoapElement étend un élément DOM
(Document Object Model), de sorte qu'il est possible d’utiliser I’API DOM pour
créer, lire, charger et enregistrer des messages SOAP.

380 Développement et déploiement

Supposons, par exemple, que le fichier WSDL contienne le message d’entrée
suivant pour un processus de flux de travaux ou une tache utilisateur :

<xsd:element name="operationl">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="inputl" nillable="true" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

Le fichier WSDL est créé lorsque vous développez un module de processus ou
de tache utilisateur.

Pour créer le message SOAP correspondant dans votre application client a
l'aide de 'API du DOM :

SOAPFactory soapfactoryinstance = SOAPFactory.newInstance();

SOAPETlement soapmessage = soapfactoryinstance.createElement
("operationl", namespaceprefix, interfaceURI);

SOAPETement inputelement = soapfactoryinstance.createElement("inputl");

inputelement.addTextNode(message value);

soapmessage.addChildElement (outputelement);

L’exemple suivant illustre comment créer des parametres d’entrée pour
I'opération sendMessage dans votre application client :

SendMessage inWsend = new SendMessage();
inWsend.setProcessTemplateName (processtemplatename);
inWsend.setPortType(porttype);
inWsend.setOperation(operationname);
inWsend.set_any(soapmessage);

2. Utilisez la fonction de liaison de données personnalisée de WebSphere.
Cette technique est décrite dans les articles developerWorks suivants :

+ |How to choose a custom mapping technology for Web services| (Choix d’une
technologie de mappage personnalisée pour les services Web)

+ [Developing Web Services with EMF SDOs for complex XML schema)
(Développement de services Web a l'aide d’objets SDO pour un schéma XML
complexe)

Concepts associés

[Développement d’applications client dans 1’environnement de services Web Java|
Vous pouvez utiliser n'importe quel environnement de développement Java
compatible avec les services Web Java pour développer des applications client
destinées aux API de service Web.

[Mnteroperability With Patterns and Strategies for Document-Based Web

p y 2
Services (Interopérabilité avec modeles et stratégies pour des services Web basés|
sur des documents)|

[[Web Services support for Schema/WSDL(s) containing optional]AX—RPC|
1.0/1.1 XML Schema Types (Prise en charge des services Web pour des|
schémas/WSDL contenant des types de schéma XML JAX-RPC 1.0/1.1|
facultatifs)

Création d’une application client (services Web Java)

Une application client envoie des requétes et recoit des réponses vers et depuis les
API de services Web. En utilisant un client proxy pour gérer les communications et
des classes auxiliaires pour formater les types de données, une application client
peut appeler les méthodes de service Web comme s'il s’agissait de fonctions
locales.

Chapitre 4. Développement d’applications client pour les taches et processus métier 381

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0601_gallardo/0601_gallardo.html?ca=dnw-704
http://www-128.ibm.com/developerworks/webservices/library/ws-emfsdo/
http://java.sun.com/developer/technicalArticles/xml/jaxrpcpatterns2/
http://java.sun.com/developer/technicalArticles/xml/jaxrpcpatterns2/
http://java.sun.com/developer/technicalArticles/xml/jaxrpcpatterns2/
http://www-1.ibm.com/support/docview.wss?uid=swg21207642
http://www-1.ibm.com/support/docview.wss?uid=swg21207642
http://www-1.ibm.com/support/docview.wss?uid=swg21207642
http://www-1.ibm.com/support/docview.wss?uid=swg21207642

Avant de commencer

Avant de commencer a créer une application client, générez le client proxy et les
classes auxiliaires éventuellement requises.

A propos de cette tache

Vous pouvez développer des applications client a 1’aide de n'importe quel outil
compatible avec les services Web, tel que IBM Rational Application Developer
(RAD). Vous pouvez créer tous types d’applications de services Web pour appeler
les API de services Web génériques.

Procédure

1. Créez un projet d’application client.

2. Générez le client proxy et ajoutez les classes auxiliaires Java dans votre projet.
3. Codez votre application client.

4. Générez le projet.

5. Exécutez l'application client.

Exemple

L’exemple suivant illustre comment utiliser 1’API de services Web Business Flow
Manager.

// create the proxy
BFMIFProxy proxy = new BFMIFProxy();

// prepare the input data for the operation
GetProcessTemplate iW = new GetProcessTemplate();
iW.setIdentifier(your_process_template_name);

// invoke the operation
GetProcessTemplateResponse oW = proxy.getProcessTemplate(iW);

// process output of the operation
ProcessTemplateType ptd = oW.getProcessTemplate();
System.out.printin("getName= " + ptd.getName());
System.out.printin("getPtid= " + ptd.getPtid());

Concepts associés

[Développement d’applications client dans 1’environnement de services Web Java|
Vous pouvez utiliser n'importe quel environnement de développement Java
compatible avec les services Web Java pour développer des applications client
destinées aux API de service Web.

Renforcement de la sécurité (services Web Java)
Vous devez sécuriser les communications du service Web en mettant en oeuvre des
mécanismes de sécurité dans 1’application client.

A propos de cette tache

WebSphere Application Server prend en charge les mécanismes de sécurité
suivants pour les API des services Web :

* Le jeton de nom d’utilisateur
* LTPA (Lightweight Third Party Authentication)

382 Développement et déploiement

Concepts associés

[Développement d’applications client dans I'environnement de services Web Javal
Vous pouvez utiliser n'importe quel environnement de développement Java
compatible avec les services Web Java pour développer des applications client
destinées aux API de service Web.

TAaches associées

lmplémentation du jeton du nom d’utilisateur]
Le mécanisme de sécurité relatif au jeton du nom d’utilisateur fournit une
autorisation d’acceés via un nom d’utilisateur et un mot de passe.

[Implémentation du mécanisme de sécurité LTPA

Le mécanisme de sécurité LTPA (Lightweight Third Party Authentication) peut étre
utilisé lorsque I'application client s’exécute au sein d'un contexte de sécurité
précédemment établi.

Implémentation du jeton du nom d’utilisateur :

Le mécanisme de sécurité relatif au jeton du nom d’utilisateur fournit une
autorisation d’acceés via un nom d’utilisateur et un mot de passe.

A propos de cette tiche

Le mécanisme de sécurité relatif au jeton du nom d’utilisateur vous permet
d’implémenter différents gestionnaires d’appel. Selon le choix que vous avez effectué

* Vous étes invité a indiquer un nom d’utilisateur et un mot de passe chaque fois
que vous exécutez 'application client.

* Le nom d’utilisateur et le mot de passe sont inscrits dans le descripteur de
déploiement.

Dans tous les cas, le nom d’utilisateur et le mot de passe doivent correspondre a
ceux d'un rdle autorisé dans le conteneur de taches utilisateur ou de processus
métier correspondant.

Le nom d’utilisateur et le mot de passe sont encapsulés dans 'enveloppe du
message de la requéte, et apparaissent ainsi "en clair” dans l'en-téte du message
SOAP. 1l est, par conséquent, vivement recommandé de configurer 1’application
client afin qu’elle utilise le protocole de communication HTTPS (HTTP via SSL).
Toutes les communications sont alors cryptées. Vous pouvez sélectionner le
protocole de communication HTTPS lorsque vous spécifiez 'adresse URL du
noeud final de I’API du service Web.

Pour définir un jeton de nom d’utilisateur :

Procédure

1. Créez un jeton de sécurité :
a. Ouvrez I'Editeur de déploiement de votre module
b. Cliquez sur I'onglet Extension de service web.

c. Sous Références aux services, les références aux services web suivantes
peuvent apparaitre :

* service/BFEMWSService pour les processus métier

* service/HTMWSService pour les taches utilisateur

Chapitre 4. Développement d’applications client pour les taches et processus métier 383

Ce qui apparait dépend de si BEFMWS.wsdl (pour le processus métier),
HTMWS.wsdl (pour la tache utilisateur) ou les deux, ont été ajoutés au
moment de générer le client de proxy.

d. Pour les deux références aux services :

1) Sélectionnez I'une des Références aux services.

2) Développez la section Configuration du générateur de demande.

3) Développez la sous-section Jeton de sécurité.

4) Cliquez sur Ajouter. La fenétre Jeton de sécurité apparait.

5) Dans la zone Nom, entrez le nom du nouveau jeton de sécurité :
UserNameTokenBFM ou UserNameTokenHTM .

6) Dans la zone de liste déroulante Type de jeton, sélectionnez Nom

d’utilisateur. (La zone Nom local est automatiquement renseignée avec
une valeur par défaut.)

7) Laissez le champ URI vide. Les jetons de nom d’utilisateur ne
nécessitent pas de valeur URL

8) Cliquez sur OK.
2. Créez un générateur de jeton :
a. Ouvrez I'Editeur de déploiement de votre module
b. Cliquez sur 'onglet Liaison de service web

c. Sous les Références aux services, les mémes références aux services web
sont mentionnées a l'étape précédente :

* service/BFMWSService pour les processus métier
* service/HTMWSService pour les taches utilisateur

d. Pour les deux références aux services :
1) Sélectionnez I'une des Références aux services.

2) Développez la section Configuration de la sécurité de liaison du
générateur de demande.

3) Développez la sous-section Générateur de jeton.
4) Cliquez sur Ajouter. La fenétre Générateur de jeton apparait.

5) Dans la zone Nom, tapez le nom du nouveau générateur de jeton, par
exemple "UserNameTokenGeneratorBFM" ou
"UserNameTokenGeneratorHTM".

6) Dans la zone Classe du générateur de jeton, assurez-vous que la
classe de générateur de jeton suivante est sélectionnée :
com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator.

7) Dans la zone de liste déroulante Jeton de sécurité, sélectionnez le jeton
de sécurité approprié que vous avez créé antérieurement.

8) Cochez la case Use Value Type (Utiliser le type de valeur).

9) Dans le champ Value Type (Type de valeur), sélectionnez Username
Token (Jeton nom d’utilisateur). (La zone Local name (Nom local) est
automatiquement renseignée avec le Username Token (Jeton
utilisateur) que vous avez choisi.)

10) Dans la zone Call back handler (Gestionnaire des rappels), saisissez
"com.ibm.wsspi.wssecurity.auth.callback. GUIPromptCallbackHandler”
(qui vous invite a fournir le nom d’utilisateur et le mot de passe
lorsque vous lancez l'application client) ou
"com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler".

384 Développement et déploiement

11) Si vous choisissez NonPromptCallbackHandler, vous devez indiquer
un nom d’utilisateur et un mot de passe valides dans le champ
correspondant du descripteur de déploiement.

12) Cliquez sur OK.
TAaches associées

|Renforcement de la sécurité (services Web]ava)|
Vous devez sécuriser les communications du service Web en mettant en oeuvre des
mécanismes de sécurité dans l’application client.

Information associée

[[[BM WebSphere Developer - Journal technique : Sécurité des services Web aved
[WebSphere Application Server V6|

Implémentation du mécanisme de sécurité LTPA :

Le mécanisme de sécurité LTPA (Lightweight Third Party Authentication) peut étre
utilisé lorsque 'application client s’exécute au sein d’'un contexte de sécurité
précédemment établi.

A propos de cette tiche

Le mécanisme de sécurité LTPA est disponible uniquement si votre application
client s’exécute au sein d’un environnement sécurisé dans lequel un contexte de

s 2

sécurité a déja été établi. Par exemple, si votre application client s’exécute dans un
conteneur EJB (Enterprise JavaBeans), le client EJB doit se connecter avant de
pouvoir appeler I’application client. Un contexte de sécurité est alors établi. Si
I'application client EJB appelle le service Web, le gestionnaire d’appel LTPA extrait
le jeton LTPA du contexte de sécurité, puis 1'ajoute au message de la requéte SOAP.
Coté serveur, le jeton LTPA est géré par le mécanisme LTPA.

Pour implémenter le mécanisme de sécurité LTPA :

Procédure

1. Dans I'environnement Rational Application Developer disponible dans
WebSphere Integration Developer, choisissez Liaison de service Web »
Configuration de la sécurité de liaison du générateur de requéte > Générateur
de jeton.

2. Créez un jeton de sécurité :
a. Ouvrez I'Editeur de déploiement de votre module
b. Cliquez sur l'onglet WS Extension (Extension de service web).

c. Sous Service References (Références aux services), les références aux
services web suivantes peuvent apparaitre :

* service/BFMWSService pour les processus métier
* service/HTMWSService pour les taches utilisateur

Ce qui apparait dépend de si BEMWS.wsdl (pour le processus métier),
HTMWS.wsdl (pour la tache utilisateur) ou les deux, ont été ajoutés au
moment de générer le client de proxy.

d. Pour les deux références aux services :
1) Sélectionnez I'une des Références aux services.

2) Développez la section Request Generator Configuration (Demander la
configuration du générateur).

3) Développez la sous-section Username Token (Jeton de sécurité).

Chapitre 4. Développement d’applications client pour les taches et processus métier 385

http://www-128.ibm.com/developerworks/websphere/techjournal/0604_singh/0604_singh.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0604_singh/0604_singh.html

4) Cliquez sur Add (Ajouter). La fenétre Security Token (Jeton de sécurité)
apparait.

5) Dans la zone Name (Nom), entrez le nom du nouveau jeton de sécurité :
LTPATokenBFM ou LTPATokenHTM .

6) Dans la zone de liste déroulante Token Type (Type de jeton),
sélectionnez LTPAToken (Jeton LTPA). (Les zones URI et Local Name
(Nom local) sont automatiquement renseignées avec les valeurs par
défaut.)

7) Cliquez sur OK.
3. Créez un générateur de jeton :
a. Ouvrez le Deployment Editor (Editeur de déploiement) de votre module
b. Cliquez sur l'onglet WS Binding (Liaison de service web)

c. Sous les Services References (Références aux services), les mémes
références aux services web sont mentionnées a 1’étape précédente :

* service/BFMWSService pour les processus métier
* service/ HTMWSService pour les taches utilisateur

d. Pour les deux références aux services :
1) Sélectionnez 'une des Références aux services.

2) Développez la section Security Request Generator Binding
Configuration (Configuration de la sécurité de liaison du générateur
de requéte).

3) Développez la sous-section Token Generator (Générateur de jeton).

4) Cliquez sur Add (Ajouter). La fenétre Générateur de jeton apparait.

5) Dans la zone Nom, tapez le nom du nouveau générateur de jeton, par
exemple "LTPATokenGeneratorBFM" ou "LTPATokenGeneratorHTM".

6) Dans la zone Token Generatr Class (Classe du générateur de jeton),
assurez-vous que la classe de générateur de jeton suivante est
sélectionnée : com.ibm.wsspi.wssecurity.token.LTPATokenGenerator.

7) Dans la zone de liste déroulante Security Token (Jeton de sécurité),
sélectionnez le jeton de sécurité approprié que vous avez créé
antérieurement.

8) Cochez la case Use Value Type (Utiliser le type de valeur).

9) Dans le champ Value Type (Type de valeur), sélectionnez LTPAToken
(Jeton LTPA). (Les zones URI et Local Name (Nom local) sont
automatiquement renseignées avec le LTPA Token (Jeton LTPA) que
vous avez choisi.)

10) Dans la zone Call back handler (Gestionnaire des rappels), saisissez
"com.ibm.wsspi.wssecurity.auth.callback. LTPATokenCallbackHandler".

11) Cliquez sur OK.
Résultats

Lors de I'exécution, I’élément LTPATokenCallbackHandler extrait le jeton LTPA du
contexte de sécurité existant et I’ajoute au message de la requéte SOAP.

386 Développement et déploiement

Taches associées

[Renforcement de la sécurité (services Web Java))
Vous devez sécuriser les communications du service Web en mettant en oeuvre des
mécanismes de sécurité dans 1’application client.

Ajout d’un support de transaction (services Web Java)

Les applications client de service Web Java peuvent étre configurées pour
permettre au traitement de la requéte coté serveur de participer a la transaction
client, en transmettant un contexte d’application client en tant que requéte de
service. Ce support de transaction atomique est défini dans la spécification Web
Services-Atomic Transaction (WS-AT).

A propos de cette tache

WebSphere Application Server exécute chaque requéte d’API de services Web en
tant que transaction atomique distincte. Les applications client peuvent étre
configurées en vue d’utiliser un support de transaction pour :

e Participer a la transaction. Le traitement des requétes coté serveur est effectué
dans le contexte de transaction de l'application client. Si, par la suite, le serveur
rencontre un probléme alors que la requéte d’API de services Web est en cours
d’exécution et est invalidée, la requéte de l'application client est également
invalidée.

* Ne pas utiliser de prise en charge de la transaction. WebSphere Application
Server crée néanmoins une transaction afin d’exécuter la requéte mais le
traitement de la requéte coté serveur n’est pas effectué au moyen du contexte de
transaction de l'application client.

Concepts associés

[Développement d’applications client dans I’environnement de services Web Javal
Vous pouvez utiliser n'importe quel environnement de développement Java
compatible avec les services Web Java pour développer des applications client
destinées aux API de service Web.

Développement d’applications client dans I’environnement
NET

Microsoft .NET offre un puissant environnement de développement permettant de
connecter des applications via des services Web.

Chapitre 4. Développement d’applications client pour les taches et processus métier 387

Taches associées

[Développement d’applications API de service Web|
Vous pouvez développer des applications client accédant a des applications de
processus métier et de taches utilisateur via des API de services Web.

(Génération d’un client proxy (NET)|

Les applications client .NET utilisent un client proxy pour gérer l'interaction avec
les API de service Web. Un client proxy permet d’isoler les applications client hors
de la complexité du protocole de messagerie de service Web.

(Création de classes auxiliaires pour les processus BPEL (.NET)|

Certaines opérations d’API de services Web nécessitent que les applications client
utilisent des éléments encapsulés "document/littéral”. Les applications client
requiérent des classes auxiliaires pour leur permettre de générer les éléments
d’encapsulation nécessaires.

(Création d’une application client (NET)|

Une application client envoie des requétes et recoit des réponses vers et depuis les
API de services Web. En utilisant un client proxy pour gérer les communications et
des classes auxiliaires pour formater les types de données, une application client
peut appeler les méthodes de service Web comme sil s’agissait de fonctions
locales.

[Renforcement de la sécurité (NET)|
Vous pouvez sécuriser les communications des services Web en intégrant des
mécanismes de sécurité a vos applications client.

Génération d’un client proxy (.NET)

Les applications client .NET utilisent un client proxy pour gérer l'interaction avec
les API de service Web. Un client proxy permet d’isoler les applications client hors
de la complexité du protocole de messagerie de service Web.

Avant de commencer

Pour créer un client proxy, vous devez avoir préalablement exporté les fichiers
WSDL depuis I'environnement WebSphere et les avoir copiés dans votre
environnement de programmation client.

Remarque : Si vous disposez du CD client WebSphere Process Server, vous pouvez
également copier les fichiers depuis cet emplacement.

A propos de cette tache

Un client proxy comprend un ensemble de classes de bean C#. Chaque classe
contient I'ensemble des méthodes et objets exposés par le biais d'un service Web
unique. Les méthodes du service gérent 1'assemblage des parametres sous forme
de messages SOAP complets, envoie les messages SOAP au service Web via le
protocole HTTP, recoit les réponses émises par le service Web et traite les données
éventuellement renvoyées.

Remarque : La génération d’un client proxy n’est nécessaire qu’'une fois. Toutes les
applications client accédant aux API de service Web peuvent utiliser le méme client

proxy.

Procédure

1. Utilisez la commande WSDL pour générer un client proxy : Entrez :
wsdl options WSDLfilepath
Ou :

388 Développement et déploiement

* options comprend :

Nlanguage
Permet de spécifier le langage utilisé pour créer la classe proxy.
L’option par défaut est C#. Vous pouvez également spécifier VB
(Visual Basic), JS (JScript) ou V]S (Visual J#) comme argument de
langage.

/output

Nom du fichier de sortie qualifié par le suffixe approprié. Par
exemple : proxy.cs

/protocol
Protocole mis en oeuvre dans la classe proxy. Le parametre par
défaut est SOAP.

Pour obtenir une liste complete des parametres WSDL.exe, utilisez le
commutateur de ligne de commande /? ou reportez-vous a l'aide en ligne
relative a 1’outil WSDL dans Visual Studio.

* WSDLfilepath désigne le chemin d’acces et le nom du fichier WSDL exporté
depuis 'environnement WebSphere ou copié depuis le CD client.

L’exemple suivant permet de générer un client proxy pour I’API de services
Web Human Task Manager :

wsdl /language:cs /output:proxyclient.cs c:\ws\bin\HTMWS.wsd1
2. Compilez le client proxy sous forme de bibliotheque de liaison dynamique
(DLL).

Concepts associés

[Développement d’applications client dans I’environnement .NET]
Microsoft .NET offre un puissant environnement de développement permettant de
connecter des applications via des services Web.

Création de classes auxiliaires pour les processus BPEL (.NET)
Certaines opérations d’API de services Web nécessitent que les applications client
utilisent des éléments encapsulés "document/littéral”. Les applications client
requiérent des classes auxiliaires pour leur permettre de générer les éléments
d’encapsulation nécessaires.

Avant de commencer

Pour créer des classes auxiliaires, vous devez avoir préalablement exporté le fichier
WSDL de I’API des services Web depuis 'environnement WebSphere Process
Server.

A propos de cette tache

Les opérations call() et sendMessage() des API de services Web déclenchent le
lancement des processus BPEL dans WebSphere Process Server. Le message
d’entrée de 1'opération call() attend l'indication de 1’encapsuleur document/littéral
figurant dans le message d’entrée du processus BPEL. Pour générer les beans et les
classes nécessaires aux processus BPEL, copiez 1'élément <wsd1:types> dans un
nouveau fichier XSD, puis utilisez 1’outil xsd.exe pour générer des classes
auxiliaires.

Procédure

1. Exportez le fichier WSDL de I'interface de processus BPEL depuis WebSphere
Integration Developer, si vous n’avez pas déja effectué cette opération.

Chapitre 4. Développement d’applications client pour les taches et processus métier 389

2. Ouvrez le fichier WSDL dans un éditeur de texte ou un éditeur XML.

3. Copiez le contenu des éléments enfants de 1'élément <wsd1:types> et copiez-le
dans un nouveau fichier squelette XSD.

4. Appliquez l'outil xsd.exe au fichier XSD :
call xsd.exe file.xsd /classes /o
Ou :

file.xsd
Fichier de définitions de schéma XML a convertir.

/classes (/c)

Génere des classes auxiliaires correspondant au contenu du ou des
fichier(s) XSD spécifié(s).

/output (/o)
Spécifie le répertoire de sortie des fichiers générés. Si ce répertoire est
omis, le répertoire par défaut est le répertoire en cours.

Par exemple :
call xsd.exe ProcessCustomer.xsd /classes /output:c:\temp

5. Ajout du fichier classe généré a votre application client. Si vous utilisez Visual
Studio, par exemple, vous pouvez effectuer cette opération avec 1'option de
menu Projet » Ajouter élément existant (Add Existing Item).

Exemple

Si le fichier ProcessCustomer.wsdl contient les éléments suivants :

<?xml version="1.0" encoding="UTF-8"?>
<wsd1:definitions xmins:bonsl="http://com/ibm/bpe/unittest/sca"
xmins:tns="http://ProcessTypes/bpel/ProcessCustomer"
xmins:wsd1="http://schemas.xmlsoap.org/wsd1/"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
name="ProcessCustomer"
targetNamespace="http://ProcessTypes/bpel/ProcessCustomer">
<wsdl:types>
<xsd:schema targetNamespace="http://ProcessTypes/bpel/ProcessCustomer"
xmlins:bonsl="http://com/ibm/bpe/unittest/sca"
xmlins:tns="http://ProcessTypes/bpel/ProcessCustomer"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:import namespace="http://com/ibm/bpe/unittest/sca"
schemalLocation="xsd-includes/http.com.ibm.bpe.unittest.sca.xsd"/>
<xsd:element name="doit">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="inputl" nillable="true" type="bonsl:Customer"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="doitResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="outputl" nillable="true" type="bonsl:Customer"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</wsd1:types>
<wsd]:message name="doitRequestMsg">
<wsdl:part element="tns:doit" name="doitParameters"/>
</wsd1:message>
<wsd]:message name="doitResponseMsg">
<wsdl:part element="tns:doitResponse" name="doitResult"/>

390 Développement et déploiement

</wsd1:message>
<wsd1:portType name="ProcessCustomer">
<wsdl:operation name="doit">
<wsdl:input message="tns:doitRequestMsg" name="doitRequest"/>
<wsd1:output message="tns:doitResponseMsg" name="doitResponse"/>
</wsd1:operation>
</wsd1:portType>
</wsd1:definitions>

Le fichier XSD résultant contient les éléments suivants :

<xsd:schema xmlns:bons1="http://com/ibm/bpe/unittest/sca"
xmins:tns="http://ProcessTypes/bpel/ProcessCustomer"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://ProcessTypes/bpel/ProcessCustomer">
<xsd:import namespace="http://com/ibm/bpe/unittest/sca"
schemalocation="Customer.xsd" />
<xsd:element name="doit">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="inputl" type="bonsl:Customer" nillable="true"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="doitResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="outputl" type="bonsl:Customer" nillable="true"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Concepts associés

[Développement d’applications client dans 1’environnement .NET]|
Microsoft .NET offre un puissant environnement de développement permettant de
connecter des applications via des services Web.

Information associée

[[Documentation Microsoft relative a I’outil XSD (XML Schema Definition,|

|D_(SD.EXE)|

Création d’une application client (.NET)

Une application client envoie des requétes et recoit des réponses vers et depuis les
API de services Web. En utilisant un client proxy pour gérer les communications et
des classes auxiliaires pour formater les types de données, une application client
peut appeler les méthodes de service Web comme s'il s’agissait de fonctions
locales.

Avant de commencer

Avant de commencer a créer une application client, générez le client proxy et les
classes auxiliaires éventuellement requises.

A propos de cette tache

Vous pouvez développer des applications client .NET a 1’aide de n'importe quel
outil de développement compatible avec .NET, comme par exemple Visual Studio
.NET. Vous pouvez créer tout type d’application .NET afin d’appeler les API de

services Web génériques.

Procédure

Chapitre 4. Développement d’applications client pour les taches et processus métier 391

http://msdn2.microsoft.com/en-us/library/x6c1kb0s(vs.71).aspx
http://msdn2.microsoft.com/en-us/library/x6c1kb0s(vs.71).aspx

1. Créez un projet d’application client. Vous pouvez par exemple créer une
application WinFX Windows® dans Visual Studio.

2. Dans les options du projet, ajoutez une référence au fichier DLL (Dynamic Link
Library) du client proxy. Ajoutez a votre projet toutes les classes auxiliaires
contenant les définitions d’objets métier. Visual Studio, par exemple, vous
pouvez effectuer cette opération avec 'option de menu Projet > Ajouter
élément existant (Add existing item).

3. Créez un objet client proxy. Par exemple :

HTMCTient.HTMReference.HumanTaskManagerComponent1Export_HumanTaskManagerHttpService service =
new HTMClient.HTMReference.HumanTaskManagerComponentlExport HumanTaskManagerHttpService();

4. Déclarez tout type de données d’objet métier utilisé dans les messages transmis
vers et depuis le service Web. Par exemple :

HTMClient.HTMReference.TKIID id = new HTMClient.HTMReference.TKIID();

ClipBG bg
Clip clip

new C1ipBG();
new Clip();

5. Appelez les fonctions de service Web spécifiques et spécifiez les parametres
obligatoires éventuels. Par exemple, pour créer et démarrer une tache
utilisateur :

HTMClient.HTMReference.createAndStartTask task =
new HTMClient.HTMReference.createAndStartTask();

HTMC1ient.HTMReference.StartTask sTask =
new HTMClient.HTMReference.StartTask();

sTask.taskName = "SimpleTask";

sTask.taskNamespace = "http://myProcess/com/acme/task";
sTask.inputMessage = bg;

task.inputTask = sTask;

id = service.createAndStartTask(task).outputTask;

6. Les processus et les taches distants sont identifiés par des ID persistants (id
dans I'exemple précédent). Par exemple, pour réclamer une tache utilisateur
précédemment créée :

HTMClient.HTMReference.claimTask claim = new HTMClient.HTMReference.claimTask();
claim.inputTask = id;

Concepts associés

[Développement d’applications client dans 1’environnement .NET]
Microsoft .NET offre un puissant environnement de développement permettant de
connecter des applications via des services Web.

Renforcement de la sécurité (.NET)
Vous pouvez sécuriser les communications des services Web en intégrant des
mécanismes de sécurité a vos applications client.

A propos de cette tache

Ces mécanismes de sécurité peuvent inclure le jeton de nom d’utilisateur (nom
d’utilisateur et mot de passe) ou des jetons de sécurité binaires personnalisés et
XML.

Procédure

1. Téléchargez et installez le module WSE (Web Services Enhancements) 2.0 SP3
pour Microsoft .INET. Ce module est accessible a 1’adresse suivante :

http: / /www.microsoft.com/downloads/ details.aspx?familyid=1ba1f631-c3e7-|
420a-bcle-ef18bab66122&displaylang=en|

392 Développement et déploiement

http://www.microsoft.com/downloads/details.aspx?familyid=1ba1f631-c3e7-420a-bc1e-ef18bab66122&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=1ba1f631-c3e7-420a-bc1e-ef18bab66122&displaylang=en

2. Modifiez comme suit le code client proxy généré.
Modifiez :
public class Exportl MyMicroflowHttpService : System.Web.Services.Protocols.SoapHttpClientProtocol {
En:
public class Exportl MyMicroflowHttpService : Microsoft.Web.Services2.WebServicesClientProtocol {

Remarque : Ces modifications seront perdues si vous régénérez le client proxy
en exécutant 'outil WSDL.exe.

