
WebSphere® Process Server for Multiplatforms

Développement et déploiement de modules

Version 6.2.0

���

WebSphere® Process Server for Multiplatforms

Développement et déploiement de modules

Version 6.2.0

���

Important

Avant d’utiliser les informations de ce document, lisez les informations générales figurant à la section Remarques qui se
trouve à la fin du présent document.

LE PRESENT DOCUMENT EST LIVRE EN L’ETAT SANS AUCUNE GARANTIE EXPLICITE OU IMPLICITE. IBM
DECLINE NOTAMMENT TOUTE RESPONSABILITE RELATIVE A CES INFORMATIONS EN CAS DE
CONTREFACON AINSI QU’EN CAS DE DEFAUT D’APTITUDE A L’EXECUTION D’UN TRAVAIL DONNE.

Ce document est mis à jour périodiquement. Chaque nouvelle édition inclut les mises à jour. Les informations qui y
sont fournies sont susceptibles d’être modifiées avant que les produits décrits ne deviennent eux-mêmes
disponibles. En outre, il peut contenir des informations ou des références concernant certains produits, logiciels ou
services non annoncés dans ce pays. Cela ne signifie cependant pas qu’ils y seront annoncés.

Pour plus de détails, pour toute demande d’ordre technique, ou pour obtenir des exemplaires de documents IBM,
référez-vous aux documents d’annonce disponibles dans votre pays, ou adressez-vous à votre partenaire
commercial.

Vous pouvez également consulter les serveurs Internet suivants :
v http://www.fr.ibm.com (serveur IBM en France)

v http://www.can.ibm.com (serveur IBM au Canada)

v http://www.ibm.com (serveur IBM aux Etats-Unis)

Compagnie IBM France
Direction Qualité
Tour Descartes
92066 Paris-La Défense Cedex 50

© Copyright IBM France 2009. Tous droits réservés.

© Copyright International Business Machines Corporation 2005, 2009.

http://www.fr.ibm.com
http://www.can.ibm.com
http://www.ibm.com

Manuels PDF et Centre de documentation

Les manuels PDF sont fournis pour votre convenance afin de les imprimer et de
les consulter hors ligne. Pour obtenir les informations les plus récentes, consultez
le Centre de documentation en ligne.

Dans l’ensemble, les manuels PDF contiennent les mêmes informations que le
Centre de documentation.

La documentation PDF est disponible au plus tard un trimestre après une édition
majeure du centre de documentation, comme Version 6.0 ou Version 6.1.

La documentation PDF est moins fréquemment mise à jour que le Centre de
documentation mais plus fréquemment que les Redbooks. En général, les manuels
PDF sont mis à jour lorsqu’il existe un nombre suffisant de modifications.

Les liens du manuel PDF pointant vers des rubriques sont dirigés vers le Centre de
documentation sur le Web. Les liens pointant vers des cibles sont marqués par des
icônes qui indiquent si la cible est un manuel PDF ou une page Web.

Tableau 1. Icônes liant à des rubriques situées en dehors de ce manuel

Icône Description

Lien vers une page Web, y compris une page du Centre de documentation.

Les liens vers le Centre de documentation passent par un service d’adressage
indirect de telle sorte qu’ils sont toujours valides même si la rubrique cible est
déplacée vers un emplacement différent.

Si vous voulez trouver une page liée dans un centre de documentation local, vous
pouvez effectuer une recherche sur le titre du lien. Vous pouvez également
effectuer une recherche sur l’ID de la rubrique. Si la recherche donne plusieurs
résultats dans différentes rubriques pour des différents produits, vous pouvez
utiliser les commandes Grouper par du résultat de la recherche pour identifier
l’instance de la rubrique que vous souhaitez afficher. Par exemple :

1. Copiez l’URL du lien. Par exemple, cliquez avec le bouton droit de la souris
sur le lien puis sélectionnez Copier l’emplacement du lien. Par exemple :
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620
&product=wesb-dist&topic=tins_apply_service

2. Copiez l’ID de la rubrique après &topic=. Par exemple : tins_apply_service

3. Dans la zone de recherche de votre centre de documentation local, collez l’ID
de la rubrique. Si la fonction de documentation est installée localement, le
résultat de la recherche affichera la rubrique. Par exemple :

1 résultat(s) trouvé pour

Grouper par : Néant | Plateforme | Version | Produit
Afficher le récapitulatif

Installation de groupes de correctifs et de groupes de mises à jour avec
Update Installer

4. Cliquez sur le lien dans le résultat de la recherche pour afficher la rubrique.

Lien vers un manuel PDF.

© Copyright IBM Corp. 2005, 2009 iii

iv Développement et déploiement

Table des matières

Manuels PDF et Centre de
documentation iii

Figures vii

Tableaux ix

Partie 1. Développement
d’applications 1

Chapitre 1. Développement de solutions
d’intégration métier 3
Modèle de programmation pour l’intégration métier 6
Architecture et modèles d’intégration métier 8

Scénarios d’intégration métier 9
Rôles, produits et défis techniques 10
Infrastructure d’objets métier 12
Architecture de composants de service 14
Processus métier. 19
Tâches utilisateur 20

Création d’applications d’intégration métier . . . 21

Chapitre 2. Développement de modules
de service 23
Présentation du développement de modules . . . 24
Développement de composants de service 26
Appel de composants 28
Appel dynamique d’un composant 30
Présentation de l’isolement des modules et des
cibles 31
Liaisons HTTP 35

Chapitre 3. Guides et techniques de
programmation 37
Programmation d’objets métier 37

Tableaux dans les objets métier 38
Création d’objets métier imbriqués 40
Objets métier : renforcement du schéma et prise
en charge du schéma industriel 44
Remplacement d’une conversion d’objet SDO en
Java 66
Remplacement de l’implémentation d’architecture
SCA générée 67
Règles en exécution de la conversion de Java en
objets SDO 68

Validation de document XML 70
Propagation d’en-tête de protocole à partir de
liaisons d’exportation non SCA 72
Gestion des règles métier 74

Modèle de programmation 75
Exemples 111
Classes d’opérations communes 188

Chapitre 4. Développement
d’applications client pour les tâches
et processus métier 199
Comparaison entre les interfaces de
programmation visant à interagir avec les
processus métier et les tâches utilisateur 200
Requêtes portant sur les données des processus
métier et des tâches 203

Comparaison des interfaces de programmation
destinées à l’extraction de données de processus
et de tâche 204
Tables de requêtes dans Business Process
Choreographer 206
API de requête EJB de Business Process
Choreographer 270

Développement d’applications client EJB pour des
processus métier et des tâches utilisateur 286

Accès aux API EJB 289
Requête sur des objets liés aux processus métier
et aux tâches 295
Développement d’applications pour les
processus métier 301
Développement d’applications pour des tâches
utilisateur 328
Développement d’applications pour les
processus métier et les tâches utilisateur . . . 350
Gestion des exceptions et des erreurs 357

Développement d’applications API de service Web 361
Composants de service Web et séquence de
contrôle 362
Présentation des API des services Web 363
Exigences en termes de processus métier et de
tâches utilisateur 364
Développement d’applications client 364
Copie d’artefacts 365
Développement d’applications client dans
l’environnement de services Web Java 375
Développement d’applications client dans
l’environnement .NET 387
Requêtes sur des objets liés aux processus
métier et aux tâches 393

Développement d’applications client à l’aide de
l’API JMS de Business Process Choreographer . . 397

Exigences des processus métier 398
Autorisation pour les affichages JMS 399
Accès à l’interface JMS 399
Copie d’artefacts pour les applications client
JMS 403
Vérification du message de réponse pour les
exceptions de métier 404
Exemple : exécution d’un processus de longue
durée à l’aide de l’API JMS de Business Process
Choreographer 404

© Copyright IBM Corp. 2005, 2009 v

Développement d’applications Web pour les
processus métier et tâches utilisateur à l’aide de
composants JSF. 405

Composants Exemples de Business Process
Choreographer Explorer 410
Traitement des erreurs dans les composants JSF 411
Convertisseurs et intitulés par défaut d’objets de
modèle client 412
Ajout du composant List à une application JSF 413
Ajout du composant Details à une application
JSF 421
Ajout du composant CommandBar à une
application JSF 423
Ajout du composant Message à une application
JSF 428

Développement des pages JSP pour les messages
de tâche et de processus 432

Fragments JSP définis par l’utilisateur 433
Création de modules d’extension pour
personnaliser les fonctionnalités des tâches
utilisateur 435

Création de gestionnaires d’événements d’API 436
Création de gestionnaire d’événements de
notification 439
Installation des modules d’extension du
gestionnaire d’événements d’API et du
gestionnaire d’événements de notification . . . 441
Enregistrement des modules d’extension du
gestionnaire d’événements d’API et du
gestionnaire d’événements de notification avec
des modèles de tâche et des tâches 442
Création, installation et exécution de plug-ins en
vue du post-traitement des résultats des
requêtes sur les utilisateurs 443

Partie 2. Déploiement des
applications 449

Chapitre 5. Présentation de la
préparation et de l’installation de
modules 451
Présentation des bibliothèques et des fichiers JAR 452
Présentation du fichier EAR 455
Préparation au déploiement sur un serveur . . . 456
Remarques concernant l’installation d’applications
de service sur des clusters 458

Chapitre 6. Déploiement d’un module 461
Installation de modules SCA versionnés dans un
environnement de production 462
Installation d’un module SCA avec la console . . 463
Création d’un fichier EAR installable via
serviceDeploy 465
Déploiement d’applications à l’aide des tâches
ANT Apache 465

Chapitre 7. Installation des
applications de tâche utilisateur et de
processus métier. 469
Installation d’applications de processus métier et
de tâches utilisateur dans un environnement de
déploiement réseau 470
Déploiement des processus métier et des tâches
utilisateur 471
Installation d’applications de processus métier et
de tâche utilisateur en mode interactif 472

Configuration de la source de données d’une
application de processus et des paramètres de
référence d’ensemble 473

Désinstallation d’applications de processus métier
et de tâche utilisateur à l’aide de la console
d’administration 474
Désinstallation d’applications de processus métier
et de tâches humaines à l’aide d’une commande
d’administration 475

Chapitre 8. Adaptateurs et installation 479

Chapitre 9. Identification et résolution
des incidents lors d’un échec de
déploiement 481
Suppression des spécifications d’activation J2C . . 482
Suppression des destinations SIBus 483

Partie 3. Annexes 485

Remarques 487

vi Développement et déploiement

Figures

1. Les outils IBM prolongent le cycle de vie
complet de la gestion des processus métier, ce
qui vous permet de concevoir, assembler,
déployer et gérer vos processus. 5

2. Structure à base de composants WebSphere
Process Server. 15

3. SCA dans WebSphere Process Server 16
4. Diagramme d’assemblage 17
5. Modèle d’appel simple 32
6. Appel de service unique par des applications

multiples 33
7. Modèle d’appel isolé du service

UpdateCalculateFinal 34
8. Modèle d’appel isolé du service

UpdatedCalculateFinal 35
9. Propagation de contexte comprenant un en-tête

de protocole 73
10. Diagramme de classes de BusinessRuleGroup

et classes associées 80
11. Diagramme de classes de Property et classes

associées 82
12. Diagramme de classes de Operation et classes

associées 85
13. Diagramme de classes de BusinessRule et

classes associées 87
14. Diagramme de classes de BusinessRule et

classes associées 90
15. Diagramme de classes de DecisionTable et

classes associées 92

16. Diagramme de classes de TreeNode et classes
associées 95

17. Diagramme de classes de TreeAction et classes
associées 99

18. Diagramme de classes de DecisionTableRule
et classes associées 100

19. Diagramme de classes de Template et de
Parameter, et classes associées 102

20. Diagramme de classes de
BusinessRuleManager et module 104

21. Diagramme de classes de QueryNodeFactory
et classes associées 106

22. Diagramme de classes de
BusinessRuleManagementException et classes
associées 108

23. Tables de requêtes dans Business Process
Choreographer 207

24. Contenu des tables de requêtes composites 216
25. Table de requêtes composite avec critères de

sélection 218
26. Filtres dans les tables de requêtes composites 222
27. Filtres et critères de sélection dans des

expressions 230
28. Autorisation par instance pour les tables de

requêtes 236
29. Relations entre module, composants et

bibliothèques 453

© Copyright IBM Corp. 2005, 2009 vii

viii Développement et déploiement

Tableaux

1. Icônes liant à des rubriques situées en dehors
de ce manuel iii

2. Abstractions des données et implémentations
correspondantes 13

3. Conversion de type WSDL en classe Java 70
4. Problèmes liés aux groupes de règles métier 108
5. Problèmes liés aux ensembles de règles et aux

tables de décisions 109
6. Propriétés des tables de requêtes prédéfinies 210
7. Tables de requêtes prédéfinies contenant des

données d’instance 211
8. Tables de requêtes prédéfinies contenant des

données de modèle 212
9. Propriétés des tables de requêtes

supplémentaires 214
10. Contenus valides d’une table de requêtes

composite. 219
11. Contenus non valides d’une table de requêtes

composite. 219
12. Propriétés des tables de requêtes composites 219
13. Etapes de développement de tables de

requêtes 224
14. Les attributs des tables de requêtes et leur

utilisation dans les expressions. 229
15. Types d’autorisation pour les tables de

requêtes 235
16. Types d’éléments de travail 237
17. Eléments de travail et critères d’affectation de

personnes 238
18. Types d’attribut 240
19. Correspondance entre types des bases de

données et types d’attribut 241
20. Exemple de mappage entre types de base de

données et types d’attribut 242
21. Correspondance entre types d’attribut et

valeurs littérales 243
22. Correspondance entre types d’attribut et

valeurs de paramètre utilisateur 244
23. Correspondance entre types d’attribut et

types d’objet Java 245
24. Compatibilité entre types d’attribut 246
25. Méthodes pour les requêtes exécutées sur les

tables de requêtes 249
26. Paramètres de l’API de table de requêtes 251
27. Paramètres de l’API de table de requêtes :

options de filtrage 253
28. Paramètres de l’API de table de requêtes :

options d’autorisation par défaut pour
l’autorisation par instance 256

29. Paramètres de l’API de table de requêtes :
AdminAuthorizationOptions 257

30. Paramètres utilisateur destinés à l’API de
table de requêtes 258

31. Propriétés d’un ensemble de résultats
d’entités renvoyé par l’API de table de
requêtes 259

32. Propriétés d’une entité renvoyée par l’API de
table de requêtes 259

33. Propriétés d’un ensemble de résultats de
lignes renvoyé par l’API de table de requêtes . 260

34. Méthodes pour l’extraction de métadonnées
des tables de requêtes. 261

35. Métadonnées relatives à la structure d’une
table de requêtes 262

36. Métadonnées relatives à l’internationalisation
d’une table de requêtes 263

37. Les options applicables aux tables de requêtes
composites et leur impact sur les
performances des requêtes 266

38. Les options de l’API de table de requêtes et
leur impact sur les performances des requêtes 267

39. Performances des tables de requêtes - Autres
considérations 269

40. 271
41. Méthodes API pour les modèles de processus 325
42. Les méthodes API sont liées au démarrage

des instances de processus. 325
43. Méthodes API pour le contrôle du cycle de

vie des instances de processus 326
44. Méthodes API pour le contrôle du cycle de

vie des instances d’activité 327
45. Méthodes API pour les variables et les

propriétés personnalisées 327
46. Méthodes API pour les modèles de tâches 347
47. Méthodes API pour les modèles de tâches 348
48. Méthodes API de gestion des escalades 348
49. Méthodes API pour les variables et les

propriétés personnalisées 349
50. Mappage des liaisons de référence aux noms

JNDI 408
51. Mappage d’interfaces de Business Process

Choreographer avec des objets de modèle
client 413

52. Attributs bpe:list 420
53. Attributs bpe:column 420
54. Attributs bpe:details 423
55. Attributs bpe:property 423
56. Attributs bpe:commandbar 427
57. Attributs bpe:command 428
58. Attributs bpe:form 431

© Copyright IBM Corp. 2005, 2009 ix

x Développement et déploiement

Partie 1. Développement d’applications

© Copyright IBM Corp. 2005, 2009 1

2 Développement et déploiement

Chapitre 1. Développement de solutions d’intégration métier

Cette section évoque les principes du modèle de programmation pour l’intégration
métier. Elle présente l’architecture SCA (Service Component Architecture) et les
modèles associés à l’intégration métier.

L’intégration métier est la discipline permettant aux entreprise d’identifier,
consolider et optimiser des processus métier. Son objectif est d’améliorer la
productivité et maximiser l’efficacité de l’entreprise. L’intérêt grandissant que
suscite l’intégration métier est dû aux fusions et aux consolidations d’entreprises et
au fait qu’elles développent des bibliothèques d’éléments d’actif informationnel
divers. Ces éléments d’actif manquent souvent de cohérence et de coordination, ce
qui crée des ″îlots d’informations″.

L’intégration métier est étroitement liée à la gestion des processus métier (BPM -
Business Process Management) et à l’architecture SOA (Service-Oriented
Architecture). En fonction du type d’entreprise et de l’étendue des besoins
d’intégration, l’intégration métier impose diverses exigences aux services
informatiques. Certains projets peuvent seulement être confrontés à quelques
aspects de ces exigences, alors que des projets de plus grande envergure peuvent
regrouper un grand nombre d’entre elles. Vous trouverez ci-dessous quelques
aspects, parmi les plus courants, composant des projets d’intégration métier :
v Intégration d’applications est une exigence courante. La complexité des projets

d’intégration d’applications varie selon qu’il s’agit de situations simples, dans
lesquelles vous devez garantir qu’un nombre réduit d’applications peut partager
des informations, ou de situations plus complexes, dans lesquelles des
transactions et des échanges de données doivent apparaître simultanément dans
plusieurs applications dorsales. L’intégration d’applications complexe exige
souvent une gestion de l’unité de travail compliquée, mais aussi de la
transformation et du mappage.

v Automatisation des processus est un autre aspect clé qui assure que les activités
exercées par une personne ou une entreprise déclenchent automatiquement des
conséquences ailleurs. Ceci garantit l’accomplissement du processus métier
global. Par exemple, lorsqu’une entreprise embauche un employé, les
informations de la feuille de paie doivent être mises à jour, le service de sécurité
doit appliquer des actions adéquates, les outils requis doivent être mis à la
disposition de l’employé, etc. Certaines activités composant un processus
peuvent capturer les entrées des utilisateurs et leur interaction, alors que
d’autres peuvent appeler des scripts sur des systèmes dorsaux et d’autres
services présents dans l’environnement.

v Connectivité est un aspect abstrait, et pourtant essentiel, pour une entreprise et
les partenaires commerciaux. Par ″connectivité″, nous voulons parler du flux
d’informations échangées entre les entreprises ou les sociétés et la capacité à
accéder à des services informatiques distribués.

Certains défis techniques liés aux implémentations d’intégrations métier peuvent se
résumer de la façon suivante :
v Traiter différents formats de données et ne pas être en mesure d’effectuer une

transformation efficace des données
v Traiter différents protocoles et mécanismes pour accéder à des services

informatiques qui ont pu être développés via des technologies très différentes

© Copyright IBM Corp. 2005, 2009 3

v Organiser différents services informatiques qui peuvent être distribués
géographiquement ou offerts par différentes entreprises

v Fournir des règles et des mécanismes pour classer et gérer les services qui sont
disponibles (gouvernance)

L’intégration métier en tant que telle regroupe de nombreux thèmes et éléments
qui sont également communs à l’architecture SOA. La vision d’IBM concernant
l’intégration métier se fonde sur de nombreux concepts de base identiques figurant
dans l’architecture SOA. L’une des conséquences directes de cette vision est que les
solutions d’intégration métier peuvent exiger le recours à plusieurs produits pour
leur élaboration. IBM® fournit toute une gamme d’outils et de plateformes
d’exécution afin de prendre en charge les différentes étapes et aspects
opérationnels.

Pour paraphraser la vision d’IBM concernant l’intégration métier, elle doit
permettre aux entreprises de définir, créer, fusionner, consolider et simplifier les
processus métier à l’aide d’applications exécutées sous une infrastructure
informatique SOA. Le travail d’intégration métier se base véritablement sur des
rôles. Au niveau macro, ceci implique la conception, le développement, la
gouvernance, la gestion et la surveillance des applications de processus métier.
Grâce à l’utilisation d’outils et de procédures adéquats, vous pouvez automatiser
les processus métier impliquant des personnes et des systèmes hétérogènes à
l’intérieur, mais aussi à l’extérieur, de l’entreprise. L’un des points clés de
l’intégration métier est la possibilité d’optimiser vos activités commerciales afin
qu’elles soient suffisamment efficaces, évolutives, fiables et flexibles pour gérer des
modifications.

L’intégration métier exige des outils de développement, des serveurs d’exécution,
des outils de surveillance, un référentiel de services, des boîtes à outils et des
modèles de processus. Etant donné que l’intégration métier se compose de
nombreux aspects différents, vous allez découvrir que plusieurs outils de
développement doivent être utilisés pour développer une solution. Ces outils
permettent aux développeurs d’intégration d’assembler des solutions métier
complexes. Un serveur est un moteur d’activités à hautes performances ou un
conteneur de services qui exécute des applications complexes. La direction veut
toujours être informée de l’attribution des tâches au sein de l’entreprise et c’est à ce
moment-là que les outils de surveillance interviennent. A mesure que les
entreprises créent des processus ou services métier, la gouvernance, la classification
et le stockage de ces services deviennent essentiels. Cette fonction est mise à
disposition par un référentiel de services. Des boîtes à outils spéciales permettant
de créer des éléments spécifiques à la solution, comme les connecteurs ou les
adaptateurs de systèmes existants, sont souvent requises.

4 Développement et déploiement

L’intégration métier ne se base pas sur un produit unique. Elle mobilise la
quasi-totalité du personnel et tous les aspects commerciaux d’une et de plusieurs
entreprises. L’intégration métier regroupe de nombreux services et éléments
figurant dans l’architecture de référence SOA.

Pour plus de détails sur ces concepts et pour consulter des exemples de
programmation, reportez-vous à :
v WebSphere Business Integration Primer : Process Server, BPEL, SCA, and SOA, IBM

Press, 2008.
v Getting Started with IBM WebSphere Process Server and IBM WebSphere Enterprise

Service Bus Part 1 : Development, IBM Redbooks, SG24-7608-00, June 2008.

Figure 1. Les outils IBM prolongent le cycle de vie complet de la gestion des processus
métier, ce qui vous permet de concevoir, assembler, déployer et gérer vos processus.

Chapitre 1. Développement de solutions d’intégration métier 5

Concepts associés

Modèle de programmation pour l’intégration métier
L’intégration métier n’est pas une tâche facile. Il existe un très grand nombre de
technologies et de méthodes permettant de représenter ou d’interagir avec des
données. Par conséquent, le fait de réussir une intégration se révèle être une tâche
difficile. Si vous considérez les trois aspects composant un modèle de
programmation (données, appel et composition) et que vous appliquez les
nouveaux paradigmes d’une approche orientée services, le nouveau modèle de
programmation d’une architecture SOA commence à prendre forme.
Architecture et modèles d’intégration métier
Un projet d’intégration métier classique implique la coordination de plusieurs
actifs informatiques différents qui peuvent être en cours d’exécution sur différentes
plateformes et qui ont été développés à différentes périodes via diverses
technologies. La capacité à manipuler et échanger facilement des informations à
l’aide d’un ensemble de composants divers représente un défi technique énorme.
Le modèle de programmation utilisé pour développer des solutions d’intégration
métier permet de relever ce défi.
Création d’applications d’intégration métier
Intégration métier implique l’intégration d’applications, de données et de processus
dans une ou plusieurs entreprises. L’intégration implique également le
développement de processus, car il existe une certaine logique dans la séquence
d’applications assemblées, afin de les intégrer. WebSphere Integration Developer
permet de créer des applications d’intégration métier.

Modèle de programmation pour l’intégration métier
L’intégration métier n’est pas une tâche facile. Il existe un très grand nombre de
technologies et de méthodes permettant de représenter ou d’interagir avec des
données. Par conséquent, le fait de réussir une intégration se révèle être une tâche
difficile. Si vous considérez les trois aspects composant un modèle de
programmation (données, appel et composition) et que vous appliquez les
nouveaux paradigmes d’une approche orientée services, le nouveau modèle de
programmation d’une architecture SOA commence à prendre forme.

Tout d’abord, nous constatons que le langage XML (Extensible Markup Language)
est principalement utilisé pour représenter des données et que leur programmation
est effectuée à l’aide d’objets SDO (Service Data Objects) ou de fonctions XML
natives, telle que XPath ou XSLT (Extensible Stylesheet Language Transformation).
Ensuite, un appel de service effectue un mappage vers l’architecture SCA (Service
Component Architecture). Pour finir, la composition est intégrée à l’orchestration
des processus à l’aide du langage BPEL (Business Process Execution Language). Le
schéma suivant illustre les trois aspects de ce nouveau modèle de programmation.

6 Développement et déploiement

Architecture SCA

En plus de fournir une syntaxe cohérente et un mécanisme d’appel des services,
l’architecture SCA sert de cadre d’appel et permet aux développeurs d’encapsuler
les implémentations de services dans des composants réutilisables. Elle permet aux
développeurs de définir des interfaces, des implémentations et des références
indépendamment du point de vue technologique, vous donnant ainsi la possibilité
d’associer des éléments à la technologie de votre choix. L’architecture SCA
distingue la logique métier de l’infrastructure afin que les programmeurs
d’application puissent se consacrer à la résolution de problèmes métier.
Concepts associés

Développement de solutions d’intégration métier
Cette section évoque les principes du modèle de programmation pour l’intégration
métier. Elle présente l’architecture SCA (Service Component Architecture) et les
modèles associés à l’intégration métier.

Chapitre 1. Développement de solutions d’intégration métier 7

Architecture et modèles d’intégration métier
Un projet d’intégration métier classique implique la coordination de plusieurs
actifs informatiques différents qui peuvent être en cours d’exécution sur différentes
plateformes et qui ont été développés à différentes périodes via diverses
technologies. La capacité à manipuler et échanger facilement des informations à
l’aide d’un ensemble de composants divers représente un défi technique énorme.
Le modèle de programmation utilisé pour développer des solutions d’intégration
métier permet de relever ce défi.

Cette section présente l’architecture SCA (Service Component Architecture) et les
modèles associés à l’intégration métier. L’utilisation de modèles semblent se
généraliser dans notre vie quotidienne. Les modèles de patrons, les modèles
d’apprentissage personnalisé (″Think-and-learn″) destinés aux enfants, les modèles
pour la construction de maisons individuelles, les modèles de sculpture sur bois,
les modèles de vols, les modèles de configuration des vents, les modèles de
pratique en médecine, les modèles d’achat des clients, les modèles de flux de
travaux, les modèles de conception en informatique, et beaucoup d’autres encore.

Les modèles se révèlent être utiles pour les concepteurs et développeurs de
solutions. Il n’est donc pas surprenant de voir des modèles d’intégration métier et
d’intégration d’entreprise. Il existe toute une gamme de modèles pouvant être
appliqués à l’intégration métier, y compris des modèles de demande et de réponse
pour le routage, des modèles de canaux (publication/abonnement) et beaucoup
d’autres encore. Les modèles abstraits fournissent un modèle de résolution
appliqués à une certaine catégorie de problèmes, alors que les modèles concrets
fournissent des indications plus précises concernant la méthode d’implémentation
d’une solution spécifique. Cette section traite des modèles devant traiter l’appel de
données et de services qui constituent la structure du modèle de programmation
de la stratégie des logiciels IBM pour l’intégration métier de WebSphere.

8 Développement et déploiement

Concepts associés

Développement de solutions d’intégration métier
Cette section évoque les principes du modèle de programmation pour l’intégration
métier. Elle présente l’architecture SCA (Service Component Architecture) et les
modèles associés à l’intégration métier.
Scénarios d’intégration métier
Les entreprises disposent de nombreux systèmes logiciels différents qui sont
utilisés dans le cadre de leur activité. De plus, l’intégration de ces composants
métier est propre à chaque entreprise.
Rôles, produits et défis techniques
La réussite de projets d’intégration métier dépend de l’association de rôles de
développement spécialisés, de techniques de programmation et de suites d’outils.
Infrastructure d’objets métier
L’industrie du logiciel a développé plusieurs modèles et infrastructures de
programmation permettant aux développeurs d’encapsuler des informations sur un
objet métier (BO - Business Object). L’infrastructure d’un BO doit généralement
assurer l’indépendance de la base de données, mapper de façon transparente les
objets métier personnalisés par l’administrateur vers les tables de la base de
données ou vers les structures de données dans les systèmes d’information
d’entreprise, mais aussi associer les objets métier aux interfaces utilisateur. Les
schémas XML sont récemment devenus les schémas les plus courants et les plus
acceptés pour représenter la structure d’un objet métier.
Architecture de composants de service
L’architecture SCA est un concept que vous pouvez implémenter de différentes
manières. Elle n’exige aucune technologie, langage de programmation, protocole
d’appel ou mécanisme de transport particulier. Les composants SCA sont décrits à
l’aide du langage SCDL (Service Component Definition Language) qui est un
langage basé sur XML.
Processus métier
Processus métier, plus précisément, processus métier basés sur BPEL, qui
constituent la base des composants de service dans l’architecture SCA.
Tâches utilisateur
Une tâche utilisateur est un composant impliquant l’interaction des personnes et
des services.

Scénarios d’intégration métier
Les entreprises disposent de nombreux systèmes logiciels différents qui sont
utilisés dans le cadre de leur activité. De plus, l’intégration de ces composants
métier est propre à chaque entreprise.

Les deux scénarios d’intégration de processus métier les plus répandus sont les
suivants :
v Courtier d’intégration : Dans ce scénario, la solution d’intégration métier agit

comme intermédiaire entre plusieurs d’applications dorsales. Par exemple, vous
devez vous assurer que lorsqu’un client passe une commande à l’aide de
l’application de gestion de commandes en ligne, la transaction met à jour les
informations correspondantes dans votre application dorsale CRM (Customer
Relationship Management). Dans ce scénario, la solution d’intégration doit
pouvoir capturer et éventuellement transformer les informations requises de
l’application de gestion de commandes et appeler les services correspondants
dans l’application CRM.

v Automatisation des processus : Dans ce scénario, la solution d’intégration sert
de lien entre les différents services informatiques qui, dans le cas contraire,

Chapitre 1. Développement de solutions d’intégration métier 9

n’auraient aucun point commun. Par exemple, lorsqu’une entreprise embauche
un employé, la série d’actions suivante doit se dérouler :
– Les informations relatives à l’employé sont ajoutées au système de feuille de

paie.
– L’employé doit pouvoir accéder physiquement aux infrastructures et un

badge doit lui être fourni.
– L’entreprise peut fournir un ensemble de ressources matérielles à l’employé

(espace bureau, ordinateur, etc.).
– Le service informatique doit créer un profil utilisateur pour l’employé et

autoriser l’accès à toute une série d’applications.
L’automatisation de ce processus est courante dans un scénario d’intégration
métier. Dans ce cas, la solution implémente un flux automatisé qui est
déclenché du fait de l’ajout de l’employé au système de feuille de paie. Par
conséquent, le flux déclenche les étapes suivantes en créant des éléments de
travail pour les preneurs de décisions ou en appelant les services
correspondants.

Dans ces deux scénarios, la solution d’intégration doit accomplir les actions
suivantes :
1. Utiliser des sources d’informations diverses et des formats de données

différents, mais aussi pouvoir convertir des informations entre différents
formats.

2. Pouvoir appeler plusieurs services, en utilisant éventuellement différents
mécanismes et protocoles d’appel.

Concepts associés

Architecture et modèles d’intégration métier
Un projet d’intégration métier classique implique la coordination de plusieurs
actifs informatiques différents qui peuvent être en cours d’exécution sur différentes
plateformes et qui ont été développés à différentes périodes via diverses
technologies. La capacité à manipuler et échanger facilement des informations à
l’aide d’un ensemble de composants divers représente un défi technique énorme.
Le modèle de programmation utilisé pour développer des solutions d’intégration
métier permet de relever ce défi.

Rôles, produits et défis techniques
La réussite de projets d’intégration métier dépend de l’association de rôles de
développement spécialisés, de techniques de programmation et de suites d’outils.

Les projets d’intégration métier exigent quelques éléments de base :
v Une séparation claire des rôles au sein de l’entreprise en charge du

développement, afin de favoriser la spécialisation, ce qui améliore généralement
la qualité des composants individuels qui sont développés.

v Un modèle d’objet métier (BO - Business Object) commun qui permet aux
informations métier d’être représentées dans un modèle logique commun.

v Un modèle de programmation qui sépare clairement les interfaces des
implémentations, qui prend en charge un mécanisme d’appel de service
générique totalement indépendant de l’implémentation et qui concerne
uniquement les interfaces.

v Un ensemble d’outils et de produits intégrés qui prend en charge les rôles de
développement et empêche leur séparation.

Les sections suivantes détaillent chacun de ces éléments.

10 Développement et déploiement

Séparation claire des rôles

Un projet d’intégration métier a besoin de personnel pour quatre rôles de
collaboration clairement distincts :
v Analyste métier : Il s’agit d’experts de domaine en charge de capturer les

aspects métier d’un processus et de créer un modèle de processus qui représente
correctement le processus même. Leur mission est d’optimiser les performances
financières d’un processus. Ils ne s’intéressent pas aux aspects techniques de
l’implémentation de processus.

v Développeur de composants : Ils sont en charge de l’implémentation de services
et de composants individuels. Leur mission consiste à utiliser une technologie
spécifique pour l’implémentation. Ce rôle exige une formation solide en
programmation.

v Spécialiste en intégration : Ce rôle relativement nouveau consiste à assembler
un ensemble de composants existants dans une solution d’intégration métier
plus grande. Les développeurs d’intégration n’ont pas besoin de connaître les
détails techniques de chaque composant et service qu’ils réutilisent et connectent
entre eux. Théoriquement, ils doivent uniquement s’intéresser à comprendre les
interfaces des services qu’ils assemblent. Ils doivent utiliser les outils
d’intégration pour le processus d’assemblage.

v Déployeur de solutions : Les déployeurs et les administrateurs de solutions se
chargent de rendre les solutions d’intégration métier disponibles aux utilisateurs
finaux. En théorie, un déployeur de solutions se charge principalement de lier
une solution aux ressources physiques prêtes à la faire fonctionner (bases de
données, gestionnaires de files d’attente, etc.) et non pas de comprendre le
fonctionnement interne d’une solution. Sa mission première est la qualité de
service (QoS - Quality of Service).

Un modèle d’objet métier commun

Comme nous l’avons mentionné précédemment, les aspects clés d’un projet
d’intégration métier incluent la capacité à coordonner l’appel de plusieurs
composants et à gérer l’échange de données entre eux. Plus particulièrement,
différents composants peuvent utiliser différentes techniques pour représenter des
éléments métier, comme les données d’une commande, les informations relatives à
un client, etc. Par exemple, il se peut que vous ayez à intégrer une application
Java™ qui utilise des EJB (Enterprise Java Beans) d’entité pour représenter des
éléments métier et une application existante qui organise les informations dans des
fichiers de stockage COBOL. Par conséquent, une plateforme dont l’objectif est de
simplifier la création de solutions d’intégration doit également fournir une
méthode générique pour représenter des éléments métier, en faisant abstraction des
techniques utilisées par les systèmes dorsaux pour la gestion des données.
WebSphere Process Server et WebSphere Enterprise Service Bus permettent d’y
parvenir grâce à la structure d’objets métier.

Cette dernière permet aux développeurs d’utiliser des schémas XML afin de définir
la structure des données métier, mais aussi d’accéder et de manipuler les instances
de ces structures de données (objets métier) via un code XPath ou Java.
L’infrastructure d’objets métier se base sur la norme SDO (Service Data Object).

Modèle de programmation de l’architecture SCA (Service
Component Architecture)

Le modèle de programmation SCA représente la base de toute solution à
développer sur WebSphere Process Server et WebSphere Enterprise Service Bus.

Chapitre 1. Développement de solutions d’intégration métier 11

L’architecture SCA permet aux développeurs d’encapsuler les implémentations de
services dans des composants réutilisables. Elle permet de définir des interfaces,
des implémentations et des références indépendamment du point de vue
technologique, vous donnant ainsi la possibilité d’associer des éléments à la
technologie de votre choix. Il existe également un modèle de programmation client
SCA qui permet d’appeler ces composants. Plus particulièrement, il permet aux
infrastructures d’exécution basées sur Java d’interagir avec des exécutions non
Java. L’architecture SCA utilise des objets métier comme éléments de données pour
l’appel d’un service.

Outils et produits

IBM WebSphere Integration Developer est l’environnement de développement
intégré qui dispose de tous les outils nécessaires pour créer et composer des
solutions d’intégration métier basées sur les technologies susmentionnées. Ces
solutions sont généralement déployées dans WebSphere Process Server ou, dans
certains cas de figure, dans WebSphere Enterprise Service Bus.
Concepts associés

Architecture et modèles d’intégration métier
Un projet d’intégration métier classique implique la coordination de plusieurs
actifs informatiques différents qui peuvent être en cours d’exécution sur différentes
plateformes et qui ont été développés à différentes périodes via diverses
technologies. La capacité à manipuler et échanger facilement des informations à
l’aide d’un ensemble de composants divers représente un défi technique énorme.
Le modèle de programmation utilisé pour développer des solutions d’intégration
métier permet de relever ce défi.

Infrastructure d’objets métier
L’industrie du logiciel a développé plusieurs modèles et infrastructures de
programmation permettant aux développeurs d’encapsuler des informations sur un
objet métier (BO - Business Object). L’infrastructure d’un BO doit généralement
assurer l’indépendance de la base de données, mapper de façon transparente les
objets métier personnalisés par l’administrateur vers les tables de la base de
données ou vers les structures de données dans les systèmes d’information
d’entreprise, mais aussi associer les objets métier aux interfaces utilisateur. Les
schémas XML sont récemment devenus les schémas les plus courants et les plus
acceptés pour représenter la structure d’un objet métier.

D’un point de vue outils, WebSphere Integration Developer fournit aux
développeurs un modèle de BO commun, afin de représenter plusieurs sortes
d’entités issues de domaines différents. Pendant la phase de développement,
WebSphere Integration Developer représente les objets métier sous la forme de
schémas XML. Toutefois, au moment de l’exécution, ces mêmes objets métier sont
représentés dans la mémoire par l’instance Java d’un objet SDO. Un objet SDO est
une spécification standard que les systèmes IBM et BEA ont développé
conjointement et qu’ils ont convenu d’utiliser. IBM a étendu la spécification SDO
en incluant des services supplémentaires qui facilitent la manipulation des données
dans les objets métier.

Avant de nous intéresser à l’infrastructure d’un BO, penchons-nous un instant sur
les types basiques de données qui sont manipulées :
v Données d’instance correspond aux données réelles et aux structures de

données pouvant contenir de simples objets de base dotés de propriétés scalaires
jusqu’à des hiérarchies d’objets volumineux et complexes. Des définitions de

12 Développement et déploiement

données sont également incluses, comme la description de types d’attributs de
base, des informations de type complexe, la cardinalité et des valeurs par défaut.

v Métadonnées d’instance correspond à des données propres à une instance. Des
informations incrémentielles sont ajoutées aux données de base, comme le suivi
des modifications (aussi appelé ″récapitulatif des modifications″), les
informations de contexte associées à la manière dont l’objet ou les données ont
été créé(e)s, ainsi que les en-têtes et pieds de page d’un message.

v Métadonnées type correspond généralement aux informations propres à une
application, comme les mappages de niveau attribut vers des colonnes de
données (par exemple, le mappage du nom d’une zone d’un BO en un nom de
colonne de table SAP) de systèmes d’information d’entreprise (EIS - Enterprise
Information System) cibles.

v Services correspond généralement aux services auxiliaires qui obtiennent et
définissent les données, modifient les récapitulatifs ou fournissent un accès type
pour la définition de données.

Le tableau suivant indique comment les types de données de base sont
implémentés dans la plateforme WebSphere.

Tableau 2. Abstractions des données et implémentations correspondantes

Abstraction des données Implémentation

Données d’instance Objet métier (SDO)

Métadonnées d’instance Graphique métier

Métadonnées type Métadonnées d’entreprise, métadonnées type
de l’objet métier

Services Services de l’objet métier

Utilisation de l’infrastructure d’objets métier IBM

Comme nous l’avons vu précédemment, la structure d’un BO WebSphere Process
Server correspond à une extension de la norme SDO. Par conséquent, les objets
métier échangés entre les composants WebSphere Process Server correspondent à
des instances de la classe commonj.sdo.DataObject. Toutefois, la structure d’un BO
WebSphere Process Server ajoute plusieurs services et fonctions qui simplifient et
enrichissent la fonctionnalité DataObject de base.

Pour faciliter la création et la manipulation d’objets métier, la structure d’un BO
WebSphere étend les spécifications d’un objet SDO en fournissant un ensemble de
services Java. Ces services font partie du package com.ibm.websphere.bo :
v BOFactory : Service clé qui indique plusieurs méthodes permettant de créer des

instances d’objets métier.
v BOXMLSerializer : Indique plusieurs méthodes permettant de ″développer″ un

objet métier depuis un flux ou d’écrire le contenu d’un objet métier, au format
XML, dans un flux.

v BOCopy : Indique plusieurs méthodes permettant de copier des objets métier
(sémantique ″profonde″ et ″superficielle″).

v BODataObject : Vous permet d’accéder aux aspects de l’objet de données d’un
objet métier, comme le récapitulatif des modifications, le graphique métier et le
récapitulatif de l’événement.

v BOXMLDocument : Avant-guichet du service qui vous permet de manipuler
l’objet métier comme un document XML.

Chapitre 1. Développement de solutions d’intégration métier 13

v BOChangeSummary et BOEventSummary : Facilite l’accès et la manipulation
du récapitulatif des modifications et de la partie récapitulative d’un événement
dans un objet métier.

v BOEquality : Service qui vous permet de déterminer si deux objets métier
contiennent des informations identiques. Il prend en charge l’égalité profonde et
superficielle.

v BOType et BOTypeMetaData : Ces services matérialisent des instances de
commonj.sdo.Type et vous permettent de manipuler les métadonnées associées.
Les instances Type peuvent ensuite être utilisées pour créer des objets métier
″par type″.

v BOInstanceValidator : Valide les données composant un objet métier, afin de
vérifier s’il est conforme aux éléments XSD.

Concepts associés

Architecture et modèles d’intégration métier
Un projet d’intégration métier classique implique la coordination de plusieurs
actifs informatiques différents qui peuvent être en cours d’exécution sur différentes
plateformes et qui ont été développés à différentes périodes via diverses
technologies. La capacité à manipuler et échanger facilement des informations à
l’aide d’un ensemble de composants divers représente un défi technique énorme.
Le modèle de programmation utilisé pour développer des solutions d’intégration
métier permet de relever ce défi.

Architecture de composants de service
L’architecture SCA est un concept que vous pouvez implémenter de différentes
manières. Elle n’exige aucune technologie, langage de programmation, protocole
d’appel ou mécanisme de transport particulier. Les composants SCA sont décrits à
l’aide du langage SCDL (Service Component Definition Language) qui est un
langage basé sur XML.

Un composant SCA dispose des caractéristiques suivantes :
v Il encapsule un artefact d’implémentation qui contient la logique que le

composant peut exécuter.
v Il offre une ou plusieurs interfaces.
v Il peut offrir une ou plusieurs références aux autres composants. La logique

d’implémentation détermine si un composant affiche une référence. Si
l’implémentation exige l’appel d’autres services, le composant SCA doit afficher
une référence.

14 Développement et déploiement

Les informations suivantes traitent essentiellement de l’implémentation de
l’architecture SCA que WebSphere Process Server met à disposition et de l’outil
WebSphere Integration Developer qui permet de créer et de combiner des
composants SCA. WebSphere Process Server et WebSphere Integration Developer
prennent en charge les artefacts d’implémentation suivants :
v Objets Java simples
v Processus métier
v Machines d’état métier
v Tâches utilisateur
v Règles métier
v Flux de médiation

L’architecture SCA distingue la logique métier de l’infrastructure afin que les
programmeurs d’application puissent se consacrer à la résolution d’incidents
métier. WebSphere Process Server d’IBM se base sur ce même principe. La figure 2
affiche le modèle architectural de WebSphere Process Server.

Dans l’environnement WebSphere, la structure SCA se base sur l’environnement
d’exécution Java 2 Platform, Enterprise Edition (J2EE) de WebSphere Application
Server. La structure générale de WebSphere Process Server se compose d’un noyau
SOA, de services auxiliaires et de composants de service. La même structure dotée
d’un sous-ensemble de cette capacité globale, axée plus spécifiquement sur les
besoins de connectivité et d’intégration des applications de l’intégration métier, est
disponible dans WebSphere Enterprise Service Bus.

L’interface d’un composant SCA, comme illustrée dans la figure 3, à la page 16,
peut être représentée de l’une des manières suivantes :
v Une interface Java
v Un type de port WSDL (dans WSDL 2.0, le type de port correspond à une

interface)

Figure 2. Structure à base de composants WebSphere Process Server

Chapitre 1. Développement de solutions d’intégration métier 15

Un module SCA est un groupe de composants connectés les uns aux autres après
avoir directement relié les références et les implémentations. Dans WebSphere
Integration Developer, chaque module SCA dispose d’un diagramme d’assemblage
qui lui est associé et qui représente l’application métier intégrée contenant des
composants SCA et des fils de connexion. L’une des principales missions du
développeur d’intégration est de créer le diagramme d’assemblage en connectant
les composants qui forment la solution. WebSphere Integration Developer fournit
un éditeur d’assemblage graphique pour vous aider dans cette tâche. Lors de la
création d’un diagramme d’assemblage, le développeur d’intégration dispose de
deux moyens d’action :
v Approche descendante définit les composants, leurs interfaces et leurs

interactions avant de créer l’implémentation. Le développeur d’intégration peut
définir la structure du processus, identifier les composants requis et leurs types
d’implémentation, puis générer un squelette d’implémentation.

v Approche ascendante associe des composants existants. Dans ce cas, le
développeur d’intégration doit uniquement faire glisser et déposer les
implémentations existantes dans le diagramme d’assemblage.

L’approche ascendante est plus couramment utilisée lorsque les clients disposent
de services existants qu’ils veulent réutiliser et combiner. Lorsque vous souhaitez
créer de nouveaux objets métier, vous utiliserez certainement l’approche
descendante.

Modèle de programmation SCA : Principes

Le concept d’un composant logiciel est à la base du modèle de programmation SCA.
Comme nous l’avons mentionné précédemment, un composant est une unité qui
implémente une logique et qui la rend disponible aux autres composants via une
interface. Un composant peut également exiger les services rendus disponibles par
les autres composants. Dans ce cas, le composant affiche une référence pour ces
services.

Figure 3. SCA dans WebSphere Process Server

16 Développement et déploiement

Dans SCA, chaque composant doit afficher au moins une interface. Le diagramme
d’assemblage de la figure 4 dispose de trois composants : C1, C2 et C3. Chacun
d’entre eux dispose d’une interface représentée par la lettre I entourée d’un cercle.
Un composant peut également se référer à d’autres composants. Les références sont
représentées par la lettre R entourée d’un carré. Les références et les interfaces sont
ensuite liées dans un diagramme d’assemblage. En règle générale, le développeur
d’intégration ″résout″ les références en les connectant aux interfaces de composants
qui implémentent la logique requise.

Appel de composants SCA

Pour fournir un accès aux services à appeler, le modèle de programmation SCA
contient une classe ServiceManager qui permet aux développeurs de rechercher les
services disponibles par nom. Voici un fragment de code Java type illustrant la
recherche d’un service. La classe ServiceManager permet d’obtenir une référence
au service BOFactory qui est un service fourni par le système :
//Get service manager singleton
ServiceManager smgr = new ServiceManager();
//Access BOFactory service
BOFactory bof =(BOFactory)

smgr.locateService("com/ibm/websphere/bo/BOFactory");

Remarque : Le package de la classe ServiceManager est com.ibm.websphere.sca.

Les développeurs peuvent utiliser un mécanisme similaire pour obtenir les
références de leurs propres services en spécifiant le nom du service référence dans
la méthode locateService. Après avoir obtenu la référence d’un service à l’aide de la
classe ServiceManager, vous pouvez invoquer n’importe quelle opération
disponible sur ce service indépendamment du protocole d’appel et du type
d’implémentation.

Figure 4. Diagramme d’assemblage

Chapitre 1. Développement de solutions d’intégration métier 17

Pour appeler des composants SCA, il existe trois styles d’appel différents :
v Appel synchrone : Lorsque vous utilisez ce style d’appel, l’appelant attend de

façon synchrone que la réponse soit envoyée. Il s’agit du mécanisme d’appel
classique.

v Appel asynchrone : Ce mécanisme permet à l’appelant d’appeler un service sans
attendre l’envoi immédiat d’une réponse. Au lieu d’obtenir une réponse,
l’appelant obtient un ″ticket″ qui peut être utilisé ultérieurement pour récupérer
la réponse. L’appelant récupère la réponse en appelant une opération spéciale
qui doit être fournie par l’appelé dans ce cas de figure.

v Appel asynchrone avec rappel : Ce style d’appel est identique au précédent,
mais l’appelé est chargé de l’envoi de la réponse. L’appelant doit afficher une
opération spéciale (opération de rappel) que l’appelé peut appeler lorsque la
réponse est prête.

Importations

Parfois, les composants ou les fonctions disponibles sur des systèmes externes
indiquent la logique métier, comme les applications existantes ou d’autres
implémentations externes. Dans ce cas, le développeur d’intégration ne peut pas
résoudre la référence en connectant une référence à un composant qui contient
l’implémentation dont il/elle a besoin pour connecter la référence à un composant
qui ″pointe vers″ l’implémentation externe. Ce composant est appelé importation.
Lors de la définition d’une importation, vous devez spécifier la méthode d’accès à
un service externe (emplacement), ainsi que le protocole d’appel.

Exportations

De même, si l’accès à votre composant s’effectue via des applications externes, ce
qui est souvent le cas, vous devez le rendre accessible. Pour cela, utilisez un
composant spécial qui affiche votre logique au ″monde externe″. Ce composant est
appelé exportation. Il peut être appelé de façon synchrone ou asynchrone.

Références autonomes

Dans WebSphere Process Server, un module de service SCA est intégré comme
fichier EAR J2EE qui contient plusieurs autres sous-modules J2EE. Les éléments
J2EE, comme un fichier WAR, peuvent être intégrés au module SCA. Les artefacts
autres que SCA, comme les JSP, peuvent également être intégrés à un module de
service SCA. Ce dernier leur permet d’appeler des services SCA à l’aide du modèle
de programmation client SCA grâce à un type de composant spécial appelé
″référence autonome″.

Le modèle de programmation SCA est hautement déclaratif. Les développeurs
d’intégration peuvent configurer des aspects, comme le comportement
transactionnel des appels, la propagation des données d’identification de sécurité,
si un appel doit être synchrone ou asynchrone de façon déclarative, directement
dans le diagramme d’assemblage. L’exécution SCA, non pas les développeurs, doit
se charger de l’implémentation du comportement spécifié dans ces modificateurs.
La flexibilité déclarative de SCA est l’une des fonctions les plus puissantes de ce
modèle de programmation. Les développeurs peuvent se consacrer à implémenter
la logique métier, au lieu de répondre aux aspects techniques, comme faciliter les
mécanismes d’appel asynchrone. Tous ces aspects sont automatiquement gérés par
l’exécution SCA.

18 Développement et déploiement

Qualificateurs

Les qualificateurs régissent l’interaction entre un client de service et un service
cible. Des qualificateurs peuvent être spécifiés dans les références de composant de
service, les interfaces et les implémentations. Ils sont généralement externes à une
implémentation.

Les différentes catégories de qualificateurs sont les suivantes :
v Transaction, qui spécifie la manière dont les contextes transactionnels sont gérés

dans un appel SCA.
v Session d’activité, qui spécifie la manière dont les contextes de session d’activité

sont propagés.
v Sécurité, qui spécifie les autorisations.
v La fiabilité asynchrone fournit des règles pour la distribution de messages

asynchrones.

SCA autorise l’application de ces qualificateurs de qualité de service (QoS - Quality
of Service) aux composants de façon déclarative (sans aucune programmation ou
modification du code d’implémentation des services). Ceci peut être effectué dans
WebSphere Integration Developer. En général, les qualificateurs QoS sont appliqués
lorsque vous êtes prêt à envisager le déploiement d’une solution. Pour plus
d’informations, reportez-vous à la section Référence du qualificateur pour la
qualité de service.
Concepts associés

Architecture et modèles d’intégration métier
Un projet d’intégration métier classique implique la coordination de plusieurs
actifs informatiques différents qui peuvent être en cours d’exécution sur différentes
plateformes et qui ont été développés à différentes périodes via diverses
technologies. La capacité à manipuler et échanger facilement des informations à
l’aide d’un ensemble de composants divers représente un défi technique énorme.
Le modèle de programmation utilisé pour développer des solutions d’intégration
métier permet de relever ce défi.

Processus métier
Processus métier, plus précisément, processus métier basés sur BPEL, qui
constituent la base des composants de service dans l’architecture SCA.

Qu’il s’agisse d’une simple approbation de commande ou d’un processus de
fabrication complexe, les entreprises ont toujours utilisé des processus métier. Un
processus métier est un ensemble d’activités, associées à une activité commerciale,
où chacune est appelée dans un ordre spécifique pour atteindre un objectif
commercial. Dans le cadre de l’intégration métier, un processus métier est défini
avec un langage de balisage.

Ces processus métier peuvent avoir recours à d’autres services auxiliaires ou
d’autres composants de service, comme des machines d’état métier, des tâches
utilisateur, des règles métier ou des mappes de données. Puis, une fois développés,
ces processus peuvent être rapidement terminés ou exécutés pendant une durée
prolongée. Il arrive parfois que ces processus soient exécutés pendant plusieurs
années.

Comme la plupart des composants utilisés dans J2EE, les processus métier sont
exécutés dans un conteneur. Dans la plateforme IBM WebSphere, ce conteneur

Chapitre 1. Développement de solutions d’intégration métier 19

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.wbit.612.help.addev.doc/topics/aqosref.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.wbit.612.help.addev.doc/topics/aqosref.html

spécial porte le nom de ″Business Process Choreographer″. Dans WebSphere
Process Server, Business Process Choreographer est chargé de l’exécution des
processus métier et des tâches humaines.
Concepts associés

Architecture et modèles d’intégration métier
Un projet d’intégration métier classique implique la coordination de plusieurs
actifs informatiques différents qui peuvent être en cours d’exécution sur différentes
plateformes et qui ont été développés à différentes périodes via diverses
technologies. La capacité à manipuler et échanger facilement des informations à
l’aide d’un ensemble de composants divers représente un défi technique énorme.
Le modèle de programmation utilisé pour développer des solutions d’intégration
métier permet de relever ce défi.

Tâches utilisateur
Une tâche utilisateur est un composant impliquant l’interaction des personnes et
des services.

Certaines tâches utilisateur correspondent à des tâches à effectuer. Elles peuvent
être lancées par un utilisateur ou par un service automatique. Les tâches utilisateur
permettent notamment d’intégrer des activités dans des processus métier
nécessitant une intervention humaine, par exemple le traitement et l’approbation
manuels d’une exception. D’autres tâches utilisateur permettent d’appeler un
service, ou de coordonner la collaboration entre les utilisateurs. Toutefois, quel que
soit le mode de lancement d’une tâche, c’est une personne membre d’un groupe et
à laquelle la tâche est affectée qui effectue le travail associé à la tâche.

Les tâches utilisateur sont affectées soit de manière statique, soit à l’aide de critères
(par exemple rôle ou groupe) qui sont résolus lors de l’exécution à partir d’un
répertoire d’utilisateurs. Dans d’autres cas, les données en entrée d’une tâche
utilisateur ou d’un processus métier sont utilisées pour rechercher les personnes
qualifiées pour travailler sur une tâche précise.
Concepts associés

Architecture et modèles d’intégration métier
Un projet d’intégration métier classique implique la coordination de plusieurs
actifs informatiques différents qui peuvent être en cours d’exécution sur différentes
plateformes et qui ont été développés à différentes périodes via diverses
technologies. La capacité à manipuler et échanger facilement des informations à
l’aide d’un ensemble de composants divers représente un défi technique énorme.
Le modèle de programmation utilisé pour développer des solutions d’intégration
métier permet de relever ce défi.

20 Développement et déploiement

Création d’applications d’intégration métier
Intégration métier implique l’intégration d’applications, de données et de processus
dans une ou plusieurs entreprises. L’intégration implique également le
développement de processus, car il existe une certaine logique dans la séquence
d’applications assemblées, afin de les intégrer. WebSphere Integration Developer
permet de créer des applications d’intégration métier.

Cette section fournit des informations générales concernant le processus de
développement d’un module d’intégration métier.

Le flux de développement classique des modules et des modules de médiation est
le suivant :
1. Démarrez WebSphere Integration Developer et ouvrez un espace de travail.
2. Basculez vers la perspective Business Integration pour effectuer le

développement.
3. Créez une bibliothèque pour stocker des artefacts, comme les objets métier et

les interfaces qui sont partagés entre plusieurs modules.
4. Créez un nouveau module ou un module de médiation.
5. Créez des objets métier pour contenir des données d’application, par exemple

: des données client ou les données d’une commande.
6. Créez l’interface et définissez les opérations d’interface pour chaque

composant. L’interface détermine les données pouvant être transférées d’un
composant à un autre.

7. Créez et implémentez des composants de service.
8. Créez un assemblage de modules en ajoutant des composants de service, des

importations et des exportations au diagramme d’assemblage. Connectez les
composants. Associez les importations et les exportations à un protocole.

9. Testez le module dans l’environnement de tests intégré.
10. Déployez le module dans WebSphere Process Server.
11. Partagez le module testé avec les autres membres de l’équipe en le plaçant

dans un référentiel.
Concepts associés

Développement de solutions d’intégration métier
Cette section évoque les principes du modèle de programmation pour l’intégration
métier. Elle présente l’architecture SCA (Service Component Architecture) et les
modèles associés à l’intégration métier.

Chapitre 1. Développement de solutions d’intégration métier 21

22 Développement et déploiement

Chapitre 2. Développement de modules de service

Un composant de service doit être contenu dans un module de service. Le
développement de modules destinés à contenir des composants est essentiel pour
permettre la fourniture de services à d’autres modules.

Avant de commencer

Cette tâche suppose qu’une analyse des exigences montre que l’implémentation
d’un composant de service que d’autres modules utiliseront est avantageuse.

A propos de cette tâche

Après avoir analysé vos besoins, vous pouvez décider que la fourniture et
l’utilisation de composants de service constituent un moyen efficace de traiter les
informations. Si vous déterminez que des composants de service réutilisables
présenteraient un avantage pour votre environnement, créez un module de service
destiné à contenir les composants de service.

Procédure

1. Identifiez les composants de service que d’autres modules peuvent utiliser.
Une fois que vous avez identifié les composants de service, passez à la section
«Développement de composants de service».

2. Identifiez des composants de service dans une application qui pourraient
utiliser des composants de service dans d’autres modules de service.
Une fois que vous avez identifié les composants de service et les composants
cibles correspondants, passez à la section «Appel de composants» ou «Appel
dynamique des composants »

3. Reliez les composants client aux composants cible par le biais de connexions.

© Copyright IBM Corp. 2005, 2009 23

Concepts associés

Présentation du développement de modules
Un module est une unité de déploiement de base pour une application WebSphere
Process Server. Un module peut contenir des composants, des bibliothèques et des
modules de transfert utilisés par l’application.
Présentation de l’isolement des modules et des cibles
Lors du développement de modules, vous êtes amené à identifier des services
exploités par plusieurs modules. Cette méthode d’optimisation des services permet
de raccourcir le cycle de développement et de réduire les coûts. Lorsqu’un service
est utilisé par de nombreux modules, il convient d’isoler les modules appelants de
la cible afin que, dans le cas où la mise à niveau d’une cible est effectuée, le
basculement sur le nouveau service puisse s’effectuer de manière transparente
vis-à-vis du module appelant. La présente rubrique compare le modèle d’appel
simple et le modèle d’appel isolé, en illustrant par un exemple les avantages offerts
par la technique d’isolement. Bien que l’exemple décrit soit spécifique, il existe
d’autres méthodes pour isoler les modules et les cibles.
Liaisons HTTP
La liaison HTTP permet de relier une architecture SOA à HTTP. Cela permet
d’intégrer les applications HTTP existantes ou récemment développées aux
environnements d’architecture SOA (Service Oriented Architecture).
Tâches associées

Développement de composants de service
Développez des composants de service pour fournir une logique réutilisable à
plusieurs applications dans votre serveur.
Appel de composants
Les composants avec modules peuvent utiliser des composants sur n’importe quel
noeud d’un cluster WebSphere Process Server.
Appel dynamique d’un composant
Lorsqu’un module appelle un composant qui a une interface de type de port
WSDL (Web Service Descriptor Language), il doit appeler le composant de façon
dynamique à l’aide de la méthode invoke().

Présentation du développement de modules
Un module est une unité de déploiement de base pour une application WebSphere
Process Server. Un module peut contenir des composants, des bibliothèques et des
modules de transfert utilisés par l’application.

Le développement de modules consiste notamment à assurer que les composants,
les modules de transfert et les bibliothèques (collections d’artefacts référencés par
le module) requis par l’application sont disponibles sur le serveur de production.

WebSphere Integration Developer est l’outil principal de développement des
modules destinés à être déployés sur WebSphere Process Server. Bien qu’il soit
possible de développer des modules dans d’autres environnements, il est
préférable d’utiliser WebSphere Integration Developer.

WebSphere Process Server prend en charge les modules de service métier et les
modules de médiation. Les deux modules et les modules de médiation sont des
types de module SCA (Service Component Architecture). Un module de
communication permet les communications entre applications en transformant
l’appel de service dans un format compris par la cible, en transmettant la demande
à la cible et en renvoyant le résultat au module émetteur. Un module de service

24 Développement et déploiement

métier implémente la logique d’un processus métier. Toutefois, un module peut
également inclure la même logique de médiation qui peut être intégrée à un
module de médiation.

Les sections suivantes décrivent comment implémenter et mettre à jour des
modules sous WebSphere Process Server.

Composants

Les modules SCA contiennent des composants qui forment la structure de base
permettant d’encapsuler la logique métier réutilisable. Les composants fournissent
et consomment des services qui sont associés à des interfaces, des références et des
implémentations. L’interface définit un contrat entre un composant de service et un
composant appelant.

Avec WebSphere Process Server, un module peut soit exporter un composant de
service pour qu’il soit utilisé par d’autres modules, soit importer un composant de
service pour l’utiliser. Pour appeler un composant de service, un module appelant
fait référence à l’interface du composant de service. Les références aux interfaces
sont résolues à travers la configuration des références du module appelant à leurs
interfaces respectives.

Pour développer un module, vous devez effectuer les activités suivantes :
1. Définir ou identifier des interfaces pour les composants du module.
2. Définir ou manipuler des objets métier utilisés par les composants.
3. Définir ou modifier des composants via leurs interfaces.

Remarque : Un composant est défini par le biais de son interface.
4. Facultatif : Exporter ou importer des composants de service.
5. Créez un fichier d’archive d’entreprise (EAR - Enterprise Archive) à déployer

dans la phase d’exécution. Créez le fichier à l’aide de la fonction EAR
d’exportation dans WebSphere Integration Developer ou de la commande
serviceDeploy.

Types de développement

WebSphere Process Server comprend un modèle de programmation de composant
afin de faciliter un paradigme de programmation orientée services. Pour utiliser ce
modèle, un fournisseur exporte les interfaces d’un composant de service de façon à
ce qu’un client puisse importer ces interfaces et utiliser le composant de service
comme s’il était local. Un développeur utilise soit des interfaces fortement typées,
soit des interfaces dynamiquement typées pour implémenter ou appeler le
composant de service. Les interfaces et leurs méthodes sont décrites dans la section
Références de ce centre de documentation.

Après avoir installé des modules de service sur vos serveurs, vous pouvez utiliser
la console d’administration pour modifier le composant cible pour une référence
d’une application. La nouvelle cible doit accepter le même type d’objet métier et
effectuer la même opération que ce que la référence de l’application demande.

Remarques concernant le développement de composants de
service

Lorsque vous développez un composant de service, posez-vous les questions
suivantes :

Chapitre 2. Développement de modules de service 25

v Ce composant de service va-t-il être exporté et utilisé par un autre module ?
Si c’est le cas, assurez-vous que la définition portant sur le composant va
pouvoir être utilisée par un autre module.

v L’exécution de ce composant de service prendra-t-elle relativement longtemps ?
Si c’est le cas, envisagez d’implémenter une interface asynchrone pour le
composant de service.

v Est-ce avantageux de décentraliser le composant de service ?
Si c’est le cas, envisagez de placer une copie du composant de service dans un
module de service qui est déployé sur un cluster de serveurs afin de bénéficier
du traitement parallèle.

v L’application nécessite-t-elle un mélange de ressources à une phase et à deux
phases ?
Si c’est le cas, assurez-vous d’activer le support du dernier participant pour
l’application.

Remarque : Si vous créez votre application à l’aide de WebSphere Integration
Developer ou créez le fichier EAR installable à l’aide de la commande
serviceDeploy, ces outils activent automatiquement le support pour l’application.
Consultez la rubrique consacrée à l’«utilisation de ressources de validation à une
phase et de ressources de validation à deux phases dans la même transaction»
dans le centre de documentation de WebSphere Application Server Network
Deployment.

Tâches associées

Développement de modules de service
Un composant de service doit être contenu dans un module de service. Le
développement de modules destinés à contenir des composants est essentiel pour
permettre la fourniture de services à d’autres modules.

Développement de composants de service
Développez des composants de service pour fournir une logique réutilisable à
plusieurs applications dans votre serveur.

Avant de commencer

Cette tâche suppose que vous avez déjà développé et identifié le traitement qui est
utile pour plusieurs modules.

A propos de cette tâche

Plusieurs modules peuvent utiliser un composant de service. L’exportation d’un
composant de service rend celui-ci disponible pour les autres modules qui se
réfèrent à lui par le biais d’une interface. Cette tâche explique comment compiler le
composant de service de manière à ce que d’autres modules puissent l’utiliser.

Remarque : Un composant de service unique peut contenir plusieurs interfaces.

Procédure

1. Définir l’objet de données permettant de déplacer des données entre l’appelant
et le composant de service.
L’objet de données et son type font partie de l’interface entre les appelants et le
composant de service.

26 Développement et déploiement

2. Définir une interface que les appelants utiliseront pour référencer le composant
de service.
La définition de cette interface nomme le composant de service et répertorie
toutes les méthodes disponibles dans ce composant de service.

3. Générer la classe implémentant l’appel du service.
4. Développer l’implémentation de la classe générée.
5. Sauvegarder les interfaces et les implémentations du composant dans des

fichiers dotés d’une extension .java.
6. Empaqueter le module de service et les ressources nécessaires dans un fichier

JAR.
Reportez-vous à la section «Déploiement d’un module sur un serveur de
production» de ce centre de documentation pour obtenir une description des
étapes 6 à 8.

7. Exécuter la commande serviceDeploy pour créer un fichier EAR installable
contenant l’application.

8. Installer l’application sur le noeud du serveur.
9. Facultatif : Configurer les connexions entre les appelants et le composant de

service correspondant, en cas d’appel d’un composant de service d’un autre
module de service.
La section «Administration» de ce centre de documentation explique comment
configurer ces connexions.

Exemples de développement de composants

Cet exemple montre un composant de service synchrone qui implémente une
méthode unique, CustomerInfo. La première section définit l’interface du
composant de service qui implémente une méthode appelée getCustomerInfo.
public interface CustomerInfo {
public interface CustomerInfo { public Customer getCustomerInfo(String
customerID);
}
}

Le bloc de code suivant implémente le composant de service.
public class CustomerInfoImpl implements CustomerInfo {
public Customer getCustomerInfo(String customerID) {
Customer cust = new Customer();

cust.setCustNo(customerID);
cust.setFirstName("Victor");
cust.setLastName("Hugo");
cust.setSymbol("IBM");
cust.setNumShares(100);
cust.setPostalCode(10589);
cust.setErrorMsg("");

return cust;
}
}

x

La section suivante est l’implémentation de la classe associée à StockQuote.
public class StockQuoteImpl implements StockQuote {

public float getQuote(String symbol) {

Chapitre 2. Développement de modules de service 27

return 100.0f;
}
}

Que faire ensuite

Appelez le service.
Tâches associées

Développement de modules de service
Un composant de service doit être contenu dans un module de service. Le
développement de modules destinés à contenir des composants est essentiel pour
permettre la fourniture de services à d’autres modules.

Appel de composants
Les composants avec modules peuvent utiliser des composants sur n’importe quel
noeud d’un cluster WebSphere Process Server.

Avant de commencer

Avant d’appeler un composant, assurez-vous que le module qui contient le
composant est installé sur WebSphere Process Server.

A propos de cette tâche

Les composants peuvent utiliser n’importe quel composant de service disponible
dans un cluster WebSphere Process Server en utilisant le nom du composant et en
transférant le type de données qu’attend le composant. L’appel d’un composant
dans cet environnement implique la localisation, puis la création de la référence
vers le composant nécessaire.

Remarque : Un composant de module peut appeler un composant à l’intérieur du
même modèle : cette opération s’appelle un appel intra-module. Implémentez les
appels externes (appels inter-modules) en exportant l’interface dans le composant
fournisseur et en important l’interface dans le composant appelant.

Important : Lors de l’appel d’un composant résidant sur un serveur autre que le
serveur sur lequel s’exécute le module appelant, vous devez apportez des
modifications de configuration à ces deux serveurs. Les configurations requises
dépendent du mode d’appel du composant (appel asynchrone ou appel
synchrone). La procédure de configuration spécifique des serveurs d’applications
est décrite dans les tâches associées.

Procédure

1. Déterminer les composants requis par le module appelant.
Notez le nom de l’interface dans un composant et le type de données dont
l’interface a besoin.

2. Définir un objet de données.
Bien que l’entrée ou le retour puisse être une classe Java, l’idéal est un objet de
données de service.

3. Localiser le composant.
a. Utiliser la classe ServiceManager pour obtenir les références disponibles

pour le module appelant.

28 Développement et déploiement

b. Utiliser la méthode locateService() pour trouver le composant.
En fonction du composant, l’interface peut être soit un type de port WSDL
(Web Service Descriptor Language), soit une interface Java.

4. Appeler le composant de manière synchrone.
Vous pouvez soit appeler le composant par le biais d’une interface Java, soit
utiliser la méthode invoke() pour appeler le composant de manière dynamique.

5. Traiter le retour.
Le composant peut générer une exception, aussi le client doit-il être capable de
traiter cette possibilité.

Exemple d’appel d’un composant

L’exemple suivant permet de créer une classe ServiceManager.
ServiceManager serviceManager = new ServiceManager();

Cet exemple utilise la classe ServiceManager pour obtenir une liste de composants
à partir d’un fichier contenant les références des de composants.
InputStream myReferences = new FileInputStream("MyReferences.references");
ServiceManager serviceManager = new ServiceManager(myReferences);

Le code suivant localise un composant qui implémente l’interface Java StockQuote.
StockQuote stockQuote = (StockQuote)serviceManager.locateService("stockQuote");

Le code suivant localise un composant qui implémente soit une interface Java, soit
une interface de type de port WSDL. Le module appelant utilise l’interface Service
afin d’interagir avec le composant.

Conseil : Si le composant implémente une interface Java, il peut être appelé à
l’aide de l’interface ou de la méthode invoke().
Service stockQuote = (Service)serviceManager.locateService("stockQuote");

L’exemple suivant illustre le code MyValue, qui appelle un autre composant.
public class MyValueImpl implements MyValue {

public float myValue throws MyValueException {

ServiceManager serviceManager = new ServiceManager();

// variables
Customer customer = null;
float quote = 0;
float value = 0;

// invoke
CustomerInfo cInfo = (CustomerInfo)serviceManager.locateService("customerInfo");
customer = cInfo.getCustomerInfo(customerID);

if (customer.getErrorMsg().equals("")) {

// invoke
StockQuote sQuote =
(StockQuote)serviceManager.locateService("stockQuote");
Ticket ticket = sQuote.getQuote(customer.getSymbol());

// ... do something else ...
quote = sQuote.getQuoteResponse(ticket, Service.WAIT);

// assign
value = quote * customer.getNumShares();

Chapitre 2. Développement de modules de service 29

} else {

// throw
throw new MyValueException(customer.getErrorMsg());

}
// reply

return value;
}
}

Que faire ensuite

Configurez les connexions entre les références de module appelant et les interfaces
de composant.
Tâches associées

Développement de modules de service
Un composant de service doit être contenu dans un module de service. Le
développement de modules destinés à contenir des composants est essentiel pour
permettre la fourniture de services à d’autres modules.

Appel dynamique d’un composant
Lorsqu’un module appelle un composant qui a une interface de type de port
WSDL (Web Service Descriptor Language), il doit appeler le composant de façon
dynamique à l’aide de la méthode invoke().

Avant de commencer

Cette tâche suppose qu’un composant appelant appelle un composant de façon
dynamique.

A propos de cette tâche

Avec une interface de type de port WSDL, un composant appelant doit utiliser la
méthode invoke() pour appeler le composant. Un composant appelant peut
également appeler un composant ayant une interface Java de cette façon.

Procédure

1. Déterminez le module qui contient le composant nécessaire.
2. Déterminez le tableau dont le composant a besoin.

Le tableau d’entrée peut être de l’un des trois types suivants :
v Des types Java haut de casse primitifs ou des tableaux de ce type
v Des classes Java ordinaires ou des tableaux de ces classes
v Service Data Objects (SDO)

3. Définissez un tableau pour contenir la réponse du composant.
Le tableau de réponse peut être des mêmes types que le tableau d’entrée.

4. Utilisez la méthode invoke() pour appeler le composant nécessaire et transférer
l’objet tableau vers le composant.

5. Traitez le résultat.

Exemples d’appel dynamique d’un composant

Dans l’exemple suivant, un module utilise la méthode invoke() pour appeler un
composant qui utilise des types de données Java haut de casse primitives.

30 Développement et déploiement

Service service = (Service)serviceManager.locateService("multiParamInf");

Reference reference = service.getReference();

OperationType methodMultiType =
reference.getOperationType("methodWithMultiParameter");

Type t = methodMultiType.getInputType();

BOFactory boFactory = (BOFactory)serviceManager.locateService
("com/ibm/websphere/bo/BOFactory");

DataObject paramObject = boFactory.createbyType(t);

paramObject.set(0,"input1")
paramObject.set(1,"input2")
paramObject.set(2,"input3")

service.invoke("methodMultiParamater",paramObject);

L’exemple suivant utilise la méthode d’appel via une interface de port WSDL
configurée en tant que cible.
Service serviceOne = (Service)serviceManager.locateService("multiParamInfWSDL");

DataObject dob = factory.create("http://MultiCallWSServerOne/bos", "SameBO");
dob.setString("attribute1", stringArg);

DataObject wrapBo = factory.createByElement
("http://MultiCallWSServerOne/wsdl/ServerOneInf", "methodOne");
wrapBo.set("input1", dob); //wrapBo encapsule tous les paramètres de methodOne
wrapBo.set("input2", "XXXX");
wrapBo.set("input3", "yyyy");

DataObject resBo= (DataObject)serviceOne.invoke("methodOne", wrapBo);

Tâches associées

Développement de modules de service
Un composant de service doit être contenu dans un module de service. Le
développement de modules destinés à contenir des composants est essentiel pour
permettre la fourniture de services à d’autres modules.

Présentation de l’isolement des modules et des cibles
Lors du développement de modules, vous êtes amené à identifier des services
exploités par plusieurs modules. Cette méthode d’optimisation des services permet
de raccourcir le cycle de développement et de réduire les coûts. Lorsqu’un service
est utilisé par de nombreux modules, il convient d’isoler les modules appelants de
la cible afin que, dans le cas où la mise à niveau d’une cible est effectuée, le
basculement sur le nouveau service puisse s’effectuer de manière transparente
vis-à-vis du module appelant. La présente rubrique compare le modèle d’appel
simple et le modèle d’appel isolé, en illustrant par un exemple les avantages offerts
par la technique d’isolement. Bien que l’exemple décrit soit spécifique, il existe
d’autres méthodes pour isoler les modules et les cibles.

Chapitre 2. Développement de modules de service 31

Modèle d’appel simple

Lors du développement d’un module, vous pouvez être amené à utiliser des
services situés dans d’autres modules. Pour ce faire, vous devez importer le service
dans le module, puis appeler ce service. Le service importé est «connecté» au
service exporté via l’autre module, soit sous WebSphere Integration Developer, soit
par l’établissement d’une liaison avec le service via la console d’administration. Le
modèle d’appel simple illustre cette configuration.

Modèle d’appel isolé

Pour changer la cible d’appel sans impliquer l’arrêt des modules d’appel, vous
pouvez isoler ces derniers de la cible concernée par l’appel. Ceci permet aux
modules de poursuivre le traitement durant le changement de cible, puisque le
changement affecte non pas le module lui-même, mais la cible située en aval. La
figure Exemple d’isolement d’applications indique comment l’isolement permet de
modifier la cible sans influer sur l’état du module appelant.

Exemple d’isolement d’applications

Lorsque le modèle d’appel simple est appliqué, l’appel d’un même service par
plusieurs modules équivaut pratiquement à un Appel de service unique par des
applications multiples. Les modules MODA, MODB et MODC appellent
conjointement CalculateFinalCost.

Figure 5. Modèle d’appel simple

32 Développement et déploiement

Le service fourni par CalculateFinalCost nécessite une mise à jour, de sorte que les
nouveaux coûts soient reflétés dans tous les modules exploitant ce service.
L’équipe de développement met au point et teste un nouveau service
(UpdatedCalculateFinal) visant à incorporer les modifications. Le nouveau service
est dès lors prêt à entrer en phase de production. Si aucun isolement n’est effectué,
vous devez mettre à jour l’ensemble des modules appelant CalculateFinalCost, afin
de définir l’appel de UpdateCalculateFinal. Grâce à l’isolement, la seule
modification nécessaire porte sur la liaison entre le module tampon et la cible.

Remarque : En utilisant cette méthode pour modifier le service, vous pouvez
continuer à fournir le service d’origine aux autres modules ayant besoin de
l’exploiter.

Figure 6. Appel de service unique par des applications multiples

Chapitre 2. Développement de modules de service 33

L’isolement permet de créer un module tampon entre les applications et la cible
(voir Modèle d’appel isolé du service UpdateCalculateFinal).

Suivant ce modèle, les modules d’appel restent inchangés, la seule modification
portant sur la liaison entre l’interface d’importation du module tampon et la cible
(voir Modèle d’appel isolé du service UpdatedCalculateFinal).

Figure 7. Modèle d’appel isolé du service UpdateCalculateFinal

34 Développement et déploiement

Si le module tampon procède à l’appel synchrone de la cible, le résultat renvoyé
vers l’application d’origine lors du redémarrage du module tampon (qu’il s’agisse
d’un module de médiation ou d’un service pour module métier) provient de la
nouvelle cible. En cas d’appel asynchrone de la cible par le module tampon, les
résultats renvoyés vers l’application d’origine proviendront de la nouvelle cible dès
l’appel suivant.
Tâches associées

Développement de modules de service
Un composant de service doit être contenu dans un module de service. Le
développement de modules destinés à contenir des composants est essentiel pour
permettre la fourniture de services à d’autres modules.

Liaisons HTTP
La liaison HTTP permet de relier une architecture SOA à HTTP. Cela permet
d’intégrer les applications HTTP existantes ou récemment développées aux
environnements d’architecture SOA (Service Oriented Architecture).

De plus, un réseau d’environnements d’exécution SCA peuvent communiquer via
une infrastructure HTTP existante.

Figure 8. Modèle d’appel isolé du service UpdatedCalculateFinal

Chapitre 2. Développement de modules de service 35

La liaison HTTP offre plusieurs fonctions HTTP :
v Dans les messages présentés sur les composants de communication, le format

HTTP et les informations de l’en-tête sont conservés. Ce mode d’affichage
correspond à ce que les programmeurs d’applications HTTP, les utilisateurs et
les administrateurs ont l’habitude de voir.

v Une structure de liaisons de données existante développée selon les conventions
HTTP permet de mapper les messages SCA aux en-têtes de message HTTP et
aux corps des messages.

v Les importations et les exportations peuvent être configurées de façon à prendre
en charge un ensemble de fonctions HTTP courantes.

v Lorsque vous installez un module SCA contenant des importations ou des
exportations HTTP, l’environnement d’exécution est automatiquement configuré
pour permettre la connectivité vers HTTP.

Vous trouverez des instructions détaillées sur la création d’importations et
d’exportations HTTP dans le centre de documentation dans WebSphere
Integration Developer > Développement des applications d’intégration >
Liaisons de données HTTP.
Tâches associées

Développement de modules de service
Un composant de service doit être contenu dans un module de service. Le
développement de modules destinés à contenir des composants est essentiel pour
permettre la fourniture de services à d’autres modules.

36 Développement et déploiement

Chapitre 3. Guides et techniques de programmation

Cette section comprend des guides et des exemples de programmation.

Les sous-rubriques ci-après fournissent des informations pour la programmation
de divers composants, applications et solutions d’intégration métier.

Important : Voir la section Référence du centre de documentation pour obtenir des
détails sur les API (interfaces de programme d’application) et les SPI a(interfaces
de programmation de système) qui sont prises en charge par WebSphere Process
Server et WebSphere Enterprise Service Bus.
Concepts associés

Programmation d’objets métier
L’infrastructure d’objets métier (BO) WebSphere Process Server est une extension
de la norme SDO (Service Data Object). Cette section fournit des informations sur
la programmation d’objets métier et SDO.
Validation de document XML
Il est possible de valider les documents XML et les objets métier à l’aide du service
de validation.
Propagation d’en-tête de protocole à partir de liaisons d’exportation non SCA
Le service de contexte est chargé de la propagation du contexte (y compris les
en-têtes de protocole comme l’en-tête JMS et le contexte utilisateur comme l’ID de
compte) tout au long du chemin d’appel SCA (Service Component Architecture).
Le service de contexte offre un ensemble d’API et de paramètres configurables.
Gestion des règles métier
Des classes de gestion des règles métier sont fournies pour permettre de créer des
clients de gestion personnalisés ou d’automatiser les changements apportés aux
règles métier.

Programmation d’objets métier
L’infrastructure d’objets métier (BO) WebSphere Process Server est une extension
de la norme SDO (Service Data Object). Cette section fournit des informations sur
la programmation d’objets métier et SDO.

Les sous-rubriques ci-après contiennent des informations pour la programmation
d’objets métier et SDO.

© Copyright IBM Corp. 2005, 2009 37

Concepts associés

Guides et techniques de programmation
Cette section comprend des guides et des exemples de programmation.
Tableaux dans les objets métier
Vous pouvez définir des tableaux pour un élément dans un objet métier afin que
cet élément puisse contenir plus d’une instance de données.
Création d’objets métier imbriqués
La fonction setWithCreate permet de créer des objets métier imbriqués au sein
d’un objet métier parent.
Objets métier : renforcement du schéma et prise en charge du schéma industriel
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server
Règles en exécution de la conversion de Java en objets SDO
Pour une substitution correcte du code généré ou l’identification des éventuelles
exceptions d’exécution liées aux conversions de Java en SDO (Service Data Object),
il est important de bien comprendre les règles en jeu. La plus grande partie des
conversions se font directement, mais il existe des cas complexes où
l’environnement d’exécution offre les meilleures possibilités de conversion du code
généré.
Tâches associées

Remplacement d’une conversion d’objet SDO en Java
Il se peut que la conversion d’un objet SDO (Service Data Object) en objet de type
Java effectuée par le système ne réponde pas à vos besoins. Suivez cette procédure
pour remplacer l’implémentation par défaut par celle de votre choix.
Remplacement de l’implémentation d’architecture SCA générée
Il se peut que la conversion de code Java en objet SDO (Service Data Object)
effectuée par le système ne réponde pas à vos besoins. Suivez cette procédure pour
remplacer l’implémentation d’architecture SCA (Service Component Architecture)
par défaut par celle de votre choix.

Tableaux dans les objets métier
Vous pouvez définir des tableaux pour un élément dans un objet métier afin que
cet élément puisse contenir plus d’une instance de données.

Vous pouvez utiliser une Liste pour créer un tableau pour un seul élément nommé
dans un objet métier. Vous pourrez ainsi utiliser cet élément pour contenir des
instances multiples de données. Par exemple, vous pouvez utiliser un tableau pour
stocker plusieurs numéros de téléphone dans un élément nommé telephone et
défini en tant que chaîne dans l’encapsuleur d’objet métier. Vous pouvez également
définir la taille du tableau en précisant le nombre d’instances de données. Pour
cela, vous utiliserez la valeurmaxOccurs. L’exemple de code suivant montre
comment créer un tel tableau comportant trois instances de données pour cet
élément :
<xsd:element name="telephone" type="xsd:string" maxOccurs="3"/>

Cela va créer un index pour l’élément telephone qui peut contenir jusqu’à trois
instances de données. Vous pouvez également utiliser la valeur minOccurs si vous
envisagez d’avoir un élément dans le tableau.

Le tableau créé se compose de deux éléments :
v son contenu
v le tableau lui-même.

38 Développement et déploiement

Pour créer ce tableau, cependant, vous devez effectuer une opération intermédiaire
consistant à définir un encapsuleur. Celui-ci remplace en effet la propriété de
l’élément par un objet tableau. Dans l’exemple ci-dessus, vous pouvez créer un
objet ArrayOfTelephone pour définir l’élément telephone en tant que tableau.
L’exemple de code suivant indique comment accomplir cette tâche :
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="Customer">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="ArrayOfTelephone" type="ArrayOfTelephone"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:complexType name="ArrayOfTelephone">
<xsd:sequence maxOccurs="3">

<xsd:element name="telephone" type="xsd:string" nillable="true"/>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

L’élément telephone apparaît maintenant en tant qu’enfant de l’objet encapsuleur
ArrayOfTelephone.

Vous remarquerez que dans l’exemple ci-dessus, l’élément telephone comprend la
propriété nillable. Vous pouvez définir cette valeur sur true si vous voulez que
certains éléments dans l’indice de tableau ne contiennent aucune donnée.
L’exemple de code suivant indique comment les données d’un tableau peuvent
être représentées :
<Customer>

<name>Bob</name>
<ArrayOfTelephone>

<telephone>111-1111</telephone>
<telephone xsi:nil="true"/>
<telephone>333-3333</telephone>

</ArrayOfTelephone>
</Customer>

Dans ce cas, le premier et le troisième éléments dans l’indice de tableau de
l’élément telephone contiennent des données contrairement au deuxième. Si vous
n’aviez pas utilisé la propriété nillable pour l’élément telephone, vous auriez
alors les deux premiers éléments qui contiennent des données.

Vous pouvez utiliser les API de séquence Service Data Object (SDO) dans
WebSphere Process Server comme alternative au traitement des séquences dans les
tableaux d’objet métier. L’exemple de code suivant permet de créer un tableau
pour l’élément telephone avec des données identiques à celles indiquées plus haut
:
DataObject customer = ...
customer.setString("name", "Bob");

DataObject tele_array = customer.createDataObject("ArrayOfTelephone");
Sequence seq = tele_array.getSequence(); // The array is sequenced
seq.add("telephone", "111-1111");
seq.add("telephone", null);
seq.add("telephone", "333-3333");

Chapitre 3. Guides et techniques de programmation 39

Vous pouvez renvoyer les données d’un indice de tableau d’élément donné en
utilisant un code semblable à l’exemple ci-dessous :
String tele3 = tele_array.get("telephone[3]"); // tele3 = "333-3333"

Dans cet exemple, la chaîne tele3 va renvoyer les données ″333-3333″.

Vous pouvez remplir les éléments données du tableau dans l’index en utilisant une
largeur fixe ou des données délimitées placées dans une file d’attente de messages
JMS ou MQ. Vous pouvez également accomplir cette tâche en utilisant un fichier
texte à plat contenant les données correctement formatées.
Concepts associés

Programmation d’objets métier
L’infrastructure d’objets métier (BO) WebSphere Process Server est une extension
de la norme SDO (Service Data Object). Cette section fournit des informations sur
la programmation d’objets métier et SDO.

Création d’objets métier imbriqués
La fonction setWithCreate permet de créer des objets métier imbriqués au sein
d’un objet métier parent.

Vous pouvez créer des objets métier imbriqués à partir d’un objet métier parent
sans écrire de code détaillant les objets enfant intermédiaires. Par exemple, vous
pouvez créer un objet métier imbriqué deux niveaux sous l’objet parent sans avoir
à définir un objet métier dépendant entre les deux, c’est-à-dire un niveau sous
l’objet parent. La fonction setWithCreate permet d’accomplir cette tâche pour :
v une seule instance
v plusieurs instances
v une valeur de caractère générique
v un groupe de modèles

Les rubriques suivantes expliquent comment procéder.
Concepts associés

Programmation d’objets métier
L’infrastructure d’objets métier (BO) WebSphere Process Server est une extension
de la norme SDO (Service Data Object). Cette section fournit des informations sur
la programmation d’objets métier et SDO.
Tâches associées

Instance unique d’un objet métier imbriqué
La fonction setWithCreate permet de créer une instance unique d’un objet métier
imbriqué.
Création de plusieurs instances d’objets métier imbriqués
La fonction setWithCreate permet de créer des instances multiples d’un objet
métier imbriqué.
Utilisation d’un objet métier imbriqué défini par un caractère générique
Vous pouvez spécifier le type xsd:any dans un objet parent pour indiquer un objet
enfant, mais uniquement si cet objet enfant existe déjà.
Utilisation des objets métier dans les groupes de modèles
Vous devriez utiliser les modèles de chemin de groupe de modèles lorsque vous
utilisez des objets métier imbriqués faisant partie d’un groupe de modèles.

Instance unique d’un objet métier imbriqué
La fonction setWithCreate permet de créer une instance unique d’un objet métier
imbriqué.

40 Développement et déploiement

Avant de commencer

L’exemple suivant montre comment vous devriez normalement créer du code pour
un objet intermédiaire (enfant) à partir d’un objet de niveau plus élevé (parent)
afin de créer un objet de troisième niveau (grand-enfant). Le fichier XSD aurait la
forme suivante :
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="Parent">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="child" type="Child"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Child">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="grandChild" type="GrandChild"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="GrandChild">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

A propos de cette tâche

Si vous utilisiez la méthode traditionnelle ″descendante″ pour définir les données
d’objet métier, il vous faudrait traiter le code suivant précisant les objets enfant et
grand-enfant avant de définir les données dans l’objet grand-enfant :
DataObject parent = ...
DataObject child = parent.createDataObject("child");
DataObject grandchild = child.createDataObject("grandChild");
grandchild.setString("name", "Bob");

Il existe une méthode plus efficace qui consiste à utiliser la fonction setWithCreate.
Celle-ci permet en effet de définir simultanément l’objet grand-enfant et ses
données, sans avoir à préciser l’objet enfant intermédiaire. L’exemple de code
suivant indique comment accomplir cette tâche :
DataObject parent = ...
parent.setString("child/grandchild/name", "Bob");

Résultats

L’objet métier de niveau inférieur est définir sans avoir à définir l’objet métier de
niveau intermédiaire. Une exception est émise toutefois si le chemin est incorrect.
Concepts associés

Création d’objets métier imbriqués
La fonction setWithCreate permet de créer des objets métier imbriqués au sein
d’un objet métier parent.

Création de plusieurs instances d’objets métier imbriqués
La fonction setWithCreate permet de créer des instances multiples d’un objet
métier imbriqué.

Chapitre 3. Guides et techniques de programmation 41

Avant de commencer

L’exemple suivant représente un fichier XSD contenant des objets imbriqués se
trouvant un niveau (enfant) et deux niveaux (petit-enfant) sous l’objet métier
supérieur (parent) :
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="Parent">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="child" type="Child" maxOccurs="5"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Child">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="grandChild" type="GrandChild"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="GrandChild">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Vous remarquerez que l’objet parent peut avoir jusqu’à cinq objets enfant, comme
l’indique la valeur maxOccurs.

A propos de cette tâche

Vous pouvez créer une liste avec une règle plus rigoureuse ne permettant pas que
des séquences soient absentes d’un tableau. Vous pouvez utiliser la méthode
setWithGet et, en même temps, préciser les données qui apparaîtront dans un
élément de l’index de liste particulier :
DataObject parent = ...
parent.setString("child[3]/grandchild/name", "Bob");

Dans cet exemple, vous obtenez un tableau de taille trois, mais les valeurs des
éléments de l’index de liste child[1] et child[2] ne sont pas définies. Vous
voudrez peut-être leur attribuer la valeur null ou la valeur d’une donnée associée.
Dans le scénario ci-dessus, une exception sera émise car la valeur des deux
premiers éléments du tableau n’est pas définie.

Vous pouvez remédier à cette situation en définissant ces valeurs dans l’index de la
liste. Si l’élément de l’index fait référence à un élément existant du tableau et que
la valeur de cet élément n’est pas null (c’est-à-dire qu’il contient des données),
celui-ci sera utilisé. Si sa valeur est null, il sera créé puis utilisé. Si l’index de la
liste est plus grand que la taille de celle-ci, une nouvelle valeur sera créée et
ajoutée. L’exemple suivant illustre le fonctionnement dans une liste de taille deux,
où l’élément child[1] est désigné comme null et l’élément child[2] contient des
données :
DataObject parent = ...
// child[1] = null
// child[2] = existing Child
// Ce code fonctionne car l'élément child[1] est null et sera créé.

42 Développement et déploiement

parent.setString("child[1]/grandchild/name", "Bob");

// Ce code fonctionne car l'élément child[2] existe et sera utilisé.
parent.setString("child[2]/grandchild/name", "Dan");

// Ce code fonctionne car la liste enfant est de taille 2 et l'ajout
// d'un élément de liste supplémentaire va accroître la taille de la liste.
parent.setString("child[3]/grandchild/name", "Sam");

Résultats

Vous avez remplacé les valeurs des deux éléments existants et ajouté un troisième
à l’index de la liste. Néanmoins, si vous ajoutez un autre élément qui n’est pas de
taille quatre, ou qui est plus grand que la taille précisée dans maxOccurs, une
exception sera émise. La règle plus rigoureuse de cette méthode est démontrée
dans l’exemple suivant.

Remarque : Le code qui suit est ajouté au code utilisé ci-dessus :
// Ce code entraîne une exception car la liste est de taille 3
// et vous n'avez pas créé d'élément pour augmenter la taille à 4.
parent.setString("child[5]/grandchild/name", "Billy");

Concepts associés

Création d’objets métier imbriqués
La fonction setWithCreate permet de créer des objets métier imbriqués au sein
d’un objet métier parent.

Utilisation d’un objet métier imbriqué défini par un caractère
générique
Vous pouvez spécifier le type xsd:any dans un objet parent pour indiquer un objet
enfant, mais uniquement si cet objet enfant existe déjà.

A propos de cette tâche

La fonction setWithCreate utilisée pour définir des objets métier imbriqués pour
une seule ou plusieurs instances ne fonctionne pas si vous utilisez la valeur
générique xsd:any dans l’objet de données de service. L’exemple suivant illustre
cette situation :
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="Parent">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="child" type="xsd:anyType"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Résultats

Une exception sera émise si l’objet données enfant n’existe pas.

Chapitre 3. Guides et techniques de programmation 43

Concepts associés

Création d’objets métier imbriqués
La fonction setWithCreate permet de créer des objets métier imbriqués au sein
d’un objet métier parent.

Utilisation des objets métier dans les groupes de modèles
Vous devriez utiliser les modèles de chemin de groupe de modèles lorsque vous
utilisez des objets métier imbriqués faisant partie d’un groupe de modèles.

A propos de cette tâche

Les groupes de modèles utilisent la balise xsd:choice que vous pouvez utiliser
pour créer des objets métier à partir d’un objet métier parent. Eclipse Modeling
Framework (EMF), cependant, peut entraîner des conflits de dénomination qui
peuvent alors générer une exception. L’exemple suivant illustre comment une telle
situation peut se produire :
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://MultipleGroup">
<xsd:complexType name="MultipleGroup">

<xsd:sequence>
<xsd:choice>

<xsd:element name="child1" type="Child"/>
<xsd:element name="child2" type="Child"/>

</xsd:choice>
<xsd:element name="separator" type="xsd:string"/>
<xsd:choice>

<xsd:element name="child1" type="Child"/>
<xsd:element name="child2" type="Child"/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

Vous remarquerez qu’il peut y avoir plusieurs instances des éléments ″child1″ et
″child2″,

Vous devez utiliser les modèles de chemin Service Data Object (SDO) pour les
groupes de modèles pour résoudre ces conflits.

Résultats

Vous obtiendrez des tableaux qui utilisent le modèle de chemin SDO utilisé pour
traiter les groupes de modèles, comme indiqué dans l’exemple de code ci-dessous :
set("child1/grandchild/name", "Bob");

set("child11/grandchild/name", "Joe");

Concepts associés

Création d’objets métier imbriqués
La fonction setWithCreate permet de créer des objets métier imbriqués au sein
d’un objet métier parent.

Objets métier : renforcement du schéma et prise en charge du
schéma industriel

La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server

44 Développement et déploiement

Ce manuel contient des informations sur les incidents relatifs à la gestion des
constructions de schéma pour certaines fonctions. Pour obtenir des informations
sur la procédure de définition d’un objet métier, des instructions de
développement d’objets métier et sur l’utilisation des API de programmation
d’objets métier, reportez-vous aux articles de la section ″Informations connexes″
ci-dessous.
Concepts associés

Programmation d’objets métier
L’infrastructure d’objets métier (BO) WebSphere Process Server est une extension
de la norme SDO (Service Data Object). Cette section fournit des informations sur
la programmation d’objets métier et SDO.
Différenciation d’éléments portant le même nom
Vous devez donner des noms uniques aux éléments et attributs d’objet de données.
Différenciation de propriétés portant le même nom
Lorsque plusieurs XSD avec le même espace de nom définissent des types portant
le même nom, un type incorrect peut être accidentellement référencé.
Résolution de noms de propriétés contenant des points
Les noms des propriétés dans un XSD peuvent contenir un point (″.″) comme un
des nombreux caractères valides, alors que, dans un SDO, ils sont également
utilisés pour montrer l’indexation dans une propriété à cardinalité multiple. Dans
certaines situations, ceci peut entraîner des problèmes de résolution.
Utilisation de l’objet de séquence pour définir l’ordre des données
Certains XSD sont définis de telle sorte que l’ordre des données dans le XML a une
importance significative.
Utilisation de AnySimpleType pour les types simples
AnySimpleType est traité de la même manière que les autres types simples (chaîne,
int, booléen, etc.) par les API SDO.
Utilisation de AnyType pour les types complexes
La balise anyType est traitée de la même manière que les autres types complexes
par les API SDO.
Utilisation de la balise Any pour définir des éléments globaux de types complexes
Vous pouvez utiliser la balise <any/> pour définir des éléments globaux sur un
type complexe.
Utilisation de AnyAttribute pour définir les attributs globaux de types complexes
La balise <anyAttribute/> permet de définir n’importe quel ensemble d’attributs
globaux sur un type complexe.
Information associée

Web Services Description Language (WSDL) 1.1

Introduction aux objets SDO (Service Data Objects)

Examen des objets métier dans WebSphere Process Server

Différenciation d’éléments portant le même nom
Vous devez donner des noms uniques aux éléments et attributs d’objet de données.

Dans l’infrastructure SDO, les éléments et les attributs sont créés en tant que
propriétés. Dans les exemples de code suivants, les XSD créent des types
comportant une propriété nommée foo :
<xsd:complexType name="ElementFoo">

<xsd:sequence>
<xsd:element name="foo" type="xsd:string" default="elem_value"/>

</xsd:sequence>

Chapitre 3. Guides et techniques de programmation 45

http://www.w3.org/TR/wsdl
http://www.ibm.com/developerworks/java/library/j-sdo/
http://www.ibm.com/developerworks/websphere/library/techarticles/0603_tung/0603_tung.html

</xsd:complexType>

<xsd:complexType name="AttributeFoo">
<xsd:attribute name="foo" type="xsd:string" default="attr_value"/>

</xsd:complexType>

Dans ces cas-là, vous pouvez accéder à la propriété en utilisant le langage XML
Path (XPath). Cependant, les types de schéma valides peuvent comporter un
attribut et un élément qui portent le même nom, comme dans l’exemple suivant :
<xsd:complexType name="DuplicateNames">

<xsd:sequence>
<xsd:element name="foo" type="xsd:string" default="elem_value"/>

</xsd:sequence>
<xsd:attribute name="foo" type="xsd:string" default="attr_value"/>

</xsd:complexType>

Dans XPath, vous devez pouvoir différencier des éléments portant le même nom
des attributs. Pour cela, on ajoute au début des noms le symbole (@). Le fragment
suivant montre comment accéder à un élément et un attribut portant le même nom
:
1 DataObject duplicateNames = ...

2 // Affiche "elem_value"
3 System.out.println(duplicateNames.get("foo"));

4 // Affiche "attr_value"
5 System.out.println(duplicateNames.get("@foo"));

Utilisez ce schéma de désignation pour toutes les méthodes prenant une valeur de
chaîne dans un XPath SDO.
Concepts associés

Objets métier : renforcement du schéma et prise en charge du schéma industriel
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server
Prise en charge de groupes de modèles (tous, choix, séquence et références de
groupes)
La spécification SDO nécessite que les groupes de modèles (tous, choix, séquence
et références de groupes) soient développés et ne décrit pas les types ni les
propriétés.

Prise en charge de groupes de modèles (tous, choix, séquence et références de
groupes) :

La spécification SDO nécessite que les groupes de modèles (tous, choix, séquence
et références de groupes) soient développés et ne décrit pas les types ni les
propriétés.

Pratiquement, cela signifie que toutes les structures qui se trouvent dans les mêmes
structures sont ″mises à plat″. Cette ″mise à plat″ met tous les enfants de ces
structures au même niveau. Ceci peut entraîner des problèmes de noms dupliqués
dans un SDO dont la structure est dérivée des données mises à plat. Lorsqu’un
XSD ne met pas à plat les groupes, les noms dupliqués contenus par des parents
différents restent séparés.
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://MultipleGroup">
<xsd:complexType name="MultipleGroup">

<xsd:sequence>

46 Développement et déploiement

<xsd:choice>
<xsd:element name="option1" type="xsd:string"/>
<xsd:element name="option2" type="xsd:string"/>

</xsd:choice>
<xsd:element name="separator" type="xsd:string"/>
<xsd:choice>

<xsd:element name="option1" type="xsd:string"/>
<xsd:element name="option2" type="xsd:string"/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

Les occurrences multiples de option1 et option2 se trouvant dans des blocs de
choix distincts, et comportant même un élément de séparation entre eux, le XSD et
le XML les distingue sans problème. Mais lorsque le SDO met à plat ces groupes,
toutes les propriétés d’option sont maintenant sous le même conteneur de groupe
multiple.

Même sans noms dupliqués, la mise à plat de ces groupes entraîne un problème
d’ordre sémantique. Par exemple, pour le XSD suivant :
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://SimpleChoice">
<xsd:complexType name="SimpleChoice">

<xsd:sequence>
<xsd:choice>

<xsd:element name="option1" type="xsd:string"/>
<xsd:element name="option2" type="xsd:string"/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

Demander à l’utilisateur de renommer les noms dupliqués ou d’ajouter des
annotations spéciales aux XSD n’est pas possible dans beaucoup de cas, comme les
schémas de normes ou industriels, car l’utilisateur ne contrôle pas les XSD avec
lesquels il travaille.

Pour que toutes les propriétés soient cohérentes, les objets métier incluent une
méthode pour accéder à chaque occurrence individuelle des propriétés portant le
même nom via la balise XPath. Selon la convention de dénomination EMF, le
chiffre non utilisé suivant sera ajouté à tous les noms dupliqués trouvés ; par
exemple, le XSD suivant :
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://TieredGroup">
<xsd:complexType name="TieredGroup">

<xsd:sequence>
<xsd:choice minOccurs="0">

<xsd:sequence>
<xsd:element name="low" minOccurs="1"

maxOccurs="1" type="xsd:string"/>
<xsd:choice minOccurs="0">

<xsd:element name="width" minOccurs="0"
maxOccurs="1" type="xsd:string"/>

<xsd:element name="high" minOccurs="0"
maxOccurs="1" type="xsd:string"/>

</xsd:choice>
</xsd:sequence>
<xsd:element name="high" minOccurs="1"

maxOccurs="1" type="xsd:string"/>

Chapitre 3. Guides et techniques de programmation 47

<xsd:sequence>
<xsd:element name="width" minOccurs="1"

maxOccurs="1" type="xsd:string"/>
<xsd:element name="high" minOccurs="0"

maxOccurs="1" type="xsd:string"/>
</xsd:sequence>
<xsd:sequence>

<xsd:element name="center" minOccurs="1"
maxOccurs="1" type="xsd:string"/>

<xsd:element name="width" minOccurs="0"
maxOccurs="1" type="xsd:string"/>

</xsd:sequence>
</xsd:choice>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Le XSD précédent produit le modèle d’objet de données suivant :
DataObject - TieredGroup
Property[0] - low - string
Property[1] - width - string
Property[2] - high - string
Property[3] - high1 - string
Property[4] - width1 - string
Property[5] - high2 - string
Property[6] - center - string
Property[7] - width2 - string

Où width, width1 et width2 sont les noms des propriétés nommées ″width″ en
commençant par la première dans le XSD et ainsi de suite, et de même pour high,
high1, high2.

Les nouveaux noms des propriétés sont les noms utilisés pour référence et XPath
et n’affectent pas le contenu sérialisé. Les noms ″vrais″ de chacune de ces
propriétés apparaissant dans le XML sérialisé sont les valeurs données dans le
XSD. Ainsi, pour l’instance XML :
<?xml version="1.0" encoding="UTF-8"?>
<p:TieredGroup xsi:type="p:TieredGroup"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://TieredGroup">

<width>foo</width>
<high>bar</high>

</p:TieredGroup>

Pour accéder à ces propriétés, vous devez utiliser le code suivant :
DataObject tieredGroup = ...

// Affiche "foo"
System.out.println(tieredGroup.get("width1"));

// Affiche "bar"
System.out.println(tieredGroup.get("high2"));

Concepts associés

Différenciation d’éléments portant le même nom
Vous devez donner des noms uniques aux éléments et attributs d’objet de données.

Différenciation de propriétés portant le même nom
Lorsque plusieurs XSD avec le même espace de nom définissent des types portant
le même nom, un type incorrect peut être accidentellement référencé.

Address1.xsd:

48 Développement et déploiement

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="Address">
<xsd:sequence>

<xsd:element minOccurs="0" name="city" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Address2.xsd:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="Address">
<xsd:sequence>

<xsd:element minOccurs="0" name="state" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Les objets métier ne prennent pas en charge les noms dupliqués pour des
structures XSD globales (telles que complexType, simpleType, element, attribute,
etc.) par le biais des API BOFactory.create(). Il est cependant possible de créer ces
structures globales dupliquées comme enfants d’autres structures si les API
correctes sont utilisées, comme indiqué dans les exemples suivants

Customer1.xsd:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://Customer1"
targetNamespace="http://Customer1">
<xsd:import schemaLocation="./Address1.xsd"/>
<xsd:complexType name="Customer">

<xsd:sequence>
<xsd:element minOccurs="0" name="address" type="Address"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Customer2.xsd:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://Customer2"
targetNamespace="http://Customer2">
<xsd:import schemaLocation="./Address2.xsd"/>
<xsd:complexType name="Customer">

<xsd:sequence>
<xsd:element minOccurs="0" name="address" type="Address"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Lorsque les champs ″Customer address″ sont renseignés et que l’API
BOFactory.create() est appelée pour créer l’adresse, les types d’objets métier enfants
qui en résultent peuvent être définis d’une manière incorrecte. Pour éviter cela,
vous pouvez appeler l’API createDataObject(″address″) sur l’objet de données
″Customer″. Un enfant de type correct sera ainsi créé, car les objets métier
correspondront à l’emplacement de schéma de l’importation.
DataObject customer1 = ...

// Manière incorrecte de créer un enfant "Address"
// Un type d'adresse Address1.xsd ou Address2.xsd risquerait d'être créé
DataObject incorrect = boFactory.create("", "Address");
customer1.set("address", incorrect);

Chapitre 3. Guides et techniques de programmation 49

// Manière correcte de créer un enfant "Address"
// Le type d'adresse Address1.xsd sera ainsi forcément créé
customer1.createDataObject("address");

Concepts associés

Objets métier : renforcement du schéma et prise en charge du schéma industriel
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server

Résolution de noms de propriétés contenant des points
Les noms des propriétés dans un XSD peuvent contenir un point (″.″) comme un
des nombreux caractères valides, alors que, dans un SDO, ils sont également
utilisés pour montrer l’indexation dans une propriété à cardinalité multiple. Dans
certaines situations, ceci peut entraîner des problèmes de résolution.

Les noms des propriétés dans les objets de données de service (SDO) sont basés
sur les noms des éléments et de l’attribut à partir desquels ils sont générés dans le
XSD. Les objets métier traiteront le caractère ″.″ correctement, avec une exception :
si un XSD comporte une propriété à cardinalité unique dont le nom est
″<name>.<#>″ et une propriété à cardinalité multiple dont le nom est ″<name>″.

Une balise XPath telle que ″foo.0″ ne sera pas résolue correctement s’il y a une
propriété à cardinalité unique nommée ″foo.0″ et une propriété à cardinalité
multiple appelée ″foo″. Dans ce cas, la propriété à cardinalité unique portant le
nom ″foo.0″ est celle qui sera résolue. Bien que cela ne risque de se produire que
rarement, vous pouvez l’éviter entièrement si vous utilisez la syntaxe ″foo[1]″ pour
accéder à leur propriété à cardinalité multiple. Les SDO ne prendront pas en
charge la syntaxe ″.″ pour l’indexation, et vous devez donc utiliser ″[]″ pour
l’indexation.
Concepts associés

Objets métier : renforcement du schéma et prise en charge du schéma industriel
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server
Sérialisation et désérialisation d’unions portant xsi:type
Dans le XSD, une union est un moyen de fusionner les espaces lexicaux de
plusieurs types de données simples connus comme membres.

Sérialisation et désérialisation d’unions portant xsi:type :

Dans le XSD, une union est un moyen de fusionner les espaces lexicaux de
plusieurs types de données simples connus comme membres.

L’exemple de XSD suivant montre une union comportant les membres d’un
nombre entier et d’une date.
<xsd:simpleType name="integerOrDate">
<xsd:union memberTypes="xsd:integer xsd:date"/>
</xsd:simpleType>

Cette saisie multiple peut entraîner une confusion lors de la désérialisation et de la
manipulation des données.

Les objets métier prennent en charge les SDO utilisant xsi:type pour la sérialisation
et suivront le même algorithme pour déterminer le type lors d’une désérialisation
si le xsi:type n’est pas présent dans les données XML.

50 Développement et déploiement

Ainsi, pour garantir que les données (le nombre ″42″ dans cet exemple) seront
désérialisées comme un nombre entier, vous pouvez utiliser le xsi:type spécifié
dans le XML d’entrée. Vous pouvez également ordonner la liste des membres de
l’union dans le XSD de telle sorte que le nombre entier soit avant la chaîne.
L’exemple suivant montre comment les deux méthodes sont mises en oeuvre :
<integerOrString xsi:type="xsd:integer">42</integerOrString>

<xsd:simpleType name="integerOrString">
<xsd:union memberTypes="xsd:integer xsd:string"/>
</xsd:simpleType>

De même, si l’utilisateur souhaitait que les données soient désérialisées en tant que
chaîne, l’une ou l’autre des modifications suivantes entraînerait le comportement
suivant :
<integerOrString xsi:type="xsd:string">42</integerOrString>

<xsd:simpleType name="integerOrString">
<xsd:union memberTypes="xsd:string xsd:integer"/>
</xsd:simpleType>

Remarque : si un type de chaîne est le premier membre de l’union, aucune de ses
informations n’est jamais perdue. Il peut également contenir toutes les données qui
seront toujours choisies par l’algorithme no xsi:type. Si vous souhaitez utiliser un
autre type qu’une chaîne, vous devez soit utiliser xsi:type dans le XML soit
réorganiser les types de membre dans le XSD pour donner aux autres membres la
possibilité d’accepter les données.
Concepts associés

Résolution de noms de propriétés contenant des points
Les noms des propriétés dans un XSD peuvent contenir un point (″.″) comme un
des nombreux caractères valides, alors que, dans un SDO, ils sont également
utilisés pour montrer l’indexation dans une propriété à cardinalité multiple. Dans
certaines situations, ceci peut entraîner des problèmes de résolution.

Utilisation de l’objet de séquence pour définir l’ordre des
données
Certains XSD sont définis de telle sorte que l’ordre des données dans le XML a une
importance significative.

Par exemple, l’ordre est important dans les XSD si le contenu est mixte. Si les
données de texte apparaissent avant ou après un élément, la signification peut être
différente que si elles apparaissent dans un autre emplacement. Pour ces situations,
le SDO génère un objet connu sous le nom de Séquence, qui est utilisé pour définir
les données d’une manière ordonnée.

Les séquences SDO ne doivent pas être confondues avec les séquences XSD. Les
séquences XSD ne sont que des groupes de modèles mis à plat avant la génération
du modèle SDO. La présence d’une séquence XSD n’a pas de rapport avec la
présence d’une séquence SDO.

Avec les conditions suivantes, un XSD dans une séquence SDO est généré :

Un type complexe avec du contenu mixte :
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://MixedContent"
targetNamespace="http://MixedContent">
<xsd:complexType name="MixedContent" mixed="true">

Chapitre 3. Guides et techniques de programmation 51

<xsd:sequence>
<xsd:element name="element1" type="xsd:string" minOccurs="0"/>
<xsd:element name="element2" type="xsd:string" minOccurs="0"/>
<xsd:element name="element3" type="xsd:string" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="MixedContent" type="tns:MixedContent"/>

</xsd:schema>

Un schéma comportant 1 ou plusieurs balises <any/> :
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://AnyElemAny"
targetNamespace="http://AnyElemAny">
<xsd:complexType name="AnyElemAny">

<xsd:sequence>
<xsd:any/>
<xsd:element name="marker1" type="xsd:string"/>
<xsd:any/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Un tableau de groupes de modèles (tous, choix, séquence ou référence de groupe
avec maxOccurs > 1) :
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://ModelGroupArray">
<xsd:complexType name="ModelGroupArray">

<xsd:sequence maxOccurs="3">
<xsd:element name="element1" type="xsd:string"/>
<xsd:element name="element2" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Une balise <all/> de maxOccurs <= 1 contenant plusieurs éléments :
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://All">
<xsd:complexType name="All">

<xsd:all>
<xsd:element name="element1" type="xsd:string"/>
<xsd:element name="element2" type="xsd:string"/>

</xsd:all>
</xsd:complexType>

</xsd:schema>

Vous trouverez des informations spécifiques sur l’utilisation de <any/> avec une
séquence dans la rubrique référencée en bas de cette page. Les informations
d’ordre général qui suivent dans le reste de cette section expliquent comment
travailler avec les autres conditions de séquence, mais s’appliquent également à
<any/>.

52 Développement et déploiement

Concepts associés

Objets métier : renforcement du schéma et prise en charge du schéma industriel
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server
Comment savoir si mon objet de données possède une séquence ?
Deux API simples permettent de déterminer si un objet de données est mis en
séquence : DataObject noSequence et DataObject withSequence.
Pourquoi dois-je savoir si un objet de données possède une séquence ?
Si vous travailler sur un objet de données comportant une séquence, il est
important de connaître l’ordre dans lequel les données sont définies. Vous devez
donc faire attention à l’ordre dans lequel les données sont définies.
Comment utiliser des contenus mixtes ?
Pour les contenus mixtes, la séquence comporte une API spécifique pour ajouter
du texte : addText(...).
Comment utiliser un tableau de groupes de modèles ?
Un tableau de groupes de modèles est créé lorsque la valeur maxOccurs d’un
groupe de modèles est > 1.

Comment savoir si mon objet de données possède une séquence ? :

Deux API simples permettent de déterminer si un objet de données est mis en
séquence : DataObject noSequence et DataObject withSequence.

Vous pouvez utiliser DataObject noSequence et DataObject withSequence de la
manière indiquée dans l’exemple suivant :
DataObject noSequence = ...
DataObject withSequence = ...

// Affiche la valeur faux
System.out.println(noSequence.getType().isSequenced());

// Affiche la valeur vrai
System.out.println(withSequence.getType().isSequenced());

// Affiche la valeur vrai
System.out.println(noSequence.getSequence() == null);

// Affiche la valeur faux
System.out.println(withSequence.getSequence() == null);

Concepts associés

Utilisation de l’objet de séquence pour définir l’ordre des données
Certains XSD sont définis de telle sorte que l’ordre des données dans le XML a une
importance significative.

Pourquoi dois-je savoir si un objet de données possède une séquence ? :

Si vous travailler sur un objet de données comportant une séquence, il est
important de connaître l’ordre dans lequel les données sont définies. Vous devez
donc faire attention à l’ordre dans lequel les données sont définies.

Un objet de données qui n’est pas mis en séquence permet l’accès à un ensemble
dans un ordre aléatoire. Le fonctionnement est identique à un mappage dans
lequel toutes les clés sont définies sur les mêmes valeurs. L’ordre dans lequel les
clés sont définies n’a pas d’importance, les données au sein du mappage étant
identiques et étant sérialisées en XML d’une manière identique.

Chapitre 3. Guides et techniques de programmation 53

Lorsqu’un objet de données est mis en séquence, l’ordre dans lequel les données
ont été définies est enregistré dans la séquence, comme s’il s’agissait d’ajouter des
données à une liste. Ainsi, deux manières d’accéder aux données sont possibles :
par paires nom/valeur (les API d’objet de données) et selon l’ordre dans lequel
elles ont été définies (les API de séquence). Vous pouvez utiliser les API d’objet de
données set(...) ou de séquence add(...) pour conserver la structure. Cet ordre a un
incidence sur la manière dont le XML est sérialisé.

Prenons par exemple le XSD de la balise <all/> ci-dessous. Lorsque les méthodes
set sont appelées dans l’ordre suivant, le XML suivant est produit lorsqu’il est
sérialisé :
DataObject all = ...
all.set("element1", "foo");
all.set("element2", "bar");

<?xml version="1.0" encoding="UTF-8"?>
<p:All xsi:type="p:All"
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:p="http://All">
<element1>foo</element1>
<element2>bar</element2>

</p:All>

Si, à la place, les méthodes set sont appelées dans l’ordre inverse, le XML suivant
est produit lorsque l’objet métier est sérialisé :
DataObject all = ...
all.set("element2", "bar");
all.set("element1", "foo");

<?xml version="1.0" encoding="UTF-8"?>
<p:All xsi:type="p:All"
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:p="http://All">
<element2>bar</element2>
<element1>foo</element1>

</p:All>

Si l’ordre de la séquence doit être modifié, la classe de la séquence a les méthodes
add, remove et move pour permettre à l’utilisateur de modifier l’ordre de la
séquence.
Concepts associés

Utilisation de l’objet de séquence pour définir l’ordre des données
Certains XSD sont définis de telle sorte que l’ordre des données dans le XML a une
importance significative.

Comment utiliser des contenus mixtes ? :

Pour les contenus mixtes, la séquence comporte une API spécifique pour ajouter
du texte : addText(...).

Toutes les autres API fonctionnent de la même manière avec du texte comme avec
les propriétés. L’API getProperty(int) renverra la valeur null pour les données de
texte avec des contenus mixtes. L’exemple suivant de code de contenu mixte peut
être utilisé pour imprimer tout le texte avec des contenus mixtes depuis un objet
de données :
DataObject mixedContent = ...
Sequence seq = mixedContent.getSequence();

for (int i=0; i < seq.size(); i++)

54 Développement et déploiement

{
Property prop = seq.getProperty(i);
Object value = seq.getValue(i);

si (prop == null)
{

System.out.println("Found mixed content text: "+value);
}
else
{

System.out.println("Found Property "+prop.getName()+": "+value);
}

}

Concepts associés

Utilisation de l’objet de séquence pour définir l’ordre des données
Certains XSD sont définis de telle sorte que l’ordre des données dans le XML a une
importance significative.

Comment utiliser un tableau de groupes de modèles ? :

Un tableau de groupes de modèles est créé lorsque la valeur maxOccurs d’un
groupe de modèles est > 1.

Les groupes de modèles étant mis à plat et n’étant pas exprimés dans un objet de
données, les propriétés au sein du groupe de modèles deviennent des propriétés à
cardinalité multiple et leurs méthodes isMany() renvoient la valeur vrai si elles ne
l’ont pas déjà. Leurs facettes minOccurs et maxOccurs sont alors multipliées par
celles du groupe de modèles qui les contient. Le choix multipliera la facette
maxOccurs de la même manière que les autres groupes de modèles, mais utilisera
toujours 0 comme valeur de multiplication pour minOccurs, car toutes les données
dans le choix peuvent ne pas être sélectionnées.

Par exemple, le XSD suivant comporte un tableau de groupes de modèles :
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://ModelGroupArray">
<xsd:complexType name="ModelGroupArray">

<xsd:sequence minOccurs="2" maxOccurs="5">
<xsd:element name="element1" type="xsd:string"/>
<xsd:element name="element2" type="xsd:string"

minOccurs="0" maxOccurs="3"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Comme indiqué, element1 et element2 seront maintenant une cardinalité multiple
et un mécanisme d’accès get(...) renverra donc une liste. Element1 a par défaut la
valeur minOccurs 1 et la valeur maxOccurs 1. Element2 a la valeur minOccurs 0 et
la valeur maxOccurs 3. Dans l’exemple suivant, leurs nouvelles valeurs minOccurs
et maxOccurs seront les suivantes :
Data Object - ModelGroupArray
Property[0] - element1 - minOccurs=(2*1)=2 - maxOccurs=(5*1)=5
Property[1] - element2 - minOccurs=(2*0)=0 - maxOccurs=(5*3)=15

Si le type était Choix :
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://ModelGroupArray">
<xsd:complexType name="ModelGroupArray">

<xsd:choice minOccurs="2" maxOccurs="5">

Chapitre 3. Guides et techniques de programmation 55

<xsd:element name="element1" type="xsd:string"/>
<xsd:element name="element2" type="xsd:string"

minOccurs="0" maxOccurs="3"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

La valeur minOccurs suivante serait générée, en raison de l’exclusion du choix
indiquant que seul element1 puisse être extrait à chaque fois ou que seul element2
puisse être extrait à chaque fois, et les deux doivent pouvoir avoir 0 occurrence
pour réussir la validation :
DataObject - ModelGroupArray
Property[0] - element1 - minOccurs=(0*1)=0 - maxOccurs=(5*1)=5
Property[1] - element2 - minOccurs=(0*0)=0 - maxOccurs=(5*3)=15

Concepts associés

Utilisation de l’objet de séquence pour définir l’ordre des données
Certains XSD sont définis de telle sorte que l’ordre des données dans le XML a une
importance significative.

Utilisation de AnySimpleType pour les types simples
AnySimpleType est traité de la même manière que les autres types simples (chaîne,
int, booléen, etc.) par les API SDO.

Les seules différences entre anySimpleType et les autres types simples sont dans
ses données d’instance et la sérialisation/désérialisation. Elles doivent être des
concepts internes pour les objets métier uniquement, et elles sont utilisées pour
déterminer si les données mappées vers ou depuis le champ sont valides. Si une
méthode set(...) devait être appelée sur un type de chaîne, les données seraient
d’abord converties en une chaîne, et les données d’origine seraient perdues :
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://StringType">
<xsd:complexType name="StringType">

<xsd:sequence>
<xsd:element name="foo" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

DataObject stringType = ...

// Définir les données sur une chaîne
stringType.set("foo", "bar");

// Les données d'instance seront toujours du type chaîne,
// quelles que soient les données définies

// Affiche "java.lang.String"
System.out.println(stringType.get("foo").getClass().getName());

// Définir les données sur un nombre entier
stringType.set("foo", new Integer(42));

// Les données d'instance seront toujours du type chaîne,
// quelles que soient les données définies

// Affiche "java.lang.String"
System.out.println(stringType.get("foo").getClass().getName());

Un élément anySimpleType à la place ne perd pas le type de données d’origine de
ce qui est défini :

56 Développement et déploiement

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://AnySimpleType">
<xsd:complexType name="AnySimpleType">

<xsd:sequence>
<xsd:element name="foo" type="xsd:anySimpleType"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

DataObject anySimpleType = ...

// Définir les données sur une chaîne
stringType.set("foo", "bar");

// Les données d'instance seront toujours du type date utilisé dans l'ensemble
// Affiche "java.lang.String"
System.out.println(stringType.get("foo").getClass().getName());

// Définir les données sur un nombre entier
stringType.set("foo", new Integer(42));

// Les données d'instance seront toujours du type date utilisé dans l'ensemble
// Affiche "java.lang.Integer"
System.out.println(stringType.get("foo").getClass().getName());

Ce type de données est également préservé lors de la sérialisation et désérialisation
par xsi:type. En conséquence, à chaque fois que vous sérialisez un élément
anySimpleType, il aura un xsi:type qui correspond à celui défini dans la
spécification SDO en fonction de son type Java :

Dans l’exemple suivant, vous sérialisez l’objet métier ci-dessus de telle sorte que
les données ressembleront à :
<?xml version="1.0" encoding="UTF-8"?>
<p:StringType xsi:type="p:StringType"
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns:p="http://StringType">
<foo xsi:type="xsd:int">42</foo>

<p:StringType></p:StringType>

Le xsi:type sera utilisé lors de la désérialisation pour charger les données comme
classe d’instance Java appropriée. Si aucun xsi:type n’est spécifié, le type de
désérialisation par défaut sera une chaîne.

Pour les autres types simples, déterminer la mappabilité est une constante. Par
exemple, un élément booléen peut toujours mapper une chaîne. AnySimpleType
peut contenir n’importe quel type simple, mais un mappage peut être possible ou
non, en fonction des données d’instance dans le champ.

Utilisez le type de propriété URI et Nom pour déterminer si une propriété est du
type anySimpleType. Il s’agira de ″commonj.sdo″ et ″Object″. Pour déterminer si
des données sont valides pour être insérées dans anySimpleType, vérifiez s’il ne
s’agit pas d’une instance d’un objet de données. Toutes les données pouvant être
représentées sous la forme d’une chaîne et n’étant pas un objet de données
peuvent être définies dans un champ anySimpleType.

Les règles de mappage sont donc les suivantes :
v anySimpleType peut toujours être mappé sur anySimpleType.
v n’importe quel autre type simple peut toujours être mappé sur anySimpleType.

Chapitre 3. Guides et techniques de programmation 57

v anySimpleType peut toujours être mappé sur une chaîne car tous les types
simples doivent pouvoir être convertis en une chaîne.

v anySimpleType peut ou ne peut pas être mappé sur un des autres types simples,
en fonction de sa valeur dans l’objet métier. Cela signifie que ce mappage ne
peut pas être déterminé au moment de la conception, mais uniquement lors de
l’exécution.

Concepts associés

Objets métier : renforcement du schéma et prise en charge du schéma industriel
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server
Information associée

Affectation depuis et vers xs:any

Utilisation de AnyType pour les types complexes
La balise anyType est traitée de la même manière que les autres types complexes
par les API SDO.

Les seules différences entre anyType et les autres types complexes sont dans leurs
données d’instance et la sérialisation/désérialisation, qui doivent être des concepts
internes pour l’objet métier uniquement, et déterminant si les données mappées
vers ou depuis le champ sont valides. Les types complexes sont limités à un type
unique : Client, Adresse, etc. La balise anyType, cependant, permet n’importe quel
objet de données quel que soit le type. Si maxOccurs > 1, chaque objet de données
de la liste peut être d’un type différent.
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://AnyType">
<xsd:complexType name="AnyType">

<xsd:sequence>
<xsd:element name="person" type="xsd:anyType"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://Customer">
<xsd:complexType name="Customer">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://Employee" targetNamespace="http://Employee">
<xsd:complexType name="Employee">

<xsd:sequence>
<xsd:element name="id" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

DataObject anyType = ...
DataObject customer = ...
DataObject employee = ...

// Définir la personne sur Customer
anyType.set("person", customer);

58 Développement et déploiement

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.wbit.620.help.bpel.ui.doc/topics/cxsany.html

// Les données d'instance seront un client
// Affiche "Customer"
System.out.println(anyType.getDataObject("person").getName());

// Définir la personne sur Employee
anyType.set("person", employee);

// Les données d'instance seront un employé
// Affiche "Employee"
System.out.println(anyType.getDataObject("person").getName());

Comme anySimpleType, anyType utilise l’élément xsi:type lors de la sérialisation
afin d’assurer que le type d’objet de données voulu est conservé lorsqu’il est
désérialisé. Ainsi, si vous le définissez sur ″Customer″, le XML se présente comme
suit :
<?xml version="1.0" encoding="UTF-8"?>
<p:AnyType xsi:type="p:AnyType"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:customer="http://Customer"
xmlns:p="http://AnyType">

<person xsi:type="customer:Customer">
<name>foo</name>

</person>
</p:AnyType>

Et, si vous le définissez sur ″Employee″ :
<?xml version="1.0" encoding="UTF-8"?>
<p:AnyType xsi:type="p:AnyType"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:employee="http://Employee"
xmlns:p="http://AnyType">

<person xsi:type="employee:Employee">
<id>foo</id>

</person>
</p:AnyType>

La balise AnyType permet également de définir des valeurs de type simple par le
biais d’objets de données encapsuleurs. Ces objets de données encapsuleurs
possèdent une propriété unique appelée ″value″ (élément) qui contient la valeur de
type simple. Les API SDO ont été écrasées pour encapsuler et désencapsuler
automatiquement ces objets de données de types simples et encapsuleurs lorsque
les API de <Type>get/set<> sont utilisées. Les API get/set de transtypage
non-type n’effectueront pas cet encapsulage.
DataObject anyType = ...

// Appeler une API de <Type> set sur une propriété anyType entraîne la création
// automatique d'un objet de données encapsuleur
anyType.setString("person", "foo");

// Les API get/set classiques ne sont pas écrasées, et renverront donc
// l'objet de données encapsuleur
DataObject wrapped = anyType.get("person");

// L'objet de données encapsulé aura la propriété "value"
// Affiche "foo"
System.out.println(wrapped.getString("value"));

// L'API de <Type> get désencapsulera automatiquement l'objet de données
// Affiche "foo"
System.out.println(anyType.getString("person"));

Chapitre 3. Guides et techniques de programmation 59

Lorsque l’objet de données encapsuleur est sérialisé, il est sérialisé de la même
manière qu’un mappage anySimpleType de classes d’instance Java en types XSD
dans le champ xsi:type. Ce paramètre doit donc être sérialisé de la manière
suivante :
<?xml version="1.0" encoding="UTF-8"?>
<p:AnyType xsi:type="p:AnyType"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:p="http://AnyType">
<person xsi:type="xsd:string">foo</person>

</p:AnyType>

Si aucun élément xsi:type n’est donné ou si un élément xsi:type incorrect est
donné, une exception est émise. En plus de l’encapsulage automatique,
l’encapsuleur peut être créé manuellement pour être utilisé avec l’API set() via
BOFactory createDataTypeWrapper(Type, Object), où Type est le type simple de
SDO des données à encapsuler et Object représente les données à encapsuler.
Type stringType = boType.getType("http://www.w3.org/2001/XMLSchema", "string");
DataObject stringType = boFactory.createByMessage(stringType, "foo");

Pour déterminer si un objet de données est du type encapsuleur, l’élément BOType
isDataTypeWrapper(Type) peut être appelé.
DataObject stringType = ...
boolean isWrapper = boType.isDataTypeWrapper(stringType.getType());

Pour les autres types complexes, pour pouvoir déplacer les données d’un champ à
l’autre, les données doivent être du même type. La balise AnyType peut contenir
n’importe quel type complexe, mais un déplacement direct sans mappage peut être
basé sur les données d’instance dans le champ ou non.

Vous pouvez utiliser l’URI et le Nom du type de propriété pour déterminer si une
propriété est du type anyType. Il s’agira de ″commonj.sdo″ et ″DataObject″. Toutes
les données sont valides pour être insérées dans une balise anyType. Les règles de
mappage sont donc les suivantes :
v anyType peut toujours être mappé sur anyType.
v n’importe quel type complexe peut toujours être mappé sur anyType.
v n’importe quel type simple peut toujours être mappé sur anyType.
v anyType peut ou ne peut pas être mappé sur un des autres types simples ou

complexes, en fonction de sa valeur dans l’instance d’objet métier. Cela signifie
que ce mappage ne peut pas être déterminé au moment de la conception, mais
uniquement au moment de l’exécution.

Concepts associés

Objets métier : renforcement du schéma et prise en charge du schéma industriel
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server

Utilisation de la balise Any pour définir des éléments globaux de
types complexes
Vous pouvez utiliser la balise <any/> pour définir des éléments globaux sur un
type complexe.

Avec une occurrence de la balise any, les méthodes DataObject Type isOpen() et
isSequenced() renvoient la valeur vrai. Si la valeur de maxOccurs est > 1 sur une
balise any, cela n’a aucune incidence sur la structure de l’objet de données ; elle est
utilisée uniqement comme information lors de la validation. De la même manière,

60 Développement et déploiement

l’occurrence de balises any multiples dans un type ne modifie pas la structure de
l’objet de données ; elles sont utilisées uniquement pour valider l’emplacement des
données ouvertes qui ont été définies.
Concepts associés

Objets métier : renforcement du schéma et prise en charge du schéma industriel
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server
Comment savoir si mon objet de données possède une balise ?
Vous pouvez déterminer facilement si des valeurs sont définies au sein d’un objet
de données en vérifiant leurs propriétés pour voir si des propriétés ouvertes sont
des attributs.
Comment obtenir/définir des valeurs ?
Vous pouvez exécuter une instruction get sur des données qui ont été définies dans
un champ de la même manière que pour une autre valeur d’élément si le nom est
connu.
Quels sont les mappages de données valides pour la valeur Any ?
Une balise <any/> est un ensemble de paires nom/valeur. Le seul mappage valide
pouvant être déterminé au moment de la conception pour <any/> est une autre
balise <any/> ou anyType ayant la même valeur maxOccurs.

Comment savoir si mon objet de données possède une balise ? :

Vous pouvez déterminer facilement si des valeurs sont définies au sein d’un objet
de données en vérifiant leurs propriétés pour voir si des propriétés ouvertes sont
des attributs.

L’objet de données ne possède pas de mécanisme permettant de déterminer si un
type d’objet de données comporte des balises. Les objets de données possèdent
uniquement le concept ″ouvert″ qui s’applique à la balise any et à la balise
anyAttribute, et qui permet d’ajouter librement des propriétés. Alors que la
présence d’une balise implique qu’un objet de données a la valeur isOpen() = vrai
et isSequenced() = vrai, il peut comporter uniquement une balise anyAttribute et
une des raisons pour lesquelles il est mis en séquence décrite dans la rubrique
Séquences. L’exemple suivant explique ces concepts :
DataObject dobj = ...

// Vérifiez si le type est "ouvert" ; dans le cas contraire, aucune valeur ne peut
// être définie pour cet objet de données.
boolean isOpen = dobj.getType().isOpen();

si (!isOpen) renvoie la valeur faux ; // Aucune valeur n'est définie pour cet
objet de données

// Les propriétés ouvertes sont ajoutées à la liste des propriétés de l'instance,
// mais pas la liste des propriétés. Ainsi, comparer leurs tailles permet de
// déterminer facilement si des données ouvertes sont définies
int instancePropertyCount = dobj.getInstanceProperties().size();
int definedPropertyCount = dobj.getType().getProperties().size();

// Si elles sont égales, aucun contenu ouvert n'est défini
si (instancePropertyCount == definedPropertyCount) renvoie la valeur faux ;

// Vérifiez les propriétés du contenu ouvertes pour déterminer si certaines d'entre
elles sont des éléments

for (int i=definedPropertyCount; i < instancePropertyCount; i++)
{

Property prop = (Property)dobj.getInstanceProperties().get(i);
si (boXsdHelper.isElement(prop))
{

Chapitre 3. Guides et techniques de programmation 61

renvoie la valeur vrai ; // Une valeur any a été trouvée
}

}

renvoie la valeur faux ; // Aucune valeur n'est définie

Concepts associés

Utilisation de la balise Any pour définir des éléments globaux de types complexes
Vous pouvez utiliser la balise <any/> pour définir des éléments globaux sur un
type complexe.

Comment obtenir/définir des valeurs ? :

Vous pouvez exécuter une instruction get sur des données qui ont été définies dans
un champ de la même manière que pour une autre valeur d’élément si le nom est
connu.

Vous pouvez envoyer une instruction get avec la balise XPath ″<name>″ pour la
résoudre. Si le nom est inconnu, il est possible de trouver la valeur en vérifiant les
propriétés de l’instance comme ci-dessus. S’il y a plusieurs balises any, ou une
balise any avec maxOccurs > 1, la séquence de l’objet de données devra être
utilisée à la place s’il est important de déterminer quelle balise any est à l’origine
des données.
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://AnyElemAny"
targetNamespace="http://AnyElemAny">
<xsd:complexType name="AnyElemAny">

<xsd:sequence>
<!-- Handle all these any one way -->
<xsd:any maxOccurs="3"/>
<xsd:element name="marker1" type="xsd:string"/>
<!-- Handle this any in another -->
<xsd:any/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

La balise <any/> entraînant la mise en séquence de l’objet de données, il est
possible de déterminer quelle valeur any a été définie en vérifiant dans la séquence
la position des propriétés any.

Vous pouvez déterminer à quelle balise any les données d’instance appartiennent
pour le XSD suivant en utilisant le code suivant :
DataObject anyElemAny = ...
Seqeuence seq = anyElemAny.getSequence();

// Jusqu'à ce que l'élément marker1 ait été trouvé, toutes les données ouvertes
// trouvées appartiennent à la première balise any
boolean foundMarker1 = false;

for (int i=0; i<seq.size(); i++)
{

Property prop = seq.getProperty(i);

// Vérifiez si la propriété est une propriété ouverte
si (prop.isOpenContent())
{

si (!foundMarker1)
{

// Doit être la première balise any car elle survient
// avant l'élément marker1

62 Développement et déploiement

System.out.println("Found first any data: "+seq.getValue(i));
}
else
{

// Doit être la seconde balise any car elle survient
// après l'élément marker1
System.out.println("Found second any data: "+seq.getValue(i));

}
}
else
{

// Doit être l'élément marker1
System.out.println("Found marker1 data: "+seq.getValue(i));
foundMarker1 = true;

}
}

Définir une valeur <any/> est effectué en créant une propriété d’élément global et
en ajoutant cette valeur à la séquence.
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://GlobalElems"
targetNamespace="http://GlobalElems">
<xsd:element name="globalElement1" type="xsd:string"/>
<xsd:element name="globalElement2" type="xsd:string"/>

</xsd:schema>

DataObject anyElemAny = ...
Seqeuence seq = anyElemAny.getSequence();

// Obtenir la propriété de l'élement global pour globalElement1
Property globalProp1 = boXsdHelper.getGlobalProperty(http://GlobalElems,
"globalElement1", true);

// Obtenir la propriété de l'élément global pour globalElement2
Property globalProp2 = boXsdHelper.getGlobalProperty(http://GlobalElems,
"globalElement2", true);

// Ajouter les données à la séquence pour la première balise any
seq.add(globalProp1, "foo");
seq.add(globalProp1, "bar");

// Ajouter les données pour le marker1
seq.add("marker1", "separator"); // ou anyElemAny.set("marker1", "separator")

// Ajouter les données à la séquence pour la seconde balise any
seq.add(globalProp2, "baz");

// Il est maintenant possible d'accéder aux données avec une instruction get
System.out.println(dobj.get("globalElement1"); // Affiche "[foo, bar]"
System.out.println(dobj.get("marker1"); // Affiche "separator"
System.out.println(dobj.get("globalElement2"); // Affiche "baz"

Concepts associés

Utilisation de la balise Any pour définir des éléments globaux de types complexes
Vous pouvez utiliser la balise <any/> pour définir des éléments globaux sur un
type complexe.

Quels sont les mappages de données valides pour la valeur Any ? :

Une balise <any/> est un ensemble de paires nom/valeur. Le seul mappage valide
pouvant être déterminé au moment de la conception pour <any/> est une autre
balise <any/> ou anyType ayant la même valeur maxOccurs.