3. Modifiez le code de 'application client en ajoutant les lignes suivantes en début
de fichier :

using System.Web.Services.Protocols;
using Microsoft.Web.Services2;
using Microsoft.Web.Services2.Security.Tokens;

4. Ajoutez le code de mise en oeuvre du mécanisme de sécurité souhaité. Le code
suivant, par exemple, ajoute une protection par nom d’utilisateur et mot de
passe :

string user = "U1";
string pwd = "password";
UsernameToken token = new UsernameToken(user, pwd, PasswordOption.SendPlainText);

me._proxy.RequestSoapContext.Security.Tokens.Clear();
me._proxy.RequestSoapContext.Security.Tokens.Add(token);

Concepts associés

[Développement d’applications client dans l’environnement .NET]
Microsoft .NET offre un puissant environnement de développement permettant de
connecter des applications via des services Web.

Requétes sur des objets liés aux processus métier et aux
taches

Vous pouvez utiliser les API de services Web pour effectuer des requétes de
données sur les objets liés aux processus métier et aux taches dans la base de
données Business Process Choreographer, afin d’extraire les propriétés spécifiques
de ces objets.

A propos de cette tache

La base de données Business Process Choreographer stocke les données de modéele
(model) et d’instance (runtime) nécessaires a la gestion des processus métier et des
taches.

Les applications client peuvent, par l'intermédiaire des API de services Web,
extraire de la base de données des informations relatives aux processus métier et
aux taches.

Les applications client vous permettent d’effectuer une requéte unique pour
extraire une propriété particuliere d'un objet. Vous pouvez sauvegarder les
requétes que vous exécutez le plus souvent. Ces requétes stockées peuvent ensuite
étre extraites et utilisées par votre application client.

Chapitre 4. Développement d’applications client pour les taches et processus métier 393

Concepts associés

Requétes portant sur des obijets liés aux processus métier et aux tiches a I'aide des|
API de services Web|

L’interface de requéte des API de service Web vous permet d’obtenir des
informations stockées relatives aux processus métier et aux taches.

TAaches associées

IDéveloppement d’applications API de service Web|
Vous pouvez développer des applications client accédant a des applications de
processus métier et de taches utilisateur via des API de services Web.

(Gestion des requétes stockées|

Les requétes stockées permettent d’enregistrer des requétes souvent exécutées. La
requéte stockée peut soit étre une requéte disponible pour tous les utilisateurs
(requéte publique), soit une requéte appartenant a un utilisateur spécifique
(requéte privée).

Requétes portant sur des objets liés aux processus métier et aux
taches a 'aide des API de services Web

L’interface de requéte des API de service Web vous permet d’obtenir des
informations stockées relatives aux processus métier et aux taches.

Les applications client utilisent une syntaxe de type SQL pour interroger la base de
données.

Exemple de services Java Web

string processTemplateName = "ProcessCustomerLR";
query queryl = new query();
queryl.selectClause = "DISTINCT PROCESS_INSTANCE.STARTED, PROCESS_INSTANCE.PIID";
queryl.whereClause =
"PROCESS_INSTANCE.TEMPLATE_NAME = '" + processTemplateName + "'";
queryl.orderByClause = "PROCESS_INSTANCE.STARTED";
queryl.threshold = null;
queryl.timeZone = "UTC"; queryl.skipTuples = null;
queryResponse queryResponsel = proxy.query(queryl);

Les informations extraites de la base de données sont renvoyées via les API de
service Web sous forme d’ensemble de résultats de requéte.

Par exemple :

QueryResultSetType queryResultSet = queryResponsel.queryResultSet;
if (queryResultSet != null) {
Console.WriteLine("--> QueryResultSetType");

Console.WriteLine(" . size= " + queryResultSet.size);
Console.WriteLine(" . numberColumns= " + queryResultSet.numberColumns);
string indent = " . ";

// -- the query column info
QueryColumnInfoType[] queryColumnInfo = queryResultSet.QueryColumnInfo;
if (queryColumnInfo.Length > 0) {

Console.WriteLine();

Console.WriteLine("= . QueryColumnInfoType size= " + queryColumnInfo.Length);
Console.Write(" | tableName ");
for (int i = 0; i < queryColumnInfo.Length ; i++) {
Console.Write(" | " + queryColumnInfo[i].tableName.PadLeft(20));
}
Console.WriteLine();
Console.Write(" | columnName ");
for (int i = 0; i < queryColumnInfo.Length ; i++) {
Console.Write(" | " + queryColumnInfo[i].columnName.PadLeft(20));

}

Console.WriteLine();

394 Développement et déploiement

Console.Write(" | data type ");
for (int i = 0; i < queryColumnInfo.Length ; i++) {
QueryColumnInfoTypeType tt = queryColumnInfo[i].type;

Console.WriteLine(" | " + tt.ToString());
}
Console.WriteLine();
}
else {
Console.WriteLine("--> queryColumnInfo= <null>");
}

// - the query result values
string[][] result = queryResultSet.result;
if (result !=null) {
Console.WriteLine();
Console.WriteLine("= . result size= " + result.Length);
for (int i = 0; i &1t; result.Length; i++) {
Console.Write(indent +i);
string[] row = result[i];
for (int j = 0; j &1t; row.Length; j++) {
Console.Write(" | " + row[j]);
}

Console.WriteLine();

}

else {
Console.WriteLine("--> result= <null>");
}
1
else {
Console.WriteLine("--> QueryResultSetType= <null>");
1

La fonction de requéte renvoie des éléments en fonction des droits d’acces de
I'appelant. L’ensemble de résultats de requéte contient uniquement les propriétés
des objets que l'appelant est autorisé a consulter.

Des vues prédéfinies des bases de données sont disponibles pour vous permettre
de rechercher les propriétés de 1'objet. Pour les modeles de processus, la fonction
de requéte possede la syntaxe suivante :

ProcessTemplateData[] queryProcessTemplates
(java.lang.String whereClause,
java.lang.String orderByClause,
java.lang.Integer threshold,
java.util.TimeZone timezone);

Pour les modeles de taches, la fonction de requéte présente la syntaxe suivante :

TaskTemplate[] queryTaskTemplates
(java.lang.String whereClause,
java.lang.String orderByClause,
java.lang.Integer threshold,
java.util.TimeZone timezone);

Pour d’autres objets liés aux processus métier et aux taches, la fonction de requéte
a la syntaxe suivante :

QueryResultSet query (java.lang.String selectClause,
java.lang.String whereClause,
java.lang.String orderByClause,
java.lang.Integer skipTuples
java.lang.Integer threshold,
java.util.TimeZone timezone);

Chapitre 4. Développement d’applications client pour les taches et processus métier 395

L’interface de requéte contient également une méthode queryAll. Vous pouvez
utiliser cette méthode pour extraire toutes les données pertinentes concernant un
objet, par exemple, a des fins de contrdle. L’appelant de la méthode queryAll doit
disposer de l'un des roles Java 2 Platform, Enterprise Edition (J2EE) suivants :
BPESystem Administrator, BPESystemMonitor, TaskSystemAdministrator ou
TaskSystemMonitor. Le contrdle de 'autorisation a 1'aide de 1’élément de travail
correspondant de 1’objet n’est pas appliqué.

Exemple pour .NET

ProcessTemplateType[] templates = null;

try {
queryProcessTemplates iW = new queryProcessTemplates();
iW.whereClause = "PROCESS_TEMPLATE.STATE=PROCESS_TEMPLATE.STATE.STATE_STARTED";
iW.orderByClause = null;
iW.threshold = null;
iW.timeZone = null;

Console.WriteLine("--> queryProcessTemplates ... ");
Console.WriteLine("--> query: WHERE " + iW.whereClause + " ORDER BY " +
iW.orderByClause + " THRESHOLD " + iW.threshold + " TIMEZONE" + iW.timeZone);

templates = proxy.queryProcessTemplates(ilW);

if (templates.Length < 1) {
Console.WriteLine("--> No templates found :-(");
1
else {
for (int i = 0; i < templates.Length ; i++) {
Console.Write("--> found template with ptid: " + templates[i].ptid);
Console.WriteLine(" and name: " + templates[i].name);
/* ... other properties of ProcessTemplateType ... */
}
1
}
catch(Exception e) {
Console.WriteLine("exception= " + e);

}

TAaches associées

[Requétes sur des objets liés aux processus métier et aux taches|

Vous pouvez utiliser les API de services Web pour effectuer des requétes de
données sur les objets liés aux processus métier et aux taches dans la base de
données Business Process Choreographer, afin d’extraire les propriétés spécifiques
de ces objets.

Gestion des requétes stockées

Les requétes stockées permettent d’enregistrer des requétes souvent exécutées. La
requéte stockée peut soit étre une requéte disponible pour tous les utilisateurs
(requéte publique), soit une requéte appartenant a un utilisateur spécifique
(requéte privée).

A propos de cette tache
Une requéte stockée est une requéte qui est enregistrée dans la base de données et
identifiée par un nom. Une requéte privée et une requéte publique peuvent étre

sauvegardées sous le méme nom. Les requétes enregistrées par différents
utilisateurs peuvent également avoir un nom identique.

396 Développement et déploiement

Vous pouvez avoir stocké des requétes pour des objets de processus métier, des
objets de tache ou une combinaison de ces deux types d’objets.

Taches associées

[Requétes sur des obijets liés aux processus métier et aux taches|

Vous pouvez utiliser les API de services Web pour effectuer des requétes de
données sur les objets liés aux processus métier et aux taches dans la base de
données Business Process Choreographer, afin d’extraire les propriétés spécifiques
de ces objets.

(Gestion des requétes stockées publiques|
Les requétes stockées publiques sont créées par 'administrateur systeme. Ces
requétes sont accessibles a tous les utilisateurs.

(Gestion de requétes stockées privées pour d’autres utilisateurs|
Tout utilisateur peut créer des requétes privées. Seul le propriétaire d'une
requéte et I'administrateur systéme peuvent les utiliser.

[Gestion des requétes stockées privées|

Si vous n’étes pas un administrateur systéme, vous pouvez créer, exécuter et
supprimer vos propres requétes stockées privées. Vous pouvez également
utiliser les requétes stockées publiques créées par 1'administrateur systeme.

Développement d’applications client a I'aide de I’API JMS de Business
Process Choreographer

Vous pouvez développer des applications client accédant aux applications de
processus métier de fagon asynchrone grace a '’API JMS (Java Messaging Service).

A propos de cette tache

Les applications client J]MS échangent des messages de demande et de réponse
avec I’API JMS. Pour créer un message de demande, I'application client remplit le
corps du message JMS TextMessage avec un élément XML représentant
I'encapsuleur document/littéral de I'opération correspondante.

Chapitre 4. Développement d’applications client pour les taches et processus métier 397

Concepts associés

[Exigences des processus métier]

Les processus métier développés au moyen de WebSphere Integration Developer
pour étre exécutés dans 'application Business Process Choreographer doivent étre
conformes a des régles spécifiques afin d’étre accessibles via I’API JMS.

[Autorisation pour les affichages J]MY
Pour autoriser l'acces a l'interface JMS, des parametres de sécurité doivent étre
activés dans WebSphere Application Server.

Comparaison entre les interfaces de programmation visant a interagir avec leg
rocessus métier et les taches utilisateur

Des interfaces de programmation génériques EJB (Enterprise JavaBeans), JMS (Java

Message Service), REST (Representational State Transfer Services) ainsi que des

interfaces de programmation de services Web sont disponibles pour la création

d’applications client interagissant avec des processus métier et des taches

utilisateur. Chacune de ces interfaces présente des caractéristiques différentes.

Taches associées

[Développement d’applications client pour les tAches et processus métier]

Vous pouvez utiliser un outil de modélisation pour compiler et déployer des taches
et des processus métier. L'interaction avec ces processus et ces taches se produit
lors de I'exécution. Par exemple, un processus est lancé ou les taches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des taches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.

[Acces a l'interface JMS|

Pour envoyer et recevoir des messages par le biais de l'interface JMS, une
application doit d’abord créer une connexion au bus BPC.cellname.Bus, créer une
session, puis générer des expéditeurs et des destinataires de message.

[Copie d’artefacts pour les applications client JMS|
Un certain nombre d’artefacts peuvent étre copiés a partir de 1’environnement
WebSphere Process Server pour faciliter la création d’applications client JMS.

[Vérification du message de réponse pour les exceptions de métier]
Les applications client JMS doivent vérifier I'en-téte de message de tous les
messages de réponse pour les exceptions de métier.

Exemple : exécution d’un processus de longue durée a l'aide de I’API JMS de
Business Process Choreographer|

Cet exemple montre comment créer une application client générique utilisant 1’API
JMS pour exploiter des processus de longue durée.

Exigences des processus métier

Les processus métier développés au moyen de WebSphere Integration Developer
pour étre exécutés dans 'application Business Process Choreographer doivent étre
conformes a des régles spécifiques afin d’étre accessibles via I’API JMS.

Les exigences sont les suivantes :

1. Les interfaces des processus métier doivent étre définies a 1’aide du style
"document/literal wrapped” défini dans 1I’API Java pour la spécification
XML-RPC (JAX-RPC 1.1). 1l s’agit du style par défaut défini pour I'ensemble
des processus métier et des taches utilisateur développés avec WebSphere
Integration Developer.

2. Les messages d’erreur accessibles aux processus métier et aux taches utilisateur
des opérations de service Web doivent comprendre un seul composant de
message WSDL défini au moyen d'un élément de schéma XML. Par exemple :

398 Développement et déploiement

<wsdl:part name="myFault" element="myNamespace:myFaultElement"/>
TAaches associées

Développement d’applications client a I'aide de I’API JMS de Business Procesq

ChoreograEher|

Vous pouvez développer des applications client accédant aux applications de
processus métier de facon asynchrone grace a I’API JMS (Java Messaging Service).

Information associée

[[Page de téléchargement d’API Java pour XML-RPC (JAX-RPC)|

[[Quel style de langage WSDL dois-je utiliser ?|

Autorisation pour les affichages JMS

Pour autoriser I'acces a l'interface JMS, des parametres de sécurité doivent étre
activés dans WebSphere Application Server.

Lorsque le conteneur de processus métier est installé, le role JMSAPIUser doit étre
mappé avec un ID utilisateur. Cet ID utilisateur permet d’émettre toutes les
demandes de I’API JMS. Par exemple, si JMSAPIUser est mappé avec "Utilisateur
A", toutes les demandes de I’API JMS apparaissent dans le moteur de processus
avec pour origine "Utilisateur A".

Le role JMSAPIUser doit étre affecté aux autorités suivantes :

Demande Autorisation requise

forceTerminate Administrateur de processus

sendEvent Propriétaire potentiel d’activité ou
administrateur de processus

Remarque : Pour toutes les demandes, aucune autorisation spéciale n’est requise.

L’autorité spéciale est accordée a une personne avec le role d’administrateur de
processus métier. Un administrateur de processus métier est un role spécial. Il est
différent de celui de I'administrateur de processus d"une instance de processus. Il
dispose de tous les privileges.

Vous ne pouvez pas supprimer 1'ID utilisateur du lanceur de processus a partir de
votre registre des utilisateurs alors que l'instance du processus existe. Si vous
supprimez cet ID utilisateur, la navigation dans ce processus ne peut se
poursuivre. Vous recevrez 'exception suivante dans le fichier journal du systeme :
no unique ID for: <ID utilisateur>

TAaches associées

Développement d’applications client a l'aide de I’API JMS de Business Process|

ChoreograEher|

Vous pouvez développer des applications client accédant aux applications de
processus métier de facon asynchrone grace a ’API JMS (Java Messaging Service).

Acceés a l'interface JMS

Pour envoyer et recevoir des messages par le biais de l'interface JMS, une
application doit d’abord créer une connexion au bus BPC.cellname.Bus, créer une
session, puis générer des expéditeurs et des destinataires de message.

Chapitre 4. Développement d’applications client pour les taches et processus métier 399

http://java.sun.com/xml/downloads/jaxrpc.html
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/

A propos de cette tache

Le serveur de processus accepte les messages Java Message Service (JMS) qui
suivent le paradigme point-a-point. Une application qui envoie ou qui regoit des
messages JMS doit exécuter les actions suivantes.

L’exemple suivant suppose que le client JMS est exécuté dans un environnement
géré (Enterprise JavaBeans, client d’application ou conteneur de client Web). Si
vous voulez exécuter le client JMS dans un environnement J2SE, consultez la
rubrique "Client IBM pour JMS sur J2SE avec IBM WebSphere Application Server”
a la page |http:/ /www-1.ibm.com/support/docview.wss?uid=swg24012804

Procédure

1. Créez une connexion au BPC.nomcellule.Bus. Il n’existe pas de fabrique de
connexions préconfigurée pour les requétes d'une application client :
l'application client peut soit utiliser la commande ReplyConnectionFactory de
I"’API JMS, soit créer sa propre fabrique de connexions, auquel cas elle peut
utiliser la recherche JNDI (Java Naming and Directory Interface) pour récupérer
la fabrique de connexions. Le nom de recherche JNDI doit étre identique au
nom indiqué lors de la configuration de la file d’attente des demandes externes
de Business Process Choreographer. L’exemple suivant suppose que
I'application client crée sa propre fabrique de connexions nommée
"jms/clientCF".

//0Obtain the default initial JNDI context.
Context initialContext = new InitialContext();

// Look up the connection factory.

// Create a connection factory that connects to the BPC bus.

// Call it, for example, "jms/clientCF".

// Also configure an appropriate authentication alias.

ConnectionFactory connectionFactory =
(ConnectionFactory)initialcontext.lookup("jms/clientCF");

// Create the connection.
Connection connection = connectionFactory.createConnection();

2. Créez une session afin de pouvoir créer les expéditeurs et les destinataires de
message.

// Create a transaction session using auto-acknowledgement.
Session session = connection.createSession(true, Session.AUTO_ACKNOWLEDGE) ;

3. Créez un expéditeur de message pour envoyer les messages. Le nom de
recherche JNDI doit étre identique au nom indiqué lors de la configuration de
la file d’attente des demandes externes de Business Process Choreographer.

// Look up the destination of the Business Process Choreographer input queue to

// send messages to.
Queue sendQueue = (Queue) initialcontext.lookup("jms/BFMIMSAPIQueue");

// Create a message producer.
MessageProducer producer = session.createProducer(sendQueue);

4. Créez un destinataire de message pour recevoir les réponses. Le nom de
recherche JNDI de la destination de la réponse peut indiquer une destination
définie par l'utilisateur, mais il peut également indiquer la destination de la
réponse par défaut (définie par Business Process Choreographer)
Jjms/BFMIMSRep1yQueue. Dans les deux cas, la destination de la réponse doit étre
basée sur BPC.<cellname>.Bus.

400 Développement et déploiement

http://www-1.ibm.com/support/docview.wss?uid=swg24012804

// Look up the destination of the reply queue.
Queue replyQueue = (Queue) initialcontext.lookup("jms/BFMIMSReplyQueue");

// Create a message consumer.
MessageConsumer consumer = session.createConsumer(replyQueue);

Envoyez un message.

// Start the connection.
connection.start();

// Create a message - see the task descriptions for examples - and send it.
// This method is defined elsewhere ...

String payload = createXMLDocumentForRequest();

TextMessage requestMessage = session.createTextMessage(payload);

// Set mandatory JMS header.

// targetFunctionName is the operation name of JMS API

// (for example, getProcessTemplate, sendMessage)
requestMessage.setStringProperty("TargetFunctionName", targetFunctionName);

// Set the reply queue; this is mandatory if the replyQueue
// is not the default queue (as it is in this example).
requestMessage.setJMSReplyTo(replyQueue);

// Send the message.
producer.send(requestMessage) ;

// Get the message ID.

String jmsMessagelID = requestMessage.getJMSMessagelID();
session.commit();

Recevez la réponse.

// Receive the reply message and analyse the reply.
TextMessage replyMessage = (TextMessage) consumer.receive();

// Get the payload.

String payload = replyMessage.getText();
session.commit();

Mettez fin a la connexion, puis libérez les ressources.

// Final housekeeping; free the resources.
session.close();
connection.close();

Remarque: Vous n’étes pas obligé de mettre fin a la connexion apreés chaque
transaction. Une fois la connexion démarrée, vous pouvez échanger n'importe
quel nombre de messages de demande et de réponse avant de mettre fin a la

connexion. L’exemple illustre un cas simple avec un appel unique au sein
d’une méthode métier unique.

Chapitre 4. Développement d’applications client pour les taches et processus métier

401

Concepts associés

[Structure d’un message JMS de Business Process Choreographer|
L’en-téte et le corps d'un message JMS doivent avoir une structure prédéfinie.

TAaches associées

Développement d’applications client 4 ’aide de I’API JMS de Business Process|

Choreogrther|

Vous pouvez développer des applications client accédant aux applications de
processus métier de fagon asynchrone grace a ’API JMS (Java Messaging Service).

Structure d’un message JMS de Business Process
Choreographer

L’en-téte et le corps d’un message JMS doivent avoir une structure prédéfinie.

Un message JMS (Java Message Service) se compose des éléments suivants :

¢ Un en-téte de message pour l'identification du message et I'acheminement de
I'information.

* Le corps (charge) du message qui renferme le contenu.

Business Process Choreographer ne prend en charge que les formats de message
texte.

En-téte de message
JMS permet aux clients d’accéder a certains champs d’en-téte de message.

Les champs d’en-téte suivants peuvent étre définis par un client JMS de Business

Process Choreographer :

* JMSReplyTo
Destination a laquelle est envoyée la réponse a une requéte. Si ce champ n’est
pas spécifié dans le message de requéte, la réponse est alors envoyée a la
destination de réponse par défaut de l'interface d’exportation (I’exportation
correspond a l'affichage de l'interface client d'un composant de processus
métier). Il est possible d’obtenir cette destination a 'aide de
initialContext.Tookup(”jms/BFMIMSReplyQueue”);

* TargetFunctionName

Le nom de l'opération WSDL pourrait étre "queryProcessTemplates”, par
exemple. Ce champ doit toujours étre défini. Notez que TargetFunctionName
spécifie 'opération de l'interface du message JMS générique décrite ici. A ne pas
confondre avec les opérations fournies par des taches ou des processus concrets
pouvant étre appelés indirectement a 1’aide de 1'opération call ou sendMessage,
par exemple.

Un client Business Process Choreographer peut également accéder aux champs
d’en-téte suivants :
* JMSMessagelD

Identifie un message de maniere unique. Défini par le fournisseur JMS lorsque le
message est envoyé. Si le client définit le champ JMSMessagelD avant 'envoi du
message, il est systématiquement remplacé par le fournisseur JMS. Si I'ID du
message est requis a des fins d’authentification, le client peut alors obtenir le
parametre JMSMessagelD aprés l'envoi du message.

* JMSCorrelationID

Relie les messages. Ne pas définir ce champ. Un message de réponse Business
Process Choreographer contient toujours le champ JMSMessagelD du message
de requéte.

402 Développement et déploiement

Chaque message de réponse contient les champs d’en-téte JMS suivants :
* IsBusinessException

"False” pour les messages de sortie WSDL ou "True” pour les messages d’erreur
WSDL.

Les exceptions ServiceRuntimeExceptions ne sont pas renvoyées aux applications
client asynchrones. Lorsqu’une exception sévere se produit lors du traitement d"un
message de requéte JMS, une erreur d’exécution est générée, ce qui provoque
I'annulation de la transaction en cours de traitement. Le message de requéte JMS
est alors relivré. Si I’erreur se produit prématurément dans la phase d’exportation
SCA du traitement du message (par exemple, lors de sa désérialisation), de
nouvelles tentatives sont exécutées jusqu’au nombre maximum de livraisons
échouées spécifié par la destination de réception de la fonction d’exportation SCA.
Une fois ce nombre atteint, le message de requéte est ajouté a la destination
d’exception systéme du bus Business Process Choreographer. Cependant, si I’échec
se produit lors du traitement réel de la requéte par le composant SCA de Business
Flow Manager, le message de requéte échoué est géré par l'infrastructure de
gestion des événements en échec de WebSphere Process Server, autrement dit, on
se retrouve dans la base de données de gestion des événements échoués si les
tentatives ne permettent pas de résoudre la situation exceptionnelle.

Corps du message

Le corps du message JMS est une chaine contenant un document XML représentant
I’élément encapsuleur du document/littéral de 1'opération.

Voici I'exemple simple d'un corps de message de requéte valide :

<?xml version="1.0" encoding="UTF-8"?>

< 6:queryProcessTemplates xmins: 6="http://www.ibm.com/xmIns/prod/
websphere/business-process/services/6.0">

<whereClause>PROCESS_TEMPLATE.STATE IN (1)</whereClause>

</_6:queryProcessTemplates>

Taches associées

[Acceés a l'interface JMS)|

Pour envoyer et recevoir des messages par le biais de l'interface JMS, une
application doit d’abord créer une connexion au bus BPC.cellname.Bus, créer une
session, puis générer des expéditeurs et des destinataires de message.

Copie d’artefacts pour les applications client JMS

Un certain nombre d’artefacts peuvent étre copiés a partir de 1’environnement
WebSphere Process Server pour faciliter la création d’applications client JMS.

A propos de cette tache

Ces artefacts sont obligatoires uniquement si vous utilisez BOXMLSerializer pour
créer le corps du message JMS. Pour I’API JMS, ces artefacts sont:

BFMIF.wsdl
BFMIF.xsd
BPCGen.xsd

wsa.xsd

Vous pouvez obtenir ces artefacts de différentes manieres :

* Publiez et exportez les artefacts a partir de 1’environnement WebSphere Process
Server.

Chapitre 4. Développement d’applications client pour les taches et processus métier 403

Ces artefacts client se trouvent dans le répertoire racine_installation\
ProcessChoreographer\client.

* Copiez les fichiers qui se trouvent dans le répertoire racine_installation\
ProcessChoreographer\client du CD du client WebSphere Process Server.

Résultats
Taches associées

Développement d’applications client a I'aide de I’API JMS de Business Process|

Choreograghed

Vous pouvez développer des applications client accédant aux applications de
processus métier de facon asynchrone grace a ’API JMS (Java Messaging Service).

Vérification du message de réponse pour les exceptions de
métier
Les applications client JMS doivent vérifier I’en-téte de message de tous les
messages de réponse pour les exceptions de métier.

A propos de cette tache

Une application client J]MS doit d’abord vérifier la propriété IsBusinessException
de l’en-téte du message de réponse.

Par exemple :

Exemple

// receive response message
Message receivedMessage = ((JmsProxy) getToBelInvokedUponObject().receiveMessage();
String strResponse = ((TextMessage) receivedMessage).getText();

if (receivedMessage.getStringProperty("IsBusinessException") {
// strResponse is a bussiness fault
// any api can end w/a processFaultMsg
// the call api also w/a businessFaultMsg
}
else {
// strResponse is the output message

}

Taches associées

Développement d’applications client a I'aide de I’API JMS de Business Process|

ChoreograEher|

Vous pouvez développer des applications client accédant aux applications de
processus métier de fagcon asynchrone grace a I’API JMS (Java Messaging Service).

Exemple : exécution d’un processus de longue durée a l'aide
de I’API JMS de Business Process Choreographer

Cet exemple montre comment créer une application client générique utilisant I’API
JMS pour exploiter des processus de longue durée.

Procédure

1. Configurez I’environnement JMS, comme décrit dans [«Accés a I'interface JMS» |
a la page 399

2. Obtenez une liste des définitions de processus installées.
* Envoyez la commande queryProcessTemplates.
¢ Cette commande renvoie une liste d’objets ProcessTemplate.

404 Développement et déploiement

3. Obtenez une liste d’activités de démarrage (activités de réception ou de
sélection avec createlnstance="yes").

* Envoyez getStartActivities.
* Cette commande renvoie une liste d’objets InboundOperationTemplate.

4. Créez un message d’entrée. Ce message est propre a l'environnement et peut
nécessiter I'emploi d’artefacts prédéployés, propres a chaque processus.

5. Créez une instance de processus.
* Emettez une instruction sendMessage.

Grace a I’API JMS, vous pouvez également utiliser 1’opération call pour
I'interaction avec des opérations de demande-réponse de longue durée fournies
par un processus métier. Cette opération renvoie le résultat ou l'erreur
d’opération a la destination de réponse spécifiée, méme apres une longue
période. Par conséquent, si vous utilisez 1'opération call, il n’est pas nécessaire
d’utiliser les opérations query et getOutputMessage pour que le message de
sortie de processus ou d’erreur s’affiche.

6. Facultatif : Obtenez les messages de sortie des instances de processus en
répétant la procédure suivante :
a. Emettez la commande query pour obtenir 1’état achevé de l'instance de

processus.

b. Emettez la commande getOutputMessage .

7. Facultatif : Travaillez maintenant sur les opérations supplémentaires présentées
par le processus :

a. Envoyez les commandes getWaitingActivities ou getActiveEventHandlers
pour obtenir une liste des objets InboundOperationTemplate.

b. Créez des messages d’entrée.
c. Envoyez les messages a 'aide de la commande sendMessage.

8. Facultatif : Obtenez et définissez des propriétés personnalisées définies sur le
processus ou les activités qu’il contient, en utilisant les commandes
getCustomProperties et setCustomProperties.

9. Terminez le travail sur l'instance de processus :
a. Envoyez delete et terminate pour mettre fin au processus de longue durée.
Taches associées

Développement d’applications client a 'aide de I’API JMS de Business Procesq

Choreogragheﬂ

Vous pouvez développer des applications client accédant aux applications de
processus métier de fagon asynchrone grace a ’API JMS (Java Messaging Service).

Développement d’applications Web pour les processus métier et
taches utilisateur a I'aide de composants JSF
Business Process Choreographer offre un certain nombre de composants JavaServer

Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de taches utilisateur a des applications Web.

A propos de cette tache
WebSphere Integration Developer permet de générer une application Web. Pour les
applications comprenant des taches utilisateurs, vous pouvez générer un client JSF

personnalisé. Pour plus d’informations sur la génération d’un client JSF, consultez
le centre de documentation de WebSphere Integration Developer.

Chapitre 4. Développement d’applications client pour les taches et processus métier 405

Vous pouvez également développer votre client Web a 1’aide des composants JSF
fournis par Business Process Choreographer.

Procédure

1. Créez un projet dynamique et modifiez les propriétés Web Project Features
pour inclure les composants de base JSE

Pour plus d’informations sur la création d'un projet Web, accédez au centre de
documentation de WebSphere Integration Developer.

2. Ajoutez les fichiers archive Java (JAR) préalables de Business Process
Choreographer Explorer.

Ajoutez les fichiers suivants au répertoire WEB-INF/lib de votre projet :
* bpcclientcore.jar

* bfmclientmodel jar

* htmclientmodel jar

* bpcjsfcomponents jar

Si vous déployez votre application web sur un serveur distant, ajoutez
également les fichiers suivants. Ces fichiers sont nécessaires pour accéder a
distance aux API de Business Process Choreographer.

* bpel37650.jar
* task137650.jar

Dans WebSphere Process Server, ces fichiers se trouvent tous dans le répertoire
suivant :

¢ Sous Windows : racine_installation\ProcessChoreographer\client

* Sur les systemes UNIX®, Linux® et i5/0S : racine_installation/
ProcessChoreographer /client

3. Ajoutez les références EJB requises pour le descripteur de déploiement
d’applications Web, le fichier web.xml.

<ejb-ref id="EjbRef 1">
<ejb-ref-name>ejb/BusinessProcessHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com. ibm.bpe.api.BusinessF1owManagerHome</home>
<remote>com.ibm.bpe.api.BusinessFlowManager</remote>

</ejb-ref>

<ejb-ref id="EjbRef_2">
<ejb-ref-name>ejb/HumanTaskManagerEJB</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com. ibm. task.api.HumanTaskManagerHome</home>
<remote>com.ibm.task.api.HumanTaskManager</remote>

</ejb-ref>

<ejb-Tocal-ref id="EjbLocalRef_1">
<ejb-ref-name>ejb/LocalBusinessProcessHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>com.ibm.bpe.api.LocalBusinessFlowManagerHome</1local-home>
<local>com.ibm.bpe.api.LocalBusinessFlowManager</local>

</ejb-local-ref>

<ejb-local-ref id="EjbLocalRef_ 2">
<ejb-ref-name>ejb/LocalHumanTaskManagerEJB</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>com.ibm.task.api.LocalHumanTaskManagerHome</local-home>
<local>com.ibm.task.api.LocalHumanTaskManager</local>

</ejb-Tocal-ref>

4. Ajoutez les composants JSF de Business Process Choreographer Explorer a
l'application JSF.

a. Ajoutez les références de bibliotheque de balises requises pour les
applications dans les fichiers JavaServer Pages (JSP). En généralement, les

406 Développement et déploiement

ressources requises sont les bibliotheques de balises JSF et HTML et la
bibliotheque de balises requise par les composants JSE.

e <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
* <%@ taglib uri="http://java.sun.com/jsf/htm1" prefix="h" %>
* <%@ taglib uri="http://com.ibm.bpe.jsf/taglib" prefix="bpe" %>

b. Ajoutez une balise <f:view> au corps de la page JSP et une balise <h:form>
a la balise <f:view>.

c. Ajoutez les composants JSF aux fichiers JSP.

Selon votre application, ajoutez les composants List, Details, CommandBar
ou Message aux fichiers JSP. Vous pouvez ajouter plusieurs instances a
chaque composant.

d. Configurez les beans gérés dans le fichier de configuration JSF.

Le fichier de configuration par défaut est faces-config.xml. Ce fichier réside
dans le répertoire WEB-INF de 1’application Web.

Selon le composant que vous ajoutez a votre fichier JSP, vous devez
également ajouter les références a la requéte et aux objets d’encapsulation
au fichier de configuration JSE. Pour s’assurer d’un traitement correct des
erreurs, vous devez également définir un bean d’erreur et une cible de
navigation pour la page d’erreur dans le fichier de configuration JSE.
Utilisez BPCError comme nom pour le bean d’erreur et error comme nom
pour la cible de navigation de la page d’erreur.

<faces-config>

<managed-bean>
<managed-bean-name>BPCError</managed-bean-name>
<managed-bean-class>com.ibm.bpc.clientcore.util.ErrorBeanImpl
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>

<navigation-rule>

<navigation-case>

<description>

Page générale des erreurs.
</description>
<from-outcome>error</from-outcome>
<to-view-id>/Error.jsp</to-view-id>
</navigation-case>

</navigation-rule>
</faces-config>

Lorsque des situations d’erreur entrainent le déclenchement de la page
d’erreur, I'exception est définie au niveau du bean d’erreur.

e. Implémentez le code personnalisé requis pour la prise en charge des
composants JSF.

5. Déployez l'application.

Si vous déployez 'application dans un environnement de déploiement réseau,
modifiez les noms JNDI (Java Naming and Directory Interface) des ressources
cible avec des valeurs permettant de trouver les API de Business Flow Manager
et Human Task Manager dans votre cellule.

* Si vos conteneurs de processus métier sont configurés sur un autre serveur
au sein de la méme cellule gérée, les noms se présentent de la maniere
suivante :

Chapitre 4. Développement d’applications client pour les taches et processus métier 407

cellule/noeuds/nomnoeud/serveurs/nomserveur/com/ibm/bpe/api/BusinessManagerHome
cellule/noeuds/nomnoeud/serveurs/nomserveur/com/ibm/task/api/HumanTaskManagerHome

* Si vos conteneurs de processus métier sont configurés sur un serveur au sein
de la méme cellule, les noms se présentent de la maniere suivante :

cellule/clusters/nomcluster/com/ibm/bpe/api/BusinessFlowManagerHome
cellule/clusters/nomcluster/com/ibm/task/api/HumanTaskManagerHome

Mappez les références EJB avec les noms JNDI ou ajoutez manuellement les
références au fichier ibm-web-bnd.xmi.

Le tableau suivant dresse la liste des liaisons de référence et leurs mappages
par défaut.

Tableau 50. Mappage des liaisons de référence aux noms JNDI

Liaison de référence Nom JNDI Commentaires

ejb/BusinessProcessHome com/ibm/bpe/api/BusinessFlowManagerHome | Bean session distant

ejb/LocalBusinessProcessHome com/ibm/bpe/api/BusinessFlowManagerHome | Bean session local

ejb/HumanTaskManagerE]B com/ibm/task/api/HumanTaskManagerHome | Bean session distant

ejb/LocalHumanTaskManagerEJB | com/ibm/task/api/HumanTaskManagerHome | Bean session local

Résultats

Votre application Web déployée contient les fonctionnalités fournies par les
composants de Business Process Choreographer Explorer.

Que faire ensuite
Si vous utilisez des JSP personnalisés pour les messages de processus et de tache,

vous devez mapper les modules web qui sont utilisés pour déployer les JSP avec
les mémes serveurs que ceux avec lesquels est mappé le client JSF personnalisé.

408 Développement et déploiement

Concepts associés

[Composants Exemples de Business Process Choreographer Explorer

Les composants Business Process Choreographer Explorer constituent un ensemble
d’éléments réutilisables configurables basés sur la technologie JavaServer Faces
(JSF). Vous pouvez imbriquer ces éléments dans des applications Web. Les
applications Web peuvent alors accéder a des applications de processus métier et
de taches utilisateur installées.

[Traitement des erreurs dans les composants JSF]|

Les composants JavaServer Faces (JSF) exploitent un bean géré prédéfini, BPCError,
pour le traitement des erreurs. Lorsque des situations d’erreur entrainent le
déclenchement de la page d’erreur, 'exception est définie au niveau du bean
d’erreur.

Taches associées

[Développement d’applications client pour les tiches et processus métier]

Vous pouvez utiliser un outil de modélisation pour compiler et déployer des taches
et des processus métier. L’interaction avec ces processus et ces taches se produit
lors de 'exécution. Par exemple, un processus est lancé ou les taches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des taches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.

[Ajout du composant List & une application JSH

Le composant List de Business Process Choreographer Explorer permet d’afficher
une liste d’objets de modele client tel qu'une liste d’instances de processus métier
ou une instance de tache.

[Ajout du composant Details a une application JSH

Le composant Details de Business Process Choreographer Explorer permet
d’afficher les propriétés de taches, de taches élémentaires, d’instances de processus
et de modeéles de processus.

[Ajout du composant CommandBar a une application JSF|

Utilisez le composant CommandBar de Business Process Choreographer Explorer
pour permettre 1’affichage d’une barre comportant des boutons de commande. Ces
boutons représentent des commandes opérant dans une vue détails d’un objet ou
des objets sélectionnés d’une liste.

[Ajout du composant Message a une application JSH

Le composant Message de 1’explorateur du Chorégraphe de processus métier
permet d’afficher des objets de données et des types de primitive dans une
application JavaServer Faces (JSF).

Référence associée

[Convertisseurs et intitulés par défaut d’objets de modele client]
Les objets de modeéle client implémentent les interfaces correspondantes de I’API
de Business Process Choreographer.

Chapitre 4. Développement d’applications client pour les taches et processus métier 409

Composants Exemples de Business Process Choreographer
Explorer

Les composants Business Process Choreographer Explorer constituent un ensemble
d’éléments réutilisables configurables basés sur la technologie JavaServer Faces
(JSF). Vous pouvez imbriquer ces éléments dans des applications Web. Les
applications Web peuvent alors accéder a des applications de processus métier et
de taches utilisateur installées.

Les composants consistent en un ensemble de composants JSF et un ensemble
d’objets modeéle client. La relation entre les composants et Business Process
Choreographer, Business Process Choreographer Explorer et d’autres clients
personnalisés est représentée dans la figure suivante.

Business Process Client
Choreographer personnalisé
Explorer

., l

Composants Business Process
Choreographer Explorer

Composants JSF

Objets de modéle client

Interfaces API

Business Process Choreographer

Composants JSF

Les composants de Business Process Choreographer Explorer comprennent les
composants JSF suivants. Ces composants JSF sont insérés dans les fichiers
JavaServer Pages (JSP) lorsque vous générez des applications Web de gestion des
processus métier et taches utilisateur.

* Composant List

Le composant List affiche dans un tableau, une liste d’objets d’application tels
que des taches, des activités, des instances de processus, des modeéles de
processus, des éléments de travail ou des escalades. Ce composant possede un
gestionnaire de liste associé.

410 Développement et déploiement

* Composant Details

Le composant Details permet d’afficher les propriétés de taches, d’éléments de
travail, d'instances de processus et modeles de processus. Ce composant possede
un gestionnaire de détails associé.

* Composant CommandBar

Le composant CommandBar permet d’afficher une barre avec boutons de
commande. Ces boutons représentent des commandes qui agissent sur 1'objet
dans une vue détails ou les objets sélectionnés d’une liste. Ces objets sont
fournis par un gestionnaire de listes ou un gestionnaire de détails.

* Composant Message

Le composant Message affiche un message pouvant contenir un objet SDO
(Service Data Object) ou un type simple.

Objets de modele client

Les objets de modele client sont utilisés avec les composants JSE. Les objets
implémentent certaines interfaces de 1’API de Business Process Choreographer
sous-jacent et encapsule 1'objet d’origine. Les objets de modele client fournissent un
support multilingue pour les libellés et les convertisseurs de certaines propriétés.

TAaches associées

Développement d’applications Web pour les processus métier et tiches utilisateur 3
|'aide de composants JSF|

Business Process Choreographer offre un certain nombre de composants JavaServer
Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de taches utilisateur a des applications Web.

Traitement des erreurs dans les composants JSF

Les composants JavaServer Faces (JSF) exploitent un bean géré prédéfini, BPCError,
pour le traitement des erreurs. Lorsque des situations d’erreur entrainent le
déclenchement de la page d’erreur, 'exception est définie au niveau du bean
d’erreur.

Ce bean met en oeuvre l'interface com.ibm.bpc.clientcore.util. ErrorBean. L’affichage
de la page d’erreur a lieu dans les cas suivants :

¢ Lorsqu’une erreur se produit durant l'exécution d’une requéte définie pour un
gestionnaire de listes, et que cette erreur est générée en tant qu’erreur
ClientException par la méthode execute d’'une commande

* Lorsqu’une erreur ClientException est émise par la méthode execute d'une
commande et qu'il ne s’agit pas d’une erreur ErrorsinCommandException, ou
qu’elle ne met pas en oeuvre l'interface CommandBarMessage

* Si un message d’erreur est affiché dans le composant et que vous suivez
I'hyperlien lié au message

Une mise en oeuvre par défaut de l'interface
com.ibm.bpc.clientcore.util. ErrorBeanImpl est disponible.

L’interface est définie comme suit :
public interface ErrorBean {

public void setException(Exception ex);

/*
* Cette méthode d'accés set permet de transmettre 1'environnement
* local et 1'exception. Ainsi, les méthodes getExceptionMessage

Chapitre 4. Développement d’applications client pour les taches et processus métier 411

* peuvent renvoyer des chaines localisées

*

*/

public void setException(Exception ex, Locale locale);

public Exception getException();

public String getStack();

public String getNestedExceptionMessage();
public String getNestedExceptionStack();
public String getRootExceptionMessage();
public String getRootExceptionStack();

/*

* Cette méthode renvoie Te message d'exception

* concaténé de fagon récursive avec les messages de
* toutes Tes exceptions imbriquées.

*/

public String getAl1ExceptionMessages();

/*
* Cette méthode renvoie Ta pile d'exceptions
* concaténée de facon récursive avec les piles
* toutes Tes exceptions imbriquées.
*/
public String getAll1ExceptionStacks();

}

TAaches associées

Développement d’applications Web pour les processus métier et tiches utilisateur 3|
|'aide de composants JSF|

Business Process Choreographer offre un certain nombre de composants JavaServer
Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de taches utilisateur a des applications Web.

Convertisseurs et intitulés par défaut d’objets de modeéle
client

Les objets de modele client implémentent les interfaces correspondantes de 1’API
de Business Process Choreographer.

Les composants List et Details fonctionnent sur tout type de bean. Vous pouvez
afficher toutes les propriétés d’'un bean. Toutefois, si vous voulez définir les
convertisseurs et les intitulés utilisés pour les propriétés d’un bean, vous devez
utiliser soit la balise column du composant List, soit la balise property du
composant Details. Au lieu de définir les convertisseurs et les intitulés, vous
pouvez définir des convertisseurs et des intitulés par défaut pour les propriétés en
définissant les méthodes statiques suivantes. Vous pouvez définir les méthodes
statiques suivantes :

static public String getlLabel(String property,Locale locale);

static public com.ibm.bpc.cTientcore.converter.SimpleConverter
getConverter(String property);

Le tableau suivant répertorie les objets de modele client qui implémentent les
classes d’API Business Flow Manager et Human Task Manager et fournissent les
intitulés et le convertisseur par défaut pour leurs propriétés. Cet encapsulage des
interfaces fournit des intitulés sensibles et des convertisseurs pour un ensemble de
propriétés. Le tableau suivant répertorie les correspondances entre les interfaces de
Business Process Choreographer et les objets de modele client.

412 Développement et déploiement

Tableau 51. Mappage d’interfaces de Business Process Choreographer avec des objets de modéle client

Interface de Business Process Choreographer Classe d’objet de modeéle client
com.ibm.bpe.api.ActivityInstanceData com.ibm.bpe.clientmodel.bean.ActivityInstanceBean
com.ibm.bpe.api.ActivityServiceTemplateData com.ibm.bpe.clientmodel.bean. ActivityServiceTemplateBean
com.ibm.bpe.api.ProcessInstanceData com.ibm.bpe.clientmodel.bean.ProcessInstanceBean
com.ibm.bpe.api.ProcessTemplateData com.ibm.bpe.clientmodel.bean.ProcessTemplateBean

com.ibm.task.api.Escalation

com.ibm.task.clientmodel.bean.EscalationBean

com.ibm.task.api.Task

com.ibm.task.clientmodel.bean.TaskInstanceBean

com.ibm.task.api.TaskTemplate com.ibm.task.clientmodel.bean. TaskTemplateBean

TAaches associées

Développement d’applications Web pour les processus métier et tiches utilisateur 3|

|’aide de composants JSF|

Business Process Choreographer offre un certain nombre de composants JavaServer
Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de taches utilisateur a des applications Web.

Ajout du composant List a une application JSF

Le composant List de Business Process Choreographer Explorer permet d’afficher
une liste d’objets de modele client tel qu'une liste d’instances de processus métier
ou une instance de tache.

Procédure

1.

Ajoutez le composant List au fichier JavaServer Pages (JSP).

Ajoutez la balise bpe:1ist> a la balise h:form. La balise bpe:1ist> doit contenir
un attribut de modele. Ajoutez des balises bpe:column a la balise bpe:1ist pour
ajouter les propriétés des objets qui doivent figurer a chaque ligne de la liste.

L’exemple suivant illustre I'ajout d’'un composant List afin d’afficher des
instances de tache.

<h:form>

<bpe:Tist model="#{TaskPool}">
<bpe:column name="name" action="taskInstanceDetails" />
<bpe:column name="state" />
<bpe:column name="kind" />
<bpe:column name="owner" />
<bpe:column name="originator" />
</bpe:list>

</h:form>

L’attribut de modeéle fait référence a un bean géré, TaskPool. Le bean géré
fournit la liste d’objets Java traités par itération, puis affichés dans des lignes
individuelles.

Configurez le bean géré référencé par la balise bpe:1ist.

Pour le composant List, ce bean géré doit étre une instance de la classe
com.ibm.bpe.jsf.handler. BPCListHandler.

L’exemple suivant illustre I'ajout d’un bean géré TaskPool au fichier de
configuration.

<managed-bean>
<managed-bean-name>TaskPool</managed-bean-name>
<managed-bean-class>com.ibm.bpe.jsf.handler.BPCListHandler</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

<managed-property>

Chapitre 4. Développement d’applications client pour les tiches et processus métier 413

<property-name>query</property-name>
<value>#{TaskPoolQuery}</value>

</managed-property>

<managed-property>
<property-name>type</property-name>
<value>com.ibm.task.cTientmodel.bean.TaskInstanceBean</value>

</managed-property>

</managed-bean>

<managed-bean>
<managed-bean-name>TaskPoolQuery</managed-bean-name>
<managed-bean-class>sample.TaskPoolQuery</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>
<property-name>type</property-name>
<value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>
</managed-property>
</managed-bean>

<managed-bean>
<managed-bean-name>htmConnection</managed-bean-name>
<managed-bean-class>com.ibm.task.clientmodel.HTMConnection</managed-bean-class>
<managed-bean-scope>application</managed-bean-scope>
<managed-property>
<property-name>jndiName</property-name>
<value>java:comp/env/ejb/LocalHumanTaskManagerEJB</value>
</managed-property>
</managed-bean>
L’exemple indique que TaskPool possede deux propriétés configurables : query
et type. La valeur de la propriété query fait référence a un autre bean géré,
TaskPoolQuery. La valeur de la propriété type indique la classe de bean dont
les propriétés s’affichent dans les colonnes de la liste affichée. L’instance de
requéte associée possede également un type de propriété. Si un type de
propriété est indiqué, il doit étre identique au type indiqué pour le gestionnaire
de liste.
Vous pouvez ajouter n'importe quel type de logique de requéte a 1’application
JSF a partir du moment ot le résultat de la requéte peut étre représenté sous
forme de liste de beans fortement typés. Par exemple, la requéte TaskPoolQuery
est implémentée a 1’aide d’une liste d’objets
com.ibm.task.clientmodel.bean.TaskInstanceBean.
3. Ajoutez le code personnalisé du bean géré figurant en référence dans le
gestionnaire de liste.

L’exemple suivant illustre 1’ajout de code personnalisé du bean géré TaskPool.
public class TaskPoolQuery implements Query {

public List execute throws ClientException {

// Rechercher dans le fichier faces-config le bean géré "htmConnection".

//

FacesContext ctx = FacesContext.getCurrentInstance();

Application app = ctx.getApplication();

ValueBinding htmVb = app.createValueBinding("#{htmConnection}");

htmConnection = (HTMConnection) htmVb.getValue(ctx);

HumanTaskManagerService taskService =
htmConnection.getHumanTaskManagerService();

// Appel de T1a méthode de requéte effective sur le service Human Task Manager.
/]

// Ajouter & 1'instruction de sélection les colonnes de base de données

// de toutes les propriétés a afficher dans la Tiste

//

QueryResultSet queryResult = taskService.query(

"DISTINCT TASK.TKIID, TASK.NAME, TASK.KIND, TASK.STATE, TASK.TYPE,"

414 Développement et déploiement

+ "TASK.STARTER, TASK.OWNER, TASK.STARTED, TASK.ACTIVATED, TASK.DUE,
TASK.EXPIRES, TASK.PRIORITY",
"TASK.KIND IN(101,102,105) AND TASK.STATE IN(2)
AND WORK_ITEM.REASON IN (1)",
(Chaine)null,
(Integer)null,
(TimeZone)null);
List applicationObjects = transformToTaskList (queryResult);
return applicationObjects ;

}

private List transformToTaskList(QueryResultSet result) {

ArrayList array = null;
int entries = result.size();
array = new ArraylList(entries);

// Transformation de chaque ligne de QueryResultSet en bean d'instance de tache.
for (int i = 0; i < entries; i++) {

result.next();

array.add(new TaskInstanceBean(result, connection));

}

return array ;
}
}
Le bean TaskPoolQuery interroge les propriétés des objets Java. Ce bean doit
implémenter l'interface com.ibm.bpc.clientcore.Query. Quand il actualise son
contenu, le gestionnaire de liste appelle la méthode execute de la requéte.

L’appel renvoie une liste d’objets Java. La méthode getType doit renvoyer le
nom de classe des objets Java renvoyés.

Résultats
Votre application JSF contient a présent une page JavaServer affichant les

propriétés de la liste d’objets demandée : état, type, propriétaire et émetteur des
taches d’instance disponibles, par exemple.

Chapitre 4. Développement d’applications client pour les taches et processus métier 415

Concepts associés

Mode de traitement des listes|
Chaque instance du composant List est associée a une instance de la classe
com.ibm.bpe. jsf.handler.BPCListHandler.

[Informations de fuseau horaire propres a 'utilisateur|
Les composants JavaServer Faces (JSF) offrent un utilitaire de gestion des
informations de fuseau horaire propre a l'utilisateur dans le composant List.

[Traitement des erreurs dans le composant List|

Lorsque vous utilisez le composant List pour afficher des listes dans votre
application JSF, vous pouvez tirer parti des fonctions de traitement d’erreurs
fournies par la classe com.ibm.bpe jsf.handler.BPCListHandler.

TAaches associées

Développement d’applications Web pour les processus métier et taches utilisateur a|
I’aide de composants JSFH|

Business Process Choreographer offre un certain nombre de composants JavaServer
Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de taches utilisateur a des applications Web.

Référence associée

[Composant List : définitions de balises|

Le composant List de Business Process Choreographer Explorer affiche dans un
tableau, une liste d’objets d’application tels que des taches, des activités, des
instances de processus, des modeles de processus, des éléments de travail ou des
escalades.

Mode de traitement des listes
Chaque instance du composant List est associée a une instance de la classe
com.ibm.bpe jsf.handler.BPCListHandler.

Le gestionnaire de listes effectue le suivi des éléments sélectionnés dans la liste
associée et fournit un mécanisme de notification pour associer les entrées de liste
aux pages de détails des différents types d’éléments. Le gestionnaire de listes est
lié au composant List via I’attribut model contenu dans la balise bpe:Tist.

Le systeme de notification du gestionnaire de listes est mis en oeuvre via l'interface
com.ibm.bpe.jsf.handler.ItemListener. Des implémentations de cette interface
peuvent étre enregistrées dans le fichier de configuration de votre application JSF
(JavaServer Faces).

La notification est déclenchée en cas d’activation d’un lien dans la liste. Les liens
de toutes les colonnes pour lesquelles l'attribut action est défini, s’affichent. La
valeur de l'attribut action est soit une cible de navigation JSF, soit une méthode
d’action JSF qui renvoie une cible de navigation JSE.

La classe BPCListHandler fournit également une méthode refreshList. Vous pouvez
appliquer cette méthode a des liaisons de méthodes JSF afin de mettre en oeuvre
un contrdle d’interface utilisateur visant a réexécuter la requéte.

Mises en oeuvre de requétes
Le gestionnaire de listes peut étre utilisé pour afficher toutes sortes d’objets, ainsi
que les propriétés de ces derniers. Le contenu de la liste affichée dépend de Ia liste

des objets renvoyés par la mise en oeuvre de l'interface
com.ibm.bpc.clientcore.Query configurée pour le gestionnaire de listes. Vous

416 Développement et déploiement

pouvez définir la requéte par voie de programme via la méthode setQuery de la
classe BPCListHandler, ou la configurer dans les fichiers de configuration JSF de
I'application.

L’exécution de requétes peut concerner non seulement les API de Business Process
Choreographer, mais également toute autre source d’informations accessible par le
biais de votre application, telle qu'un systéme de gestion de contenus ou une base
de données. La seule condition requise est que le résultat de la requéte soit
renvoyé sous forme d’une liste java.util.List contenant les objets de la méthode
execute.

Le type des objets renvoyés doit garantir que les méthodes d’acces get appropriées
sont disponibles pour toutes les propriétés affichées dans les colonnes de la liste
faisant 1'objet de la requéte. Pour vous assurer que le type d’objet renvoyé
correspond bien aux définitions de la liste, vous pouvez utiliser le nom de classe
qualifié complet des objets renvoyés en tant que valeur de propriété du type
concerné dans l'instance BPCListHandler définie par le fichier de configuration JSE.
Ce nom peut étre renvoyé dans 1’appel getType de la mise en oeuvre de la requéte.
Lors de I'exécution, le gestionnaire de listes contrdle que les types d’objet sont bien
conformes aux définitions.

Pour créer un mappage entre des messages d’erreur et des entrées spécifiques
d’une liste, les objets renvoyés par la requéte doivent mettre en oeuvre une
méthode comportant la signature public Object getID().

Convertisseurs et intitulés par défaut

Les éléments renvoyés par une requéte doivent étre des beans et leurs classes
doivent correspondre a la classe spécifiée comme le type dans la définition de la
classe BPCListHandler ou de l'interface com.ibm.bpc.clientcore.Query. De plus, le
composant List vérifie si la classe d’éléments ou une superclasse implémente les
méthodes suivantes :

static public String getlLabel(String property,Locale Tocale);

static public com.ibm.bpc.clientcore.converter.SimpleConverter
getConverter(String property);

Si ces méthodes sont définies pour les beans, le composant List utilise I'intitulé
comme intitulé par défaut pour la liste et SimpleConverter comme convertisseur
par défaut pour la propriété. Vous pouvez remplacer ces parametres par les
attributs label et converterID de la balise bpe:1ist. Pour plus d’informations sur
l'interface SimpleConverter et ColumnTag class, reportez-vous a la documentation
Java.

TAaches associées

[Ajout du composant List 2 une application JSH

Le composant List de Business Process Choreographer Explorer permet d’afficher
une liste d’objets de modele client tel qu'une liste d’instances de processus métier
ou une instance de tache.

Informations de fuseau horaire propres a I'utilisateur
Les composants JavaServer Faces (JSF) offrent un utilitaire de gestion des
informations de fuseau horaire propre a l'utilisateur dans le composant List.

La classe BPCListHandler utilise 1'interface com.ibm.bpc.clientcore.util.User pour
obtenir des informations sur le fuseau horaire et ’environnement local de chaque
utilisateur. Pour les besoins du composant List la mise en oeuvre de l'interface doit
étre configurée de sorte que user soit le nom du bean géré défini dans le fichier

Chapitre 4. Développement d’applications client pour les taches et processus métier 417

fichier de configuration JSF (JavaServer Faces). Si cette entrée est absente du fichier
de configuration, la valeur renvoyée est celle du fuseau horaire dans lequel
WebSphere Process Server est exécuté.

L’interface com.ibm.bpc.clientcore.util.User est définie comme suit :
public interface User {

[**
* Environnement local utilisé par le client de T'utilisateur.
* @return Locale.
*/

public Locale getlocale();

[x*

* Fuseau horaire utilisé par le client de T'utilisateur.

* @return TimeZone.

*/

public TimeZone getTimeZone();

[**
* Nom de 1'utilisateur.
* @return nom de 1'utilisateur.
*/
public String getName();
}

TAaches associées

[Ajout du composant List & une application JSH

Le composant List de Business Process Choreographer Explorer permet d’afficher
une liste d’objets de modele client tel qu'une liste d’instances de processus métier
ou une instance de tache.

Traitement des erreurs dans le composant List

Lorsque vous utilisez le composant List pour afficher des listes dans votre
application JSE, vous pouvez tirer parti des fonctions de traitement d’erreurs
fournies par la classe com.ibm.bpe.jsf.handler.BPCListHandler.

Erreurs se produisant lors de I’exécution de requétes ou de
commandes

Si une erreur se produit lors de I'exécution d"une requéte, la classe BPCListHandler
fait une distinction entre les erreurs dues a des droits d’acces insuffisants et les
autres exceptions. Pour intercepter les erreurs dues a des droits d’acces
insuffisants, le parametre rootCause de 'exception ClientException lancée par la
méthode execute de la requéte doit étre une exception de type
com.ibm.bpe.api.EngineNotAuthorizedException ou
com.ibm.task.api.NotAuthorizedException. Le composant List affiche le message
d’erreur a la place du résultat de la requéte.

Si l'erreur n’est pas provoquée par des droits d’acces insuffisants, la classe
BPCListHandler transmet ’objet exception a la mise en oeuvre d’interface
com.ibm.bpc.clientcore.util. ErrorBean qui est définie par la clé BPCError dans le
fichier de configuration de l’application JSF. Une fois 1’exception définie, la cible de
navigation de l'erreur est appelée.