Chapitre 3. Guides et techniques de programmation 63

Individuellement, les valeurs contenues dans une instance d’un objet de données
pour la balise any sont des types complexes de base respectant les règles d’un
mappage de type complexe. Certains de ces types complexes peuvent être des
types simples encapsulés, et ils suivront les règles du mappage de type simple.
Concepts associés

Utilisation de la balise Any pour définir des éléments globaux de types complexes
Vous pouvez utiliser la balise <any/> pour définir des éléments globaux sur un
type complexe.

Utilisation de AnyAttribute pour définir les attributs globaux de
types complexes
La balise <anyAttribute/> permet de définir n’importe quel ensemble d’attributs
globaux sur un type complexe.

Comme pour la balise <any/>, l’occurrence de la balise <anyAttribute/> entraîne
le renvoi par la méthode DataObject Type isOpen() de la valeur true. Toutefois,
contrairement à la balise <any/>, <anyAttribute/> n’implique pas le séquencement
de l’objet données, car les attributs de XSD ne sont pas des constructions
ordonnées.
Concepts associés

Objets métier : renforcement du schéma et prise en charge du schéma industriel
La structure SDO (Service Data Objects) fournit la base pour les données d’objet
métier utilisées par WebSphere Process Server
Comment savoir si mon objet de données possède une balise AnyAttribute ?
Vous pouvez aisément déterminer si des instances d’un objet données comportent
un ensemble de valeurs anyAttribute en vérifiant leurs propriétés pour savoir si les
propriétés ouvertes représentent des attributs.
Comment obtenir/définir des valeurs AnyAttribute ?
Définir une valeur <anyAttribute/> est effectué de la même manière que pour une
balise <any/>, mais un attribut global est utilisé à la place d’un élément global.
Quels sont les mappages de données valides pour la valeur AnyAttribute ?
La balise AnyAttribute est similaire à la balise any, et comprend un ensemble de
paires nom/valeur. En conséquence, le seul mappage valide pour anyAttribute est
une autre balise anyAttribute.

Comment savoir si mon objet de données possède une balise AnyAttribute ? :

Vous pouvez aisément déterminer si des instances d’un objet données comportent
un ensemble de valeurs anyAttribute en vérifiant leurs propriétés pour savoir si les
propriétés ouvertes représentent des attributs.

L’objet données ne prévoit pas de mécanisme pour déterminer si un type d’objet
données inclut une balise anyAttribute. Seuls les objets données comportent un
concept d’ouverture qui s’applique aux balises any et <anyAttribute/> et qui
permet l’ajout de propriétés supplémentaires. S’il est vrai que si un objet données a
défini isOpen() = true et isSequenced() = false, il doit inclure une balise
anyAttribute, si isOpen() = true et isSequenced() = true, le type d’objet données
pouvant ou non inclure une balise anyAttribute.

L’objet données fournit des méthodes d’interrogation des métadonnées pour
répondre à l’aide d’un programme à cette question et bien d’autres sur la structure
XSD qui a servi à le générer. Le modèle InfoSet peut être interrogé pour déterminer
si nécessaire l’existence de la balise anyAttribute. Parce que la balise anyAttribute
est unique et que sa valeur peut être ou non true, les objets métier fournissent

64 Développement et déploiement

également une méthode BOXSDHelper hasAnyAttribute(Type) pour déterminer si
la définition d’un attribut ouvert sur cet objet données produira un résultat valide.
L’exemple de code suivant illustre ces concepts :
DataObject dobj = ...

// Vérifiez si le type est ouvert. S'il ne l'est pas, aucune
// valeur anyAttribute ne peut y être définie.
boolean isOpen = dobj.getType().isOpen() ;

si (!isOpen) return false ; // Aucune valeur anyAttribute définie

// Les propriétés ouvertes sont ajoutées à la liste des propriétés de l'instance,
// mais pas la liste des propriétés. Par conséquent, la comparaison de leurs tailles
// peut permettre de déterminer facilement si des données ouvertes sont définies
int instancePropertyCount = dobj.getInstanceProperties().size();
int definedPropertyCount = dobj.getType().getProperties().size();

// Si leur taille est identique, aucun contenu ouvert n'est défini
si (instancePropertyCount == definedPropertyCount) return false ;

// Vérifiez les propriétés du contenu ouvert pour déterminer l'une d'elles
constituent des attributs

pour (int i=definedPropertyCount; i<instancePropertyCount; i++)
{

Property prop = (Property)dobj.getInstanceProperties().get(i);
si (boXsdHelper.isAttribute(prop))
{

return true ; // Valeur anyAttribute trouvée
}

}

return false ; // Aucune valeur anyAttribute définie

Concepts associés

Utilisation de AnyAttribute pour définir les attributs globaux de types complexes
La balise <anyAttribute/> permet de définir n’importe quel ensemble d’attributs
globaux sur un type complexe.

Comment obtenir/définir des valeurs AnyAttribute ? :

Définir une valeur <anyAttribute/> est effectué de la même manière que pour une
balise <any/>, mais un attribut global est utilisé à la place d’un élément global.

Exécuter une instruction get sur des données qui ont été définies dans un champ
anyAttribute peut être effectué de la même manière que pour une autre valeur
d’attribut si le nom est connu. Vous pouvez envoyer une instruction get avec la
balise XPath ″@<name>″ pour la résoudre. Si le nom est inconnu, vous pouvez
utiliser le code ci-dessus pour itérer les valeurs et y accéder une par une.
L’exemple de code suivant montre comment procéder :
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://AnyAttrOnlyMixed"
targetNamespace="http://AnyAttrOnly">
<xsd:complexType name="AnyAttrOnly">

<xsd:sequence>
<xsd:element name="element" type="xsd:string"/>

</xsd:sequence>
<xsd:anyAttribute/>

</xsd:complexType>
</xsd:schema>

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Chapitre 3. Guides et techniques de programmation 65

targetNamespace="http://GlobalAttrs">
<xsd:attribute name="globalAttribute" type="xsd:string"/>

</xsd:schema>

Data Object dobj = ...

// Obtenir la propriété de l'attribut global qui va être défini
Property globalProp = boXsdHelper.getGlobalProperty(http://GlobalAttrs,
"globalAttribute", false);

// Définir la valeur sur l'objet de données, comme n'importe quelle autre donnée
dobj.set(globalProp, "foo");

// Il est maintenant possible d'accéder aux données avec une instruction get
System.out.println(dobj.get("@globalAttribute")); // Affiche "foo"

Concepts associés

Utilisation de AnyAttribute pour définir les attributs globaux de types complexes
La balise <anyAttribute/> permet de définir n’importe quel ensemble d’attributs
globaux sur un type complexe.

Quels sont les mappages de données valides pour la valeur AnyAttribute ? :

La balise AnyAttribute est similaire à la balise any, et comprend un ensemble de
paires nom/valeur. En conséquence, le seul mappage valide pour anyAttribute est
une autre balise anyAttribute.

Individuellement, les valeurs contenues dans les données anyAttribute sont des
types simples de base respectant les règles du mappage de type simple
Concepts associés

Utilisation de AnyAttribute pour définir les attributs globaux de types complexes
La balise <anyAttribute/> permet de définir n’importe quel ensemble d’attributs
globaux sur un type complexe.

Remplacement d’une conversion d’objet SDO en Java
Il se peut que la conversion d’un objet SDO (Service Data Object) en objet de type
Java effectuée par le système ne réponde pas à vos besoins. Suivez cette procédure
pour remplacer l’implémentation par défaut par celle de votre choix.

Avant de commencer

Vérifiez que vous avez généré la conversion de type WSDL vers Java à l’aide de
WebSphere Integration Developer ou la commande genMapper.

A propos de cette tâche

Pour remplacer un composant généré qui mappe un type WSDL à un type Java,
remplacez le code généré par le code qui répond à vos besoins. Vous pouvez
utiliser votre propre mappe si vous avez défini vos propres classes Java. Suivez
cette procédure pour effectuer les modifications.

Procédure

1. Localisez le composant généré. Le nom du composant est
java_classMapper.component.

2. Editez le composant dans un éditeur de texte.
3. Mettez en commentaires le code généré et insérez votre méthode.

Ne modifiez pas le nom du fichier qui contient l’implémentation du composant.

66 Développement et déploiement

Exemple

Voici un exemple de composant généré à remplacer :
private Object datatojava_get_customerAcct(DataObject myCustomerID,

String integer)
{

// Vous pouvez remplacer ce code par un mappage personnalisé.
// Mettez en commentaire ce code et écrivez le code personnalisé.

// Vous pouvez également changer le type Java transmis au
// convertisseur que le convertisseur tente de convertir.

return SDOJavaObjectMediator.data2Java(customerID, integer) ;

}

Que faire ensuite

Copiez le composant et les autres fichiers dans le répertoire où se trouve le module
conteneur et connectez le composant dans WebSphere Integration Developer ou
générez un fichier EAR à l’aide de la commande serviceDeploy.
Concepts associés

Programmation d’objets métier
L’infrastructure d’objets métier (BO) WebSphere Process Server est une extension
de la norme SDO (Service Data Object). Cette section fournit des informations sur
la programmation d’objets métier et SDO.

Remplacement de l’implémentation d’architecture SCA
générée

Il se peut que la conversion de code Java en objet SDO (Service Data Object)
effectuée par le système ne réponde pas à vos besoins. Suivez cette procédure pour
remplacer l’implémentation d’architecture SCA (Service Component Architecture)
par défaut par celle de votre choix.

Avant de commencer

Vérifiez que vous avez généré la conversion de type Java vers WSDL (Web
Services Definition Language) en utilisant WebSphere Integration Developer ou la
commande genMapper.

A propos de cette tâche

Pour remplacer un composant généré qui mappe un type Java à un type WSDL,
remplacez le code généré par le code qui répond à vos besoins. Vous pouvez
utiliser votre propre mappe si vous avez défini vos propres classes Java. Suivez
cette procédure pour effectuer les modifications.

Procédure

1. Localisez le composant généré. Le nom du composant est
java_classMapper.component.

2. Editez le composant dans un éditeur de texte.
3. Mettez en commentaires le code généré et insérez votre méthode.

Ne modifiez pas le nom du fichier qui contient l’implémentation du composant.

Chapitre 3. Guides et techniques de programmation 67

Exemple

Voici un exemple de composant généré à remplacer :
private DataObject javatodata_setAccount_output(Object myAccount) {

// Vous pouvez remplacer ce code par un mappage personnalisé.
// Mettez en commentaire ce code et écrivez le code personnalisé.

// Vous pouvez également changer le type Java transmis au
// convertisseur que le convertisseur tente de convertir.

return SDOJavaObjectMediator.java2Data(myAccount);

}

Que faire ensuite

Copiez le composant et les autres fichiers dans le répertoire où se trouve le module
conteneur et connectez le composant dans WebSphere Integration Developer ou
générez un fichier EAR à l’aide de la commande serviceDeploy.
Concepts associés

Programmation d’objets métier
L’infrastructure d’objets métier (BO) WebSphere Process Server est une extension
de la norme SDO (Service Data Object). Cette section fournit des informations sur
la programmation d’objets métier et SDO.

Règles en exécution de la conversion de Java en objets SDO
Pour une substitution correcte du code généré ou l’identification des éventuelles
exceptions d’exécution liées aux conversions de Java en SDO (Service Data Object),
il est important de bien comprendre les règles en jeu. La plus grande partie des
conversions se font directement, mais il existe des cas complexes où
l’environnement d’exécution offre les meilleures possibilités de conversion du code
généré.

Types et classes de base

L’environnement d’exécution effectue une conversion directe entre Service Data
Objects et types et classes Java de base. Types et classes de base :
v Char or java.lang.Character
v Boolean
v Java.lang.Boolean
v Byte ou java.lang.Byte
v Short ou java.lang.Short
v Int ou java.lang.Integer
v Long ou java.lang.Long
v Float ou java.lang.Float
v Double ou java.lang.Double
v Java.lang.String
v Java.math.BigInteger
v Java.math.BigDecimal
v Java.util.Calendar
v Java.util.Date
v Java.xml.namespace.QName
v Java.net.URI
v Byte[]

68 Développement et déploiement

Classes et tableaux Java définis par l’utilisateur

Lors de la conversion d’une classe ou d’un tableau (array) Java en SDO,
l’environnement d’exécution crée un objet de données possédant un URI généré en
inversant le nom de package du type Java et ayant un type égal au nom de la
classe Java. Par exemple, si la classe Java com.ibm.xsd.Customer est convertie en
objet SDO, l’URI est http://xsd.ibm.com et le type est Customer. L’environnement
d’exécution inspecte ensuite le contenu des membres de la classe Java et affecte les
valeurs aux propriétés du SDO.

Lors de la conversion d’un SDO en un type Java, l’environnement d’exécution
génère le nom du package en inversant l’URI et le nom du type est égal au type
du SDO. Par exemple, l’objet de données de type Customer et dont l’URI est
http://xsd.ibm.com génère une instance du module Java com.ibm.xsd.Customer.
L’environnement d’exécution extrait ensuite les valeurs des propriétés du SDO et
affecte ces propriétés aux zones de l’instance de la classe Java.

Lorsque la classe Java est une interface définie par l’utilisateur, vous devez
substituer le code généré et offrir une classe concrète que l’environnement
d’exécution puisse instancier. Si l’environnement d’exécution ne peut créer de
classe concrète, une exception se produira.

Java.lang.Object

Si le type Java est java.lang.Object, le type généré est xsd:anyType. Un module
peut appeler cette interface avec tout objet SDO. L’environnement d’exception
tente d’instancier une classe concrète de la même façon que pour les classes et
tableaux (arrays) Java définis par l’utilisateur lorsqu’il ne peut trouver cette classe.
Autrement, l’environnement d’exécution passe le SDO à l’interface Java.

Même si la méthode renvoie un objet java.lang.Object, l’environnement d’exécution
effectuera la conversion seulement en un SDO, si la méthode renvoie un type
concret. L’environnement d’exécution emploie une conversion semblable à celle des
classes et tableaux Java définis par l’utilisateur en SDO, tel que décrit dans le
paragraphe suivant.

Lors de la conversion d’une classe ou d’un tableau (array) Java en SDO,
l’environnement d’exécution crée un objet de données possédant un URI généré en
inversant le nom de package du type Java et ayant un type égal au nom de la
classe Java. Par exemple, si la classe Java com.ibm.xsd.Customer est convertie en
objet SDO, l’URI est http://xsd.ibm.com et le type est Customer. L’environnement
d’exécution inspecte ensuite le contenu des membres de la classe Java et affecte les
valeurs aux propriétés du SDO.

Dans un cas ou l’autre, si l’environnement d’exécution est incapable d’accomplir la
conversion, une exception se produit.

Classes de conteneur Java.util

Lors de la conversion en une classe de conteneur Java concrète telle que Vector,
HashMap, HashSet et autres du même genre, l’environnement d’exécution
instanciera la classe de conteneur appropriée. L’environnement d’exécution
emploie une méthode semblable à celle des classes et tableaux Java définis par
l’utilisateur pour renseigner la classe de conteneur. Si l’environnement d’exécution
ne peut localiser de classe Java concrète, l’environnement d’exécution injectera la
classe de conteneur dans le SDO.

Chapitre 3. Guides et techniques de programmation 69

Lors de la conversion de classes de conteneur Java concrètes en SDO,
l’environnement d’exécution utilise les schémas générés montrés dans la
conversion de «Java en XML.»

Interfaces Java.util

Pour certaines interfaces de conteneur du package java.util, l’environnement
d’exécution instancie les classes concrètes suivantes :

Tableau 3. Conversion de type WSDL en classe Java

Interface Classes concrètes par défaut

Collection HashSet

Map HashMap

List ArrayList

Set HashSet

Concepts associés

Programmation d’objets métier
L’infrastructure d’objets métier (BO) WebSphere Process Server est une extension
de la norme SDO (Service Data Object). Cette section fournit des informations sur
la programmation d’objets métier et SDO.

Validation de document XML
Il est possible de valider les documents XML et les objets métier à l’aide du service
de validation.

Par ailleurs, d’autres services requièrent un certain nombre de standards minimum
sinon une exception d’exécution est émise. BOXMLSerializer est l’un de ces
services.

Vous pouvez utiliser BOXMLSerializer pour valider des documents XML avant
qu’ils ne soient traités par une demande de service. BOXMLSerializer valide la
structure des documents XML pour déterminer s’il comporte l’un des types
d’erreur suivants :
v Documents XML non valides, comme ceux pour lesquels il manque certaines

balises d’éléments.
v Documents XML syntaxiquement incorrects, comme ceux pour lesquels il

manque des balises fermantes.
v Documents contenant des erreurs d’analyse syntaxique, comme les erreurs dans

les déclarations d’entité.

Lorsque BOXMLSerializer identifie une erreur, une exception est émise avec une
analyse détaillée de l’incident.

Vous pouvez valider l’importation et/ou l’exportation des documents XML pour
les services suivants :
v HTTP
v Services Web JAXRPC
v Services Web JAX-WS
v Services JMS
v Services MQ

70 Développement et déploiement

Pour les services HTTP, JAXRPC et JAX-WS, BOXMLSerializer génère les exceptions
de la manière suivante :
v Importations –

1. Le composant SCA appelle le service.
2. Le service appelle l’URL d’une destination.
3. L’URL cible répond avec une exception XML non valide.
4. Le service échoue avec une exception d’exécution et un message.

v Exportations –
1. Le client de service appelle l’exportation de service.
2. Le client de service envoie un XML non valide
3. L’exportation échoue pour le service et génère une exception et un message.

Pour les services de messagerie JMS et MQ, les exceptions sont générées de la
manière suivante :
v Importations –

1. L’importation appelle le service JMS ou MQ.
2. Le service renvoie une réponse.
3. Le service renvoie une exception XML non valide.
4. L’importation échoue et génère un message.

v Exportations –
1. Le client MQ ou JMS appelle une exportation.
2. Le client envoie un XML non valide.
3. L’exportation échoue et génère une exception et un message.

Vous pouvez afficher les journaux pour tout message généré par une exception de
validation XML. Les exemples ci-dessous représentent des messages générés par
du code XML incorrect qui a été validé par BOXMLSerializer

v Importation JAXWS
javax.xml.ws.WebServiceException: org.apache.axiom.om.OMException:
javax.xml.stream.XMLStreamException: Element type "TestResponse" must be
followed by either attribute specifications, ">" or "/>".

javax.xml.ws.WebServiceException: org.apache.axiom.soap.SOAPProcessingException:
First Element must contain the local name, Envelope

v Importation JAXRPC
[9/11/08 15:16:27:417 CDT] 0000003e ExceptionUtil E
CNTR0020E: EJB threw an unexpected (non-declared)
exception during invocation of method
"transactionNotSupportedActivitySessionNotSupported" on bean
"BeanId(WSXMLValidationApp#WSXMLValidationEJB.jar#Module, null)".
Exception data: WebServicesFault
faultCode: {http://schemas.xmlsoap.org/soap/envelope/}Server.generalException
faultString: org.xml.sax.SAXParseException: Element type "TestResponse"

must be followed by either
attribute specifications, ">" or "/>". Message being parsed:

<?xml version="1.0"?><TestResponse
xmlns="http://WSXMLValidation"<firstName>Bob</firstName>

<lastName>Smith</lastName></TestResponse>
faultActor: null
faultDetail:
[9/11/08 15:16:35:135 CDT] 0000003f ExceptionUtil E CNTR0020E: EJB threw an

unexpected (non-declared) exception during invocation of method
"transactionNotSupportedActivitySessionNotSupported" on bean
"BeanId(WSXMLValidationApp#WSXMLValidationEJB.jar#Module, null)".
Exception data: WebServicesFault

Chapitre 3. Guides et techniques de programmation 71

faultCode: {http://schemas.xmlsoap.org/soap/envelope/}Server.generalException
faultString: org.xml.sax.SAXException: WSWS3066E: Error: Expected 'envelope'

but found TestResponse
Message being parsed: <?xml version="1.0"?><TestResponse
xmlns="http://WSXMLValidation">
<firstName>Bob</firstName><middleName>John</middleName>
<lastName>Smith</lastName>
</TestResponse>

faultActor: null
faultDetail:

v Exportation JAXRPC/JAXWS
[9/11/08 15:35:13:401 CDT] 00000064 WebServicesSe E

com.ibm.ws.webservices.engine.transport.http.WebServicesServlet
getSoapAction WSWS3112E:
Error: Generating WebServicesFault due to missing SOAPAction.

WebServicesFault
faultCode: Client.NoSOAPAction
faultString: WSWS3147E: Error: no SOAPAction header!
faultActor: null
faultDetail:

Pour plus d’informations sur les services de validation, voir l’interface de
BOInstanceValidator dans la documentation sur l’interface SPI et l’interface de
programme d’application générées de la section Référence.
Concepts associés

Guides et techniques de programmation
Cette section comprend des guides et des exemples de programmation.

Propagation d’en-tête de protocole à partir de liaisons d’exportation
non SCA

Le service de contexte est chargé de la propagation du contexte (y compris les
en-têtes de protocole comme l’en-tête JMS et le contexte utilisateur comme l’ID de
compte) tout au long du chemin d’appel SCA (Service Component Architecture).
Le service de contexte offre un ensemble d’API et de paramètres configurables.

Lorsque la propagation du service de contexte est bidirectionnelle, le contexte de
réponse écrasera systématiquement le contexte en cours. Lorsque vous exécutez un
appel d’un composant SCA à un autre, la réponse présentera un contexte différent.
Un composant de service aura un contexte entrant, mais si vous appelez un autre
service, celui-ci écrasera le contexte sortant d’origine. Le contexte de réponse
deviendra alors le nouveau contexte.

Lorsque la propagation du service de contexte est unidirectionnelle, le contexte
d’origine reste à l’identique.

Le cycle de vie du service de contexte est associé à un appel. Une demande
dispose d’un contexte associé et le cycle de vie de ce context est lié au traitement
de cette demande particulière. Lorsque le traitement de cette demande se termine,
le cycle de vie de ce contexte s’achève.

Dans le cas d’un processus BPEL (Business Process Execution Language) à court
terme, le contexte de réponse écrasera le contexte de demande. Il récupérera le
contexte de réponse auprès de la première demande et le passera à la demande
suivante. Dans le cas d’un d’un processus BPEL au long cours, le contexte de
réponse est éliminé par le framework BPEL. Celui-ci stocke le contexte d’origine et
utilise ce contexte pour faire d’autres appels sortants.

72 Développement et déploiement

Exemple

Exemple : un contexte incluant un en-tête de protocole est propagé à travers tout le
chemin d’appel partant d’une demande entrant dans BPEL en provenance d’un
service web SOAP. BPEL traite ce contexte, et les appels en provenance de BPEL
sont effectués séquentiellement vers une liaison de service web sortante, puis une
autre liaison de service web sortante. Une demande issue du service web SOAP
utilise le service de contexte pour transmettre l’en-tête de protocole. Le service de
contexte est extrait de la demande entrante et l’en-tête de protocole est transmis à
l’extérieur.

Vous pourrez voir le même type de comportement avec un autre composant SCA
en lieu et place du BPEL de cet exemple.

Voici un exemple de code.
//Import the necessary classes;
import com.ibm.bpm.context.ContextService;
import com.ibm.websphere.sca.ServiceManager;
import com.ibm.bpm.context.cobo.ContextObject;
import com.ibm.bpm.context.cobo.ContextObjectFactory;
import com.ibm.bpm.context.cobo.HeaderInfoType;
import com.ibm.bpm.context.cobo.UserDefinedContextType;

//Locate ContextService;
ContextService contextService = (ContextService)ServiceManager.INSTANCE.locateService
("com/ibm/bpm/context/ContextService");

// Get header info
HeaderInfo headerInfo = contextService.getHeaderInfo();
// Get user defined context in current execution context
UserDefinedContextType userDefinedContext = contextService.getUserDefinedContext();
if(userDefinedContext == null){ // create a new context if context is null
userDefinedContext = ContextObjectFactory.eINSTANCE.createUserDefinedContextType()
}

// Do some modification to header info and userDefinedContext

// Set user defined context back to the current execution context.
contextService.setUserDefinedContext(userDefinedContext);

// Set header info back to the current execution context.
contextService.setHeaderInfo(headerInfo);

Remarque : Dans le composant de flux de médiation, les API ContextService ne
doivent pas être employées. Utilisez le modèle de programmation SMO pour
accéder au contexte.

Figure 9. Propagation de contexte comprenant un en-tête de protocole

Chapitre 3. Guides et techniques de programmation 73

Les services de contexte possèdent des règles et des tables configurables qui
dictent le comportement de la liaison. Pour plus d’informations, voir la
documentation API et SPI générées disponible à la section Référence. Lors du
développement dans WebSphere Integration Developer, vous pouvez définir le
service de contexte sur les propriétés d’importation ou d’exportation. Pour plus de
détails, reportez-vous aux informations relatives aux liaisons d’importation et
d’exportation dans le centre de documentation de WebSphere Integration
Developer.
Concepts associés

Guides et techniques de programmation
Cette section comprend des guides et des exemples de programmation.

Gestion des règles métier
Des classes de gestion des règles métier sont fournies pour permettre de créer des
clients de gestion personnalisés ou d’automatiser les changements apportés aux
règles métier.

Les classes de gestion des règles métier peuvent être utilisées dans une application
Web, où elles sont combinées à d’autres capacités de gestion pour des processus
métier ou des tâches utilisateur, afin de gérer tous les composants d’un même
client. Vous pouvez utiliser tout client de gestion personnalisé avec l’application
Web Business Rule Manager contenue dans WebSphere Process Server. Les classes
peuvent également être utilisées pour l’automatisation des modifications apportées
aux règles métier au sein d’une application. Par exemple, certaines règles métier
peuvent être modifiées si les résultats d’un processus métier utilisant ces règles
dépassent un seuil ou une limite spécifique.

Les classes de gestion des règles métier doivent être utilisées dans une application
installée surWebSphere Process Server. Les classes n’incluent pas d’interface
distante, mais elles peuvent être encapsulées dans une façade, qui est ensuite
exposée via un protocole spécifique, à des fins d’exécution à distance.

74 Développement et déploiement

Ce guide de programmation se compose de deux sections principales et d’une
annexe. La première section explique le modèle de programmation, et indique
comment utiliser les différentes classes. Des diagrammes de classes sont fournis
pour illustrer les relations existant entre les classes. La deuxième section contient
des exemples d’utilisation des classes pour l’exécution d’opérations telles que la
recherche de groupes de règles métier, la planification de la destination d’une
nouvelle règle, ou encore la modification d’un ensemble de règles ou d’une table
de décision. L’annexe contient des classes supplémentaires, qui ont été utilisées
dans les exemples pour simplifier des opérations courantes, et d’autres exemples
de création de requêtes complexes servant à rechercher des groupes de règles
métier en utilisant des caractères génériques.

Ce guide de programmation consacré aux classes est également disponible au
format HTML Javadoc inclus dans WebSphere Process Server v6.1 et dans
l’environnement de test de WebSphere Integration Developer v6.1. Cette
documentation Javadoc est figure dans le répertoire ${Répertoire d’installation de
WebSphere Process Server}\web\apidocs ou dans ${Répertoire d’installation de
WebSphere Integration Developer}\runtimes\bi_v61\web\apidocs. Les packages
com.ibm.wbiserver.brules.mgmt.* contiennent toutes les informations.
Concepts associés

Guides et techniques de programmation
Cette section comprend des guides et des exemples de programmation.
Modèle de programmation
Les règles métier de WebSphere Business Integration sont créées à l’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de règles.
Tous trois partagent le même modèle d’artefacts de règles métier.
Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.
Référence associée

Classes d’opérations communes
Cette section contient des classes supplémentaires, qui ont été utilisées dans les
exemples pour simplifier des opérations communes.

Modèle de programmation
Les règles métier de WebSphere Business Integration sont créées à l’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de règles.
Tous trois partagent le même modèle d’artefacts de règles métier.

Le partage d’un même modèle a été jugé essentiel pour des raisons de
maintenance future, et également dans le but d’offrir à l’utilisateur final un modèle
de programmation cohérent. Le partage de ce modèle a nécessité des compromis
entre les besoins d’outils, l’exécution et la création : en effet, tous ces aspects
possèdent leurs propres exigences en fonction de leur environnement respectif ; or,
ces exigences entraient parfois en conflit. Les artefacts décrits ci-dessous en tant
que partie intégrante du modèle de programmation global représentent un
équilibre entre toutes les exigences de ces environnements différents.

Chapitre 3. Guides et techniques de programmation 75

La modification des règles métier est limitée aux seuls éléments définis à l’aide de
modèles dans les ensembles de règles, dans les tables de décision et dans la table
de sélection des opérations (dates d’entrée en vigueur et cibles). La création de
nouveaux ensembles de règles et de nouvelles tables de décisions n’est prise en
charge que via la copie d’un ensemble de règles ou d’une table de décision
existant(e). Le composant de groupe de règle métier lui-même ne peut pas être créé
dynamiquement lors de l’exécution, à l’exception des propriétés définies par
l’utilisateur et des valeurs de description. Pour apporter les modifications requises
au composant (ajout d’une nouvelle opération, par exemple), vous devez utiliser
WebSphere Integration Developer, puis redéployer ces modifications ou les
réinstaller sur le serveur.

76 Développement et déploiement

Concepts associés

Gestion des règles métier
Des classes de gestion des règles métier sont fournies pour permettre de créer des
clients de gestion personnalisés ou d’automatiser les changements apportés aux
règles métier.
Groupe de règles métier
La classe BusinessRuleGroup représente le composant de groupe de règles métier.
Cette classe peut être considérée comme l’objet racine contenant les ensembles de
règles et les tables de décision.
Propriétés de groupes de règles métier
Les propriétés des groupes de règles métier servent à gérer ces groupes. Les
propriétés définies dans les groupes de règles métier peuvent être utilisées dans les
requêtes, pour renvoyer uniquement un sous-ensemble de groupes de règles métier
à afficher puis à modifier.
Opération
Les opérations représentent le point de départ d’accès aux ensembles de règles et
aux tables de décisions à modifier. Les opérations d’un groupe de règles métier
correspondent aux opérations répertoriées dans le langage WSDL associé au
composant de groupes de règles métier.
Règle métier
Les classes RuleSet et DecisionTable sont basées sur une classe générique
BusinessRule et contiennent des méthodes fournissant les informations disponibles
dans les ensembles de règles et les tables de décision.
Ensemble de règles
Un ensemble de règles constitue un type de règle métier. Les ensembles de règles
sont généralement utilisés lorsque plusieurs règles doivent être exécutées sur la
base de différentes valeurs conditionnelles. Les ensembles de règles se composent
d’un bloc de règles et de modèles de règles. Le bloc de règles (RuleBlock) contient
les différentes règles if-then et action qui composent la logique de l’ensemble de
règles.
table de décision
Les tables de décision représentent un autre type de règle métier que vous pouvez
gérer et modifier. Elles sont généralement utilisées lorsque de nombreuses
conditions doivent être évaluées et qu’un ensemble spécifique d’actions doivent
être émises une fois les conditions remplies.
Modèles et paramètres
Les modèles inclus dans les ensembles de règles et dans les tables de décision
prennent comme base une définition commune. Les modèles possèdent des
paramètres et une présentation de l’utilisateur. Les valeurs de paramètres inclus
dans les modèles sont définis pour permettre d’apporter des modifications à la
règle une fois que celle-ci a été déployée.
Validation
Parmi les objets principaux, nombreux sont ceux qui possèdent une méthode de
validation ; elle permet de vérifier si les artefacts sont corrects et complets avant
leur publication.
Suivi des modifications
Pour tous les objets, vous pouvez utiliser une méthode hasChanges afin de vérifier
si des modifications ont été apportées à l’objet et aux objets qu’il contient.
BusinessRuleManager
La classe BusinessRuleManager est la principale classe d’utilisation des groupes de
règles, des ensembles de règles et des tables de décision.
Traitement des exceptions
Des exceptions peuvent être générées lors d’un appel de validation pour un

Chapitre 3. Guides et techniques de programmation 77

artefact ou lors de sa publication. En cas d’erreur de validation, l’exception
ValidationException est générée ; elle s’accompagne de la liste des problèmes
rencontrés. Si un problème survient au cours de la publication car une autre
transaction publie les mêmes artefacts, l’exception ChangeConflictException est
générée. A chaque détection de la modification d’un artefact par une autre
transaction, l’exception ChangeConflictException est générée.
Autorisation
Les classes ne prennent en charge aucun niveau d’autorisation. L’application client
utilisant les classes doit ajouter sa propre méthode d’autorisation.

Groupe de règles métier
La classe BusinessRuleGroup représente le composant de groupe de règles métier.
Cette classe peut être considérée comme l’objet racine contenant les ensembles de
règles et les tables de décision.

Les ensembles de règles et les tables de décision sont accessibles uniquement par le
groupe de règles métier auquel elles sont associées. La classe contient des
méthodes permettant d’extraire les informations liées au groupe de règles métier et
d’accéder aux ensembles de règles et aux tables de décision. Les méthodes
permettent d’extraire les informations suivantes :
v Espace de nom cible
v Nom de groupe de règles métier
v Nom affiché
v Synchronisation nom/nom affiché
v Description
v Fuseau horaire de présentation indiquant si les dates doivent être affichées au

format UTC (temps universel coordonné) ou en local sur le système
v Opérations définies dans l’interface associée au groupe de règles métier
v Propriétés personnalisées définies dans le groupe de règles métier

Les différents ensembles de règles et tables de décision associés au groupe de
règles métier sont accessibles par l’opération du groupe de règles métier.

Des méthodes permettent également de mettre à jour les informations dans le
groupe de règles métier. Les informations suivantes peuvent être mises à jour via
les méthodes :
v Description
v Nom affiché
v Synchronisation nom/nom affiché
v Propriétés personnalisées définies dans le groupe de règles métier

Le nom affiché du groupe de règles métier peut être défini de manière explicite ou
sur la valeur du nom à l’aide de la méthode
setDisplayNameIsSynchronizedToName.

Les autres valeurs ne peuvent pas être modifiées puisqu’elles font partie de la
définition du composant de groupe de règles métier. Leur modification
nécessiterait un redéploiement ainsi qu’une réinstallation.

78 Développement et déploiement

La classe du groupe de règles métier offre également une méthode d’actualisation.
Cette méthode effectue un appel vers la mémoire persistante ou le référentiel dans
lesquels les règles métier sont stockées et renvoie le groupe de règles métier ainsi
que tous les ensembles de règles et les tables de décision avec les informations
conservées. Le groupe de règles métier renvoyé représente la dernière copie et
l’objet précédent devient obsolète.

La méthode isShell permet de dire si la version d’une instance de groupe de règles
métier est prise en charge par l’exécution en cours. Par exemple, si un client Web a
été créé avec les classes de gestion de règles métier en cours, et que de nouvelles
fonctions ajoutées ultérieurement au groupe de règles métier ne sont pas prises en
charge par les classes, un groupe de règles métier interpréteur de commandes est
créé une fois le groupe de règles métier récupéré. Cela permet au client Web de
continuer à utiliser les règles métier prises en charge et à récupérer les groupes de
règles métier avec des fonctions et des attributs limités. Lorsque la méthode isShell
est vraie, seules les méthodes getName, getTargetNameSpace, getProperties,
getPropertyValue et getProperty renvoient des valeurs. Toutes les autres méthodes
conduisent à l’exception UnsupportedOperationException. Outre l’utilisation de la
méthode isShell, le type de BusinessRuleGroup peut également être vérifié s’il
s’agit d’une instance de BusinessRuleGroupShell, afin de déterminer si la version
est prise en charge.

Chapitre 3. Guides et techniques de programmation 79

Concepts associés

Modèle de programmation
Les règles métier de WebSphere Business Integration sont créées à l’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de règles.
Tous trois partagent le même modèle d’artefacts de règles métier.

Propriétés de groupes de règles métier
Les propriétés des groupes de règles métier servent à gérer ces groupes. Les
propriétés définies dans les groupes de règles métier peuvent être utilisées dans les
requêtes, pour renvoyer uniquement un sous-ensemble de groupes de règles métier
à afficher puis à modifier.

Toutes les propriétés sont du type chaîne et sont définies en tant que paires
valeur-nom. Chaque propriété ne peut être définie qu’une seule fois dans un
groupe de règles métier. Pour chaque propriété définie, une valeur doit également
lui être définie. La valeur de propriété peut être une chaîne vide ou de longueur
zéro, mais pas NULL. Définir une propriété sur NULL revient à la supprimer.

Figure 10. Diagramme de classes de BusinessRuleGroup et classes associées

80 Développement et déploiement

Les propriétés d’un groupe de règles métier sont également accessibles dans un
ensemble de règles ou une table de décision au moment de l’exécution. Cela
permet à une valeur unique, à définir dans le groupe de règles métier, d’être
utilisée au sein de plusieurs ensembles de règles ou de tables de décision du
groupe de règles métier. Seules les propriétés définies dans le groupe de règles
métier sont disponibles pour les ensembles de règles et les tables de décision joints.

Il existe deux types de propriétés, système et définies par l’utilisateur. Le nombre
de propriétés système ou de propriétés définies par l’utilisateur n’est pas limité
dans un groupe de règles métier. Les propriétés système permettent de détenir des
informations spécifiques liées à un composant telles que la version du modèle de
règle utilisée lors de la définition de la logique de règle. Ces informations système
apparaissent dans les propriétés pour permettre les requêtes sur ces zones. Les
propriétés système commencent par un préfixe IBMSystem et sont en lecture seule
dans le groupe de règles métier et les classes de propriétés. Les propriétés système
peuvent être ajoutées, modifiées ou supprimées. Voici un exemple de propriété
système :

Nom de la propriété Valeur de la propriété

IBMSystemVersion 6.2.0

Remarque : les valeurs du nom, de l’espace de nom et du nom affiché d’un
groupe de règles métier sont traitées en tant que propriétés système dans le cadre
de requêtes, et font partie de la liste de propriétés à extraire pour un groupe de
règles métier à l’aide de la méthode getProperties. Toutefois, ces propriétés ne sont
pas définies en tant qu’éléments de propriétés en cours dans l’artefact de groupe
de règles métier et n’apparaissent pas comme propriétés dans WebSphere
Integration Developer, dans la mesure où elles sont définies avec des éléments
uniques et distincts dans le groupe de règles métier. Elles sont fournies
uniquement pour offrir davantage d’options de requête.

Les propriétés définies par l’utilisateur peuvent être utilisées pour détenir des
informations spécifiques aux utilisateurs, ainsi que dans les requêtes relatives aux
groupes de règles métier. Ces propriétés sont disponibles en lecture-écriture.

Les propriétés d’un groupe de règles métier peuvent être extraites
individuellement ou sous forme de liste (objet PropertyList). Avec l’onglet
PropertyList, les méthodes de récupération des propriétés individuelles, d’ajout et
de suppression des propriétés définies par l’utilisateur sont fournies.

Chapitre 3. Guides et techniques de programmation 81

Figure 11. Diagramme de classes de Property et classes associées

82 Développement et déploiement

Concepts associés

Modèle de programmation
Les règles métier de WebSphere Business Integration sont créées à l’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de règles.
Tous trois partagent le même modèle d’artefacts de règles métier.

Opération
Les opérations représentent le point de départ d’accès aux ensembles de règles et
aux tables de décisions à modifier. Les opérations d’un groupe de règles métier
correspondent aux opérations répertoriées dans le langage WSDL associé au
composant de groupes de règles métier.

Pour chaque opération, il existe différentes cibles, chacune d’entre elles constituant
une règle métier (ensemble de règles ou table de décision) :
v Cible par défaut (facultatif)
v Liste des cibles planifiées par plages de date/heure (OperationSelectionRecord)
v Liste de toutes les cibles disponibles pouvant être utilisées pour cette opération

Pour chaque opération, une cible de règle métier doit être spécifiée au minimum.
Cette cible peut être OperationSelectionRecord et comporter une date de début et
une date de fin spécifiques, correspondant à la période d’activation planifiée de la
cible. Une cible unique par défaut peut également être définie pour l’opération,
puis utilisée au cours de l’exécution si aucune cible de règle métier planifiée
correspondante n’est trouvée. La classe Operation fournit des méthodes
d’extraction et de définition de cible de règle métier par défaut, ainsi que des
méthodes d’extraction de la liste (OperationSelectionRecordList) des cibles de
règles métier planifiées. Outre la cible de règle métier par défaut et les cibles de
règles métier planifiées, il existe une liste de toutes les cibles de règles métier
disponibles pour l’opération. Cette liste répertorie les cibles de règles métier
planifiées, la cible de règle métier par défaut, ainsi que les autres ensembles de
règles ou tables de décisions non planifiés pour cette opération. Un ensemble de
règles ou une table de décision non planifié(e) est associé(e) à l’opération via la
liste des cibles disponibles, car elle partage implicitement les informations relatives
à l’opération. Toutes les cibles de règles métier doivent prendre en charge les
messages entrants et sortants de leur opération. Chaque opération étant unique sur
une interface donnée, les ensembles de règles et les tables de décisions d’une
opération sont uniques.

Vous pouvez planifier l’activation des ensembles de règles et tables de décisions de
la liste des cibles disponibles via la création d’une
méthodeOperationSelectionRecord. Dans ce cas, vous devez spécifier une date de
début et une date de fin pour chaque ensemble de règles ou table de décision de la
liste des cibles disponibles. La date de début doit être antérieure à la date de fin.
Ces dates peuvent représenter une période incluant la date du jour, ou encore une
période passée ou future. La période indiquée par ces dates ne peut pas
chevaucher une autre période spécifiée par OperationSelectionRecords, une fois
ajoutée à OperationSelectionRecordList et publiée. Les valeurs de date de début et
de date de fin sont de type java.util.Date. Les valeurs spécifiées seront considérées
comme des valeurs UTC, selon la classe java.util.Date. Une fois
OperationSelectionRecord terminée, elle peut être ajoutée à
OperationSelectionRecordList en vue d’être planifiée avec d’autres cibles de règles
métier. Il peut exister des écarts entre les périodes spécifiées par différentes
méthodes OperationSelectionRecords. Lorsqu’un écart est constaté au cours de

Chapitre 3. Guides et techniques de programmation 83

l’exécution, la cible par défaut est utilisée. Si aucune cible par défaut n’a été
spécifiée, une exception est générée. Il est recommandé de toujours spécifier une
cible de règle métier par défaut.

Une cible de règle métier par défaut peut être supprimée de la liste des cibles
planifiées, via la suppression de la méthodeOperationSelectionRecord de
OperationSelectionRecordList. Si vous supprimez un élément
OperationSelectionRecord, cela ne supprime pas la cible de règle métier
correspondante de la liste des cibles de règles métier disponibles, et cela ne
supprime pas non plus les autres éléments OperationSelectionRecords portant la
même cible de règle métier planifiée.

Outre l’extraction d’un ensemble de règles ou d’une table de décision via la
méthode OperationSelectionRecordList ou via la liste des cibles disponibles, la
classe Operation permet également d’extraire les cibles de règles métier par nom et
par valeur de propriété d’espace de nom cible. Grâce aux méthodes de la classe
Operation, les ensembles de règles et tables de décisions qui figurent parmi les
cibles disponibles pour cette opération peuvent faire l’objet d’une requête. Les
ensembles de règles et tables de décisions susceptibles de porter des valeurs de
nom et d’espace de nom cible correspondantes, mais qui font partie des listes des
cibles disponibles d’autres opérations ne sont pas inclus dans l’ensemble de
résultats. Les méthodes getBusinessRulesByName, getBusinessRulesByTNS et
getBusinessRulesByTNSAndName sont fournies pour simplifier l’extraction
d’ensembles de règles et de tables de décisions spécifiques.

La classe Operation fournit les méthodes qui permettent d’effectuer les opérations
suivantes :
v Extraction du nom de l’opération
v Extraction de la description de l’opération
v Extraction et définition de la cible de règle métier par défaut
v Extraction des cibles de règles métier planifiées (OperationSelectionRecordList)
v Extraction de la liste de toutes les cibles de règles métier disponibles
v Extraction d’un ensemble de règles ou d’une table de décision de la liste des

cibles disponibles, par nom ou par espace de nom cible
v Extraction du groupe de règles métier associé à l’opération

La classe OperationSelectionRecordList fournit les méthodes qui permettent
d’effectuer les opérations suivantes :
v Extraction d’un élément de la classe OperationSelectionRecord par valeur

d’index
v Suppression d’un élément spécifique de la classe OperationSelectionRecord par

valeur d’index
v Ajout d’un nouvel élément de la classe OperationSelectionRecord à la liste

La classe OperationSelectionRecord fournit les méthodes qui permettent d’effectuer
les opérations suivantes :
v Extraction et définition de la date de début
v Extraction et définition de la date de fin
v Extraction et définition de la cible de règle métier
v Extraction de l’opération à laquelle l’élément de la classe

OperationSelectionRecord est associé

84 Développement et déploiement

Concepts associés

Modèle de programmation
Les règles métier de WebSphere Business Integration sont créées à l’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de règles.
Tous trois partagent le même modèle d’artefacts de règles métier.

Règle métier
Les classes RuleSet et DecisionTable sont basées sur une classe générique
BusinessRule et contiennent des méthodes fournissant les informations disponibles
dans les ensembles de règles et les tables de décision.

A l’instar des artefacts de groupe de règles métier, les ensembles de règles et les
tables de décision possèdent un nom et un espace de nom cible. La combinaison
de ces valeurs doit être unique par rapport aux autres ensembles de règles et tables

Figure 12. Diagramme de classes de Operation et classes associées

Chapitre 3. Guides et techniques de programmation 85

de décision. Par exemple, deux ensembles de règles peuvent partager la même
valeur d’espace de nom cible, mais leur nom doit être différent. De même, un
ensemble de règles et une table de décision peuvent porter le même nom mais ils
doivent détenir des valeurs d’espace de nom cible différentes.

La copie d’une règle métier peut être réalisée à partir d’une règle métier existante
lorsqu’une règle similaire doit être planifiée à une heure spécifique, avec
différentes valeurs de paramètres pour les règles construites à partir de modèles.
Dans la mesure où une classe de sauvegarde Java est nécessaire à l’implémentation
de la règle métier, les règles ne peuvent pas être créés à partir de rien. La classe de
sauvegarde Java est créée seulement au moment du déploiement. Lors de la
création d’une règle, cette dernière est ajoutée à la liste des cibles disponibles pour
l’opération associée à la règle d’origine. Toutefois, la règle additionnelle n’est pas
conservée sauf en cas de publication du groupe de règles métier auquel l’opération
est associée.

La nouvelle règle métier doit comporter un espace de nom cible ou un nom
différent de la règle d’origine. Le nom affiché de la nouvelle règle métier peut
rester identique à celui de la règle d’origine puisque la combinaison du nom et de
l’espace de nom fournissent une valeur clé permettant d’identifier la règle métier.
Dans le cadre de la règle métier, les différentes valeurs de paramètre,
précédemment définies avec un modèle, peuvent être modifiées. La planification
de la règle métier à une heure spécifique peut être réalisée avec
OperationSelectionRecordList ou en tant que destination par défaut avec
l’Opération associée à la règle métier.

La classe BusinessRule fournit des méthodes permettant de :
v Extraire l’espace de nom cible
v Extraire le nom de l’ensemble de règles ou la table de décision
v Extraire et définir le nom affiché de l’ensemble de règles ou de la table de

décision
v Extraire le type de la règle métier : ensemble de règles ou table de décision
v Extraire et définir la description de la règle métier
v Extraire l’opération à laquelle la règle métier est associée.
v Créer une copie de la règle métier avec un nom et/ou un espace de nom cible

différent

86 Développement et déploiement

Concepts associés

Modèle de programmation
Les règles métier de WebSphere Business Integration sont créées à l’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de règles.
Tous trois partagent le même modèle d’artefacts de règles métier.

Ensemble de règles
Un ensemble de règles constitue un type de règle métier. Les ensembles de règles
sont généralement utilisés lorsque plusieurs règles doivent être exécutées sur la
base de différentes valeurs conditionnelles. Les ensembles de règles se composent
d’un bloc de règles et de modèles de règles. Le bloc de règles (RuleBlock) contient
les différentes règles if-then et action qui composent la logique de l’ensemble de
règles.

La classe RuleSet fournit les méthodes qui prennent en charge les aspects
suivants :
v Extraction d’une liste de blocs de règles pour l’ensemble de règles

Figure 13. Diagramme de classes de BusinessRule et classes associées

Chapitre 3. Guides et techniques de programmation 87

v Extraction d’une liste de modèles de règles définis dans l’ensemble de règles

A l’heure actuelle, chaque ensemble de règles ne peut contenir qu’un bloc de
règles, tandis que plusieurs modèles de règles peuvent être définis dans l’ensemble
de règles. Le bloc de règles contient l’ensemble de règles qui sera exécuté lors de
l’appel de l’ensemble de règles. Le bloc de règles permet de modifier l’ordre des
règles. Un bloc de règles doit contenir au minimum une règle définie. Les règles
(Rule) peuvent être définies comme des règles d’instance de modèle
(TemplateInstanceRule) ou codées en dur. Si une règle if-then ou une règle action a
été définie avec un modèle, elle peut être supprimée du bloc de règles. Si une
nouvelle instance de règle a été créée avec un modèle, elle peut être ajoutée au
bloc de règles.

Si une règle est codée en dur et qu’elle n’a pas été définie avec un modèle, elle ne
peut être ni modifiée, ni supprimée du bloc de règles. Ces règles ont été conçues
pour faire systématiquement partie de la logique des ensembles de règles et ne
doivent pas être modifiées ou répétées au sein de cette logique.

Lorsqu’une nouvelle règle est créée avec un modèle, elle doit porter une valeur de
nom unique. La liste des règles existantes peut être extraite et vérifiée avant la
création de la règle.

Pour les règles codées en dur if-then et action, seuls le nom et la présentation
peuvent être extraits. La présentation représente une chaîne que vous pouvez
utiliser pour afficher les informations relatives à la règle dans les applications
client. Pour les règles if-then ou action définies avec un modèle, vous pouvez
extraire le nom et la présentation, ainsi que des informations supplémentaires. Les
valeurs de paramètres spécifiques peuvent être extraites et modifiées. Si un modèle
(RuleSetRuleTemplate) a été défini dans l’ensemble de règles, vous pouvez créer
une autre instance de la règle au sein de l’ensemble de règles et définir des valeurs
de paramètres. Par exemple, une règle peut indiquer qu’un client d’un niveau
spécifique doit recevoir une remise d’un montant donné. Cette logique peut être
définie avec un modèle de règle unique, puis répétée en modifiant les valeurs des
paramètres de niveau de client (or, argent, bronze, etc.), et de montant de la remise
(15 %, 10 %, 5 %, etc.).

Les paramètres d’une règle ayant été définis avec un modèle sont propres à
l’instance de règle correspondante. Le modèle définit uniquement une présentation
standard, ainsi que le nombre de paramètres applicables à la règle. Chaque règle
définie avec un modèle peut posséder des valeurs différentes, comme l’explique
l’exemple de remises appliquées à différents niveaux de clients.

La classe RuleBlock fournit les méthodes qui permettent d’effectuer les opérations
suivantes :
v Extraction d’une règle par index
v Ajout d’une règle définie avec un modèle
v Suppression d’une règle définie avec un modèle
v Modification de l’ordre établi (d’une place ou à un emplacement d’index

spécifique)

La classe RuleSetRule fournit les méthodes qui permettent d’effectuer les
opérations suivantes :
v Extraction du nom de la règle
v Extraction du nom affiché de la règle

88 Développement et déploiement

v Extraction de la présentation de l’utilisateur
v Extraction du bloc de règle

La classe RuleSetRuleTemplate fournit les méthodes qui permettent d’effectuer les
opérations suivantes :
v Création d’une instance de modèle de règle à partir de la définition de modèle

correspondante
v Extraction de l’ensemble de règles parent

La classe TemplateInstanceRule fournit les méthodes qui permettent d’effectuer les
opérations suivantes :
v Extraction des paramètres de la règle
v Extraction de la définition de modèle qui a permis de définir la règle

La classe Template fournit les méthodes qui permettent d’effectuer les opérations
suivantes :
v Extraction de l’ID de modèle
v Extraction du nom
v Extraction et définition du nom affiché
v Extraction et définition de la description
v Extraction des paramètres de ce modèle
v Extraction de la présentation de l’utilisateur

Chapitre 3. Guides et techniques de programmation 89

Concepts associés

Modèle de programmation
Les règles métier de WebSphere Business Integration sont créées à l’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de règles.
Tous trois partagent le même modèle d’artefacts de règles métier.

Figure 14. Diagramme de classes de BusinessRule et classes associées

90 Développement et déploiement

Table de décision
Les tables de décision représentent un autre type de règle métier que vous pouvez
gérer et modifier. Elles sont généralement utilisées lorsque de nombreuses
conditions doivent être évaluées et qu’un ensemble spécifique d’actions doivent
être émises une fois les conditions remplies.

Les tables de décision sont semblables aux arborescences de décision, mais elles
sont équilibrées. Elles comportent toujours le même nombre de conditions à
évaluer et d’actions à exécuter, quelles que soient les branches résolues sur true.
Une arborescence de décision peut comporter une branche ayant plus de
conditions à évaluer qu’une autre.

Les tables de décision sont structurées sous la forme d’une arborescence de noeuds
et sont définies par un TreeBlock. Différents TreeNodes composent le TreeBlock.
Les TreeNodes peuvent être des noeuds de condition ou d’action. Les noeuds de
condition sont les branches d’évaluation. A la fin des branches, les noeuds d’action
contiennent les actions d’arborescence appropriées à émettre et pour lesquelles
toutes les conditions doivent avoir pour résultat true. Le nombre de niveaux de
noeuds de condition est illimité, mais il ne peut y avoir qu’un seul niveau de
noeuds d’action.

Les tables de décision peuvent également comporter une règle d’initialisation
(règle init) qui peut être émise avant vérification des conditions de la table.

La classe DecisionTable contient des méthodes permettant de :
v Extraire le bloc d’arborescence de noeuds d’arborescences (noeuds de condition

et d’action)
v Extraire l’instance de règle init
v Extraire le modèle de règle s’il est défini

Chapitre 3. Guides et techniques de programmation 91

Le TreeBlock d’une table de décision contient les différents noeuds de condition et
d’action. Chaque noeud de condition (ConditionNode) abrite une définition de
terme (TreeConditionTermDefinition) et de un à n résultats de cas (CaseEdge). La
définition de terme contient l’opérande situé à gauche de l’expression de condition.
Les résultats de cas contiennent les définitions de valeurs représentant les
opérandes situés à droite, à utiliser dans l’expression de condition. Par exemple,
dans l’expression (statut == “or”) la définition de terme est “statut” et “or” est la
définition de valeur dans le résultat de cas. L’ensemble des résultats de cas d’un
noeud de condition partagent la définition du terme et diffèrent uniquement par
leur valeur (TreeConditionValueDefinition). Pour poursuivre avec cet exemple, un
autre résultat de cas dans le noeud de condition peut présenter la valeur “argent”.
Elle est alors également utilisée dans une expression (statut == “argent”). La seule
exception à ce comportement est la définition d’une clause OTHERWISE dans le
noeud de condition. Avec cette clause, il n’y a aucune définition de valeur
puisqu’elle est utilisée si tous les autres résultats de cas dans le noeud de condition
ont pour résultat false. Bien qu’une OTHERWISE ne soit pas un résultat de cas,
elle possède un TreeNode impossible à extraire.

Figure 15. Diagramme de classes de DecisionTable et classes associées

92 Développement et déploiement

En ce qui concerne la définition de terme, la présentation utilisateur peut être
extraite et utilisée dans les applications client. La présentation de la définition de
terme est généralement une simple représentation de l’opérande situé à gauche
(statut, dans notre exemple) et ne contient aucune marque de réservation. En ce
qui concerne les résultats de cas, un modèle peut être utilisé pour définir la
définition de valeur (TreeConditionValueTemplate). Une instance de définition de
valeur de modèle (TemplateInstanceExpression) contient les valeurs de paramètres
utilisées pour l’exécution, qui sont modifiables. Si une tentative de récupération de
la définition de modèle de valeur est réalisée pour TreeConditionValueDefinition,
non défini avec un modèle, une valeur NULL est renvoyée. Si aucun modèle n’a
été utilisé pour définir la condition de valeur, une présentation utilisateur peut
toujours être extraite et utilisée dans les applications client si cela a été spécifié lors
de la création.

La classe TreeBlock contient des méthodes permettant de :
v Extraire le noeud racine de l’arborescence
v Extraire les définitions de terme de condition pour le bloc d’arborescence
v Extraire les définitions de terme d’action du bloc d’arborescence

Le noeud racine de l’arborescence est du type TreeNode et il représente le point de
départ de la navigation dans la table de décision. La classe TreeNode contient des
méthodes permettant de :
v Déterminer si un noeud est une clause OTHERWISE
v Extraire le noeud parent du noeud d’arborescence en cours (noeud de condition

ou d’action)
v Extraire le noeud racine de l’arborescence contenant le noeud d’arborescence en

cours

La classe ConditionNode contient des méthodes permettant de :
v Extraire les résultats de cas
v Extraire la définition de terme
v Extraire le cas OTHERWISE
v Extraire les modèles des conditions de valeur des résultats de cas pour le noeud

de condition
v Ajouter au noeud une valeur de condition basée sur un modèle
v Supprimer une valeur de condition basée sur un modèle

La classe CaseEdge contient des méthodes permettant de :
v Extraire la liste des modèles de valeur disponibles pour la définition de valeur
v Extraire le noeud enfant (noeud de condition ou d’action)
v Extraire l’instance de la définition de modèle associée à la définition de valeur
v Extraire directement la définition de valeur sans extraire le modèle

Chapitre 3. Guides et techniques de programmation 93

v Définir la valeur de la définition pour utiliser une définition d’instance de
modèle spécifique

La classe TreeConditionTermDefinition contient des méthodes permettant de :
v Extraire les modèles de définition de valeur définis pour le noeud de condition
v Extraire la présentation utilisateur du terme de condition

La classe TreeConditionDefinition contient des méthodes permettant de :
v Extraire la définition de terme du noeud de condition
v Extraire les définition de valeur de condition pour le noeud de condition, à

partir de tous les résultats de cas
v Extraire l’orientation (ligne ou colonne)

La classe TreeConditionValueDefinition contient des méthodes permettant de :
v Extraire l’expression d’instance de modèle spécifique définie pour la valeur
v Extraire l’utilisateur

La classe Template contient des méthodes permettant de :
v Extraire l’ID système du modèle
v Extraire le nom du modèle
v Extraire les paramètres définis pour le modèle
v Extraire la présentation du modèle

La classe TreeConditionValueTemplate contient une méthode permettant de :
v Créer une nouvelle instance de valeur de condition de modèle

La classe TemplateInstanceExpression contient des méthodes permettant de :
v Extraire les paramètres de l’instance de modèle
v Extraire le modèle (TreeConditionValueTemplate dans le cas d’un résultat de cas

dans une table de décision) utilisé pour définir l’instance

94 Développement et déploiement

Lorsqu’un nouveau résultat de cas est ajouté à un noeud de condition, il doit
utiliser un modèle pour la définition de la valeur. Par exemple, si un nouveau cas
“bronze” doit être ajouté pour la vérification de ‘statut’, le modèle approprié

Figure 16. Diagramme de classes de TreeNode et classes associées

Chapitre 3. Guides et techniques de programmation 95

(TreeConditionValueTemplate) devra être utilisé pour créer un nouveau
TemplateInstanceExpression, en définissant la valeur de paramètre sur “bronze”.

Lors de l’ajout d’un nouveau résultat de cas, un noeud de condition enfant lui est
également ajouté automatiquement. Ce noeud de condition enfant contient des
résultats de cas basés sur les définitions de résultats de cas définies pour les
noeuds de condition situés au même niveau. Si des modèles ou des valeurs codées
en dur sont utilisés dans les résultats de cas, ils sont ensuite également utilisés
dans les résultats de cas du noeud de condition enfant. Ce noeud, ajouté
automatiquement, possède également ses propres noeuds de condition enfant,
créés automatiquement. Ces noeuds de condition enfant possèdent à leur tour des
noeuds de condition enfant et ainsi de suite, jusqu’à ce que tous les niveaux de
noeuds de condition aient été recréés.

Outre les noeuds de condition, une table de décision et plus spécifiquement un
bloc d’arborescence contient également un niveau de noeuds d’action (ActionNode).
Les noeuds d’action sont des noeuds terminaux qui résident à la fin de la branche
de noeuds de condition et des résultats de cas. Si toutes les valeurs de condition
d’une ligne de résultats de cas ont pour résultat true, un noeud d’action est atteint.
Le noeud d’action possède au moins une action (TreeAction) définie. Cette action a
une définition de terme et une définition de valeur. A l’instar des noeuds de
condition, la définition de terme (TreeActionTermDefinition) se situe à gauche de
l’expression et la définition de valeur (TemplateInstanceExpression) à droite. Par
exemple, pour les différents noeuds de condition procédant à une vérification du
statut, des actions peuvent définir la remise. Si la condition est (statut == “or”),
l’action peut être (valeurRemise = 0.90). Pour l’action, “valeurRemise” est la
définition de terme, et “= 0.90” est la définition de valeur.

La définition de terme d’une action d’arborescence est partagée avec d’autres
actions d’arborescence dans d’autres noeuds d’action. Dans la mesure où chaque
branche de résultats de cas accède à une action, les mêmes définitions de terme
sont utilisées. Toutefois, ces dernières peuvent différer par l’action d’arborescence
et le noeud d’action. Par exemple, la valeurRemise avec le statut “or” peut être
“0.90”, et “0.95” pour un statut “argent”.

Les noeuds d’action peuvent comporter plusieurs actions d’arborescence avec une
définition de terme distincte et une définition de valeur distincte. Par exemple, si
la remise est fixée pour un véhicule de location, outre la définition de
valeurRemise, vous pouvez également affecter un niveau de véhicule spécifique.
Une autre action d’arborescence peut être créée pour définir le terme
“qualitéVéhicule” sur “haut de gamme” si le statut est “or”, et “valeurRemise” sur
“0.90”.

La définition de valeur dans une action d’arborescence peut être créée à partir d’un
modèle (TreeActionValueTemplate). La définition de modèle contient une
expression (TemplateInstanceExpression) contenant des paramètres.

En plus des paramètres, la définition de valeur entière peut être modifiée par une
nouvelle instance de définition de valeur, créée avec un autre modèle défini pour
l’action d’arborescence.

Si une définition de valeur n’est pas créée à partir d’un modèle, elle ne peut pas
être modifiée. En ce qui concerne les applications client, la présentation utilisateur
peut être utilisée dans l’affichage si cela a été précisé au moment de la création.

96 Développement et déploiement

Pour les définitions de terme des actions d’arborescence, si une présentation
utilisateur a été spécifiée, elle peut également être utilisée par les applications
client.

Lorsqu’un nouveau résultat de cas est ajouté à un noeud de condition et que
différents noeuds de condition enfant sont créés, des noeuds d’action sont
également créés. Contrairement aux noeuds de condition enfant et aux résultats de
cas créés en fonction de la définition des résultats de cas déjà définis pour ce
niveau, les noeuds d’action n’héritent pas automatiquement d’une conception
existante. Seuls les marques de réservation TreeActions vides sont créées dans le
noeud d’action. Un modèle (TreeActionValueTemplate) doit être utilisé pour
compléter la définition d’action en créant une TemplateInstanceExpression pour
au moins une définition de terme du noeud d’action. Avant que l’action
d’arborescence soit définie avec TemplateInstanceExpression, elle possède des
valeurs NULL spécifiées pour la valeur de présentation utilisateur et la valeur
d’instance de modèle.

Lors de la création d’une nouvelle condition ayant pour résultat de nouveaux
ActionNodes, les noeuds d’action sont ajoutés à droite des actions existantes pour
le noeud de condition parent immédiat. Par exemple, si un statut “rubis” est ajouté
à la table de décision et est censé disposer d’une remise spécifique, la condition de
vérification du statut est ajoutée à droite de “or”, “argent” et “bronze”. Le noeud
d’action de la remise associée à “rubis” est ajouté à droite des noeuds d’action
correspondant aux résultats de cas “or”, “argent” et “bronze” .

Lors de la définition de nouvelles actions d’arborescence pour des noeuds d’action,
un algorithme basé sur le noeud d’action de droite du dernier résultat de cas
renvoie le noeud d’action avec une action d’arborescence vide. Vous pouvez
également vérifier si l’action d’arborescence possède des valeurs NULL pour la
valeur de présentation utilisateur et la valeur d’instance de modèle. Une fois
l’action d’arborescence obtenue, elle peut être définie avec l’instance adéquate de
TreeActionValueTemplate.

La classe ActionNode contient une méthode permettant de :
v Extraire la liste des actions d’arborescences définies

Chapitre 3. Guides et techniques de programmation 97

La classe TreeAction contient des méthodes permettant de :
v Extraire la liste des modèles de valeurs disponibles, définies pour l’action

d’arborescence
v Extraire la définition de terme
v Extraire l’instance de modèle de valeur définie pour l’action d’arborescence
v Extraire la présentation utilisateur de la valeur si un modèle de valeur n’a pas

été utilisé
v Vérifier si l’action est un appel de service SCA (méthode isValueNotApplicable)
v Remplacer l’instance de modèle de valeur par une nouvelle instance

La classe TreeActionTermDefinition contient des méthodes permettant de :
v Extraire la présentation utilisateur pour la définition de valeur de terme
v Extraire la liste des modèles de valeurs disponibles pour l’action d’arborescence
v Vérifier si l’action est un appel de service SCA (méthode isTermNotApplicable)

La classe Template contient des méthodes permettant de :
v Extraire l’ID système du modèle
v Extraire le nom du modèle
v Extraire les paramètres définis pour le modèle
v Extraire la présentation du modèle

La classe TreeActionValueTemplate contient une méthode permettant de :
v Créer une nouvelle instance de modèle de valeur à partir de la définition de

modèle

La classe TemplateInstanceExpression contient des méthodes permettant de :
v Extraire les paramètres de l’instance de modèle
v Extraire le modèle (TreeActionValueTemplate dans le cas d’une action

d’arborescence dans une table de décision) utilisé pour définir l’instance

98 Développement et déploiement

La définition d’une règle init pour une table de décision suit la même structure
que celle d’un ensemble de règles. La règle init peut être définie avec un modèle
(DecisionTableRuleTemplate).

Si une règle init n’a pas été créée au moment de la création, elle ne peut pas être
ajoutée une fois la règle déployée.

La classe Rule contient des méthodes permettant de :
v Extraire le nom de la règle
v Extraire la présentation utilisateur pour la règle
v Extraire la présentation utilisateur pour la règle avec les différents paramètres

définis de la règle

La classe DecisionTableRule contient une méthode permettant de :
v Extraire le bloc d’arborescence contenant la règle init

Figure 17. Diagramme de classes de TreeAction et classes associées

Chapitre 3. Guides et techniques de programmation 99

La classe DecisionTableRuleTemplate contient une méthode permettant de :
v Extraire la table de décision contenant le modèle

Concepts associés

Modèle de programmation
Les règles métier de WebSphere Business Integration sont créées à l’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de règles.
Tous trois partagent le même modèle d’artefacts de règles métier.

Modèles et paramètres
Les modèles inclus dans les ensembles de règles et dans les tables de décision
prennent comme base une définition commune. Les modèles possèdent des
paramètres et une présentation de l’utilisateur. Les valeurs de paramètres inclus
dans les modèles sont définis pour permettre d’apporter des modifications à la
règle une fois que celle-ci a été déployée.

La valeur de présentation utilisateur fournit une valeur de chaîne qui peut être
utilisée pour l’affichage de la règle et de différents paramètres de façon conviviale.
Cette présentation sous forme de chaîne possède des marques de réservation qui
permettent le remplacement des différentes valeurs de paramètres, ainsi que leur
affichage. Ces marques de réservation figurent au format (<paramètre index>}. Par
exemple, si la chaîne de présentation de la règle init est “Base discount is {0} %” (la
remise de base s’élève à x), la marque de réservation {0} doit être remplacée par la

Figure 18. Diagramme de classes de DecisionTableRule et classes associées

100 Développement et déploiement

valeur de paramètre correspondante. La chaîne de présentation ne peut pas être
modifiée pour la règle ou la définition de modèle. Toutefois, les valeurs de marque
de réservation peuvent être modifiées avec les valeurs de paramètre figurant dans
une application client, selon la définition figurant dans le modèle. Les différents
modèles incluent une méthode de simplification (getExpandedUserPresentation)
qui renvoie une chaîne contenant toutes les valeurs de paramètre, correctement
placées dans la chaîne.

Toutes les valeurs de paramètres possèdent un type de données spécifique ;
toutefois, lors de l’extraction et de la définition d’une valeur de paramètre, un objet
string est utilisé. La valeur de paramètre peut être considérée comme une chaîne
lors du remplacement de la valeur dans la présentation utilisateur, ou encore lors
de l’affectation d’une nouvelle valeur au paramètre. Le paramètre est converti dans
le type de données approprié au moment de l’exécution, afin d’émettre la règle
correctement. Au cours de la validation, la valeur de paramètre est comparée au
type de données afin de vérifier qu’il est correct. Par exemple, si un paramètre est
de type boolean et porte la valeur “T”, la validation ne reconnaît pas cette valeur
et renvoie un message d’erreur.

Dans la définition de modèle, les valeurs de paramètres peuvent être limitées par
des contraintes. Ces contraintes peuvent être définies sous forme de plage ou
d’énumération. Les contraintes du paramètre seront mises en oeuvre une fois la
règle validée. Si aucun modèle n’a été utilisé pour définir la valeur, seule une
présentation utilisateur sera disponible. Une définition de valeur ne peut pas
utiliser à la fois un modèle et une présentation utilisateur. En cas d’utilisation d’un
modèle, la présentation issue de la définition de modèle est la seule présentation
disponible.

La classe Template fournit les méthodes qui permettent d’effectuer les opérations
suivantes :
v Extraction de l’ID de modèle
v Extraction du nom
v Extraction des paramètres
v Extraction de la présentation de l’utilisateur

La classe Parameter fournit les méthodes qui permettent d’effectuer les opérations
suivantes :
v Extraction du nom du paramètre
v Extraction du type de données du paramètre
v Extraction de la contrainte associée au paramètre
v Extraction du modèle définissant le paramètre
v Création d’une valeur de paramètre

La classe ParameterValue fournit les méthodes qui permettent d’effectuer les
opérations suivantes :
v Extraction du nom du paramètre
v Extraction de la valeur du paramètre
v Définition de la valeur du paramètre

Chapitre 3. Guides et techniques de programmation 101

Concepts associés

Modèle de programmation
Les règles métier de WebSphere Business Integration sont créées à l’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de règles.
Tous trois partagent le même modèle d’artefacts de règles métier.