Erreurs se produisant lors du traitement d’entités affichées dans une
liste

La classe BPCListHandler met en oeuvre l'interface
com.ibm.bpe jsf.handler.ErrorHandler. Vous pouvez fournir des informations sur

418 Développement et déploiement

ces erreurs via le parametre de mappage de type java.util. Map inclus dans la
méthode setErrors. Dans cette mappe, des identifiants sont associés a des clés et
des exceptions sont associées a des valeurs. Les identifiants doivent
obligatoirement étre les valeurs renvoyées par la méthode getID de I'objet ayant
provoqué l'erreur. Si la mappe est définie et qu'un ID correspond a 1'une des
entités de la liste, le gestionnaire de listes ajoute automatiquement a la liste une
colonne contenant le message d’erreur.

Pour éviter que la liste ne contienne des messages d’erreur périmés, réinitialisez la
mappe d’erreurs. La mappe est initialisée automatiquement dans les cas suivants :

* La classe BPCListHandler de la méthode refreshList est appelée.
* Une nouvelle requéte est envoyée a la classe BPCListHandler.

* Le composant CommandBar est utilisé pour déclencher des actions concernant
les entités contenues dans la liste. Le composant CommandBar utilise ce
mécanisme comme méthode de traitement des erreurs.

Taches associées

[Ajout du composant List & une application JSH

Le composant List de Business Process Choreographer Explorer permet d’afficher
une liste d’objets de modele client tel qu'une liste d’instances de processus métier
ou une instance de tache.

Composant List : définitions de balises

Le composant List de Business Process Choreographer Explorer affiche dans un
tableau, une liste d’objets d’application tels que des taches, des activités, des
instances de processus, des modeles de processus, des éléments de travail ou des
escalades.

Le composant List comprend deux balises de composant JSF : bpe:1ist et
bpe:column. La balise bpe:column est un sous-élément de la balise bpe:1ist.

Classe de composants
com.ibm.bpe.jsf.component.ListComponent

Syntaxe exemple

<bpe:Tist model="#{ProcessTemplateList}">
rows="20"
styleClass="1ist"
headerStyleClass="TistHeader"
rowClasses="normal">

<bpe:column name="name" action="processTemplateDetails"/>
<bpe:column name="validFromTime"/>

<bpe:column name="executionMode" Tabel="Execution mode"/>
<bpe:column name="state" converterID="my.state.converter"/>
<bpe:column name="autoDelete"/>

<bpe:column name="description"/>

</bpe:list>
Attributs de balise
Le corps de la balise bpe:1ist ne peut contenir que des balises bpe:column. Quand

la table s’affiche, le composant List effectue une itération sur sa liste d’objets
d’application et affiche toutes les colonnes de chaque objet.

Chapitre 4. Développement d’applications client pour les taches et processus métier 419

Tableau 52. Attributs bpe:list

Attribut Obligatoire Description

buttonStyleClass non Classe de styles CSS pour l'affichage des
boutons dans la zone de pied de page.

cellStyleClass non Classe de styles CSS pour l'affichage de
cellules de tableau.

checkbox non Détermine si la case a cocher de sélection
multiple est affichée. L’attribut possede la
valeur true ou false. Si la valeur est
définie sur true, la colonne de case a
cocher est affichée.

headerStyleClass non Classe de styles CSS pour l'affichage de
I'entéte de tableau.

model oui Liaison de valeur d’un bean géré de la
classe

com.ibm.bpe.jsf. handler.BPCListHandler.

rows non Nombre de lignes affichées par page. Si le
nombre d’éléments est supérieur au
nombre de lignes, des boutons de
pagination s’affichent a la fin du tableau.
Les expressions de valeur ne sont pas
prises en charge pour cet attribut.

rowClasses non Classe de styles CSS pour l'affichage des
lignes du tableau.

selectAll non Si cet attribut est défini a true, tous les
éléments de la liste sont sélectionnés par
défaut.

styleClass non Classe de styles CSS pour 'affichage du

tableau contenant les titres, les lignes et
les boutons de pagination.

Tableau 53. Attributs bpe:column

Attribut Obligatoire Description

action non Si cet attribut est indiqué, un lien s’affiche
dans cette colonne. Quand vous cliquez
sur ce lien, cela provoque le
déclenchement d'une méthode d’action
JavaServer Faces ou de la cible de
navigation Faces. Une méthode d’action
JavaServer Faces posseéde la signature :
String method().

converterID non L’identificateur du convertisseur Faces
utilisé pour convertir la valeur de la
propriété. Si cet attribut n’est pas défini,
lI'identificateur du convertisseur Faces
fourni par le modele pour cette propriété
est utilisé.

label non Expression littérale ou de liaison de
valeur utilisée en tant qu’intitulé de
I'en-téte de la colonne ou de la cellule de
la ligne d’en-téte de table. Si cet attribut
n’est pas défini, l'intitulé fourni par le
modeéle pour cette propriété est utilisé.

420 Développement et déploiement

Tableau 53. Attributs bpe:column (suite)

Attribut Obligatoire Description

name oui Nom de la propriété qui est affichée dans

cette colonne.

TAaches associées

[Ajout du composant List & une application JSF|

Le composant List de Business Process Choreographer Explorer permet d’afficher
une liste d’objets de modele client tel qu'une liste d’instances de processus métier
ou une instance de tache.

Ajout du composant Details a une application JSF

Le composant Details de Business Process Choreographer Explorer permet
d’afficher les propriétés de taches, de taches élémentaires, d'instances de processus
et de modeéles de processus.

Procédure

1.

Ajoutez le composant Details au fichier JavaServer Pages (JSP).

Ajoutez la balise bpe:details a la balise <h:form>. La balise bpe:details doit
contenir un attribut de modele. Vous pouvez ajouter des propriétés au
composant Details a I'aide de la balise bpe:property.

L’exemple suivant illustre 1’ajout d’un composant Details afin d’afficher
quelques-unes des propriétés d’une instance de tache.

<h:form>

<bpe:details model="#{TaskInstanceDetails}">
<bpe:property name="displayName" />
<bpe:property name="owner" />
<bpe:property name="kind" />
<bpe:property name="state" />
<bpe:property name="escalated" />
<bpe:property name="suspended" />
<bpe:property name="originator" />
<bpe:property name="activationTime" />
<bpe:property name="expirationTime" />

</bpe:details>

</h:form>

L’attribut de modele fait référence a un bean géré, TaskInstanceDetails. Le bean
fournit les propriétés de 1'objet Java.

Configurez le bean géré référencé par la balise bpe:details.

Pour le composant Details, ce bean géré doit étre une instance de la classe
com.ibm.bpe.jsf.handler. BPCDetailsHandler. Cette classe de gestionnaire
encapsule un objet Java et expose ses propriétés publiques au composant
Details.

L’exemple suivant illustre 1’ajout d’un bean géré TaskInstanceDetails au fichier
de configuration.

<managed-bean>
<managed-bean-name>TaskInstanceDetails</managed-bean-name>
<managed-bean-class>com.ibm.bpe.jsf.handler.BPCDetailsHandler</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>
<property-name>type</property-name>
<value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>
</managed-property>
</managed-bean>

Chapitre 4. Développement d’applications client pour les tiches et processus métier 421

L’exemple montre que le bean TaskInstanceDetails bean possede une propriété
type configurable. La valeur de la propriété type indique la classe de bean
(com.ibm.task.clientmodel .bean.TaskInstanceBean) dont les propriétés s’affichent
dans les lignes de détail générées. La classe de bean peut correspondre a
n’importe quelle classe JavaBeans. Si le bean fournit des intitulés de conversion
et de propriété par défaut, le convertisseur et I'intitulé sont utilisés pour le
rendu de la méme maniére que le composant List.

Résultats

Votre application JSF contient a présent une page JavaServer affichant les détails de
l'objet spécifié (une instance de tache, par exemple).

Taches associées

Développement d’applications Web pour les processus métier et taches utilisateur a|
I'aide de composants JSF|

Business Process Choreographer offre un certain nombre de composants JavaServer
Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de taches utilisateur a des applications Web.

Référence associée

[Composant Details : définitions de balised

Le composant Details de Business Process Choreographer Explorer permet
d’afficher les propriétés de taches, d’éléments de travail, d’instances de processus
et modeles de processus.

Composant Details : définitions de balises

Le composant Details de Business Process Choreographer Explorer permet
d’afficher les propriétés de taches, d’éléments de travail, d’instances de processus
et modeles de processus.

Le composant Details comprend deux balises de composant JSF : bpe:details et
bpe:property. La balise bpe:property est un sous-élément de la balise bpe:details.

Classe de composants
com.ibm.bpe.jsf.component.DetailsComponent

Syntaxe exemple
<bpe:details model="#{MyActivityDetails}">
<bpe:property name="name"/>
<bpe:property name="owner"/>
<bpe:property name="activated"/>
</bpe:details>
<bpe:details model="#{MyActivityDetails}" style="style" styleClass="cssStyle">
style="style"
styleClass="cssStyle"
</bpe:details>

Attributs de balise

Les balises bpe:property permettent d'indiquer a la fois le sous-ensemble
d’attributs affichés et ’ordre d’affichage de ces attributs. Si la balise détails ne
contient pas de balise d’attribut, elle affiche tous les attributs disponibles de 1'objet
modele.

422 Développement et déploiement

Tableau 54. Attributs bpe:details

Attribut Obligatoire Description

columnClasses non Liste des classes de style CSS séparées par
des virgules et utilisées pour l'affichage de
colonnes.

id non ID du composant JavaServer Faces.

model oui Liaison de valeur d'un bean géré de la
classe
com.ibm.bpe.jsf. handler.BPCDetailsHandler.

rowClasses non Liste des classes de style CSS séparées par
des virgules et utilisées pour l'affichage
des lignes.

styleClass non Classe CSS utilisée pour 1'affichage de
I'élément HTML.

Tableau 55. Attributs bpe:property

Attribut Obligatoire Description

converterID non Identificateur utilisé pour 1'enregistrement
du convertisseur dans le fichier de
configuration JavaServer Faces (JSF).

label non Libellé de la propriété. Si cet attribut n’est
pas défini, un libellé par défaut est fourni
par la classe de modeéle client.

name oui Nom de la propriété a afficher. Ce nom
doit correspondre a une propriété nommée
définie dans la classe de modele client
correspondant.

Taches associées

[Ajout du composant Details & une application JSH

Le composant Details de Business Process Choreographer Explorer permet
d’afficher les propriétés de taches, de taches élémentaires, d'instances de processus
et de modeles de processus.

Ajout du composant CommandBar a une application JSF

Utilisez le composant CommandBar de Business Process Choreographer Explorer
pour permettre 1’affichage d’une barre comportant des boutons de commande. Ces
boutons représentent des commandes opérant dans une vue détails d’un objet ou

des objets

sélectionnés d’une liste.

A propos de cette tache

Quand l'utilisateur clique sur un bouton dans l'interface, la commande
correspondante est exécutée sur les objets sélectionnés. Vous pouvez ajouter et
étendre le composant CommandBar dans votre application JSF (JavaServer Faces).

Procédure

1. Ajoutez le composant CommandBar au fichier JavaServer Pages (JSP).

Ajoutez la balise bpe:commandbar a la balise <h:form>. La balise bpe:commandbar

doit contenir un attribut de modéle.

Chapitre 4. Développement d’applications client pour les tiches et processus métier 423

L’exemple suivant illustre 1'ajout d’un composant CommandBar, ce dernier
fournissant des commandes de régénération et de réclamation pour une liste
d’instances de taches.

<h:form>

<bpe:commandbar model="#{TaskInstancelList}">
<bpe:command commandID="Refresh" >
action="#{TaskInstancelList.refreshList}"
label="Refresh"/>

<bpe:command commandID="MyClaimCommand" >
label="Claim" >
commandClass="<customcode>"/>
</bpe:commandbar>

</h:form>

L’attribut model fait référence a un bean géré. Ce bean doit implémenter
I'interface ItemProvider et fournir les objets Java sélectionnés. Le composant
CommandBar est généralement utilisé soit avec le composant List, soit avec le
composant Details dans le méme fichier JSP. En général, le modele spécifié dans
la balise correspond a celui qui est indiqué dans le composant List ou Details
sur la méme page. Pour un composant List, la commande agit donc sur les
éléments sélectionnés dans la liste.

Dans cet exemple, 'attribut model fait référence au bean géré TaskInstanceList.
Ce bean fournit les objets sélectionnés dans la liste des instances de taches. 11
doit implémenter l'interface ItemProvider. Cette interface est implémentée par
les classes BPCListHandler et BPCDetailsHandler.

2. Facultatif : Configurez le bean géré référencé par la balise bpe:commandbar.

Si I'attribut model de CommandBar fait référence a un bean géré qui est déja
configuré, par exemple dans le cas d’une liste ou d’un gestionnaire de détails,
aucune configuration complémentaire n’est requise. Si vous n’utilisez ni la
classe BPCListHandler, ni la classe BPCDetailsHandler pour le modeéle, vous
devez faire référence a un autre objet comportant une classe qui implémente
I'interface ItemProvider.

3. Ajoutez le code implémentant les commandes personnalisés vers I'application
JSE.

Le fragment de code ci-dessous montre comment écrire une classe de
commandes qui implémente 'interface Command. Cette classe de commandes
(MyClaimCommand) est désignée par la balise bpe:command dans le fichier JSP.

public class MyClaimCommand implements Command {

public String execute(List selectedObjects) throws ClientException {
if(selectedObjects != null && selectedObjects.size() > 0) {
try {
// Déterminer HumanTaskManagerService a partir d'un bean HTMConnection.
// Configurer le bean dans le fichier faces-config.xml pour faciliter
// 1'accés a 1'application JSF.
FacesContext ctx = FacesContext.getCurrentInstance();
ValueBinding vb =
ctx.getApplication().createValueBinding("{htmConnection}");
HTMConnection htmConnection = (HTMConnection) htmVB.getValue(ctx);
HumanTaskManagerService htm =
htmConnection.getHumanTaskManagerService();

Iterator iter = selectedObjects.iterator() ;
while(iter.hasNext()) {
try {
TaskInstanceBean task = (TaskInstanceBean) iter.next() ;
TKIID tiid = task.getID() ;

424 Développement et déploiement

htm.claim(tiid) ;
task.setState(new Integer(TaskInstanceBean.STATE CLAIMED)) ;

}
catch(Exception e) {
H // Erreur Tors de 1'itération ou réclamation d'une instance
de tache.
// Ignorer pour mieux comprendre 1'exemple.
}
}

catch(Exception e) {
s // Erreur de configuration ou de communication.
// Ignorer pour mieux comprendre 1'exemple.

}
}

return null;

}

// Implémentations par défaut

public boolean isMultiSelectEnabled() { return false; }

public boolean[] isApplicable(List itemsOnList) {return null; }
public void setContext(Object targetModel) {; // Non utilisé ici }
1

La commande est traitée ainsi :

a. Une commande est appelée quand un utilisateur clique sur le bouton
correspondant dans la barre de commandes. Le composant CommandBar
extrait les éléments sélectionnés depuis le fournisseur d’éléments indiqué
dans l'attribut model et transmet la liste d’objets sélectionnés a la méthode
execute de l'instance commandClass.

b. Facultatif : L’attribut commandClass fait référence a une implémentation de
commande personnalisée mettant en oeuvre l'interface Command. Cela
signifie que la commande doit implémenter la méthode public String
execute(List selectedObjects) throws ClientException. Elle renvoie le résultat
permettant de déterminer la prochaine reégle de navigation de I'application
JSE.

c. Facultatif : Apres l'exécution de la commande, le composant CommandBar
évalue l'attribut action. L’attribut action peut étre une chaine statique ou
une liaison de méthode vers une méthode d’action ayant la signature public
String Method(). L’attribut action permet de remplacer le résultat d'une
classe de commandes ou d’indiquer explicitement un résultat pour les régles
de navigation. L’attribut action n’est pas traité si la commande génére une
exception autre que ErrorsinCommandException.

d. Siaucune classe de commandes n’est spécifiée pour 1'attribut
commandClass, I'action est immédiatement appelée. Par exemple, pour la
commande refresh utilisée dans 1’exemple, c’est I'expression de valeur JSF
#{TaskInstancelList.refreshList} qui est appelée au lieu d’'une commande.

Résultats

Votre application JSF contient a présent une page JSP implémentant une barre de
commandes personnalisée.

Chapitre 4. Développement d’applications client pour les taches et processus métier 425

Concepts associés

Mode de traitement des commandes|

Utilisez le composant CommandBar pour intégrer des boutons d’action a votre
application. Le composant crée les boutons qui correspondent aux actions dans
I'interface utilisateur et traite les événements générés lors du clic sur un bouton.

TAaches associées

Développement d’applications Web pour les processus métier et taches utilisateur a|
I'aide de composants JSF|

Business Process Choreographer offre un certain nombre de composants JavaServer
Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de taches utilisateur a des applications Web.

Référence associée

IComposant CommandBar : définitions de balises|

Le composant CommandBar de Business Process Choreographer Explorer permet
d’afficher une barre comportant des boutons de commande. Ces boutons agissent
sur l'objet dans une vue détails ou les objets sélectionnés d’une liste.

Mode de traitement des commandes

Utilisez le composant CommandBar pour intégrer des boutons d’action a votre
application. Le composant crée les boutons qui correspondent aux actions dans
I'interface utilisateur et traite les événements générés lors du clic sur un bouton.

Ces boutons déclenchent des fonctions agissant sur les objets renvoyés par une
interface com.ibm.bpe.jsf.handler.ItemProvider tels que la classe BPCListHandler,
ou encore la classe BPCDetailsHandler. Le composant CommandBar utilise le
fournisseur d’éléments défini par la valeur de l'attribut model contenu dans la
balise bpe:commandbar.

Lorsqu’un clic est effectué sur un bouton situé dans la section dédiée a la barre de
commandes dans l'interface utilisateur de 'application, I'événement associé est
traité comme suit par le composant CommandBar.

1. Le composant CommandBar identifie la mise en oeuvre de l'interface
com.ibm.bpc.clientcore.Command spécifiée pour le bouton ayant généré
I'événement.

2. Si le modele associé au composant CommandBar met en oeuvre l'interface
com.ibm.bpe.jsf.handler.ErrorHandler, la méthode clearErrorMap est appelée
pour effacer les messages d’erreur consécutifs aux événements antérieurs.

3. La méthode getSelectedItems de l'interface ItemProvider est appelée. La liste
des entités renvoyées est transmise a la méthode execute de la commande, puis
cette derniere est appelée.

4. Le composant CommandBar détermine la cible de navigation JSF (JavaServer
Faces). Si aucun attribut action n’est spécifié dans la balise bpe:commandbar, la
cible de navigation est spécifiée par la valeur renvoyée de la méthode execute.
Si Iattribut action est défini sur une liaison de méthode JSF, la chaine renvoyée
par la méthode est interprétée comme étant la cible de navigation. L’attribut
action peut également spécifier une cible de navigation explicite.

426 Développement et déploiement

Taches associées

[Ajout du composant CommandBar a une application JSH|

Utilisez le composant CommandBar de Business Process Choreographer Explorer
pour permettre 1’affichage d’une barre comportant des boutons de commande. Ces
boutons représentent des commandes opérant dans une vue détails d’un objet ou
des objets sélectionnés d’une liste.

Composant CommandBar : définitions de balises

Le composant CommandBar de Business Process Choreographer Explorer permet
d’afficher une barre comportant des boutons de commande. Ces boutons agissent
sur 'objet dans une vue détails ou les objets sélectionnés d'une liste.

Le composant CommandBar comprend deux balises de composant JSF :
bpe:commandbar et bpe:command. La balise bpe:command est un sous-élément de la
balise bpe:commandbar.

Classe de composants
com.ibm.bpe.jsf.component. CommandBarComponent

Syntaxe exemple
<bpe:commandbar model="#{TaskInstanceList}">

<bpe:command
commandID="Work on"
label="Work on..."
commandClass="com.ibm.bpc.explorer.command.WorkOnTaskCommand"
context="#{TaskInstanceDetailsBean}"/>

<bpe:command
commandID="Cancel"
label="Cancel"
commandClass="com.ibm.task.cTientmodel.command.CancelClaimTaskCommand"
context="#{TaskInstanceList}"/>

</bpe:commandbar>

Attributs de balise

Tableau 56. Attributs bpe:commandbar

Attribut Obligatoire |Description

buttonStyleClass non Classe de styles CSS pour l'affichage des
boutons de la barre de commandes.

id non ID du composant JavaServer Faces.

model oui Expression de liaison de valeur vers un bean

géré implémentant une interface
ItemProvider. Ce bean géré est généralement
la classe

com.ibm.bpe jsf.handler.BPCListHandler ou la
classe

com.ibm.bpe jsf.handler.BPCDetailsHandler
utilisée par le composant List ou Details dans
le méme fichier JavaServer Pages (JSP) que le
composant CommandBar.

styleClass non Classe de styles CSS pour l'affichage de la
barre de commandes.

Chapitre 4. Développement d’applications client pour les taches et processus métier 427

Tableau 57. Attributs bpe:command

Attribut Obligatoire | Description

action non Méthode d’action JavaServer Faces ou cible
de navigation Faces qui est déclenchée par le
bouton de commande. La cible de navigation
qui est renvoyée par l'action écrase toutes les
autres regles de navigation. L’action est
appelée lorsqu’une exception n’est pas émise
ou lorsqu’une exception
ErrorsinCommandException est émise par la
commande.

commandClass non Le nom de la classe de commande. Une
instance de la classe est créée par le
composant CommandBar, puis elle est
exécutée lorsque le bouton de commande est

sélectionné.
commandID oui ID de la commande.
context non Un objet qui fournit du contexte pour les

commandes qui sont spécifiées a l'aide de
l'attribut commandClass. L’objet de contexte
est extrait lors du premier acces a la barre de
commandes.

immediate non Indique le moment du déclenchement de la
commande. Si la valeur de cet attribut est
définie sur true, la commande est déclenchée
avant le traitement de 'entrée de la page. La
valeur par défaut est false.

label oui Libellé du bouton affiché dans la barre de
commandes.
rendu non Détermine si un bouton a été rendu. La

valeur de l'attribut peut étre une valeur
booléenne ou une expression de valeur.

styleClass non Classe CSS utilisée pour l'affichage du
bouton. Ce style se substitue au style de
bouton défini pour la barre de commandes.

TAaches associées

[Ajout du composant CommandBar a une application JSF|

Utilisez le composant CommandBar de Business Process Choreographer Explorer
pour permettre 1’affichage d’une barre comportant des boutons de commande. Ces
boutons représentent des commandes opérant dans une vue détails d'un objet ou
des objets sélectionnés d’une liste.

Ajout du composant Message a une application JSF

Le composant Message de 1’explorateur du Chorégraphe de processus métier
permet d’afficher des objets de données et des types de primitive dans une
application JavaServer Faces (JSF).

A propos de cette tache

Si le message est de type primitif, un libellé et un champ de saisie sont affichés. Si
le type de message est un objet de données, le composant traverse 1'objet et affiche
les éléments a l'intérieur de l'objet.

428 Développement et déploiement

Procédure

1.

Ajoutez le composant Message au fichier JavaServer Pages (JSP).

Ajoutez la balise bpe:form a la balise <h:form>. La balise bpe:form doit contenir
un attribut model.

L’exemple suivant illustre 1’ajout d’un composant Message.
<h:form>

<h:outputText value="Input Message" />
<bpe:form model="#{MyHandler.inputMessage}" readOnly="true" />

<h:outputText value="Output Message" />
<bpe:form model="#{MyHandler.outputMessage}" />

</h:form>

L’attribut model du composant Message fait référence a un objet
com.ibm.bpc.clientcore.MessageWrapper. Cet objet encapsuleur enveloppe un
objet SDO (Service Data Object) ou une primitive de type Java, par exemple de
type int ou boolean. Dans 1’exemple, le message est fourni par une propriété
du bean géré MyHandler.

Configurez le bean géré référencé par la balise bpe: form.

L’exemple suivant illustre I'ajout d'un bean géré MyHandler au fichier de
configuration.

<managed-bean>

<managed-bean-name>MyHand1ler</managed-bean-name>
<managed-bean-class>com.ibm.bpe.sample.jsf.MyHandler</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

<managed-property>
<property-name>type</property-name>
<value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>
</managed-property>

</managed-bean>

Ajoutez du code personnalisé a 'application JSF.

L’exemple suivant illustre I'implémentation de messages d’entrée et de sortie.
public class MyHandler implements ItemListener {

private TaskInstanceBean taskBean;
private MessageWrapper inputMessage, outputMessage

/* Listener method, e.g. when a task instance was selected in a 1ist handler.
* Ensure that the handler is registered in the faces-config.xml or manually.
*/
public void itemChanged(Object item) {
if(item instanceof TaskInstanceBean) {
taskBean = (TaskInstanceBean) item ;
1

}

/* Get the input message wrapper
*/
public MessageWrapper getInputMessage() {

try{
inputMessage = taskBean.getInputMessageWrapper() ;

catch(Exception e) {
; //...ignore errors for simplicity
}

return inputMessage;

}

Chapitre 4. Développement d’applications client pour les taches et processus métier 429

/* Get the output message wrapper
*
/
public MessageWrapper getOutputMessage() {
Extraction du message du bean. Si aucun message n'existe, créez-en
// un si la tdche a été réclamée par 1'utilisateur. Assurez-vous que
// seuls les propriétaires (potentiels ou non) peuvent manipuler le message
de sortie.
try{
outputMessage = taskBean.getOutputMessageWrapper();
if(outputMessage == null
&& taskBean.getState() == TaskInstanceBean.STATE_CLAIMED) {
HumanTaskManagerService htm = getHumanTaskManagerService();
outputMessage = new MessageWrapperImpl();
outputMessage.setMessage(
htm.createOutputMessage(taskBean.getID()).getObject()
)s

}
}
catch(Exception e) {
; //...ignore errors for simplicity
1

return outputMessage

}
}

Le bean géré MyHandler implémente 'interface

com.ibm jsf.handler.ItemListener pour permettre son enregistrement en tant
qu’écouteur d’éléments du gestionnaires de listes. Quand 1'utilisateur clique sur
un élément dans la liste, le bean MyHandler est informé sur I'élément
sélectionné via la méthode itemChanged(Object item). Le gestionnaire contrdle
le type d’élément, puis stocke une référence a 1’objet TaskInstanceBean associé.
Pour utiliser cette interface, ajoutez une entrée dans la liste itemListener du
gestionnaire de listes approprié, qui se trouve dans le fichier faces-config.xml.

Le bean MyHandler fournit les méthodes getInputMessage et
getOutputMessage. Ces deux méthodes retournent un objet MessageWrapper.
Les méthodes déleguent les appels du bean d’instance de tache référencé. Si
I'instance de tache renvoie la valeur null, par exemple parce qu'un message
n’est pas défini, le gestionnaire crée et stocke un nouveau message vide. Le
composant Message affiche les messages fournis par le bean MyHandler.

Résultats

Votre application JSF contient a présent une page JSP permettant d’afficher des
objets de données et des types primitifs.

430 Développement et déploiement

Taches associées

Développement d’applications Web pour les processus métier et taches utilisateur 2|
|'aide de composants JSF|

Business Process Choreographer offre un certain nombre de composants JavaServer
Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de taches utilisateur a des applications Web.

Référence associée

IComposant Message : définitions de balises|

Le composant Message de Business Process Choreographer Explorer affiche des
objets commonj.sdo.DataObject et des types de primitive, tels que des entiers et des
chaines, dans une application JavaServer Faces (JSF).

Composant Message : définitions de balises

Le composant Message de Business Process Choreographer Explorer affiche des
objets commonj.sdo.DataObject et des types de primitive, tels que des entiers et des
chaines, dans une application JavaServer Faces (JSF).

Le composant Message comprend la balise de composant JSF : bpe:form.
Classe de composants
com.ibm.bpe.jsf.component.MessageComponent

Syntaxe exemple

<bpe:form model="#{TaskInstanceDetailsBean.inputMessageWrapper}"
simplification="true" readOnly="true"
styleClass4table="messageData"
styleClass4output="messageDataQutput">

</bpe:form>

Attributs de balise
Tableau 58. Attributs bpe:form

Attribut Obligatoire Description
id non ID du composant JavaServer Faces.
model oui Expression de liaison de valeur qui fait

référence a un objet
commonj.sdo.DataObject ou a un objet
com.ibm.bpc.clientcore.MessageWrapper.

readOnly non Si cet attribut est réglé sur true, un
formulaire s’affiche en lecture seule. Par
défaut, cet attribut est réglé sur false.

simplification non Si cet attribut est réglé sur true, les
propriétés contenant des types simples et
ayant une cardinalité de 0 ou de 1 sont
affichées. Par défaut, cet attribut est défini
sur true.

styledvalidinput non Style CSS (feuille de styles en cascade)
pour l'affichage de valeur d’entrée valide.

styledinvalidinput non Style CSS pour l'affichage de valeur
d’entrée incorrecte.

styleClass4invalidInput non Nom de classe de style CSS pour
I'affichage de valeur d’entrée incorrecte.

Chapitre 4. Développement d’applications client pour les tiches et processus métier 431

Tableau 58. Attributs bpe:form (suite)

Attribut Obligatoire Description

styleClass4output non Nom de classe de styles CSS pour
l'affichage d’éléments sortants.

styleClass4table non Nom de classe du style de tableau CSS
pour l'affichage des tableaux affichés par
le composant de message.

styleClass4validInput non Nom de classe de style CSS pour
l'affichage de valeur d’entrée correcte.