Validation
Parmi les objets principaux, nombreux sont ceux qui possèdent une méthode de
validation ; elle permet de vérifier si les artefacts sont corrects et complets avant
leur publication.

La validation qui a lieu au moment de l’apport de modifications via les classes
d’API ne représente qu’un sous-ensemble de la validation globale effectuée lors de
l’exécution de la commande serviceDeploy ou au moment de l’édition des artefacts

Figure 19. Diagramme de classes de Template et de Parameter, et classes associées

102 Développement et déploiement

dans WebSphere Integration Developer. Cela est dû aux contraintes déjà associées
au groupe de règles métier (limitation des aspects modifiables au moment de
l’exécution). L’utilisateur des classes peut valider la table de sélection des groupes
de règles métier, la table des ensembles de règles ou la table de décision chaque
fois que nécessaire (le composant de groupes de règles lui-même n’est pas
modifiable au moment de l’exécution). Lorsqu’un groupe de règles métier est
publié, la table de sélection de groupes de règles, la table d’ensembles de règles et
la table de décision sont validées avant leur publication dans le référentiel.

Si les artefacts sont incorrects, une exception ValidationException est générée,
accompagnée de la liste des problèmes de validation rencontrés. Les différents
problèmes de validation rencontrés sont documentés dans la section consacrée au
traitement des exceptions.
Concepts associés

Modèle de programmation
Les règles métier de WebSphere Business Integration sont créées à l’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de règles.
Tous trois partagent le même modèle d’artefacts de règles métier.

Suivi des modifications
Pour tous les objets, vous pouvez utiliser une méthode hasChanges afin de vérifier
si des modifications ont été apportées à l’objet et aux objets qu’il contient.

Cette méthode peut être utilisée pour vérifier les modifications et pour publier un
groupe de règles métier (uniquement si certains de ses éléments ont été modifiés).
Concepts associés

Modèle de programmation
Les règles métier de WebSphere Business Integration sont créées à l’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de règles.
Tous trois partagent le même modèle d’artefacts de règles métier.

BusinessRuleManager
La classe BusinessRuleManager est la principale classe d’utilisation des groupes de
règles, des ensembles de règles et des tables de décision.

La classe BusinessRuleManager comporte des méthodes permettant d’extraire les
groupes de règles métier par nom, par espace de nom cible ou par propriétés
personnalisées. Elle contient également une méthode de publication des
modifications apportées aux groupes de règles métier, aux ensembles de règles ou
aux tables de décision.

La classe BusinessRuleManager contient des méthodes permettant de :
v Extraire tous les groupes de règles métier
v Extraire les groupes de règles métier d’un espace de nom cible spécifique
v Extraire les groupes de règles métier d’un nom spécifique
v Extraire les groupes de règles métier d’un espace de nom cible et d’un nom

spécifiques
v Extraire les groupes de règles métier contenant une propriété spécifique
v Extraire les groupes de règles métier contenant des propriétés spécifiques
v Publier des groupes de règles métier

Chapitre 3. Guides et techniques de programmation 103

Requête du composant de groupe de règles

Le composant de groupe de règles peut posséder des propriétés définies par
l’utilisateur (paires nom/valeur) permettant d’affiner la liste des groupes de règles
métier renvoyés par la classe. Les zones utilisables dans la requête et dans toute
combinaison sont les suivantes :
v Espace de nom cible du composant de groupe de règles métier
v Nom du composant de groupe de règles métier
v Nom de propriété
v Valeur de propriété

Chaque nom de propriété ne peut être défini qu’une seule fois pour chaque
composant de groupe de règles métier.

La fonction de requête prise en charge par cette classe représente un petit
sous-ensemble du langage SQL entier. L’utilisateur ne fournit pas l’instruction SQL
mais les valeurs des paramètres d’une propriété unique ou d’une structure
arborescente contenant les informations liées à une requête à propriétés multiples
sous forme de noeuds. Des noeuds d’opérateur logique et des noeuds de requête
de propriété implémentent l’interface QueryNode. Les noeuds d’opérateur logique
spécifient les opérateurs booléens (AND, OR, NOT). Ces derniers sont créés via
QueryNodeFactory. Dans le cadre de la création de ces noeuds d’opérateur logique,
les côtés gauche et droit de l’opérateur doivent être spécifiés avec des classes
QueryNode supplémentaires. Ces noeuds peuvent être soit un noeud de requête de
propriété, soit un autre noeud d’opérateur logique. Si un noeud de requête de
propriété est transmis, il contient le nom, la valeur et l’opérateur (EQUAL (==),

Figure 20. Diagramme de classes de BusinessRuleManager et module

104 Développement et déploiement

NOT_EQUAL (!=), LIKE ou NOTLIKE) de propriété. L’ensemble de l’interface
QueryNode est analysée par la classe et une requête est effectuée sur les données
sous-jacentes de la mémoire persistante.

Les recherches génériques sont prises en charge lors de l’utilisation des opérateurs
LIKE et NOTLIKE. Les caractères ‘%’ et ‘_’ sont pris en charge dans les recherches
génériques. Le caractère ‘%’ est utilisé lorsqu’un nombre infini de caractères sont
inconnus ou ne doivent pas être pris en compte dans la recherche. Par exemple, si
une recherche doit être lancée pour tous les groupes de règles métier possédant
une propriété avec un nom de Service et une valeur commençant par “Nord”, la
valeur doit être indiquée comme suit : “Nord%”. Autre exemple, supposons que
tous les services dont la valeur se termine par “Région” sont souhaités. La valeur
sera alors “%Région”. Le caractère ‘%’ peut également être utilisé au milieu d’une
chaîne. Par exemple, dans le cas de groupes de règles métier dont les propriétés
ont les valeurs “RégionCentreNord”, “RégionEstNord” et “RégionOuestNord”,
vous pouvez spécifier la valeur “Région%Nord”.

Le caractère ‘_’ est utilisé lorsqu’un seul caractère est inconnu ou qu’il ne doit pas
être pris en compte dans la recherche. Par exemple, si une recherche porte sur tous
les groupes de règles métier pour lesquels les propriétés Service ont les valeurs
“Srv1Nord”, “Srv2Nord”, “Srv3Nord” et “Srv4Nord”, la valeur “Srv_Nord” peut
être spécifiée, et les 4 groupes de règles métier comportant ces propriétés sont
renvoyés. Le caractère ‘_’ peut être utilisé plusieurs fois dans une valeur de
recherche, et chaque instance indique un caractère unique à ignorer. Le caractère ‘_’
peut être utilisé au début ou à la fin d’une valeur. Par exemple, si deux caractères
doivent être ignorés dans une valeur, vous pouvez utiliser deux ‘_’ comme dans
“Svc__ud”.

Pour pouvoir traiter ‘%’ et ‘_’ en tant que caractères littéraux plutôt qu’en tant que
caractères génériques, spécifiez le caractère d’échappement ‘\’ avant ‘%’ ou ‘_’. Par
exemple, si le nom de propriété est “%Remise”, pour pouvoir l’utiliser dans une
requête, spécifiez “\%Remise”. Si le caractère ‘\’ doit être utilisé en tant que
caractère littéral, un autre caractère d’échappement ‘\’ doit être utilisé, comme
dans “Commandes\\Client”. Si un seul caractère ‘\’ est placé, sans être suivi de
‘%’, ‘_’ ou ‘\’, une exception IllegalArgumentException est émise.

Les caractères génériques peuvent être utilisés uniquement du côté gauche (valeur
de propriété). Ils ne peuvent pas être utilisés dans un nom de propriété.

Au cours de recherches portant sur la valeur d’une propriété spécifique ou lors
d’une recherche de valeurs, si aucune propriété n’est renvoyée, l’artefact est ignoré
de la recherche. Par exemple, si parmi 3 groupes de règles métier (A, B et C),
seulement deux (A et B) ont une propriété intitulée “Service” avec des valeurs
différentes (respectivement “Comptabilité” et “Expédition”), et qu’une recherche
est lancée sur tous les groupes de règles métier ne comportant pas de propriété
“Service” définie sur “Comptabilité”, seul le groupe de règles métier dont la
propriété “Service” est définie, mais n’équivaut pas à “Comptabilité” (groupe de
règles métier B), est renvoyé. Le groupe de règles métier (C), qui ne comporte pas
de propriété “Service”, n’est pas renvoyé puisque cette propriété n’est pas définie.

En cas d’utilisation de propriétés de recherche, deux propriétés spéciales intitulées
IBMSystemName et IBMSystemTargetNameSpace servent aux recherches basées sur le
nom et l’espace de nom d’un artefact. Ces valeurs peuvent également être extraites
à l’aide des méthodes getName et getTargetNameSpace.

La classe prend en charge les méthodes de requête suivantes :

Chapitre 3. Guides et techniques de programmation 105

List getBRGsByTNS (string tNSName, Operator op, int skip, int threshold)
List getBRGByName(string Name, Operator op, int skip, int threshold)
List getBRGsByTNSAndName (string tNSName, Operator, tNSOp, string
name, Operator nameOp, int skip, int threshold)
List getBRGsBySingleProperty (string propertyName, string propertyValue,
Operator op, int skip, int threshold)
List getBRGsByProperties (QueryNode queryTree, int skip, int threshold)

Les paramètres ‘skip’ et ‘threshold’ permettent à l’utilisateur d’extraire une liste
partielle de résultats jusqu’au seuil spécifié. La valeur zéro pour ces deux
paramètres renvoie la liste entière de résultats. Le curseur n’est pas maintenu dans
l’ensemble de résultats à partir d’un appel de requête. Si une valeur de saut est
utilisée, il est possible que des ajouts ou des suppressions aient été apportés à
l’ensemble de résultats et qu’une demande ultérieure renvoie alors des groupes de
règles métier situés dans un précédant ensemble de résultats.

Les noeuds de l’arborescence permettent à l’utilisateur de spécifier une expression
de recherche à l’aide des opérateurs booléens, des caractères génériques (% et
échappement) et de la paire propriété/valeur. L’opérateur est valide uniquement
pour les valeurs, l’opérateur de la propriété est toujours représenté par les signes
égal (==).

Figure 21. Diagramme de classes de QueryNodeFactory et classes associées

106 Développement et déploiement

Publication

La publication des modifications de règles métier est réalisée au niveau du
composant de groupe de règles métier. L’utilisateur peut publier 1...n composants
de groupe de règles métier. Avant l’exécution d’une opération de publication, une
action de validation est réalisée sur le groupe de règles métier et sur les différents
objets présents dans ce groupe (table de sélection d’opération, ensembles de règles,
tables de décision, etc). Chaque demande de publication survient dans une
transaction unique. En cas d’exception au cours de la validation ou de la
publication de la base de données, la transaction est annulée et aucune
modification de groupe de règles métier n’est publiée dans le référentiel. Cela
permet aux modifications dépendantes les unes des autres dans un composant
unique (par exemple, la table de sélection d’opération et un ensemble de règles) ou
aux dépendances entre des composants de survenir au sein d’une opération
atomique.

Au moment de la publication, une vérification est réalisée pour veiller à ce que les
éléments à publier n’aient pas été modifiés par une autre transaction. Pour réduire
les risques de conflit, la méthode de publication offre à l’utilisateur la possibilité de
publier tous les artefacts, qu’ils soient modifiés ou non, ou uniquement les artefacts
modifiés dans le groupe de règles métier. Le comportement par défaut instaure la
publication de tous les artefacts. Si l’option est définie sur la publication de tous
les artefacts et qu’une autre transaction a modifié les artefacts entre-temps, une
exception ChangeConflictException est émise. Pour réduire le risque de conflit,
spécifiez la publication des artefacts modifiés uniquement. En procédant ainsi, il
est possible que deux utilisateurs apportent des modifications au référentiel pour
deux artefacts différents dans un groupe de règles métier (par exemple, deux
ensembles de règles), ce qui peut insérer des modifications incompatibles dans le
groupe de règles métier. En raison de l’éventualité de cette situation, cette option
doit être utilisée avec précaution.
Concepts associés

Modèle de programmation
Les règles métier de WebSphere Business Integration sont créées à l’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de règles.
Tous trois partagent le même modèle d’artefacts de règles métier.

Traitement des exceptions
Des exceptions peuvent être générées lors d’un appel de validation pour un
artefact ou lors de sa publication. En cas d’erreur de validation, l’exception
ValidationException est générée ; elle s’accompagne de la liste des problèmes
rencontrés. Si un problème survient au cours de la publication car une autre
transaction publie les mêmes artefacts, l’exception ChangeConflictException est
générée. A chaque détection de la modification d’un artefact par une autre
transaction, l’exception ChangeConflictException est générée.

Par ailleurs, une exception SystemPropertyNotChangeableException est générée en
cas de tentative de modification d’une propriété qui duplique un nom de propriété
système. En effet, les propriétés système ne peuvent pas être modifiées.

Une exception ChangesNotAllowedException est générée en cas de tentative
d’exécution de l’opération set sur un artefact pendant sa publication.

Chapitre 3. Guides et techniques de programmation 107

Problèmes liés aux groupes de règles métier

Ces problèmes peuvent se poser lorsqu’un groupe de règles métier est validé ou
qu’une tentative de publication de ce groupe de règles métier a lieu alors qu’une
partie de ce groupe est incorrecte.

Tableau 4. Problèmes liés aux groupes de règles métier

Exception Description

ProblemBusRuleNotInAvailTargetList Ce problème se pose lorsqu’une règle est spécifiée en tant que
règle métier par défaut pour une table de sélection d’opération,
mais que l’artefact correspondant à cette règle ne figure pas dans
la liste des cibles disponibles pour cette opération. Pour éviter ce
problème, spécifiez une règle métier valide parmi la liste des
cibles disponibles pour cette opération.

ProblemDuplicatePropertyName Ce problème se pose en cas de tentative de création d’une
propriété qui représente le double d’une propriété définie par
l’utilisateur pour un groupe de règles métier spécifique. Pour
éviter ce problème, vous devez utiliser un nom unique de
propriété.

ProblemOperationContainsNoTargets Ce problème se pose lorsqu’une opération n’est pas associée à
une destination de règle par défaut ou à un ensemble de
destinations de règle planifié. Pour éviter ce problème, vous
devez définir l’opération en spécifiant au minimum une
destination de règle en tant que valeur par défaut ou en tant que
période planifiée.

Figure 22. Diagramme de classes de BusinessRuleManagementException et classes
associées

108 Développement et déploiement

Tableau 4. Problèmes liés aux groupes de règles métier (suite)

Exception Description

ProblemOverlappingRanges Ce problème se pose lorsque la date de début ou la date de fin
d’un enregistrement de sélection d’opération chevauche la plage
correspondante d’un autre enregistrement de sélection
d’opération. Ce chevauchement de plages de dates empêche la
localisation de la destination de règle à appeler. Pour éviter ce
problème, vous devez vérifier la date de début ou la date de fin
des autres enregistrements de sélection d’opération afin de vous
assurer qu’il n’existe pas de chevauchement.

ProblemStartDateAfterEndDate Ce problème se pose lorsque la date de début d’un
enregistrement de sélection d’opération est ultérieure à la date de
fin de cet enregistrement. Ce problème peut se poser pour tous
les enregistrements de sélection d’opération, à l’exception de
l’enregistrement par défaut, qui ne possède ni date de début, ni
date de fin. Pour éviter ce problème, vous devez spécifier une
date de début après avoir spécifié la date de fin d’un
enregistrement de sélection d’opération.

ProblemTargetBusRuleNotSet Ce problème se pose lorsque la règle spécifiée dans un
enregistrement de sélection d’opération ne figure pas dans la liste
des règles cibles disponibles. Pour éviter ce problème, vous devez
spécifier une règle figurant dans la liste des cibles disponibles.

ProblemTNSAndNameAlreadyInUse Ce problème se pose lorsqu’une nouvelle règle métier est créée et
qu’elle porte un nom et un espace de nom cible déjà utilisé par
un ensemble de règles ou par une table de décision. Dans ce cas,
un contrôle est effectué au niveau de tous les ensembles de règles
et de toutes les tables de décisions associés au groupe de règles
métier en cours d’utilisation, et au niveau de tous les artefacts de
règles stockés dans le référentiel. Pour éviter ce problème, vous
devez utiliser un autre nom ou espace de nom cible.

ProblemWrongOperationForOpSelectionRecord Ce problème se pose lorsqu’un nouvel enregistrement de sélection
d’opération est ajouté à une liste d’enregistrements de sélection
d’opération et que le fonctionnement du nouvel enregistrement ne
correspond pas à celui des autres enregistrements de la liste. Pour
éviter ce problème, vous devez créer une nouvelle opération à
l’aide de la méthodenewOperationSelectionRecord au niveau de
l’objet approprié de la liste des enregistrement de sélection
d’opération.

Problèmes liés aux ensembles de règles et aux tables de décisions

Tableau 5. Problèmes liés aux ensembles de règles et aux tables de décisions

Exception Description

ProblemInvalidBooleanValue Ce problème se pose lorsqu’un paramètre de modèle de règle
figurant dans un ensemble de règles ou qu’une valeur d’action ou
de condition figurant dans une table de décision reçoit une valeur
autre que ″true″ ou ″false″ alors qu’il s’agit d’un paramètre de
type booléen. Par exemple, il peut s’agir d’une valeur ″T″ ou ″F″.
Pour éviter ce problème, vous devez utiliser les valeurs ″true″ ou
″false″ lorsque vous recourez à un paramètre de type booléen.

ProblemParmNotDefinedInTemplate Ce problème se pose lorsqu’une valeur est spécifiée pour un
paramètre de modèle et que ce paramètre n’est pas défini dans la
liste des paramètres valides pour ce modèle. Les paramètres
doivent être vérifiés avant la configuration du modèle. Cela peut
se produire pour les modèles RuleTemplate,
TreeActionValueTemplate, ou encore TreeConditionValueTemplate.

Chapitre 3. Guides et techniques de programmation 109

Tableau 5. Problèmes liés aux ensembles de règles et aux tables de décisions (suite)

Exception Description

ProblemParmValueListContainsUnexpectedValue Ce problème se pose lorsque des paramètres valides sont transmis
avec un modèle, mais que le nombre de paramètres soit trop
élevé. Dans ce cas, le nombre de paramètres doit être diminué.
Cela peut se produire pour les modèles RuleTemplate,
TreeActionValueTemplate, ou encore TreeConditionValueTemplate.

ProblemRuleBlockContainsNoRules Ce problème se pose lorsque toutes les règles d’un bloc
d’ensemble de règles sont supprimées et qu’une tentative de
validation ou de publication de cet ensemble de règles a lieu.
Dans ce cas, le bloc de règles de cet ensemble doit comporter au
minimum une règle.

ProblemTemplateNotAssociatedWithRuleSet Ce problème se pose en cas de tentative d’ajout d’une règle à un
ensemble de règles, alors que cette règle a été créée avec un
modèle non défini au sein de cet ensemble. Pour éviter ce
problème, lorsque vous créez une nouvelle règle, vous devez
utiliser un modèle défini au sein de l’ensemble de règles
correspondant.

ProblemRuleNameAlreadyInUse Ce problème se pose en cas de tentative d’ajout d’une règle à un
bloc d’ensemble de règles et que cette règle porte le même nom
qu’une règle déjà existante au sein de ce bloc de règles. Pour
éviter ce problème, vous devez vérifier les noms des règles avant
l’ajout de nouvelles règles.

ProblemTemplateParameterNotSpecified Ce problème se pose lorsqu’un paramètre est absent lors d’une
mise à jour de modèle pour l’une des règles d’un ensemble de
règles ou d’une valeur d’action ou de condition d’une table de
décision. Pour éviter ce problème, vous devez spécifier tous les
paramètres d’un modèle.

ProblemTypeConversionError Ce problème se pose lorsqu’un paramètre de modèle ne peut pas
être converti dans le type approprié ; tous les paramètres sont
considérés comme des objets String, puis convertis dans le type
du paramètre (boolean, byte, short, int, long, float et double). Si la
chaîne de la valeur de paramètre ne peut pas être convertie dans
le type spécifié pour ce paramètre, cette erreur se produit. Pour
éviter ce problème, vous devez spécifier une chaîne pouvant être
convertie dans le type du paramètre (boolean, byte, short, int,
long, float et double).

ProblemValueViolatesParmConstraints Ce problème se pose lorsqu’un paramètre ne se trouve pas dans
l’énumération ou dans la plage de valeurs définie dans le modèle
de ce paramètre. Ce problème peut concerner les paramètres
limités au niveau des énumérations ou des plages (modèles de
règles d’un ensemble de règles ou valeur d’action ou de condition
d’une table de décision). Pour éviter ce problème, vous devez
utiliser une valeur contenue dans la plage d’énumération.

ProblemInvalidActionValueTemplate Ce problème se pose en cas de tentative de définition d’une
instance de modèle dans une opération de l’arborescence, mais
que le modèle correspondant n’est pas disponible pour cette
opération. Pour éviter ce problème, vous devez utiliser le modèle
approprié lors de la création d’une définition de valeur pour une
opération de l’arborescence.

ProblemInvalidConditionValueTemplate Ce problème se pose en cas de tentative de définition d’une
instance de modèle pour une condition de cas, alors que le
modèle correspondant n’est pas disponible pour ce cas. Pour
éviter ce problème, utilisez le modèle approprié lors de la création
d’une définition de condition pour un cas spécifique.

110 Développement et déploiement

Tableau 5. Problèmes liés aux ensembles de règles et aux tables de décisions (suite)

Exception Description

ProblemTreeActionIsNull Ce problème se pose lorsqu’une valeur de condition est créée et
qu’aucune action n’a pas été définie avec une instance de modèle.
Dans ce cas, vous devez utiliser un modèle provenant de
ActionNode, créer une nouvelle instance de modèle et la définir
dans la liste TreeActions.

Concepts associés

Modèle de programmation
Les règles métier de WebSphere Business Integration sont créées à l’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de règles.
Tous trois partagent le même modèle d’artefacts de règles métier.

Autorisation
Les classes ne prennent en charge aucun niveau d’autorisation. L’application client
utilisant les classes doit ajouter sa propre méthode d’autorisation.
Concepts associés

Modèle de programmation
Les règles métier de WebSphere Business Integration sont créées à l’aide de deux
outils de création différents, et sont émises par le dispositif d’exécution de règles.
Tous trois partagent le même modèle d’artefacts de règles métier.

Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Ils contiennent plusieurs projets.
v BRMgmtExamples – Projet de module contenant des artefacts de règles métier

utilisés dans les différents exemples.
v BRMgmt – Projet Java dont les exemples figurent dans le package

com.ibm.websphere.sample.brules.mgmt.
v BRMgmtDriverWeb – Projet Web avec interface pour l’exécution des exemples.

Les exemples sont également fournis sous forme de fichier EAR
(BRMgmtExamples.ear) qui peuvent être émis après leur installation dans
WebSphere Process Server. Une interface Web est fournie avec les exemples. Cette
interface est volontairement simple, car les exemples concernent l’utilisation des
classes pour l’extraction d’artefacts, l’apport de modifications et la publication de
celles-ci. Elle n’est pas destinée à être une interface Web hautes performances. Les
classes peuvent cependant être facilement utilisées pour l’élaboration d’interfaces
Web robustes, ou encore dans d’autres applications Java pour la modification des
règles métier.

Remarque : Vous pouvez télécharger les fichiers d’échange de projet (.zip) et EAR
des exemples à partir de la page Business Rule Management Programming Guide
for WebSphere Process Server V6.1.

Chapitre 3. Guides et techniques de programmation 111

http://www.ibm.com/support/docview.wss?rs=2307&uid=swg27011687
http://www.ibm.com/support/docview.wss?rs=2307&uid=swg27011687

L’application d’exemples peut être installée surWebSphere Process Server v6.1 ; la
page d’index est accessible à l’adresse suivante :

http://<nom_hôte>:<port>/BRMgmtDriverWeb/

Par exemple : http://localhost:9080/BRMgmtDriverWeb/

Au fur et à mesure de l’émission des exemples, des modifications seront apportées
aux artefacts des règles. Si tous les exemples sont émis, l’application devra être
réinstallée afin d’afficher de nouveau les mêmes résultats pour tous les exemples.

Les exemples sont détaillés, avec des exemples de code et le résultat tel qu’il
s’affiche dans un navigateur Web.

Des classes supplémentaires ont été créées pour l’exécution d’opérations courantes
et pour faciliter l’affichage des informations dans l’exemple d’application Web.
Pour plus d’informations sur les classes Formatter et RuleArtifactUtility, voir
l’annexe.

Pour bien comprendre ces exemples, il convient d’examiner les différents artefacts
contenus dans WebSphere Integration Developer.

112 Développement et déploiement

Concepts associés

Gestion des règles métier
Des classes de gestion des règles métier sont fournies pour permettre de créer des
clients de gestion personnalisés ou d’automatiser les changements apportés aux
règles métier.
Exemple 1 : extraction et impression de l’ensemble des groupes de règles métier
Cet exemple présente l’extraction de tous les groupes de règles métier et
l’impression des attributs, des propriétés et des opérations de chaque groupe de
règles métier.
Exemple 2 : Extraire et afficher tous les groupes de règles métier, les jeux de règles
et les tables de décision
Outre la fonction de l’exemple 1, cet exemple permet d’imprimer la table de
sélection pour chaque opération, puis la destination des règles métier par défaut
(jeu de règles ou table de décision) et les autres règles métier planifiées pour
l’opération. Il imprime à la fois les jeu de règles et les tables de décision.
Exemple 3 : extraction de groupes de règles métier par propriétés multiples, avec
l’opérateur AND
Cet exemple est également similaire à l’exemple 1, mais il permet uniquement
d’extraire les groupes de règles métier possédant la propriété Department et la
valeur “accounting”, ainsi que la propriété RuleType et la valeur “regulatory”.
Exemple 4 : extraction de groupes de règles métier par propriétés multiples, avec
l’opérateur OR
Cet exemple est similaire à l’exemple 3 ; toutefois, il permet uniquement d’extraire
les groupes de règles métier possédant la propriété Department et la valeur
“accounting”, ou encore la propriété RuleType et la valeur “monetary”.
Exemple 5 : extraction de groupes de règles métier à l’aide d’une requête complexe
Cet exemple constitue une combinaison des exemples 3 et 4 ; il a pour but
d’illustrer la création de requêtes plus complexes. Dans cet exemple, une recherche
est effectuée à l’aide d’une requête qui associe 2 conditions de requête. La première
condition de requête consiste à extraire les groupes de règles métier possédant la
propriété Department et la valeur “General”, ou encore la propriété
MissingProperty et la valeur “somevalue”. Cette condition de requête est ensuite
associée, à l’aide d’un opérateur AND, à une condition contenant la propriété
RuleType et la valeur “messages”.
Exemple 6 : mise à jour d’une propriété de groupe de règles métier et publication
du groupe de règles métier
Dans cet exemple, l’une des propriétés d’un groupe de règles métier est mise à
jour, puis le groupe de règles métier correspondant est publié.
Exemple 7 : mise à jour des propriétés contenues dans plusieurs groupes de règles
métier et publication des groupes de règles métier correspondants.
Dans cet exemple, les propriétés de plusieurs groupes de règles métier sont mises à
jour avant la publication des groupes de règles métier correspondants.
Exemple 8 : modification de la règle métier par défaut d’un groupe de règles
métier
Dans cet exemple, la règle métier par défaut est remplacée par une autre règle
métier faisant partie de la liste de cibles disponibles d’une opération spécifique.
Exemple 9 : planification d’une autre règle d’opération au sein d’un groupe de
règles métier
Dans cet exemple, une règle métier est planifiée en vue d’être active pendant une
durée d’une heure à compter de l’heure de la publication d’une opération
spécifique.
Exemple 10 : modification d’une valeur de paramètre dans un modèle d’un
ensemble de règles

Chapitre 3. Guides et techniques de programmation 113

Dans cet exemple, une instance de règle définie avec un modèle est modifiée en
changeant une valeur de paramètre, puis publiée.
Exemple 11 : Ajouter une nouvelle règle depuis un modèle vers un jeu de règles
Dans cet exemple, une nouvelle règle est ajoutée à un jeu de règles, à partir d’un
modèle. Avant la création de l’instance de règle, des paramètres sont définis pour
cette instance.
Exemple 12 : Modifier et publier un modèle d’une table de décision en changeant
la valeur d’un paramètre
Dans cet exemple, une condition et une action (toutes deux définies avec des
modèles) sont modifiées dans une table de décision, en changeant les valeurs des
paramètres avant publication.
Exemple 13 : Ajout d’une valeur de condition et d’actions dans une table de
décision
Dans cet exemple, une valeur de condition et une action vont être ajoutées à une
table de décision. Pour ajouter une valeur de condition à une table de décision,
vous pouvez utiliser un modèle.
Exemple 14 : Gestion des erreurs dans un jeu de règles
Cet exemple explique comment identifier des incidents dans un jeu de règles et
déterminer la nature de l’incident, afin d’afficher le message approprié ou de
mettre en oeuvre l’action nécessaire pour corriger la situation.
Exemple 15 : Gestion des erreurs dans un groupe de règles métier
Cet exemple est similaire à l’exemple 14, car il montre comment gérer les incidents
qui peuvent se produire lors de la publication d’un groupe de règles métier. Il
montre comment déterminer la nature de l’incident afin d’imprimer le message
correspondant ou d’exécuter l’action appropriée.
Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Exemple 1 : extraction et impression de l’ensemble des groupes
de règles métier
Cet exemple présente l’extraction de tous les groupes de règles métier et
l’impression des attributs, des propriétés et des opérations de chaque groupe de
règles métier.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.Iterator;
import java.util.List;

En ce qui concerne les classes de gestion des règles métier, veillez à les utiliser
dans le module com.ibm.wbiserver.brules.mgmt, et pas dans le module
com.ibm.wbiserver.brules ou dans tout autre module. Ces autres modules
concernent les classes internes IBM.
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import
com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.Property;
import com.ibm.wbiserver.brules.mgmt.PropertyList;

public class Example1 {
static Formatter out = new Formatter();
static public String executeExample1()

114 Développement et déploiement

{
try
{
out.clear();

La classe BusinessRuleManager est la principale classe d’extraction des groupes de
règles métier et de publication des modifications des groupes de règles métier. Cela
inclut l’utilisation et la modification des artefacts de règle tels que les ensembles de
règles et les tables de décision. La classe BusinessRuleManager comporte de
nombreuses méthodes permettant de simplifier l’extraction de groupes de règles
métier spécifiques par nom, espace de nom et propriétés.
// Récupérer tous les groupes de règles métier
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBusinessRuleGroups(0, 0);

Iterator<BusinessRuleGroup> iterator = brgList.iterator();

BusinessRuleGroup brg = null;
// Procéder à une itération via la liste des groupes de règles métier
while (iterator.hasNext())
{

brg = iterator.next();
// Sortir les attributs de chaque groupe de règles métier
out.printlnBold("Business Rule Group");

Les attributs de base du groupe de règles métier peuvent être extraits et affichés.
out.println("Nom : " + brg.getName());
out.println("Espace de nom : " +
brg.getTargetNameSpace());
out.println("Nom affiché : " +
brg.getDisplayName());
out.println("Description : " + brg.getDescription());
out.println("Fuseau horaire de présentation : "

+ brg.getPresentationTimezone());
out.println("Date de sauvegarde : " + brg.getSaveDate());

Les propriétés du groupe de règles métier peuvent également être extraites et
modifiées.
PropertyList propList = brg.getProperties();

Iterator<Property> propIterator =
propList.iterator();
Property prop = null;
// Sortir des valeurs et des noms de propriétés
while (propIterator.hasNext())
{
prop = propIterator.next();
out.println("Nom de propriété : " +
prop.getName());
out.println("Valeur de propriété : " +
prop.getValue());
}

Les opérations du groupe de règles métier sont également disponibles, et
permettent d’extraire les artefacts de règles métier tels que les ensembles de règles
et les tables de décision.
List<Operation> opList = brg.getOperations();

Iteration<Operation> opIterator = opList.iterator();
Operation op = null;
// Sortir les opérations du groupe de règles métier
while (opIterator.hasNext())

Chapitre 3. Guides et techniques de programmation 115

{
op = opIterator.next();
out.println("Opération : " + op.getName());
}
out.println("");}
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.println(e.getMessage());
}
return out.toString();
}
}

Sortie du navigateur Web pour l’exemple 1.
Exécution de l'exemple 1

Groupe de règles métier
Nom : ApprovalValues
Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules
Nom affiché : ApprovalValues
Description : null
Fuseau horaire de présentation : LOCAL
Date de sauvegarde : Sun Jan 06 17:56:51 CST 2008
Nom de propriété : IBMSystemVersion
Valeur de propriété : 6.2.0
Nom de propriété : Department
Valeur de propriété : Accounting
Nom de propriété : RuleType
Valeur de propriété : regulatory
Nom de propriété : IBMSystemTargetNameSpace
Valeur de propriété : http://BRSamples/com/ibm/websphere/sample/brules
Nom de propriété : IBMSystemName
Valeur de propriété : ApprovalValues
Nom de propriété : IBMSystemDisplayName
Valeur de propriété : ApprovalValues
Opération : getApprover

Groupe de règles métier
Nom : ConfigurationValues
Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules
Nom affiché : ConfigurationValues
Description : null
Fuseau horaire de présentation : LOCAL
Date de sauvegarde : Sun Jan 06 17:56:51 CST 2008
Nom de propriété : IBMSystemVersion
Valeur de propriété : 6.2.0
Nom de propriété : Department
Valeur de propriété : General
Nom de propriété : RuleType
Valeur de propriété : messages
Nom de propriété : IBMSystemTargetNameSpace
Valeur de propriété : http://BRSamples/com/ibm/websphere/sample/brules
Nom de propriété : IBMSystemName
Valeur de propriété : ConfigurationValues
Nom de propriété : IBMSystemDisplayName
Valeur de propriété : ConfigurationValues
Opération : getMessages

Groupe de règles métier
Nom : DiscountRules
Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules
Nom affiché : DiscountRules
Description : null
Fuseau horaire de présentation : LOCAL
Date de sauvegarde : Sun Jan 06 17:56:51 CST 2008

116 Développement et déploiement

Nom de propriété : Department
Valeur de propriété : Accounting
Nom de propriété : IBMSystemVersion
Valeur de propriété : 6.2.0
Nom de propriété : RuleType
Valeur de propriété : monetary
Nom de propriété : IBMSystemTargetNameSpace
Valeur de propriété : http://BRSamples/com/ibm/websphere/sample/brules
Nom de propriété : IBMSystemName
Valeur de propriété : DiscountRules
Nom de propriété : IBMSystemDisplayName
Valeur de propriété : DiscountRules
Opération : calculateOrderDiscount
Opération : calculateShippingDiscount

Concepts associés

Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 2 : Extraire et afficher tous les groupes de règles
métier, les jeux de règles et les tables de décision
Outre la fonction de l’exemple 1, cet exemple permet d’imprimer la table de
sélection pour chaque opération, puis la destination des règles métier par défaut
(jeu de règles ou table de décision) et les autres règles métier planifiées pour
l’opération. Il imprime à la fois les jeu de règles et les tables de décision.

La majeure partie de l’exemple est identique, mais répétée à des fins
d’exhaustivité.
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.OperationSelectionRecord;
import com.ibm.wbiserver.brules.mgmt.OperationSelectionRecordList;
import com.ibm.wbiserver.brules.mgmt.Property;
import com.ibm.wbiserver.brules.mgmt.PropertyList;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;
public class Example2
{
status Formatter out = new Formatter();
static public String executeExample2()
{
try
{

out.clear();

Un groupe de règles métier spécifique est extrait par son nom pour cet exemple.
// Extraction de tous les groupes de règles métier
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBRGsByName("DiscountRules",
QueryOperator.EQUAL, 0, 0);

Iterator<BusinessRuleGroup> iterator = brgList.iterator();

Chapitre 3. Guides et techniques de programmation 117

BusinessRuleGroup brg = null;
// Itération dans la liste des groupes de règles métier
while (iterator.hasNext())
{
brg = iterator.next();
// Extraction des attributs pour chaque groupe de règles métier
out.printlnBold("Groupe de règles métier");
out.println("Nom: " + brg.getName());
out.println("Espace de nom: " +
brg.getTargetNameSpace());
out.println("Nom affiché: " +
brg.getDisplayName());
out.println("Description: " + brg.getDescription());
out.println("Fuseau horaire de présentation: "
+ brg.getPresentationTimezone());
out.println("Date d'enregistrement: " + brg.getSaveDate());

PropertyList propList = brg.getProperties();

Iterator<Property> propIterator =
propList.iterator();
Property prop = null;
// Extraction des noms et des valeurs des propriétés
while (propIterator.hasNext())
{

prop = propIterator.next();
out.println("Nom de la propriété: " +
prop.getName());
out.println("Valeur de la proprité: " +
prop.getValue());

}

Pour chaque opération, une table de sélection comporte une liste des différents
artefacts de règle et leurs périodes d’activité planifiées. Une règle métier par défaut
peut être spécifiée pour chaque opération. Il n’est pas obligatoire de spécifier une
règle métier par défaut ou d’avoir une règle métier planifiée. Toutefois, vous devez
avoir au moins une règle métier par défaut ou une règle métier spécifiée. Par
conséquent, il est conseillé de rechercher les valeurs null avant d’utiliser la règle
métier par défaut, ou de vérifier la taille de la liste OperationSelectionRecordList.

List<Operation> opList = brg.getOperations();

Iterator<Operation> opIterator = opList.iterator();
Operation op = null;
out.println("");
out.printlnBold("Opérations");
// Extraction des opérations pour le groupe de règles métier
while (opIterator.hasNext())
{

op = opIterator.next();
out.printBold("Opération: ");
out.println(op.getName());

// Extraction de la règle métier par défaut pour l'opération
BusinessRule defaultRule =
op.getDefaultBusinessRule();
// Si la règle par défaut est localisée, imprimer cette règle
// à l'aide de la méthode appropriée pour le type de règle
if (defaultRule != null)
{

out.printlnBold("Destination par défaut:");

La règle métier par défaut est de type RuleSet ou DecisionTable, et peut être
convertie dans le type approprié pour traiter l’artefact de règle.

118 Développement et déploiement

if (defaultRule instanceof RuleSet)
out.println(RuleArtifactUtility.
intRuleSet(defaultRule));

else
out.print(RuleArtifactUtility.
tDecisionTable(defaultRule));

}
OperationSelectionRecordList
opSelectionRecordList = op

.getOperationSelectionRecordList()
;

Iterator<OperationSelectionRecord>
opSelRecordIterator = opSelectionRecordList

.iterator();
OperationSelectionRecord record = null;

L’élément OperationSelectionRecord est composé de l’artefact de règle et des
périodes d’activité de cet artefact de règle.

while (opSelRecordIterator.hasNext())
{

out.printlnBold("Destination
planifiée:");
record = opSelRecordIterator.next();

out.println("Date de début: " +
record.getStartDate()

+ " - Date de fin: " +
record.getEndDate());

BusinessRule ruleArtifact = record
.getBusinessRuleTarget();

if (ruleArtifact instanceof RuleSet)
out.println(RuleArtifactUtility.pr
intRuleSet(ruleArtifact));

else
out.print(RuleArtifactUtility.prin
tDecisionTable(ruleArtifact));

}
}

}
out.println("");
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.println(e.getMessage());
return out.toString();
}
}

Exemple

Sortie du navigateur Web pour l’exemple 2.
Groupe de règles métier
Nom : DiscountRules
Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules
Nom affiché : DiscountRules
Description : null
Fuseau horaire de présentation : LOCAL
Date d'enregistrement : Sun Jan 06 17:56:51 CST 2008
Nom de la propriété : Department
Valeur de la propriété : Accounting
Nom de la propriété : IBMSystemVersion
Valeur de la propriété : 6.2.0
Nom de la propriété : RuleType

Chapitre 3. Guides et techniques de programmation 119

Valeur de la propriété : monetary
Nom de la propriété : IBMSystemTargetNameSpace
Valeur de la propriété : http://BRSamples/com/ibm/websphere/sample/brules
Nom de la propriété : IBMSystemName
Valeur de la propriété : DiscountRules
Nom de la propriété : IBMSystemDisplayName
Valeur de la propriété : DiscountRules

Opérations
Opération : calculateOrderDiscount
Destination par défaut :
Jeu de règles
Nom : calculateOrderDiscount
Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules
Règle : CopyOrder
Nom affiché : CopyOrder
Description : null
Présentation utilisateur détaillée : null
Présentation utilisateur : null
Règle : FreeGiftInitialization
Nom affiché : FreeGiftInitialization
Description : null
Présentation utilisateur détaillée : ID produit pour la cadeau gratuit = 5001AE80
Quantité = 1 Coût =
Description 0.0 = Cadeau gratuit pour une commande avec remise
Présentation utilisateur : ID produit pour le cadeau gratuit = {0}
Quantité = {1} Coût = {2}
Description = {3}Parameter Name: param0
Valeur du paramètre : 5001AE80
Nom du paramètre : param1
Valeur du paramètre : 1
Nom du paramètre : param2
Valeur du paramètre : 0.0
Nom du paramètre : param3
Valeur du paramètre : Cadeau gratuit pour une commande avec remise
Règle : Rule1
Nom affiché : Rule1
Description : null
Présentation utilisateur détaillée : Si le client a le statut gold, appliquer
une remise de 20,0 et ajouter un cadeau gratuit
Présentation utilisateur : Si le client a le statut {0}, appliquer une remise de {1}
et ajouter un cadeau gratuit
Nom du paramètre : param0
Valeur du paramètre : gold
Nom du paramètre : param1
Valeur du paramètre : 20.0
Règle : Rule2
Nom affiché : Rule2
Description : null
Présentation utilisateur détaillée : Si customer.status == silver, appliquer
une remise de 15,0
Présentation utilisateur : Si customer.status == {0}, appliquer une remise de {1}
Nom du paramètre : param0
Valeur du paramètre : silver
Nom du paramètre : param1
Valeur du paramètre : 15.0
Règle : Rule3
Nom affiché : Rule3
Description : Modèle pour les clients qui n'ont pas le statut gold
Présentation utilisateur détaillée : Si customer.status == bronze, appliquer
une remise de 10,0
Présentation utilisateur : Si customer.status == {0}, appliquer une remise de {1}
Nom du paramètre : param0
Valeur du paramètre : bronze
Nom du paramètre : param1
Valeur du paramètre : 10.0

120 Développement et déploiement

Opération : calculateShippingDiscount
Destination par défaut :
Table de décision
Nom : calculateShippingDiscount
Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules

Règle d'initialisation : Rule1
Nom affiché : Rule1
Description : null
Présentation utilisateur détaillée : null
Présentation utilisateur : null

Concepts associés

Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 3 : extraction de groupes de règles métier par
propriétés multiples, avec l’opérateur AND
Cet exemple est également similaire à l’exemple 1, mais il permet uniquement
d’extraire les groupes de règles métier possédant la propriété Department et la
valeur “accounting”, ainsi que la propriété RuleType et la valeur “regulatory”.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Property;
import com.ibm.wbiserver.brules.mgmt.PropertyList;
import com.ibm.wbiserver.brules.mgmt.query.AndNode;
import com.ibm.wbiserver.brules.mgmt.query.PropertyQueryNode;
import com.ibm.wbiserver.brules.mgmt.query.QueryNodeFactory;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example3
{
static Formatter out = new Formatter();
static public String executeExample3()
{

try
{

out.clear();

Les requêtes de groupes de règles métier sont composées de noeuds de requêtes
qui suivent une arborescence. Chaque noeud de requête contient un terme gauche
et un terme droit. Chacun de ces termes peut représenter un autre noeud de
requête. Dans cet exemple, le groupe de règles métier est extrait via la combinaison
de deux valeurs de propriété.

// Extrait les groupes de règles métier sur la base de deux conditions
// Crée des noeuds PropertyQueryNodes pour chaque condition
PropertyQueryNode propertyNode1 = QueryNodeFactory

.createPropertyQueryNode("Department",
QueryOperator.EQUAL,"Accounting");

PropertyQueryNode propertyNode2 = QueryNodeFactory
.createPropertyQueryNode("RuleType", QueryOperator.EQUAL,
"regulatory");

// Associe les deux noeuds PropertyQueryNodes à un noeud AND

Chapitre 3. Guides et techniques de programmation 121

AndNode andNode =
QueryNodeFactory.createAndNode(propertyNode1, propertyNode2);

// Utilise andNode lors des recherches de groupes de règles métier
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBRGsByProperties(andNode, 0, 0);

Iterator<BusinessRuleGroup> iterator = brgList.iterator();

BusinessRuleGroup brg = null;
// Effectue une itération dans la liste des groupes de règles métier
while (iterator.hasNext())
{

brg = iterator.next();
// Permet d'obtenir les attributs de sortie de chaque groupe de règles métier
out.printlnBold("Business Rule Group");
out.println("Name: " + brg.getName());
out.println("Namespace: " +
brg.getTargetNameSpace());
out.println("Display Name: " + brg.getDisplayName());
out.println("Description: " + brg.getDescription());
out.println("Presentation Time zone: "
+ brg.getPresentationTimezone());
out.println("Save Date: " + brg.getSaveDate());

PropertyList propList = brg.getProperties();

Iterator<Property> propIterator =
propList.iterator();
Property prop = null;
// Permet d'obtenir les noms et valeurs des propriétés
while (propIterator.hasNext())
{

prop = propIterator.next();
out.println("\t Property Name: " +
prop.getName());
out.println("\t Property Value: " +
prop.getValue());

}
}

} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.println(e.getMessage());
}
return out.toString();
}
}

Exemple

Résultat de navigateur Web pour l’exemple 3.
Exécution de l'exemple 3

Groupe de règles métier
Nom : ApprovalValues
Espace de noms : http://BRSamples/com/ibm/websphere/sample/brules
Nom affiché : ApprovalValues
Description : null
Fuseau horaire de présentation : LOCAL
Date de sauvegarde : Sun Jan 06 17:56:51 CST 2008
Nom de la propriété : IBMSystemVersion
Valeur de la propriété : 6.2.0
Nom de la propriété : Department
Valeur de la propriété : Accounting
Nom de la propriété : RuleType

122 Développement et déploiement

Valeur de la propriété : regulatory
Nom de la propriété : IBMSystemTargetNameSpace
Valeur de la propriété : http://BRSamples/com/ibm/websphere/sample/brules
Nom de la propriété : IBMSystemName
Valeur de la propriété : ApprovalValues
Nom de la propriété : IBMSystemDisplayName
Valeur de la propriété : ApprovalValues

Concepts associés

Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 4 : extraction de groupes de règles métier par
propriétés multiples, avec l’opérateur OR
Cet exemple est similaire à l’exemple 3 ; toutefois, il permet uniquement d’extraire
les groupes de règles métier possédant la propriété Department et la valeur
“accounting”, ou encore la propriété RuleType et la valeur “monetary”.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Property;
import com.ibm.wbiserver.brules.mgmt.PropertyList;
import com.ibm.wbiserver.brules.mgmt.query.OrNode;
import com.ibm.wbiserver.brules.mgmt.query.PropertyQueryNode;
import com.ibm.wbiserver.brules.mgmt.query.QueryNodeFactory;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example4
{
static Formatter out = new Formatter();
static public String executeExample4()
{

try
{

out.clear();

Différentes propriétés composent la requête et permettent de renvoyer différents
groupes de règles métier.

// Retrieve business rule groups based on two conditions
// Crée des noeuds PropertyQueryNodes pour chaque condition
PropertyQueryNode propertyNode1 = QueryNodeFactory

.createPropertyQueryNode("Department",
QueryOperator.EQUAL,"Accounting");

PropertyQueryNode propertyNode2 = QueryNodeFactory
.createPropertyQueryNode("RuleType",
QueryOperator.EQUAL,"monetary");

// Associe les deux noeuds PropertyQueryNodes à un noeud OR
OrNode orNode =
QueryNodeFactory.createOrNode(propertyNode1,

propertyNode2);
// Utilise orNode dans les recherches de groupes de règles métier
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBRGsByProperties(orNode, 0, 0);

Iterator<BusinessRuleGroup> iterator = brgList.iterator();

Chapitre 3. Guides et techniques de programmation 123

BusinessRuleGroup brg = null;
// Effectue une itération dans la liste des groupes de règles métier
while (iterator.hasNext())
{

brg = iterator.next();
// Permet d'obtenir les attributs de chaque groupe de règles métier
out.printlnBold("Business Rule Group");
out.println("Name: " + brg.getName());
out.println("Namespace: " +
brg.getTargetNameSpace());
out.println("Display Name: " + brg.getDisplayName());
out.println("Description: " + brg.getDescription());
out.println("Presentation Time zone: "

+ brg.getPresentationTimezone());
out.println("Save Date: " + brg.getSaveDate());

PropertyList propList = brg.getProperties();

Iterator<Property> propIterator =
propList.iterator();
Property prop = null;
// Permet d'obtenir les noms et valeurs de propriétés
while (propIterator.hasNext())
{

prop = propIterator.next();
out.println("\t Property Name: " +
prop.getName());
out.println("\t Property Value: " +
prop.getValue());

}
out.println("");

}
} catch (BusinessRuleManagementException e)
{

e.printStackTrace();
out.println(e.getMessage());

}
return out.toString();
}
}

Exemple

Résultat de navigateur Web pour l’exemple 4.
Exécution de l'exemple 4

Groupe de règles métier
Nom : ApprovalValues
Espace de noms : http://BRSamples/com/ibm/websphere/sample/brules
Nom affiché : ApprovalValues
Description : null
Fuseau horaire de présentation : LOCAL
Date de sauvegarde : Sun Jan 06 17:56:51 CST 2008
Nom de la propriété : IBMSystemVersion
Valeur de la propriété : 6.2.0
Nom de la propriété : Department
Valeur de la propriété : Accounting
Nom de la propriété : RuleType
Valeur de la propriété : regulatory
Nom de la propriété : IBMSystemTargetNameSpace
Valeur de la propriété : http://BRSamples/com/ibm/websphere/sample/brules
Nom de la propriété : IBMSystemName
Valeur de la propriété : ApprovalValues
Nom de la propriété : IBMSystemDisplayName
Valeur de la propriété : ApprovalValues

124 Développement et déploiement

Groupe de règles métier
Nom : DiscountRules
Espace de noms : http://BRSamples/com/ibm/websphere/sample/brules
Nom affiché : DiscountRules
Description : null
Fuseau horaire de présentation : LOCAL
Date de sauvegarde : Sun Jan 06 17:56:51 CST 2008
Nom de la propriété : Department
Valeur de la propriété : Accounting
Nom de la propriété : IBMSystemVersion
Valeur de la propriété : 6.2.0
Nom de la propriété : RuleType
Valeur de la propriété : monetary
Nom de la propriété : IBMSystemTargetNameSpace
Valeur de la propriété : http://BRSamples/com/ibm/websphere/sample/brules
Nom de la propriété : IBMSystemName
Valeur de la propriété : DiscountRules
Nom de la propriété : IBMSystemDisplayName
Valeur de la propriété : DiscountRules

Concepts associés

Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 5 : extraction de groupes de règles métier à l’aide d’une
requête complexe
Cet exemple constitue une combinaison des exemples 3 et 4 ; il a pour but
d’illustrer la création de requêtes plus complexes. Dans cet exemple, une recherche
est effectuée à l’aide d’une requête qui associe 2 conditions de requête. La première
condition de requête consiste à extraire les groupes de règles métier possédant la
propriété Department et la valeur “General”, ou encore la propriété
MissingProperty et la valeur “somevalue”. Cette condition de requête est ensuite
associée, à l’aide d’un opérateur AND, à une condition contenant la propriété
RuleType et la valeur “messages”.

D’autres exemples de requêtes de groupes de règles métier figurent dans l’Annexe.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Property;
import com.ibm.wbiserver.brules.mgmt.PropertyList;
import com.ibm.wbiserver.brules.mgmt.query.AndNode;
import com.ibm.wbiserver.brules.mgmt.query.OrNode;
import com.ibm.wbiserver.brules.mgmt.query.PropertyQueryNode;
import com.ibm.wbiserver.brules.mgmt.query.QueryNodeFactory;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example5
{
static Formatter out = new Formatter();
static public String executeExample5()
{

try

Chapitre 3. Guides et techniques de programmation 125

{
out.clear();

// Extrait les groupes de règles métier sur la base de trois conditions ;
// deux de celles-ci sont combinées au sein d'un noeud OR
// Crée des noeuds PropertyQueryNodes pour chaque condition du noeud OR
PropertyQueryNode propertyNode1 = QueryNodeFactory

.createPropertyQueryNode("Department",
QueryOperator.EQUAL,"General");

PropertyQueryNode propertyNode2 = QueryNodeFactory
.createPropertyQueryNode("MissingProperty",

QueryOperator.EQUAL, "SomeValue");
// Combine les deux PropertyQueryNodes au sein d'un noeud OR
OrNode orNode =
QueryNodeFactory.createOrNode(propertyNode1, propertyNode2);
// Crée le troisième noeud PropertyQueryNode

PropertyQueryNode propertyNode3 = QueryNodeFactory
.createPropertyQueryNode("RuleType",

QueryOperator.EQUAL,"messages");

La partie gauche de la condition est combinée à la partie droite à l’aide d’un noeud
AND. AndNode constitue la racine de l’arborescence de requête.

// Combine le noeud OR avec le troisième PropertyQueryNode à l'aide de :
AndNode AndNode andNode =
QueryNodeFactory.createAndNode(propertyNode3, orNode);

List<BusinessRuleGroup> brgList = BusinessRuleManager
.getBRGsByProperties(andNode, 0, 0);

Iterator<BusinessRuleGroup> iterator = brgList.iterator();

BusinessRuleGroup brg = null;
// Effectue une itération dans la liste des groupes de règles métier
while (iterator.hasNext())
{

brg = iterator.next();
// Permet d'obtenir les attributs de chaque groupe de règles métier
out.printlnBold("Business Rule Group");
out.println("Name: " + brg.getName());
out.println("Namespace: " +

brg.getTargetNameSpace());
out.println("Display Name: " + brg.getDisplayName());
out.println("Description: " + brg.getDescription());
out.println("Presentation Time zone: "

+ brg.getPresentationTimezone());
out.println("Save Date: " + brg.getSaveDate());
PropertyList propList = brg.getProperties();

Iterator<Property> propIterator =
propList.iterator();
Property prop = null;
// Permet d'obtenir les noms et valeurs de propriétés
while (propIterator.hasNext())
{

prop = propIterator.next();
out.println("\t Property Name: " +
prop.getName());
out.println("\t Property Value: " +
prop.getValue());

}
}
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.println(e.getMessage());

126 Développement et déploiement

}
return out.toString();
}
}

Exemple

Résultat de navigateur Web pour l’exemple 5.
Exécution de l'exemple 5

Groupe de règles métier
Nom : ConfigurationValues
Espace de noms : http://BRSamples/com/ibm/websphere/sample/brules
Nom affiché : ConfigurationValues
Description : null
Fuseau horaire de présentation : LOCAL
Date de sauvegarde : Sun Jan 06 17:56:51 CST 2008
Nom de la propriété : IBMSystemVersion
Valeur de la propriété : 6.2.0
Nom de la propriété : Department
Valeur de la propriété : General
Nom de la propriété : RuleType
Valeur de la propriété : messages
Nom de la propriété : IBMSystemTargetNameSpace
Valeur de la propriété : http://BRSamples/com/ibm/websphere/sample/brules
Nom de la propriété : IBMSystemName
Valeur de la propriété : ConfigurationValues
Nom de la propriété : IBMSystemDisplayName
Valeur de la propriété : ConfigurationValues

Concepts associés

Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 6 : mise à jour d’une propriété de groupe de règles
métier et publication du groupe de règles métier
Dans cet exemple, l’une des propriétés d’un groupe de règles métier est mise à
jour, puis le groupe de règles métier correspondant est publié.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.UserDefinedProperty;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example6
{
static Formatter out = new Formatter();

static public String executeExample6()
{
try
{

out.clear();
out.printlnBold("Business Rule Group before publish:");
// Extrait les groupes de règles métier à l'aide d'une seule valeur de propriété

Chapitre 3. Guides et techniques de programmation 127

List<BusinessRuleGroup> brgList = BusinessRuleManager
.getBRGsBySingleProperty("Department",
QueryOperator.EQUAL,"General", 0, 0);

if (brgList.size() > 0)
{

// Extrait le premier groupe de règles métier de la liste
BusinessRuleGroup brg = brgList.get(0);
// Extrait la propriété du groupe de règles métier
UserDefinedProperty userDefinedProperty =
(UserDefinedProperty) brg

.getProperty("Department");

out.println("Business Rule Group: " + brg.getName());
out.println("Department Property value: "
+ brg.getProperty("Department").getValue());

La méthode getProperty renvoie une propriété par référence ; les modifications
apportées à la propriété sont directement répercutées au niveau du groupe de
règles métier.

// Modification de la valeur de propriété du groupe de règles métier
// Cela permet de mettre à jour la valeur de la propriété directement dans
l'objet du groupe de règles métier
userDefinedProperty.setValue("GeneralConfig");
// Utilise la liste d'origine ou crée une nouvelle liste
// de groupes de règles métier
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();
// Ajoute le groupe de règles métier modifié à la liste
publishList.add(brg);

La classe BusinessRuleManager est utilisée pour la publication des modifications
apportées à un groupe de règles métier. Pour publier ces modifications, une liste
est transférée à la méthode de publication BusinessRuleManager, même si un seul
élément est publié.

// Publie la liste contenant le groupe de règles métier modifié
BusinessRuleManager.publish(publishList, true);

out.println("");

// Extrait de nouveau le groupe de règles métier pour vérifier que les
// modifications ont été publiées
out.printlnBold("Business Rule Group after publish:");
brgList = BusinessRuleManager
.getBRGsBySingleProperty("Department",
QueryOperator.EQUAL, "GeneralConfig", 0, 0);

brg = brgList.get(0);

out.println("Business Rule Group: " + brg.getName());
// Affiche la valeur de propriété pour indiquer la modification apportée
out.println("Department Property value: "
+ brg.getProperty("Department").getValue());

}
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.println(e.getMessage());
}
return out.toString();
}
}

128 Développement et déploiement

Exemple

Résultat de navigateur Web pour l’exemple 6.
Exécution de l'exemple 6

Groupe de règles métier avant la publication :
Groupe de règles métier : ConfigurationValues
Valeur de la propriété Department : General

Groupe de règles métier après la publication :
Groupe de règles métier : ConfigurationValues
Valeur de la propriété Department : GeneralConfig

Concepts associés

Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 7 : mise à jour des propriétés contenues dans plusieurs
groupes de règles métier et publication des groupes de règles
métier correspondants.
Dans cet exemple, les propriétés de plusieurs groupes de règles métier sont mises à
jour avant la publication des groupes de règles métier correspondants.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.UserDefinedProperty;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example7
{
static Formatter out = new Formatter();

static public String executeExample7()
{

try
{

out.clear();
out.printlnBold("Business Rule Group before publish:");
// Extrait les groupes de règles métier à l'aide d'une seule valeur de propriété
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBRGsBySingleProperty("Department",
QueryOperator.EQUAL, "Accounting", 0, 0);

Iterator<BusinessRuleGroup> iterator = brgList.iterator();

BusinessRuleGroup brg = null;

// Utilise la liste d'origine ou crée une nouvelle liste
// de groupes de règles métier
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Effectue une itération au sein de tous les groupes de règles métier et
// modifie la propriété

Chapitre 3. Guides et techniques de programmation 129

while (iterator.hasNext())
{

// Extrait la propriété du groupe de règles métier
brg = iterator.next();

out.println("Business Rule Group: " + brg.getName());

// Extrait la propriété du groupe de règles métier
UserDefinedProperty prop = (UserDefinedProperty) brg

.getProperty("Department");
out.println("Department Property value: "
+
brg.getProperty("Department").getValue())
;

// Modifie la valeur de propriété dans le groupe de règles métier
// Cela permet de mettre à jour la valeur de la propriété directement dans
l'objet du groupe de règles métier
prop.setValue("Finance");

Chaque groupe de règles métier modifié est ajouté à la liste.
// Ajoute le groupe de règles métier modifié à la liste
publishList.add(brg);
}

// Publie la liste contenant le groupe de règles métier
modifié
BusinessRuleManager.publish(publishList, true);

out.println("");

// Extrait de nouveau les groupes de règles métier afin de vérifier que
// les modifications ont été publiées
out.printlnBold("Business Rule Group after
publish:");

brgList = BusinessRuleManager
.getBRGsBySingleProperty("Department",
QueryOperator.EQUAL,
"Finance", 0, 0);

iterator = brgList.iterator();

while (iterator.hasNext())
{

brg = iterator.next();
out.println("Business Rule Group: " +
brg.getName());
out.println("Department Property value: "
+
brg.getProperty("Department").getVa
lue());

}
} catch (BusinessRuleManagementException e)
{

e.printStackTrace();
out.println(e.getMessage());

}
return out.toString();
}
}

Exemple

Résultat de navigateur Web pour l’exemple 7.

130 Développement et déploiement

Exécution de l'exemple 7

Groupe de règles métier avant la publication :
Groupe de règles métier : ApprovalValues
Valeur de la propriété Department : Accounting
Groupe de règles métier : DiscountRules
Valeur de la propriété Department : Accounting

Groupe de règles métier après la publication :
Groupe de règles métier : ApprovalValues
Valeur de la propriété Department : Finance
Groupe de règles métier : DiscountRules
Valeur de la propriété Department : Finance

Concepts associés

Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 8 : modification de la règle métier par défaut d’un
groupe de règles métier
Dans cet exemple, la règle métier par défaut est remplacée par une autre règle
métier faisant partie de la liste de cibles disponibles d’une opération spécifique.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example8
{
static Formatter out = new Formatter();

static public String executeExample8()
{

try
{

out.clear();

// Extrait un groupe de règles métier par espace de nom et nom cible
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"DiscountRules",
QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)
{

out.printlnBold("Business Rule Group before publish:");
// Extrait le premier groupe de règles métier de la liste
// Il doit s'agir du seul groupe de règles métier de la liste, car
// la combinaison d'espace de nom et de nom cible est unique
BusinessRuleGroup brg = brgList.get(0);

Chapitre 3. Guides et techniques de programmation 131

out.print("Business Rule Group: ");
out.println(brg.getName());

// Extrait le fonctionnement du groupe de règles métier dont
// la règle métier par défaut doit être mise à jour
Operation op =
brg.getOperation("calculateShippingDiscount");

La règle métier par défaut est extraite avant d’être mise à jour à l’aide d’une autre
règle métier faisant partie de la liste de cibles disponibles de l’opération. Les Les
ensembles de règles et les tables de décisions sont spécifiques aux opérations ;
seuls les artefacts de règles métier relatifs à une opération peuvent être définis en
tant qu’artefacts par défaut ou être programmés à un autre moment pour cette
opération.

// Extrait la règle métier par défaut de l'opération
BusinessRule defaultRule =
op.getDefaultBusinessRule();
out.print("Default Rule: ");
out.println(defaultRule.getName());

// Extrait la liste des règles métier disponibles pour cette
opération
List<BusinessRule> ruleList =
op.getAvailableTargets();

Iterator<BusinessRule> iterator =
ruleList.iterator();
BusinessRule rule = null;

// Recherche une règle métier différente de la règle
en cours d'utilisation
// règle métier
// par défaut
while (iterator.hasNext())
{

rule = iterator.next();
if
(!defaultRule.getName().equals(rule.getName()))
{

La règle métier par défaut est définie pour l’objet de l’opération. L’affectation de la
valeur Null à la règle métier par défaut a pour effet de supprimer la règle métier
par défaut de l’opération ; toutefois, il est recommandé de spécifier une règle
métier par défaut pour chaque opération.

// Définit une autre règle
// métier par défaut
// Cette modification concerne directement
// l'objet de l'opération
op.setDefaultBusinessRule(rule);
break;

}
}
// Utilise la liste d'origine ou crée une nouvelle liste
// de groupes de règles métier
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();
// Ajoute le groupe de règles métier modifié à la liste
publishList.add(brg);
// Publie la liste contenant le groupe de règles
métier modifié
BusinessRuleManager.publish(publishList, true);

out.println("");

132 Développement et déploiement

// Extrait de nouveau les groupes de règles métier, afin de vérifier que
// les modifications ont été publiées

out.printlnBold("Business Rule Group after publish:");
brgList = BusinessRuleManager
.getBRGsByTNSAndName(

"http://BRSamples/com/ibm/websphere/sample/brules",
QueryOperator.EQUAL, "DiscountRules",
QueryOperator.EQUAL, 0, 0);

brg = brgList.get(0);
out.println("Business Rule Group: " + brg.getName());
op = brg.getOperation("calculateShippingDiscount");

// Extrait la règle métier par défaut de l'opération
defaultRule = op.getDefaultBusinessRule();
out.print("Default Rule: ");
out.println(defaultRule.getName());
}

} catch (BusinessRuleManagementException e)
{

e.printStackTrace();
out.println(e.getMessage());

}
return out.toString();
}
}

Exemple

Résultat de navigateur Web pour l’exemple 8.
Exécution de l'exemple 8

Groupe de règles métier avant la publication :
Groupe de règles métier : DiscountRules
Règle par défaut : calculateShippingDiscount

Groupe de règles métier après la publication :
Groupe de règles métier : DiscountRules
Règle par défaut : calculateShippingDiscountHoliday

Concepts associés

Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 9 : planification d’une autre règle d’opération au sein
d’un groupe de règles métier
Dans cet exemple, une règle métier est planifiée en vue d’être active pendant une
durée d’une heure à compter de l’heure de la publication d’une opération
spécifique.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.Date;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;

Chapitre 3. Guides et techniques de programmation 133

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.OperationSelectionRecordList;
import com.ibm.wbiserver.brules.mgmt.OperationSelectionRecord;
import com.ibm.wbiserver.brules.mgmt.problem.Problem;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example9 {
static Formatter out = new Formatter();

static public String executeExample9()
{
try
{

out.clear();

// Extrait un groupe de règles métier par espace de nom et nom cible
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"DiscountRules",
QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)
{

out.println("");
out.printlnBold("Business Rule Group before publish:");
// Extrait le premier groupe de règles métier de la liste
// Il doit s'agir du seul groupe de règles métier de la liste, car
la
// combinaison d'espace de nom et de nom cible est unique
BusinessRuleGroup brg = brgList.get(0);

// Extrait le fonctionnement du groupe de règles métier dont
// une nouvelle règle métier doit être planifiée
Operation op =
brg.getOperation("calculateShippingDiscount");

printOperationSelectionRecord(op);
// Extrait la liste des règles métier disponibles pour cette opération
List<BusinessRule> ruleList =
op.getAvailableTargets();

// Extrait la première règle de la liste, qui sera planifiée
// pour l'opération
BusinessRule rule = ruleList.get(0);

// Extrait la liste des règles métier planifiées
OperationSelectionRecordList opList = op

.getOperationSelectionRecordList();
// Crée une date de fin pour la règle métier
Date future = new Date();
long futureTime = future.getTime() + 3600000;

Pour les nouvelles règles planifiées, il est possible de spécifier une date de début et
une date de fin. Si une valeur Null est affectée pour la date de début, cela indique
que la règle sera active immédiatement au moment de la publication. Si une valeur
Null est affectée à la date de fin, la règle ne comportera pas de date de fin. Les
chevauchements de planification ne sont pas autorisés et peuvent être contrôlés via
l’appel de la méthode validate au niveau de l’opération.

134 Développement et déploiement

// Crée la nouvelle règle métier planifiée en indiquant la date
// actuelle, ce qui signifie que cette règle deviendra immédiatement active
// au moment de la
// publication, ainsi que la date future.
newOperationSelectionRecord(new Date(),

new Date(futureTime), rule);
// Ajoute la nouvelle règle métier planifiée à la liste des
// règles planifiées
opList.addOperationSelectionRecord(newRecord);

Validation de l’opération afin de vérifier qu’il n’existe aucun chevauchement.
// Valide la liste afin de vérifier l'absence de chevauchements
List<Problem> problems = op.validate();
if (problems.size() == 0)
{

// Utilise la liste d'origine ou crée une nouvelle liste
// de groupes de règles métier
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();
// Ajoute le groupe de règles métier modifié à la liste
publishList.add(brg);
// Publie la liste contenant le groupe de règles
métier mis à jour
BusinessRuleManager.publish(publishList, true);
out.println("");

// Extrait de nouveau les groupes de règles métier afin de
vérifier que les
// modifications ont été publiées
out.printlnBold("Business Rule Group after
publish:");

brgList =
BusinessRuleManager.getBRGsByTNSAndName(

"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"DiscountRules",
QueryOperator.EQUAL, 0, 0);
brg = brgList.get(0);

op =
brg.getOperation("calculateShippingDiscount");

printOperationSelectionRecord(op);
}
// Gère l'erreur de validation

}
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.println(e.getMessage());
}
return out.toString();
}
/*
Méthode d'impression de l'enregistrement de sélection d'opération. La
date de début et la date de fin sont imprimées, ainsi que le nom de l'artefact
de règle correspondant à l'heure planifiée.
*/
private static void printOperationSelectionRecord(Operation op)
{
OperationSelectionRecordList opSelectionRecordList = op

.getOperationSelectionRecordList();
Iterator<OperationSelectionRecord> opSelRecordIterator =
opSelectionRecordList

Chapitre 3. Guides et techniques de programmation 135

.iterator();
OperationSelectionRecord record = null;
while (opSelRecordIterator.hasNext())
{

out.printlnBold("Scheduled Destination:");
record = opSelRecordIterator.next();
out.println("Start Date: " + record.getStartDate()
+ " - End Date: " + record.getEndDate());
BusinessRule ruleArtifact = record.getBusinessRuleTarget();
out.println("Rule: " + ruleArtifact.getName());
}

}
}

Exemple

Résultat de navigateur Web pour l’exemple 9.
Exécution de l'exemple 9

Groupe de règles métier avant la publication :
Destination planifiée :
Date de début : Thu Dec 01 00:00:00 CST 2005 -
Date de fin : Sun Dec 25 00:00:00 CST 2005
Règle : calculateShippingDiscountHoliday

Groupe de règles métier après la publication :
Destination planifiée :
Date de début : Thu Dec 01 00:00:00 CST 2005 -
Date de fin : Sun Dec 25 00:00:00 CST 2005
Règle : calculateShippingDiscountHoliday
Destination planifiée :
Date de début : Mon Jan 07 21:08:31 CST 2008 -
Date de fin : Mon Jan 07 22:08:31 CST 2008
Règle : calculateShippingDiscount

Concepts associés

Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 10 : modification d’une valeur de paramètre dans un
modèle d’un ensemble de règles
Dans cet exemple, une instance de règle définie avec un modèle est modifiée en
changeant une valeur de paramètre, puis publiée.
package com.ibm.websphere.sample.brules.mgmt;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.ParameterValue;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRule;
import
com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetTemplateInstanceRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleBlock;

136 Développement et déploiement

public class Example10
{
static Formatter out = new Formatter();

static public String executeExample10()
{

try
{

out.clear();

// Extraire un groupe de règles métier par espace de nom cible et
par nom
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ApprovalValues",
QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)
{

// Obtenir le premier groupe de règles métier depuis la liste
// Il doit être le seul groupe de règles métier de la
liste puisque
// la combinaison de l'espace de nom cible et du nom est
unique
BusinessRuleGroup brg = brgList.get(0);
// Obtenir l'opération du groupe de règles métier comportant
// la règle métier à modifier puisque
// les règles métier sont associées à une opération
// spécifique
Operation op = brg.getOperation("getApprover");

// Obtenir la règle métier de l'opération qui
sera modifiée
List<BusinessRule> ruleList =
op.getBusinessRulesByName(

"getApprover", QueryOperator.EQUAL, 0,
0);

if (ruleList.size() > 0)
{

out.println("");
out.printlnBold("Rule set before publish:");
// Obtenir la règle à modifier. Les règles sont
uniques par
// espace de nom cible et par nom, mais cet
exemple
// comporte une seule règle métier intitulée
"getApprover"
RuleSet ruleSet = (RuleSet) ruleList.get(0);
out.print(RuleArtifactUtility.printRuleSet(rule
Set));

Toutes les règles d’un ensemble de règles sont dans un bloc de règles. Un seul bloc
de règles est pris en charge et la méthode getFirstRuleBlock doit être utilisée pour
extraire le bloc de règles.