Taches associées

[Ajout du composant Message a une application JSF|

Le composant Message de 'explorateur du Chorégraphe de processus métier
permet d’afficher des objets de données et des types de primitive dans une
application JavaServer Faces (JSF).

Développement des pages JSP pour les messages de tache et de

processus

Business Process Choreographer Explorer fournit des formulaires d’entrée et de
sortie par défaut pour afficher et saisir les données métier. Vous pouvez utiliser des
pages JSP pour créer des formulaires d’entrée et de sortie définis par l'utilisateur.

A propos de cette tache

Pour inclure des pages JSP (JavaServer Pages) définies par 'utilisateur dans le
client Web, vous devez les indiquer lorsque vous modélisez une tache utilisateur
dans WebSphere Integration Developer. Par exemple, vous pouvez fournir des
pages JSP pour une tache spécifique et pour les messages d’entrée et de sortie
associés, ainsi que pour un role utilisateur spécifique ou pour tous les roles
utilisateur. Lors de I'exécution, les pages JSP définies par l'utilisateur sont incluses
dans l'interface utilisateur pour afficher les données de sortie et collecter les
données d’entrée.

Les formulaires personnalisés ne sont pas des pages Web autonomes ; il s’agit de
fragments de code HTML que Business Process Choreographer Explorer intégre
dans un formulaire HTML (par exemple, les fragments pour tous les libellés et les
zones d’entrée d’un message).

Lorsqu'un utilisateur clique sur un bouton de la page contenant les formulaires
personnalisés, les données d’entrée sont soumises et validées dans Business Process
Choreographer Explorer. La validation dépend du type des propriétés fournies et
des parametres locaux utilisés dans le navigateur. Si les données d’entrée ne
peuvent pas étre validées, la méme page s’affiche de nouveau et les informations
relatives aux erreurs de validation sont fournies dans l'attribut de demande
message ValidationErrors. Les informations sont fournies sous forme d’un plan qui
mappe l'expression XPath (XML Path Expression) des propriétés non valides avec
les exceptions de validation qui ont eu lieu.

Pour ajouter des formulaires personnalisés a Business Process Choreographer
Explorer, exécutez les opérations suivantes a 1'aide de WebSphere Integration

Developer :

Procédure

432 Développement et déploiement

1. Créez les formulaires personnalisés.

Les pages JSP définies par l'utilisateur pour les formulaires d’entrée et de sortie
utilisés dans l'interface Web doivent accéder aux données de messages. Utilisez
les fragments Java d'un JSP ou le langage d’exécution JSP pour accéder aux
données du message. Les données contenues dans les formulaires sont
accessibles via le contexte de requéte.

2. Affectez les pages JSP a une tache.

Ouvrez la tache utilisateur dans I'éditeur de taches utilisateur. Dans les
parametres client, indiquez 1’emplacement des pages JSP définies par
l'utilisateur et le role auquel s’applique le formulaire personnalisé (par
exemple, administrateur). Les parametres client de 1'explorateur du
Chorégraphe de processus métier sont stockés dans le modeéle de tache. Lors de
I'exécution, ces parametres sont extraits avec le modele de tache.

3. Compressez les pages JSP définies par l'utilisateur dans une archive Web
(fichier WAR).

Vous pouvez inclure le fichier WAR dans le fichier EAR (Enterprise Archive)
avec le module contenant les taches ou déployer le fichier WAR séparément. Si
les JSP sont déployés séparément, faites en sorte qu’ils soient disponibles sur le
serveur ou est déployé Business Process Choreographer Explorer ou le client
défini par l'utilisateur.

Si vous utilisez des JSP personnalisés pour les messages de processus et de
tache, vous devez mapper les modules web qui sont utilisés pour déployer les
JSP avec les mémes serveurs que ceux avec lesquels est mappé le client JSF
personnalisé.

Résultats

Les formulaires personnalisés s’affichent dans Business Process Choreographer
Explorer lors de l'exécution.

Concepts associés

[Fragments JSP définis par 'utilisateur]

Les fragments JSP (JavaServer Pages) définis par l'utilisateur sont intégrés a une
balise de formulaire HTML. Lors de 'exécution, Business Process Choreographer
Explorer inclut ces fragments dans la page affichée.

TAaches associées

[Développement d’applications client pour les taches et processus métier|

Vous pouvez utiliser un outil de modélisation pour compiler et déployer des taches
et des processus métier. L’interaction avec ces processus et ces taches se produit
lors de I'exécution. Par exemple, un processus est lancé ou les taches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des taches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.

Fragments JSP définis par I'utilisateur

Les fragments JSP (JavaServer Pages) définis par l'utilisateur sont intégrés a une
balise de formulaire HTML. Lors de I'exécution, Business Process Choreographer
Explorer inclut ces fragments dans la page affichée.

Le fragment JSP défini par l'utilisateur du message d’entrée est intégré avant le
fragment JSP du message de sortie.

Chapitre 4. Développement d’applications client pour les taches et processus métier 433

<html....>
<form...>
Message JSP d'entrée (affichage du message d'entrée de la tdche)
Message JSP de sortie (affichage du message de sortie de la tache)
</form>
</html>

Les fragments JSP définis par l'utilisateur étant intégrés a une balise de formulaire
HTML, vous pouvez ajouter des éléments d’entrée. Le nom de I'élément d’entrée
doit correspondre a I'expression XPath (XML Path Language) de 1'élément de
données. Il est important de faire précéder de la valeur de préfixe fournie le nom
de I'élément d’entrée :
<input id="address"

type="text"

name="${prefix}/selectPromotionalGiftResponse/address"

value="${messageMap['/selectPromotionalGiftResponse/address"]}

size="60"

align="1left" />

La valeur de préfixe est fournie sous forme d’attribut de demande. L’attribut
garantit I'unicité du nom d’entrée dans le formulaire d’inclusion. Le préfixe est
généré par Business Process Choreographer Explorer et ne doit pas étre modifié :

String prefix = (String)request.getAttribute("prefix");

L’élément de préfixe est défini uniquement si le message peut étre modifié dans le
contexte spécifié. Les données de sortie peuvent s’afficher de différentes fagons
selon I'état de la tache utilisateur. Par exemple, si 1’état de la tache est Réclamé, les
données de sortie peuvent étre modifiées. Toutefois, si I’état de la tache est
Terminé, les données peuvent uniquement étre affichées. Dans votre fragment JSP,
vous pouvez vérifier si I'élément de préfixe existe et afficher le message en
conséquence. L'instruction JSTL suivante montre comment vérifier si 1’élément de
préfixe est défini :
<%@ taglib uri="http://java.sun.com/jsp/jst1/core" prefix="c"%>
<c:choose>
<c:when test="§{not empty prefix}">
<!--Read/write mode-->
</c:when>
<c:otherwise>
<!--Read-only mode-->

</c:otherwise>
</c:choose>

434 Développement et déploiement

Taches associées

[Développement des pages JSP pour les messages de tache et de processus|

Business Process Choreographer Explorer fournit des formulaires d’entrée et de
sortie par défaut pour afficher et saisir les données métier. Vous pouvez utiliser des
pages JSP pour créer des formulaires d’entrée et de sortie définis par l'utilisateur.

Création de modules d’extension pour personnaliser les
fonctionnalités des taches utilisateur

Business Process Choreographer fournit une infrastructure permettant le traitement
des événements qui surviennent lors du traitement des taches utilisateur.
L’application des modules d’extension est également congue pour vous permettre
d’adapter les fonctionnalités a vos besoins. Vous pouvez utiliser les interfaces de
fournisseur de services SPI (Service Provider Interfaces) afin de créer des modules
d’extension personnalisés pour la gestion des événements et le post-traitement des
requétes de personnel.

A propos de cette tache

Vous pouvez créer des modules d’extension pour des événements liés a des API de
tache utilisateur et a des notifications d’escalade. Vous pouvez également créer un
plug-in qui traite les résultats renvoyés par la résolution des utilisateurs. Vous
pouvez par exemple, lors de pics périodes, ajouter des utilisateurs a la liste de
résultats afin de rééquilibrer la charge de travail.

avant de pouvoir utiliser le module d’extension, vous devez les installer et les
enregistrer. Vous pouvez enregistrer le module d’extension pour permettre le
post-traitement des résultats des requétes de personnel avec 1'application
TaskContainer. Dans ce cas, le module d’extension est disponible pour toutes les
taches.

Chapitre 4. Développement d’applications client pour les taches et processus métier 435

Taches associées

[Développement d’applications client pour les taches et processus métier]

Vous pouvez utiliser un outil de modélisation pour compiler et déployer des taches
et des processus métier. L'interaction avec ces processus et ces taches se produit
lors de I'exécution. Par exemple, un processus est lancé ou les taches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des taches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.

(Création de gestionnaires d’événements d’AP]|

Un événement d’API se produit lorsqu'une méthode d’API manipule une tache
utilisateur. Utilisez I'interface SPI du plug-in de gestionnaire d’événements d”API
pour créer des plug-in permettant de gérer les événements de tache envoyés par
I’API ou par les événements internes ayant des événements API équivalents.

(Création de gestionnaire d’événements de notification]

Les événements de notification surviennent lors de l'escalade de taches utilisateur.
Business Process Choreographer fournit des fonctionnalités permettant la gestion
des escalades, telles que la création d’éléments de travail d’escalade ou I'envoi de
messages électroniques. Vous pouvez créer des gestionnaires d’événements de
notification pour personnaliser le mode de traitement des escalades.

[nstallation des modules d’extension du gestionnaire d’événements d’API et dul
estionnaire d’événements de notification|

Pour pouvoir utiliser un module d’extension de gestionnaire d’événements d”API

ou de notification, vous devez l'installer de sorte qu’il soit accessible au conteneur

de taches.

Enregistrement des modules d’extension du gestionnaire d’événements d’API et dul

estionnaire d’événements de notification avec des modeéles de tiche et des taches|
Vous pouvez enregistrer les modules d’extension pour les gestionnaires
d’événements d’API et les gestionnaires d’événements de notification avec des
taches et des modeles de tache a différentes occasions : lors de la création d’une
tache ad-hoc, de la mise a jour d’une tache existante, de la création d’un modele de
tache ou de la définition d’un modele de tache.

Création, installation et exécution de plug-ins en vue du post-traitement des|
résultats des requétes sur les utilisateurs|

La résolution d’utilisateurs renvoie une liste des utilisateurs auxquels un role
spécifique est affecté, par exemple, le propriétaire potentiel d’une tache. Vous
pouvez créer un plug-in pour modifier les résultats des requétes d’utilisateurs
renvoyés par la résolution des utilisateurs. Par exemple, pour améliorer
I'équilibrage de charge, vous pourriez avoir un plug-in qui supprime les
utilisateurs du résultat de la requéte s’ils ont déja une charge de travail élevée.

Création de gestionnaires d’événements d’API
Un événement d’API se produit lorsqu'une méthode d’API manipule une tiache
utilisateur. Utilisez l'interface SPI du plug-in de gestionnaire d’événements d’API
pour créer des plug-in permettant de gérer les événements de tache envoyés par
I’API ou par les événements internes ayant des événements API équivalents.
A propos de cette tache

Exécutez les étapes suivantes pour créer un gestionnaire d’événements d”API

Procédure

436 Développement et déploiement

1. Rédigez une classe qui implémente l'interface APIEventHandlerPlugin3 ou
étend la classe d’implémentation APIEventHandler. Cette classe peut appeler
les méthodes d’autres classes.

* Si vous utilisez 'interface APIEventHandlerPlugin3, vous devez implémenter
toutes les méthodes de l'interface APIEventHandlerPlugin3 et de l'interface
APIEventHandlerPlugin.

* Si vous étendez la classe d’'implémentation APIEventHandler, remplacez les
méthodes selon vos besoins.

Cette classe s’exécute dans le contexte d’une application d’entreprise EJB J2EE
(Enterprise Java 2 Enterprise Edition). Assurez-vous que cette classe et ses
classes auxiliaires suivent la spécification EJB.

Remarque: Pour appeler l'interface HumanTaskManagerService a partir de
cette classe, n’appelez pas de méthode qui mette a jour la tache ayant produit
I'événement. Cette action peut entrainer une incohérence des données de tache
dans la base de données.

2. Assemblez la classe du plug-in et ses classes auxiliaires dans un fichier JAR.

Pour rendre le fichier JAR disponible, vous pouvez procéder de 1'une des
manieres suivantes :

* En tant que fichier JAR d’utilitaire dans le fichier EAR de I'application.

* En tant que bibliotheque partagée installée avec le fichier EAR de
I'application.

* En tant que bibliotheque partagée installée avec 'application TaskContainer.
Dans ce cas, le module d’extension est disponible pour toutes les taches.

3. Créez un fichier de configuration de fournisseur de services pour le plug-in
dans le répertoire META-INF/services/ du fichier JAR.

Le fichier de configuration fournit le mécanisme permettant d’identifier et de
charger le plug-in. Ce fichier est conforme a la spécification de 'interface du
fournisseur de services Java 2.

a. Créez un fichier portant le nomcom.ibm.task.spi.nom_module
extensionAPIEventHandlerPlugin, ou nom_module extension est le nom du
plug-in.

Par exemple, si votre plug-in s’appelle Customer et qu’il implémente
I'interface com.ibm.task.spi.APIEventHandlerPlugin3, le nom du fichier de
configuration estcom.ibm.task.spi.CustomerAPIEventHandlerPlugin.

b. La premiere ligne de ce fichier, qui ne doit étre ni une ligne de commentaire
(c’est-a-dire commengant par le signe #) ni une ligne vide, doit spécifier le
nom qualifié complet de la classe de module d’extension créée a 1'étape 1.
Par exemple, si la classe de votre plug-in est MyAPIEventHandler et se trouve
dans le module com.customer.plugins, la premiere ligne du fichier de
configuration doit contenir 1'entrée suivante :
com.customer.plugins.MyAPIEventHandler.

Résultats

Vous avez un fichier JAR installable qui contient un plug-in gérant les événements
d’API et un fichier de configuration du fournisseur de services pouvant étre utilisé
pour charger le plug-in.

Remarques : Vous ne disposez que d’une propriété eventHandlerName pour

enregistrer a la fois les gestionnaires d’événements d’API et les gestionnaires
d’événements de notification. Pour utiliser a la fois un gestionnaire d’événement

Chapitre 4. Développement d’applications client pour les taches et processus métier ~ 437

d’API If et un gestionnaire d’événement de notification, il est nécessaire que les
implémentations des plug-ins portent le méme nom (Customer comme nom de
gestionnaire d’événement pour I'implémentation de SPI, par exemple).

Vous pouvez implémenter les deux plug-ins a I'aide d’une seule classe ou de
classes distinctes. Dans les deux cas, vous devez créer deux fichiers dans le
répertoire META-INF/services/ de votre fichier JAR (par exemple,
com.ibm.task.spi.CustomerNotificationEventHandlerPlugin et
com.ibm.task.spi.CustomerAPIEventHandlerPlugin).

Regroupez I'implémentation du plug-in et les classes auxiliaires dans un seul
fichier JAR.

Pour rendre effective une modification de I'implémentation, remplacez le fichier
JAR contenu dans la bibliotheque partagée, déployez a nouveau le fichier EAR
associé et redémarrez le serveur.

Que faire ensuite

Vous devez maintenant installer et enregistrer le module d’extension afin de le
rendre disponible pour le conteneur de taches utilisateur lors de I'exécution. Vous
pouvez enregistrer des gestionnaires d’événements liés a I’API avec une instance
de tache, un modele de tiche ou un composant d’application.

Concepts associés

(Gestionnaires d’événements d’AP]|

Les événements d’API surviennent lorsqu'une tache utilisateur est modifiée ou
change d’état. Pour permettre le traitement de ces événements d’AP], le
gestionnaire d’événements est appelé directement avant la modification de la tache
(méthode pré-événement) et juste apres le renvoi de 'appel API (méthode
post-événement).

Taches associées

Création de modules d’extension pour personnaliser les fonctionnalités des taches|
utilisateur]|

Business Process Choreographer fournit une infrastructure permettant le traitement
des événements qui surviennent lors du traitement des taches utilisateur.
L’application des modules d’extension est également congue pour vous permettre
d’adapter les fonctionnalités a vos besoins. Vous pouvez utiliser les interfaces de
fournisseur de services SPI (Service Provider Interfaces) afin de créer des modules
d’extension personnalisés pour la gestion des événements et le post-traitement des
requétes de personnel.

Gestionnaires d’événements d’API

Les événements d’API surviennent lorsqu’une tache utilisateur est modifiée ou
change d’état. Pour permettre le traitement de ces événements d’AP], le
gestionnaire d’événements est appelé directement avant la modification de la tache
(méthode pré-événement) et juste apres le renvoi de 'appel API (méthode
post-événement).

Si la méthode pré-événement géneére une exception ApplicationVetoException,
l'action de I’API n’est pas exécutée, 'exception est renvoyée a 'appelant de ’API
et la transaction associée a I'événement est annulée. Si la méthode pré-événement a
été déclenchée par un événement interne et qu'une exception
ApplicationVetoException est générée, I'événement interne (par exemple une
réclamation automatique) n’est pas exécuté mais une exception est renvoyée a
l'application client. Dans ce cas, un message d’information est enregistré dans le

438 Développement et déploiement

fichier SystemOut.log. Si la méthode d’API génere une exception au cours du
traitement, celle-ci est interceptée et transmise a la méthode post-événement.
L’exception est de nouveau transmise a I'appelant lorsque la méthode
post-événement est renvoyée.

Les régles suivantes s’appliquent aux méthodes pré-événement :

* Les méthodes pré-événement recoivent les parametres de la méthode d’API ou
de I'événement interne associé(e).

¢ Les méthodes pré-événement peuvent générer une exception
ApplicationVetoException pour empécher la poursuite du traitement.

Les regles suivantes s’appliquent aux méthodes post-événement :

* Les méthodes post-événement regoivent les parametres fournis a I'appel d’AP],
puis renvoient les valeurs. Si une exception est émise par 1'implémentation d'une
méthode d’API, la méthode post-événement regoit également 1'exception.

¢ Les méthodes post-événement ne modifient pas les valeurs renvoyées.

* Les méthodes post-événement ne peuvent pas générer d’exceptions. Les
exceptions d’exécution sont consignées, mais ignorées.

Pour implémenter les gestionnaires d’événements d’API, vous pouvez au choix
faire appel a l'interface APIEventHandlerPlugin3, qui étend l'interface
APIEventHandlerPlugin, ou bien étendre la classe d’implémentation SPI par défaut
com.ibm.task.spi.APIEventHandler. Si votre gestionnaire d’événements hérite de la
classe d’'implémentation par défaut, il implémente toujours la version la plus
récente de l'interface SPIL. Si vous effectuez une mise a niveau vers une version
plus récente de Business Process Choreographer, quelques modifications doivent
étre apportées si vous souhaitez utiliser de nouvelles méthodes d’interface SPI.

Si un gestionnaire d’événements de notification et un gestionnaire d’événements
d’API sont présents simultanément, ils doivent tous deux porter le méme nom, car
il n’est possible de nommer qu’un seul gestionnaire.

TAaches associées

[Création de gestionnaires d’événements d’AP]]

Un événement d’API se produit lorsqu'une méthode d’API manipule une tache
utilisateur. Utilisez l'interface SPI du plug-in de gestionnaire d’événements d”API
pour créer des plug-in permettant de gérer les événements de tache envoyés par
I’API ou par les événements internes ayant des événements API équivalents.

Création de gestionnaire d’événements de notification

Les événements de notification surviennent lors de I'escalade de taches utilisateur.
Business Process Choreographer fournit des fonctionnalités permettant la gestion
des escalades, telles que la création d’éléments de travail d’escalade ou I'envoi de
messages électroniques. Vous pouvez créer des gestionnaires d’événements de
notification pour personnaliser le mode de traitement des escalades.

A propos de cette tache
Pour implémenter les gestionnaires d’événements de notification, vous pouvez soit
faire appel a l'interface NotificationEventHandlerPlugin, soit dériver la classe

d’implémentation SPI par défaut com.ibm.task.spi.NotificationEventHandler.

Suivez la procédure ci-apres pour créer un gestionnaire d’événements de
notification.

Chapitre 4. Développement d’applications client pour les taches et processus métier 439

Procédure

1. Générez une classe qui implémente l'interface NotificationEventHandlerPlugin
ou étend la classe d’implémentation NotificationEventHandler. Cette classe
permet d’appeler les méthodes des autres classes.

Si vous utilisez I'interface NotificationEventHandlerPlugin, vous devez
implémenter toutes les méthodes de cette interface. Si vous étendez la classe
d’implémentation SPI, remplacez les méthodes selon vos besoins.

Cette classe s’exécute dans le contexte d’une application d’entreprise EJB J2EE
(Enterprise Java 2 Enterprise Edition). Assurez-vous que cette classe et ses
classes auxiliaires suivent les la spécification EJB.

Le module d’extension est appelé avec les droits d’acces associés au role
EscalationUser. Ce role est défini lorsque le conteneur des taches utilisateur est
configuré.

Remarque : Pour appeler l'interface HumanTaskManagerService a partir de
cette classe, n’appelez pas de méthode qui mette a jour la tache ayant produit
I'événement. Cette action peut entrainer une incohérence des données de tache
dans la base de données.

2. Assemblez la classe du plug-in et ses classes auxiliaires dans un fichier JAR.

Pour rendre le fichier JAR disponible, vous pouvez procéder de 1'une des
manieres suivantes :

* En tant que fichier JAR d’utilitaire dans le fichier EAR de l'application.

* En tant que bibliotheque partagée installée avec le fichier EAR de
l'application.

* En tant que bibliotheque partagée installée avec 'application TaskContainer.
Dans ce cas, le module d’extension est disponible pour toutes les taches.

3. Assemblez la classe du module d’extension et ses classes auxiliaires dans un
fichier JAR.

Si les classes auxiliaires sont utilisées par plusieurs applications J2EE, vous
pouvez les regrouper dans un fichier JAR distinct que vous enregistrez sous
forme de bibliotheque partagée.

4. Créez un fichier de configuration de fournisseur de services pour le module
d’extension dans le répertoire META-INF/services/ de votre fichier JAR.

Le fichier de configuration fournit le mécanisme d’identification et de
chargement du module d’extension. Ce fichier est conforme a la spécification
de l'interface du fournisseur de services Java 2.

a. Créez un fichier nommé
com.ibm.task.spi.nom_module extensionNotificationEventHandlerPlugin,
ou nom_module_extension est le nom du module d’extension.

Si, par exemple, votre module d’extension est nommé HelpDeskRequest
(nom du gestionnaire d’événements) et qu’il implémente I'interface
com.ibm.task.spi.NotificationEventHandlerPlugin, le fichier de configuration
porte le nom
com.ibm.task.spi.HelpDeskRequestNotificationEventHandTerPlugin.

b. La premiére ligne de ce fichier, qui ne doit étre ni une ligne de commentaire
(c’est-a-dire commengant par le signe #) ni une ligne vide, doit spécifier le
nom qualifié complet de la classe de module d’extension créée a l'étape 1.
Si par exemple la classe de module d’extension porte le nom
MyEventHandler et est incluse dans le package com.customer.plugins, la
premiere ligne du fichier de configuration doit contenir 'entrée suivante :
com.customer.plugins.MyEventHandTer.

440 Développement et déploiement

Résultats

Vous disposez d'un fichier JAR installable contenant un module d’extension qui
gere les événements de notification et d'un fichier de configuration de fournisseur
de services pouvant servir a charger le module d’extension. Vous pouvez
enregistrer des gestionnaires d’événements liés a ’API avec une instance de tache,
un modele de tiche ou un composant d’application.

Remarques : Vous ne disposez que d'une propriété eventHandlerName pour
enregistrer a la fois les gestionnaires d’événements d’API et les gestionnaires
d’événements de notification. Pour utiliser a la fois un gestionnaire d’événement
d’API If et un gestionnaire d’événement de notification, il est nécessaire que les
implémentations des plug-ins portent le méme nom (Customer comme nom de
gestionnaire d’événement pour I'implémentation de SPI, par exemple).

Vous pouvez implémenter les deux plug-ins a I'aide d’une seule classe ou de
classes distinctes. Dans les deux cas, vous devez créer deux fichiers dans le
répertoire META-INF/services/ de votre fichier JAR (par exemple,
com.ibm.task.spi.CustomerNotificationEventHandlerPlugin et
com.ibm.task.spi.CustomerAPIEventHandlerPlugin).

Regroupez l'implémentation du plug-in et les classes auxiliaires dans un seul
fichier JAR.

Pour rendre effective une modification de 'implémentation, remplacez le fichier
JAR contenu dans la bibliotheque partagée, déployez a nouveau le fichier EAR
associé et redémarrez le serveur.

Que faire ensuite

Vous devez maintenant installer et enregistrer le module d’extension afin de le
rendre disponible pour le conteneur de taches utilisateur lors de I'exécution. Vous
pouvez enregistrer des gestionnaires d’événements de notification avec une
instance de tache, un modele de tache ou un composant d’application.

TAaches associées

Création de modules d’extension pour personnaliser les fonctionnalités des taches|
utilisateur]

Business Process Choreographer fournit une infrastructure permettant le traitement
des événements qui surviennent lors du traitement des taches utilisateur.
L’application des modules d’extension est également congue pour vous permettre
d’adapter les fonctionnalités a vos besoins. Vous pouvez utiliser les interfaces de
fournisseur de services SPI (Service Provider Interfaces) afin de créer des modules
d’extension personnalisés pour la gestion des événements et le post-traitement des
requétes de personnel.

Installation des modules d’extension du gestionnaire
d’événements d’API et du gestionnaire d’événements de
notification

Pour pouvoir utiliser un module d’extension de gestionnaire d’événements d”API
ou de notification, vous devez l'installer de sorte qu’il soit accessible au conteneur
de taches.

Chapitre 4. Développement d’applications client pour les tiches et processus métier 441

A propos de cette tache

La facon dont vous installez le plug-in dépend de si le plug-in doit étre utilisé par
une seule application J2EE (Java 2 Enterprise Edition) ou par plusieurs
applications.

Procédez de 1'une des manieres suivantes pour installer un module d’extension.

¢ Installez un module d’extension pour qu’il soit utilisé par une seule application
J2EE.

Ajoutez le fichier JAR du module d’extension au fichier JAR de l’application.
Dans I’éditeur du descripteur de déploiement de WebSphere Integration
Developer, installez le fichier JAR de votre plug-in en tant que fichier JAR
d’utilitaire de projet pour I'application J2EE du module EJB d’entreprise
(enterprise JavaBeans) principal.

* Installez un module d’extension pour qu’il soit utilisé par plusieurs applications
J2EE.

Placez le fichier JAR dans une bibliotheque partagée de WebSphere Application
Server et associez la bibliotheque aux applications devant accéder au plug-in.
Pour rendre le fichier JAR accessible dans un environnement de déploiement
réseau, distribuez manuellement le fichier JAR sur chaque noeud hébergeant un
serveur ou un membre de cluster sur lequel I'une de vos applications est
déployée. Vous pouvez utiliser la portée de la cible de déploiement de vos
applications, c’est-a-dire le serveur ou le cluster sur lequel les applications sont
déployées, ou bien la portée de cellule. Souvenez-vous que les classes des
modules d’extension sont alors visibles dans toute la portée de déploiement
sélectionnée.

Que faire ensuite

Vous pouvez, maintenant, enregistrer le module d’extension.
Taches associées

Création de modules d’extension pour personnaliser les fonctionnalités des taches|
utilisateur]

Business Process Choreographer fournit une infrastructure permettant le traitement
des événements qui surviennent lors du traitement des taches utilisateur.
L’application des modules d’extension est également congue pour vous permettre
d’adapter les fonctionnalités a vos besoins. Vous pouvez utiliser les interfaces de
fournisseur de services SPI (Service Provider Interfaces) afin de créer des modules
d’extension personnalisés pour la gestion des événements et le post-traitement des
requétes de personnel.

Enregistrement des modules d’extension du gestionnaire
d’événements d’API et du gestionnaire d’événements de
notification avec des modeles de tache et des taches

Vous pouvez enregistrer les modules d’extension pour les gestionnaires
d’événements d’API et les gestionnaires d’événements de notification avec des
taches et des modeles de tache a différentes occasions : lors de la création d’une
tache ad-hoc, de la mise a jour d’une tache existante, de la création d’un modele de
tdche ou de la définition d’un modele de tache.

442 Développement et déploiement

A propos de cette tache

Vous pouvez enregistrer des modules d’extension pour les gestionnaires
d’événements d’API et les gestionnaires d’événements de notification avec des
taches a différents niveaux :

Modele de tache
Toutes les taches créées a I’aide du modele utilisent les mémes
gestionnaires

Modele de tache ad-hoc
Les taches créées a 'aide du modele utilisent les mémes gestionnaires

Tache ad-hoc
La tache créée utilise les gestionnaires spécifiés

Tache existante
La tache utilise les gestionnaires spécifiés

Vous pouvez enregistrer un module d’extension en suivant 'une des procédures

suivantes.

* Pour les modeles de taches modélisés dans WebSphere Integration Developer,
spécifiez le module d’extension dans le modele de tache.

* Pour les taches ad-hoc ou modeéles de taches ad-hoc, spécifiez le module
d’extension au moment de la création du tache ou du modele de tache.

Utilisez la méthode setEventHandlerName de la classe TTask pour enregistrer le
nom du gestionnaire d’événements.

* Modifiez le gestionnaire d’événements pour une instance de tache lors de
I'exécution.

La méthode update(Task task) vous permet dutiliser un autre gestionnaire
d’événements pour une instance de tache lors de 1’exécution. L’appelant doit
disposer de droit d’acces administrateur pour mettre a jour cette propriété.

TAaches associées

Création de modules d’extension pour personnaliser les fonctionnalités des taches|
utilisateur|

Business Process Choreographer fournit une infrastructure permettant le traitement
des événements qui surviennent lors du traitement des taches utilisateur.
L’application des modules d’extension est également congue pour vous permettre
d’adapter les fonctionnalités a vos besoins. Vous pouvez utiliser les interfaces de
fournisseur de services SPI (Service Provider Interfaces) afin de créer des modules
d’extension personnalisés pour la gestion des événements et le post-traitement des
requétes de personnel.

Création, installation et exécution de plug-ins en vue du
post-traitement des résultats des requétes sur les utilisateurs

La résolution d’utilisateurs renvoie une liste des utilisateurs auxquels un role
spécifique est affecté, par exemple, le propriétaire potentiel d’une tache. Vous
pouvez créer un plug-in pour modifier les résultats des requétes d’utilisateurs
renvoyés par la résolution des utilisateurs. Par exemple, pour améliorer
I'équilibrage de charge, vous pourriez avoir un plug-in qui supprime les
utilisateurs du résultat de la requéte s’ils ont déja une charge de travail élevée.

Chapitre 4. Développement d’applications client pour les tiches et processus métier 443

A propos de cette tache

Vous ne pouvez avoir qu'un seul plug-in de post-traitement : autrement dit, le
plug-in doit gérer les résultats des requétes sur les utilisateurs provenant de toutes
les taches. Votre plug-in peut ajouter ou supprimer des utilisateurs, ou modifier les
informations d’utilisateur ou de groupe. Il peut également modifier le type de
résultat, par exemple, provenant d’une liste d’utilisateurs a un groupe, ou a tout le
monde.

Du fait que l'exécution des plug-in n’a lieu qu’apres la résolution des utilisateurs,
toutes les regles de confidentialité ou de sécurité éventuellement définies ont déja
été appliquées. Le plug-in recoit des informations sur les utilisateurs qui ont été
supprimés pendant la résolution des utilisateurs (dans la clé de mappe
HTM_REMOVED_USERS). Vous devez vous assurer que le plug-in utilise ces
informations de contexte pour préserver les régles de confidentialité ou de sécurité
dont vous disposez éventuellement.

Pour implémenter le post-traitement des résultats de requéte d’utilisateur, vous
utilisez l'interface StaffQueryResultPostProcessorPlugin. L’interface contient des
méthodes permettant de modifier les résultats de requéte pour les taches, les
escalades, les modéles de tache et les composants d’application.

Exécutez les étapes suivantes pour créer un plug-in permettant le post-traitement
des résultats d'une requéte d’utilisateur.

Procédure

1. Ecrivez une classe implémentant 'interface
StaffQueryResultPostProcessorPlugin.

Cette classe s’exécute dans le contexte d’une application d’entreprise EJB J2EE
(Enterprise Java 2 Enterprise Edition). Cette classe peut appeler les méthodes
d’autres classes. Assurez-vous que cette classe et ses classes auxiliaires suivent
les la spécification EJB.

Remarque: Pour appeler l'interface HumanTaskManagerService a partir de
cette classe, n’appelez pas de méthode qui mette a jour la tache ayant produit
I'événement. Cette action peut entrainer une incohérence des données de tache
dans la base de données.

Vous devez implémenter toutes les méthodes dans l'interface. Ces méthodes
incluent des informations relatives aux criteres d’affectation d’utilisateurs au
modele de tache, a la tiche ou au role d’escalade en question.

* La définition des critéres d’affectation d’utilisateurs est spécifiée sous forme
d’entrée dans le parametre context du type Map. Pour accéder a ces
informations, procédez comme suit :

Map pacAsMap = (Map) context.get("HTM_VERB");

// extrait Te nom des critéres d'affectation d'utilisateurs
String pacName = (String) pacAsMap.get("HTM_VERB_NAME");

// extrait lTes noms de paramétre des critéres d'affectation d'utilisateurs
Set paramNames = pacAsMap.keySet();

// extrait la valeur d'un paramétre spécifique
String paramValue = (String) pacAsMap.get(paramName);

444 Développement et déploiement

* Les variables de substitution spécifiées en tant que valeurs pour le
parameétre des criteres d’affectation d’utilisateurs sont des entrées du
parametre context du type Map. Pour accéder a ces informations, procédez
comme suit :

Object replVarObj = pacAsMap.get(replVarName);
if (replVarObj instanceof String)
String replVarValue = (String) replVarObj;
if (replVarObj instanceof String[])
String[] replVarValues = (String[]) replVarObj;

* L’objet StaffQueryResult est créé en accédant a un annuaire de personnes au
cours de la résolution des utilisateurs, par exemple en accédant a ’annuaire
de personnes de Virtual Member Manager.

L’objet StaffQueryResult contient des informations sur les entrées
d’utilisateur extraites lors de la résolution des utilisateurs. Pour plus
d’informations, consultez les informations de référence Javadoc concernant
lI'interface StaffQueryResultPostProcessorPlugin.

* La liste des utilisateurs explicitement exclus lors de la résolution des
utilisateurs est stockée en tant qu’entrée du parametre context du type Map.
Pour accéder a ces informations, procédez comme suit :

String[] removedUserIDs = (String[]) context.get("HTM_REMOVED_USERS");

L’exemple suivant indique comment modifier le role d’éditeur d'une tache
appelée SpecialTask.
public StaffQueryResult processStaffQueryResult
(StaffQueryResult originalStaffQueryResult,
Task task,
int role,
Map context)

StaffQueryResult newStaffQueryResult = originalStaffQueryResult;
StaffQueryResultFactory staffResultFactory =
StaffQueryResultFactory.newInstance();
if (role == com.ibm.task.api.WorkItem.REASON_EDITOR &&
task.getName() != null &&
task.getName().equals("SpecialTask"))

UserData user = staffResultFactory.newUserData
("SuperEditor",
new Locale("en-US"),
"SuperEditor@company.com");
ArraylList userList = new ArraylList();
userList.add(user);

newStaffQueryResult = staffResultFactory.newStaffQueryResult(userList);
1
return(newStaffQueryResult);

}
Assemblez la classe du plug-in et ses classes auxiliaires dans un fichier JAR.

Vous pouvez rentre le fichier JAR disponible dans une bibliotheque partagée et
I’associer avec le conteneur de taches. Dans ce cas, le module d’extension
devient disponible pour toutes les taches.

Créez un fichier de configuration de fournisseur de services pour le plug-in
dans le répertoire META-INF/services/ du fichier JAR.

Le fichier de configuration fournit le mécanisme permettant d’identifier et de
charger le plug-in. Ce fichier est conforme a la spécification de l'interface du
fournisseur de services Java 2.

a. Créez un fichier portant le nom com.ibm.task.spi.nom_plug-
inStaffQueryResultPostProcessorPlugin, ou nom_plug-in correspond au
nom du plug-in.

Chapitre 4. Développement d’applications client pour les taches et processus métier 445

Par exemple, si votre plug-in s’appelle MyHandler et qu’il implémente
I'interface com.ibm.task.spi.StaffQueryResultPostProcessorPlugin, le nom du
fichier de configuration sera
com.ibm.task.spi.MyHandlerStaffQueryResultPostProcessorPlugin.

b. La premiére ligne de ce fichier, qui ne doit étre ni une ligne de commentaire
(c’est-a-dire commengant par le signe #) ni une ligne vide, doit spécifier le
nom qualifié complet de la classe de module d’extension créée a 1'étape 1.
Par exemple, si la classe de votre plug-in est StaffPostProcessor et se
trouve dans le module com.customer.plugins, la premiére ligne du fichier
de configuration doit contenir 1'entrée suivante :
com.customer.plugins.StaffPostProcessor. Vous avez un fichier JAR
installable qui contient un plug-in assurant le post-traitement des résultats
de requéte d’utilisateur et un fichier de configuration du fournisseur de
services pouvant étre utilisé pour charger le plug-in.

4. Installez le module d’extension.

Vous ne pouvez avoir qu'un seul plug-in de post-traitement pour les résultats
de requéte d’utilisateur. Vous devez installer le plug-in en tant que bibliotheque
partagée.

a. Définissez une bibliotheque partagée de WebSphere Application Server pour
le module d’extension. Définissez la bibliotheque partagée dans la portée du
serveur ou cluster sur lequel Business Process Choreographer est configuré.
Ensuite, associez cette bibliotheque partagée a 1'application TaskContainer.
Cette étape ne doit étre effectuée qu'une seule fois.

b. Rendez le fichier JAR de plug-in disponible pour chaque installation de
WebSphere Process Server affectée qui héberge un serveur ou un membre
de cluster.

5. Enregistrez le plug-in.

a. Dans la console d’administration, accédez a la page Propriétés
personnalisées de Human Task Manager.

Cliquez sur Serveurs > Serveurs d’applications » nom_serveur dans un
environnement autonome, sur sur Serveurs > Clusters » nom_cluster si
Business Process Choreographer est configuré dans un cluster. Sous
Intégration métier, sélectionnez Human Task Manager. Dans Propriétés
supplémentaires, cliquez sur Propriétés personnalisées.

b. Ajoutez une propriété personnalisée nommée Staff.PostProcessorPlugin et
ainsi que la valeur du nom que vous avez donné a votre plug-in (MyHandler
dans cet exemple).

Le module d’extension est désormais disponible pour effectuer le
post-traitement des résultats de requéte du personnel. Si vous modifier le
fichier JAR, remplacez le fichier dans la bibliothéque partagée, puis redémarrez
le serveur.

6. Exécutez le plug-in. Le plug-in de post-traitement est appelé une fois que les
opérations d’affectation et de substitution des utilisateurs sont terminées. Le
plug-in est appelé en utilisant les informations spécifiées par l'interface
StaffQueryResultPostProcessorPlugin.

446 Développement et déploiement

Taches associées

Création de modules d’extension pour personnaliser les fonctionnalités des taches|
utilisateur]|

Business Process Choreographer fournit une infrastructure permettant le traitement
des événements qui surviennent lors du traitement des taches utilisateur.
L’application des modules d’extension est également congue pour vous permettre
d’adapter les fonctionnalités a vos besoins. Vous pouvez utiliser les interfaces de
fournisseur de services SPI (Service Provider Interfaces) afin de créer des modules
d’extension personnalisés pour la gestion des événements et le post-traitement des
requétes de personnel.

Chapitre 4. Développement d’applications client pour les taches et processus métier 447

448 Développement et déploiement

Partie 2. Déploiement des applications

© Copyright IBM Corp. 2005, 2009 449

450 Développement et déploiement

Chapitre 5. Présentation de la préparation et de I'installation
de modules

L’installation de modules (également appelée déploiement) active ces modules soit
dans un environnement de test, soit dans un environnement de production. Cette
présentation décrit brievement les environnements de test et de production, ainsi
que certaines étapes de l'installation de modules.

Remarque : Le processus d’installation d’applications dans un environnement de
production est similaire au processus décrit dans la rubrique «Développement et
déploiement d’applications» présente dans le centre de documentation de
WebSphere Application Server Network Deployment, version 6. Si vous ne
connaissez pas ces rubriques, reportez-vous y en premier.

Avant d’installer un module dans un environnement de production, vérifiez a
chaque fois les modifications dans un environnement de test. Pour installer des
modules dans un environnement de test, utilisez WebSphere Integration Developer
(voir le centre de documentation WebSphere Integration Developer pour plus
d’informations). Pour installer des modules dans un environnement de production,
utilisez WebSphere Process Server.

Cette rubrique décrit les concepts et les taches nécessaires a la préparation et a
l'installation de modules dans un environnement de production. Les autres
rubriques décrivent les fichiers contenant les objets que votre module utilise et
vous aide a déplacer ce module de I’environnement de test vers 1’environnement
de production. Il est important de comprendre ces fichiers et leur contenu pour
étre stir d’avoir installé vos modules correctement.

© Copyright IBM Corp. 2005, 2009 451

Concepts associés

[Présentation des bibliotheques et des fichiers JAR|

Les modules utilisent souvent des artefacts qui se trouvent dans des bibliotheques.
Les bibliotheques et les artefacts sont inclus dans les fichiers d’archive Java (JAR)
que vous identifiez lors du déploiement d’'un module.

IPrésentation du fichier EAR|
Un fichier EAR est un élément critique du déploiement d'une application de
service sur un serveur de production.

TAaches associées

[Préparation au déploiement sur un serveu]

Apres avoir développé et testé un module, vous devez I'exporter d'un systeme de
test vers un environnement de production en vue de son déploiement. Pour
installer une application, vous devez également déterminer les chemins requis lors
de l'exportation du module et les bibliothéques requises par celui-ci.

Information associée

[Remarques concernant l'installation d’applications de service sur des clusters|
L’installation d'une application de service sur un cluster implique d’autres
exigences. Il est important de les garder a 'esprit lors de 'installation
d’applications de service sur un cluster.

Présentation des bibliotheques et des fichiers JAR

Les modules utilisent souvent des artefacts qui se trouvent dans des bibliotheques.
Les bibliotheques et les artefacts sont inclus dans les fichiers d’archive Java (JAR)
que vous identifiez lors du déploiement d'un module.

Lors du développement d'un module, il est possible d’identifier certaines
ressources ou composants qui peuvent étre utilisés par différentes parties du
module. Ces ressources ou composants peuvent étre des objets créés lors du
développement du module ou des objets existants se trouvant dans une
bibliotheque déja déployée sur le serveur. Cette rubrique décrit les bibliotheques et
les fichiers dont vous aurez besoin lors de l'installation d"une application.

Bibliotheque

Une bibliotheque contient des objets ou des ressources utilisés par plusieurs

modules dans WebSphere Integration Developer. Les artefacts peuvent se trouver

dans des fichiers JAR, des fichiers archive de ressources (RAR) ou des fichiers

archive de services (WAR). Ces artefacts sont notamment :

* des interfaces ou des descripteurs de services Web (fichiers ayant une extension
wsdl) ;

* des définitions de schéma XML d’objets métier (fichiers ayant une extension
xsd) ;

* des mappes d’objets métier (fichiers ayant une extension .map) ;

* des définitions de relations et de roles (fichiers ayant une extension .rel et .rol).

Lorsqu'un module doit utiliser un artefact, le serveur recherche cet artefact a partir
du chemin d’acces aux classes EAR et le charge, s'il n’est pas déja chargé dans la
mémoire. A partir de ce moment, toute requéte portant sur 'artefact utilise cette
copie jusqu’a son remplacement. La [figure 29, & la page 453|illustre les composants
et les bibliotheques d"une application.

452 Développement et déploiement

Application

Module de service

Composants

Modules de transfert
(JAR, WAR, autres)

Bibliothéques
(fichiers JAR) | |~

Figure 29. Relations entre module, composants et bibliothéques

453

Chapitre 5. Présentation de la préparation et de l'installation de modules

Fichiers JAR, RAR et WAR

Un certain nombre de fichiers peuvent contenir des composants d’'un module. Ces
fichiers sont décrits en détails dans la spécification [Java Platform, Enterprise|

Edition (J2EE)l Une description détaillée des fichiers JAR est disponible dans la
spécification JAR.

Dans WebSphere Process Server, un fichier JAR contient également une application
qui est la version assemblée du module comprenant toutes les références de prise
en charge et les interfaces vers tous les autres composants de service utilisés par le
module. Pour installer ’application complete, vous avez besoin de ce fichier JAR et
de toutes autres bibliothéques : fichiers JAR, fichiers WAR (archive Web), fichiers
RAR (archive de ressources), fichiers JAR de bibliotheques de transfert (EJB -
Enterprise Java Beans) ou de toutes autres archives, et vous devez créer un fichier
EAR installable a 1’aide de la commande serviceDeploy .

Conventions de dénomination pour les modules de transfert

Dans la bibliotheque, des conventions de dénomination s’appliquent aux noms des
modules de transfert. Ces noms sont uniques pour un module spécifique. Nommez
les autres modules requis pour déployer I’application en veillant a éviter tout
conflit avec les noms des modules de transfert. Pour un module nommé myService,
les noms de modules de transfert sont les suivants :

* myServiceApp

* myServiceE]B

* myServiceE]BClient

* myServiceWeb

Remarque : La commande serviceDeploy crée le module de transfert myServiceWeb
uniquement si le service inclut un service de type de port WSDL.

Remarques concernant I'utilisation de bibliotheques

L’utilisation de bibliotheques assure la cohérence des objets métier et celle du
traitement entre les différents modules étant donné que chaque module appelant
dispose de sa propre copie d'un composant spécifique. Pour empécher les
incohérences et les erreurs, il est important de veiller a ce que les modifications
apportées aux composants et aux objets métiers utilisés par les modules appelants
soient coordonnées avec I'ensemble des modules appelants. Pour mettre les
modules appelants a jour, procédez comme suit :

1. copiez le module et la copie la plus récente des bibliotheques sur le serveur de
production ;

2. recréez le fichier EAR installable a I'aide de la commande serviceDeploy ;

3. arrétez l'application en cours d’exécution qui contient le module appelant et
réinstallez-la ;

4. redémarrez l'application qui contient le module appelant.

454 Développement et déploiement

http://java.sun.com/javaee/reference/index.jsp
http://java.sun.com/javaee/reference/index.jsp

Concepts associés

[Présentation de la préparation et de 'installation de moduleg

L’installation de modules (également appelée déploiement) active ces modules soit
dans un environnement de test, soit dans un environnement de production. Cette
présentation décrit brievement les environnements de test et de production, ainsi
que certaines étapes de l'installation de modules.

[Présentation du fichier EAR|
Un fichier EAR est un élément critique du déploiement d’une application de
service sur un serveur de production.

TAaches associées

[Préparation au déploiement sur un serveur]

Apres avoir développé et testé un module, vous devez I'exporter d’un systeme de
test vers un environnement de production en vue de son déploiement. Pour
installer une application, vous devez également déterminer les chemins requis lors
de l'exportation du module et les bibliotheques requises par celui-ci.

Information associée

[Remarques concernant l'installation d’applications de service sur des clusters|
L’installation d'une application de service sur un cluster implique d’autres
exigences. Il est important de les garder a I'esprit lors de l'installation
d’applications de service sur un cluster.

Présentation du fichier EAR

Un fichier EAR est un élément critique du déploiement d'une application de
service sur un serveur de production.

Un fichier d’archive d’entreprise (EAR) est un fichier compressé qui contient les
bibliotheques, les beans enterprise et les fichiers JAR nécessaires au déploiement de
I'application.

Les fichiers JAR sont créés lors de 1’exportation des modules d’application a partir
de WebSphere Integration Developer. Ce fichier JAR et toutes autres bibliotheques
d’artefacts ou objets sont utilisés en tant qu’entrées dans le processus d’installation.
La commande serviceDeploy crée un fichier EAR a partir des fichiers d’entrée
contenant les descriptions des composants et le code Java qui forment l'application.

Chapitre 5. Présentation de la préparation et de l'installation de modules 455

Concepts associés

[Présentation de la préparation et de 'installation de moduleg

L’installation de modules (également appelée déploiement) active ces modules soit
dans un environnement de test, soit dans un environnement de production. Cette
présentation décrit brievement les environnements de test et de production, ainsi
que certaines étapes de l'installation de modules.

[Présentation des bibliotheques et des fichiers JAR]

Les modules utilisent souvent des artefacts qui se trouvent dans des bibliotheques.
Les bibliotheques et les artefacts sont inclus dans les fichiers d’archive Java (JAR)
que vous identifiez lors du déploiement d’'un module.

TAaches associées

[Préparation au déploiement sur un serveur|

Apres avoir développé et testé un module, vous devez I'exporter d'un systéme de
test vers un environnement de production en vue de son déploiement. Pour
installer une application, vous devez également déterminer les chemins requis lors
de l'exportation du module et les bibliothéques requises par celui-ci.

Information associée

[Remarques concernant l'installation d’applications de service sur des clusters|
L’installation d’une application de service sur un cluster implique d’autres
exigences. Il est important de les garder a 'esprit lors de I'installation
d’applications de service sur un cluster.

Préparation au déploiement sur un serveur

Apres avoir développé et testé un module, vous devez I'exporter d'un systeme de
test vers un environnement de production en vue de son déploiement. Pour
installer une application, vous devez également déterminer les chemins requis lors
de I'exportation du module et les bibliotheques requises par celui-ci.

Avant de commencer

Avant de commencer, vous devez avoir développé et testé vos modules sur un
serveur de test et résolu les incidents et les problemes liés aux performances.

Important : Pour éviter de remplacer une application ou un module s’exécutant
déja dans un environnement de déploiement, assurez-vous que le nom du module
ou de l'application est différent de celui déja installé.

A propos de cette tache

Cette tache vérifie que toutes les pieces nécessaires d"une application sont
disponibles et rassemblées dans les bons fichiers pour étre amenées vers le serveur
de production.

Remarque : Vous pouvez également exporter un fichier d’archive d’entreprise
(EAR) a partir de WebSphere Integration Developer et installer ce fichier
directement dans WebSphere Process Server.

Important: Si les services internes d’un composant utilisent une base de données,
installez I'application sur un serveur connecté directement a une base de données.

Procédure

1. Localisez le dossier contenant les composants du module que vous souhaitez
déployer.

456 Développement et déploiement

Le dossier contenant les composants doit porter le nom module-nomet contenir
un fichier nommé module.module correspondant au module de base.

Vérifiez que tous les composants contenus dans le module se trouvent dans les
sous-dossiers de composant sous le dossier du module.

Pour faciliter 1'utilisation, nommez le sous-dossier de la facon suivante
module /composant.

Vérifiez que tous les fichiers comprenant chacun des composants font partie du
bon sous-dossier de composant et ont un nom ressemblant a
composant-fichier-nom.composant.

Les fichiers de composants contiennent les définitions de chaque composant
individuel a l'intérieur du module.

Vérifiez que tous les autres composants et artefacts se trouvent bien dans les
sous-dossiers de composants qui exigent leur présence.

Lors de cette étape, vous allez vérifier que toutes les références a des outils
nécessaires a un composant sont disponibles. Les noms de composants ne
doivent pas entrer en conflit avec les noms que la commande serviceDeploy
utilise pour hiérarchiser les modules. Voir lconvention de dénomination des|
[modules de transfert|

Vérifiez que le fichier de références, module.references, existe bien dans le
dossier module de l'étape [1, 2 la page 456]

Le fichier de références définit les références et les interfaces a l'intérieur du
module.

Vérifiez que le fichier cablage, module.wires, existe bien dans le dossier
composant.

Le fichier cablage complete les connexions entre les références et les interfaces
du module.

Vérifiez que le fichier manifeste, module.manifest, existe bien dans le dossier
composant.

Le manifeste liste les composants contenus dans le module. Il contient
également une instruction de chemin de classes afin de permettre a la
commande serviceDeploy de localiser tout autre module nécessaire au module.
Créez un fichier compressé ou un fichier JAR du module représentant l'entrée
de la commande serviceDeploy que vous utiliserez afin de préparer
l'installation du module vers le serveur de production.

Exemple de structure de dossier pour un module MyValue avant
déploiement

Ce qui suit illustre la structure de répertoire du module MyValueModule
comprenant les composants My Value, CustomerInfo et StockQuote.

MyValueModule

MyValueModule.manifest
MyValueModule.references
MyValueModule.wiring
MyValueClient.jsp

process/myvalue

MyValue.component
MyValue.java
MyValueImpl.java

service/customerinfo

CustomerInfo.component
CustomerInfo.java
Customer.java
CustomerInfolmpl.java

service/stockquote

Chapitre 5. Présentation de la préparation et de l'installation de modules 457

StockQuote.component
StockQuote.java
StockQuoteAsynch. java
StockQuoteCallback.java
StockQuoteImpl.java

Que faire ensuite

Installez le module sur les systémes de production comme décrit a la rubrique
[nstallation d’un module sur un serveur de productionfinstallation d’un module sur]
un serveur de production|

Concepts associés

[Présentation de la préparation et de l'installation de modules

L’installation de modules (également appelée déploiement) active ces modules soit
dans un environnement de test, soit dans un environnement de production. Cette
présentation décrit brievement les environnements de test et de production, ainsi
que certaines étapes de l'installation de modules.

[Présentation des bibliotheques et des fichiers JAR|

Les modules utilisent souvent des artefacts qui se trouvent dans des bibliotheques.
Les bibliotheques et les artefacts sont inclus dans les fichiers d’archive Java (JAR)
que vous identifiez lors du déploiement d’'un module.

[Présentation du fichier EAR|
Un fichier EAR est un élément critique du déploiement d’une application de
service sur un serveur de production.

Information associée

[Remarques concernant l'installation d’applications de service sur des clusters|
L’installation d"une application de service sur un cluster implique d’autres
exigences. Il est important de les garder a l’esprit lors de l'installation
d’applications de service sur un cluster.

Remarques concernant I'installation d’applications de service sur des

clusters

L’installation d’une application de service sur un cluster implique d’autres
exigences. Il est important de les garder a 'esprit lors de I'installation
d’applications de service sur un cluster.

Les clusters apportent de nombreux avantages a votre environnement de
traitement grace aux économies d’échelle, ce qui permet d’équilibrer la charge des
requétes entre serveurs et fournit un niveau de disponibilité pour les clients des
applications. Avant d’installer une application contenant des services sur un
cluster, tenez compte des points suivants :

* Les utilisateurs de 'applications ont-ils besoin de la puissance et de la
disponibilité de traitement des clusters ?

Si c’est le cas, la mise en cluster est la solution adéquate. La mise en cluster
augmente la disponibilité et la capacité de vos applications.

* Le cluster est-il préparé correctement pour les applications de service ?

Vous devez configurer le cluster correctement avant d’installer et de démarrer la
premiere application contenant un service. Le cluster doit étre configuré
correctement pour que les requétes soient traitées correctement.

* Un cluster de secours est-il installé ?
Vous devez installer 'application sur le cluster de secours également.

458 Développement et déploiement

Concepts associés

[Présentation de la préparation et de 'installation de moduleg

L’installation de modules (également appelée déploiement) active ces modules soit
dans un environnement de test, soit dans un environnement de production. Cette
présentation décrit brievement les environnements de test et de production, ainsi
que certaines étapes de l'installation de modules.

[Présentation des bibliotheques et des fichiers JAR]

Les modules utilisent souvent des artefacts qui se trouvent dans des bibliotheques.
Les bibliotheques et les artefacts sont inclus dans les fichiers d’archive Java (JAR)
que vous identifiez lors du déploiement d’'un module.

[Présentation du fichier EAR|
Un fichier EAR est un élément critique du déploiement d’une application de
service sur un serveur de production.

TAaches associées

[Préparation au déploiement sur un serveur]

Apres avoir développé et testé un module, vous devez l'exporter d'un systeme de
test vers un environnement de production en vue de son déploiement. Pour
installer une application, vous devez également déterminer les chemins requis lors
de l'exportation du module et les bibliothéques requises par celui-ci.

Chapitre 5. Présentation de la préparation et de l'installation de modules 459

460 Développement et déploiement

Chapitre 6. Déploiement d’'un module

Vous pouvez déployer un module ou un module de médiation généré par
WebSphere Integration Developer, dans un environnement de production
WebSphere Process Server en suivant la procédure ci-dessous.

Avant de commencer

Avant de déployer une application de service sur un serveur de production,
assemblez et testez l'application sur un serveur test. A l'issue du test, exportez les
fichiers adéquats comme cela est décrit dans Préparation du déploiement sur un
serveur dans le fichier PDF Développement et déploiement de modules et
transférez les fichiers sur le systeme de production en vue du déploiement. Pour
plus d’informations, consultez les centres de documentation WebSphere Integration
Developer et WebSphere Application Server Network Deployment.

Procédure
1. Copiez le module et d’autres fichiers sur le serveur de production.

Les modules et ressources (fichiers EAR, JAR, RAR et WAR) requis par
I'application sont transférés sur votre environnement de production.

2. Exécutez la commandeserviceDeploy pour créer un fichier EAR installable.

Cette étape définit le module aupres du serveur en préparation de l'installation
de l'application en production.

a. Localisez le fichier JAR qui contient le module a déployer.

b. Exécutez la commande serviceDeploy en utilisant le fichier JAR de I'étape
précédente comme entrée.

3. Installez le fichier EAR a partir de l'étape IZl Le mode d’installation des
applications dépend de la destination : serveur autonome ou serveur dans une
cellule.

Remarque : Vous pouvez utiliser la console d’administration ou unscript pour

installer I'application. Pour plus d’informations, voir le centre de
documentation WebSphere Application Server.

4. Sauvegardez la configuration. Le module est installé en tant qu’application.
5. Lancez l'application.

Résultats
L’application est active ; le flux de travail doit circuler via le module.
Que faire ensuite

Controlez 'application pour vous assurer que le serveur traite correctement les
demandes.

© Copyright IBM Corp. 2005, 2009 461

Taches associées

[nstallation de modules SCA versionnés dans un environnement de production|
Vous pouvez déployer des modules SCA versionnés dans la phase d’exécution.
Chaque version d'un module existe parallelement aux autres versions actuellement
installées sur le serveur ou dans la cellule.

[Installation d’un module SCA avec la console]

Avant de démarrer 'exécution d’un module ou d’'un module de médiation, vous
devez le déployer sur un serveur ou un cluster. Le déploiement implique la
création d’un fichier EAR installable et l'installation du fichier EAR sur le serveur
ou le cluster.

(Création d’un fichier EAR installable via serviceDeploy|
Pour installer une application dans I'environnement de production, utilisez les
fichiers copiés sur le serveur de production et créez un fichier EAR installable.

[Déploiement d’applications a I'aide des taiches ANT Apache]
Les taches permettent de définir le déploiement de plusieurs applications sur
WebSphere Process Server et de les exécuter sans surveillance sur un serveur.

Installation de modules SCA versionnés dans un environnement de
production

Vous pouvez déployer des modules SCA versionnés dans la phase d’exécution.
Chaque version d'un module existe parallelement aux autres versions actuellement
installées sur le serveur ou dans la cellule.