// Un ensemble de règles comporte toutes les règles définies dans un
bloc de règles
RuleBlock ruleBlock =
ruleSet.getFirstRuleBlock();

Iterator<RuleSetRule> ruleIterator =
ruleBlock.iterator();

// Procéder à l'itération via les règles du bloc de règles

Chapitre 3. Guides et techniques de programmation 137

pour trouver
// l'instance de règle intitulée "LargeOrderApprover"
while (ruleIterator.hasNext())
{

RuleSetRule rule = ruleIterator.next();

Si une règle n’est pas définie avec un modèle de règle, seule sa présentation Web
peut être extraite. Aucune mise à jour ne peut être réalisée sur une règle non
définie avec un modèle. Si le nom de la règle est inconnu, il est recommandé de
vérifier si elle a été définie avec un modèle.

// La règle doit avoir été définie avec un
modèle
// pour pouvoir être modifiée. Vérifier
si la règle en
// cours est basée sur un modèle.
if (rule instanceof
RuleSetTemplateInstanceRule)
{

Utilisez l’objet TemplateInstance pour créer la règle.
// Obtenir l'instance du modèle de règle
RuleSetTemplateInstanceRule
templateInstance =
(RuleSetTemplateInstanceRule) rule;

// Rechercher l'instance de règle
correspondant
// à la règle à modifier
if
(templateInstance.getName().equals(

"LargeOrderApprover"))
{

Pour l’instance de modèle, seules les valeurs de paramètre peuvent être modifiées.
Les paramètres sont modifiés en extrayant ParameterValue et en le définissant sur
la valeur appropriée. Dans la mesure où ParameterValue est validé par référence, la
mise à jour est effectuée directement sur la règle, l’ensemble de règles et le groupe
de règles métier.

// Obtenir le paramètre de
l'instance de règle
ParameterValue parameter =
templateInstance

.getParameterValue("par
am2");

// Modifier la valeur du
paramètre
parameter.setValue("superviso
r");
break;

}
}

}
// Utiliser la liste d'origine ou créer une nouvelle liste de
// groupes de règles métier
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Ajouter le groupe de règles métier modifié à la liste
publishList.add(brg);

// Publier la liste avec le groupe de règles métier mis à
jour

138 Développement et déploiement

BusinessRuleManager.publish(publishList, true);

out.println("");
// Extraire de nouveau les groupes de règles métier pour vérifier
que les
// modifications ont été publiées
out.printlnBold("Rule set after publish:");

brgList = BusinessRuleManager
.getBRGsByTNSAndName(

"http://BRSamples/com/ibm/websphere/sample/brules",
QueryOperator.EQUAL, "ApprovalValues",
QueryOperator.EQUAL, 0, 0);

brg = brgList.get(0);
op = brg.getOperation("getApprover");
ruleList = op.getBusinessRulesByName(

"getApprover", QueryOperator.EQUAL, 0,0);

ruleSet = (RuleSet) ruleList.get(0);
out.print(RuleArtifactUtility.printRuleSet(ruleSet));
}

}
} catch (BusinessRuleManagementException e)
{

e.printStackTrace();
out.println(e.getMessage());

}
return out.toString();
}

}

Exemple

Sortie du navigateur Web pour l’exemple 10.
Exécution de l'exemple 10

Ensemble de règles avant la publication :
Ensemble de règles
Nom : getApprover
Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules
Règle : LargeOrderApprover
Nom affiché : LargeOrderApprover
Description : null
Présentation utilisateur détaillée : si le nombre d'éléments Commande est
supérieur à 10 et que la commande dépasse 5000 $, l'approbation du responsable est
nécessaire
Présentation utilisateur : si le nombre d'éléments Commande est supérieur à {0} et
que la commande dépasse {1} $, l'approbation de {2} est nécessaire
Nom de paramètre : param0
Valeur de paramètre : 10
Nom de paramètre : param1
Valeur de paramètre : 5000
Nom de paramètre : param2
Valeur de paramètre : manager
Règle : DefaultApprover
Nom affiché : DefaultApprover
Description : null
Présentation utilisateur détaillée : approver = peer
Présentation utilisateur : approver = {0}
Nom de paramètre : param0
Valeur de paramètre : peer

Ensemble de règles une fois terminé :
Ensemble de règles
Nom : getApprover

Chapitre 3. Guides et techniques de programmation 139

Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules
Règle : LargeOrderApprover
Nom affiché : LargeOrderApprover
Description : null
Présentation utilisateur détaillée : si le nombre d'éléments Commande est
supérieur à 10 et que la commande dépasse 5000 $, l'approbation du superviseur est
nécessaire
Présentation utilisateur : si le nombre d'éléments Commande est supérieur à {0} et
que la commande dépasse {1} $, l'approbation de {2} est nécessaire
Nom de paramètre : param0
Valeur de paramètre : 10
Nom de paramètre : param1
Valeur de paramètre : 5000
Nom de paramètre : param2
Valeur de paramètre : supervisor
Règle : DefaultApprover
Nom affiché : DefaultApprover
Description : null
Présentation utilisateur détaillée : approver = peer
Présentation utilisateur : approver = {0}
Nom de paramètre : param0
Valeur de paramètre : peer

Concepts associés

Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 11 : Ajouter une nouvelle règle depuis un modèle vers
un jeu de règles
Dans cet exemple, une nouvelle règle est ajoutée à un jeu de règles, à partir d’un
modèle. Avant la création de l’instance de règle, des paramètres sont définis pour
cette instance.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.Parameter;
import com.ibm.wbiserver.brules.mgmt.ParameterValue;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleBlock;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRuleTemplate;
import
com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetTemplateInstanceRule;

public class Example11
{
static Formatter out = new Formatter();

static public String executeExample11()
{
try
{
out.clear();

140 Développement et déploiement

// Extraction d'un groupe de règles métier par nom et espace de nom
cible
List<BusinessRuleGroup> brgList = BusinessRuleManager
.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ApprovalValues",
QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)
{
// Extraction du premier groupe de règles métier de la liste
// Cela doit être le seul groupe de règles métier de la
liste car
// la combinaison de nom et d'espace de nom cible est
unique
BusinessRuleGroup brg = brgList.get(0);
// Extraction de l'opération du groupe de règles métier qui comporte
// la règle métier qui sera modifiée lorsque les
// règles métier seront associées à une opération
// spécifique
Operation op = brg.getOperation("getApprover");

// Extraction de la règle métier pour l'opération qui
sera modifiée
List<BusinessRule> ruleList =
op.getBusinessRulesByName(
"getApprover", QueryOperator.EQUAL, 0,0);

if (ruleList.size() > 0)
{
out.println("");
out.printlnBold("Jeu de règles avant publication:");
// Extraction de la règle à modifier. Les règles sont uniques par
// nom et espace de nom cible, mais cet exemple utilise
// une seule règle métier appelée
"getApprover"
RuleSet ruleSet = (RuleSet) ruleList.get(0);
out.print(RuleArtifactUtility.printRuleSet(rule
Set));

Pour ajouter une nouvelle règle au jeu de règles, le modèle approprié doit être
identifié dans le jeu de règles et une instance doit être créée à partir de ce modèle.
Le modèle peut être localisé grâce à son nom.

// Extraction de la liste des modèles de règles
ListRuleSetRuleTemplate> ruleTemplates =
ruleSet
.getRuleTemplates();

Iterator<RuleSetRuleTemplate> templateIterator
= ruleTemplates
.iterator();

while (templateIterator.hasNext())
{
RuleSetRuleTemplate template =
templateIterator.next();

// Localisation du modèle à utiliser pour créer une
nouvelle règle
if
(template.getName().equals("Template_Larg
eOrder"))
{

Chapitre 3. Guides et techniques de programmation 141

Pour une instance de modèle, une liste de paramètres doit être créée.
// Création d'une liste pour les paramètres
de cette instance de règle
// modèle
List<ParameterValue> paramList =
new ArrayList<ParameterValue>();

// A partir de la définition de modèle,
extraction d'un paramètre spécifique
// et définition d'une valeur
Parameter param =
template.getParameter("param0");
ParameterValue paramValue = param
.createParameterValue("
20");

// Ajout d'un paramètre à la liste
paramList.add(paramValue);

// Extraction du paramètre suivant et définition
de la valeur
param = template.getParameter("param1");
paramValue =
param.createParameterValue("7500");

// Ajout d'un paramètre à la liste
paramList.add(paramValue);

// Extraction du paramètre suivant et définition
de la valeur
param =
template.getParameter("param2");
paramValue = param
.createParameterValue("
Responsable de niveau 2");

// Ajout d'un paramètre à la liste
paramList.add(paramValue);

A partir des paramètres créés, l’instance de modèle peut être créée.
// Création de l'instance de règle
modèle avec la liste de
// paramètres
RuleSetTemplateInstanceRule
templateInstance = template
.createRuleFromTemplate
("ExtraLargeOrder",
paramList);
// Extraction du bloc de règles correspondant au jeu
de règles
RuleBlock ruleBlock =
ruleSet.getFirstRuleBlock();

Une fois l’instance de modèle créée, elle peut être ajoutée au bloc de règles. Elle
peut ensuite être organisée parmi les autres instances de règle modèle.

// Ajout de la règle de modèle au
bloc de règle
ruleBlock.addRule(templateInstance)
;

break;
}
}

// Utilisation de la liste d'origine ou création d'une nouvelle liste

142 Développement et déploiement

// de groupes de règles métier
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Ajout du groupe de règles métier modifié à la
liste
publishList.add(brg);

// Publication de la liste avec le groupe de règles métier
mis à jour
BusinessRuleManager.publish(publishList, true);

out.println("");

// Extraction des groupes de règles métier pour
s'assurer que
// les modifications ont été publiées
out.printlnBold("Jeu de règles après publication:");

brgList = BusinessRuleManager
.getBRGsByTNSAndName(

"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ApprovalValues",
QueryOperator.EQUAL, 0, 0);

brg = brgList.get(0);
op = brg.getOperation("getApprover");
ruleList = op.getBusinessRulesByName(

"getApprover", QueryOperator.EQUAL,
0, 0);

ruleSet = (RuleSet) ruleList.get(0);
out.print(RuleArtifactUtility.printRuleSet(rule
Set));
}

}
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.println(e.getMessage());
}
return out.toString();
}
}

Exemple

Sortie du navigateur Web pour l’exemple 11.
Exécution de l'exemple 11

Jeu de règles avant publication :
Jeu de règles
Nom : getApprover
Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules
Règle : LargeOrderApprover
Nom affiché : LargeOrderApprover
Description : null
Présentation utilisateur détaillée : Si le nombre d'articles commandés excède 10
et que la commande excède 5 000 $, l'approbation du superviseur est nécessaire
Présentation utilisateur : Si le nombre d'articles commandés excède {0} et que
la commande excède {1} $, l'approbation du {2} est nécessaire
Nom du paramètre : param0
Valeur du paramètre : 10
Nom du paramètre : param1

Chapitre 3. Guides et techniques de programmation 143

Valeur du paramètre : 5000
Nom du paramètre : param2
Valeur du paramètre : superviseur
Règle : DefaultApprover
Nom affiché : DefaultApprover
Description : null
Présentation utilisateur détaillée : approver = peer
Présentation utilisateur : approver = {0}
Nom du paramètre : param0
Valeur du paramètre : peer

Jeu de règles après publication :
Jeu de règles
Nom : getApprover
Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules
Règle : LargeOrderApprover
Nom affiché : LargeOrderApprover
Description : null
Présentation utilisateur détaillée : Si le nombre d'articles commandés excède 10
et que la commande excède 5 000 $, l'approbation du superviseur est nécessaire
Présentation utilisateur : Si le nombre d'articles commandés excède {0} et que
la commande excède {1} $, l'approbation du {2} est nécessaire
Nom du paramètre : param0
Valeur du paramètre : 10
Nom du paramètre : param1
Valeur du paramètre : 5000
Nom du paramètre : param2
Valeur du paramètre : superviseur
Règle : DefaultApprover
Nom affiché : DefaultApprover
Description : null
Présentation utilisateur détaillée : approver = peer
Présentation utilisateur : approver = {0}
Nom du paramètre : param0
Valeur du paramètre : peer
Règle : ExtraLargeOrder
Nom affiché :
Description : null
Présentation utilisateur détaillée : Si le nombre d'articles commandés excède 20
et que la commande excède 7 500 $, l'approbation du responsable de niveau 2 est nécessaire
Présentation utilisateur : Si le nombre d'articles commandés excède {0} et que
la commande excède {1} $, l'approbation du {2} est nécessaire
Nom du paramètre : param0
Valeur du paramètre : 20
Nom du paramètre : param1
Valeur du paramètre : 7500
Nom du paramètre : param2
Valeur du paramètre : responsable de niveau 2

Concepts associés

Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 12 : Modifier et publier un modèle d’une table de
décision en changeant la valeur d’un paramètre
Dans cet exemple, une condition et une action (toutes deux définies avec des
modèles) sont modifiées dans une table de décision, en changeant les valeurs des
paramètres avant publication.

144 Développement et déploiement

La méthode la plus simple pour modifier des conditions et des actions dans une
table de décision consiste à utiliser des noms uniques pour les modèles à chaque
niveau de condition et pour chaque action. Cela permet d’effectuer des recherches
sur les noms uniques, puis d’apporter des modifications aux instances de modèle
définies à partir de ce modèle. Lorsque des modifications sont apportées à une
instance d’un modèle particulier, toutes les valeurs de condition définies avec ce
modèle à ce niveau seront mises à jour. Pour les expressions d’action, chaque
instance est unique et les modifications apportées à une instance n’affectent pas les
autres instances.

Pour cet exemple, un certain nombre de méthodes supplémentaires ont été créées
pour simplifier la localisation d’un cas spécifique pour mise à jour, la recherche de
la valeur de paramètre spécifique, et la recherche de l’expression d’action définie
avec un modèle spécifique.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.Vector;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.ParameterValue;
import com.ibm.wbiserver.brules.mgmt.Template;
import com.ibm.wbiserver.brules.mgmt.dtable.ActionNode;
import com.ibm.wbiserver.brules.mgmt.dtable.CaseEdge;
import com.ibm.wbiserver.brules.mgmt.dtable.ConditionNode;
import com.ibm.wbiserver.brules.mgmt.dtable.DecisionTable;
import com.ibm.wbiserver.brules.mgmt.dtable.TemplateInstanceExpression;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeAction;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeBlock;
import
com.ibm.wbiserver.brules.mgmt.dtable.TreeConditionValueDefinition;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeNode;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example12 {
static Formatter out = new Formatter();

static public String executeExample12()
{
try
{

out.clear();
// Extraction d'un groupe de règles métier par nom et espace de nom
cible
List<BusinessRuleGroup> brgList = BusinessRuleManager
.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ConfigurationValues",
QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)
{
// Extraction du premier groupe de règles métier de la liste
// Ce doit être le seul groupe de règles métier de la
liste car
// les combinaisons nom/espace de nom sont

Chapitre 3. Guides et techniques de programmation 145

uniques
BusinessRuleGroup brg = brgList.get(0);

// Extraction de l'opération du groupe de règles métier qui
// la règle métier qui sera modifiée lorsque les
// règles métier seront associées à une opération
// spécifique
Operation op = brg.getOperation("getMessages");

// Extraction de toutes les règles métier disponibles pour cette
opération
List<BusinessRule> ruleList =
op.getAvailableTargets();

// Pour cette opération, il n'existe qu'une seule règle métier
et
// il s'agit de celle que nous souhaitons mettre à jour
DecisionTable decisionTable = (DecisionTable)
ruleList.get(0);
out.println("");
out.printlnBold("Table de décision avant publication:");
out
.print(RuleArtifactUtility
.printDecisionTable(decisionT
able));

La règle, les conditions et les actions sont contenues dans une arborescence. Il est
possible d’extraire le noeud racine de l’arborescence.

// Extraction de l'arborescence contenant toutes les
conditions
// et les actions pour la table de décision
TreeBlock treeBlock = decisionTable.getTreeBlock();
// Dans l'arborescence, extraction du noeud qui
constitue
// le point de départ pour la navigation dans la table de
décision
TreeNode treeNode = treeBlock.getRootNode();

La condition à mettre à jour a été définie à partir d’un modèle appelé “Condition
Value Template 2.1”. La méthode getCaseEdge permet d’effectuer des recherches
récursives à partir du noeud jusqu’au niveau cas, afin de localiser le modèle. Cette
méthode suppose que le niveau auquel le modèle est défini soit connu, ainsi que le
niveau actuel. Elle peut être utilisée pour rechercher le cas associé à un modèle
donné, au cas où un même nom soit utilisé pour différents cas.

// Extraction du cas au niveau 1 sous la racine, associé
// à un modèle spécifique avec une valeur de paramètre portant un nom
// spécifique. Etant donné que nous partons d'en haut,
// la profondeur actuelle est 0
CaseEdge caseEdge = getCaseEdge(treeNode, "param0",
"Condition Value Template 2.1", 1, 0);

A partir du cas trouvé, il est possible d’extraire l’objet
ConditionValueTemplateInstance pour la condition.

if (caseEdge != null)
{
// Cas localisé. Extraction de la
définition de valeur
// du cas
TreeConditionValueDefinition condition =
caseEdge
.getValueDefinition();
// Extraction de l'expression de condition définie à l'aide d'un
correspondant

146 Développement et déploiement

TemplateInstanceExpression conditionExpression
= condition
.getConditionValueTemplateInstance(

);

Avec l’objet ConditionValueTemplateInstance, la valeur de paramètre appropriée
peut être extraite, puis mise à jour à l’aide de la méthode getParameterValue.

// Extraction du modèle pour l'expression
Template conditionTemplate =
conditionExpression
.getTemplate();

// Vérification du modèle car il est possible
d'avoir
// plusieurs modèles pour une valeur de condition,
mais un seul peut être
// appliqué
if (conditionTemplate.getName().equals(
"Condition Value Template 2.1"))
{
// Extraction de la valeur de paramètre
ParameterValue parameterValue =
getParameterValue("param0",
conditionExpression);

// Définition de la nouvelle valeur de paramètre
parameterValue.setValue("info");
}

Il est alors possible d’extraire les différentes expressions d’action définies à l’aide
de modèles, afin de les mettre à jour. La méthode getActionExpressions renvoie
toutes les actions définies avec le modèle Action Value Template 1.

ConditionNode conditionNode = (ConditionNode)
treeNode;

// Extraction de l'arborescence de cas
ListCaseEdge> caseEdges =
conditionNode.getCaseEdges();

// Création d'une liste contenant toutes les expressions
d'action qui devront
// également être mises à jour. Etant donné que chaque
action est
// indépendante des autres actions même si elles partagent
le même modèle,
// toutes les actions doivent être mises à jour.
List<TemplateInstanceExpression> expressions =
new Vector<TemplateInstanceExpression>();

// Extraction de toutes les expressions
pour (CaseEdge edge : caseEdges)
{

getActionExpressions("Action Value
Template 1", edge,
expressions);

}

Avec la liste des expressions d’action, chaque élément peut être mis à jour. Pour les
expressions d’action définies à partir de modèles, la valeur de paramètre
appropriée peut être mise à jour.

// Mise à jour du paramètre approprié dans chaque
expression
pour (TemplateInstanceExpression expression
expressions)

Chapitre 3. Guides et techniques de programmation 147

{
for (ParameterValue parameterValue :
expression
.getParameterValues())
{
// Vérification du paramètre
bien qu'il n'y ait
// qu'un seul paramètre dans
notre modèle
if
(parameterValue.getParameter().getN
ame().equals("param0")) {
String value =
parameterValue.getValue();
parameterValue.setValue("Info
"
+
value.substring(value.
indexOf(":"),
value.length()));

}
}

}
// Une fois la valeur de condition et les actions
mises à jour, le
// groupe de règles métier peut être publié.
// Utilisez la liste d'origine ou créez une liste de
// groupes de règles métier
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Ajout du groupe de règles métier modifié à la
liste
publishList.add(brg);

// Publication de la liste avec le groupe de règles métier
mis à jour
BusinessRuleManager.publish(publishList, true);

out.println("");

// Extraction des groupes de règles métier pour
s'assurer que
// les modifications ont été publiées
out.printlnBold("Table de décision après
publication:");

brgList =
BusinessRuleManager.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ConfigurationValues",
QueryOperator.EQUAL, 0, 0);

brg = brgList.get(0);
op = brg.getOperation("getMessages");
ruleList = op.getAvailableTargets();

decisionTable = (DecisionTable)
ruleList.get(0);
out.print(RuleArtifactUtility
.printDecisionTable(decisionTable))
;
}
}

} catch (BusinessRuleManagementException e)

148 Développement et déploiement

{
e.printStackTrace();
out.println(e.getMessage());

}
return out.toString();
}

/*
Méthode permettant de naviguer de façon récursive dans une table de décision et de
localiser un cas associé à un modèle portant un nom spécifique et contenant un
paramètre spécifique à modifier. Cette méthode suppose que le niveau (depth) auquel
se trouve la valeur à modifier dans la table de décision est connu, et que
le niveau actuel (currentDepth) est connu aussi *
*/
static private CaseEdge getCaseEdge(TreeNode node, String pName,

String templateName, int depth, int currentDepth)
{
// Vérification de l'activité du noeud actuel. Ceci indique que
// cette branche de la table de décision a été entièrement analysée dans le cadre
// de la recherche de cas
if (node instanceof ActionNode)
{
return null;
}

// Extraction des cas pour ce noeud
List<CaseEdge> caseEdges = ((ConditionNode) node).getCaseEdges();
for (CaseEdge caseEdge : caseEdges)
{

// Vérification afin de savoir si le niveau approprié a été atteint
if (currentDepth < depth)
{
// Descente d'un niveau et appel de getCaseEdge
pour
// traiter ce niveau
currentDepth++;
return getCaseEdge(caseEdge.getChildNode(), pName,
templateName, depth, currentDepth);

} else
{
// Le niveau approprié a été atteint. Extraction
de la condition pour
// vérifier si les modèles de cette condition
correspondent
// au modèle recherché
TreeConditionValueDefinition condition = caseEdge
.getValueDefinition();

// Extraction de l'expression pour la condition qui a
été définie
// avec un modèle
TemplateInstanceExpression expression = condition
.getConditionValueTemplateInstance();
// Extraction du modèle dans l'expression

Template template = expression.getTemplate();

// Vérification afin de déterminer si le modèle trouvé est bien celui recherché
if (template.getName().equals(templateName))
{
// Le modèle trouvé est bien celui recherché
return caseEdge;

} else
caseEdge = null;

}
}
return null;

Chapitre 3. Guides et techniques de programmation 149

}

/*
Cette méthode permet de rechercher une expression dans les différentes valeurs de
paramètre et si cette expression est trouvée, de renvoyer la valeur de paramètre
concernée.
*/
private static ParameterValue getParameterValue(String pName,

TemplateInstanceExpression expression)
{
// Vérification pour s'assurer que l'expression n'est pas nulle, car une valeur
// nulle indiquerait que l'expression qui a été transmise n'a probablement pas
// été définie avec un modèle et qu'il n'y a donc aucun paramètre à // vérifier.
if (expression != null) {
// Extraction des valeurs de paramètre pour l'expression
List<ParameterValue> parameterValues = expression

.getParameterValues();

for (ParameterValue parameterValue : parameterValues)
{
// Vérification pour s'assurer que les différents paramètres
correspondent à la valeur
// de paramètre recherchée

if
(parameterValue.getParameter().getName().equals(pName
))
{
// Retour de la valeur de paramètre appropriée

return parameterValue;
}
}
}
return null;
}
/*
Cette méthode permet de trouver toutes les expressions d'action définies
avec un modèle spécifique. Elle fonctionne de manière récursive
et ajoute les expressions d'action qui correspondent au
paramètre d'expression.
*/

private static void getActionExpressions(String templateName,
CaseEdge next, List<TemplateInstanceExpression>
expressions)
{
ActionNode actionNode = null;
TreeNode treeNode = next.getChildNode();

// Vérification de l'activité du noeud actuel.
if (treeNode instanceof ConditionNode)
{
List<CaseEdge> caseEdges = ((ConditionNode) treeNode)
.getCaseEdges();

Iterator<CaseEdge> caseEdgesIterator =
caseEdges.iterator();

// Analyse de tous les cas pour trouver les expressions
// d'action
while (caseEdgesIterator.hasNext())
{
getActionExpressions(templateName,
caseEdgesIterator.next(),
expressions);

}
} else {

150 Développement et déploiement

// ActionNode trouvé
actionNode = (ActionNode) treeNode;

List<TreeAction> treeActions = actionNode.getTreeActions();
// Vérification de la présence d'au moins un élément treeAction
pour
// l'expression et analyse des expressions pour vérifier
// si elles ont été définies avec le modèle spécifique
// indiqué.
if (!treeActions.isEmpty())
{

Iterator<TreeAction> iterator =
treeActions.iterator();

while (iterator.hasNext())
{
TreeAction treeAction = iterator.next();
TemplateInstanceExpression expression =
treeAction
.getValueTemplateInstance();

Template template = expression.getTemplate();

if (template.getName().equals(templateName))
{
// Expression trouvée avec modèle
correspondant
expressions.add(expression);
}
}
}
}
}
}

Exemple

Sortie du navigateur Web pour l’exemple 12.
Exécution de l'exemple 12

Jeu de règles avant publication :
Table de décision
Nom : getMessages
Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules

Table de décision après publication :
Table de décision
Nom : getMessages
Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules

Concepts associés

Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 13 : Ajout d’une valeur de condition et d’actions dans
une table de décision
Dans cet exemple, une valeur de condition et une action vont être ajoutées à une
table de décision. Pour ajouter une valeur de condition à une table de décision,
vous pouvez utiliser un modèle.

Chapitre 3. Guides et techniques de programmation 151

Lorsque vous ajoutez une valeur de condition à un noeud de condition, vous
ajoutez un cas. Ce nouveau cas est ajouté à la fin de la liste de cas. Pour la valeur
de condition, vous devez spécifier une expression d’instance de modèle qui
présente les valeurs de paramètre appropriées. Pour spécifier l’expression
d’instance de modèle, vous devez utiliser un modèle spécifique. Il est recommandé
de choisir des noms uniques pour les modèles à chaque niveau de noeud de
condition, afin de pouvoir retrouver les modèles appropriés pour chaque type de
condition. Si une définition de modèle unique est utilisée, il peut s’avérer difficile
de déterminer le niveau auquel la condition est ajoutée.

Lorsque vous définissez une valeur de condition pour un noeud de condition,
vous ajoutez une valeur de condition avec la même instance de modèle pour tous
les noeuds de condition de même niveau. Cela est effectué dans le cadre de
l’équilibrage de la table de décision. Lorsqu’une valeur de condition est ajoutée, de
nouveaux noeuds d’action sont également ajoutés. Ces noeuds d’action comportent
trois actions, qui ont des valeurs null pour la présentation utilisateur et pour
l’expression d’instance de modèle. Etant donné que la valeur de condition peut
être ajoutée à un noeud de condition qui n’a pas de noeud d’action en tant que
noeud enfant, l’ajout d’un noeud de condition peut entraîner la création d’un
grand nombre de noeuds d’action. Le nombre de noeuds d’action est basé sur le
niveau auquel le noeud de condition est ajouté, et sur le nombre de noeuds de
condition à ce niveau ainsi que sur le niveau et le nombre de noeuds de condition
au niveau enfant.

Pour localiser les noeuds d’action qui ont été créés, vous pouvez effectuer une
recherche sur les noeuds d’action avec des actions d’arborescence qui ont des
valeurs null pour les présentations utilisateur et les expressions d’instance de
modèle. La méthode TreeActionValueTemplate peut être utilisée pour créer une
expression qui peut être définie dans TreeAction. Cette opération doit être répétée
pour tous les nouveaux noeuds d’action.

Dans cet exemple, deux méthodes sont fournies pour définir les nouvelles actions
d’arborescence. La méthode getEmptyActionNode permet de rechercher de façon
récursive un noeud d’action vide à partir du noeud de condition en cours et la
méthode getParameterValue permet de renvoyer la valeur d’un paramètre qui a été
spécifié par son nom.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.Parameter;
import com.ibm.wbiserver.brules.mgmt.ParameterValue;
import com.ibm.wbiserver.brules.mgmt.Template;
import com.ibm.wbiserver.brules.mgmt.ValidationException;
import com.ibm.wbiserver.brules.mgmt.dtable.ActionNode;
import com.ibm.wbiserver.brules.mgmt.dtable.CaseEdge;
import com.ibm.wbiserver.brules.mgmt.dtable.ConditionNode;
import com.ibm.wbiserver.brules.mgmt.dtable.DecisionTable;
import com.ibm.wbiserver.brules.mgmt.dtable.TemplateInstanceExpression;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeAction;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeActionTermDefinition;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeActionValueTemplate;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeBlock;

152 Développement et déploiement

import com.ibm.wbiserver.brules.mgmt.dtable.TreeConditionValueTemplate;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeNode;
import com.ibm.wbiserver.brules.mgmt.problem.Problem;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example13
{
static Formatter out = new Formatter();

static public String executeExample13()
{
try
{
out.clear();

// Extraction d'un groupe de règles métier par nom et espace de nom
// cible
List<BusinessRuleGroup> brgList = BusinessRuleManager
.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere/sample/brules",

QueryOperator.EQUAL,"ConfigurationValues",
QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)
{
// Extraction du premier groupe de règles métier de la
// liste. Ce doit être le seul groupe de règles métier
// de la liste car les combinaisons nom/espace
// de nom sont uniques
BusinessRuleGroup brg = brgList.get(0);

// Extraction de l'opération du groupe de règles métier
// qui comporte la règle métier qui sera
// modifiée lors de l'association des règles métier
// avec une opération spécifique
Operation op = brg.getOperation("getMessages");

// Extraction de toutes les règles métier disponibles pour
// cette opération
List<BusinessRule> ruleList =
op.getAvailableTargets();

// Pour cette opération, il n'existe qu'une seule règle
// métier et il s'agit de celle que nous souhaitons
// mettre à jour

DecisionTable decisionTable = (DecisionTable)
ruleList.get(0);
out.printlnBold("Table de décision avant
publication:");
out.print(RuleArtifactUtility
.printDecisionTable(decisionTable));

Vous devez localiser le niveau auquel la valeur de condition va être ajoutée. Cette
information est généralement transmise en tant que paramètre, afin que l’interface
utilisateur ou l’application qui utilise les classes sache où ajouter la condition.

// Extraction du bloc d'arborescence contenant toutes les
// conditions et les actions pour la table de
// décision
TreeBlock treeBlock =
decisionTable.getTreeBlock();

// Dans le bloc d'arborescence, extraction du noeud qui
// constitue le point de départ pour la navigation dans
// la table de décision
ConditionNode conditionNode = (ConditionNode)

Chapitre 3. Guides et techniques de programmation 153

treeBlock.getRootNode();

// Extraction des cas pour ce noeud, qui est
// le premier niveau de conditions
List<CaseEdge> caseEdges =
conditionNode.getCaseEdges();

// Extraction du cas auquel la nouvelle condition
// sera ajoutée
CaseEdge caseEdge = caseEdges.get(0);

// Pour le cas, extraction du noeud de condition afin
// d'extraire les modèles pour la
// condition
conditionNode = (ConditionNode)

caseEdge.getChildNode();

// Extraction des modèles pour la condition
List<TreeConditionValueTemplate>
treeValueConditionTemplates = conditionNode
.getAvailableValueTemplates();

Iterator<TreeConditionValueTemplate>
treeValueConditionTemplateIterator =
treeValueConditionTemplates.iterator();

TreeConditionValueTemplate conditionTemplate =
null;

En utilisant des noms de modèle uniques pour chaque niveau de noeud de
condition dans la table de décision, vous pouvez vous assurer que la valeur de
condition est ajoutée au noeud de condition approprié.

// Recherche du modèle à utiliser
while
(treeValueConditionTemplateIterator.hasNext())
{
conditionTemplate =
treeValueConditionTemplateIterator
.next();

if (conditionTemplate.getName().equals(
"Condition Value Template
2.1"))
{
// Modèle trouvé
break;
}
conditionTemplate = null;

}
if (conditionTemplate != null)
{

Une fois que vous avez trouvé le modèle approprié, une instance peut être créée et
la valeur de paramètre appropriée peut être définie avant l’ajout au noeud de
condition.

// Extraction de la définition de paramètre à partir
// du modèle
Parameter conditionParameter =
conditionTemplate.getParameter("param0");

// Création d'une instance de valeur de paramètre à
// utiliser dans une nouvelle instance de modèle
// de condition
ParameterValue conditionParameterValue =

conditionParameter
.createParameterValue("fatal");

154 Développement et déploiement

List<ParameterValue>
conditionParameterValues = new
ArrayList<ParameterValue>();

// Ajout de la valeur de paramètre à une liste

conditionParameterValues
.add(conditionParameterValue);

// Création d'une instance de modèle de condition
// avec cette valeur de paramètre
TemplateInstanceExpression
newConditionValue =
conditionTemplate
.createTemplateInstanceExpression(c
onditionParameterValues);
// Ajout de l'instance de modèle de condition à
// ce noeud de condition
conditionNode

.addConditionValueToThisLevel(newConditionValue);
// Lorsqu'un noeud de condition est ajouté,
// de nouveaux noeuds d'action vides sont
// créés. Il faut ensuite leur ajouter des
// instances de modèle d'action. En exécutant
// une recherche sur les noeuds d'action vides
// à partir du niveau parent, vous pouvez localiser
// tous les nouveaux noeuds d'action vides.
conditionNode = (ConditionNode)
conditionNode.getParentNode();

Une fois la valeur de condition ajoutée au noeud de condition, les actions
d’arborescence dans les nouveaux noeuds d’action doivent être définies via la
méthode TreeActionValueTemplate. Tous d’abord, vous devez localiser le noeud
d’action vide pour chaque cas. Utilisez le noeud de condition parent pour vous
assurer que, lors des itérations dans les différents noeuds de condition, vous
récupérerez tous les noeuds d’action.

// Extraction des cas pour le noeud parent
caseEdges = conditionNode.getCaseEdges();

Iterator<CaseEdge> caseEdgesIterator =
caseEdges.iterator();

while (caseEdgesIterator.hasNext())
{
// Pour chaque cas, extraction d'un
// noeud d'action vide s'il en existe un
ActionNode actionNode =
getEmptyActionNode(caseEdgesIterator
.next());

// Vérification pour s'assurer que toutes les actions sont remplies
if (actionNode != null)
{

Lorsqu’un noeud d’action avec des actions d’arborescence vides est localisé,
l’action d’arborescence doit être définie via la méthode TreeActionValueTemplate.
Tout d’abord, localisez le modèle, puis spécifiez les paramètres avant de créer une
instance de modèle. Une fois l’instance de modèle créée, l’action d’arborescence
peut être mise à jour. Pour cet exemple, le paramètre a été défini sur une valeur
issue d’une autre action d’arborescence d’un autre noeud d’action, sous le même
noeud de condition. Pour les autres tables de décision pour lesquelles une autre
action d’arborescence n’aura peut-être pas une valeur susceptible d’être utilisée

Chapitre 3. Guides et techniques de programmation 155

pour créer les nouvelles valeurs de paramètre, cette valeur devra être transmise en
tant que paramètre à partir de l’application.

// Extraction de la liste
// d'actions d'arborescence. Il ne
// s'agit pas des actions
// elles-mêmes, mais
// des marques de
// réservation
List<TreeAction>
treeActionList = actionNode
.getTreeActions();

List<TreeActionTermDefinition>
treeActionTermDefinitions =
treeBlock
.getTreeActionTermDefinitions();

List<TreeActionValueTemplate>
treeActionValueTemplates =
treeActionTermDefinitions
.get(0).getValueTemplates();

TreeActionValueTemplate
actionTemplate = null;

for (TreeActionValueTemplate
tempActionTemplate :
treeActionValueTemplates)
{

if
(tempActionTemplate.get
Name().equals(
"Action Value
Template 1"))
{
actionTemplate =
tempActionTemplate;
break;
}
}

if (actionTemplate != null)
{
// Extraction d'une autre action
// qui se trouve sous
// le noeud de condition
// parent afin
// d'utiliser la valeur comme
// base pour le
// message d'erreur dans
// le nouveau
// noeud d'action. Remontez
// d'abord jusqu'au
// noeud de condition
// parent
ConditionNode
parentNode =
(ConditionNode)
actionNode
.getParentNode();

// Extraction du premier
// cas du noeud
// parent, car cette
// action sera

156 Développement et déploiement

// remplie au fur et à mesure
// de l'ajout de nouvelles
// actions à la fin
// de la liste de
// cas.
CaseEdge caseE =
parentNode.getCas
eEdges().get(
0);

// Le noeud enfant est un
// noeud d'action
// et se trouve au même
// niveau que le nouveau
// noeud d'action.
ActionNode aNode =
(ActionNode) caseE
.getChildNode();

// Extraction de la liste d'actions
// d'arborescence
TreeAction
existingTreeAction =
aNode
.getTreeActions()
.get(0);

// Extraction de l'expression
// d'instance
// de modèle pour
// l'action d'arborescence
// à partir de laquelle
// vous pouvez extraire le
// paramètre

TemplateInstanceExpression
existingExpression =
existingTreeAction
.getValueTemplateInstance();

ParameterValue
existingParameterValue =
getParameterValue(

"param0",
existingExpression);

String actionValue =
existingParameterValue
.getValue();

// Création du nouveau
// message à partir du
// message de
// l'action d'arborescence
// l'action d'arborescence
actionValue = "Fatal"

+
actionValue.substring(actionValue
.indexOf(":"), actionValue
.length());
Parameter
actionParameter =
actionTemplate
.getParameter("param0");

// Extraction du paramètre
// à partir du modèle

Chapitre 3. Guides et techniques de programmation 157

ParameterValue
actionParameterValue =
actionParameter
.createParameterValue(actionValue);

// Ajout du paramètre à
// une liste de modèles
List<ParameterValue>
actionParameterValues = new
ArrayList<ParameterValue>();

actionParameterValues.add(actionParameterValue);

// Création d'une nouvelle
// instance d'action d'arborescence

TemplateInstanceExpression
treeAction = actionTemplate

.createTemplateInstanceExpression(actionParameterValues);

// Définition de l'action d'arborescence
// dans le noeud d'action
// en la définissant dans la
// liste d'actions d'arborescence

Ici, l’action d’arborescence dans le noeud d’action est mise à jour.
treeActionList.get(0)
.setValueTemplateInstance(
treeAction);
}
}

}
}
// Une fois la valeur de condition et les actions
// mises à jour, le groupe de règles métier peut être
// publié.
// Utilisez la liste d'origine ou créez une nouvelle liste
// de groupes de règles métier
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Ajout du groupe de règles métier modifié à la
// liste
publishList.add(brg);

// Publication de la liste contenant le groupe de règles
// métier mis à jour

BusinessRuleManager.publish(publishList, true);

brgList =
BusinessRuleManager.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere/sample/brules",
QueryOperator.EQUAL, “ConfigurationValues",
QueryOperator.EQUAL, 0, 0);
brg = brgList.get(0);
op = brg.getOperation("getMessages");
ruleList = op.getAvailableTargets();
decisionTable = (DecisionTable)
ruleList.get(0);
out.printlnBold("Table de décision après
publication:");
out
.print(RuleArtifactUtility
.printDecisionTable(decisionTable));

}

158 Développement et déploiement

} catch (ValidationException e)
{
List<Problem> problems = e.getProblems();

out.println("Incident = " +
problems.get(0).getErrorType().name());

e.printStackTrace();
out.println(e.getMessage());
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.println(e.getMessage());
}
return out.toString();
}

/*
* Cette méthode permet de rechercher le cas actuel pour tous
* les noeuds d'action qui ont des actions d'arborescence vides. Pour trouver
* un noeud d'action vide, vous devez examiner la fin de la liste
* de cas et vérifier si le noeud d'action comporte des actions d'arborescence
* qui ont des présentations utilisateur et des expressions
* TemplateInstanceExpression nulles.
*/
private static ActionNode getEmptyActionNode(CaseEdge next)
{
ActionNode actionNode = null;
TreeNode treeNode = next.getChildNode();

if (treeNode instanceof ConditionNode)
{
List<CaseEdge> caseEdges = ((ConditionNode) treeNode)
.getCaseEdges();

if (caseEdges.size() > 1)
{
// Extraction du cas situé complètement à droite en tant que
// nouvelle condition. Les actions vides se situent donc complètement à droite
// des cas
actionNode = getEmptyActionNode(caseEdges
.get(caseEdges.size() - 1));

if (actionNode != null)
{
return actionNode;
}

}
} else
{
actionNode = (ActionNode) treeNode;

List<TreeAction> treeActions =
actionNode.getTreeActions();

if (!treeActions.isEmpty())
{
if
((treeActions.get(0).getValueUserPresentation() == null)
&&
(treeActions.get(0).getValueTemplateInstance() == null))
{
return actionNode;
}
}
`actionNode = null;
}

Chapitre 3. Guides et techniques de programmation 159

return actionNode;
}
/*
* Cette méthode permet de rechercher une expression dans les différentes valeurs
* de paramètre et si cette expression est trouvée, de renvoyer la valeur de
* paramètre concernée.
*/
private static ParameterValue getParameterValue(String pName,

TemplateInstanceExpression expression)
{
ParameterValue parameterValue = null;

// Vérification pour s'assurer que l'expression n'est pas nulle,
// car une valeur nulle indiquerait
// que l'expression qui a été transmise n'a probablement pas été
// définie avec un modèle et qu'il n'y a donc aucun
// paramètre à vérifier.
if (expression != null)
{
// Extraction des valeurs de paramètre pour l'expression
List<ParameterValue> parameterValues = expression
.getParameterValues();
Iterator<ParameterValue> parameterIterator =
parameterValues
.iterator();

// Vérification pour s'assurer que les différents paramètres
// correspondent à la valeur de paramètre recherchée
while (parameterIterator.hasNext())
{
parameterValue = parameterIterator.next();

if
(parameterValue.getParameter().getName().equals(pName))
{
// Retour de la valeur de paramètre
// appropriée
return parameterValue;
}

}
}
return parameterValue;
}
}

Exemple

Sortie du navigateur Web pour l’exemple 13.
Exécution de l'exemple 13

Table de décision avant publication :
Table de décision
Nom : getMessages
Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules

Table de décision après publication :
Table de décision
Nom : getMessages
Espace de nom : http://BRSamples/com/ibm/websphere/sample/brules

160 Développement et déploiement

Concepts associés

Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 14 : Gestion des erreurs dans un jeu de règles
Cet exemple explique comment identifier des incidents dans un jeu de règles et
déterminer la nature de l’incident, afin d’afficher le message approprié ou de
mettre en oeuvre l’action nécessaire pour corriger la situation.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.ParameterValue;
import com.ibm.wbiserver.brules.mgmt.ValidationException;
import com.ibm.wbiserver.brules.mgmt.problem.Problem;
import
com.ibm.wbiserver.brules.mgmt.problem.ProblemStartDateAfterEndDate;
import com.ibm.wbiserver.brules.mgmt.problem.ValidationError;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleBlock;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRule;
import
com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetTemplateInstanceRule;

public class Example14 {
static Formatter out = new Formatter();

static public String executeExample14() {
try {

out.clear();

// Extraction d'un groupe de règles métier par nom et espace de nom
cible
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ApprovalValues",
QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0) {
// Extraction du premier groupe de règles métier de la liste
// Cela doit être le seul groupe de règles métier de la
liste car
// les combinaisons nom/espace de nom sont
uniques
BusinessRuleGroup brg = brgList.get(0);
out.println("Groupe de règles métier extrait");

// Extraction de l'opération du groupe de règles métier qui
// comporte la règle métier qui sera modifiée lorsque les

Chapitre 3. Guides et techniques de programmation 161

// règles métier seront associées à une opération
// spécifique
Operation op = brg.getOperation("getApprover");

// Extraction d'une règle spécifique par son nom
List<BusinessRule> ruleList =
op.getBusinessRulesByName(

"getApprover", QueryOperator.EQUAL, 0,
0);

// Extraction de la règle spécifique
RuleSet ruleSet = (RuleSet) ruleList.get(0);
out.println("Jeu de règles extrait");

RuleBlock ruleBlock = ruleSet.getFirstRuleBlock();

Iterator<RuleSetRule> ruleIterator =
ruleBlock.iterator();

// Recherche de la règle à
modifier
while (ruleIterator.hasNext()) {

RuleSetRule rule = ruleIterator.next();

// Vérification pour s'assurer que la règle a été définie avec un
modèle
// afin de permettre les modifications.
if (rule instanceof
RuleSetTemplateInstanceRule) {
// Extraction de l'instance de règle du modèle
RuleSetTemplateInstanceRule
templateInstance =
(RuleSetTemplateInstanceRule) rule;
// Vérification pour s'assurer qu'il s'agit de l'instance de règle de modèle
appropriée
if (templateInstance.getName().equals(

"LargeOrderApprover")) {

Pour provoquer un incident, cet exemple définir pour un paramètre une valeur qui
n’est pas valide pour l’expression. En effet, le paramètre attend un entier, mais une
chaîne est spécifiée.

// Extraction du paramètre de l'instance de
modèle
ParameterValue parameter =
templateInstance

.getParameterValue("par
am1");

// Définition d'une valeur incorrecte pour ce
paramètre
// Cela provoque une erreur de
validation
parameter.setValue("3500 $");
out.println("Valeur incorrecte saisie
pour un paramètre");
break;

}
}

}
// Il n'est pas possible d'accéder à ce code en raison
de l'erreur
// introduite
// ci-dessus

// Une fois la valeur de condition et les actions mises à jour, le
groupe de

162 Développement et déploiement

// règles
// métier peut être publié.
// Utilisez la liste d'origine ou créez une nouvelle liste
// de groupes de règles métier
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Ajout du groupe de règles métier modifié à la liste
publishList.add(brg);

// Publication de la liste avec le groupe de règles métier
mis à jour
BusinessRuleManager.publish(publishList, true);

}

Une erreur ValidationException est émise et à partir de cette exception, les
incidents peuvent être extraits. Pour chaque incident, il est alors possible de
déterminer la nature de l’erreur. Un message peut être imprimé ou une action
approprié peut être exécutée.

} catch (ValidationException e) {
out.println("Erreur de validation");

List<Problem> problems = e.getProblems();

Iterator<Problem> problemIterator = problems.iterator();

// Recherche de l'erreur concernée dans la liste des incidents et
// exécution de l'action appropriée (signaler l'erreur, corriger
// l'erreur, etc.)
while (problemIterator.hasNext()) {

Problem problem = problemIterator.next();
ValidationError error = problem.getErrorType();

// Identification de la valeur de l'erreur
if (error == ValidationError.TYPE_CONVERSION_ERROR) {

// Gestion de l'erreur en signalant
l'incident

.println("Incident : Valeur incorrecte
saisie pour un paramètre");

return out.toString();
}
// else if....
// Possibilité de rechercher d'autres erreurs et d'imprimer
// le message correspondant ou d'exécuter l'action
appropriée pour
// corriger la situation

}
} catch (BusinessRuleManagementException e) {

out.println("Erreur");
e.printStackTrace();

}
return out.toString();
}
}

Exemple

Sortie du navigateur Web pour l’exemple 14.
Exécution de l'exemple 14

Groupe de règles métier extrait
Jeu de règles extrait
Erreur de validation
Incident : Valeur incorrecte saisie pour un paramètre

Chapitre 3. Guides et techniques de programmation 163

Concepts associés

Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Exemple 15 : Gestion des erreurs dans un groupe de règles
métier
Cet exemple est similaire à l’exemple 14, car il montre comment gérer les incidents
qui peuvent se produire lors de la publication d’un groupe de règles métier. Il
montre comment déterminer la nature de l’incident afin d’imprimer le message
correspondant ou d’exécuter l’action appropriée.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.Date;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.OperationSelectionRecord;
import com.ibm.wbiserver.brules.mgmt.OperationSelectionRecordList;
import com.ibm.wbiserver.brules.mgmt.ParameterValue;
import com.ibm.wbiserver.brules.mgmt.ValidationException;
import com.ibm.wbiserver.brules.mgmt.problem.Problem;
import
com.ibm.wbiserver.brules.mgmt.problem.ProblemStartDateAfterEndDate;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleBlock;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRule;
import
com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetTemplateInstanceRule;

public class Example15
{
static Formatter out = new Formatter();

static public String executeExample15()
{
try
{
out.clear();

// Extraction d'un groupe de règles métier par nom et espace de nom
cible
List<BusinessRuleGroup> brgList = BusinessRuleManager
.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ApprovalValues",
QueryOperator.EQUAL, 0, 0);
if (brgList.size() > 0)
{
// Extraction du premier groupe de règles métier de la liste
// Cela doit être le seul groupe de règles métier de la
liste car

164 Développement et déploiement

// la combinaison de nom et d'espace de nom cible est
unique
BusinessRuleGroup brg = brgList.get(0);
out.println("Groupe de règles métier extrait");

// Extraction de l'opération du groupe de règles métier qui comporte
// la règle métier qui sera modifiée lorsque les
// règles métier seront associées à une opération
// spécifique
Operation op = brg.getOperation("getApprover");

// Extraction d'une règle spécifique par son nom
List<BusinessRule> ruleList =
op.getBusinessRulesByName(
"getApprover", QueryOperator.EQUAL, 0,
0);

// Extraction de la règle spécifique
RuleSet ruleSet = (RuleSet) ruleList.get(0);
out.println("Jeu de règles extrait");

RuleBlock ruleBlock = ruleSet.getFirstRuleBlock();

Iterator<RuleSetRule> ruleIterator =
ruleBlock.iterator();

// Recherche de la règle à
modifier
while (ruleIterator.hasNext())
{
RuleSetRule rule = ruleIterator.next();

// Vérification pour s'assurer que la règle a été définie avec un
modèle
// afin de permettre les modifications.
if (rule instanceof
RuleSetTemplateInstanceRule)
{
// Extraction de l'instance de règle du modèle
RuleSetTemplateInstanceRule
templateInstance =
(RuleSetTemplateInstanceRule) rule;

// Vérification pour s'assurer qu'il s'agit de l'instance de règle de modèle
appropriée
if (templateInstance.getName().equals(

"LargeOrderApprover"))
{
// Extraction du paramètre de l'instance de
modèle
ParameterValue parameter =
templateInstance
.getParameterValue("par
am1");

// Définition de la valeur de ce paramètre
// Cette valeur est au format
approprié et ne
// provoquera pas d'erreur de validation
parameter.setValue("4000");
out.println("Valeur de paramètre de jeu de règle
définie correctement");
break;
}

}
}

Chapitre 3. Guides et techniques de programmation 165

Pour vérifier si un jeu de règles est correct, vous pouvez appeler la méthode
validate. La méthode validate est disponible pour tous les objets et renvoie une
liste d’incidents permettant d’identifier les erreurs. Lorsque vous appelez la
méthode validate pour un objet, elle est également exécutée pour tous les
sous-objets qu’il contient.

// Vérification des modifications apportées au jeu de règles
List<Problem> problems = ruleSet.validate();
out.println("Jeu de règles validé");

// Normalement, ce jeu d'essai ne contient aucune erreur,
// mais recherchez quand même les éventuels problèmes, puis
// prenez les mesures nécessaires pour corriger ou signaler
// l'erreur
if (problems != null)
{
Iterator<Problem> problemIterator =
problems.iterator();

while (problemIterator.hasNext())
{
Problem problem = problemIterator.next();

if (problem instanceof
ProblemStartDateAfterEndDate)
{
out
.println("Valeur
incorrecte saisie pour un
paramètre");

return out.toString();
}
}
} else
{
out.println("Aucun incident détecté pour le jeu de
règles");
}
// Extraction de la liste des règles cible disponibles
List<BusinessRule> ruleList2 =
op.getAvailableTargets();

// Extraction de la première règle planifiée
l'élément comportant une
BusinessRule rule = ruleList2.get(0);

// Pour créer une condition d'erreur, nous allons définir l'heure de fin
d'une règle
// planifiée 1 heure avant l'heure de début
// Cela provoque une erreur de validation
Date future = new Date();
long futureTime = future.getTime() - 360000;

// Extraction de la liste de sélection d'opération pour ajouter
l'élément comportant une
// erreur de planification
OperationSelectionRecordList opList = op
.getOperationSelectionRecordList();

// Création d'une nouvelle instance de règle planifiée
// Aucune erreur n'est renvoyée jusqu'à la validation ou la publication,
// car d'autres modifications peuvent être apportées
OperationSelectionRecord newRecord = opList
.newOperationSelectionRecord(new Date(),
new Date(
futureTime), rule);

166 Développement et déploiement

Lorsque l’enregistrement est ajouté avec des dates incorrectes, aucune erreur n’est
renvoyée. Des chevauchements peuvent se produire ou aucun enregistrement de
sélection n’est défini pour l’opération, tandis que des modifications sont en cours.
L’erreur sera identifiée lors de la publication du groupe de règles métier
comportant l’enregistrement de sélection d’opération en question. La méthode
validate est appelée avant la publication des objets et des exceptions sont émises si
des erreurs sont identifiées.

// Ajout de l'instance de règle planifiée à l'opération
// Aucune erreur identifiée
opList.addOperationSelectionRecord(newRecord);
out.println("Nouvel enregistrement de sélection ajouté avec
une planification incorrecte");

// Une fois la valeur de condition et les actions mises à jour, le
groupe
// de règles
// métier peut être publié.
// Utilisez la liste d'origine ou créez une nouvelle liste
// de groupes de règles métier
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Ajout du groupe de règles métier modifié à la liste
publishList.add(brg);

// Publication de la liste avec le groupe de règles métier
mis à jour
BusinessRuleManager.publish(publishList, true);
}

} catch (ValidationException e) {
out.println("Erreur de validation");

List<Problem> problems = e.getProblems();

Iterator<Problem> problemIterator = problems.iterator();
// Il peut y avoir plusieurs incidents
// Passez en revue tous les incidents, et traitez chacun d'entre eux ou
// signalez l'incident
while (problemIterator.hasNext())
{
Problem problem = problemIterator.next();

// Chaque incident est de type différent et il est possible de les
comparer
if (problem instanceof ProblemStartDateAfterEndDate)
{
out
.println("La planification de la règle est
incorrecte. La date de début est postérieure à la date de
fin.");
return out.toString();
}
// else if....
// Possibilité de rechercher d'autres erreurs et d'imprimer
// le message correspondant ou d'exécuter l'action
appropriée pour
// corriger la situation

}
}catch (BusinessRuleManagementException e)
{
out.println("Erreur");
e.printStackTrace();

Chapitre 3. Guides et techniques de programmation 167

}
return out.toString();
}
}

Exemple

Sortie du navigateur Web pour l’exemple 15.
Exécution de l'exemple 15

Groupe de règles métier extrait
Jeu de règles extrait
Valeur de paramètre de jeu de règle définie correctement
Jeu de règles validé
Erreur de validation
Planification incorrecte de la règle.
La date de début est postérieure à la date de fin.

Concepts associés

Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Dans ces exemples, différentes propriétés et caractères génériques (‘_’, ‘%’) sont
utilisés avec différents opérateurs (AND, OR, LIKE, NOT_LIKE, EQUAL et
NOT_EQUAL).

Exemple

Pour les besoins de ces exemples, les requêtes renverront différentes combinaisons
de 4 groupes de règles métier. Il est important de bien comprendre les différents
attributs et propriétés des groupes de règles métier, car ils sont utilisés dans les
requêtes.
Nom : BRG1
Espace de nom cible : http://BRG1/com/ibm/br/rulegroup
Propriétés :
organization, 8JAA
department, claims
ID, 00000567
region: SouthCentralRegion
manager: Joe Bean

Nom : BRG2
Espace de nom cible : http://BRG2/com/ibm/br/rulegroup
Propriétés :
organization, 7GAA
department, accounting
ID, 0000047
ID_cert45, ABC
region: NorthRegion

Nom : BRG3
Espace de nom cible : http://BRG3/com/ibm/br/rulegroup

168 Développement et déploiement

Propriétés :
organization, 7FAB
department, finance
ID, 0000053
ID_app45, DEF
region: NorthCentralRegion

Nom : BRG4
Espace de nom cible : http://BRG4/com/ibm/br/rulegroup
Propriétés :
organization, 7HAA
department, shipping
ID, 0000023
ID_app45, GHI
region: SouthRegion

Chapitre 3. Guides et techniques de programmation 169

Concepts associés

Exemples
Des exemples illustrent l’utilisation possible des différentes classes pour l’extraction
des groupes de règles métier et pour l’apport de modifications à des ensembles de
règles et à des tables de décisions. Ces exemples sont regroupés au sein d’un
fichier ZIP que vous pouvez importer dans WebSphere Integration Developer pour
les visualiser et les réutiliser.
Référence associée

Interrogation par une propriété unique
Ceci est un exemple d’interrogation par une propriété unique.
Interrogation de groupes de règles métier par des propriétés et des caractères
génériques (%) au début et à la fin de la valeur
Ceci est un exemple d’interrogation de groupes de règles métier par des propriétés
et des caractères génériques (%) au début et à la fin de la valeur
Interrogation de groupes de règles métier par des propriétés et un caractère
générique (‘_’)
Ceci est un exemple d’interrogation de groupes de règles métier par des propriétés
et un caractère générique (‘_’).
Interrogation de groupes règles métier par des propriétés avec plusieurs caractères
génériques (‘_’ et ‘%’)
Ceci est un exemple d’interrogation de groupes règles métier par des propriétés
avec plusieurs caractères génériques (‘_’ et ‘%’)
Interrogation de groupes de règles métier par l’opérateur NOT_LIKE et un
caractère générique (‘_’)
Ceci est un exemple d’interrogation de groupes de règles métier par l’opérateur
NOT_LIKE et un caractère générique (‘_’).
Interrogation de groupes de règles métier par l’opérateur NOT_EQUAL
Ceci est un exemple d’interrogation de groupes de règles métier par l’opérateur
NOT_EQUAL.
Interrogation de groupes de règles métier par PropertyIsDefined
Ceci est un exemple d’interrogation de groupes de règles métier par
PropertyIsDefined.
Interrogation de groupes de règles métier par NOT PropertyIsDefined
Ceci est un exemple d’interrogation de groupes de règles métier par NOT
PropertyIsDefined.
Interrogation de groupes de règles métier par plusieurs propriétés avec un noeud
NOT unique
Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés avec un noeud NOT unique.
Interrogation de groupes de règles métier par plusieurs propriétés avec plusieurs
noeuds NOT combinés avec un opérateur AND
Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés avec plusieurs noeuds NOT combinés avec un opérateur AND.
Interrogation de groupes de règles métier par plusieurs propriétés avec plusieurs
noeuds NOT combinés avec un opérateur OR
Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés avec plusieurs noeuds NOT combinés avec un opérateur OR.
Interrogation de groupes de règles métier par plusieurs propriétés combinées avec
plusieurs opérateurs AND
Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec plusieurs opérateurs AND.
Interrogation de groupes de règles métier par plusieurs propriétés combinées avec

170 Développement et déploiement

des opérateurs AND et OR
Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs AND et OR.
Interrogation de groupes de règles métier par plusieurs propriétés combinées avec
des opérateurs AND et NOT
Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs AND et NOT.
Interrogation de groupes de règles métier par plusieurs propriétés combinées avec
des opérateurs NOT et OR
Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs NOT et OR.
Interrogation de groupes de règles métier par plusieurs propriétés combinées avec
des opérateurs AND imbriqués
Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs AND imbriqués.
Interrogation de groupes de règles métier par plusieurs propriétés combinées avec
des opérateurs AND imbriqués
Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs AND imbriqués.
Interrogation de groupes de règles métier par plusieurs propriétés combinées avec
des opérateurs AND imbriqués et un noeud NOT
Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs AND imbriqués et un noeud NOT.
Interrogation de groupes de règles métier par plusieurs propriétés combinées avec
des opérateurs AND imbriqués
Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs AND imbriqués.
Interrogation de groupes de règles métier par plusieurs propriétés combinées avec
des opérateurs OR imbriqués
Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs OR imbriqués.
Interrogation de groupes de règles métier par plusieurs propriétés combinées avec
des opérateurs OR imbriqués
Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs OR imbriqués.
Interrogation de groupes de règles métier par plusieurs propriétés combinées avec
des opérateurs OR imbriqués et un noeud NOT
Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs OR imbriqués et un noeud NOT.
Interrogation de groupes de règles métier par plusieurs propriétés combinées avec
des opérateurs OR imbriqués et un noeud NOT
Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs OR imbriqués et un noeud NOT.
Interrogation de groupes de règles métier par une liste de noeuds combinés avec
un opérateur AND
Ceci est un exemple d’interrogation de groupes de règles métier par une liste de
noeuds combinés avec un opérateur AND.
Interrogation de groupes de règles métier par une liste de noeuds et un noeud
combiné avec un opérateur AND
Ceci est un exemple d’interrogation de groupes de règles métier par une liste de
noeuds et un noeud NOT combiné avec un opérateur AND.
Interrogation de groupes de règles métier par une liste de noeuds combinés avec
un opérateur OR

Chapitre 3. Guides et techniques de programmation 171

Ceci est un exemple d’interrogation de groupes de règles métier par une liste de
noeuds combinés avec un opérateur OR.
Interrogation de groupes de règles métier par une liste de noeuds et un noeud
NOT combiné avec un opérateur OR
Ceci est un exemple d’interrogation de groupes de règles métier par une liste de
noeuds et un noeud NOT combiné avec un opérateur OR.

Interrogation par une propriété unique :

Ceci est un exemple d’interrogation par une propriété unique.
List<BusinessRuleGroup> brgList = null;

brgList = BusinessRuleManager.getBRGsBySingleProperty(
"department", QueryOperator.EQUAL,
"accounting", 0, 0);

// Returns BRG2

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par des propriétés et des caractères
génériques (%) au début et à la fin de la valeur :

Ceci est un exemple d’interrogation de groupes de règles métier par des propriétés
et des caractères génériques (%) au début et à la fin de la valeur
// Query Prop AND Prop
QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode(

"region", QueryOperator.LIKE,
"%Region");

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode(

"ID", QueryOperator.LIKE,
"000005%");

QueryNode queryNode =
QueryNodeFactory.createAndNode(leftNode,

rightNode);

brgList =
BusinessRuleManager.getBRGsByProperties(queryNode, 0, 0);
// Returns BRG1 and BRG3

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par des propriétés et un caractère
générique (‘_’) :

Ceci est un exemple d’interrogation de groupes de règles métier par des propriétés
et un caractère générique (‘_’).

172 Développement et déploiement

brgList = BusinessRuleManager.getBRGsBySingleProperty("ID",
QueryOperator.LIKE, "00000_3", 0, 0);

// Returns BRG3 and BRG4

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes règles métier par des propriétés avec plusieurs
caractères génériques (‘_’ et ‘%’) :

Ceci est un exemple d’interrogation de groupes règles métier par des propriétés
avec plusieurs caractères génériques (‘_’ et ‘%’)
brgList =
BusinessRuleManager.getBRGsBySingleProperty("region",
QueryOperator.LIKE, "__uth%Region",

0, 0);

// Returns BRG1 and BRG4

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par l’opérateur NOT_LIKE et un
caractère générique (‘_’) :

Ceci est un exemple d’interrogation de groupes de règles métier par l’opérateur
NOT_LIKE et un caractère générique (‘_’).
brgList =
BusinessRuleManager.getBRGsBySingleProperty("organization",
QueryOperator.NOT_LIKE,

"7__A", 0, 0);

// Returns BRG1 and BRG3

brgList =
BusinessRuleManager.getBRGsBySingleProperty("organization",
QueryOperator.NOT_LIKE,

"7%", 0, 0);

// Returns BRG1

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par l’opérateur NOT_EQUAL :

Ceci est un exemple d’interrogation de groupes de règles métier par l’opérateur
NOT_EQUAL.

Chapitre 3. Guides et techniques de programmation 173

brgList =
BusinessRuleManager.getBRGsBySingleProperty("department",
QueryOperator.NOT_EQUAL,

"claims", 0, 0);
// Returns BRG1

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par PropertyIsDefined :

Ceci est un exemple d’interrogation de groupes de règles métier par
PropertyIsDefined.
PropertyIsDefinedQueryNode node =
QueryNodeFactory.createPropertyIsDefinedQueryNode("manager"
);

brgList = BusinessRuleManager.getBRGsByProperties(node, 0,
0);

// Returns BRG1

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par NOT PropertyIsDefined :

Ceci est un exemple d’interrogation de groupes de règles métier par NOT
PropertyIsDefined.
// NOT Prop
QueryNode node =
QueryNodeFactory.createPropertyIsDefinedQueryNode("manager"
);

NotNode notNode = QueryNodeFactory.createNotNode(node);

brgList = BusinessRuleManager.getBRGsByProperties(notNode,
0, 0);

// Returns BRG1

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par plusieurs propriétés avec un
noeud NOT unique :

Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés avec un noeud NOT unique.
// Prop AND NOT Prop
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("department",

174 Développement et déploiement

QueryOperator.EQUAL, "accounting");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("ID",

QueryOperator.LIKE, "00000%");

AndNode andNode = QueryNodeFactory.createAndNode(leftNode,
notNode);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG2

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Chapitre 3. Guides et techniques de programmation 175

Interrogation de groupes de règles métier par plusieurs propriétés avec plusieurs
noeuds NOT combinés avec un opérateur AND :

Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés avec plusieurs noeuds NOT combinés avec un opérateur AND.
// NOT Prop AND NOT Prop
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("department",
QueryOperator.EQUAL, "accounting");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE, "cla%");

NotNode notNode2 =
QueryNodeFactory.createNotNode(leftNode);

AndNode andNode = QueryNodeFactory.createAndNode(notNode,
notNode2);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG1 and BRG2

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par plusieurs propriétés avec plusieurs
noeuds NOT combinés avec un opérateur OR :

Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés avec plusieurs noeuds NOT combinés avec un opérateur OR.
// NOT Prop OR NOT Prop
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE, "acc%");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode(

"department", QueryOperator.EQUAL,
"claims");

NotNode notNode2 =
QueryNodeFactory.createNotNode(leftNode);

OrNode orNode = QueryNodeFactory.createOrNode(notNode,
notNode2);

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

//Returns BRG1, BRG2, BRG3, and BRG4

176 Développement et déploiement

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par plusieurs propriétés combinées
avec plusieurs opérateurs AND :

Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec plusieurs opérateurs AND.
// (Prop AND Prop) AND (Prop AND Prop)
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE, "acc%");

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.EQUAL, "7GAA");

AndNode andNodeLeft =
QueryNodeFactory.createAndNode(leftNode,rightNode);

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("ID",
QueryOperator.LIKE,"000004_");

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("region",
QueryOperator.EQUAL,

"NorthRegion");

AndNode andNodeRight =
QueryNodeFactory.createAndNode(leftNode2, rightNode2);

AndNode andNode =
QueryNodeFactory.createAndNode(andNodeLeft,andNodeRight);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG2

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par plusieurs propriétés combinées
avec des opérateurs AND et OR :

Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs AND et OR.
// (Prop AND Prop) OR (Prop AND NOT Prop)
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE, "acc%");

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.EQUAL, "7GAA");

Chapitre 3. Guides et techniques de programmation 177

AndNode andNodeLeft =
QueryNodeFactory.createAndNode(leftNode,rightNode);

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.EQUAL, "8JAA");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode2);

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE, "%lRegion");

AndNode andNodeRight =
QueryNodeFactory.createAndNode(leftNode2, notNode);

OrNode orNode = QueryNodeFactory.createOrNode(andNodeLeft,
andNodeRight);

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

// Returns BRG2 and BRG3

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par plusieurs propriétés combinées
avec des opérateurs AND et NOT :

Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs AND et NOT.
// Prop AND NOT (Prop AND Prop)
QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("ID",
QueryOperator.LIKE, "000005%");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.EQUAL,

"8JAA");

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("region",QueryOper
ator.LIKE,

"%lRegion");

AndNode andNodeRight =
QueryNodeFactory.createAndNode(leftNode2, rightNode2);

NotNode notNode =
QueryNodeFactory.createNotNode(andNodeRight);

AndNode andNode = QueryNodeFactory.createAndNode(leftNode,
notNode);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG3

178 Développement et déploiement

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par plusieurs propriétés combinées
avec des opérateurs NOT et OR :

Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs NOT et OR.
// NOT (Prop AND Prop) OR Prop
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"8_A_");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"7%");

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("region",QueryOper
ator.LIKE,

"%lRegion");

AndNode andNodeRight =
QueryNodeFactory.createAndNode(leftNode2,rightNode2);

NotNode notNode =
QueryNodeFactory.createNotNode(andNodeRight);

OrNode orNode = QueryNodeFactory.createOrNode(notNode,
rightNode);

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

// Returns BRG3

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par plusieurs propriétés combinées
avec des opérateurs AND imbriqués :

Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs AND imbriqués.
// Prop AND (Prop AND (Prop AND Prop))
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"___thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"7%");

Chapitre 3. Guides et techniques de programmation 179

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE,
"%ing");

AndNode andNodeRight =
QueryNodeFactory.createAndNode(leftNode2,rightNode2);

AndNode andNodeLeft =
QueryNodeFactory.createAndNode(rightNode,andNodeRight);

PropertyIsDefinedQueryNode node2 =
QueryNodeFactory.createPropertyIsDefinedQueryNode("ID_cert4
5");

AndNode andNode = QueryNodeFactory.createAndNode(node2,
andNodeLeft);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);
// Returns BRG2

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par plusieurs propriétés combinées
avec des opérateurs AND imbriqués :

Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs AND imbriqués.
// (Prop AND (Prop AND Prop)) AND Prop
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",QueryOper
ator.LIKE,
"___thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.LIKE,
"7%");

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("department",
QueryOperator.LIKE,
"%ing");

AndNode andNodeRight =
QueryNodeFactory.createAndNode(leftNode2,rightNode2);

AndNode andNodeLeft =
QueryNodeFactory.createAndNode(rightNode,andNodeRight);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("ID_app45",QueryOp
erator.LIKE, "GH_");

AndNode andNode =
QueryNodeFactory.createAndNode(andNodeLeft, leftNode);

180 Développement et déploiement

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG4

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par plusieurs propriétés combinées
avec des opérateurs AND imbriqués et un noeud NOT :

Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs AND imbriqués et un noeud NOT.
// Prop AND (Prop AND (Prop AND NOT Prop))
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"7%");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"%lRegion");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode2);

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE,
"%ing");

AndNode andNodeRight =
QueryNodeFactory.createAndNode(leftNode2,notNode);

AndNode andNodeLeft =
QueryNodeFactory.createAndNode(rightNode,andNodeRight);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("ID_cert45",

QueryOperator.LIKE,
"AB_");

AndNode andNode = QueryNodeFactory.createAndNode(leftNode,
andNodeLeft);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG2

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par plusieurs propriétés combinées
avec des opérateurs AND imbriqués :

Chapitre 3. Guides et techniques de programmation 181

Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs AND imbriqués.
// (Prop AND (Prop AND Prop)) AND Prop - Return empty
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"___thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"7%");

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE,
"%ing");

AndNode andNodeRight =
QueryNodeFactory.createAndNode(leftNode2,rightNode2);

AndNode andNodeLeft =
QueryNodeFactory.createAndNode(rightNode,andNodeRight);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("ID_cert45",

QueryOperator.LIKE,
"GH_");

AndNode andNode =
QueryNodeFactory.createAndNode(andNodeLeft, leftNode);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

//Returns no BRGs

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par plusieurs propriétés combinées
avec des opérateurs OR imbriqués :

Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs OR imbriqués.
// (Prop OR (Prop OR Prop)) OR Prop

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"___thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"7%");

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE,
"%ing");

182 Développement et déploiement

OrNode orNodeRight =
QueryNodeFactory.createOrNode(leftNode2,rightNode2);

OrNode orNodeLeft =
QueryNodeFactory.createOrNode(rightNode,orNodeRight);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("ID_cert45",

QueryOperator.LIKE,
"GH_");

OrNode orNode = QueryNodeFactory.createOrNode(orNodeLeft,
leftNode);

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

// Returns BRG1

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par plusieurs propriétés combinées
avec des opérateurs OR imbriqués :

Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs OR imbriqués.
// (Prop OR (Prop OR NOT Prop)) OR Prop
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"___thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"7%");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode2);

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE,
"%ing");

OrNode orNodeRight =
QueryNodeFactory.createOrNode(leftNode2,notNode);

OrNode orNodeLeft =
QueryNodeFactory.createOrNode(rightNode,orNodeRight);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("ID_cert45",

QueryOperator.LIKE,
"GH_");

OrNode orNode = QueryNodeFactory.createOrNode(orNodeLeft,
leftNode);

Chapitre 3. Guides et techniques de programmation 183

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

// Returns BRG3

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par plusieurs propriétés combinées
avec des opérateurs OR imbriqués et un noeud NOT :

Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs OR imbriqués et un noeud NOT.
// Prop OR NOT(Prop OR Prop)
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"___thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode(

"organization",
QueryOperator.LIKE,
"7%");

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode(

"department",
QueryOperator.LIKE,
"%ing");

OrNode orNodeRight =
QueryNodeFactory.createOrNode(rightNode2,

rightNode);

NotNode notNode =
QueryNodeFactory.createNotNode(orNodeRight);

OrNode orNodeLeft = QueryNodeFactory.createOrNode(leftNode,
notNode);

brgList =
BusinessRuleManager.getBRGsByProperties(orNodeLeft, 0, 0);

// Returns BRG3

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par plusieurs propriétés combinées
avec des opérateurs OR imbriqués et un noeud NOT :

Ceci est un exemple d’interrogation de groupes de règles métier par plusieurs
propriétés combinées avec des opérateurs OR imbriqués et un noeud NOT.
// NOT(Prop OR Prop) OR Prop
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

184 Développement et déploiement

QueryOperator.LIKE,
"%lRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode(

"organization",
QueryOperator.LIKE,
"7%");

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode(

"department",
QueryOperator.LIKE,
"%ing");

OrNode orNodeRight =
QueryNodeFactory.createOrNode(rightNode2,rightNode);

NotNode notNode =
QueryNodeFactory.createNotNode(orNodeRight);

OrNode orNodeLeft =
QueryNodeFactory.createOrNode(notNode,leftNode);

brgList =
BusinessRuleManager.getBRGsByProperties(orNodeLeft, 0, 0);

// Returns BRG2 and BRG4

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par une liste de noeuds combinés avec
un opérateur AND :

Ceci est un exemple d’interrogation de groupes de règles métier par une liste de
noeuds combinés avec un opérateur AND.
// AND list
List<QueryNode> list = new ArrayList<QueryNode>();

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"%thRegion");

list.add(rightNode);

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"7%");

list.add(rightNode2);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE,
"%ing");

list.add(leftNode);

QueryNode leftNode2 =

Chapitre 3. Guides et techniques de programmation 185

QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.LIKE,
"7H%");

list.add(leftNode2);

AndNode andNode = QueryNodeFactory.createAndNode(list);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG4

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par une liste de noeuds et un noeud
combiné avec un opérateur AND :

Ceci est un exemple d’interrogation de groupes de règles métier par une liste de
noeuds et un noeud NOT combiné avec un opérateur AND.
// AND list with a notNode
List<QueryNode> list = new ArrayList<QueryNode>();

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"%thRegion");

list.add(rightNode);

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"8%");

NotNode notNode =

QueryNodeFactory.createNotNode(rightNode2);

list.add(notNode);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE,
"%ing");

list.add(leftNode);

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

list.add(leftNode2);

AndNode andNode = QueryNodeFactory.createAndNode(list);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Return BRG4

186 Développement et déploiement

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par une liste de noeuds combinés avec
un opérateur OR :

Ceci est un exemple d’interrogation de groupes de règles métier par une liste de
noeuds combinés avec un opérateur OR.
// OR list
List<QueryNode> list = new ArrayList<QueryNode>();

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"%thRegion");

list.add(rightNode);

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"8%");

list.add(rightNode2);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE,
"%ing");

list.add(leftNode);

OrNode orNode = QueryNodeFactory.createOrNode(list);

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

//Returns BRG3

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Interrogation de groupes de règles métier par une liste de noeuds et un noeud
NOT combiné avec un opérateur OR :

Ceci est un exemple d’interrogation de groupes de règles métier par une liste de
noeuds et un noeud NOT combiné avec un opérateur OR.
// OR list with Not node
List<QueryNode> list = new ArrayList<QueryNode>();

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"%thRegion");

list.add(rightNode);

Chapitre 3. Guides et techniques de programmation 187

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"8%");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode2);

list.add(notNode);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE,
"%ing");

list.add(leftNode);

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"8%");

list.add(leftNode2);

OrNode orNode = QueryNodeFactory.createOrNode(list);

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

//Returns BRG1, BRG2, BRG3, and BRG4

Concepts associés

Autres exemples de requêtes
Les exemples suivants ne figurent pas dans l’application contenant les exemples 1
à 15 ; toutefois, ils illustrent la création de requêtes qui permettent d’extraire des
groupes de règles métier.

Classes d’opérations communes
Cette section contient des classes supplémentaires, qui ont été utilisées dans les
exemples pour simplifier des opérations communes.
Concepts associés

Gestion des règles métier
Des classes de gestion des règles métier sont fournies pour permettre de créer des
clients de gestion personnalisés ou d’automatiser les changements apportés aux
règles métier.
Référence associée

Classe Formatter
Cette classe fournit diverses méthodes permettant d’afficher les différents
exemples. Elle ajoute diverses balises HTML pour formater la sortie.
Classe RuleArtifactUtility
Cette classe utilitaire comporte deux méthodes publiques. La première sert à
imprimer une table de décision. Cette méthode exploite une méthode privée qui
utilise la récursivité pour imprimer les conditions et les actions de la table de
décision. La seconde méthode publique sert à imprimer un jeu de règles.

Classe Formatter
Cette classe fournit diverses méthodes permettant d’afficher les différents
exemples. Elle ajoute diverses balises HTML pour formater la sortie.

188 Développement et déploiement

package com.ibm.websphere.sample.brules.mgmt;

public class Formatter {

private StringBuffer buffer;

public Formatter()
{

buffer = new StringBuffer();
}

public void println(Object o)
{

buffer.append(o);
buffer.append("
\n");
}

public void print(Object o)
{

buffer.append(o);
}

public void printlnBold(Object o)
{

buffer.append("");
buffer.append(o);
buffer.append("<brbr>\n");

}

public void printBold(Object o)
{

buffer.append("");
buffer.append(o);
buffer.append("");

}

public String toString()
{

return buffer.toString();
}

public void clear()
{

buffer = new StringBuffer();
}

}

Référence associée

Classes d’opérations communes
Cette section contient des classes supplémentaires, qui ont été utilisées dans les
exemples pour simplifier des opérations communes.

Classe RuleArtifactUtility
Cette classe utilitaire comporte deux méthodes publiques. La première sert à
imprimer une table de décision. Cette méthode exploite une méthode privée qui
utilise la récursivité pour imprimer les conditions et les actions de la table de
décision. La seconde méthode publique sert à imprimer un jeu de règles.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.Parameter;
import com.ibm.wbiserver.brules.mgmt.ParameterValue;

Chapitre 3. Guides et techniques de programmation 189

import com.ibm.wbiserver.brules.mgmt.RuleTemplate;
import com.ibm.wbiserver.brules.mgmt.Template;
import com.ibm.wbiserver.brules.mgmt.dtable.ActionNode;
import com.ibm.wbiserver.brules.mgmt.dtable.CaseEdge;
import com.ibm.wbiserver.brules.mgmt.dtable.ConditionNode;
import com.ibm.wbiserver.brules.mgmt.dtable.DecisionTable;
import com.ibm.wbiserver.brules.mgmt.dtable.DecisionTableRule;
import
com.ibm.wbiserver.brules.mgmt.dtable.DecisionTableTemplateInstanceRule;
import com.ibm.wbiserver.brules.mgmt.dtable.TemplateInstanceExpression;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeAction;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeActionTermDefinition;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeBlock;
import
com.ibm.wbiserver.brules.mgmt.dtable.TreeConditionTermDefinition;
import
com.ibm.wbiserver.brules.mgmt.dtable.TreeConditionValueDefinition;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeNode;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleBlock;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRule;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRuleTemplate;
import
com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetTemplateInstanceRule;

public class RuleArtifactUtility
{

static Formatter out = new Formatter();

/*
Method to print out a decision table with the conditions and
actions printed out in a HTML tabular format. The conditions
and actions are printed out with a separate method that
recursively works through the case edges of the decision
tables.
*/

public static String printDecisionTable(BusinessRule
ruleArtifact)
{

out.clear();
out.printlnBold("Decision Table");
DecisionTable decisionTable = (DecisionTable)
ruleArtifact;
out.println("Name: " +
decisionTable.getName());
out.println("Namespace: " +
decisionTable.getTargetNameSpace());

// Output the init rule for the decision table
before
// working through the table of conditions and
actions
DecisionTableRule initRule =
decisionTable.getInitRule();
if (initRule != null)
{

out.printBold("Init Rule: ");
out.println(initRule.getName());
out.println("Display Name: " +
initRule.getDisplayName());
out.println("Description: " +
initRule.getDescription());
// The expanded user presentation
will automatically populate the
// presentation with the parameter
values and can be used for

190 Développement et déploiement

// display if the init rule was
defined with a template. If no
// template was defined the
expanded user presentation
// is the same as the regular
presentation.
out.println("Extended User
Presentation: "

+
initRule.getExpandedUse
rPresentation());
// The regular user presentation
will have placeholders in the
// string where the
// parameter can be substituted if
the init rule was defined with a
// template
// If the rule was not defined with
a template, the user
// presentation will only
// be a string without
placeholders. The placeholders are
of a
// format of {n} where
// n is the index (zero-based) of
the parameter in the template. This
// value
// can be used to create an
interface for editing where there
are
// fields with
// the parameter values available
for editing
out.println("User Presentation: " +
initRule.getUserPresentation());
// Init rules might be defined with
or without a template
// Check to make sure a template
was used before trying
// to access the parameters
if (initRule instanceof
DecisionTableTemplateInstanceRule)
{

DecisionTableTemplateIn
stanceRule
templateInstance =
(DecisionTableTemplateI
nstanceRule) initRule;

RuleTemplate template =
templateInstance.getRul
eTemplate();

List<Parameter>
parameters =
template.getParameters(
);
Iterator<Parameter>
paramIterator =
parameters.iterator();

Parameter parameter =
null;

while
(paramIterator.hasNext(
)) {

Chapitre 3. Guides et techniques de programmation 191

parameter =
paramIterator.next();

out.println("Parameter
Name: " +
parameter.getName());
out.println("Parameter
Value: "
+
templateInstance.getPar
ameterValue(parameter
.getName()));
}

}
}
// For the rest of the decision table, start at
the root and
// recursively work through the different case
edges and
// actions
TreeBlock treeBlock =
decisionTable.getTreeBlock();
TreeNode treeNode = treeBlock.getRootNode();

printDecisionTableConditionsAndActions(treeNode
, 0);
out.println("");
return out.toString();

}
/*Method to recursively work through the case edges and print
out the conditions and actions.

*/
static private void printDecisionTableConditionsAndActions(

TreeNode treeNode, int indent)
{

out.print("<table border=\"1\">");
if (treeNode instanceof ConditionNode)
{

// Get the case edges for the
current TreeNode
// and for each case edge print out
the conditions
ConditionNode conditionNode =
(ConditionNode) treeNode;

List<CaseEdge> caseEdges =
conditionNode.getCaseEdges();
Iterator<CaseEdge> caseEdgeIterator
= caseEdges.iterator();

CaseEdge caseEdge = null;

while (caseEdgeIterator.hasNext())
{

out.print("<tr>");
// If this is the start
of the conditions for the
// condition node,
print out the condition term
if (indent == 0)
{
out.print("<td>");

TreeConditionTermDefinition
termDefinition =
conditionNode
.getTermDefinition();

192 Développement et déploiement

out.print(termDefinitio
n.getUserPresentation()
);
out.print("</td>");
indent++;
} else {
// After the condition
term has been printed
for a
// case edge skip for
the rest of the case
edges
out.print("<td></td>");
}

caseEdge =
caseEdgeIterator.next()
;

out.print("<td>");

// Check if the
caseEdge is defined by
a template
if
(caseEdge.getValueDefin
ition() != null)
{
TemplateInstanceExpress
ion templateInstance =
caseEdge
.getValueTemplateInstan
ce();

out.println(templateIns
tance.getExpandedUserPr
esentation());

TreeConditionValueDefin
ition valueDef =
caseEdge
.getValueDefinition();

out.println(valueDef.ge
tUserPresentation());

Template template =
templateInstance.getTem
plate();

// Get the parameters
for the template
definition and
// print out the
parameter names and
values
List<Parameter>
parameters =
template.getParameters(
);
Iterator<Parameter>
paramIterator =
parameters.iterator();

List<ParameterValue>
parameterValues =

Chapitre 3. Guides et techniques de programmation 193

templateInstance
.getParameterValues();
Iterator<ParameterValue
> paramValues =
parameterValues
.iterator();

Parameter parameter =
null;
ParameterValue
parameterValue = null;

while
(paramIterator.hasNext(
) &&
paramValues.hasNext())
{
parameter =
paramIterator.next();
parameterValue =
paramValues.next();

out.println("Parameter
Name: " +
parameter.getName());
out.println("Parameter
Value: "

+
parameterValue.getValue
());
}
}

out.print("</td><td>");
// Print the child node
for the caseEdge
printDecisionTableCondi
tionsAndActions(caseEdg
e.getChildNode(),
0);

out.print("</td></tr>")
;
}

// Add Otherwise condition if it
exists
TreeNode otherwise =
conditionNode.getOtherwiseCase();

if (otherwise != null)
{

out.print("<tr><td></td>
<td>Otherwise</td><td>
");
// Print the Otherwise
ConditionNode
printDecisionTableCondi
tionsAndActions(otherwi
se, 0);
out.print("</td></td>")
;

}
out.print("</table>");

} else {
// ActionNode has been found and

194 Développement et déploiement

different logic is needed
// to print out the TreeActions
ActionNode actionNode =
(ActionNode) treeNode;
List<TreeAction> treeActions =
actionNode.getTreeActions();

Iterator<TreeAction>
treeActionIterator =
treeActions.iterator();

TreeAction treeAction = null;

// The ActionNode can contain
multiple TreeActions to
// print out
while
(treeActionIterator.hasNext())
{

out.print("<tr>");
treeAction =
treeActionIterator.next
();

TreeActionTermDefinitio
n treeActionTerm =
treeAction
.getTermDefinition();

if (indent == 0) {
out.print("<td>");
out.print(treeActionTer
m.getUserPresentation()
);
out.print("</td>");
}
out.print("<td>");
TemplateInstanceExpress
ion templateInstance =
treeAction
.getValueTemplateInstan
ce();

// Check that a
template was specified
for
// the TreeAction
before working with the
// parameter name and
values
if (templateInstance !=
null) {
out.println(templateIns
tance.getExpandedUserPr
esentation());

Template template =
templateInstance.getTem
plate();

List<Parameter>
parameters =
template.getParameters(
);

Iterator<Parameter>
paramIterator =

Chapitre 3. Guides et techniques de programmation 195

parameters.iterator();

List<ParameterValue>
parameterValues =
templateInstance
.getParameterValues();
Iterator<ParameterValue
> paramValues =
parameterValues
.iterator();

Parameter parameter =
null;
ParameterValue
parameterValue = null;

while
(paramIterator.hasNext(
) &&
paramValues.hasNext())
{
{parameter =
paramIterator.next();
parameterValue =
paramValues.next();

out.println(" Parameter
Name: " +
parameter.getName());
out.println(" Parameter
Value: "
+
parameterValue.getValue
());

}
} else
{
// If a template was
not used, the only item
that is
// available is the
UserPresentation if it
was
// specified when the
rule was created
out.print(treeAction.ge
tValueUserPresentation(
));
}

out.print("</td></tr>")
;

}
out.print("</table>");

}
}
/*

Method to print out a rule set
*/

public static String printRuleSet(BusinessRule
ruleArtifact)
{

out.clear();
out.printlnBold("Rule Set");
RuleSet ruleSet = (RuleSet) ruleArtifact;
out.println("Name: " + ruleSet.getName());

196 Développement et déploiement

out.println("Namespace: " +
ruleSet.getTargetNameSpace());

// The rules in a rule set are contained in a
rule block
RuleBlock ruleBlock =
ruleSet.getFirstRuleBlock();

Iterator<RuleSetRule> ruleIterator =
ruleBlock.iterator();

RuleSetRule rule = null;

// Iterate through the rules in the rule block.
while (ruleIterator.hasNext())
{

rule = ruleIterator.next();
out.printBold("Rule: ");
out.println(rule.getName());
out.println("Display Name: " +
rule.getDisplayName());
out.println("Description: " +
rule.getDescription());
// The expanded user presentation
will automatically populate the
// presentation with the parameter
values and can be used for
// display if the rule was defined
with a template. If no
// template was defined the
expanded user presentation
// is the same as the regular
presentation.
out.println("Expanded User
Presentation: "

+
rule.getExpandedUserPre
sentation());
// The regular user presentation
will have placeholders in the
// string where the parameter can
be substituted if the rule
// was defined with a template. If
the rule was not defined with
// a template, the user
presentation will only be a string
// without placeholders. The
placeholders are of a format of {n}
// where n is the index (zerobased)
of the parameter in the
// template. This value can be used
to create an interface for
// editing where there are fields
with the parameter values
// available for editing
out.println("User Presentation: " +
rule.getUserPresentation());

// Check if the rule was defined
with a template
if (rule instanceof
RuleSetTemplateInstanceRule) {

RuleSetTemplateInstance
Rule templateInstance =
(RuleSetTemplateInstanc
eRule) rule;

Chapitre 3. Guides et techniques de programmation 197

RuleSetRuleTemplate
template =
templateInstance
.getRuleSetRuleTemplate
();

List<Parameter>
parameters =
template.getParameters(
);
Iterator<Parameter>
paramIterator =
parameters.iterator();

Parameter parameter =
null;

// Retrieve all of the
parameters and output
the name and value
while
(paramIterator.hasNext(
))
{
parameter =
paramIterator.next();

out.println("Parameter
Name: " +
parameter.getName());
out.println("Parameter
Value: "

+
templateInstance.getPar
ameterValue(
parameter.getName()).ge
tValue());
}

}
}
out.println("");
return out.toString();

}
}

Référence associée

Classes d’opérations communes
Cette section contient des classes supplémentaires, qui ont été utilisées dans les
exemples pour simplifier des opérations communes.

198 Développement et déploiement

Chapitre 4. Développement d’applications client pour les
tâches et processus métier

Vous pouvez utiliser un outil de modélisation pour compiler et déployer des tâches
et des processus métier. L’interaction avec ces processus et ces tâches se produit
lors de l’exécution. Par exemple, un processus est lancé ou les tâches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des tâches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.

A propos de cette tâche

Ces clients peuvent être des clients EJB (Enterprise JavaBeans™), des clients de
service Web ou encore des clients Web exploitant les composants JSF (JavaServer
Faces) de Business Process Choreographer Explorer. Ce dernier fournit des API EJB
(Enterprise JavaBeans) et des interfaces pour les services Web pour vous permettre
de développer ces clients. L’API EJB est accessible via n’importe quelle application
Java, y compris une autre application EJB. Il est possible d’accéder aux interfaces
des services Web à partir des environnements Java ou Microsoft® .Net.

© IBM Corporation 2005, 2006 © IBM 2005, 2009 199

Concepts associés

Comparaison entre les interfaces de programmation visant à interagir avec les
processus métier et les tâches utilisateur
Des interfaces de programmation génériques EJB (Enterprise JavaBeans), JMS (Java
Message Service), REST (Representational State Transfer Services) ainsi que des
interfaces de programmation de services Web sont disponibles pour la création
d’applications client interagissant avec des processus métier et des tâches
utilisateur. Chacune de ces interfaces présente des caractéristiques différentes.
Requêtes portant sur les données des processus métier et des tâches
Les données d’instance des processus métier et des tâches humaines à exécution
longue sont stockées de façon persistante dans la base de données et accessibles
par le biais de requêtes. En outre, il est possible d’accéder aux données des
modèles de processus métier et de tâche humaine grâce à une interface de requête.
Tâches associées

Développement d’applications client EJB pour des processus métier et des tâches
utilisateur
Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d’utiliser des processus métier
et des tâches utilisateur installées sur WebSphere Process Server.
Développement d’applications API de service Web
Vous pouvez développer des applications client accédant à des applications de
processus métier et de tâches utilisateur via des API de services Web.
Développement d’applications client à l’aide de l’API JMS de Business Process
Choreographer
Vous pouvez développer des applications client accédant aux applications de
processus métier de façon asynchrone grâce à l’API JMS (Java Messaging Service).
Développement d’applications Web pour les processus métier et tâches utilisateur à
l’aide de composants JSF
Business Process Choreographer offre un certain nombre de composants JavaServer
Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de tâches utilisateur à des applications Web.
Développement des pages JSP pour les messages de tâche et de processus
Business Process Choreographer Explorer fournit des formulaires d’entrée et de
sortie par défaut pour afficher et saisir les données métier. Vous pouvez utiliser des
pages JSP pour créer des formulaires d’entrée et de sortie définis par l’utilisateur.
Création de modules d’extension pour personnaliser les fonctionnalités des tâches
utilisateur
Business Process Choreographer fournit une infrastructure permettant le traitement
des événements qui surviennent lors du traitement des tâches utilisateur.
L’application des modules d’extension est également conçue pour vous permettre
d’adapter les fonctionnalités à vos besoins. Vous pouvez utiliser les interfaces de
fournisseur de services SPI (Service Provider Interfaces) afin de créer des modules
d’extension personnalisés pour la gestion des événements et le post-traitement des
requêtes de personnel.

Comparaison entre les interfaces de programmation visant à interagir
avec les processus métier et les tâches utilisateur

Des interfaces de programmation génériques EJB (Enterprise JavaBeans), JMS (Java
Message Service), REST (Representational State Transfer Services) ainsi que des
interfaces de programmation de services Web sont disponibles pour la création
d’applications client interagissant avec des processus métier et des tâches
utilisateur. Chacune de ces interfaces présente des caractéristiques différentes.

200 Développement et déploiement

L’interface de programmation que vous choisissez dépend de plusieurs facteurs,
dont la fonctionnalité devant être fournie par votre application client, le fait que
vous disposez ou non d’une infrastructure de client final existante, ou encore que
vous souhaitiez ou non traiter les flux de tâches utilisateur. Pour faciliter la
sélection de l’interface appropriée, le tableau suivant compare les caractéristiques
des interfaces de programmation EJB, JMS, REST et de services Web.

Interface EJB Interface de service Web Interface de message JMS Interface REST

Fonctionnalité Cette interface est
disponible à la fois pour
les processus métier et les
tâches utilisateur. Utilisez
cette interface pour créer
des clients fonctionnant de
manière générique avec des
processus et des tâches.

Cette interface est
disponible à la fois pour
les processus métier et les
tâches utilisateur. Utilisez
cette interface pour créer
des clients destinés à un
ensemble connu de
processus et de tâches.

Cette interface est
disponible uniquement
pour les processus métier.
Utilisez cette interface pour
créer des clients de
messagerie destinés à un
ensemble connu de
processus.

Cette interface est
disponible à la fois pour
les processus métier et les
tâches utilisateur. Utilisez
cette interface pour créer
des clients de type Web 2.0
conçus pour un ensemble
connu de processus et de
tâches.

Traitement
des données

Prend en charge le
chargement de schémas
d’artefacts distants pour
accéder aux métadonnées
des objets métier.

Si l’application client EJB
est exécutée dans la même
cellule que l’instance de
WebSphere Process Server
à laquelle elle est
connectée, les schémas
requis par les objets métier
des processus et des tâches
ne doivent pas
nécessairement être
disponibles au niveau du
client et peuvent être
chargés depuis le serveur
via le chargeur d’artefacts
distants RAL (Remote
Artifact Loader).

Le chargeur RAL peut
également être appliqué à
plusieurs cellules si
l’application client
s’exécute sur une
installation serveur
complète de WebSphere
Process Server. toutefois, le
chargeur RAL n’est pas
utilisable dans une
configuration inter-cellules
dans laquelle l’application
client s’exécute dans une
installation client de
WebSphere Process Server.

Les artefacts de schémas
relatifs aux données
d’entrée et de sortie, ainsi
qu’aux variables, doivent
être disponibles dans un
format reconnu par le
client.

Les artefacts de schémas
relatifs aux données
d’entrée et de sortie, ainsi
qu’aux variables, doivent
être disponibles dans un
format reconnu par le
client.

Les artefacts de schémas
relatifs aux données
d’entrée et de sortie, ainsi
qu’aux variables, doivent
être disponibles dans un
format reconnu par le
client.

Environ-
nement client

Une installation de
WebSphere Process Server
ou une installation client
de WebSphere Process
Server.

Tout environnement
d’exécution prenant en
charge les appels de
services Web, y compris les
environnements Microsoft
.NET.

Tout environnement
d’exécution prenant en
charge les clients JMS, y
compris les modules SCA
utilisant des importations
JMS SCA.

Tout environnement
d’exécution prenant en
charge les clients REST.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 201

Interface EJB Interface de service Web Interface de message JMS Interface REST

Sécurité Sécurité Java 2, Enterprise
Edition (J2EE).

Sécurité des services Web. Sécurité Java 2, Enterprise
Edition (J2EE) pour
l’installation WebSphere
Process Server. Vous
pouvez également sécuriser
les files d’attente dans
lesquelles l’application
client JMS place les
messages d’interface API,
par exemple via les
mécanismes de sécurité de
WebSphere MQ.

Les applications client
appelant les méthodes
REST doivent utiliser un
mécanisme
d’authentification HTTP
adapté.

Une opération peut être exposée par plusieurs protocoles. Tenez compte des
remarques générales suivantes si vous utilisez la même opération dans différents
protocoles.
v Dans les interfaces Services Web et REST, tous les identificateurs d’objet, tels que

PIID, AIID et TKIID, sont représentés par un type chaîne (string). Seule
l’interface API EJB attend un ID d’objet à type sécurisé.

v La surcharge d’opération est seulement utilisée pour les méthodes EJB et non
pour les opérations WSDL. Dans certains cas, il existe plusieurs opérations
WSDL distinctes ; dans d’autres cas, il n’en existe qu’une seule, qui autorise
toutes les variantes de paramètres soit par omission (minOccurs="0"), soit par
l’emploi de valeurs Null (nillable="true").

v Dans certaines méthodes EJB, les espaces de noms XML et les noms locaux sont
passés dans des paramètres distincts. La plupart des opérations WSDL utilisent
le type XML Schema QName pour passer ces paramètres.

v Les interactions asynchrones avec les opérations de demande-réponse WSDL à
exécution longue, telles que l’opération callWithReplyContext dans l’interface
EJB ou l’opération callAsync dans l’interface WSDL, sont représentées par
l’opération call dans l’interface JMS.

v L’interface EJB renvoie un ensemble d’objets d’API, qui exposent les méthodes
d’accès get et set des champs contenus. Les interfaces Services Web et REST
renvoient des documents de types complexes (XML ou JSON) au client.

v Certains services de Human Task Manager opérant sur des tâches humaines sont
également disponibles comme services Business Flow Manager opérant sur des
activités qui appellent une tâche humaine.

202 Développement et déploiement

Tâches associées

Développement d’applications client pour les tâches et processus métier
Vous pouvez utiliser un outil de modélisation pour compiler et déployer des tâches
et des processus métier. L’interaction avec ces processus et ces tâches se produit
lors de l’exécution. Par exemple, un processus est lancé ou les tâches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des tâches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.
Développement d’applications client EJB pour des processus métier et des tâches
utilisateur
Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d’utiliser des processus métier
et des tâches utilisateur installées sur WebSphere Process Server.
Développement d’applications API de service Web
Vous pouvez développer des applications client accédant à des applications de
processus métier et de tâches utilisateur via des API de services Web.
Développement d’applications client à l’aide de l’API JMS de Business Process
Choreographer
Vous pouvez développer des applications client accédant aux applications de
processus métier de façon asynchrone grâce à l’API JMS (Java Messaging Service).

Requêtes portant sur les données des processus métier et des tâches
Les données d’instance des processus métier et des tâches humaines à exécution
longue sont stockées de façon persistante dans la base de données et accessibles
par le biais de requêtes. En outre, il est possible d’accéder aux données des
modèles de processus métier et de tâche humaine grâce à une interface de requête.

Les interfaces EJB d’interrogation, l’API de requête et l’API de table de requêtes,
sont disponibles avec Business Process Choreographer.

En fonction des clients qui accèdent aux données relatives aux processus ou aux
tâches, vous pouvez utiliser une ou plusieurs de ces interfaces. Les API REST et
Web Services (services Web) sont fournies dans Business Process Choreographer
pour vous permettre d’interroger les données des listes de tâches et de processus.
Cependant, pour des raisons de performances, si vous devez interroger des listes
de processus et de tâches particulièrement volumineuses, utilisez l’API de table de
requêtes EJB ou l’API de table de requêtes REST de Business Process
Choreographer.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 203

Concepts associés

Comparaison des interfaces de programmation destinées à l’extraction de données
de processus et de tâche
Business Process Choreographer fournit deux interfaces de programmation (API)
spécialisées dans l’extraction des données de processus et de table : l’API de table
de requêtes et l’API de requête. Chacune de ces interfaces présente des
caractéristiques différentes.
Tables de requêtes dans Business Process Choreographer
Les tables de requêtes permettent d’interroger les données des listes de tâches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requêtes peuvent porter sur les données des tâches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requêtes
fournissent une abstraction des données de Business Process Choreographer qui
peut être exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de l’implémentation proprement dite des tables. Les définitions des
tables de requêtes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requête.
API de requête EJB de Business Process Choreographer
Les méthodes query ou queryAll du service API vous permettent d’extraire des
informations stockées relatives aux processus métier et aux tâches.
Tâches associées

Développement d’applications client pour les tâches et processus métier
Vous pouvez utiliser un outil de modélisation pour compiler et déployer des tâches
et des processus métier. L’interaction avec ces processus et ces tâches se produit
lors de l’exécution. Par exemple, un processus est lancé ou les tâches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des tâches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.

Comparaison des interfaces de programmation destinées à
l’extraction de données de processus et de tâche

Business Process Choreographer fournit deux interfaces de programmation (API)
spécialisées dans l’extraction des données de processus et de table : l’API de table
de requêtes et l’API de requête. Chacune de ces interfaces présente des
caractéristiques différentes.

L’interface choisie dépendra de plusieurs facteurs, dont la fonctionnalité attendue
de votre application cliente, la disponibilité ou non d’une infrastructure de client
pour utilisateur final existante et, bien sûr, le niveau de performances visé. Pour
vous aider à faire le bon choix, le tableau suivant compare les caractéristiques des
API de table de requêtes et de requête.

Caractéristique API de table de requêtes API de requête

Disponibilité L’API de table de requêtes est disponible pour
l’interface EJB de Business Flow Manager et pour
l’interface de programmation REST.

L’API de requête est disponible pour les interfaces
de programmation EJB, services Web, JMS et REST.

204 Développement et déploiement

Caractéristique API de table de requêtes API de requête

Méthodes dédiées à
l’extraction de contenus

L’API fournit les méthodes suivantes :

v queryEntities

v queryEntityCount

v queryRows

v queryRowCount

L’API fournit les méthodes suivantes :

v query

v queryAll

Méthodes dédiées à
l’extraction de
métadonnées

L’API fournit les méthodes suivantes :

v getQueryTableMetaData

v findQueryTableMetaData

v queryProcessTemplates

v queryTaskTemplates

Nom de la table de
requêtes

Spécifie la table de requêtes sur laquelle l’API de
table de requêtes est exécutée. Il n’est possible
d’interroger qu’une seule table de requêtes à la
fois.

Par exemple, queryEntities("CUST.TASKS", ...).

La clause SELECT spécifie les colonnes et les vues
de base de données prédéfinies sur lesquelles la
requête est exécutée. Cette spécification est
similaire à une clause SQL SELECT.

Par exemple, query("TASK.TKIID, TASK.STATE,
WORK_ITEM.REASON", ...).

Clause SELECT et
attributs sélectionnés

Utilisez les options de filtrage de l’API de table de
requête pour spécifier les attributs que la requête
doit renvoyer dans ses résultats. Comme la requête
s’exécute sur une seule table de requêtes, les
attributs sont identifiables sans équivoque par
leurs noms respectifs.

Utilisez la clause SELECT pour spécifier les
attributs. Un nom d’attribut est spécifié avec une
syntaxe de la forme nom_vue.nom_attribut. Par
exemple, pour rechercher des états de tâche,
spécifiez TASK.STATE dans votre requête.

Clause WHERE et filtres Avec l’API de table de requêtes, utilisez la
propriété queryCondition pour filtrer encore plus
les résultats de vos requêtes. Les tables de requêtes
fournissent un contenu préfiltré si, dans leur
définition, des filtres de table de requête
principale, des filtres d’autorisation ou des filtres
de table de requêtes ont été spécifiés.

Utilisez la clause WHERE pour filtrer vos requêtes.

Clause WHERE et
critères de sélection

La clause WHERE de l’API de requête n’est pas
nécessaire sous cette forme dans l’API de table de
requêtes. Avec l’API de table de requêtes, utilisez
la propriété queryCondition pour appliquer un
filtrage additionnel.

Les critères de sélection spécifiés dans la définition
de table de requêtes sélectionnent une propriété
particulière de la table de requêtes attachée. Ce
comportement est obtenu en plus du filtrage
exercé par la clause WHERE dans l’API de
requête.

Les critères de sélection ne sont pas disponibles
pour l’API de requête. Cependant, ils sont
similaires à la partie de la clause WHERE qui
définit, par exemple, le nom (colonne NAME) ou
l’environnement local (colonne LOCALE) de la
table ou vue QUERY_PROPERTY, TASK_CPROP
ou TASK_DESC.

Par exemple, une clause WHERE telle que
QUERY_PROPERTY.NAME='xyz' revient au même que
de spécifier NAME='xyz' comme critère de sélection
dans la définition de la table de requêtes attachée
QUERY_PROPERTY.

Eléments de travail et
autorisation

Utilisez la table de requêtes WORK_ITEM pour
accéder aux éléments de travail. Vous pouvez
personnaliser l’emploi des éléments de travail
dans la définition d’une table de requêtes au
moment où vous la développez, ainsi que dans
l’API de table de requêtes, en utilisant l’objet
AuthorizationOptions ou l’objet
AdminAuthorizationOptions.

Par exemple, pour exclure les éléments de travail
’everybody’ lors de l’interrogation de la table de
requêtes TASK, spécifiez WI.EVERYBODY=0 pour la
propriété queryCondition, ou alors spécifiez
setUseEverbody(Boolean.FALSE) sur l’objet
AuthorizationOptions.

Utilisez la vue WORK_ITEM pour accéder aux
éléments de travail. Les quatre types d’éléments de
travail sont pris en compte pour les résultats d’une
requête : ’everybody’, ’individual’, ’groups’ et
’inherited’. Pour filtrer les éléments de travail
d’après un type spécifique, personnalisez la clause
WHERE.

Par exemple, pour exclure les éléments de travail
’everybody’, spécifiez WORK_ITEM.EVERYBODY=0 dans
la clause WHERE.

Paramètres Vous pouvez utiliser des paramètres dans les
filtres et les critères de sélection pour les tables de
requêtes composites.

Les paramètres ne sont pas disponibles pour l’API
de requête, sauf si des requêtes stockées sont
utilisées.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 205

Caractéristique API de table de requêtes API de requête

Requêtes stockées et
tables de requêtes

La différence entre une requête stockée et une
table de requêtes est que la première est définie
pour une requête particulière, tandis que la table
de requêtes est définie pour un ensemble
particulier de requêtes. Par exemple, la définition
d’une table de requêtes n’autorise pas la
spécification d’une clause ORDER BY, car les
informations correspondantes ne sont
généralement disponibles qu’au moment où la
requête est exécutée.

Les requêtes stockées permettent d’interroger les
données en utilisant des ensembles prédéfinis
d’options.

Vues matérialisées Les vues matérialisées ne sont pas disponibles
pour l’API de table de requêtes.

Les vues matérialisées utilisent des technologies
propres aux bases de données pour améliorer les
performances des requêtes.

Tables personnalisées Les tables de requêtes supplémentaires offrent la
même fonctionnalité que les tables personnalisées.

Les tables personnalisées servent à inclure, dans
les requêtes, des données qui sont externes au
schéma de base de données de Business Process
Choreographer.

queryAll et options
d’autorisation

La fonctionnalité queryAll est fournie par l’objet
AdminAuthorizationOptions, lequel peut être
passé à l’API de table de requêtes à la place de
l’objet AuthorizationOptions. L’appelant doit faire
partie du rôle J2EE BPESystemAdministrator.

La méthode queryAll permet aux utilisateurs
ayant le rôle J2EE BPESystemAdministrator
d’obtenir tous les objets dans les résultats d’une
requête sans être limités par les éléments de travail
d’un utilisateur ou d’un groupe particulier.

Internationalisation Lors de l’utilisation de tables de requêts, il est
possible de choisir la langue dans laquelle doivent
être présentés les noms et les descriptions des
tables en question et de leurs attributs.

Les noms des colonnes des vues sélectionnées sont
affichés tels qu’ils apparaissent dans la base de
données.

Concepts associés

Requêtes portant sur les données des processus métier et des tâches
Les données d’instance des processus métier et des tâches humaines à exécution
longue sont stockées de façon persistante dans la base de données et accessibles
par le biais de requêtes. En outre, il est possible d’accéder aux données des
modèles de processus métier et de tâche humaine grâce à une interface de requête.

Tables de requêtes dans Business Process Choreographer
Les tables de requêtes permettent d’interroger les données des listes de tâches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requêtes peuvent porter sur les données des tâches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requêtes
fournissent une abstraction des données de Business Process Choreographer qui
peut être exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de l’implémentation proprement dite des tables. Les définitions des
tables de requêtes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requête.

Il existe trois types de tables de requêtes : les tables prédéfinies, les tables
supplémentaires et les tables composites.

206 Développement et déploiement

Les tables de requêtes sont représentées au moyen de modèles similaires dans
l’environnement d’exécution et peuvent être interrogées à l’aide de l’API de table
de requête. Tandis que les tables de requêtes prédéfinies et supplémentaires
pointent directement sur des tables ou des vues dans la base de données, les tables
composites sont constituées de parties de ces données, qu’elles mettent à
disposition sous forme de table unique.

Les tables de requêtes étendent les possibilités offertes par les vues de base de
données prédéfinies et les interfaces de requête existantes de Business Process
Choreographer. Leurs points forts sont les suivants :
v Elles sont optimisées pour exécuter des requêtes de liste de processus et de

tâches en utilisant des modèles d’accès eux-mêmes optimisés pour délivrer les
meilleures performances.

v Elles simplifient et consolident l’accès aux informations nécessaires.
v Elles permettent de configurer très précisément les options d’autorisation et de

filtrage.

Il est possible de personnaliser des tables de requêtes. Les options de configuration
peuvent par exemple stipuler qu’une table de requête doit contenir uniquement les
tâches ou les instances de processus relatives à un scénario particulier. Lorsque les
performances sont primordiales, par exemple dans le cas de requêtes concernant
une liste de processus ou de tâches volumineuse, utilisez des tables de requêtes.

L’outil Query Table Builder est fourni sous forme de plug-in Eclipse pour vous
permettre :
v de développer des tables de requêtes composites et supplémentaires ;
v d’importer et d’exporter des définitions de tables de requêtes au format XML.

L’outil Query Table Builder peut être téléchargé à partir du site des SupportPacs
WebSphere Business Process Management. Recherchez le SupportPac PA71
WebSphere Process Server - Query Table Builder. Pour accéder au lien, consultez la
section consacrée aux références de cette rubrique.

Query table

Composite

CustomBPEDB

Predefined Supplemental

kindkind
kind

Figure 23. Tables de requêtes dans Business Process Choreographer

Chapitre 4. Développement d’applications client pour les tâches et processus métier 207

Concepts associés

Requêtes portant sur les données des processus métier et des tâches
Les données d’instance des processus métier et des tâches humaines à exécution
longue sont stockées de façon persistante dans la base de données et accessibles
par le biais de requêtes. En outre, il est possible d’accéder aux données des
modèles de processus métier et de tâche humaine grâce à une interface de requête.
Tables de requêtes prédéfinies
Les tables de requêtes prédéfinies fournissent l’accès aux données dans la base de
données de Business Process Choreographer. Elles correspondent à une
représentation, sous forme de tables de requêtes, des vues de la base de données
de Business Process Choreographer, telles que TASK ou PROCESS_INSTANCE.
Tables de requêtes supplémentaires
Les tables de requêtes supplémentaires que vous définissez dans Business Process
Choreographer fournissent à l’API de table de requêtes un accès à des données
métier dites ″externes″, c’est-à-dire qui ne sont pas gérées par Business Process
Choreographer. Grâce à ces tables de requêtes supplémentaires, les données
externes correspondantes peuvent être utilisées en association avec les données des
tables de requêtes prédéfinies pour extraire des informations sur des instances de
processus métier ou sur des tâches humaines.
Tables de requêtes composites
Dans Business Process Choreographer, les tables de requêtes composites sont
conçues à partir de tables de requêtes prédéfinies et de tables de requêtes
supplémentaires. Elles regroupent des données issues de tables ou de vues
existantes. Utilisez-les pour obtenir les informations d’une liste d’instances de
processus ou d’une liste de tâches (liste Mes tâches, par exemple).
Développement des tables de requêtes
Dans Business Process Choreographer, le développement des tables de requêtes
supplémentaires et des tables de requêtes composites s’effectue au cours du
développement de l’application, à l’aide de l’outil Query Table Builder. Les tables
de requêtes prédéfinies ne peuvent pas être développées ni déployées. Disponibles
lorsque Business Process Choreographer est installé, elles fournissent une vue
simplifiée des artefacts du schéma de base de données Business Process
Choreographer.
Filtres et critères de sélection des tables de requêtes
Les filtres et les critères de sélection sont définis pendant la phase de
développement des tables de requêtes, à l’aide de l’outil Query Table Builder, qui
utilise une syntaxe similaire aux clauses SQL WHERE. En définissant clairement
des filtres et des critères de sélection, vous pouvez spécifier des conditions basées
sur les attributs des tables de requêtes.
Autorisation pour les tables de requêtes
L’exécution de requêtes sur des tables de requêtes peut s’effectuer avec plusieurs
types d’autorisation : autorisation par instance, autorisation par rôle ou absence de
contrôle d’autorisation.
Types d’attribut pour les tables de requêtes
Dans Business Process Choreographer, les types d’attribut sont nécessaires lors de
la définition de tables de requêtes, lors de l’utilisation de valeurs littérales dans les
requêtes, ainsi que lors de l’accès aux valeurs dans un résultat de requête. Des
règles et des mappages sont disponibles pour chacun des types d’attribut.
Requêtes sur des tables de requêtes
L’exécution de requêtes sur les tables de requêtes définies dans Business Process
Choreographer s’effectue au moyen de l’API de table de requêtes, qui est
disponible pour l’interface EJB de Business Flow Manager et l’API REST.
Requêtes sur des tables de requêtes pour l’extraction de métadonnées

208 Développement et déploiement

L’exécution de requêtes sur les tables de requêtes définies dans Business Process
Choreographer s’effectue au moyen de l’API de table de requêtes. Des méthodes
sont disponibles pour permettre l’extraction de métadonnées des tables de
requêtes.
Internationalisation pour les métadonnées des tables de requêtes
L’internationalisation est prise en charge pour les métadonnées des tables de
requêtes.
Tables de requêtes et performances des requêtes
Les tables de requêtes offrent un nouveau modèle de programmation propre, conçu
pour le développement d’applications clientes qui extraient des listes de tâches
humaines et de processus métier dans Business Process Choreographer. Les tables
de requêtes ont un effet bénéfique sur les performances des requêtes. Vous
trouverez ci-après une description des options applicables aux tables de requêtes et
des paramètres de l’API de tables de requêtes qui ont une incidence sur les
performances des requêtes. Des informations sont également fournies à propos
d’autres facteurs qui influent sur les performances.
Tâches associées

Administration des tables de requêtes
Utilisez le script wsadmin manageQueryTable.py pour administrer les tables de
requêtes de Business Process Choreographer qui ont été développées à l’aide de
Query Table Builder. Contrairement aux tables de requêtes prédéfinies, qui sont
prêtes à l’emploi, les tables de requêtes composites et supplémentaires doivent être
déployées sur WebSphere Process Server avant de pouvoir être utilisées avec l’API
de table de requêtes.

Déploiement de tables de requêtes
Utilisez le script manageQueryTable.py pour déployer des tables de requêtes
composites et supplémentaires dans Business Process Choreographer. Les tables de
requêtes doivent être déployées sur un serveur autonome en cours d’exécution ou
dans un cluster dont au moins un des membres est en cours d’exécution.
L’annulation du déploiement des tables supplémentaires et composites doit
également être réalisée sur les serveurs en cours d’exécution. Pour les tables de
requêtes supplémentaires, les objets physiques de base de données associés (vue de
base de données ou table de base de données, par exemple) doivent le cas échéant
être créés avant l’utilisation de la table de requêtes.
Référence associée

Vue de la base de données Business Process Choreographer
Ces informations de référence décrivent les colonnes disponibles dans les vues de
base de données prédéfinies.

Tables de requêtes prédéfinies
Les tables de requêtes prédéfinies fournissent l’accès aux données dans la base de
données de Business Process Choreographer. Elles correspondent à une
représentation, sous forme de tables de requêtes, des vues de la base de données
de Business Process Choreographer, telles que TASK ou PROCESS_INSTANCE.

Les tables de requêtes prédéfinies utilisent les mêmes données physiques
sous-jacentes que les vues de base de données prédéfinies et présentent donc la
même structure. Cependant, elles étendent les fonctionnalités des vues de base de
données prédéfinies et en améliorent les performances, car elles sont optimisées
pour exécuter des requêtes portant sur les listes de processus et de tâches.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 209

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=t4querytables_admin
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=t3querytables_installing
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=r6bpc_dbviews

Les tables de requêtes prédéfinies peuvent être interrogées directement à l’aide de
l’API de table de requêtes. Lorsque vous accédez aux tables en utilisant cette API,
vous avez un plus grand choix d’options de configuration qu’avec l’API de
requête. Vous pouvez développer une table de requêtes composite qui contient
toutes les informations à récupérer lors de l’exécution de la requête, et non
seulement les informations d’une seule table.

L’autorisation est activée pour tous les éléments de travail : éléments de travail
everybody, individual, group et inherited. Sauf mention du contraire, pour les
tables de requêtes prédéfinies contenant des données d’instance, l’API de table de
requêtes utilise par défaut les éléments de travail everybody, individual et group.

Propriétés

Les tables de requêtes prédéfinies ont les propriétés suivantes :

Tableau 6. Propriétés des tables de requêtes prédéfinies

Propriété Description

Nom Le nom de la table de requêtes est le nom, en majuscules, de l’une
des vues prédéfinies de la base de données ; par exemple, TASK.

Attributs Les attributs des tables de requêtes prédéfinies définissent les
éléments d’information disponibles pour les requêtes. Il s’agit des
noms en majuscules des colonnes spécifiées par les vues
prédéfinies de la base de données.

Les attributs sont définis avec un nom et un type. Le type est l’un
des suivants :

v Boolean : une valeur booléenne

v Decimal : un nombre en virgule flottante

v ID : un ID d’objet, tel que le TKIID de la table de requêtes TASK

v Number : un entier, court (type short) ou long (type long)

v String : une chaîne

v Timestamp : un horodatage

Autorisation Les tables de requêtes prédéfinies utilisent soit l’autorisation par
instance, soit l’autorisation par rôle.

v Pour les tables de requêtes prédéfinies qui contiennent des
données d’instance, l’autorisation par instance est obligatoire.
Cela signifie que la requête renvoie seulement les objets avec des
éléments de travail destinés à l’utilisateur qui exécute la requête.
Cependant, en utilisant l’objet AdminAuthorizationOptions, vous
pouvez limiter cette vérification à un simple contrôle de
l’existence d’un élément de travail pour tout utilisateur.
L’utilisateur doit avoir le rôle J2EE BPESystemAdministrator
pour les requêtes ainsi configurées.

v Pour les tables de requêtes prédéfinies qui contiennent des
données de modèle, l’autorisation par rôle est obligatoire ; cela
signifie que leur contenu n’est accessible qu’aux utilisateurs qui
font partie du rôle J2EE BPESystemAdministrator.

210 Développement et déploiement

Tables de requêtes prédéfinies avec des données d’instance

Le tableau suivant présente les tables de requêtes prédéfinies qui contiennent des
données d’instance. Ces tables de requêtes se caractérisent par ce qui suit :
v Elles peuvent être utilisées comme table de requête principale d’une table

composite.
v Elles utilisent l’autorisation par instance si elles sont interrogées directement. La

technique utilisée à cet effet est une jointure (SQL-) avec la vue qui stocke les
informations d’autorisation, c’est-à-dire la vue ou la table de requêtes prédéfinie
WORK_ITEM.

v Elles contiennent des données d’instance ; par exemple, celles d’instances de
tâche ou d’instances de processus.

Tableau 7. Tables de requêtes prédéfinies contenant des données d’instance

Données d’instance Nom de la table de requêtes

Informations sur les activités d’une instance
de processus.

ACTIVITY

ACTIVITY_ATTRIBUTE

ACTIVITY_SERVICE

Informations sur les escalades appartenant
aux tâches humaines.

ESCALATION

ESCALATION_CPROP

ESCALATION_DESC

Informations sur les instances de processus. PROCESS_ATTRIBUTE

PROCESS_INSTANCE

QUERY_PROPERTY

Informations sur les tâches humaines. TASK

TASK_CPROP

TASK_DESC

La table de requêtes WORK_ITEM contient aussi des données d’instance, mais elle
n’est pas utilisable comme table de requêtes principale ni comme table de requêtes
attachée. Les données d’élément de travail sont disponibles implicitement lors de
l’interrogation des tables de requêtes qui utilisent l’autorisation par instance.
Autrement dit, lorsque vous interrogez une table de requêtes utilisant l’autorisation
par instance, vous pouvez utiliser comme critères les attributs de la table
WORK_ITEM, même s’ils ne sont pas explicitement spécifiés par la table que vous
interrogez.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 211

Tables de requêtes prédéfinies avec des données de modèle

Pour les tables de requêtes prédéfinies qui contiennent des données de modèle,
l’autorisation par rôle est obligatoire. Elles ne peuvent être interrogées que par les
administrateurs, à l’aide de l’objet AdminAuthorizationOptions.

Le tableau suivant présente les tables de requêtes prédéfinies qui contiennent des
données de modèle. Ces tables de requêtes se caractérisent par ce qui suit :
v Elles peuvent être utilisées comme table de requête principale d’une table

composite.
v Elles utilisent l’autorisation par rôle si elles sont interrogées directement. Cela

signifie que l’appelant doit faire partie du rôle J2EE BPESystemAdministrator et
que l’objet AdminAuthorizationOptions doit être utilisé.

v Elles contiennent des données de modèle ; par exemple, celles des modèles de
tâche ou des modèles de processus.

Tableau 8. Tables de requêtes prédéfinies contenant des données de modèle

Données de modèle Nom de la table de requêtes

Informations sur les composants
d’application.

APPLICATION_COMP

Informations sur les modèles d’escalade. ESC_TEMPL

ESC_TEMPL_CPROP

ESC_TEMPL_DESC

Informations sur les modèles de processus. PROCESS_TEMPLATE

PROCESS_TEMPL_ATTR

Informations sur les modèles de tâche. TASK_TEMPL

TASK_TEMPL_CPROP

TASK_TEMPL_DESC

212 Développement et déploiement

Concepts associés

Tables de requêtes dans Business Process Choreographer
Les tables de requêtes permettent d’interroger les données des listes de tâches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requêtes peuvent porter sur les données des tâches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requêtes
fournissent une abstraction des données de Business Process Choreographer qui
peut être exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de l’implémentation proprement dite des tables. Les définitions des
tables de requêtes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requête.
Tables de requêtes supplémentaires
Les tables de requêtes supplémentaires que vous définissez dans Business Process
Choreographer fournissent à l’API de table de requêtes un accès à des données
métier dites ″externes″, c’est-à-dire qui ne sont pas gérées par Business Process
Choreographer. Grâce à ces tables de requêtes supplémentaires, les données
externes correspondantes peuvent être utilisées en association avec les données des
tables de requêtes prédéfinies pour extraire des informations sur des instances de
processus métier ou sur des tâches humaines.
Tables de requêtes composites
Dans Business Process Choreographer, les tables de requêtes composites sont
conçues à partir de tables de requêtes prédéfinies et de tables de requêtes
supplémentaires. Elles regroupent des données issues de tables ou de vues
existantes. Utilisez-les pour obtenir les informations d’une liste d’instances de
processus ou d’une liste de tâches (liste Mes tâches, par exemple).
Développement des tables de requêtes
Dans Business Process Choreographer, le développement des tables de requêtes
supplémentaires et des tables de requêtes composites s’effectue au cours du
développement de l’application, à l’aide de l’outil Query Table Builder. Les tables
de requêtes prédéfinies ne peuvent pas être développées ni déployées. Disponibles
lorsque Business Process Choreographer est installé, elles fournissent une vue
simplifiée des artefacts du schéma de base de données Business Process
Choreographer.
Requêtes sur des tables de requêtes
L’exécution de requêtes sur les tables de requêtes définies dans Business Process
Choreographer s’effectue au moyen de l’API de table de requêtes, qui est
disponible pour l’interface EJB de Business Flow Manager et l’API REST.
Autorisation pour les tables de requêtes
L’exécution de requêtes sur des tables de requêtes peut s’effectuer avec plusieurs
types d’autorisation : autorisation par instance, autorisation par rôle ou absence de
contrôle d’autorisation.
Référence associée

Vue de la base de données Business Process Choreographer
Ces informations de référence décrivent les colonnes disponibles dans les vues de
base de données prédéfinies.

Tables de requêtes supplémentaires
Les tables de requêtes supplémentaires que vous définissez dans Business Process
Choreographer fournissent à l’API de table de requêtes un accès à des données
métier dites ″externes″, c’est-à-dire qui ne sont pas gérées par Business Process
Choreographer. Grâce à ces tables de requêtes supplémentaires, les données

Chapitre 4. Développement d’applications client pour les tâches et processus métier 213

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=r6bpc_dbviews

externes correspondantes peuvent être utilisées en association avec les données des
tables de requêtes prédéfinies pour extraire des informations sur des instances de
processus métier ou sur des tâches humaines.

Les tables de requêtes supplémentaires sont associées à des tables ou des vues
dans la base de données de Business Process Choreographer. Il s’agit de tables de
requêtes qui contiennent des données métier supplémentaires, tenues à jour par
des applications externes (celles du client). Les tables de requêtes supplémentaires
fournissent des informations dans une table composite qui vient en complément
du contenu d’une table de requêtes prédéfinie.

Les tables de requêtes supplémentaires ont les propriétés suivantes :

Tableau 9. Propriétés des tables de requêtes supplémentaires

Propriété Description

Nom Le nom d’une table de requêtes doit être unique au sein d’une
même installation Business Process Choreographer. A l’exécution
de la requête, c’est ce nom qui est utilisé pour identifier la table de
requêtes interrogée.

Une table de requêtes est identifiée de manière unique par son
nom, qui est de la forme préfixe.nom. La longueur de préfixe.nom ne
doit pas dépasser 28 caractères. Le préfixe 'IBM' est réservé et ne
doit pas être utilisé ; par exemple, 'COMPANY.BUS_DATA' est un nom
correct.

Nom de base de
données

Le nom de la table ou vue associée dans la base de données. Seules
des lettres majuscules sont acceptées.

Schéma de base de
données

Le schéma de la table ou vue associée dans la base de données.
Seules des lettres majuscules sont acceptées. Ce schéma doit être
différent de celui de la base de données de Business Process
Choreographer. Cependant, la table ou la vue doit être accessible
avec la même source de données JDBC que celle qui est utilisée
pour accéder à la base de données de Business Process
Choreographer.

Attributs Les attributs des tables de requêtes supplémentaires définissent les
éléments d’information disponibles pour les requêtes. Ces attributs
doivent avoir le même nom que les colonnes auxquelles ils
correspondent dans la table ou la vue de base de données.

Les attributs sont définis avec un nom et un type. Le nom est
défini en majuscules. Le type est l’un des suivants :

v Boolean : une valeur booléenne

v Decimal : un nombre en virgule flottante

v ID : un ID d’objet d’une longueur de 16 octets, tel que le TKIID
de la table de requêtes TASK

v Number : un entier, court (type short) ou long (type long)

v String : une chaîne

v Timestamp : un horodatage

Jointures Des jointures doivent être définies sur les tables supplémentaires si
elles sont attachées à une table dite ″principale″ pour former des
tables de requêtes composites. Une jointure définit quels attributs
sont utilisés pour corréler les informations de la table de requêtes
supplémentaire avec celles de la table de requêtes principale.
Lorsqu’une jointure est définie, l’attribut source et l’attribut cible
doivent être du même type.

214 Développement et déploiement

Tableau 9. Propriétés des tables de requêtes supplémentaires (suite)

Propriété Description

Autorisation Aucun contrôle d’autorisation n’est spécifié pour les tables de
requêtes supplémentaires ; par conséquent, tous les utilisateurs
authentifiés peuvent voir leur contenu.

Concepts associés

Tables de requêtes dans Business Process Choreographer
Les tables de requêtes permettent d’interroger les données des listes de tâches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requêtes peuvent porter sur les données des tâches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requêtes
fournissent une abstraction des données de Business Process Choreographer qui
peut être exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de l’implémentation proprement dite des tables. Les définitions des
tables de requêtes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requête.
Tables de requêtes prédéfinies
Les tables de requêtes prédéfinies fournissent l’accès aux données dans la base de
données de Business Process Choreographer. Elles correspondent à une
représentation, sous forme de tables de requêtes, des vues de la base de données
de Business Process Choreographer, telles que TASK ou PROCESS_INSTANCE.
Tables de requêtes composites
Dans Business Process Choreographer, les tables de requêtes composites sont
conçues à partir de tables de requêtes prédéfinies et de tables de requêtes
supplémentaires. Elles regroupent des données issues de tables ou de vues
existantes. Utilisez-les pour obtenir les informations d’une liste d’instances de
processus ou d’une liste de tâches (liste Mes tâches, par exemple).
Développement des tables de requêtes
Dans Business Process Choreographer, le développement des tables de requêtes
supplémentaires et des tables de requêtes composites s’effectue au cours du
développement de l’application, à l’aide de l’outil Query Table Builder. Les tables
de requêtes prédéfinies ne peuvent pas être développées ni déployées. Disponibles
lorsque Business Process Choreographer est installé, elles fournissent une vue
simplifiée des artefacts du schéma de base de données Business Process
Choreographer.
Requêtes sur des tables de requêtes
L’exécution de requêtes sur les tables de requêtes définies dans Business Process
Choreographer s’effectue au moyen de l’API de table de requêtes, qui est
disponible pour l’interface EJB de Business Flow Manager et l’API REST.
Autorisation pour les tables de requêtes
L’exécution de requêtes sur des tables de requêtes peut s’effectuer avec plusieurs
types d’autorisation : autorisation par instance, autorisation par rôle ou absence de
contrôle d’autorisation.

Tables de requêtes composites
Dans Business Process Choreographer, les tables de requêtes composites sont
conçues à partir de tables de requêtes prédéfinies et de tables de requêtes
supplémentaires. Elles regroupent des données issues de tables ou de vues
existantes. Utilisez-les pour obtenir les informations d’une liste d’instances de
processus ou d’une liste de tâches (liste Mes tâches, par exemple).

Chapitre 4. Développement d’applications client pour les tâches et processus métier 215

Les tables de requêtes composites autorisent une configuration fine des filtres et
des options d’autorisation, permettant ainsi d’optimiser l’accès aux données lors de
l’exécution des requêtes. Elles n’ont pas de représentation spécifique de données
dans la base de données ; elles accèdent simplement au contenu correspondant aux
tables prédéfinies et supplémentaires dont elles sont constituées. Les tables de
requêtes composites sont créées au moyen de code SQL, qui est optimisé pour les
requêtes sur les listes de tâches et de processus.

Les tables de requêtes composites sont conçues par les développeurs d’applications
clientes. Dans les scénarios de production, leur utilisation est à privilégier par
rapport à l’emploi des API de requêtes standard de Business Process
Choreographer, car elles fournissent une abstraction de l’implémentation
proprement dite des requêtes et permettent donc d’optimiser celles-ci. En outre, les
tables de requêtes composites autorisent des changements à l’exécution sans que
cela nécessite de redéployer le client qui y accède.

La figure suivante offre une vue d’ensemble du contenu des tables de requêtes
composites :

Toutes les tables de requêtes composites sont définies avec une table de requêtes
principale et zéro, une ou plusieurs tables de requêtes attachées.

...

...

query table query (selected attributes): result set structure

query table definition (defined columns/attributes)

additional
attributes
at query time

defined
attributes

available
attributes

work item
query table

predefined
predefined

supplemental

primary query tableauthorization attached query tables

WORK_ITEM view primary query table attached
query table

attached
query table

Figure 24. Contenu des tables de requêtes composites

216 Développement et déploiement

La table de requêtes principale :
v Constitue l’information principale contenue dans une table de requêtes

composite.
v Doit être l’une des tables de requêtes prédéfinies.
v Identifie de manière unique, par sa clé primaire, chaque objet contenu dans la

table de requêtes composites. Par exemple, dans le cas de la table de requêtes
prédéfinie TASK, il s’agit de l’ID de tâche TKIID.

v Contrôle l’accès au contenu d’une table de requêtes en utilisant les éléments de
travail qui figurent dans la table de requêtes WORK_ITEM, si l’autorisation par
instance est utilisée.

v Détermine la liste des objets retournés comme lignes d’une table lorsque la table
composite est interrogée.

Les tables de requêtes attachées :
v Peuvent être des tables de requêtes prédéfinies ou supplémentaires déjà

déployées sur le système.
v Ont pour objectif de fournir des informations complémentaires de celles qui sont

fournies par la table de requêtes principale. Par exemple, si TASK est la table de
requêtes principale, la description de chaque tâche fournie dans la table de
requêtes TASK_DESC peut être ajoutée au contenu de la table de requêtes
composite.

En général, la table de requêtes principale est choisie en fonction de l’objectif de la
table de requêtes composite.
v Si la table composite doit décrire une liste de tâches, la table de requêtes TASK

sera désignée comme table principale.
v Si la table composite doit décrire une liste de processus, la table de requêtes

PROCESS_INSTANCE sera désignée comme table principale.
v Les listes d’activités sont obtenues en utilisant ACTIVITY comme table de

requêtes principale.
v Les listes d’escalades de tâches humaines sont obtenues en utilisant

ESCALATION comme table de requêtes principale.

La relation entre table de requêtes principale et tables attachées

La relation entre la table principale et une table attachée est du type un à un ou un
à zéro, ce qui signifie que, dans la table principale, chaque ligne doit correspondre
au plus à une ligne de la table attachée. Si le type de relation un à un ou un à zéro
n’est pas respecté, une exception d’exécution (RuntimeException) se produira à
l’exécution de la requête.

La corrélation entre table principale et chaque table attachée est réalisée par un
attribut de jointure qui est défini sur la table attachée. Pour les tables de requêtes
prédéfinies, cet attribut de jointure ne peut pas être changé, car il décrit la relation
entre les données dans les différentes tables de requêtes de Process Choreographer.
Cet attribut de jointure est généralement suffisant pour maintenir la relation un à
un ou un à zéro. Par exemple, l’attribut CONTAINMENT_CTX_ID est utilisé sur la
table de requêtes TASK pour attacher les données de l’instance de processus
associée, laquelle est identifiée par l’attribut PIID dans la table de requêtes
PROCESS_INSTANCE. Cependant, lorsque la relation créée par la jointure est du
type un à plusieurs, un critère additionnel doit être spécifié afin retrouver une
relation du type un à un ou un à zéro. C’est ce qu’on appelle le critère de sélection.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 217

Les critères de sélection sont spécifiés pendant la phase de développement des
tables de requêtes, à l’aide de l’outil Query Table Builder. Ils sont utilisés dans la
définition des tables de requêtes pour choisir un élément d’information parmi les
multiples éléments d’une relation un à plusieurs. Par exemple, il peut s’agir de
l’expression “LOCALE='fr_FR'”. Une tâche peut avoir plusieurs descriptions
identifiées chacune par un code d’environnement local différent.

Exemple 1 :

La figure suivante illustre l’emploi de critères de sélection spécifiés sur les tables
de requêtes attachées :

La table de requêtes composite contient les attributs ID, STATE, NAME,
CUSTOMER et DESCRIPTION.
v Les attributs ID (le TKIID), STATE et NAME sont fournis par la table de

requêtes principale TASK.
v CUSTOMER est une propriété personnalisée définie sur la table TASK. Les

propriétés personnalisées sont stockées dans la table de requêtes TASK_CPROP.
Pour une tâche particulière, une propriété personnalisée est identifiée de manière
unique par son nom. Ce point est reflété dans le critère de sélection
“CUSTOMER='IBM'”.

query table definition (defined columns/attributes) with sample values

ID STATE NAME CUSTOMER DESCRIPTION

...

...

...

...

...

............

...

... ...

TK2 2 TSK-2 IBM The Task

TK1

TK2

TK3
TK1

TK2

TK2

TK2

TK3

TK3

TKIID STATE NAME

TKIID NAME VALUE

TKIID LOCALE DESC

3

2

2

TASK_1

TSK_2

TASK_3
DueDate

id

customer

DueDate

id

customer

-
1234

IBM

TASK_CPROP

TASK_DESC

TASK

CUSTOMER=’IBM’

attached

attached

primary

selection criterion

selection criterion

LOCALE=’en_US’

...

...... ...

TK2

TK3

TK3

TK1 en_US

de_DE

de_DE

en_US

The Task

Der Task

Der Task

The Task

TK2 en_US The Task

Figure 25. Table de requêtes composite avec critères de sélection

218 Développement et déploiement

v DESCRIPTION est la description de la tâche ; elle est stockée dans la table de
requêtes TASK_DESC. La description de tâche associée à une instance de tâche
particulière est identifiée de manière unique par son environnement local. Ce
point est reflété dans le critère de sélection “LOCALE='en_US'”.