Avant de commencer

Assurez-vous d’effectuer les opérations suivantes avant d’installer un module SCA
versionné dans votre environnement de production :

* Dans WebSphere Integration Developer, précisez que le module est versionné et
exportez-le en vue d'un déploiement sur la ligne de commande. Pour plus
d’informations, voir la rubrique sur la|création de bibliothéques et de modules|
[versionnéd

* Déterminez si vous souhaitez déployer simultanément différentes versions du
module sur un seul serveur ou si vous souhaitez déployer simultanément
plusieurs instances du méme module versionné sur divers clusters de la méme
cellule.

A propos de cette tache
Pour installer des modules versionnés, procédez comme suit :

Procédure

1. Exécutez serviceDeploy sur le module versionné que vous avez exporté pour
générer un fichier EAR installable.

serviceDeploy nomModule.zip

La commande serviceDeploy renvoie un fichier EAR installable dont le nom
inclut la version, et parfois, des informations sur 1'ID de la cellule.

2. Installez le module d’une des maniéres suivantes :

* Dans la console d’administration, cliquez sur Modules SCA et cliquez sur le
bouton Installer de la page Modules SCA.

* Dans la console d’administration, cliquez sur Applications > Installation
d’une nouvelle application.

462 Développement et déploiement

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx/topic/com.ibm.wbit.620.help.basics.doc/topics/tcrtvers.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx/topic/com.ibm.wbit.620.help.basics.doc/topics/tcrtvers.html

¢ Exécutez la commande wsadmin AdminApp.install.

3. Si vous souhaitez installer un module versionné sur plusieurs serveurs ou
clusters dans une cellule, effectuez 'opération suivante pour chaque instance de
module désirée :

a. Exécutez la commande createVersionedSCAModule pour créer une instance
du module.

createVersionedSCAModule -archiveAbsolutePath rép_archive_entrée
-workingDirectory rép_travail -uniqueCellID ID cellule

b. Installez le fichier EAR résultant comme décrit dans 1'étape |2, a la page 462|

4. Facultatif : Exécutez la commande validateSCAImportExportInformation pour
confirmer l'existence de toutes les liaisons SCA et liaisons d’exportation du
sélecteur dans le fichier EAR spécifié.

Résultats

Votre environnement de production compte désormais une ou de plusieurs
applications versionnées. Ces derniéres peuvent toutes étre administrées via la
console d’administration ou a l'aide des commandes d’administration
correspondantes.

Remarque : Pour conserver les informations de gestion des versions, le processus
d’installation modifie automatiquement le nom du module pour s’assurer qu’il est
unique au sein du serveur ou de la cellule via I'exécution de la commande
serviceDeploy ou createVersionedSCAModule. Ces commandes ajoutent le numéro
de version, un ID de cellule unique ou le nom du module d’origine.

nomModule_vvaleurlVersion_iDCellule unique

Par exemple, si vous avez suivi les étapes contenues dans cette section, le
déploiement de la version 1.0.1 du module processusFacturation entraine la
création d’un module appelé processusFacturation_v1_0_1 et d'une application de
service installée appelée processusFacturation_v1_0_1App. Si vous indiquez
également un ID de cellule unique (exemple : Cellule5), le module porte le nom
processusFacturation_v1_0_1_Cellule5 et I’application de service installée, le nom
processusFacturation_v1_0_1_Cellule5App.

TAaches associées

[Déploiement d’un module dé|

Vous pouvez déployer un module ou un module de médiation généré par
WebSphere Integration Developer, dans un environnement de production
WebSphere Process Server en suivant la procédure ci-dessous.

Installation d’'un module SCA avec la console

Avant de démarrer 1’exécution d’'un module ou d’'un module de médiation, vous
devez le déployer sur un serveur ou un cluster. Le déploiement implique la
création d’un fichier EAR installable et 'installation du fichier EAR sur le serveur
ou le cluster.

Avant de commencer

Si vous avez exporté votre module ou module de médiation vers un fichier JAR,
utilisez la commande serviceDeploy pour créer un fichier EAR installable a partir
du fichier JAR. Pour plus d’informations, reportez-vous au
lDéploiement d’un module», a la page 461}

Chapitre 6. Déploiement d’un module 463

A propos de cette tache

Vous devez installer le fichier EAR sur un serveur ou un cluster avant de pouvoir
lancer I’exécution du module ou du module de médiation.

Au lieu d’utiliser la console d’administration, vous pouvez utiliser d’autres
méthodes pour installer le fichier EAR, telles que la commande AdminApp.install
ou AdminApp.installinteractive a I'aide de I'outil wsadmin.

Important: Si, aprés avoir commencé la procédure, vous ne souhaitez plus
installer I'application, cliquez sur Annuler : ne vous contentez pas de passer sur
une autre page de la console d’administration.

Procédure

1. A partir de la console d’administration, cliquez sur Applications - Installer
une nouvelle application dans le panneau de navigation de la console. La
premiere des deux pages de la préparation de l'installation de 'application
s’affiche.

2. Dans la premiere page Préparation de 1’installation de 1’application :

a. Indiquez le chemin d’accés complet du fichier EAR. Pour plus
d’informations, voir [Installation des applications a I'aide de la consolél

b. Indiquez si vous acceptez les valeurs par défaut ou indiquez de nouvelles
valeurs :

Me prévenir uniquement lorsque des informations supplémentaires sont

requises.

Affiche uniquement la phase de mappage du module et les autres
phases dans lesquelles vous devez fournir des informations.

Me montrer toutes les options et tous les parametres d’installation.
Affiche toutes les phases de l'installation. Pour utiliser Générer les
liaisons par défaut, qui permet d’entrer les valeurs par défaut pour
les liaisons non renseignées, sélectionnez cette option.

c. Cliquez sur Suivant.

3. L’installation d'un fichier EAR contenant un flux de médiation est identique a
lI'installation de tout autre fichier EAR d’application d’entreprise dans
WebSphere Application Server. Pour obtenir des informations détaillées pour
renseigner la seconde page de la préparation de l'installation de "application
et préciser les options dans les dernieres étapes de l'assistant, voir

[des applications a 1’aide de la console]

4. Lorsque vous installez un module de médiation ou un module contenant un
flux de médiation, vous pouvez effectuer une étape supplémentaire. Dans le
panneau Modifier les propriétés du module, vous pouvez modifier les valeurs
des propriétés du module. Si les propriétés appartiennent a un groupe, elles
s’affichent dans une section a développer sinon vous les voyez immédiatement.

Résultats

Vous pouvez a présent démarrer le module ou module de médiation.

464 Développement et déploiement

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=pix&product=was-nd-mp&topic=trun_app_instwiz
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=pix&product=was-nd-mp&topic=trun_app_instwiz
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=pix&product=was-nd-mp&topic=trun_app_instwiz

Taches associées

[Déploiement d’un module dé|

Vous pouvez déployer un module ou un module de médiation généré par
WebSphere Integration Developer, dans un environnement de production
WebSphere Process Server en suivant la procédure ci-dessous.

Création d’un fichier EAR installable via serviceDeploy

Pour installer une application dans l’environnement de production, utilisez les
fichiers copiés sur le serveur de production et créez un fichier EAR installable.

Avant de commencer

Avant de commencer cette tache, vous devez disposer d'un fichier JAR contenant
le module et les services que vous déployez sur le serveur. Pour plus
d’informations, voir «Préparation du déploiement vers un serveur».

A propos de cette tache

La commande serviceDeploy utilise un fichier JAR, d’autres fichiers EAR, JAR,
RAR, WAR et ZIP dépendants et crée un fichier EAR que vous pouvez installer sur
un serveur.

Procédure
1. Localisez le fichier JAR qui contient le module a déployer.

2. Exécutez la commande serviceDeploy en utilisant le fichier JAR de I’étape
précédente comme entrée.

Cette étape crée un fichier EAR.

Remarque : Suivez la procédure suivante sur une console d’administration.

3. Sélectionnez le fichier EAR a installer dans la console d’administration du
serveur.

4. Cliquez sur Sauvegarder pour installer le fichier EAR.
Taches associées

[Déploiement d’un module de|

Vous pouvez déployer un module ou un module de médiation généré par
WebSphere Integration Developer, dans un environnement de production
WebSphere Process Server en suivant la procédure ci-dessous.

Déploiement d’applications a I’aide des taches ANT Apache

Les taches permettent de définir le déploiement de plusieurs applications sur
WebSphere Process Server et de les exécuter sans surveillance sur un serveur.

Avant de commencer

Cette tache suppose que :

* Les applications déployées ont déja été développées et testées.

* Les applications doivent étre installées sur le(s) méme(s) serveur(s).
* Vous avez certaines connaissances en taiches ANT Apache.

* Vous comprenez le processus de déploiement.

Des informations sur le développement et le test d’applications se trouvent dans le
centre de documentation WebSphere Integration Developer.

Chapitre 6. Déploiement d’un module 465

La section de référence [Documentation sur les interfaces API et SPI générées|
fournit des informations détaillées sur les interfaces de programme d’application.
Les taches ANT Apache sont décrites dans le module com.ibm.websphere.ant.tasks.
Pour la présente rubrique, les taches utilisées sont ServiceDeploy et
InstallApplication.

A propos de cette tache

Si vous devez installer des applications multiples simultanément, développez une
tache ANT Apache, avant le déploiement. La tiche ANT Apache peut alors
déployer et installer les applications sur les serveurs sans que vous n’ayez a
intervenir.

Procédure

1. Identifiez les applications a déployer.

2. Créez un fichier JAR pour chaque application.

3. Copiez les fichiers JAR sur les serveurs cible.

4. Créez une tiche ANT Apache pour exécuter la commande ServiceDeploy afin
de créer un fichier EAR pour chaque serveur.

5. Créez une tache ANT Apache pour exécuter la commande InstallApplication
pour chaque fichier EAR depuis l’étapeE sur les serveurs concernés.

6. Exécutez la tdche ANT ServiceDeploy Apache pour créer le ficher EAR pour les
applications.

7. Exécutez la tache ANT InstallApplication Apache afin d “installer les fichiers
EAR a partir de I'étape El

Résultats
Les applications sont correctement déployées sur les serveurs cible.
Exemple de déploiement automatique d’une application

Dans cet exemple de déploiement d’une application sans surveillance, une tache
ANT Apache est contenue dans un fichier myBuildScript.xml.

<?xml version="1.0">

<project name="OwnTaskExample" default="main" basedir=".">
<taskdef name="servicedeploy"
classname="com. ibm.websphere.ant.tasks.ServiceDeployTask" />
<target name="main" depends="main2">
<servicedeploy scaModule="c:/synctest/SyncTargetJAR"
ignoreErrors="true"
outputApplication="c:/synctest/SyncTargetEAREAR"
workingDirectory="c:/synctest"
noJ2eeDeploy="true"
cleanStagingModules="true"/>
</target>
</project>

Cette instruction montre comment appeler la tiche ANT Apache.
${WAS}/bin/ws_ant -f myBuildScript.xml

Conseil : Plusieurs applications peuvent étre déployées automatiquement en
ajoutant des instructions de projet supplémentaires au fichier.

466 Développement et déploiement

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=welc_ref_javadoc

Que faire ensuite

Utilisez la console d’administration pour vérifier que les applications nouvellement
installées sont démarrées et traitent le flux de travail correctement.

Taches associées

IDéploiement d’un module deI

Vous pouvez déployer un module ou un module de médiation généré par
WebSphere Integration Developer, dans un environnement de production
WebSphere Process Server en suivant la procédure ci-dessous.

Chapitre 6. Déploiement d’un module 467

468 Développement et déploiement

Chapitre 7. Installation des applications de tache utilisateur et
de processus métier

Vous pouvez distribuer les modules SCA (Service Component Architecture)
contenant des processus métier ou des taches utilisateur, ou les deux, sur des cibles
de déploiement. Une cible de déploiement peut étre un serveur ou un cluster.

Avant de commencer

Vérifiez que Business Flow Manager et Human Task Manager sont installés et
configurés pour chaque serveur d’applications ou cluster sur lequel vous souhaitez
installer I'application.

A propos de cette tache

Vous pouvez installer des applications de processus métier et de tache a partir de
la console d’administration ou de la ligne de commande, ou en exécutant un script
d’administration.

Résultats

Apres l'installation d’une application de processus métier ou de tache utilisateur,
tous les modeles de processus métier et de tache utilisateur passent a 1’état
"Démarré”. Vous pouvez créer des instances de processus et de tache a partir de
ces modeles.

Que faire ensuite

Pour pouvoir créer des instances de processus ou de tache, vous devez démarrer
l'application.

© Copyright IBM Corp. 2005, 2009 469

Concepts associés

[nstallation d’applications de processus métier et de taches utilisateur dans un|
environnement de déploiement réseau|

Lorsque des modeles de processus ou de taches utilisateur sont installés dans un
environnement de déploiement réseau, les actions suivantes sont automatiquement
exécutées par le programme d’installation des applications.

IDéploiement des processus métier et des taches utilisateur]

Lorsque WebSphere Integration Developer ou le déploiement de service génere du
code de déploiement pour votre processus ou votre taiche, chaque composant de
processus ou composant de tache est mappé avec un bean entreprise de session.
L’ensemble du code de déploiement est mis en forme dans le fichier d’application
d’entreprise (EAR). De plus, pour chaque processus, une classe Java représentant le
code Java dans ce processus est générée et imbriquée dans le fichier EAR au cours
de l'installation de l’application d’entreprise. Chaque nouvelle version d’'un modele
devant étre déployé doit étre mise en forme dans une nouvelle application
d’entreprise.

TAaches associées

[nstallation d’applications de processus métier et de tache utilisateur en mode
interactif|

Vous pouvez installer une application en mode interactif lors son exécution a l’aide
de l'outil wsadmin et du script installlnteractive. Vous pouvez utiliser le script
pour modifier les parametres qui ne sont pas modifiables si vous utilisez la console
d’administration pour installer I'application.

Désinstallation d’applications de processus métier et de tache utilisateur a laide de|
la console d’administration|

Vous pouvez utiliser la console d’administration pour désinstaller des applications
contenant des processus métier ou des taches utilisateur.

Désinstallation d’applications de processus métier et de tiches humaines a 1’aide]
d’une commande d’administration|

L’utilisation du script bpcTemplates.jacl est une alternative a I'emploi de la console
d’administration pour désinstaller des applications qui contiennent des processus
métier ou des tdches humaines.

Installation d’applications de processus métier et de taches utilisateur
dans un environnement de déploiement réseau

Lorsque des modeles de processus ou de taches utilisateur sont installés dans un
environnement de déploiement réseau, les actions suivantes sont automatiquement
exécutées par le programme d’installation des applications.

L’application est installée par étapes. Chaque étape doit étre exécutée avec succes
pour que la suivante puisse débuter.

1. L’installation d’application démarre sur le gestionnaire de déploiement.

Au cours de cette étape, les modeles de processus métier et de tache utilisateur
sont configurés dans le référentiel de configuration WebSphere. L’application
est également validée. Si des erreurs se produisent, elles sont consignées dans
les fichiers System.out et System.err, ou en tant qu’entrées FFDC dans le
gestionnaire de déploiement.

2. L’installation de I’application se poursuit sur I'agent de noeud.

Au cours de cette étape, I'installation de 1’application sur une instance de
serveur d’applications est déclenchée. Cette instance de serveur d’applications
est soit la cible de déploiement, soit fait partie de celle-ci. Si la cible de
déploiement est un cluster comprenant plusieurs membres, 1'instance du

470 Développement et déploiement

serveur est choisie arbitrairement parmi les membres de ce cluster. Si des
erreurs se produisent au cours de cette étape, elles sont consignées dans les
fichiers SystemOut.log et SystemErr.log, ou en tant qu’entrées FFDC sur l'agent
de noeud.

3. L’application s’exécute sur l'instance de serveur.

Au cours de cette étape, les modeles de processus métier et de tache utilisateur
sont déployés dans la base de données de Business Process Choreographer sur
la cible de déploiement. Si des erreurs se produisent, elles sont consignées dans
les fichiers System.out et SystemErr.log ou en tant qu’entrées FFDC sur
I'instance de serveur.

TAaches associées

[Installation des applications de tiche utilisateur et de processus métier|

Vous pouvez distribuer les modules SCA (Service Component Architecture)
contenant des processus métier ou des taches utilisateur, ou les deux, sur des cibles
de déploiement. Une cible de déploiement peut étre un serveur ou un cluster.

Déploiement des processus métier et des taches utilisateur

Lorsque WebSphere Integration Developer ou le déploiement de service génere du
code de déploiement pour votre processus ou votre tiche, chaque composant de
processus ou composant de tache est mappé avec un bean entreprise de session.
L’ensemble du code de déploiement est mis en forme dans le fichier d’application
d’entreprise (EAR). De plus, pour chaque processus, une classe Java représentant le
code Java dans ce processus est générée et imbriquée dans le fichier EAR au cours
de l'installation de l'application d’entreprise. Chaque nouvelle version d"un modele
devant étre déployé doit étre mise en forme dans une nouvelle application
d’entreprise.

Lorsque vous installez une application d’entreprise qui contient des processus
métier ou des taches utilisateur, ces derniers sont stockés dans des modeles de
processus métier ou des modeles de taches utilisateur, au sein de la base de
données du Business Process Choreographer. Les modeles nouvellement installés
sont, par défaut, a I'état démarré. Toutefois, I’application d’entreprise nouvellement
installée se trouve a l'état arrété. Chaque application d’entreprise installée peut étre
démarrée et arrétée individuellement.

Vous pouvez déployer de nombreuses versions différentes d'un modeéle de
processus ou de tache, chacune dans un application d’entreprise différente.
Lorsque vous installez une nouvelle application d’entreprise, la version du modele
qui est installée est déterminée comme suit :

* Sile nom du modele et I’espace de nom cible n’existent pas, un nouveau modele
est installé.

* Sile nom du modele et I'espace de nom cible sont identiques a ceux du modele
existant, mais que la date de début de validité est différente, une nouvelle
version du modele existant est installée.

Remarque : Le nom du modele est dérivé du nom du composant et non du
processus métier ou de la tache utilisateur.

Si vous n'indiquez pas de date de début de validité, la date est déterminée de la
fagon suivante :

* Si vous utilisez WebSphere Integration Developer, la date de début de validité
correspond a la date de modélisation de la tache utilisateur ou du processus
métier.

Chapitre 7. Installation des applications de tache utilisateur et de processus métier 471

* Si vous utilisez le déploiement de service, la date de début de validité
correspond a la date d’exécution de la commande serviceDeploy. Seules les

taches collaboratives affichent la date d’installation de 1’application comme date
de début de validité.

Taches associées

[Installation des applications de tache utilisateur et de processus métier|

Vous pouvez distribuer les modules SCA (Service Component Architecture)
contenant des processus métier ou des taches utilisateur, ou les deux, sur des cibles
de déploiement. Une cible de déploiement peut étre un serveur ou un cluster.

Installation d’applications de processus métier et de tache utilisateur
en mode interactif

Vous pouvez installer une application en mode interactif lors son exécution a 1'aide
de l'outil wsadmin et du script installlnteractive. Vous pouvez utiliser le script
pour modifier les parametres qui ne sont pas modifiables si vous utilisez la console
d’administration pour installer I'application.

A propos de cette tache

Procédez comme suit pour installer des applications de processus métier en mode
interactif.

Procédure
1. Démarrez l'outil wsadmin.
Dans le répertoire racine_profil /bin, entrez wsadmin.
2. Installez 'application.
Dans l'invite de ligne de commande, entrez la commande suivante :

$AdminApp installInteractive application.ear

ou application.ear désigne le nom qualifié du fichier EAR (Enterprise Archive)
contenant votre application de processus. Une série de taches vous permet de
modifier les valeurs définies pour 1’application.

3. Sauvegardez les modifications apportées a la configuration.
Dans l'invite de ligne de commande, entrez la commande suivante :
$AdminConfig save

Vous devez sauvegarder vos modifications afin de transférer les mises a jour au
référentiel de configuration maftre. Si un processus de scriptage se termine et
que vous n‘avez pas sauvegardé vos modifications, celles-ci sont supprimées.

472 Développement et déploiement

Taches associées

[Installation des applications de tache utilisateur et de processus métier|

Vous pouvez distribuer les modules SCA (Service Component Architecture)
contenant des processus métier ou des taches utilisateur, ou les deux, sur des cibles
de déploiement. Une cible de déploiement peut étre un serveur ou un cluster.

Configuration de la source de données d’une application de processus et des|
parametres de référence d’ensemble]

Il peut étre nécessaire de configurer les applications de processus exécutant des
instructions SQL pour une infrastructure de base de données spécifique. Ces
instructions SQL peuvent étre issues d’activités de service d’information ou
peuvent correspondre a des instructions exécutées lors du processus d’installation
ou du démarrage d’'une instance.

Configuration de la source de données d’une application de
processus et des paramétres de référence d’ensemble

I peut étre nécessaire de configurer les applications de processus exécutant des
instructions SQL pour une infrastructure de base de données spécifique. Ces
instructions SQL peuvent étre issues d’activités de service d’information ou
peuvent correspondre a des instructions exécutées lors du processus d’installation
ou du démarrage d'une instance.

A propos de cette tache

Lorsque vous installez I'application, vous pouvez spécifier les types de sources de
données suivants :

* Sources de données pour l'exécution d’instructions SQL lors de l'installation du
processus

* Sources de données pour 'exécution d’instructions SQL lors du démarrage d'une
instance de processus

* Sources de données pour I'exécution d’activités de fragments SQL

La source de données requise pour exécuter une activité de fragments SQL est
définie dans une variable BPEL de type tDataSource. Le schéma de base de
données et les noms de table requis pour une activité de fragments SQL sont
définis dans des variables BPEL de type tSetReference. Vous pouvez configurer les
valeurs initiales de ces deux variables.

Vous pouvez spécifier les sources de données a 'aide de 'outil wsadmin.

Procédure

1. Installez I’application de processus de maniere interactive a 1’aide de 1'outil
wsadmin.

2. Parcourez les taches jusqu’a atteindre celles permettant de mettre a jour des
sources de données et des références d’ensemble.

Configurez ces parametres pour votre environnement. L'exemple suivant
présente les parametres que vous pouvez modifier pour chacune de ces taches.

3. Enregistrez vos modifications.

Exemple : Mise a jour de sources de données et des références
d’ensemble a l'aide de I’outil wsadmin

Dans la tache Mise a jour des sources de données, vous pouvez modifier les
valeurs des sources de données par des valeurs de variables initiales utilisées lors

Chapitre 7. Installation des applications de tache utilisateur et de processus métier 473

de l'installation du processus ou au démarrage de ce dernier. Dans la tache Mise a
jour des références d’ensemble, vous pouvez configurer les parametres liés au
schéma de base de données et aux noms de table.

Task[24] : Mise a jour des sources de données

//Modifiez Tes valeurs des sources de données pour les variables initiales lors du
démarrage du processus

Nom du processus : Test

// Nom du modéle de processus

Démarrage du processus ou heure d'installation : Process start
// Indique si la valeur spécifiée est évaluée

//Tors du démarrage ou de 1'installation du processus
Instruction ou variable : Variable

// Indique qu'une variable de source de données doit étre modifiée
Nom de Ta source de données : MyDataSource

// Nom de la variable

Nom JNDI :[jdbc/sample] :jdbc/newName

// Définit le nom JNDI sur jdbc/newName

Task[25]: Mise & jour des références d'ensemble

// Modifiez les valeurs des références d'ensemble utilisées en tant que valeurs
initiales pour les variables BPEL

Nom du processus : Test

// Nom du modéle de processus

Variable : SetRef

// Nom de Ta variable BPEL

Nom JNDI :[jdbc/sample] :jdbc/newName

// Définit le nom JNDI de la source de données de référence de 1'ensemble sur
jdbc/newName

Nom du schéma : [IISAMPLE]

// Nom du schéma de la base de données

Préfixe de schéma : [] :

// Préfixe du nom du schéma.

// Ce paramétre s'applique uniquement si le nom du schéma est généré.
Nom de table : [SETREFTAB] : NEWTABLE

// Définit Te nom de la table de base de données sur NEWTABLE

Préfixe de table : [] :

// Préfixe du nom de table.

// Ce paramétre s'applique uniquement si Te nom de Ta table est généré.

Taches associées

[nstallation d’applications de processus métier et de tache utilisateur en mode
interactif|

Vous pouvez installer une application en mode interactif lors son exécution a 1’aide
de 'outil wsadmin et du script installlnteractive. Vous pouvez utiliser le script
pour modifier les parametres qui ne sont pas modifiables si vous utilisez la console
d’administration pour installer I'application.

Désinstallation d’applications de processus métier et de tache
utilisateur a I'aide de la console d’administration

Vous pouvez utiliser la console d’administration pour désinstaller des applications
contenant des processus métier ou des taches utilisateur.

Avant de commencer

Pour désinstaller une application contenant des processus métier ou des taches
humaines, assurez-vous que les conditions suivantes sont remplies :

474 Développement et déploiement

 Si l'application est installée sur un serveur autonome, le serveur doit étre
démarré et avoir acces a la base de données de Business Process Choreographer.

* Si l'application est installée sur un cluster, le gestionnaire de déploiement et au
moins un membre du cluster doivent étre en cours d’exécution. Le membre de
cluster doit avoir acces a la base de données de Business Process Choreographer.

* Si l'application est installée sur un serveur géré, le gestionnaire de déploiement
et ce serveur doivent étre en cours d’exécution. Le serveur doit avoir acces a la
base de données de Business Process Choreographer.

* Il n’existe pas d’instance de modele de processus métier ou de tache utilisateur.
A propos de cette tache

Pour désinstaller une application d’entreprise contenant des processus métier ou
des taches utilisateur, effectuez les opérations suivantes :

Procédure

1. Cliquez sur Applications » Applications d’entreprise dans le panneau de
navigation de la console d’administration.

2. Sélectionnez l'application a désinstaller et cliquez sur Arréter.

Cette étape échoue si des instances de processus ou de tache existent toujours
dans l'application. Vous pouvez soit utiliser Business Process Choreographer
Explorer pour supprimer les instances, soit utiliser 1'option -force décrite a la
section |«Désinstallation d’applications de processus métier et de ticheq
[humaines i I'aide d’une commande d’administration»|

3. Sélectionnez 'application a désinstaller et cliquez sur Désinstaller.

4. Cliquez sur Sauvegarder pour enregistrer les modifications.
Résultats

L’application est désinstallée.
Taches associées

[[Installation des applications de tiche utilisateur et de processus métier|

Vous pouvez distribuer les modules SCA (Service Component Architecture)
contenant des processus métier ou des taches utilisateur, ou les deux, sur des cibles
de déploiement. Une cible de déploiement peut étre un serveur ou un cluster.

Désinstallation d’applications de processus métier et de taches
humaines a I'aide d’une commande d’administration

L’utilisation du script bpcTemplates.jacl est une alternative a I'emploi de la console
d’administration pour désinstaller des applications qui contiennent des processus
métier ou des taches humaines.

Avant de commencer

Pour désinstaller une application contenant des processus métier ou des taches
humaines, assurez-vous que les conditions suivantes sont remplies :

* Si l'application est installée sur un serveur autonome, le serveur doit étre
démarré et avoir accés a la base de données de Business Process Choreographer.

* Si l'application est installée sur un cluster, le gestionnaire de déploiement et au
moins un membre du cluster doivent étre en cours d’exécution. Le membre de
cluster doit avoir acces a la base de données de Business Process Choreographer.

Chapitre 7. Installation des applications de tache utilisateur et de processus métier 475

 Si l'application est installée sur un serveur géré, le gestionnaire de déploiement
et ce serveur doivent étre en cours d’exécution. Le serveur doit avoir acces a la
base de données de Business Process Choreographer.

* Aucune instance de modele de processus métier ou de tiche humaine, quel que
soit son état, n’est présente, sauf si vous comptez utiliser 1’option -force.

* Si vous souhaitez utiliser I'option -force et que la sécurité administrative est
activée, vérifiez que votre ID utilisateur dispose de droits d’administrateur ou
d’opérateur.

* Assurez-vous que le processus serveur auquel le client d’administration se
connecte est en cours d’exécution. Pour vous assurer que le client
d’administration se connecte automatiquement au processus serveur, ne spécifiez
pas 'option -conntype NONE en tant qu’option de commande.

A propos de cette tache

Les étapes suivantes expliquent comment utiliser le script bpcTemplates.jacl pour
désinstaller des applications contenant des modeles de processus métier ou de
tache utilisateur.

Procédure

1. Si des instances de processus ou de tache sont encore associées aux modeles
contenus dans 1’application que vous comptez désinstaller, supprimez-les en
appliquant I'une des procédures suivantes (ou les deux) :

* Utilisez Business Process Choreographer Explorer pour supprimer les
instances.

 Utilisez l'option -force pour supprimer les instances associ€ées aux modeles,
arréter les modeles et les désinstaller, le tout en une seule opération. Utilisez
cette option avec précaution car elle supprime également toutes les données
associées aux instances en cours d’exécution.

2. Passez dans le répertoire des scripts d’administration de Business Process
Choreographer.
Sous Windows, entrez :
cd racine_installation\ProcessChoreographer\admin
Sous Linux, UNIX et i5/0S, entrez :
cd racine_installation/ProcessChoreographer/admin
3. Arrétez les modeles et désinstallez I'application correspondante.
Sous Windows, entrez :

racine_installation\bin\wsadmin -f bpcTemplates.jacl
[-user nom_utilisateur]
[-password mot_de_passe utilisateur]
-uninstall nom_application
[-force]

Sous Linux, UNIX et i5/0S, entrez :

racine_installation/bin/wsadmin -f bpcTemplates.jacl
[-user nom utilisateur]
[-password mot_de_passe utilisateur]
-uninstall nom_application
[-force]

Ou:

nom_utilisateur
Si la sécurité administrative est activée, indiquez 1'ID utilisateur a utiliser
pour l'authentification.