Exemple 2 :

Si TASK est la table de requêtes principale et que TASK_DESC y est attachée, un
environnement local particulier doit être choisi ; il s’agit ici de l’attribut LOCALE
de la table TASK_DESC. L’objectif de cet exemple est d’illustrer la relation entre la
table principale et la table attachée en utilisant TASK comme table principale et
TASK_DESC comme table attachée. Le tableau suivant montre des exemples de
contenus d’une table composite, avec un critère de sélection valide spécifié pour la
table attachée TASK_DESC.

Tableau 10. Contenus valides d’une table de requêtes composite

Table principale TASK Table attachée TASK_DESC

NAME LOCALE DESCRIPTION

task_one en_US This is a description.

task_two en_US This is a description.

...

Le tableau suivant présente des contenus hypothétiques qui ne sont pas valides (en
gras) si le critère de sélection n’est pas défini correctement, ce qui signifie que la
relation un à un ou un à zéro n’est pas respectée.

Tableau 11. Contenus non valides d’une table de requêtes composite

TASK (table de requêtes
principale) TASK_DESC (table de requêtes attachée)

NAME LOCALE DESCRIPTION

task_one en_US This is a description.

task_one de_DE Das ist eine Beschreibung.

...

Propriétés

Les tables de requêtes composites ont les propriétés suivantes :

Tableau 12. Propriétés des tables de requêtes composites

Propriété Description

Nom Le nom d’une table de requêtes doit être unique au sein d’une
même installation Business Process Choreographer. A l’exécution
de la requête, c’est ce nom qui est utilisé pour identifier la table de
requêtes interrogée.

Une table de requêtes est identifiée de manière unique par son
nom, qui est de la forme préfixe.nom dans le cas d’une table de
requêtes composite. La longueur de préfixe.nom ne doit pas
dépasser 28 caractères. Le préfixe ’IBM’ est réservé et ne doit pas
être utilisé ; par exemple, ’COMPANY.TODO_TASK_LIST’ est un
nom correct.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 219

Tableau 12. Propriétés des tables de requêtes composites (suite)

Propriété Description

Attributs Les attributs des tables de requêtes composites définissent les
éléments d’information disponibles pour les requêtes.

Les attributs sont définis avec un nom en majuscules. Leur type est
hérité de celui de l’attribut auquel ils font référence, qui est l’un
des suivants :

v Boolean : une valeur booléenne

v Decimal : un nombre en virgule flottante

v ID : un ID d’objet, tel que le TKIID de la table de requêtes TASK

v Number : un entier, court (type short) ou long (type long)

v String : une chaîne

v Timestamp : un horodatage

Les attributs d’une table de requêtes composite sont définis via une
référence aux attributs de la table principale ou des tables
attachées. Les attributs des tables de requêtes composites héritent
des types et des constantes des attributs auxquels ils font référence.

Outre les attributs qui font partie de la définition de la table de
requêtes, les données d’élément de travail peuvent être interrogées
à l’exécution. Les conditions à remplir sont que la table de requêtes
principale contienne des données d’instance, (c’est le cas des tables
de requêtes TASK et PROCESS_INSTANCE) et que l’autorisation
par instance soit utilisée sur la table de requêtes composite. Par
exemple, la requête peut être définie de manière à renvoyer
uniquement les tâches humaines pour lesquelles l’utilisateur est un
propriétaire potentiel.

220 Développement et déploiement

Tableau 12. Propriétés des tables de requêtes composites (suite)

Propriété Description

Autorisation Chaque table de requêtes composite définit si l’autorisation par
instance ou par rôle est utilisée lorsque des requêtes sont exécutées
dessus (ou s’il n’y a pas de contrôle d’autorisation).

Si l’autorisation par instance est définie, la requête renvoie
seulement les objets avec des éléments de travail destinés à
l’utilisateur qui exécute la requête. Cependant, en utilisant l’objet
AdminAuthorizationOptions, vous pouvez limiter cette vérification
à un simple contrôle de l’existence d’un élément de travail pour
tout utilisateur. L’utilisateur doit faire partie du rôle J2EE
BPESystemAdministrator pour les requêtes ainsi configurées, et
l’objet AdminAuthorizationOptions doit être passé à l’API de table
de requêtes.

Si l’autorisation par rôle est définie, l’utilisateur doit faire partie du
rôle J2EE BPESystemAdministrator pour les requêtes ainsi
configurées, et l’objet AdminAuthorizationOptions doit être passé à
l’API de table de requêtes.

Si aucun contrôle d’autorisation n’est défini, l’exécution de la
requête a lieu sans vérification préalable de l’existence des
éléments de travail des objets associés dans la table de requête.
Tous les utilisateurs authentifiés peuvent voir le contenu de la table
de requêtes.

L’autorisation par instance peut être définie si la table de requêtes
principale contient des données d’instance ; l’autorisation par rôle
peut être définie si la table de requêtes principale contient des
données de modèle. L’absence de contrôle d’autorisation peut être
définie sur les tables de requêtes composites, quelle que soit leur
table principale.

Filtres

Les filtres servent à limiter le nombre d’objets ou de lignes contenus dans une
table de requêtes composite.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 221

Pendant le développement d’une table de requêtes composite, des filtres peuvent
être définis et appliqués :
v à la table de requêtes principale, comme filtre de la table de requêtes principale ;
v à la table de requêtes WORK_ITEM, laquelle est implicitement disponible et

assure le contrôle d’accès (autorisation) si la table de requêtes principale contient
des données d’instance. Ce filtre est appelé filtre d’autorisation ; il est disponible
uniquement si la table composite est configurée pour utiliser l’autorisation par
instance.

v à la table de requêtes composite, comme filtre de table de requêtes.

Les filtres sont définis durant le développement des tables de requêtes. Par
exemple, avec une table de requêtes composite dont la table principale est TASK, il
est possible de filtrer les tâches de manière à exclure toutes celles qui ne sont pas à
l’état prêt (en utilisant l’expression “STATE=STATE_READY” comme filtre de la table
de requêtes principale).

Autorisation

L’autorisation d’accès au contenu d’une table de requêtes composite est similaire à
celle qui réglemente l’accès à la table utilisée comme table principale. La différence
est que la table composite peut être configurée pour être plus restrictive.
v Si l’autorisation par instance est utilisée, les données contenues dans la table

composite sont vérifiées par rapport aux éléments de travail dans la table de
requêtes WORK_ITEM. Cette vérification s’effectue par rapport à la table de
requêtes principale. Les éléments de travail ’everybody’, ’individual’, ’group’ et
’inherited’ sont utilisés pour la vérification, selon la configuration de la table de
requêtes composite. Si des éléments de travail ’inherited’ sont spécifié, les objets
ayant comme parent une instance de processus (par exemple, une tâche humaine
participante) et qui sont liés à un élément de travail ’everybody’, ’individual’ ou

...

query table definition (build-time conditions)

work item
query table

predefined
predefined

supplemental

primary query tableauthorization attached query tables

WORK_ITEM view primary query table attached
query table

attached
query table

...additional
attributes
at query time

defined
attributes

work item filter

query table filter

primary query table
filter

Figure 26. Filtres dans les tables de requêtes composites

222 Développement et déploiement

’group’ (en fonction de la configuration), sont présents dans la table de requêtes
composite. En général, les éléments de travail ’inherited’ ne sont utiles qu’aux
administrateurs.

v Les tables composites dont la table principale contient des données de modèle
ne doivent pas être configurées pour utiliser l’autorisation par instance. Si
l’autorisation par rôle est utilisée, les requêtes ne peuvent être exécutées que par
les utilisateurs faisant partie du rôle J2EE BPESystemAdministrator, et l’objet
AdminAuthorizationOptions doit être utilisé.

Concepts associés

Tables de requêtes dans Business Process Choreographer
Les tables de requêtes permettent d’interroger les données des listes de tâches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requêtes peuvent porter sur les données des tâches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requêtes
fournissent une abstraction des données de Business Process Choreographer qui
peut être exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de l’implémentation proprement dite des tables. Les définitions des
tables de requêtes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requête.
Tables de requêtes prédéfinies
Les tables de requêtes prédéfinies fournissent l’accès aux données dans la base de
données de Business Process Choreographer. Elles correspondent à une
représentation, sous forme de tables de requêtes, des vues de la base de données
de Business Process Choreographer, telles que TASK ou PROCESS_INSTANCE.
Tables de requêtes supplémentaires
Les tables de requêtes supplémentaires que vous définissez dans Business Process
Choreographer fournissent à l’API de table de requêtes un accès à des données
métier dites ″externes″, c’est-à-dire qui ne sont pas gérées par Business Process
Choreographer. Grâce à ces tables de requêtes supplémentaires, les données
externes correspondantes peuvent être utilisées en association avec les données des
tables de requêtes prédéfinies pour extraire des informations sur des instances de
processus métier ou sur des tâches humaines.
Développement des tables de requêtes
Dans Business Process Choreographer, le développement des tables de requêtes
supplémentaires et des tables de requêtes composites s’effectue au cours du
développement de l’application, à l’aide de l’outil Query Table Builder. Les tables
de requêtes prédéfinies ne peuvent pas être développées ni déployées. Disponibles
lorsque Business Process Choreographer est installé, elles fournissent une vue
simplifiée des artefacts du schéma de base de données Business Process
Choreographer.
Requêtes sur des tables de requêtes
L’exécution de requêtes sur les tables de requêtes définies dans Business Process
Choreographer s’effectue au moyen de l’API de table de requêtes, qui est
disponible pour l’interface EJB de Business Flow Manager et l’API REST.
Autorisation pour les tables de requêtes
L’exécution de requêtes sur des tables de requêtes peut s’effectuer avec plusieurs
types d’autorisation : autorisation par instance, autorisation par rôle ou absence de
contrôle d’autorisation.

Développement des tables de requêtes
Dans Business Process Choreographer, le développement des tables de requêtes
supplémentaires et des tables de requêtes composites s’effectue au cours du

Chapitre 4. Développement d’applications client pour les tâches et processus métier 223

développement de l’application, à l’aide de l’outil Query Table Builder. Les tables
de requêtes prédéfinies ne peuvent pas être développées ni déployées. Disponibles
lorsque Business Process Choreographer est installé, elles fournissent une vue
simplifiée des artefacts du schéma de base de données Business Process
Choreographer.

L’outil Query Table Builder, disponible sous forme de plug-in Eclipse, peut être
téléchargé sur le site des SupportPacs WebSphere Business Process Management.
Recherchez le SupportPac PA71 WebSphere Process Server - Query Table Builder.
Pour accéder au lien, consultez la section consacrée aux références de cette
rubrique.

L’utilisation de tables de requêtes a une incidence sur le développement et le
déploiement des applications. Les étapes suivantes décrivent les rôles mis en jeu
lorsque vous concevez et développez une application Business Process
Choreographer utilisant des tables de requêtes.

Tableau 13. Etapes de développement de tables de requêtes

Etape Rôle Description

1. Analyse Analyste métier,
développeur de client

Analysez les besoins de l’application cliente
et déterminez quelles tables de requêtes
sont nécessaires. Posez-vous les questions
suivantes :

v Combien de listes de tâches ou de
processus faut-il fournir à l’utilisateur ? Y
a-t-il des listes de tâches ou de processus
qui pourraient partager la même table de
requêtes ?

v Quel type d’autorisation est utilisé ? Par
instance, par rôle ou aucun ?

v Existe-t-il, dans le système, d’autres
tables de requêtes déjà prêtes à l’emploi
qui pourraient être réutilisées ?

v Les tables de requêtes doivent-elles
fournir le contenu en plusieurs langues ?
Si oui, les critères de sélection sur les
tables de requêtes attachées doivent être
LOCALE=$LOCALE.

2. Développement des
tables de requêtes

Développeur de
client, analyste métier

Développez les tables de requêtes à utiliser
dans l’application cliente. Efforcez-vous de
spécifier leur définition de manière à
optimiser les performances obtenues avec
les requêtes qu’elles fournissent.

3. Déploiement des
tables de requêtes

Administrateur Les tables de requêtes doivent être
déployées dans l’environnement d’exécution
avant de pouvoir être utilisées. Cette étape
est réalisée au moyen de la commande
wsadmin manageQueryTable.py.

4. Requêtes sur les
tables de requêtes

Développeur de client La dernière étape du développement
consiste à exécuter des requêtes sur les
tables. Le développeur de l’application
cliente doit connaître le nom de la table à
interroger et ses attributs.

224 Développement et déploiement

L’exemple de code ci-dessous utilise l’API de table de requêtes pour interroger une
table de requêtes. Pour des raisons de simplification, les exemples 1 et 2 fournis
interrogent la table de requêtes prédéfinie TASK. Les exemples 3 et 4 interrogent
une table de requêtes composite et supposent que celle-ci a été préalablement
déployée sur le système. Dans le cadre du développement d’applications, il est
recommandé d’utiliser des tables de requêtes composites au lieu d’interroger
directement les tables de requêtes prédéfinies.

Exemple 1
// permet d'obtenir le contexte d'affectation de nom et de rechercher l'interface
// EJB home de Business Flow Manager ; cette interface
// doit être mise en cache pour des raisons de performances
// nous supposons également qu'il existe une référence EJB
// à l'EJB local de Business Flow Manager
Context ctx = new InitialContext();
LocalBusinessFlowManagerHome home =
(LocalBusinessFlowManagerHome)
ctx.lookup("java:comp/env/ejb/BFM");

// crée le module de remplacement de Business Flow Manager côté client
LocalBusinessFlowManager bfm = home.create();

// ***
// ******************* exemple 1 *******************
// ***

// exécute une requête sur la table de requêtes prédéfinie
// TASK ; il s'agit ici d'une simple liste Mes tâches
EntityResultSet ers = null;
ers = bfm.queryEntities("TASK", null, null, null);

// imprime le résultat dans STDOUT
EntityInfo entityInfo = ers.getEntityInfo();
List attList = entityInfo.getAttributeInfo();
int attSize = attList.size();

Iterator iter = ers.getEntities().iterator();
while(iter.hasNext()) {
System.out.print("Entity: ");
Entity entity = (Entity) iter.next();
for (int i = attSize - 1; i >= 0; i--) {
AttributeInfo ai = (AttributeInfo) attList.get(i);
System.out.print(

entity.getAttributeValue(ai.getName()));
}
System.out.println();
}

Exemple 2
// ***
// ******************* exemple 2 *******************
// ***

// identique à l'exemple 1, mais utilise des requêtes
// par ligne
RowResultSet rrs = null;
rrs = bfm.queryRows("TASK", null, null, null);

attList = rrs.getAttributeInfo();
attSize = attList.size();

// imprime le résultat dans STDOUT
while (rrs.next()) {
System.out.print("Row: ");

Chapitre 4. Développement d’applications client pour les tâches et processus métier 225

for (int i = attSize - 1; i >= 0; i--) {
AttributeInfo ai = (AttributeInfo) attList.get(i);
System.out.print(

rrs.getAttributeValue(ai.getName()));
}
System.out.println();
}

Exemple 3
// ***
// ******************* exemple 3 *******************
// ***

// exécute une requête sur une table de requêtes composite
// préalablement déployée sur le système ;
// on suppose que le nom est COMPANY.TASK_LIST
ers = bfm.queryEntities(

"COMPANY.TASK_LIST", null, null, null);
^

// imprime le résultat dans STDOUT ...

Exemple 4
// ***
// ******************* exemple 4 *******************
// ***

// requête sur la même table de requêtes que dans l'exemple 3,
// mais utilise des options personnalisées
FilterOptions fo = new FilterOptions();

// renvoie uniquement les objets à l'état Prêt
fo.setQueryCondition("STATE=STATE_READY");

// trie les objets en fonction de leur ID
fo.setSortAttributes("ID");

// limite à 50 le nombre d'entités
fo.setThreshold(50);

// récupère uniquement un sous-ensemble des attributs définis
// au niveau de la table de requêtes
fo.setSelectedAttributes("ID, STATE, DESCRIPTION");

AuthorizationOptions ao = new AuthorizationOptions();

// ne renvoie pas les objets que tous les utilisateurs sont
// autorisés à voir
ao.setEverybodyUsed(Boolean.FALSE);

ers = bfm.queryEntities(
"COMPANY.TASK_LIST", fo, ao, null);

// imprime le résultat dans STDOUT ...

226 Développement et déploiement

Concepts associés

Tables de requêtes dans Business Process Choreographer
Les tables de requêtes permettent d’interroger les données des listes de tâches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requêtes peuvent porter sur les données des tâches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requêtes
fournissent une abstraction des données de Business Process Choreographer qui
peut être exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de l’implémentation proprement dite des tables. Les définitions des
tables de requêtes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requête.
Tables de requêtes prédéfinies
Les tables de requêtes prédéfinies fournissent l’accès aux données dans la base de
données de Business Process Choreographer. Elles correspondent à une
représentation, sous forme de tables de requêtes, des vues de la base de données
de Business Process Choreographer, telles que TASK ou PROCESS_INSTANCE.
Tables de requêtes supplémentaires
Les tables de requêtes supplémentaires que vous définissez dans Business Process
Choreographer fournissent à l’API de table de requêtes un accès à des données
métier dites ″externes″, c’est-à-dire qui ne sont pas gérées par Business Process
Choreographer. Grâce à ces tables de requêtes supplémentaires, les données
externes correspondantes peuvent être utilisées en association avec les données des
tables de requêtes prédéfinies pour extraire des informations sur des instances de
processus métier ou sur des tâches humaines.
Tables de requêtes composites
Dans Business Process Choreographer, les tables de requêtes composites sont
conçues à partir de tables de requêtes prédéfinies et de tables de requêtes
supplémentaires. Elles regroupent des données issues de tables ou de vues
existantes. Utilisez-les pour obtenir les informations d’une liste d’instances de
processus ou d’une liste de tâches (liste Mes tâches, par exemple).
Requêtes sur des tables de requêtes
L’exécution de requêtes sur les tables de requêtes définies dans Business Process
Choreographer s’effectue au moyen de l’API de table de requêtes, qui est
disponible pour l’interface EJB de Business Flow Manager et l’API REST.
Filtres et critères de sélection des tables de requêtes
Les filtres et les critères de sélection sont définis pendant la phase de
développement des tables de requêtes, à l’aide de l’outil Query Table Builder, qui
utilise une syntaxe similaire aux clauses SQL WHERE. En définissant clairement
des filtres et des critères de sélection, vous pouvez spécifier des conditions basées
sur les attributs des tables de requêtes.
Tâches associées

Administration des tables de requêtes
Utilisez le script wsadmin manageQueryTable.py pour administrer les tables de
requêtes de Business Process Choreographer qui ont été développées à l’aide de
Query Table Builder. Contrairement aux tables de requêtes prédéfinies, qui sont
prêtes à l’emploi, les tables de requêtes composites et supplémentaires doivent être
déployées sur WebSphere Process Server avant de pouvoir être utilisées avec l’API
de table de requêtes.

Déploiement de tables de requêtes
Utilisez le script manageQueryTable.py pour déployer des tables de requêtes

Chapitre 4. Développement d’applications client pour les tâches et processus métier 227

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=t4querytables_admin
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=t3querytables_installing

composites et supplémentaires dans Business Process Choreographer. Les tables de
requêtes doivent être déployées sur un serveur autonome en cours d’exécution ou
dans un cluster dont au moins un des membres est en cours d’exécution.
L’annulation du déploiement des tables supplémentaires et composites doit
également être réalisée sur les serveurs en cours d’exécution. Pour les tables de
requêtes supplémentaires, les objets physiques de base de données associés (vue de
base de données ou table de base de données, par exemple) doivent le cas échéant
être créés avant l’utilisation de la table de requêtes.

Filtres et critères de sélection des tables de requêtes
Les filtres et les critères de sélection sont définis pendant la phase de
développement des tables de requêtes, à l’aide de l’outil Query Table Builder, qui
utilise une syntaxe similaire aux clauses SQL WHERE. En définissant clairement
des filtres et des critères de sélection, vous pouvez spécifier des conditions basées
sur les attributs des tables de requêtes.

Pour toute information sur l’installation de l’outil Query Table Builder, consultez le
site des SupportPacs de WebSphere Business Process Management. Recherchez le
SupportPac PA71 WebSphere Process Server - Query Table Builder. Pour accéder au
lien, consultez la section consacrée aux références de cette rubrique.

Attributs

Lorsqu’il est question d’attributs dans une expression, il s’agit de ceux des tables
de requêtes. Selon l’endroit où se situe l’expression, différents attributs sont
disponibles. Le développeur d’applications clientes ne peut utiliser des expressions
que dans les filtres de requête qu’il passe à l’API de table de requêtes. Le
développeur de tables de requêtes composites a quant à lui la possibilité d’utiliser
des expressions en des endroits plus variés. Le tableau suivant décrit les attributs
disponibles et en quels endroits ils sont utilisables.

228 Développement et déploiement

Tableau 14. Les attributs des tables de requêtes et leur utilisation dans les expressions

Où Expression Attributs disponibles

API de table de
requêtes

Filtre de requête v Tous les attributs définis dans la table de
requêtes.

v Si l’autorisation par instance est utilisée,
tous les attributs définis dans la table de
requêtes WORK_ITEM, préfixés avec
'WI.' .

Exemples :

v STATE=STATE_READY, si la table de requêtes
contient un attribut STATE et si une
constante STATE_READY est définie pour
cet attribut

v STATE=STATE_READY AND
WI.REASON=REASON_POTENTIAL_OWNER, si la
table de requêtes contient un attribut
STATE et si elle utilise l’autorisation par
instance

Table de requêtes
composite

Filtre de table de
requêtes

Filtre de la table de
requêtes principale

v Tous les attributs définis pour la table de
requêtes principale.

Exemple :

v STATE=STATE_READY, si la table de requêtes
contient un attribut STATE et si une
constante STATE_READY est définie pour
cet attribut

Filtre d’autorisation v Tous les attributs définis dans la table de
requêtes prédéfinie WORK_ITEM,
préfixés avec 'WI.' .

Exemple :

v WI.REASON=REASON_POTENTIAL_OWNER

Critère de sélection v Tous les attributs définis dans la table de
requêtes attachée et associée.

Exemple :

v LOCALE='en_US', si la table de requêtes
attachée contient un attribut LOCALE, ce
qui est le cas de la table TASK_DESC

La figure suivante montre les différents endroits où les filtres et critères de
sélection peuvent être utilisés dans des expressions ; elle inclut également des
exemples :

Chapitre 4. Développement d’applications client pour les tâches et processus métier 229

Expressions

Les expressions ont la syntaxe suivante :
expression ::= attribut op_binaire valeur |

attribut op_unaire |
attribut op_liste liste |
(expression) |
expression AND expression |
expression> OR expression

Les règles suivantes s’appliquent :
v L’opérateur AND est évalué avant l’opérateur OR. Les sous-expressions peuvent

être reliées par des opérateurs AND et OR.
v Les expressions peuvent être groupées au moyen de parenthèses, qui doivent

être appariées.

Exemples :
v STATE = STATE_READY

v NAME IS NOT NULL

v STATE IN (2, 5, STATE_FINISHED)

v ((PRIORITY=1) OR (WI.REASON=2)) AND (STATE=2)

query table query (runtime)

query table definition (build-time)

primary query table
predefined

attached query tables

WORK_ITEM view TASK
TASK_
CPROP

TASK_
DESC

authorization

CUSTOMER=’IBM’

FilterOptions fo = new FilterOptions ();
fo. setQueryCondition (”);”CUSTOMER=’IBM’

CUSTOMER=’IBM’ OR CUSTOMER=’OTHER’

query filter

query table filter

primary query table filter

selection criteria

authorization filter

REASONS ID STATE NAME CUSTOMER DISP

WI.REASON=READER STATE=STATE_READY

NAME=’xyz’
LOCALE=’en

_US’

Figure 27. Filtres et critères de sélection dans des expressions

230 Développement et déploiement

Une expression est prise en compte et évaluée dans une portée précise, qui
détermine les attributs valides pour cette expression. Les critères de sélection ou
les filtres de requête sont pris en compte et évalués dans la portée de la table de
requêtes sur laquelle la requête est exécutée.

L’exemple suivant s’applique à une requête exécutée sur la table de requêtes
prédéfinie TASK :
'(STATE=STATE_READY AND WI.REASON=REASON_POTENTIAL_OWNER)
OR (WI.REASON=REASON_OWNER)'

Opérateurs binaires

Les opérateurs binaires suivants sont disponibles :
op_binaire ::= = | < | > | <> | <= | >= | LIKE | NOT LIKE

Les règles suivantes s’appliquent :
v L’opérande côté gauche d’un opérateur binaire doit faire référence à un attribut

d’une table de requêtes.
v L’opérande côté droit d’un opérateur binaire doit être une valeur littérale, une

valeur constante ou un paramètre.
v Les opérateurs LIKE et NOT LIKE sont utilisables uniquement avec les attributs du

type d’attribut STRING.
v Les opérandes côtés gauche et droit doivent avoir des types d’attribut

compatibles.
v Les paramètres utilisateur doivent être compatibles avec le type d’attribut de

l’attribut côté gauche.

Exemples :
v STATE > 2

v NAME LIKE 'start%'

v STATE <> PARAM(theState)

Opérateurs unaires

Les opérateurs unaires suivants sont disponibles :
op_unaire ::= IS NULL | IS NOT NULL

Les règles suivantes s’appliquent :
v L’opérande côté gauche d’un opérateur unaire doit faire référence à un attribut

d’une table de requêtes. Les attributs valides dépendent de l’endroit où le filtre
ou le critère de sélection est utilisé.

v Tous les attributs peuvent être testés pour déterminer s’ils sont NULL ; par
exemple : CUSTOMER IS NOT NULL.

Exemple :
DESCRIPTION IS NOT NULL

Opérateurs de liste

Les opérateurs de liste suivants sont disponibles :
op_liste ::= IN | NOT IN

Les règles suivantes s’appliquent :

Chapitre 4. Développement d’applications client pour les tâches et processus métier 231

v L’opérande côté droit d’un opérateur de liste ne doit pas être remplacé par un
paramètre utilisateur.

v Des paramètres utilisateurs peuvent apparaître dans la liste de l’opérande côté
droit.

Exemple :
STATE IN (STATE_READY, STATE_RUNNING, PARAM(st), 1)

Les listes sont représentées comme suit :
liste ::= valeur [, liste]

Les règles suivantes s’appliquent :
v L’opérande côté droit d’un opérateur de liste ne doit pas être remplacé par un

paramètre utilisateur.
v Des paramètres utilisateurs peuvent apparaître dans la liste de l’opérande côté

droit.

Exemples :
v (2, 5, 8)

v (STATE_READY, STATE_CLAIMED)

Valeurs

Dans les expressions, une valeur peut être l’une des suivantes :
v Constante : une valeur constante, définie pour l’attribut concerné d’une table de

requêtes prédéfinie. Par exemple, STATE_READY est une constante définie pour
l’attribut STATE de la table prédéfinie TASK.

v Littéral : toute valeur codée en dur.
v Paramètre : un paramètre est remplacé par une valeur spécifique lors de

l’exécution de la requête.

Des constantes sont disponibles pour certains attributs des tables de requêtes
prédéfinies. Pour plus de détails sur ces constantes, reportez-vous à la description
des vues prédéfinies. Seules les constantes qui définissent des valeurs entières sont
exposées dans les tables de requêtes. Il est également possible d’utiliser, à la place
des constantes, les valeurs littérales correspondantes ou des paramètres.

Exemples :
v STATE_READY, constante propre à l’attribut STATE de la table de requêtes TASK,

peut être utilisée dans un filtre pour déterminer si la tâche est à l’état prêt.
v REASON_POTENTIAL_OWNER, constante propre à l’attribut REASON de la table de

requêtes WORK_ITEM, peut être utilisée dans un filtre pour tester si l’utilisateur
qui exécute la requête sur une table de requêtes est un propriétaire potentiel.

v Le filtre de requête STATE=STATE_READY est identique à STATE=2, si la requête est
exécutée sur la table de requêtes TASK.

Des littéraux peuvent aussi être utilisés dans les expressions. Une syntaxe spéciale
doit être employée pour les horodatages et les ID.

Exemples :
v STATE=1

v NAME='theName'

232 Développement et déploiement

v CREATED > TS ('2008-11-26 T12:00:00')

v TKTID=ID('_TKT:801a011e.9d57c52.ab886df6.1fcc0000')

L’utilisation de paramètres dans les expressions permet de donner un caractère
dynamique aux tables de requêtes composites. Il existe des paramètres utilisateur
et des paramètres système :
v Un paramètre utilisateur est spécifié avec le format PARAM (nom). Ce paramètre

(sa valeur) doit être fourni au moment où la requête est exécutée. Il est passé à
l’API de table de requêtes sous forme d’instance de la classe
com.ibm.bpe.api.Parameter.

v Les paramètres système sont ainsi appelés parce que leurs valeurs sont fournies
par l’environnement d’exécution (runtime) de table de requêtes, sans être
spécifiées lors de l’exécution de la requête. Les paramètres système disponibles
sont $USER et $LOCALE.
– $USER est une chaîne identifiant l’utilisateur qui exécute la requête.
– $LOCALE est une chaîne spécifiant le code standard de l’environnement local

en vigueur au moment où la requête est exécutée. 'fr_FR' est un exemple de
valeur utilisable pour le paramètre $LOCALE.

Vous pouvez spécifier un paramètre dans le critère de sélection d’une table de
requêtes attachée afin de sélectionner un environnement local spécifique. Par
exemple, si TASK est la table principale d’une table de requêtes composite et si
TASK_DESC est l’une des tables attachées, vous pouvez faire en sorte d’obtenir la
description de la tâche dans une langue particulière. Voici quelques exemples
d’utilisation de paramètres :
v STATE=PARAM(theState)

v LOCALE=$LOCALE

v OWNER=$USER

Chapitre 4. Développement d’applications client pour les tâches et processus métier 233

Concepts associés

Tables de requêtes dans Business Process Choreographer
Les tables de requêtes permettent d’interroger les données des listes de tâches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requêtes peuvent porter sur les données des tâches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requêtes
fournissent une abstraction des données de Business Process Choreographer qui
peut être exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de l’implémentation proprement dite des tables. Les définitions des
tables de requêtes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requête.
Développement des tables de requêtes
Dans Business Process Choreographer, le développement des tables de requêtes
supplémentaires et des tables de requêtes composites s’effectue au cours du
développement de l’application, à l’aide de l’outil Query Table Builder. Les tables
de requêtes prédéfinies ne peuvent pas être développées ni déployées. Disponibles
lorsque Business Process Choreographer est installé, elles fournissent une vue
simplifiée des artefacts du schéma de base de données Business Process
Choreographer.
Requêtes sur des tables de requêtes
L’exécution de requêtes sur les tables de requêtes définies dans Business Process
Choreographer s’effectue au moyen de l’API de table de requêtes, qui est
disponible pour l’interface EJB de Business Flow Manager et l’API REST.

Autorisation pour les tables de requêtes
L’exécution de requêtes sur des tables de requêtes peut s’effectuer avec plusieurs
types d’autorisation : autorisation par instance, autorisation par rôle ou absence de
contrôle d’autorisation.

Le type d’autorisation utilisé lorsqu’une requête est exécutée sur une table de
requêtes est défini sur la table elle-même.
v L’autorisation par instance indique que les objets dans la table de requêtes sont

autorisés moyennant l’utilisation d’un élément de travail. A cet effet, un contrôle
de l’existence d’un élément de travail adéquat est effectué.

v L’autorisation par rôle se fonde sur les rôles J2EE. Cela signifie que l’appelant
doit faire partie du rôle J2EE BPESystemAdministrator pour voir le contenu de
la table de requêtes. Ce type d’autorisation est disponible pour les tables de
requêtes prédéfinies avec des données de modèle et pour les tables composites
dont la table principale contient des données de modèle. Les objets contenus
dans ces tables de requêtes n’ont pas d’élément de travail associé.

v Si aucun contrôle d’autorisation n’est spécifié, tous les utilisateurs authentifiés
peuvent voir l’intégralité du contenu de la table de requêtes, après application
des filtres.

Les types d’autorisation appliqués aux tables de requêtes prédéfinies, ainsi que les
types d’autorisation qu’il est possible de configurer sur les tables composites et sur
les tables supplémentaires, sont décrits dans le tableau suivant.

234 Développement et déploiement

Tableau 15. Types d’autorisation pour les tables de requêtes

Table de
requêtes Autorisation par instance Autorisation par rôle

Absence de contrôle
d’autorisation

Prédéfinie Requise pour les tables de
requêtes prédéfinies qui
contiennent des données
d’instance.

Requise pour les tables de
requêtes prédéfinies qui
contiennent des données de
modèle.

N/A

Composite Peut être désactivée, auquel cas
il n’y a pas de contrôle
d’autorisation et les contraintes
de sécurité sont passées outre.
Cela signifie que chaque
utilisateur authentifié peut
utiliser la table de requêtes
pour extraire des données, qu’il
soit ou non autorisé à accéder
aux objets correspondants.

Les tables composites dont la
table principale contient des
données de modèle ne doivent
pas être configurées pour
utiliser l’autorisation par
instance.

Peut être désactivée, par
exemple pour les tables
composites dont la table
principale contient des données
de modèle. Dans ce cas, il n’y a
pas de contrôle d’autorisation
et les contraintes de sécurité
sont passées outre. Cela signifie
que chaque utilisateur
authentifié peut utiliser la table
de requêtes pour extraire des
données, qu’il soit ou non
autorisé à accéder aux objets
correspondants.

Les tables composites dont la
table principale contient des
données d’instance ne doivent
pas être configurées pour
utiliser l’autorisation par rôle.

Tous les utilisateurs authentifiés
peuvent voir l’intégralité du
contenu de la table de requêtes,
après application des filtres.

Supplémentaire Les tables de requêtes
supplémentaires ne doivent pas
être configurées pour utiliser
l’autorisation par instance, car
Business Process
Choreographer ne gère pas ces
tables lui-même et il ne dispose
donc pas d’informations sur les
autorisations d’accès à leur
contenu.

Les tables de requêtes
supplémentaires ne doivent pas
être configurées pour utiliser
l’autorisation par rôle.

Tous les utilisateurs authentifiés
peuvent voir l’intégralité du
contenu de la table de requêtes,
après application des filtres.

La figure suivante offre une vue d’ensemble des options disponibles pour les types
d’autorisation, en fonction du type de table de requêtes. Elle illustre aussi les
différents comportements obtenus avec l’API de table de requêtes et ses options
d’autorisation.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 235

*) Si le paramètre onBehalfUser est défini explicitement, le comportement (A) s’applique

L’autorisation par instance utilisant les éléments de travail et s’exerçant sur les
objets renvoyés dans les résultats d’une requête dépend du paramètre
d’autorisation qui est passé à l’API de table de requêtes, mais aussi de la valeur
(true ou false) de l’option Autorisation par instance spécifiée dans la définition de
la table de requêtes interrogée.
v (A) Les requêtes ciblant des tables prédéfinies ou composites et utilisant l’objet

AuthorizationOptions renvoient les entités qui concordent avec un élément de
travail approprié à l’utilisateur désigné. C’est également le cas si l’objet
AdminAuthorizationOptions est utilisé et si le paramètre onBehalfUser est défini
avec une valeur explicite (l’ID d’un utilisateur). Les clients standard, qui

Composite
query table

Predefined
query tables

Authorization

Query with

AuthorizationOptions

Supplemental
query tables

Query with

AdminAuthorization
Options*

primary query table
with instance data

instance data

n/a

Instance-based
authorization

(A)
Query result

contains objects
with work items

related to the caller.

(B)
Query result

contains all objects
that are in this
query table.

(C)
Query result

contains all objects
that are in this
query table.

(D)
Query result
contains all

objects that are in
this query table.

n/a

Role-based
authorization

None

business data n/a

n/a template data

all
primary query table
with template data

Figure 28. Autorisation par instance pour les tables de requêtes

236 Développement et déploiement

présentent des listes de tâches ou de processus aux utilisateurs, emploient
généralement cette combinaison de types de table de requêtes et de paramètres
d’API.

v (B) Le contenu intégral d’une table de requêtes est constitué des entités qui ont
un élément de travail correspondant, tel que configuré avec l’autorisation par
instance de la table en question. L’autorisation par instance considère quatre
types d’éléments de travail : ’everybody’, ’individual’, ’group’ et ’inherited’.
L’appelant doit faire partie du rôle J2EE BPESystemAdministrator. Cette
combinaison de types de tables de requêtes et de paramètres d’API est destinée
aux scénarios d’administration, dans lesquels la liste complète des tâches ou
processus disponibles doit pouvoir être affichée ou parcourue.

v (C) Les requêtes ciblant des tables de requêtes qui n’utilisent pas l’autorisation
par instance ou par rôle renvoient les mêmes résultats que si l’objet
AdminAuthorizationOptions ou AuthorizationOptions était passé à l’API de
table de requêtes. Ce comportement est disponible pour les tables de requêtes
supplémentaires ainsi que pour les tables composites. Aucune vérification des
éléments de travail ou des rôles J2EE n’est effectuée ; par conséquent, tous les
utilisateurs authentifiés peuvent voir l’intégralité du contenu de la table
interrogée. Les clients qui ne veulent pas restreindre la visibilité des objets en
appliquant les contraintes d’autorisation par instance ou par rôle fournies par
Business Process Choreographer peuvent désactiver les vérifications
d’autorisation lors du développement des tables de requêtes. En revanche, pour
les opérations de réclamation et d’achèvement de tâches, les utilisateurs doivent
avoir un élément de travail approprié.

v (D) Seule l’autorisation par rôle permet d’accéder aux données de modèle dans
les tables de requêtes prédéfinies ou dans les tables composites configurées avec
l’autorisation par rôle. L’appelant doit faire partie du rôle J2EE
BPESystemAdministrator. L’API de table de requêtes peut être utilisée à la place
de l’API de requête pour accéder aux données de modèle.

Eléments de travail et autorisation par instance

Le mécanisme d’autorisation par instance fourni par Business Process
Choreographer est basé sur des éléments de travail. Chaque élément de travail
décrit qui a quels droits et sur quels objets. Cette information est accessible via la
table de requêtes WORK_ITEM, si l’autorisation par instance est utilisée.

Le tableau suivant décrit les différents types d’éléments de travail pris en
considération si l’autorisation par instance est utilisée lors de l’exécution d’une
requête sur une table de requêtes :

Tableau 16. Types d’éléments de travail

Type d’élément de travail Description

everybody Les éléments de travail du type ’everybody’ autorisent tous
les utilisateurs à accéder à un objet spécifique tel qu’une
tâche ou une instance de processus. Dans ce cas, l’attribut
EVERYBODY de l’élément de travail concerné est mis à
TRUE.

individual Les éléments de travail du type ’individual’ sont créés pour
des utilisateurs particuliers. L’ID d’un utilisateur spécifique
est affecté comme valeur à l’attribut OWNER_ID de
l’élément de travail concerné. Pour un même objet (tel
qu’une tâche), il peut exister plusieurs éléments de travail,
chacun avec un attribut OWNER_ID différent.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 237

Tableau 16. Types d’éléments de travail (suite)

Type d’élément de travail Description

group Les éléments de travail du type ’group’ sont créés pour les
utilisateurs d’un groupe particulier. Le nom d’un groupe
spécifique est affecté comme valeur à l’attribut
GROUP_NAME de l’élément de travail concerné.

inherited Les lecteurs et les administrateurs des instances de
processus sont également autorisés à hériter de l’accès aux
tâches humaines (y compris celles pour lesquelles il y a
escalade) qui appartiennent à ces instances de processus.
Dans les requêtes sur les tâches, les vérifications concernant
les éléments de travail hérités sont exécutées au moyen de
jointures SQL complexes ; ces jointures sont réalisées à
l’exécution et ont une incidence sur les performances.

Les éléments de travail sont créés par Business Process Choreographer dans
différents cas de figure. Par exemple, à la création d’une tâche, des éléments de
travail sont créés pour les différents rôles, tels que ceux de lecteur et de
propriétaire potentiel, si des critères d’affectation de personnes ont été spécifiés.

Le tableau suivant décrit les différents types d’éléments de travail créés en fonction
des critères d’affectation de personnes définis, si l’autorisation par instance est
utilisée lors de l’exécution d’une requête sur une table de requêtes. Les éléments de
travail hérités n’apparaissent pas dans ce tableau, car ils reflètent des relations qui
ne peuvent être modélisées explicitement dans la phase de développement.

Tableau 17. Eléments de travail et critères d’affectation de personnes

Type d’élément de travail Critères d’affectation de personnes associés

everybody Tous les utilisateurs

individual Tous les critères d’affectation de personnes excepté les
instructions Personne (Nobody), Tous les utilisateurs
(Everybody) et Groupe (Group)

group Groupe

Filtre d’autorisation sur les tables de requêtes composites

Pour les tables de requêtes composites, un filtre d’autorisation peut être spécifié si
l’autorisation par instance est utilisée. Ce filtre limite les éléments de travail
utilisables pour l’autorisation en fonction de certains de leurs attributs. Par
exemple, le filtre d’autorisation “WI.REASON=REASON_ POTENTIAL_OWNER” appliqué à
une table de requêtes composite dont la table principale est TASK limite à certains
types les tâches qui peuvent être renvoyées lorsqu’une personne exécute une
requête. Seules sont renvoyées les tâches que cette personne peut avoir à effectuer ;
autrement dit, le résultat est limité aux tâches que la personne est autorisée à
réclamer. Ce filtre peut aussi être spécifié comme filtre de table de requêtes ou
comme filtre de requête. Il a aussi un effet bénéfique sur les performances des
requêtes lorsqu’il est spécifié comme filtre d’autorisation.

238 Développement et déploiement

Concepts associés

Tables de requêtes dans Business Process Choreographer
Les tables de requêtes permettent d’interroger les données des listes de tâches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requêtes peuvent porter sur les données des tâches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requêtes
fournissent une abstraction des données de Business Process Choreographer qui
peut être exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de l’implémentation proprement dite des tables. Les définitions des
tables de requêtes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requête.
Tables de requêtes prédéfinies
Les tables de requêtes prédéfinies fournissent l’accès aux données dans la base de
données de Business Process Choreographer. Elles correspondent à une
représentation, sous forme de tables de requêtes, des vues de la base de données
de Business Process Choreographer, telles que TASK ou PROCESS_INSTANCE.
Tables de requêtes supplémentaires
Les tables de requêtes supplémentaires que vous définissez dans Business Process
Choreographer fournissent à l’API de table de requêtes un accès à des données
métier dites ″externes″, c’est-à-dire qui ne sont pas gérées par Business Process
Choreographer. Grâce à ces tables de requêtes supplémentaires, les données
externes correspondantes peuvent être utilisées en association avec les données des
tables de requêtes prédéfinies pour extraire des informations sur des instances de
processus métier ou sur des tâches humaines.
Tables de requêtes composites
Dans Business Process Choreographer, les tables de requêtes composites sont
conçues à partir de tables de requêtes prédéfinies et de tables de requêtes
supplémentaires. Elles regroupent des données issues de tables ou de vues
existantes. Utilisez-les pour obtenir les informations d’une liste d’instances de
processus ou d’une liste de tâches (liste Mes tâches, par exemple).
Options d’autorisation pour l’API de table de requêtes
Lorsque vous exécutez une requête sur une table de requêtes dans Business
Process Choreographer, vous pouvez passer des options d’autorisation en guise de
paramètres d’entrée aux méthodes de l’API de table de requêtes.

Types d’attribut pour les tables de requêtes
Dans Business Process Choreographer, les types d’attribut sont nécessaires lors de
la définition de tables de requêtes, lors de l’utilisation de valeurs littérales dans les
requêtes, ainsi que lors de l’accès aux valeurs dans un résultat de requête. Des
règles et des mappages sont disponibles pour chacun des types d’attribut.

Pour définir le type d’un attribut dans une table de requêtes, on a recours à un
sous-ensemble des types caractéristiques du langage de programmation Java et des
types propres aux technologies de base de données. Les types d’attribut sont une
abstraction des types Java concrets ou des types de données propres aux bases de
données. Pour les tables de requêtes supplémentaires, vous devez utiliser un
mappage valide entre types de base de données et types d’attribut.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 239

Le tableau suivant décrit les types d’attribut :

Tableau 18. Types d’attribut

Type d’attribut Description

ID L’ID servant à identifier une tâche humaine (TKIID), une
instance de processus (PIID) ou d’autres objets. Par
exemple, pour réclamer ou effectuer une tâche humaine
particulière, l’utilisateur doit spécifier celle-ci en
l’identifiant par son attribut TKIID.

STRING Les descriptions des tâches ou les propriétés des requêtes
peuvent être représentées par des chaînes.

NUMBER Les nombres sont utilisés pour les attributs tels que le
niveau de priorité d’une tâche.

TIMESTAMP Les horodatages décrivent un instant précis ; par exemple,
la date et l’heure de création d’une tâche humaine ou la
date et l’heure de fin d’exécution d’une instance de
processus.

DECIMAL Le type DECIMAL peut être utilisé pour les propriétés
d’une requête ; par exemple, pour définir une propriété de
requête avec une variable du type XSD ’double’.

BOOLEAN Les booléens peuvent prendre une valeur parmi deux : true
ou false. Par exemple, les tâches humaines ont un attribut,
autoClaim, qui précise si oui ou non une tâche est réclamée
automatiquement lorsqu’il n’existe qu’un seul utilisateur
qui puisse être son propriétaire.

240 Développement et déploiement

Concepts associés

Tables de requêtes dans Business Process Choreographer
Les tables de requêtes permettent d’interroger les données des listes de tâches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requêtes peuvent porter sur les données des tâches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requêtes
fournissent une abstraction des données de Business Process Choreographer qui
peut être exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de l’implémentation proprement dite des tables. Les définitions des
tables de requêtes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requête.
Correspondance entre types des bases de données et types d’attribut
Utilisez des types d’attribut pour définir des tables de requêtes dans Business
Process Choreographer et lorsque vous lancez des requêtes sur ces tables, ainsi que
pour accéder aux valeurs d’un résultat de requête.
Correspondance entre types d’attribut et représentations littérales
Utilisez des types d’attribut pour définir des tables de requêtes dans Business
Process Choreographer et lorsque vous lancez des requêtes sur ces tables, ainsi que
pour accéder aux valeurs d’un résultat de requête. Cette rubrique décrit la
correspondance entre types d’attribut et représentations littérales.
Correspondance entre types d’attribut et paramètres
Utilisez des types d’attribut lorsque vous définissez des tables de requêtes dans
Business Process Choreographer et lorsque vous lancez des requêtes sur ces tables,
ainsi que pour accéder aux valeurs d’un résultat de requête.
Correspondance entre types d’attribut et types d’objet Java
Utilisez des types d’attribut pour définir des tables de requêtes dans Business
Process Choreographer et lorsque vous lancez des requêtes sur ces tables, ainsi que
pour accéder aux valeurs d’un résultat de requête. Cette rubrique décrit la
correspondance entre types d’attribut et types d’objet Java.
Compatibilité entre types d’attribut
Utilisez des types d’attribut lorsque vous définissez des tables de requêtes dans
Business Process Choreographer et lorsque vous lancez des requêtes sur ces tables,
ainsi que pour accéder aux valeurs d’un résultat de requête.

Correspondance entre types des bases de données et types d’attribut :

Utilisez des types d’attribut pour définir des tables de requêtes dans Business
Process Choreographer et lorsque vous lancez des requêtes sur ces tables, ainsi que
pour accéder aux valeurs d’un résultat de requête.

Le tableau suivant décrit les types propres aux bases de données et indique leur
correspondance avec les types d’attribut :

Tableau 19. Correspondance entre types des bases de données et types d’attribut

Type de base de données Type d’attribut

Type binaire sur 16 octets. Il s’agit du type utilisé pour les
ID tels que le TKIID des tâches dans les tables de Business
Process Choreographer.

ID

Type caractère. Sa longueur dépend de la colonne de table
de base de données qui est référencée par l’attribut dans la
table de requêtes.

STRING

Chapitre 4. Développement d’applications client pour les tâches et processus métier 241

Tableau 19. Correspondance entre types des bases de données et types d’attribut (suite)

Type de base de données Type d’attribut

Type d’entier de base de données, tel qu’un ’integer’, un
’short’ ou un ’long’.

NUMBER

Type d’horodatage de base de données. TIMESTAMP

Type décimal, tel qu’un ’float’ ou un ’double’. DECIMAL

Type convertible en valeur booléenne telle qu’un nombre. 1
est interprété comme true (vrai) et tous les autres nombres,
comme false (faux).

BOOLEAN

Exemple :

Prenons le cas d’un environnement DB2. Une table appelée
CUSTOM.ADDITIONAL_INFO doit être représentée en tant que table de requêtes
supplémentaire dans Business Process Choreographer. L’instruction SQL suivante
crée la table de base de données :
CREATE TABLE CUSTOM.ADDITIONAL_INFO
(

PIID CHAR(16) FOR BIT DATA,
INFO VARCHAR(220),
COUNT INTEGER

);

La correspondance suivante, entre les types des colonnes côté base de données et
les types d’attribut côté table de requêtes, est utilisé pour définir une table de
requêtes supplémentaire chargée de représenter la table
CUSTOM.ADDITIONAL_INFO.

Tableau 20. Exemple de mappage entre types de base de données et types d’attribut

Colonne et type de base de données Attribut et type de table de requête

PIID CHAR(16) FOR BIT DATA PIID (ID)

INFO VARCHAR(220) INFO (STRING)

COUNT INTEGER COUNT (NUMBER)

Généralement, les tables de requêtes supplémentaires font référence à des tables et
des vues existantes de la base de données ; lorsque c’est le cas, elles ne nécessitent
pas la création de tables ou de vues spécifiques.
Concepts associés

Types d’attribut pour les tables de requêtes
Dans Business Process Choreographer, les types d’attribut sont nécessaires lors de
la définition de tables de requêtes, lors de l’utilisation de valeurs littérales dans les
requêtes, ainsi que lors de l’accès aux valeurs dans un résultat de requête. Des
règles et des mappages sont disponibles pour chacun des types d’attribut.

Correspondance entre types d’attribut et représentations littérales :

Utilisez des types d’attribut pour définir des tables de requêtes dans Business
Process Choreographer et lorsque vous lancez des requêtes sur ces tables, ainsi que
pour accéder aux valeurs d’un résultat de requête. Cette rubrique décrit la
correspondance entre types d’attribut et représentations littérales.

242 Développement et déploiement

Des valeurs littérales peuvent être utilisées dans les expressions pour définir des
critères de filtrage et de sélection, comme dans les filtres des tables de requêtes
composites ainsi que dans les filtres passés à l’API de table de requêtes.

Le tableau suivant décrit les types d’attribut et indique leur correspondance avec
les valeurs littérales. Les marques de réservation figurent en italique. Notez que les
types d’attribut ID et TIMESTAMP, qui peuvent être passés à l’API de table de
requêtes, utilisent une syntaxe spéciale, également employée par l’API de requête.

Tableau 21. Correspondance entre types d’attribut et valeurs littérales

Type d’attribut
Syntaxe et utilisation comme valeur littérale dans les
expressions

ID ID ('représentation chaîne d'un ID')

Lors du développement d’applications clientes, les ID sont
représentés soit comme des chaînes, soit comme des
instances de l’interface com.ibm.bpe.api.OID. Il est possible
d’obtenir la représentation sous forme de chaîne d’une
instance de l’interface com.ibm.bpe.api.OID en utilisant sa
méthode toString. La chaîne doit être encadrée
d’apostrophes.

STRING 'la chaîne'

La chaîne doit être encadrée d’apostrophes.

NUMBER nombre

Le nombre sous forme de texte, non délimité par des
apostrophes. Des constantes sont définies et utilisables pour
certains attributs du type NUMBER dans les tables de
requêtes prédéfinies.

TIMESTAMP TS ('AAAA-MM-JJThh:mm:ss')

L’horodatage doit être spécifié au format suivant :

v AAAA : les quatre chiffres de l’année

v MM : les deux chiffres du mois de l’année

v DD : les deux chiffres du jour du mois

v hh : les deux chiffres de l’heure (sur 24 heures)

v mm : les deux chiffres de la minute

v ss : les deux chiffres de la seconde. L’interprétation de
l’horodatage se fait par rapport au fuseau horaire de
l’utilisateur.

DECIMAL nombre.fraction

Le nombre décimal sous forme de texte, non délimité par
des apostrophes ; la partie .fraction est optionnelle.

BOOLEAN true, false

La valeur booléenne sous forme de texte.

Exemples :

v filterOptions.setQueryCondition(“STATE=2”);

v filterOptions.setQueryCondition(“STATE=STATE_READY”);

v un critère de sélection sur une table de requêtes attachée TASK_DESC :
“LOCALE='en_US'”

v filterOptions.setQueryCondition(
“PTID=ID('_PT:8001011e.1dee8e51.247d6df6.29a60000')”);

Chapitre 4. Développement d’applications client pour les tâches et processus métier 243

Concepts associés

Types d’attribut pour les tables de requêtes
Dans Business Process Choreographer, les types d’attribut sont nécessaires lors de
la définition de tables de requêtes, lors de l’utilisation de valeurs littérales dans les
requêtes, ainsi que lors de l’accès aux valeurs dans un résultat de requête. Des
règles et des mappages sont disponibles pour chacun des types d’attribut.

Correspondance entre types d’attribut et paramètres :

Utilisez des types d’attribut lorsque vous définissez des tables de requêtes dans
Business Process Choreographer et lorsque vous lancez des requêtes sur ces tables,
ainsi que pour accéder aux valeurs d’un résultat de requête.

Le tableau suivant décrit les types d’attribut et leur correspondance avec les
valeurs de paramètre qui peuvent être utilisées dans les expressions pour définir
des critères de filtrage et de sélection, comme dans les filtres des tables de requêtes
composites ainsi que dans les filtres passés à l’API de table de requêtes.

Tableau 22. Correspondance entre types d’attribut et valeurs de paramètre utilisateur

Type d’attribut
Utilisation comme valeur de paramètre dans les
expressions

ID PARAM(nom)

Lors du développement d’applications clientes, les ID sont
représentés soit comme des chaînes, soit comme des
instances de l’interface com.ibm.bpe.api.OID.

Les deux représentations sont valides et acceptées comme
paramètres. Un tableau d’octets (byte[]) reflétant un OID
valide peut également être utilisé.

STRING PARAM(nom)

La représentation chaîne de l’objet qui, à l’exécution, est
passée à l’API de table de requêtes par la méthode toString.

NUMBER PARAM(nom)

Une représentation du nombre sous forme de
java.lang.Long, java.lang.Integer, java.lang.Short ou
java.lang.String est passée à l’API de table de requêtes. Les
noms des constantes définies pour certains attributs des
tables de requêtes prédéfinies peuvent aussi être passés.

TIMESTAMP PARAM(nom)

Les représentations suivantes sont valides :

v Une représentation java.lang.String de l’horodatage

v Instances de com.ibm.bpe.api.UTCDate

v Instances de java.util.Calendar

DECIMAL PARAM(nom)

Une représentation du nombre décimal sous forme de
java.lang.Long, java.lang.Integer, java.lang.Short,
java.lang.Double, java.lang.Float ou java.lang.String est
passée à l’API de table de requêtes.

244 Développement et déploiement

Tableau 22. Correspondance entre types d’attribut et valeurs de paramètre utilisateur (suite)

Type d’attribut
Utilisation comme valeur de paramètre dans les
expressions

BOOLEAN PARAM(nom)

Les valeurs admises sont :

v Une représentation java.lang.String du booléen

v Un java.lang.Short, java.lang.Integer ou java.lang.Long
avec des valeurs appropriées ; 0 (pour false) ou 1 (pour
true)

v Un objet java.lang.Boolean

Exemple :
...
// l'exemple suivant illustre l'exécution d'une requête sur une table de
// requêtes composite, COMP.TASKS, avec un paramètre "client"
java.util.List params = new java.util.ArrayList();

list.add(new com.ibm.bpe.api.Parameter("client", "IBM");
bfm.queryEntities("COMP.TASKS", null, null, params);
...

Concepts associés

Types d’attribut pour les tables de requêtes
Dans Business Process Choreographer, les types d’attribut sont nécessaires lors de
la définition de tables de requêtes, lors de l’utilisation de valeurs littérales dans les
requêtes, ainsi que lors de l’accès aux valeurs dans un résultat de requête. Des
règles et des mappages sont disponibles pour chacun des types d’attribut.

Correspondance entre types d’attribut et types d’objet Java :

Utilisez des types d’attribut pour définir des tables de requêtes dans Business
Process Choreographer et lorsque vous lancez des requêtes sur ces tables, ainsi que
pour accéder aux valeurs d’un résultat de requête. Cette rubrique décrit la
correspondance entre types d’attribut et types d’objet Java.

Le tableau suivant décrit les types d’attribut et indique leur correspondance avec
les types d’objet Java dans les ensembles de résultats des requêtes.

Tableau 23. Correspondance entre types d’attribut et types d’objet Java

Type d’attribut Type d’objet Java associé

ID com.ibm.bpe.api.OID

STRING java.lang.String

NUMBER java.lang.Long

TIMESTAMP java.util.Calendar

DECIMAL java.lang.Double

BOOLEAN java.lang.Boolean

Exemple :
...
// l'exemple suivant illustre l'exécution d'une requête sur une table de
// requêtes composite appelée COMP.TA ; l'attribut "STATE" est du type d'attribut
NUMBER
...

Chapitre 4. Développement d’applications client pour les tâches et processus métier 245

// exécution de la requête
EntityResultSet rs = bfm.queryEntities("COMP.TA",null,null,params);

// obtenir les entités et itérer dessus
List entities = rs.getEntities();
for (int i = 0 ; i < entities.size(); i++) {

// manipuler une entité particulière
Entity en = (Entity) entities.get(i);

// notez que le code suivant pourrait être écrit d'une
// façon moins spécifique en utilisant les objets d'informations
// d'attributs renvoyés par la méthode ei.getAttributeInfo()

// obtenir l'attribut STATE
Long state = (Long) en.getAttributeValue("STATE");
...

}
...

Concepts associés

Types d’attribut pour les tables de requêtes
Dans Business Process Choreographer, les types d’attribut sont nécessaires lors de
la définition de tables de requêtes, lors de l’utilisation de valeurs littérales dans les
requêtes, ainsi que lors de l’accès aux valeurs dans un résultat de requête. Des
règles et des mappages sont disponibles pour chacun des types d’attribut.

Compatibilité entre types d’attribut :

Utilisez des types d’attribut lorsque vous définissez des tables de requêtes dans
Business Process Choreographer et lorsque vous lancez des requêtes sur ces tables,
ainsi que pour accéder aux valeurs d’un résultat de requête.

Le tableau suivant dresse la liste des types d’attribut et indique leur compatibilité.
Utilisez ces informations pour définir des filtres et des critères de sélection dans les
tables de requêtes. La compatibilité entre types d’attribut est signalée par un X.

Tableau 24. Compatibilité entre types d’attribut

Type d’attribut ID STRING NUMBER TIMESTAMP DECIMAL BOOLEAN

ID X

STRING X

NUMBER X X

TIMESTAMP X

DECIMAL X X

BOOLEAN X

Dans les expressions de table de requêtes qui spécifient des filtres et des critères de
condition, les types des attributs ou des valeurs comparés doivent être
compatibles. Par exemple, WI.OWNER_ID=1 est un filtre non valide, car l’opérande
côté gauche est du type STRING alors que l’opérande côté droit est du type
NUMBER.

246 Développement et déploiement

Concepts associés

Types d’attribut pour les tables de requêtes
Dans Business Process Choreographer, les types d’attribut sont nécessaires lors de
la définition de tables de requêtes, lors de l’utilisation de valeurs littérales dans les
requêtes, ainsi que lors de l’accès aux valeurs dans un résultat de requête. Des
règles et des mappages sont disponibles pour chacun des types d’attribut.

Requêtes sur des tables de requêtes
L’exécution de requêtes sur les tables de requêtes définies dans Business Process
Choreographer s’effectue au moyen de l’API de table de requêtes, qui est
disponible pour l’interface EJB de Business Flow Manager et l’API REST.

Une requête s’exécute toujours sur une seule table de requêtes. Le contenu des
tables de requêtes est extrait au moyen des méthodes de l’API qui, pour certaines,
sont basées sur les entités et pour d’autres, sur les lignes. Des paramètres (ou
arguments) d’entrée sont passés aux méthodes de l’API de table de requêtes.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 247

Concepts associés

Tables de requêtes dans Business Process Choreographer
Les tables de requêtes permettent d’interroger les données des listes de tâches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requêtes peuvent porter sur les données des tâches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requêtes
fournissent une abstraction des données de Business Process Choreographer qui
peut être exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de l’implémentation proprement dite des tables. Les définitions des
tables de requêtes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requête.
Méthodes de l’API de table de requêtes
L’exécution de requêtes sur les tables de requêtes définies dans Business Process
Choreographer s’effectue au moyen de l’API de table de requêtes. Le contenu des
tables de requêtes est extrait au moyen des méthodes de l’API qui, pour certaines,
sont basées sur les entités et pour d’autres, sur les lignes.
Paramètres de l’API de table de requêtes
Les méthodes de l’API de table de requêtes permettent d’extraire du contenu lors
de l’exécution de requêtes sur une table de requêtes dans Business Process
Choreographer.
Résultats des requêtes exécutées sur les tables de requêtes
Les méthodes de l’API de table de requêtes s’utilisent lors de l’exécution de
requêtes sur une table de requêtes dans Business Process Choreographer. Le
résultat de la méthode queryEntityCount ou de la méthode queryRowCount est un
simple nombre. En revanche, les méthodes queryEntities et queryRows renvoient
des ensembles de résultats.
Tables de requêtes prédéfinies
Les tables de requêtes prédéfinies fournissent l’accès aux données dans la base de
données de Business Process Choreographer. Elles correspondent à une
représentation, sous forme de tables de requêtes, des vues de la base de données
de Business Process Choreographer, telles que TASK ou PROCESS_INSTANCE.
Tables de requêtes supplémentaires
Les tables de requêtes supplémentaires que vous définissez dans Business Process
Choreographer fournissent à l’API de table de requêtes un accès à des données
métier dites ″externes″, c’est-à-dire qui ne sont pas gérées par Business Process
Choreographer. Grâce à ces tables de requêtes supplémentaires, les données
externes correspondantes peuvent être utilisées en association avec les données des
tables de requêtes prédéfinies pour extraire des informations sur des instances de
processus métier ou sur des tâches humaines.
Tables de requêtes composites
Dans Business Process Choreographer, les tables de requêtes composites sont
conçues à partir de tables de requêtes prédéfinies et de tables de requêtes
supplémentaires. Elles regroupent des données issues de tables ou de vues
existantes. Utilisez-les pour obtenir les informations d’une liste d’instances de
processus ou d’une liste de tâches (liste Mes tâches, par exemple).
Développement des tables de requêtes
Dans Business Process Choreographer, le développement des tables de requêtes
supplémentaires et des tables de requêtes composites s’effectue au cours du
développement de l’application, à l’aide de l’outil Query Table Builder. Les tables
de requêtes prédéfinies ne peuvent pas être développées ni déployées. Disponibles
lorsque Business Process Choreographer est installé, elles fournissent une vue
simplifiée des artefacts du schéma de base de données Business Process

248 Développement et déploiement

Choreographer.
Filtres et critères de sélection des tables de requêtes
Les filtres et les critères de sélection sont définis pendant la phase de
développement des tables de requêtes, à l’aide de l’outil Query Table Builder, qui
utilise une syntaxe similaire aux clauses SQL WHERE. En définissant clairement
des filtres et des critères de sélection, vous pouvez spécifier des conditions basées
sur les attributs des tables de requêtes.

Méthodes de l’API de table de requêtes :

L’exécution de requêtes sur les tables de requêtes définies dans Business Process
Choreographer s’effectue au moyen de l’API de table de requêtes. Le contenu des
tables de requêtes est extrait au moyen des méthodes de l’API qui, pour certaines,
sont basées sur les entités et pour d’autres, sur les lignes.

Les méthodes suivantes sont disponibles dans l’API de table de requêtes pour
permettre l’exécution de requêtes sur les tables de requêtes dans Business Process
Choreographer :

Tableau 25. Méthodes pour les requêtes exécutées sur les tables de requêtes

Fonction Méthodes

Interrogation de contenu v queryEntities

v queryRows

Les deux méthodes renvoient du contenu de la table de
requêtes. La méthode queryEntities renvoie un contenu
basé sur des entités et la méthode queryRows, un contenu
basé sur des lignes.

Interrogation du nombre
d’objets

v queryEntityCount

v queryRowCount

Les deux méthodes renvoient le nombre d’objets présents
dans la table de requêtes, mais ce nombre peut varier en
fonction de l’approche adoptée (requête par entité ou par
ligne).

Les requêtes par entité, exécutées à l’aide des méthodes queryEntities et
queryEntityCount, supposent qu’une table de requêtes contient des entités
identifiables de façon unique, tel que défini par la clé primaire dans la table de
requêtes principale.

Les requêtes par ligne, exécutées à l’aide des méthodes queryRows et
queryRowCount, renvoient un ensemble de résultats comme avec JDBC ; cet
ensemble de résultats est également à base de lignes et navigable au moyen des
méthodes first et next. L’ensemble de résultats obtenu lorsque vous exécutez une
requête sur une table de requêtes en utilisant l’API de table de requêtes est
comparable aux ensembles QueryResultSet renvoyés par l’API de requêtes. En
général, le nombre de lignes est supérieur au nombre d’entités contenues dans une
table de requêtes. Une même entité, par exemple une tâche humaine identifiée par
son ID de tâche TKIID, peut apparaître plusieurs fois dans l’ensemble de résultats
de lignes.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 249

Une instance particulière contenue dans une table de requêtes prédéfinie n’existe
qu’en un seul exemplaire dans un environnement Business Process Choreographer.
Les tâches humaines et les processus métier sont des exemples de telles instances.
Chaque instance est identifiée de manière unique par un ID ou un ensemble d’ID.
Il s’agit du TKIID pour les instances de tâche humaine et du PIID pour les
instances de processus.

Les tables de requêtes composites comprennent une table de requêtes principale et
zéro, une ou plusieurs tables de requêtes attachées. L’identification des objets dans
une table composite se fait par les ID unique des objets de la table de requêtes
principale. C’est donc la table de requêtes principale qui détermine le type d’entité
d’une table composite. Par exemple, une table de requêtes composite dont la table
principale est TASK contiendra obligatoirement des entités du type TASK. La
relation un à un ou un à zéro qui existe entre la table principale et les tables
attachées garantit que les tables attachées n’introduisent pas d’entités en double.

Les requêtes par entité tirent parti du fait qu’une table de requêtes contient des
entités identifiables de façon unique, tel que défini par la clé primaire dans la table
de requêtes principale. La garantie d’unicité des instances et d’absence de
doublons est une qualité particulièrement appréciée par les développeurs
d’applications clientes, notamment ceux qui sont chargés de la partie interface
utilisateur. Par exemple, il est essentiel qu’une tâche humaine ne soit affichée
qu’une seule fois dans l’interface utilisateur. Des instances uniques sont renvoyées
si l’API de table de requêtes par entité est utilisée.

Les requêtes par ligne peuvent renvoyer des doubles des lignes de la table de
requêtes principale si l’autorisation par instance est utilisée.
v Les informations de la table de requêtes WORK_ITEM sont récupérées avec la

requête. Par exemple, si l’attribut WI.REASON est extrait en plus des attributs
définis dans la table de requêtes, plusieurs lignes sont susceptibles d’être
renvoyées comme résultat. En effet, cet attribut stocke le motif d’accès à une
entité telle qu’une tâche ou une instance de processus ; or, un utilisateur peut
accéder à une telle entité pour plusieurs raisons.

v L’autorisation par instance est utilisée et l’opérateur ’distinct’ n’est pas spécifié.
Bien qu’il n’y ait pas d’extraction des données d’élément de travail, plusieurs
lignes peuvent être renvoyées si l’autorisation par instance est utilisée.

Si l’API de table de requêtes par entité est utilisée :
v Les requêtes par entité sont toujours exécutées avec l’opérateur SQL ’distinct’.
v Les requêtes par entité renvoient des résultats dans lesquels les informations

relatives aux éléments de travail peuvent être fournies sous forme de valeurs de
tableau (array).

Concepts associés

Requêtes sur des tables de requêtes
L’exécution de requêtes sur les tables de requêtes définies dans Business Process
Choreographer s’effectue au moyen de l’API de table de requêtes, qui est
disponible pour l’interface EJB de Business Flow Manager et l’API REST.

Paramètres de l’API de table de requêtes :

Les méthodes de l’API de table de requêtes permettent d’extraire du contenu lors
de l’exécution de requêtes sur une table de requêtes dans Business Process
Choreographer.

250 Développement et déploiement

Les paramètres d’entrée suivants sont passés aux méthodes de l’API de table de
requêtes :

Tableau 26. Paramètres de l’API de table de requêtes

Paramètre Optionnel Type et description

Nom de la table de
requêtes

Non java.lang.String

Nom unique de la table de requêtes.

Options de filtrage Oui com.ibm.bpe.api.FilterOptions

Options utilisables pour définir la requête. Par
exemple, un seuil peut être fixé dans ce
paramètre pour limiter le nombre de résultats
renvoyés.

Options d’autorisation Oui com.ibm.bpe.api.AuthorizationOptions ou
com.ibm.bpe.api.AdminAuthorizationOptions

Si l’autorisation par instance est utilisée, ce
paramètre permet d’imposer des contraintes
encore plus serrées. Pour les tables de requêtes
nécessitant une autorisation par rôle, une
instance d’objet AdminAuthorizationOptions doit
être passée.

Paramètres Oui Une liste (java.util.List) d’objets
com.ibm.bpe.api.Parameter

Ce paramètre sert à passer des paramètres
utilisateur qui sont spécifiés dans un critère de
filtrage ou de sélection sur une table de requêtes
composite.

Une requête s’exécute toujours sur une seule table de requêtes. La relation entre
plusieurs tables de requêtes est définie au moyen d’une table de requêtes
composite. Ce concept particulier à l’API de table de requêtes correspond à la
notion de vues de base de données dans l’API de requête.