476 Développement et déploiement

mot_de_passe_utilisateur
Si la sécurité administrative est activée, indiquez le mot de passe de I'ID
utilisateur a utiliser pour l'authentification.

nom_application
Nom de l'application a désinstaller.

-force
Entraine l’arrét et la suppression des instances en cours d’exécution avant
que l'application ne soit désinstallée. Utilisez cette option avec précaution
car elle supprime également toutes les données associées aux instances en
cours d’exécution.

Résultats

L’application est désinstallée.

Taches associées

[Installation des applications de tiche utilisateur et de processus métier]
Vous pouvez distribuer les modules SCA (Service Component Architecture)

contenant des processus métier ou des taches utilisateur, ou les deux, sur des cibles
de déploiement. Une cible de déploiement peut étre un serveur ou un cluster.

Chapitre 7. Installation des applications de tache utilisateur et de processus métier 477

478 Développement et déploiement

Chapitre 8. Adaptateurs et installation

Les adaptateurs permettent a votre application de communiquer avec d’autres
composants du systeme d’information d’entreprise.

La procédure d’installation des adaptateurs est décrite dans la rubrique
IConfiguration et utilisation des adaptateurs|du centre de documentation de
WebSphere Integration Developer.

© Copyright IBM Corp. 2005, 2009 479

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=welcome_infocenter

480 Développement et déploiement

Chapitre 9. Identification et résolution des incidents lors d’un
échec de déploiement

Ce chapitre décrit les étapes nécessaires afin de déterminer la cause d'un probleme
survenu lors du déploiement d’une application. Il présente également des solutions
possibles.

Avant de commencer

Cette rubrique suppose que les conditions suivantes sont remplies :

* Vous comprenez les principes de base du débogage d"un module.

* Les fonctions de journalisation et de trace sont actives pendant le déploiement
du module.

A propos de cette tache

La tache de résolution des incidents de déploiement commence lorsque vous
recevez une notification d’erreur. Lors d’un échec de déploiement, il existe divers
symptomes que vous devez inspecter avant d’agir.

Procédure
1. Déterminez si I'installation de I'application a échoué.

Cherchez dans le fichier SystemOut.log des messages qui indiquent la cause de
I’échec. Les raisons de I'échec de l'installation d’une application peuvent étre
notamment les suivantes :

* Vous essayez d’installer une application sur plusieurs serveurs dans la méme
cellule Network Deployment.

* Une application posséde le méme nom qu'un module existant de la cellule
Network Deployment dans laquelle vous installez 1’application.

* Vous essayez de déployer des modules J2EE dans un fichier EAR sur
différents serveurs cible.

Important : Si l'installation a échoué et que 1’application contient des services,
vous devez supprimer toutes les destinations SIBus ou les spécifications
d’activation J2C créées avant I'échec et avant la tentative de réinstallation de
I'application. Le moyen le plus simple de supprimer ces artefacts est de cliquer
sur Sauvegarder -> Annuler tout apres 1’échec. Si vous enregistrez par
inadvertance les modifications, vous devez supprimer manuellement les
destinations SIBus destinations et les spécifications d’activation J2C (voir les
rubriques concernant la suppression des destinations SIBusand et les
spécifications d’activation J2C, a la section Administration).

2. Sil'application est installée correctement, examinez-la pour déterminer si elle a
été démarrée avec succes.

Si le démarrage de 'application a échoué, I’échec s’est produit lorsque le
serveur a tenté d’initier les ressources de 'application.

a. Cherchez dans le fichier SystemOut.log des messages qui vous indiquent
comment continuer.

b. Déterminez si les ressources requises par 'application sont disponibles
et/ou si leur démarrage a réussi.

© Copyright IBM Corp. 2005, 2009 481

Les ressources qui n’ont pas démarré empéchent une application de

s’exécuter. Cela empéche la perte d’informations. Les raisons pour lesquelles

une ressource ne démarre pas incluent :

* Les liaisons sont spécifiées de maniere incorrecte

* Les ressources sont configurées de maniere incorrecte

* Les ressources ne se trouvent pas dans le fichier RAR (fichier archive de
ressources)

* Des ressources Web ne se trouvent pas dans le fichier WAR (fichier
archive de services Web)

c. Déterminez si des composants sont manquants.

La raison de I'absence d'un composant est un fichier EAR mal compilé.
Assurez-vous que tous les composants requis par le module se trouvent
dans les dossiers appropriés du systéme test sur lequel vous avez compilé le
fichier JAR (archive Java). «Préparation du déploiement sur un serveur»
contient des informations supplémentaires.

3. Regardez si des informations circulent dans 1’application.

Méme une application en cours d’exécution peut rencontrer un échec lors du
traitement des informations. Les raisons de ce probleme sont similaires a celles
qui sont mentionnées a 1’étape [2b, 4 la page 481}

a. Déterminez si I'application utilise des services contenus dans une autre
application. Vérifiez que l'autre application est installée et a démarré avec
succes.

b. Déterminez si les liaisons d’importation et d’exportation de tous les services
contenus dans d’autres applications utilisées par I'application défaillante
sont configurées correctement. Utilisez la console d’administration pour
examiner et corriger les liaisons.

4. Corrigez le probleme et relancez l'application.

TAaches associées

[Suppression des spécifications d’activation J2C|

Le systeme génere des spécifications d’application J2C lors de l'installation d'une
application contenant des services. Dans certains cas, vous devez supprimer ces
spécifications avant de réinstaller ’application.

Suppression des destinations SIBus|

Les destinations de bus d’intégration de services (SIbus) contiennent les messages
en cours de traitement au niveau des modules SCA. En cas d’incident, il peut étre
nécessaire de supprimer des destinations de bus pour résoudre le probleme.

Suppression des spécifications d’activation J2C

Le systeme génere des spécifications d’application J2C lors de l'installation d'une
application contenant des services. Dans certains cas, vous devez supprimer ces
spécifications avant de réinstaller 1’application.

Avant de commencer

Si vous supprimez la spécification en raison de 1’échec de l'installation d'une
application, assurez-vous que le nom JNDI (Java Naming and Directory Interface)
du module correspond au nom du module dont l'installation a échoué. La seconde
partie du nom JNDI correspond au nom du module qui a implémenté la
destination. Par exemple, dans sca/SimpleBOCrsmA /ActivationSpec,
SimpleBOCrsmA correspond au nom du module.

482 Développement et déploiement

Role de sécurité requis pour cette tiche : Lorsque la sécurité et les autorisations
par role sont activées, vous devez étre connecté en tant qu’administrateur ou
configurateur pour exécuter cette tache.

A propos de cette tache

Supprimez les spécifications d’activation J2C lorsque vous enregistrez par mégarde
une configuration apres avoir installé une application qui contient des services et
ne nécessite aucune spécification.

Procédure
1. Localisez la spécification d’activation a supprimer.

Les spécifications sont contenues dans le panneau relatif aux adaptateurs de
ressources. Accédez a ce panneau en cliquant sur Ressources > Adaptateurs de
ressources.

a. Localisez I'adaptateur de ressources SPI du composant de messagerie de
plateforme.

Pour cela, vous devez vous placer au niveau du noeud pour un serveur
autonome ou au niveau du serveur pour un environnement de
déploiement.

2. Affichez les spécifications d’activation J2C associées a 1’adaptateur de
ressources SPI du composant de messagerie de plateforme.

Cliquez sur le nom de l'adaptateur de ressources, un panneau répertoriant les
spécifications associées s’affiche.

3. Supprimez toutes les spécifications dont le Nom JNDI correspond a celui du
module que vous avez supprimé.

a. Cochez la case située en regard de chacune des spécifications concernées.
b. Cliquez sur Supprimer.

Résultats
Le systeme supprime les spécifications sélectionnées de 'écran d’affichage.
Que faire ensuite

Sauvegardez les modifications.

TAaches associées

[[dentification et résolution des incidents lors d’un échec de déploiement|

Ce chapitre décrit les étapes nécessaires afin de déterminer la cause d’un probleme
survenu lors du déploiement d’une application. Il présente également des solutions
possibles.

Suppression des destinations SIBus|

Les destinations de bus d’intégration de services (SIbus) contiennent les messages
en cours de traitement au niveau des modules SCA. En cas d’incident, il peut étre
nécessaire de supprimer des destinations de bus pour résoudre le probleme.

Suppression des destinations SIBus

Les destinations de bus d’intégration de services (Slbus) contiennent les messages
en cours de traitement au niveau des modules SCA. En cas d’incident, il peut étre
nécessaire de supprimer des destinations de bus pour résoudre le probleme.

Chapitre 9. Identification et résolution des incidents lors d’un échec de déploiement 483

Avant de commencer

Si vous supprimez la destination en raison de 1’échec de 'installation d'une
application, assurez-vous que le nom du module de la destination correspond au
nom du module dont 'installation a échoué. La seconde partie du nom de la
destination correspond au nom du module qui a implémenté la destination. Par
exemple, dans sca/SimpleBOCrsmA /component/test/sca/cros/simple/cust/
Customer, SimpleBOCrsmA correspond au nom du module.

Role de sécurité requis pour cette tiche : Lorsque la sécurité et les autorisations
par role sont activées, vous devez étre connecté en tant qu’administrateur ou
configurateur pour exécuter cette tache.

A propos de cette tache

Supprimez les destinations SIBus lorsque vous enregistrez par mégarde une
configuration apres avoir installé une application qui contient des services et
n’avez plus besoin des destinations.

Remarque : Cette tiche supprime la destination du bus systeme SCA uniquement.
Vous devez également supprimer les entrées du bus d’application avant de
réinstaller une application qui contient des services (voir la rubrique Suppression
des spécifications d’activation J2C dans la section relative a 'administration de ce
centre de documentation).

Procédure

1. Connectez-vous a la console d’administration.

2. Affichez les destinations sur le bus systeme SCA.
a. Dans la sous-fenétre de navigation, cliquez sur Intégration de service > bus
b. Dans la sous-fenétre de contenu, cliquez sur SCA.SYSTEM.nom_cellule.Bus
c. Dans Ressources de destination, cliquez sur Destinations

3. Cochez la case en regard de chaque destination associée a un nom du module
correspondant au module en cours de suppression.

4. Cliquez sur Supprimer.

Résultats

Le panneau affiche uniquement les destinations restantes.
Que faire ensuite

Supprimez les spécifications d’activation J2C associées au module qui a créé ces
destinations.

Taches associées

[dentification et résolution des incidents lors d’un échec de déploiement|

Ce chapitre décrit les étapes nécessaires afin de déterminer la cause d’un probleme
survenu lors du déploiement d’une application. Il présente également des solutions
possibles.

Suppression des spécifications d’activation J2C]|

Le systeme génere des spécifications d’application J2C lors de 'installation d'une
application contenant des services. Dans certains cas, vous devez supprimer ces
spécifications avant de réinstaller 1’application.

484 Développement et déploiement

Partie 3. Annexes

© Copyright IBM Corp. 2005, 2009 485

486 Développement et déploiement

Remarques

Ces informations concernent initialement des produits et services fournis aux
Etats-Unis.

Le présent document peut contenir des informations ou des références concernant
certains produits, logiciels ou services IBM non annoncés dans ce pays. Contactez
votre représentant IBM local pour plus d’informations sur les produits et services
actuellement disponibles dans votre pays. Toute référence a un produit,
programme ou service IBM n’implique pas que seul ce produit, programme ou
service IBM puisse étre utilisé. Tout autre produit, programme ou service
fonctionnellement équivalent peut étre utilisé s’il n’enfreint aucun droit de
propriété intellectuelle d’IBM. Il est de la responsabilité de 'utilisateur d’évaluer et
de vérifier lui-méme les installations et applications réalisées avec des produits,
logiciels ou services non expressément référencés par IBM.

IBM peut détenir des brevets ou des demandes de brevet couvrant les produits
mentionnés dans le présent document. La remise de ce document ne vous donne
aucun droit de licence sur ces brevets ou demandes de brevet. Si vous désirez
recevoir des informations concernant l'acquisition de licences, veuillez en faire la
demande par écrit a ’adresse suivante :

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

Pour les demandes relatives aux licences concernant les produits utilisant un jeu de
caracteres double octet, prenez contact avec le service IBM Intellectual Property
Department de votre pays ou envoyez vos questions par écrit a :

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

Le paragraphe suivant ne s’applique ni au Royaume-Uni, ni dans aucun pays
dans lequel il serait contraire aux lois locales. LE PRESENT DOCUMENT EST
LIVRE EN L’ETAT. IBM DECLINE TOUTE RESPONSABILITE, EXPLICITE OU
IMPLICITE, RELATIVE AUX INFORMATIONS QUI Y SONT CONTENUES, Y
COMPRIS EN CE QUI CONCERNE LES GARANTIES DE NON-CONTREFACON
ET D’APTITUDE A L’EXECUTION D’UN TRAVAIL DONNE. Certaines juridictions
n’autorisent pas 'exclusion des garanties implicites, auquel cas 1’exclusion
ci-dessus ne vous sera pas applicable.

Le présent document peut contenir des inexactitudes ou des coquilles. Ce
document est mis a jour périodiquement. Chaque nouvelle édition inclut les mises
a jour. IBM peut, a tout moment et sans préavis, modifier les produits et logiciels
décrits dans ce document.

Les références a des sites Web non IBM sont fournies a titre d’information
uniquement et n'impliquent en aucun cas une adhésion aux données qu’ils

© Copyright IBM Corp. 2005, 2009 487

contiennent. Les éléments figurant sur ces sites Web ne font pas partie des
éléments du présent produit IBM et 1'utilisation de ces sites releve de votre seule
responsabilité.

IBM pourra utiliser ou diffuser, de toute maniere qu’elle jugera appropriée et sans
aucune obligation de sa part, tout ou partie des informations qui lui seront
fournies.

Les licenciés souhaitant obtenir des informations permettant : (i) I'échange des
données entre des logiciels créés de facon indépendante et d’autres logiciels (dont
celui-ci), et (ii) 'utilisation mutuelle des données ainsi échangées, doivent adresser
leur demande a :

IBM Corporation

1001 Hillsdale Blvd., Suite 400
Foster City, CA 94404
Etats-Unis

Ces informations peuvent étre soumises a des conditions particuliéres, prévoyant
notamment le paiement d’une redevance.

Le logiciel sous licence décrit dans ce document et tous les éléments sous licence
disponibles s’y rapportant sont fournis par IBM conformément aux dispositions de
I'ICA, des Conditions internationales d’utilisation des logiciels IBM ou de tout
autre accord équivalent.

Toute données de performance contenues dans ce document ont été déterminées
dans un environnement controlé. Par conséquent, les résultats peuvent varier de
maniere significative selon 1’environnement d’exploitation utilisé. Certaines
mesures évaluées sur des systemes en cours de développement ne sont pas
garanties sur tous les systémes disponibles. En outre, elles peuvent résulter
d’extrapolations. Les résultats peuvent donc varier. Il incombe aux utilisateurs de
ce document de vérifier si ces données sont applicables a leur environnement
d’exploitation.

Les informations concernant des produits non IBM ont été obtenues aupres des
fournisseurs de ces produits, par l'intermédiaire d’annonces publiques ou via
d’autres sources disponibles. IBM n’a pas testé ces produits et ne peut pas
confirmer avec exactitude les performances, la compatibilité ou toutes autres
déclarations relatives aux produits non fournis par IBM. Toute question concernant
les performances de produits non IBM doit étre adressée aux fournisseurs de ces
produits.

Toute instruction relative aux intentions d’IBM pour ses opérations a venir est
susceptible d’étre modifiée ou annulée sans préavis, et doit étre considérée
uniquement comme un objectif.

Le présent document peut contenir des exemples de données et de rapports utilisés
couramment dans l'environnement professionnel. Ces exemples mentionnent des
noms fictifs de personnes, de sociétés, de marques ou de produits a des fins
illustratives ou explicatives uniquement. Toute ressemblance avec des noms de
personnes, de sociétés ou des données réelles serait purement fortuite.

LICENCE DE COPYRIGHT :

488 Développement et déploiement

Le présent logiciel contient des exemples de programmes d’application en langage
source destinés a illustrer les techniques de programmation sur différentes
plateformes d’exploitation. Vous avez le droit de copier, de modifier et de
distribuer ces exemples de programmes sous quelque forme que ce soit et sans
paiement d’aucune redevance a IBM, a des fins de développement, d'utilisation, de
vente ou de distribution de programmes d’application conformes aux interfaces de
programmation des plateformes pour lesquels ils ont été écrits. Ces programmes
n‘ont pas été rigoureusement testés dans toutes les conditions. Par conséquent,
IBM ne peut garantir la fiabilité, la maintenabilité ou le fonctionnement de ces
programmes.

Toute copie totale ou partielle de ces programmes exemples et des oeuvres qui en
sont dérivées doit comprendre une notice de copyright, libellée comme suit : (c)
(votre société) (année). Des segments de codes sont dérivés des Programmes
exemples d’IBM Corp. (c) Copyright IBM Corp. _entrez 1’année ou les années_. All
rights reserved.

Si vous visualisez ces informations en ligne, il se peut que les photographies et
illustrations en couleur n’apparaissent pas a 1'écran.

Informations relatives a 'interface de programmation

Si elle est fournie, la documentation sur l'interface de programmation aide les
utilisateurs a créer des applications en utilisant le produit.

Les interfaces de programmation génériques permettent aux utilisateurs d’écrire
des applications, qui bénéficient des services proposés par les outils du produit.

Cependant, cette documentation peut également comporter des informations de
diagnostic, de modification et de personnalisation. Les informations de diagnostic,
de modification et de personnalisation sont fournies a des fins de débogage de vos
applications.

Avertissement : N'utilisez pas les informations de diagnostic, de modification et
d’optimisation en guise d’interface de programmation car elles peuvent étre
modifiées sans préavis.

Marques et marques de service

IBM, le logo IBM et ibm.com sont des marques d’International Business Machines
aux Etats-Unis et/ou dans certains autres pays. Si ces marques et d’autres marques
d’IBM sont accompagnées d’'un symbole de marque (X ou ™), ces symboles
signalent des marques d’IBM aux Etats-Unis a la date de publication de ce
document. Ces marques peuvent aussi étre des marques déposées ou reconnues
comme telles par le droit coutumier sur les marques dans d’autres pays. La liste
actualisée de toutes les marques d’IBM est disponible sur la page Web "Copyright
and trademark information” a fwww.ibm.com/legal /copytrade.shtml}

Java est une marque de Sun Microsystems, Inc. aux Etats-Unis et/ou dans certains
autres pays.

Les autres noms de sociétés, de produits et de services peuvent appartenir a des
tiers.

Ce produit inclut un logiciel développé par Eclipse Project
(http:/ /www.eclipse.org)l

Remarques 489

http://www.ibm.com/legal/copytrade.shtml
http://www.eclipse.org

o
JAVA,
IBM WebSphere Process Server for Multiplatforms, version 6.2

490 Développement et déploiement

®
lyplt
[y

	Manuels PDF et Centre de documentation
	Table des matières
	Figures
	Tableaux
	Partie 1. Développement d′applications
	Chapitre 1. Développement de solutions d′intégration métier
	Modèle de programmation pour l′intégration métier
	Architecture et modèles d′intégration métier
	Scénarios d′intégration métier
	Rôles, produits et défis techniques
	Infrastructure d′objets métier
	Architecture de composants de service
	Processus métier
	Tâches utilisateur

	Création d′applications d′intégration métier

	Chapitre 2. Développement de modules de service
	Présentation du développement de modules
	Développement de composants de service
	Appel de composants
	Appel dynamique d′un composant
	Présentation de l′isolement des modules et des cibles
	Liaisons HTTP

	Chapitre 3. Guides et techniques de programmation
	Programmation d′objets métier
	Tableaux dans les objets métier
	Création d′objets métier imbriqués
	Instance unique d′un objet métier imbriqué
	Création de plusieurs instances d′objets métier imbriqués
	Utilisation d′un objet métier imbriqué défini par un caractère générique
	Utilisation des objets métier dans les groupes de modèles

	Objets métier : renforcement du schéma et prise en charge du schéma industriel
	Différenciation d′éléments portant le même nom
	Différenciation de propriétés portant le même nom
	Résolution de noms de propriétés contenant des points
	Utilisation de l′objet de séquence pour définir l′ordre des données
	Utilisation de AnySimpleType pour les types simples
	Utilisation de AnyType pour les types complexes
	Utilisation de la balise Any pour définir des éléments globaux de types complexes
	Utilisation de AnyAttribute pour définir les attributs globaux de types complexes

	Remplacement d′une conversion d′objet SDO en Java
	Remplacement de l′implémentation d′architecture SCA générée
	Règles en exécution de la conversion de Java en objets SDO

	Validation de document XML
	Propagation d′en-tête de protocole à partir de liaisons d′exportation non SCA
	Gestion des règles métier
	Modèle de programmation
	Groupe de règles métier
	Propriétés de groupes de règles métier
	Opération
	Règle métier
	Ensemble de règles
	Table de décision
	Modèles et paramètres
	Validation
	Suivi des modifications
	BusinessRuleManager
	Traitement des exceptions
	Autorisation

	Exemples
	Exemple 1 : extraction et impression de l′ensemble des groupes de règles métier
	Exemple 2 : Extraire et afficher tous les groupes de règles métier, les jeux de règles et les tables de décision
	Exemple 3 : extraction de groupes de règles métier par propriétés multiples, avec l′opérateur AND
	Exemple 4 : extraction de groupes de règles métier par propriétés multiples, avec l′opérateur OR
	Exemple 5 : extraction de groupes de règles métier à l′aide d′une requête complexe
	Exemple 6 : mise à jour d′une propriété de groupe de règles métier et publication du groupe de règles métier
	Exemple 7 : mise à jour des propriétés contenues dans plusieurs groupes de règles métier et publication des groupes de règles
	Exemple 8 : modification de la règle métier par défaut d′un groupe de règles métier
	Exemple 9 : planification d′une autre règle d′opération au sein d′un groupe de règles métier
	Exemple 10 : modification d′une valeur de paramètre dans un modèle d′un ensemble de règles
	Exemple 11 : Ajouter une nouvelle règle depuis un modèle vers un jeu de règles
	Exemple 12 : Modifier et publier un modèle d′une table de décision en changeant la valeur d′un paramètre
	Exemple 13 : Ajout d′une valeur de condition et d′actions dans une table de décision
	Exemple 14 : Gestion des erreurs dans un jeu de règles
	Exemple 15 : Gestion des erreurs dans un groupe de règles métier
	Autres exemples de requêtes

	Classes d′opérations communes
	Classe Formatter
	Classe RuleArtifactUtility

	Chapitre 4. Développement d′applications client pour les tâches et processus métier
	Comparaison entre les interfaces de programmation visant à interagir avec les processus métier et les tâches utilisateur
	Requêtes portant sur les données des processus métier et des tâches
	Comparaison des interfaces de programmation destinées à l′extraction de données de processus et de tâche
	Tables de requêtes dans Business Process Choreographer
	Tables de requêtes prédéfinies
	Tables de requêtes supplémentaires
	Tables de requêtes composites
	Développement des tables de requêtes
	Filtres et critères de sélection des tables de requêtes
	Autorisation pour les tables de requêtes
	Types d′attribut pour les tables de requêtes
	Requêtes sur des tables de requêtes
	Requêtes sur des tables de requêtes pour l′extraction de métadonnées
	Internationalisation pour les métadonnées des tables de requêtes
	Tables de requêtes et performances des requêtes

	API de requête EJB de Business Process Choreographer
	Syntaxe de la méthode query dans l′API
	Conditions d′accès propres à l′utilisateur
	Exemples de méthodes query et queryAll

	Développement d′applications client EJB pour des processus métier et des tâches utilisateur
	Accès aux API EJB
	Accès à l′interface distante du bean session
	Accès à l′interface locale du bean session

	Requête sur des objets liés aux processus métier et aux tâches
	Filtrage de données à l′aide de variables définies dans des requêtes
	Gestion des requêtes stockées

	Développement d′applications pour les processus métier
	Rôles nécessaires pour effectuer des actions sur des instances de processus
	Rôles nécessaires pour effectuer des actions sur les activités de processus métier
	Gestion du cycle de vie d′un processus métier
	Traitement des activités humaines
	Traitement d′un flux de travaux par une seule personne
	Envoi d′un message à une activité en attente
	Gestion des événements
	Analyse des résultats d′un processus
	Réparation d′activités
	Interface BusinessFlowManagerService

	Développement d′applications pour des tâches utilisateur
	Démarrage d′une tâche d′appel qui appelle une interface synchrone
	Démarrage d′une tâche d′appel qui appelle une interface asynchrone
	Création et lancement d′une instance de tâche
	Traitement des tâches à effectuer ou des tâches de collaboration
	Mise en suspens et reprise d′une instance de tâche
	Analyse des résultats d′une tâche
	Arrêt d′une instance de tâche
	Suppression d′instances de tâche
	Libération d′une tâche réclamée
	Gestion des tâches élémentaires
	Création de modèles de tâche et d′instances de tâche à l′exécution
	Interface HumanTaskManagerService

	Développement d′applications pour les processus métier et les tâches utilisateur
	Déterminer les modèles de processus ou les activités pouvant être démarrés
	Traitement par une seule personne d′un flux de travaux contenant des tâches utilisateur

	Gestion des exceptions et des erreurs
	Gestion des exceptions de l′API EJB de Business Process Choreographer
	Vérification de l′erreur définie pour une activité de tâche utilisateur
	Vérification d′une erreur survenue lors d′une activité d′appel arrêtée
	Vérification de l′erreur ou de l′exception non gérée survenue lors de l′échec d′une instance de processus

	Développement d′applications API de service Web
	Composants de service Web et séquence de contrôle
	Présentation des API des services Web
	Exigences en termes de processus métier et de tâches utilisateur
	Développement d′applications client
	Copie d′artefacts
	Publication et exportation d′artefacts depuis l′environnement de serveurs
	Utilisation de fichiers sur le CD du client

	Développement d′applications client dans l′environnement de services Web Java
	Génération d′un client proxy (services Web Java)
	Création de classes auxiliaires pour les processus BPEL (services Web Java)
	Création d′une application client (services Web Java)
	Renforcement de la sécurité (services Web Java)
	Ajout d′un support de transaction (services Web Java)

	Développement d′applications client dans l′environnement .NET
	Génération d′un client proxy (.NET)
	Création de classes auxiliaires pour les processus BPEL (.NET)
	Création d′une application client (.NET)
	Renforcement de la sécurité (.NET)

	Requêtes sur des objets liés aux processus métier et aux tâches
	Requêtes portant sur des objets liés aux processus métier et aux tâches à l′aide des API de services Web
	Gestion des requêtes stockées

	Développement d′applications client à l′aide de l′API JMS de Business Process Choreographer
	Exigences des processus métier
	Autorisation pour les affichages JMS
	Accès à l′interface JMS
	Structure d′un message JMS de Business Process Choreographer

	Copie d′artefacts pour les applications client JMS
	Vérification du message de réponse pour les exceptions de métier
	Exemple : exécution d′un processus de longue durée à l′aide de l′API JMS de Business Process Choreographer

	Développement d′applications Web pour les processus métier et tâches utilisateur à l′aide de composants JSF
	Composants Exemples de Business Process Choreographer Explorer
	Traitement des erreurs dans les composants JSF
	Convertisseurs et intitulés par défaut d′objets de modèle client
	Ajout du composant List à une application JSF
	Mode de traitement des listes
	Informations de fuseau horaire propres à l′utilisateur
	Traitement des erreurs dans le composant List
	Composant List : définitions de balises

	Ajout du composant Details à une application JSF
	Ajout du composant CommandBar à une application JSF
	Mode de traitement des commandes
	Composant CommandBar : définitions de balises

	Ajout du composant Message à une application JSF
	Composant Message : définitions de balises

	Développement des pages JSP pour les messages de tâche et de processus
	Fragments JSP définis par l′utilisateur

	Création de modules d′extension pour personnaliser les fonctionnalités des tâches utilisateur
	Création de gestionnaires d′événements d′API
	Création de gestionnaire d′événements de notification
	Installation des modules d′extension du gestionnaire d′événements d′API et du gestionnaire d′événements de notification
	Enregistrement des modules d′extension du gestionnaire d′événements d′API et du gestionnaire d′événements de notification ave
	Création, installation et exécution de plug-ins en vue du post-traitement des résultats des requêtes sur les utilisateurs

	Partie 2. Déploiement des applications
	Chapitre 5. Présentation de la préparation et de l′installation de modules
	Présentation des bibliothèques et des fichiers JAR
	Présentation du fichier EAR
	Préparation au déploiement sur un serveur
	Remarques concernant l′installation d′applications de service sur des clusters

	Chapitre 6. Déploiement d′un module
	Installation de modules SCA versionnés dans un environnement de production
	Installation d′un module SCA avec la console
	Création d′un fichier EAR installable via serviceDeploy
	Déploiement d′applications à l′aide des tâches ANT Apache

	Chapitre 7. Installation des applications de tâche utilisateur et de processus métier
	Installation d′applications de processus métier et de tâches utilisateur dans un environnement de déploiement réseau
	Déploiement des processus métier et des tâches utilisateur
	Installation d′applications de processus métier et de tâche utilisateur en mode interactif
	Configuration de la source de données d′une application de processus et des paramètres de référence d′ensemble

	Désinstallation d′applications de processus métier et de tâche utilisateur à l′aide de la console d′administration
	Désinstallation d′applications de processus métier et de tâches humaines à l′aide d′une commande d′administration

	Chapitre 8. Adaptateurs et installation
	Chapitre 9. Identification et résolution des incidents lors d′un échec de déploiement
	Suppression des spécifications d′activation J2C
	Suppression des destinations SIBus

	Partie 3. Annexes
	Remarques