Les filtres et les critères de sélection sont spécifiés dans des expressions pendant la
phase de développement des tables de requêtes, à l’aide de l’outil Query Table
Builder. Pour plus de détails à ce propos, consultez la rubrique du centre de
documentation relative aux tables de requêtes composites, ainsi que la rubrique
consacrée aux filtres et aux critères de recherche des tables de requêtes. Pour toute
information sur l’outil Query Table Builder, consultez le site des SupportPacs de
WebSphere Business Process Management. Recherchez le SupportPac PA71
WebSphere Process Server - Query Table Builder. Pour accéder au lien, consultez la
section consacrée aux références de cette rubrique.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 251

Concepts associés

Requêtes sur des tables de requêtes
L’exécution de requêtes sur les tables de requêtes définies dans Business Process
Choreographer s’effectue au moyen de l’API de table de requêtes, qui est
disponible pour l’interface EJB de Business Flow Manager et l’API REST.
Nom de la table de requêtes
Lorsque vous exécutez une requête sur une table de requêtes dans Business
Process Choreographer, le nom de cette table est passé comme paramètre d’entrée
aux méthodes de l’API de table de requêtes.
Options de filtrage
Lorsque vous exécutez une requête sur une table de requêtes dans Business
Process Choreographer, vous pouvez passer des options de filtrage en guise de
paramètres d’entrée aux méthodes de l’API de table de requêtes.
Options d’autorisation pour l’API de table de requêtes
Lorsque vous exécutez une requête sur une table de requêtes dans Business
Process Choreographer, vous pouvez passer des options d’autorisation en guise de
paramètres d’entrée aux méthodes de l’API de table de requêtes.
Paramètres
Lorsque vous exécutez une requête sur une table de requêtes dans Business
Process Choreographer, vous pouvez passer des paramètres utilisateur aux
méthodes de l’API de table de requêtes. Dans une définition de table de requêtes,
vous pouvez spécifier des paramètres dans les filtres appliqués à la table de
requête principale, aux autorisations et à la table de requête elle-même. Des
paramètres peuvent aussi être spécifiés dans les critères de sélection sur les tables
de requêtes attachées.

Nom de la table de requêtes :

Lorsque vous exécutez une requête sur une table de requêtes dans Business
Process Choreographer, le nom de cette table est passé comme paramètre d’entrée
aux méthodes de l’API de table de requêtes.

Le nom de la table de requêtes dont il est question ici est celui de la table
constituant la cible de l’exécution de la requête.
v Lorsque la cible est une table de requêtes prédéfinie, le nom spécifié est donc

celui de la table prédéfinie en question.
v Dans le cas d’une table composite ou supplémentaire, il s’agit du nom de la

table de requêtes qui a été spécifié lors de la modélisation de la table. Le nom
d’une table composite ou supplémentaire est de la forme préfixe.nom ; la partie
préfixe ne doit pas être 'IBM'.

Le nom de la table de requêtes et le préfixe doivent tous les deux être en lettres
majuscules. Le nom de la table de requêtes ne doit pas dépasser 28 caractères.
Concepts associés

Paramètres de l’API de table de requêtes
Les méthodes de l’API de table de requêtes permettent d’extraire du contenu lors
de l’exécution de requêtes sur une table de requêtes dans Business Process
Choreographer.

Options de filtrage :

Lorsque vous exécutez une requête sur une table de requêtes dans Business
Process Choreographer, vous pouvez passer des options de filtrage en guise de
paramètres d’entrée aux méthodes de l’API de table de requêtes.

252 Développement et déploiement

Une instance de la classe com.ibm.bpe.api.FilterOptions peut être passée à l’API
de table de requêtes. Les options de filtrage permettent de configurer une requête
en agissant sur les caractéristiques suivantes :
v Un seuil et un décalage (skipCount)
v Des attributs de tri (similaires à la clause ORDER BY dans une requête SQL)
v Un filtre de requête additionnel
v L’ensemble d’attributs renvoyé, y compris les données d’élément de travail
v Autre

L’ensemble de résultats qui peut être obtenu d’une table de requêtes est spécifié
par la définition de cette table. Cependant, vous pouvez avoir besoin de spécifier
des options supplémentaires au moment d’exécuter la requête. Le tableau suivant
décrit les options de filtrage qui peuvent être spécifiées au moyen de l’objet
com.ibm.bpe.api.FilterOptions.

Tableau 27. Paramètres de l’API de table de requêtes : options de filtrage

Option Type Description

Attributs sélectionnés java.lang.String v Une liste (séparée par des virgules) des
attributs de la table de requêtes à
renvoyer dans l’ensemble de résultats.

v Si l’autorisation par instance est utilisée,
vous pouvez extraire les données
d’élément de travail en spécifiant les
attributs de la table de requêtes
WORK_ITEM, préfixés avec 'WI.'. Par
exemple, WI.REASON.

v Si ’null’ est spécifié, tous les attributs de
la table de requêtes sont renvoyés, sans
les données d’élément de travail.

Filtre de requête java.lang.String Le filtre de requête, qui complète l’action
des filtres et des critères de sélection déjà
définis pour la table de requête.

Attributs de tri java.lang.String Une liste (séparée par des virgules) des
attributs de la table de requêtes
éventuellement suivis de ASC ou DESC
pour spécifier un tri par ordre croissant ou
décroissant, respectivement. Cette liste est
similaire à la clause SQL ORDER BY :
sortAttributes ::= attribut [ASC|DESC] [,
sortAttributes]. Si ASC ou DESC n’est pas
spécifié, l’ordre de tri croissant (ASC) est
appliqué par défaut. L’ordre dans lequel les
attributs de tri sont spécifiés a son
importance. Ainsi, dans cet exemple, les
tâches de la table de requêtes TASK sont
d’abord triées par état et dans l’ordre
décroissant (DESC), puis par nom et dans
l’ordre croissant (ASC) au sein de chaque
groupe de tâches ayant le même état :
“STATE DESC, NAME ASC”.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 253

Tableau 27. Paramètres de l’API de table de requêtes : options de filtrage (suite)

Option Type Description

Seuil java.lang.Integer Définit une limite qui peut être :

v Le nombre maximum de lignes renvoyées
si queryRows est utilisée.

v Le nombre maximum d’entités renvoyées
si queryEntities est utilisée. Le nombre
réel d’entités disponibles dans la table de
requêtes concernée peut dépasser la
limite définie pour la requête, même si
l’ensemble de résultats ne contient pas
autant d’entités que le nombre
correspondant à cette limite. Cela est dû
à des impératifs techniques qui entrent en
jeu lorsque les données d’élément de
travail sont sélectionnées.

v Le compte renvoyé si queryRowCount ou
queryEntityCount est utilisée.

La valeur par défaut est ’null’, ce qui
signifie qu’aucun seuil n’est défini.

Nombre d’éléments à
sauter (skipCount)

java.lang.Integer Définit le nombre de lignes (requêtes par
ligne) ou le nombre d’entités (requêtes par
entité) à sauter. Comme pour le paramètre
de seuil, skipCount peut manquer
d’exactitude dans le cas des requêtes par
entité.

Le rôle du paramètre skipCount est de
permettre la pagination lorsque de gros
ensembles de résultats sont renvoyés. La
valeur par défaut est ’null’, ce qui signifie
que skipCount n’est pas défini.

Fuseau horaire java.util.TimeZone Le fuseau horaire utilisé lors de la
conversion des horodatages. L’attribut
CREATED de la table requêtes prédéfinie
TASK est un exemple d’horodatage affecté
par ce paramètre. S’il n’est pas spécifié
(null), le fuseau horaire utilisé est celui du
serveur.

Environnement local java.util.Locale L’environnement local utilisé pour calculer
la valeur du paramètre système $LOCALE.
Exemple d’utilisation de $LOCALE dans un
critère de sélection : 'LOCALE=$LOCALE'.

Lignes distinctes java.lang.Boolean S’applique uniquement aux requêtes par
ligne. Si la valeur est true, les requêtes par
ligne renvoient des lignes distinctes. Cela
n’implique pas que des lignes uniques sont
renvoyées en raison de l’éventuelle
multiplicité des données d’élément de
travail.

254 Développement et déploiement

Tableau 27. Paramètres de l’API de table de requêtes : options de filtrage (suite)

Option Type Description

Condition de requête setQueryCondition Applique un filtrage supplémentaire à
l’ensemble de résultats. Les attributs définis
dans la table de requêtes peuvent être
référencés si une autorisation est requise.
Les colonnes définies dans la table de
requêtes WORK_ITEM peuvent également
être référencées à l’aide du préfixe 'WI.'
Exemple :
WI.REASON=REASON_POTENTIAL_OWNER.

Concepts associés

Paramètres de l’API de table de requêtes
Les méthodes de l’API de table de requêtes permettent d’extraire du contenu lors
de l’exécution de requêtes sur une table de requêtes dans Business Process
Choreographer.

Options d’autorisation pour l’API de table de requêtes :

Lorsque vous exécutez une requête sur une table de requêtes dans Business
Process Choreographer, vous pouvez passer des options d’autorisation en guise de
paramètres d’entrée aux méthodes de l’API de table de requêtes.

Utilisez une instance de la classe com.ibm.bpe.api.AuthorizationOptions ou de la
classe com.ibm.bpe.api.AdminAuthorizationOptions pour spécifier des options
d’autorisation supplémentaires lors de l’exécution de la requête.

Si l’autorisation par instance est utilisée, les instances de la classe
com.ibm.bpe.api.AuthorizationOptions permettent de spécifier les types d’éléments
de travail identifiant les instances qui peuvent être renvoyées par la requête.

Une instance de la classe com.ibm.bpe.api.AuthorizationOptions peut être passée à
l’API de table de requêtes si la requête est exécutée sur une table de requête
prédéfinie qui contient des données d’instance. Elle peut aussi être passée à l’API
si la requête est exécutée sur une table composite dont la table principale contient
des données d’instance et si l’autorisation par instance est configurée pour être
utilisée. Si la requête est exécutée sur une table prédéfinie avec des données de
modèle ou sur une table composite avec l’autorisation par rôle configurée, une
exception EngineNotAuthorizedException est émise. Dans tous les autres cas, les
options d’autorisation passées à l’API de table de requêtes sont ignorées.

Les tables de requêtes composites peuvent restreindre les types d’éléments de
travail pris en compte lors de l’identification des objets (ou entités) qu’elles
contiennent. Par exemple, si les options d’autorisation passées à l’API de table de
requêtes sont configurées pour utiliser les éléments de travail ’everybody’, elles ne
sont prises en compte que si l’utilisation de tels éléments de travail est prévue
dans la définition de la table de requêtes composite. Voici une règle simple à
retenir : l’API de table de requêtes ne peut pas forcer la prise en compte d’un type
d’élément de travail dont l’utilisation n’est pas spécifiée dans la définition de la
table de requêtes ; en revanche, l’API n’est pas forcée de prendre en compte un
type d’élément de travail dont l’utilisation est spécifiée dans la définition de la
table de requêtes. De même, l’API de table de requêtes ne peut pas spécifier un
type d’autorisation différent de celui qui est défini pour une table de requêtes
composite ou prédéfinie.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 255

En fonction du type de la table de requêtes interrogée, différentes options
d’autorisation par défaut s’appliquent si l’objet d’autorisation n’est pas spécifié ou
si, comme c’est le cas par défaut, les attributs associés (everybody, individual,
group ou inherited) sont mis à ’null’.

Le tableau suivant indique les options d’autorisation appliquées par défaut à
l’autorisation par instance, pour chaque combinaison de type de table de requête et
de type d’élément de travail.

Tableau 28. Paramètres de l’API de table de requêtes : options d’autorisation par défaut
pour l’autorisation par instance

Type de table de
requêtes

Elément de
travail
’everybody’

Elément de
travail
’individual’

Elément de
travail ’group’

Elément de
travail
’inherited’

Prédéfinie avec
des données
d’instance

TRUE TRUE TRUE FALSE

Prédéfinie avec
des données de
modèle

N/A N/A N/A N/A

Composite avec
une table
principale
contenant des
données
d’instance

TRUE TRUE TRUE TRUE

Composite avec
une table
principale
contenant des
données de
modèle

N/A N/A N/A N/A

Supplémentaire N/A N/A N/A N/A

N/A (non applicable) signifie que l’autorisation par instance n’est pas utilisée et
que, par conséquent, toute option concernant les éléments de travail dans l’objet
d’autorisation est ignorée.

Si TRUE est spécifié, la requête résultante ne prend en compte le type d’élément de
travail concerné que si la table de requêtes est définie pour utiliser ce type
d’élément de travail. Cette règle est valable pour toutes les tables de requêtes
prédéfinies qui contiennent des données d’instance ; elle peut ne pas l’être pour
une table de requêtes composite. En ce qui concerne l’élément de travail ’group’,
celui-ci doit être activé sur le conteneur de tâches humaines. Un exemple de cas où
l’élément de travail est réglé à TRUE est celui où l’administrateur d’une instance
de processus peut voir les instances de tâches humaines participantes qui sont
créées pour cette instance de processus.

Spécifiez une instance de la classe com.ibm.bpe.api.AdminAuthorizationOptions à
la place d’une instance de com.ibm.bpe.api.AuthorizationOptions dans les cas
suivants :
v Une requête est exécutée sur une table de requêtes configurée avec l’autorisation

par rôle. Les tables de requêtes prédéfinies avec des données de modèle

256 Développement et déploiement

requièrent l’autorisation par rôle ; de même, les tables composites dont la table
principale contient des données de modèle peuvent être configurées pour exiger
l’autorisation par rôle.

v Une requête est exécutée sur une table de requêtes contenant des données
d’instance ou sur une table composite dont la table principale contient des
données d’instance. Le contenu de cette table de requêtes doit être renvoyé, sans
considération des restrictions liées à l’autorisation d’un utilisateur particulier. Ce
comportement particulier à l’API de table de requêtes correspond à l’utilisation
de la méthode queryAll dans l’API de requête.

v Une requête doit être exécutée pour le compte d’un autre utilisateur.

Le tableau suivant décrit de quelle manière les comportements décrits plus haut
sont obtenus :

Tableau 29. Paramètres de l’API de table de requêtes : AdminAuthorizationOptions

Situation Description

Valeur de onBehalfUser =
null

v Si une requête est exécutée sur une table de requêtes
configurée avec l’autorisation par rôle, l’intégralité de son
contenu est renvoyée.

v Si la requête est exécutée sur une table de requêtes qui
utilise l’autorisation par instance, les objets qu’elle
contient ne sont pas vérifiés par rapport aux éléments de
travail autorisés pour tel ou tel utilisateur. La requête
renvoie donc tous les objets contenus dans la table de
requêtes.

Valeur de onBehalfUser = un
utilisateur particulier

La requête est exécutée avec l’autorité de l’utilisateur
spécifié, et les objets contenus dans la table de requêtes
cible sont vérifiés par rapport aux éléments de travail
autorisés pour cet utilisateur, si l’autorisation par instance
est utilisée.

Si vous spécifiez com.ibm.bpe.api.AdminAuthorizationOptions, l’appelant doit
faire partie du rôle J2EE BPESystemAdministrator.
Concepts associés

Paramètres de l’API de table de requêtes
Les méthodes de l’API de table de requêtes permettent d’extraire du contenu lors
de l’exécution de requêtes sur une table de requêtes dans Business Process
Choreographer.
Autorisation pour les tables de requêtes
L’exécution de requêtes sur des tables de requêtes peut s’effectuer avec plusieurs
types d’autorisation : autorisation par instance, autorisation par rôle ou absence de
contrôle d’autorisation.

Paramètres :

Lorsque vous exécutez une requête sur une table de requêtes dans Business
Process Choreographer, vous pouvez passer des paramètres utilisateur aux
méthodes de l’API de table de requêtes. Dans une définition de table de requêtes,
vous pouvez spécifier des paramètres dans les filtres appliqués à la table de
requête principale, aux autorisations et à la table de requête elle-même. Des
paramètres peuvent aussi être spécifiés dans les critères de sélection sur les tables
de requêtes attachées.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 257

Les paramètres système $USER et $LOCALE sont remplacés à l’exécution dans les
filtres et les critères de sélection et n’ont pas besoin d’être passés à l’API de table
de requêtes. La valeur d’entrée utilisée pour le calcul du paramètre système
$LOCALE est fournie en définissant l’environnement local dans les options de filtre.

Les paramètres utilisateur doivent être passés à l’API de table de requêtes au
moment où la requête est exécutée. Cette étape est réalisée en passant une liste
d’instances de la classe com.ibm.bpe.api.Parameter.

Les propriétés suivantes doivent être spécifiées dans un objet Parameter :

Tableau 30. Paramètres utilisateur destinés à l’API de table de requêtes

Propriété Description

Nom Le nom du paramètre tel qu’il est spécifié dans la définition
de table de requêtes. Le nom est sensible à la casse.

Valeur La valeur du paramètre. Le type du paramètre doit être
compatible avec le type de l’opérande côté gauche et de
tous les filtres et critères de sélection où ce paramètre est
utilisé. Les constantes définies pour certains attributs des
tables de requêtes prédéfinies peuvent être passés comme
des chaînes ; par exemple, STATE_READY.

Voici quelques exemples d’utilisation de paramètres :
// permet d'obtenir le contexte d'affectation de nom et de rechercher l'interface
// EJB home de Business Flow Manager ; cette interface
// doit être mise en cache pour des raisons de performances
// nous supposons également qu'il existe une référence EJB
// à l'EJB local de Business Flow Manager
Context ctx = new InitialContext();
LocalBusinessFlowManagerHome home =
(LocalBusinessFlowManagerHome)
ctx.lookup("java:comp/env/ejb/BFM");

// crée le module de remplacement de Business Flow Manager côté client
LocalBusinessFlowManager bfm = home.create();

// exécute une requête sur une table de requêtes composite
// CUST.CPM avec le filtre de table de requêtes principale
// 'STATE=PARAM(theState)'
EntityResultSet ers = null;
List parameterList = new ArrayList();
parameterList.add(new Parameter
("theState", new Integer(2)));

ers = bfm.queryEntities
("CUST.CPM", null, null, parameterList);

// manipuler l'ensemble de résultats
// ...

Concepts associés

Paramètres de l’API de table de requêtes
Les méthodes de l’API de table de requêtes permettent d’extraire du contenu lors
de l’exécution de requêtes sur une table de requêtes dans Business Process
Choreographer.

Résultats des requêtes exécutées sur les tables de requêtes :

Les méthodes de l’API de table de requêtes s’utilisent lors de l’exécution de
requêtes sur une table de requêtes dans Business Process Choreographer. Le

258 Développement et déploiement

résultat de la méthode queryEntityCount ou de la méthode queryRowCount est un
simple nombre. En revanche, les méthodes queryEntities et queryRows renvoient
des ensembles de résultats.

EntityResultSet

Une instance de la classe com.ibm.bpe.api.EntityResultSet est renvoyée par la
méthode queryEntities. Un ensemble de résultats d’entités a les propriétés
suivantes :

Tableau 31. Propriétés d’un ensemble de résultats d’entités renvoyé par l’API de table de
requêtes

Propriété Description

queryTableName Nom de la table de requêtes sur laquelle la requête a été
exécutée.

entityTypeName v Si la requête a été exécutée sur une table de requêtes
composite, cette propriété est le nom de la table de
requêtes principale.

v Si la requête a été exécutée sur une table de requêtes
prédéfinie ou supplémentaire, cette propriété est le nom
de la table en question ; autrement dit, elle a la même
valeur que la propriété queryTableName.

entityInfo Cette propriété contient les méta-informations des entités
contenues dans l’ensemble de résultats. Une liste
java.util.List d’objets com.ibm.bpe.api.AttributeInfo peut
être extraite de cet objet. Cette liste contient les noms et les
types d’attribut des informations contenues dans les entités
de l’ensemble de résultats. Elle contient également les
méta-informations relatives aux attributs qui constituent la
clé de ces entités.

entities Une liste java.util.List d’objets Entity.

locale L’environnement local calculé pour le paramètre système
$LOCALE.

Les instances de la classe com.ibm.bpe.api.Entity contiennent les informations
extraites de la requête lancée sur la table de requêtes. Une entité représente un
objet identifiable de manière unique ; par exemple, une tâche, une instance de
processus, une activité ou une escalade. Les propriétés suivantes sont disponibles
pour les entités :

Tableau 32. Propriétés d’une entité renvoyée par l’API de table de requêtes

Propriété Description

entityInfo L’objet entityInfo qui est également contenu dans
l’ensemble de résultats d’entités.

attributeValue (attributeName) La valeur de l’attribut spécifié qui est extrait pour cette
entité. Le type est contenu dans l’objet AttributeInfo
correspondant de cet attribut.

attributeValuesOfArray
(attributeName)

Un tableau de valeurs. Utilisez cette propriété si la valeur
de la propriété array de l’objet AttributeInfo est ’true’, ce
qui est actuellement le cas uniquement si l’attribut fait
référence à des données d’élément de travail.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 259

Le nombre d’entités contenues dans l’ensemble de résultats est obtenu en exécutant
la méthode size() de la liste d’entités.

Exemple : Requête utilisant l’API de requête par entité :
...
// L'exemple suivant illustre une requête exécutée sur la
// table prédéfinie TASK et utilisant l'API par entité

...
// exécution de la requête
EntityResultSet rs = bfm.queryEntities("TASK", null, null, null);

// obtenir les méta-informations des entités
EntityInfo ei = rs.getEntityInfo();
List atts = ei.getAttributeInfo();

// obtenir les entités et itérer dessus
Iterator entitiesIter = rs.getEntities().iterator();
while (entitiesIter.hasNext()) {

// manipuler une entité particulière
Entity en = (Entity) entitiesIter.next();

for (int i = 0; i < atts.size(); i++) {
AttributeInfo ai = (AttributeInfo) atts.get(i);
Serializable value = en.getAttributeValue(ai.getName()) ;

// traiter...
}

}
...

RowResultSet

Une instance de la classe com.ibm.bpe.api.RowResultSet est renvoyée par la
méthode queryRows. Ce type d’ensemble de résultats est similaire à un ensemble
de résultats JDBC. Un ensemble de résultats de lignes a les propriétés suivantes :

Tableau 33. Propriétés d’un ensemble de résultats de lignes renvoyé par l’API de table de
requêtes

Propriété Description

primaryQueryTableName v Si la requête a été exécutée sur une table de requêtes
composite, cette propriété est le nom de la table de
requêtes principale.

v Si la requête a été exécutée sur une table de requêtes
prédéfinie ou supplémentaire, cette propriété est le nom
de la table en question ; autrement dit, elle a la même
valeur que la propriété queryTableName.

attributeInfo Cette propriété contient la liste des objets
com.ibm.bpe.api.AttributeInfo qui décrivent les
méta-informations de cet ensemble de résultats. Chaque
objet AttributeInfo contient le nom et le type d’un attribut.
Il ne contient pas de métadonnées relatives aux clés, car les
ensembles de résultats de lignes n’ont pas de clé.

attributeValue La valeur de l’attribut spécifié qui a été extrait pour cette
ligne. Le type est contenu dans l’objet AttributeInfo
correspondant de cet attribut.

260 Développement et déploiement

Tableau 33. Propriétés d’un ensemble de résultats de lignes renvoyé par l’API de table de
requêtes (suite)

Propriété Description

next, first, last, previous La navigation parmi les lignes de l’ensemble de résultats se
fait au moyen de ces méthodes. Comparez leur utilisation à
celle des itérateurs, des énumérations ou des ensembles de
résultats JDBC.

Le nombre de lignes contenues dans l’ensemble de résultats est obtenu en
exécutant la méthode size() de la liste de lignes.

Exemple : Requête utilisant l’API de requête par ligne :
...
// L'exemple suivant illustre une requête exécutée sur la
// table prédéfinie TASK et utilisant l'API par ligne
...
// exécution de la requête
RowResultSet rs = bfm.queryRows("TASK", null, null, null);

// obtenir les méta-informations des entités
List atts = rs.getAttributeInfo();

// obtenir les entités et itérer dessus
while (rs.next()) {

// manipuler une ligne particulière
for (int i = 0; i < atts.size(); i++) {

AttributeInfo ai = (AttributeInfo) atts.get(i);
Serializable value = rs.getAttributeValue(ai.getName()) ;

// traiter...
}

}
...

Concepts associés

Requêtes sur des tables de requêtes
L’exécution de requêtes sur les tables de requêtes définies dans Business Process
Choreographer s’effectue au moyen de l’API de table de requêtes, qui est
disponible pour l’interface EJB de Business Flow Manager et l’API REST.

Requêtes sur des tables de requêtes pour l’extraction de
métadonnées
L’exécution de requêtes sur les tables de requêtes définies dans Business Process
Choreographer s’effectue au moyen de l’API de table de requêtes. Des méthodes
sont disponibles pour permettre l’extraction de métadonnées des tables de
requêtes.

Les méthodes suivantes sont disponibles pour l’extraction de métadonnées lorsque
vous exécutez des requêtes sur les tables de requêtes dans Business Process
Choreographer en utilisant l’API de table de requêtes :

Tableau 34. Méthodes pour l’extraction de métadonnées des tables de requêtes

Objectif Méthode

Renvoyer les métadonnées d’une table de
requêtes spécifique

getQueryTableMetaData

Renvoyer la liste des métadonnées de table
de requêtes ayant des propriétés spécifiques

findQueryTableMetaData

Chapitre 4. Développement d’applications client pour les tâches et processus métier 261

Tableau 34. Méthodes pour l’extraction de métadonnées des tables de requêtes (suite)

Objectif Méthode

Renvoyer le contenu d’une table de requêtes
en fonction d’entités et d’un sous-ensemble
des métadonnées des attributs sélectionnés

queryEntities

Renvoyer le contenu d’une table de requêtes
en fonction de lignes et d’un sous-ensemble
des métadonnées des attributs sélectionnés

queryRows

Les métadonnées des tables de requêtes comprennent des informations en rapport
avec la structure des tables et d’autres informations en rapport avec
l’internationalisation.

Le tableau suivant présente les métadonnées relatives à la structure d’une table de
requêtes.

Tableau 35. Métadonnées relatives à la structure d’une table de requêtes

Métadonnées Description

Renvoyées par
getQuery-
TableMetaData

Renvoyées par
findQuery-
TableMetaData

Renvoyées par
queryEntities

Renvoyées par
queryRows

Nom de la
table de
requêtes

Le nom de la table de requêtes Oui Oui Oui Oui

Nom de la
table de
requêtes
principale

Le nom de la table de requêtes
lorsqu’il s’agit d’une table
prédéfinie ou supplémentaire,
ou le nom de la table
principale lorsque la table
interrogée est une table de
requêtes composite

Oui Oui Oui Oui

Type Le type de table de requêtes :
composite, prédéfinie ou
supplémentaire.

Oui Oui Non Non

Autorisation L’autorisation qui est définie
sur la table de requêtes :

v Utilisation d’éléments de
travail

v Autorisation par instance ou
par rôle ou absence de
contrôle d’autorisation

Oui Oui Non Non

Attributs
définis

Les métadonnées des attributs
qui sont définis sur la table de
requêtes

Oui Oui Non. Les
métadonnées
des attributs
sélectionnés
sont renvoyées.

Non. Les
métadonnées
des attributs
sélectionnés
sont renvoyées.

Attributs de clé Les attributs de clé de la table
de requêtes

Oui Oui Oui Non. Ne
concerne pas
les requêtes
par ligne.

Le tableau suivant présente les métadonnées relatives à l’internationalisation d’une
table de requêtes.

262 Développement et déploiement

Tableau 36. Métadonnées relatives à l’internationalisation d’une table de requêtes

Métadonnées Description

Renvoyées par
getQuery-
TableMetaData

Renvoyées par
findQuery-
TableMetaData

Renvoyées par
queryEntities

Renvoyées par
queryRows

locales[] Environnements locaux pour
lesquels les noms d’affichage
et les descriptions de la table
de requêtes et des attributs
sont définis.

Oui Oui Non Non

Environnement
local

Valeur du paramètre système
$LOCALE qui résulte de
l’environnement local qui est
transmis à l’API.

Oui Oui Oui Oui

Nom
d’affichage et
description de
la table de
requêtes

Les noms d’affichage et les
descriptions de la table de
requêtes, fournis pour tous les
environnements locaux définis.

Oui Oui Non Non

Noms
d’affichage et
descriptions
des attributs

Les noms d’affichage et les
descriptions des attributs,
fournis pour tous les
environnements locaux définis.

Oui Oui Non Non

Toutes les méthodes de l’API de table de requêtes EJB qui renvoient des
métadonnées de table de requêtes acceptent un paramètre d’environnement local ;
par exemple, FilterOptions.setLocale et MetaDataOptions.setLocale. Ce
paramètre doit recevoir pour valeur l’environnement local Java que le client utilise
pour présenter les informations à l’utilisateur. Ce paramètre d’environnement local
sert à calculer la valeur du paramètre système $LOCALE, lequel peut être utilisé dans
les filtres et les critères de sélection. L’environnement local renvoyé contient
l’environnement local Java qui est utilisé pour $LOCALE.

Si votre requête extrait les noms d’affichage et les descriptions d’une table de
requêtes spécifique, passez getLocale aux méthodes concernées afin d’obtenir ces
noms et ces descriptions dans le même environnement local que celui des
descriptions des tâches. Par exemple, les descriptions suivantes sont attachées au
moyen du critère de sélection 'LOCALE=$LOCALE'.

Exemple :
// l'exemple suivant montre comment extraire
// les métadonnées d'une table de requêtes composite particulière

...
// exécution de la requête
MetaDataOptions mdo = new MetaDataOptions("TASK", null, false, new Locale("en_US"));
List list = bfm.findQueryTableMetaData(mdo);

// pour obtenir les métadonnées d'une table de requêtes spécifique
// utiliser bfm.getQueryTableMetaData(...)

// itérer sur la liste des tables de requêtes dont la table principale est TASK
// => au moins une table de requêtes est renvoyée : la table prédéfinie TASK

Iterator iter = list.iterator();
while (iter.hasNext()) {
QueryTableMetaData md = (QueryTableMetaData) iter.next();
Locale effectiveLocale = md.getLocale();

Chapitre 4. Développement d’applications client pour les tâches et processus métier 263

String queryTableDisplayName = md.getDisplayName(effectiveLocale);
System.out.println("found query table: " + queryTableDisplayName);
List attributesList = md.getAttributeMetaData();
Iterator attrIter = attributesList.iterator();
while (attrIter.hasNext()) {
AttributeMetaData amd = (AttributeMetaData) attrIter.next();
String attributeDisplayName = amd.getDisplayName(effectiveLocale);
System.out.println("\tattribute:" + attributeDisplayName);
}
}

Concepts associés

Tables de requêtes dans Business Process Choreographer
Les tables de requêtes permettent d’interroger les données des listes de tâches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requêtes peuvent porter sur les données des tâches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requêtes
fournissent une abstraction des données de Business Process Choreographer qui
peut être exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de l’implémentation proprement dite des tables. Les définitions des
tables de requêtes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requête.

Internationalisation pour les métadonnées des tables de
requêtes
L’internationalisation est prise en charge pour les métadonnées des tables de
requêtes.

Les noms d’affichage et les descriptions des tables de requêtes composites peuvent
être fournis en différentes langues correspondant à différents codes
d’environnement local. Par exemple, il est possible de définir, pour une table de
requêtes composite, un nom d’affichage en anglais (environnement local en_US), en
allemand (environnement de) et dans la langue de l’environnement local par
défaut. Cette configuration est réalisée durant le développement de la table de
requêtes, à l’aide de Query Table Builder. Pour déployer une table de requêtes avec
des noms d’affichage et des descriptions en différentes langues, vous devez utiliser
l’option -deploy jarFile lorsque vous déployez la table dans le conteneur
Business Process Choreographer.

En termes de traitement des environnements locaux, le comportement des
méthodes de l’API de table de requêtes, queryEntities et queryRows, et des
méthodes de manipulation des métadonnées fournies par cette même API,
getQueryTableMetaData et findQueryTableMetaData, est similaire à celui qui est
obtenu avec les regroupements de ressources Java.

Pour que les noms d’affichage et les descriptions des métadonnées d’une table de
requêtes restent cohérents avec le contenu de ladite table, la valeur du paramètre
système $LOCALE dépend des environnements locaux pour lesquels les noms
d’affichage et les descriptions sont spécifiés dans la table de requêtes.

Exemple :

Dans le scénario suivant, un client affiche des listes de tâches et des listes de
processus et crée une demande pour interroger une table de requêtes.

264 Développement et déploiement

v Le client n’a pas spécifié d’environnement local particulier à utiliser pour
présenter l’information à l’utilisateur. Il est probable que l’application n’est pas
conçue pour fonctionner en différentes langues.
– Un environnement local par défaut est spécifié pour les noms d’affichage et

les descriptions des tables de requêtes. C’est le cas pour toutes les tables
composites et supplémentaires construites avec la version actuelle de Query
Table Builder. Par conséquent la valeur de $LOCALE est default.

– Pour l’environnement local par défaut, aucun nom d’affichage ou description
n’est spécifié sur la table de requêtes. C’est le cas pour toutes les tables de
requêtes prédéfinies ainsi que pour toutes les tables de requêtes déployées
avec l’option -deploy qtdFile. La valeur de $LOCALE est basée sur la méthode
du regroupement de ressources Java.

v Le client a spécifié l’environnement local à utiliser pour présenter l’information à
l’utilisateur. Par exemple, c’est le cas lorsque l’API REST pour les tables de
requêtes est utilisée.
– Les noms d’affichage et les descriptions sont spécifiés sur la table de requêtes.

La méthode du regroupement de ressources Java est utilisée pour calculer la
valeur de $LOCALE d’après l’environnement local qui est transmis par le client.

– Les noms d’affichage et les descriptions ne sont pas spécifiés sur la table de
requêtes. La variable $LOCALE est réglée à la valeur qui est transmise par le
client.

Concepts associés

Tables de requêtes dans Business Process Choreographer
Les tables de requêtes permettent d’interroger les données des listes de tâches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requêtes peuvent porter sur les données des tâches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requêtes
fournissent une abstraction des données de Business Process Choreographer qui
peut être exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de l’implémentation proprement dite des tables. Les définitions des
tables de requêtes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requête.

Tables de requêtes et performances des requêtes
Les tables de requêtes offrent un nouveau modèle de programmation propre, conçu
pour le développement d’applications clientes qui extraient des listes de tâches
humaines et de processus métier dans Business Process Choreographer. Les tables
de requêtes ont un effet bénéfique sur les performances des requêtes. Vous
trouverez ci-après une description des options applicables aux tables de requêtes et
des paramètres de l’API de tables de requêtes qui ont une incidence sur les
performances des requêtes. Des informations sont également fournies à propos
d’autres facteurs qui influent sur les performances.

Les temps de réponse des requêtes exécutées sur les tables de requêtes dépendent
principalement des options d’autorisation, des filtres et des critères de sélection
utilisés. Voici une liste de points à prendre en considération lorsqu’il est question
de performances.
v Les options d’autorisation influent de façon importante sur les performances.

Activez l’autorisation en utilisant le moins possible d’options et utilisez
principalement les éléments de travail de personne et de groupe. Evitez
d’utiliser des éléments de travail inherited. Les options d’autorisation peuvent
être restreintes de manière plus importante au moment de l’exécution de la

Chapitre 4. Développement d’applications client pour les tâches et processus métier 265

requête. En outre, si cela n’est pas nécessaire, indiquez que l’autorisation par le
biais des éléments de travail n’est pas requise.

v Si une autorisation par éléments de travail est requise, définissez un filtre
d’autorisation. Par exemple, pour autoriser uniquement les objets de la table de
requêtes qui contiennent un élément de travail de propriétaire potentiel, utilisez
WI.REASON=REASON_POTENTIAL_OWNER.

v Le filtrage de la table de requêtes principale est par exemple utile pour autoriser
uniquement les tâches à l’état Prêt de la table de requêtes lorsque TASK est la
table de requêtes principale.

v En termes de performances, les filtres de table de requêtes et les filtres de
requête (filtres transmis à l’exécution de la requête) sont moins efficaces que les
filtres principaux.

v Lorsque cela est possible, évitez d’utiliser des paramètres dans les filtres et les
critères de sélection.

v Evitez également d’utiliser des opérateurs LIKE dans les filtres et les critères de
sélection.

Définitions des tables de requêtes composites

Le tableau suivant décrit l’impact qu’ont les options définies pour les tables de
requêtes composites sur les performances des requêtes. Il traite également d’autres
sujets en rapport avec les définitions des tables de requêtes composites.
L’indication figurant dans la colonne Impact sur les performances est une moyenne
; les impacts réellement observés peuvent varier.

Tableau 37. Les options applicables aux tables de requêtes composites et leur impact sur
les performances des requêtes

Objet ou sujet
Impact sur les
performances Description

Filtre de table
de requêtes

Négatif Les filtres appliqués aux tables de requêtes sont ceux qui
ont l’impact le plus négatif sur les performances des
requêtes. Généralement, ils ne peuvent pas utiliser les
index définis dans la base de données.

Filtre de la
table de
requêtes
principale

Positif Un filtre appliqué à la table principale intervient très tôt
dans le calcul des résultats de la requête et se révèle donc
particulièrement efficace en termes de performances. Pour
cette raison, il est conseillé de restreindre le contenu de la
table de requêtes au moyen d’un filtre appliqué à la table
de requêtes principale.

Filtre
d’autorisation

Positif Un filtre d’autorisation peut améliorer les performances de
la requête dans des proportions comparables à celles du
filtre appliqué à la table de requêtes principale. Dans la
mesure du possible, un filtre d’autorisation doit être
appliqué. Par exemple, si les éléments de travail reader
(lecteur) ne doivent pas être pris en compte, spécifiez
WI.REASON=REASON_READER.

Critères de
sélection

Aucun Pour certaines relations entre la table principale et les
tables attachées, il faut définir un critère de sélection afin
de garantir que ces relations sont bien du type un à un ou
un à zéro. Généralement, un critère de sélection n’a qu’un
impact légèrement négatif sur les performances, car il est
évalué pour un petit nombre de lignes uniquement.

Paramètres Aucun Actuellement, l’emploi de paramètres dans les tables de
requêtes n’a pas d’impact négatif sur les performances. Ils
ne doivent cependant être utilisés qu’en cas de nécessité.

266 Développement et déploiement

Tableau 37. Les options applicables aux tables de requêtes composites et leur impact sur
les performances des requêtes (suite)

Objet ou sujet
Impact sur les
performances Description

Autorisation
par instance

Négatif Si l’autorisation par instance est utilisée, l’existence d’un
élément de travail doit être vérifiée pour chaque objet
dans la table de requêtes. Les éléments de travail sont
représentés par les entrées de la table de requêtes
WORK_ITEM. Cette vérification affecte les performances.

Autorisation
par instance :

v everybody

v individuals

v groups

v inherited

Négatif Chaque type d’élément de travail dont l’utilisation est
spécifiée dans la table de requêtes a un impact sur les
performances. Les applications ayant à soumettre
d’importants volumes de requêtes doivent, si possible, se
limiter à l’emploi des éléments de travail ’individuals’ et
’groups’, voire à un seul de ces éléments. Les éléments de
travail ’inherited’ ne sont généralement pas nécessaires, en
particulier pour la définition de listes de tâches renvoyant
des tâches humaines qui représentent des tâches à
effectuer. Ils doivent en revanche être utilisés lorsqu’il est
clair qu’ils sont indispensables ; par exemple, pour
retourner des listes de tâches qui appartiennent à un
processus métier, si une personne, compte tenu de son
autorisation, ne bénéficie que d’un accès en lecture au
processus métier englobant les tâches en question.

Autorisation
par rôle ou
absence de
contrôle
d’autorisation

Aucun Si l’autorisation par rôle est utilisée, ou si aucun contrôle
d’autorisation n’est exercé, les vérifications par rapport
aux éléments de travail n’ont pas lieu.

Nombre
d’attributs
définis

Actuellement
aucun

Le nombre d’attributs contenus dans une table de requêtes
n’a pas d’incidence sur les performances. Néanmoins,
seuls les attributs véritablement nécessaires doivent faire
partie d’une table de requêtes.

API de table de requêtes

Le tableau suivant décrit l’impact qu’ont les options définies pour l’API de table de
requêtes sur les performances des requêtes. L’indication figurant dans la colonne
Impact sur les performances est une moyenne ; les impacts réellement observés
peuvent varier.

Tableau 38. Les options de l’API de table de requêtes et leur impact sur les performances
des requêtes

Option
Impact sur les
performances Description

Attributs
sélectionnés

Négatif
(moins il y en
a, mieux c’est)

Le nombre d’attributs sélectionnés lorsqu’une requête est
exécutée sur une table de requêtes détermine directement
le nombre de données qui devront être traitées à la fois
par la base de données et par l’environnement d’exécution
de table de requêtes de Business Process Choreographer.
De plus, pour les tables de requêtes composites, les
informations des tables attachées n’ont besoin d’être
extraites que si elles sont spécifiées par les attributs
sélectionnés ou référencées par le filtre de table de
requêtes ou par le filtre de requête.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 267

Tableau 38. Les options de l’API de table de requêtes et leur impact sur les performances
des requêtes (suite)

Option
Impact sur les
performances Description

Filtre de
requête

Négatif S’il est spécifié, le filtre de requête a le même impact sur
les performances que le filtre de table de requêtes.
Cependant, il est préférable de spécifier les filtres sur les
tables de requêtes plutôt que de les passer à l’API de table
de requêtes.

Attributs de
tri

Négatif Le tri des résultats d’une requête est coûteux en temps de
traitement ; de plus, dès lors que le tri est utilisé, les
optimisations de la base de données sont restreintes. Le tri
doit être évité s’il n’est pas indispensable. La plupart des
applications en ont toutefois besoin.

Seuil Positif La spécification d’un seuil peut améliorer significativement
les performances des requêtes. Il est recommandé de
toujours spécifier un seuil.

Nombre
d’éléments à
sauter
(skipCount)

Négatif Le saut d’un nombre particulier d’objets dans l’ensemble
de résultats d’une requête est coûteux en temps de
traitement ; il ne doit être réalisé qu’en cas d’absolue
nécessité (par exemple, pour la pagination des résultats).

Fuseau horaire Aucun Le réglage de fuseau horaire n’a pas d’incidence sur les
performances.

Environnement
local

Aucun Le réglage d’environnement local n’a pas d’incidence sur
les performances.

Lignes
distinctes

Négatif L’emploi de l’opérateur ’distinct’ dans les requêtes a un
certain impact sur les performances, mais il est parfois
incontournable pour éviter l’extraction de lignes en
double. Cette option concerne uniquement les requêtes par
ligne ; elle est ignorée dans les autres cas.

Requêtes de
comptage

Positif Si seul le nombre total d’entités ou le nombre total de
lignes d’une requête particulière est nécessaire (autrement
dit, s’il n’est pas nécessaire d’extraire le contenu de toutes
les entrées de la table de requêtes), il convient d’utiliser la
méthode queryEntityCount ou la méthode
queryRowCount, respectivement. L’environnement
d’exécution de Business Process Choreographer peut
appliquer des optimisations valides uniquement pour les
requêtes de comptage.

268 Développement et déploiement

Autres considérations

Les autres facteurs à prendre en considération en ce qui concerne les performances
sont les suivants :

Tableau 39. Performances des tables de requêtes - Autres considérations

Elément Description

Nombre de tables de
requêtes sur le
système

Le nombre de tables de requêtes déployées dans un conteneur
Business Process Choreographer n’influe pas sur les performances
des requêtes exécutées sur ces tables. Il est également sans
conséquence sur la navigation des instances de processus métier et
n’a pas non plus d’impact sur les opérations de réclamation et
d’achèvement des tâches humaines. Maintenez-le quand même à
un niveau raisonnable, sous peine de compliquer la maintenance
de votre environnement. Généralement, une table de requêtes
particulière représente une seule et même liste de tâches ou liste de
processus affichée dans l’interface utilisateur.

Réglage de la base de
données

Même si l’accès au contenu des tables de requêtes est réalisé au
moyen de code SQL optimisé, les meilleures pratiques de réglage
des bases de données restent de mise lorsqu’il est question de la
base de données de Business Process Choreographer :

v La mémoire réservée à la base de données doit être réglée au
maximum, en tenant compte des besoins en mémoire des autres
processus exécutés sur le serveur de base de données et des
limites propres au matériel.

v Les statistiques relatives à la base de données doivent être le
plus à jour possible ; elles doivent donc être actualisées à
intervalles réguliers. Généralement, les procédures à cet effet
sont déjà implémentées dans les grandes topologies. Par
exemple, prévoyez une collecte hebdomadaire des statistiques
destinées à l’optimiseur pour refléter les changements des
données dans la base de données.

v Les systèmes de gestion de bases de données fournissent des
outils qui permettent de réorganiser (ou défragmenter) les
conteneurs de données. L’agencement physique des données
dans la base de données peut aussi influer sur les performances
des requêtes et les voies d’accès qu’elles empruntent.

v L’optimisation des index est l’un des facteurs clés en matière de
performance des requêtes. Business Process Choreographer est
fourni avec des index prédéfinis, optimisés pour conférer les
meilleures performances à la navigation des processus et aux
requêtes dans des scénarios types. Dans les environnements
personnalisés, d’autres index peuvent être nécessaires afin de
soutenir les requêtes sur les listes de tâches ou de processus qui
génèrent ou manipulent de gros volumes de données. Utilisez
les outils fournis par la base de données pour prendre en charge
les requêtes exécutées sur une table de requêtes.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 269

Concepts associés

Tables de requêtes dans Business Process Choreographer
Les tables de requêtes permettent d’interroger les données des listes de tâches et
des listes de processus contenues dans le schéma de base de données de Business
Process Choreographer. Les requêtes peuvent porter sur les données des tâches
humaines et celles des processus métier gérés par Business Process Choreographer,
mais aussi sur les données de processus métier externes. Les tables de requêtes
fournissent une abstraction des données de Business Process Choreographer qui
peut être exploitée par les applications clientes, lesquelles deviennent ainsi
indépendantes de l’implémentation proprement dite des tables. Les définitions des
tables de requêtes sont déployées dans des conteneurs Business Process
Choreographer et sont accessibles au moyen d’une API spécifique, appelée API de
table de requête.

API de requête EJB de Business Process Choreographer
Les méthodes query ou queryAll du service API vous permettent d’extraire des
informations stockées relatives aux processus métier et aux tâches.

La méthode query peut être appelée par tous les utilisateurs, elle renvoie les
propriétés des objets pour lesquels les éléments de travail existent. La méthode
queryAll ne peut être appelée que par les utilisateurs avec les rôles J2EE suivants :
BPESystemAdministrator, TaskSystemAdministrator, BPESystemMonitor ou
TaskSystemMonitor. Cette méthode renvoie les propriétés de tous les objets qui
sont stockés dans la base de données.

Toutes les requêtes API sont mappées avec les requêtes SQL. La forme de la
requête SQL résultante dépend des aspects suivants :
v Si la requête a été appelée par une personne ayant l’un des rôles J2EE.
v Les objets qui sont interrogés. Des vues prédéfinies des bases de données sont

disponibles pour vous permettre de rechercher les propriétés de l’objet.
v L’insertion d’une clause From, de conditions de jointure et de conditions propres

à l’utilisateur pour le contrôle d’accès.

Les requêtes peuvent inclure à la fois des propriétés personnalisées et des
propriétés de variable. Si vous ajoutez plusieurs propriétés personnalisées ou
propriétés de variables à votre requête, des jointures automatiques sont créées dans
la table de base de données correspondante. Suivant le système de base de
données utilisé, les appels de query() peuvent avoir des implications diverses sur
les performances.

Vous pouvez également stocker des requêtes dans la base de données Business
Process Choreographer à l’aide de la méthode createStoredQuery. Vous fournissez
les critères de requête lors de la définition de la requête stockée. Les critères sont
appliqués lors de l’exécution de la requête stockée, ce qui signifie que les données
sont regroupées durant cette période. Si la requête stockée contient des paramètres,
ils sont également résolus lors de son exécution.

Pour plus d’informations sur les interfaces API de Business Process Choreographer,
consultez Javadoc dans le package com.ibm.bpe.api pour les méthodes relatives
aux processus et dans le package com.ibm.task.api pour les méthodes relatives aux
tâches.

270 Développement et déploiement

Concepts associés

Requêtes portant sur les données des processus métier et des tâches
Les données d’instance des processus métier et des tâches humaines à exécution
longue sont stockées de façon persistante dans la base de données et accessibles
par le biais de requêtes. En outre, il est possible d’accéder aux données des
modèles de processus métier et de tâche humaine grâce à une interface de requête.
Syntaxe de la méthode query dans l’API
La syntaxe des requêtes de l’API du Business Process Choreographer est similaire à
celle des requêtes SQL. Une requête peut inclure les clauses Select, Where et
Order-by ainsi que les paramètres Skip-tuples, Threshold et Time-zone.
Conditions d’accès propres à l’utilisateur
Les conditions d’accès propres à l’utilisateur sont ajoutées lorsque l’instruction SQL
SELECT est générée par la requête API. Ces conditions garantissent que seuls ces
objets sont renvoyés à l’appelant parce que conformes à la condition spécifiée par
l’appelant et rendus accessibles à ce dernier.
Exemples de méthodes query et queryAll
Ces exemples montrent la syntaxe de diverses requêtes API générales et des
instructions SQL associées qui sont générées lors du traitement de la requête.
Référence associée

Vue de la base de données Business Process Choreographer
Ces informations de référence décrivent les colonnes disponibles dans les vues de
base de données prédéfinies.

Syntaxe de la méthode query dans l’API
La syntaxe des requêtes de l’API du Business Process Choreographer est similaire à
celle des requêtes SQL. Une requête peut inclure les clauses Select, Where et
Order-by ainsi que les paramètres Skip-tuples, Threshold et Time-zone.

La syntaxe de la requête dépend du type d’objet. Le tableau suivant présente la
syntaxe correspondant aux différents types d’objet.

Tableau 40.

Objet Syntaxe

Modèle de processus ProcessTemplateData[] queryProcessTemplates
(java.lang.String whereClause,
java.lang.String orderByClause,
java.lang.Integer threshold,
java.util.TimeZone timezone);

Modèle de tâche TaskTemplate[] queryTaskTemplates
(java.lang.String whereClause,
java.lang.String orderByClause,
java.lang.Integer threshold,
java.util.TimeZone timezone);

Données relatives aux
processus métier et
aux tâches

QueryResultSet query (java.lang.String selectClause,
java.lang.String whereClause,
java.lang.String orderByClause,
java.lang.Integer skipTuples
java.lang.Integer threshold,
java.util.TimeZone timezone);

Chapitre 4. Développement d’applications client pour les tâches et processus métier 271

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=r6bpc_dbviews

Concepts associés

API de requête EJB de Business Process Choreographer
Les méthodes query ou queryAll du service API vous permettent d’extraire des
informations stockées relatives aux processus métier et aux tâches.
Clause Select
La clause SELECT de la fonction identifie les propriétés de l’objet qui doivent être
renvoyées par une requête.
Clause Where
La clause WHERE de la fonction de requête décrit les critères de filtrage à
appliquer au domaine de la requête.
Clause Order-by
La clause ORDER BY de la fonction de requête spécifie les critères de tri pour
l’ensemble de résultats de la requête.
Paramètre Skip-tuples
Le paramètre skip-tuples spécifie le nombre de tuples dans l’ensemble de résultats
de requête, en partant du début, à ignorer et à ne pas renvoyer à l’appelant dans
l’ensemble des résultats de requête.
Paramètre Threshold
Le paramètre threshold de la fonction de requête restreint le nombre d’objets
renvoyés du serveur au client dans l’ensemble de résultats de requête.
Paramètre Timezone
Le paramètre time-zone de la fonction de requête définit le fuseau horaire des
constantes d’horodatage de la requête.
Paramètres des requêtes stockées
Une requête stockée est une requête qui est enregistrée dans la base de données et
identifiée par un nom. Les uplets répondant aux critères sont assemblés de
manière dynamique lors de l’exécution de la requête. Pour rendre les requêtes
stockées réutilisables, vous pouvez utiliser les paramètres de la définition de
requête résolus lors de l’exécution.
Résultats d’interrogation
Un ensemble de résultats de requête contient les résultats d’une requête d’API de
Business Process Choreographer.

Clause Select :

La clause SELECT de la fonction identifie les propriétés de l’objet qui doivent être
renvoyées par une requête.

La clause SELECT décrit le résultat de la requête. Cette clause spécifie une liste de
noms identifiant les propriétés des objets (colonnes du résultat) à renvoyer. Sa
syntaxe est identique à celle de la clause SELECT de SQL ; utilisez la virgule pour
séparer les différentes parties de la clause. Chaque partie de la clause doit spécifier
une colonne d’une des vues prédéfinies. Les colonnes doivent être entièrement
spécifiées par le nom de la vue et le nom de la colonne. Les colonnes renvoyées
dans l’objet QueryResultSet sont affichées dans le même ordre que les colonnes
spécifiées dans la clause Select.

La clause SELECT ne prend pas en charge des fonctions d’agrégation SQL telles
AVG(), SUM(), MIN() ou MAX().

Pour sélectionner les propriétés de plusieurs paires nom-valeur, telles que des
propriétés personnalisées ou des propriétés de variables pouvant être interrogées,
ajoutez un compteur à un chiffre au nom de la vue. Ce compteur peut adopter une
valeur comprise de 1 à 9.

272 Développement et déploiement

Exemples de clauses SELECT

v ″WORK_ITEM.OBJECT_TYPE, WORK_ITEM.REASON″

Obtient les type des objets associés et les motifs d’attribution des éléments de
travail.

v ″DISTINCT WORK_ITEM.OBJECT_ID″

Obtient tous les ID des objets, sans les doublons, pour lesquels l’appelant a un
élément de travail.

v ″ACTIVITY.TEMPLATE_NAME, WORK_ITEM.REASON″

Obtient les noms des activités pour lesquelles l’appelant a des éléments de
travail, ainsi que leurs motifs d’attribution.

v ″ACTIVITY.STATE, PROCESS_INSTANCE.STARTER″

Obtient les états des activités et les initiateurs des instances de processus y
associés.

v ″DISTINCT TASK.TKIID, TASK.NAME″

Obtient tous les ID et les noms de tâches, sans les doublons, pour lesquels
l’appelant a un élément de travail.

v ″TASK_CPROP1.STRING_VALUE, TASK_CPROP2.STRING_VALUE″

Obtient les valeurs des propriétés personnalisées qui sont spécifiées dans la
clause WHERE.

v ″QUERY_PROPERTY1.STRING_VALUE, QUERY_PROPERTY2.INT_VALUE
Extrait les valeurs des propriétés de variables pouvant être interrogées. Ces
parties sont ensuite spécifiées dans la clause Where.

v ″COUNT(DISTINCT TASK.TKIID)″
Compte le nombre de éléments de travail pour les tâches uniques qui satisfont la
clause WHERE.

Concepts associés

Syntaxe de la méthode query dans l’API
La syntaxe des requêtes de l’API du Business Process Choreographer est similaire à
celle des requêtes SQL. Une requête peut inclure les clauses Select, Where et
Order-by ainsi que les paramètres Skip-tuples, Threshold et Time-zone.

Clause Where :

La clause WHERE de la fonction de requête décrit les critères de filtrage à
appliquer au domaine de la requête.

La syntaxe de la clause Where est identique à celle de la clause SQL WHERE. Vous
n’avez pas besoin d’ajouter explicitement une clause SQL à partir d’une clause ou
des prédicats de jointure à la clause Where de l’API, car ces constructions sont
ajoutées automatiquement lors de l’exécution de la requête. Si vous ne désirez pas
appliquer de critères de filtre, spécifiez null comme valeur de la clause WHERE.

La syntaxe de la clause WHERE prend en charge :
v Mots clés : AND, OR, NOT
v Opérateurs de comparaison : =, <=, <, <>, >,>=, LIKE

L’opération LIKE prend en charge les caractères génériques définis pour la base
de données interrogée.

v Opération SET : IN

Les règles suivantes s’appliquent également :

Chapitre 4. Développement d’applications client pour les tâches et processus métier 273

v Spécifiez les constantes ID d’objet comme ID('string-rep-of-oid').
v Spécifiez les constantes binaires comme BIN('UTF-8 string').
v Utilisez des constantes symboliques au lieu des énumérations d’entiers. Par

exemple, au lieu de spécifier une expression d’état d’activitéACTIVITY.STATE=2,
spécifiez ACTIVITY.STATE=ACTIVITY.STATE.STATE_READY.

v Si la valeur de la propriété de l’instruction de comparaison contient des
guillemets simples (’), doublez ces guillemets ; par exemple,
"TASK_CPROP.STRING_VALUE='d''automatisation'".

v Faites référence aux propriétés de plusieurs paires nom-valeur, telles que des
propriétés personnalisées, en ajoutant un suffixe à un chiffre au nom de la vue.
Par exemple : "TASK_CPROP1.NAME='prop1' AND "TASK_CPROP2.NAME='prop2'"

v Spécifiez les constantes d’horodatage comme TS('yyyy-mm-ddThh :mm :ss').
Pour faire référence à la date actuelle, spécifiez CURRENT_DATE comme
horodatage.
Au moins une valeur de date ou d’heure doit être spécifiée dans l’horodatage.
– Si vous spécifiez uniquement une date, la valeur de l’heure sera zéro.
– Si vous spécifiez uniquement une heure, la valeur de la date sera la date

actuelle.
– Si vous spécifiez une date, l’année doit consister d’au moins quatre chiffres ;

les valeurs du mois et du jour sont optionnelles. Les valeurs du jour et du
mois manquantes seront remplacées par 01. Par exemple, TS('2003') et
identique à TS('2003-01-01T00 :00 :00').

– Si vous spécifiez une heure, cette valeur sera convertie en format 24 heures.
Par exemple, si la date actuelle est le premier janvier 2003, TS('T16 :04') ou
TS('16 :04') est identique à TS('2003-01-01T16 :04 :00').

Exemples de clauses WHERE

v Comparaison d’un ID d’objet avec un ID existant
"WORK_ITEM.WIID =
ID('_WI :800c00ed.df8d7e7c.feffff80.38')"

Ce type de clause WHERE est d’habitude créé de façon dynamique avec un ID
d’objet existant, obtenu d’un appel antérieur. Si cet ID d’objet est stocké dans
une variable wiid1, la clause peut être générée comme :
"WORK_ITEM.WIID = ID('" + wiid1.String() +
"')"

v Utilisation des horodatages
"ACTIVITY.STARTED >= TS('2002-06-1T16.00.00')"

v Utilisation des constantes symboliques
"WORK_ITEM.REASON =
WORK_ITEM.REASON.REASON_OWNER"

v Utilisation des valeurs booléennes vrai et faux
"ACTIVITY.BUSINESS_RELEVANCE = TRUE"

v Utilisation de propriétés personnalisées
"TASK_CPROP1.NAME = 'prop1' AND " TASK_CPROP1.STRING_VALUE = 'v1' AND
TASK_CPROP2.NAME = 'prop2' AND " TASK_CPROP2.STRING_VALUE = 'v2'"

274 Développement et déploiement

Concepts associés

Syntaxe de la méthode query dans l’API
La syntaxe des requêtes de l’API du Business Process Choreographer est similaire à
celle des requêtes SQL. Une requête peut inclure les clauses Select, Where et
Order-by ainsi que les paramètres Skip-tuples, Threshold et Time-zone.

Clause Order-by :

La clause ORDER BY de la fonction de requête spécifie les critères de tri pour
l’ensemble de résultats de la requête.

Vous pouvez spécifier la liste des colonnes à partir des vues servant de base de tri
du résultat. Ces colonnes doivent être entièrement qualifiées par le nom de la vue
et de la colonne.

La syntaxe de la clause Order-by est similaire à la syntaxe d’une clause SQL
Order-by. Utilisez une virgule pour séparer chaque partie de la clause. Vous
pouvez également spécifier la commande ASC pour trier les colonnes dans l’ordre
croissant et la commande DESC pour les trier dans l’ordre décroissant. Si vous ne
désirez pas trier l’ensemble de résultats, spécifiez la valeur null pour la clause
ORDER BY.

Des critères de tri sont appliqués au serveur ; en fait, ce sont les paramètres
régionaux du serveur qui sont utilisés pour le tri. Si la requête spécifie plusieurs
propriétés, l’ensemble de résultats est trié par les valeurs de la première colonne et
ensuite par les valeurs de la deuxième propriété, et ainsi de suite. Contrairement à
la requête SQL, il est impossible de spécifier les colonnes dans la clause Order-by
par position.

Exemples de clauses ORDER BY
v ″PROCESS_TEMPLATE.NAME″

Trie les résultats de la requête alphabétiquement par le nom du modèle de
processus.

v ″PROCESS_INSTANCE.CREATED, PROCESS_INSTANCE.NAME DESC″

Trie les résultats de la requête par date de création, et pour une date spécifique,
trie les résultats alphabétiquement pas le nom de l’instance du processus en
ordre inverse.

v ″ACTIVITY.OWNER, ACTIVITY.TEMPLATE_NAME, ACTIVITY.STATE″

Trie les résultats de la requête par le propriétaire de l’activité, ensuite par le nom
du modèle d’activité et ensuite par l’état de l’activité.

Concepts associés

Syntaxe de la méthode query dans l’API
La syntaxe des requêtes de l’API du Business Process Choreographer est similaire à
celle des requêtes SQL. Une requête peut inclure les clauses Select, Where et
Order-by ainsi que les paramètres Skip-tuples, Threshold et Time-zone.

Paramètre Skip-tuples :

Le paramètre skip-tuples spécifie le nombre de tuples dans l’ensemble de résultats
de requête, en partant du début, à ignorer et à ne pas renvoyer à l’appelant dans
l’ensemble des résultats de requête.

Utilisez ce paramètre avec le paramètre threshold pour implémenter la pagination
dans une application client, par exemple, pour extraire les 20 premiers éléments,
puis les 20 éléments suivants, etc.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 275

Si ce paramètre a pour valeur null et que le paramètre threshold n’est pas défini,
tous les tuples correspondants sont renvoyés.

Exemple de paramètre skip-tuples
v new Integer(5)

Spécifie que les cinq premiers tuples correspondants ne seront pas renvoyés.
Concepts associés

Syntaxe de la méthode query dans l’API
La syntaxe des requêtes de l’API du Business Process Choreographer est similaire à
celle des requêtes SQL. Une requête peut inclure les clauses Select, Where et
Order-by ainsi que les paramètres Skip-tuples, Threshold et Time-zone.

Paramètre Threshold :

Le paramètre threshold de la fonction de requête restreint le nombre d’objets
renvoyés du serveur au client dans l’ensemble de résultats de requête.

Dans un environnement de production, les ensembles de résultats d’une requête
peuvent contenir des milliers voire des millions d’éléments. Pour cette raison, il est
recommandé de toujours définir un seuil. Si vous définissez le paramètre threshold
correctement, la requête dans la base de données est plus rapide et moins de
données sont transférées à partir du serveur vers le client. Le paramètre threshold
peut s’avérer utile, par exemple, dans une interface utilisateur graphique où seul
un petit nombre d’éléments peuvent être affichés en même temps.

Si ce paramètre a pour valeur null et que le paramètre skip-tuples n’est pas défini,
tous les objets correspondants sont renvoyés.

Exemple de paramètre threshold
v new Integer(50)

Spécifie que 50 tuples correspondants doivent être renvoyés.
Concepts associés

Syntaxe de la méthode query dans l’API
La syntaxe des requêtes de l’API du Business Process Choreographer est similaire à
celle des requêtes SQL. Une requête peut inclure les clauses Select, Where et
Order-by ainsi que les paramètres Skip-tuples, Threshold et Time-zone.

Paramètre Timezone :

Le paramètre time-zone de la fonction de requête définit le fuseau horaire des
constantes d’horodatage de la requête.

Le fuseau horaire du client qui lance la requête peut différer de celui du serveur
qui traite la requête. Utilisez le paramètre time-zone pour spécifier le fuseau
horaire des constantes d’horodatage dans la clause WHERE utilisées, par exemple,
pour spécifier l’heure locale. Les dates renvoyées dans l’ensemble de résultats de la
requête sont dans le fuseau horaire spécifié pour la requête.

Si le paramètre a pour valeur null, les valeurs par défaut des constantes
d’horodatage sont en temps universel UTC.

276 Développement et déploiement

Exemples de paramètres time-zone
v process.query("ACTIVITY.AIID",

"ACTIVITY.STARTED > TS('2005-01-01T17:40')",
(Chaîne)null,
(Entier)null,
java.util.TimeZone.getDefault());

Renvoie les ID d’objet pour les activités démarrées après 17h40 heure locale, le
premier janvier 2005.

v process.query("ACTIVITY.AIID",
"ACTIVITY.STARTED > TS('2005-01-01T17:40')",
(Chaîne)null, (Entier)null, (FuseauHoraire)null);

Renvoie les ID d’objet pour les activités démarrées après 17h40 UTC, le premier
janvier 2005. Cette spécification est décalée de 6 heures en heure EST (Eastern
Standard Time).

Concepts associés

Syntaxe de la méthode query dans l’API
La syntaxe des requêtes de l’API du Business Process Choreographer est similaire à
celle des requêtes SQL. Une requête peut inclure les clauses Select, Where et
Order-by ainsi que les paramètres Skip-tuples, Threshold et Time-zone.

Paramètres des requêtes stockées :

Une requête stockée est une requête qui est enregistrée dans la base de données et
identifiée par un nom. Les uplets répondant aux critères sont assemblés de
manière dynamique lors de l’exécution de la requête. Pour rendre les requêtes
stockées réutilisables, vous pouvez utiliser les paramètres de la définition de
requête résolus lors de l’exécution.

Il existe par exemple des propriétés personnalisées pour stocker les noms de client.
Vous pouvez définir des requêtes visant à renvoyer les tâches associées à un client
donné, ACME Co. Pour faire la demande de ces informations, la clause where de
votre requête devrait ressembler à ce qui est indiqué dans l’exemple suivant :
String whereClause =

"TASK.STATE = TASK.STATE.STATE_READY
AND WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER
AND TASK_CPROP.NAME = 'company' AND TASK_CPROP.STRING_VALUE = 'ACME Co.'";

Pour rendre cette requête réutilisable afin de permettre également la recherche du
client BCME Ltd, vous pouvez configurer des paramètres pour les valeurs de la
propriété personnalisée. Si vous ajoutez des paramètres à la requête, celle-ci se
peut présenter comme suit :
String whereClause =

"TASK.STATE = TASK.STATE.STATE_READY
AND WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER
AND TASK_CPROP.NAME = 'company' AND TASK_CPROP.STRING_VALUE = '@param1'";

Le paramètre @param1 est résolu au moment de l’exécution à partir de la liste des
paramètres transmis à la méthode query. Les règles suivantes s’appliquent lors de
l’utilisation de paramètres dans les requêtes :
v Les paramètres sont utilisables uniquement dans la clause where.
v Les paramètres sont de type Chaîne.
v Les paramètres sont remplacés au moment de l’exécution via une substitution de

chaînes. Si des caractères spéciaux sont nécessaires, vous devez les spécifier dans
la clause where ou les insérer au moment de l’exécution en tant que partie du
paramètre.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 277

v Les noms de paramètre sont constitués de la chaîne @param concaténée avec un
nombre entier. La valeur la plus faible est 1, ce qui renvoie au premier élément
de la liste des paramètres transmis à l’API de la requête au moment de
l’exécution.

v Un paramètre peut être réutilisé plusieurs fois au sein d’une clause where ;
toutes les occurrences du paramètre sont remplacées par la même valeur.

Concepts associés

Syntaxe de la méthode query dans l’API
La syntaxe des requêtes de l’API du Business Process Choreographer est similaire à
celle des requêtes SQL. Une requête peut inclure les clauses Select, Where et
Order-by ainsi que les paramètres Skip-tuples, Threshold et Time-zone.
Tâches associées

Gestion des requêtes stockées
Les requêtes stockées permettent d’enregistrer des requêtes souvent exécutées. La
requête stockée peut soit être une requête disponible pour tous les utilisateurs
(requête publique), soit une requête appartenant à un utilisateur spécifique
(requête privée).

Résultats d’interrogation :

Un ensemble de résultats de requête contient les résultats d’une requête d’API de
Business Process Choreographer.

Les éléments de l’ensemble de résultats sont les propriétés des objets qui sont
conformes à la clause Where fournie par l’appelant et que ce dernier est autorisé à
voir. Vous pouvez lire les éléments d’une manière relative à l’aide de la méthode
next de l’API ou d’une manière absolue à l’aide des méthodes first et last. Le
curseur implicite d’un ensemble de résultats de requête étant positionné, au départ,
avant le premier élément, vous devez appeler la méthode first ou next avant de
lire un élément. Vous pouvez utiliser la méthode size pour déterminer le nombre
d’éléments d’un ensemble.

Un élément de l’ensemble de résultats de la recherche comprend les attributs
sélectionnés des éléments de travail et les objets référencés y associés, tels que les
instances d’activité et les instances de processus. Le premier attribut (colonne) d’un
élément QueryResultSet spécifie la valeur du premier attribut spécifié dans la
clause SELECT de la demande de requête. Le deuxième attribut (colonne) d’un
élément QueryResultSet spécifie la valeur du deuxième attribut spécifié dans la
clause SELECT de la demande de requête et ainsi de suite.

Vous pouvez extraire les valeurs des attributs en appelant une méthode compatible
avec le type d’attribut et en spécifiant l’indice de colonne correspondant. La
numérotation des indices de colonnes commence à 1.

Type d’attribut Méthode

Chaîne getString

OID getOID

Horodatage getTimestamp
getString
getTimestampAsLong

278 Développement et déploiement

Type d’attribut Méthode

Entier getInteger
getShort
getLong
getString
getBoolean

Booléen getBoolean
getShort
getInteger
getLong
getString

byte[] getBinary

Exemple :

La requête suivante est exécutée :
QueryResultSet resultSet = process.query("ACTIVITY.STARTED,

ACTIVITY.TEMPLATE_NAME AS NAME,
WORK_ITEM.WIID, WORK_ITEM.REASON",
(String)null, (String)null,
(Integer)null, (TimeZone)null);

L’ensemble de résultats renvoyé a quatre colonnes :
v La colonne 1 est l’horodatage
v La colonne 2 est une chaîne
v La colonne 3 est un ID d’objet
v La colonne 4 est un entier

Les méthodes suivantes vous permettent d’obtenir les valeurs des attributs :
while (resultSet.next())
{
java.util.Calendar activityStarted = resultSet.getTimestamp(1);
String templateName = resultSet.getString(2);
WIID wiid = (WIID) resultSet.getOID(3);
Integer reason = resultSet.getInteger(4);
}

Vous pouvez utiliser les noms affichés de l’ensemble de résultats, par exemple, en
tant qu’en-têtes d’un tableau imprimé. Ces noms sont les noms de colonnes de la
vue ou du nom défini par la clause AS dans la requête. Cet exemple illustre
l’utilisation de la méthode suivante pour obtenir les noms affichés :
resultSet.getColumnDisplayName(1) returns "STARTED"
resultSet.getColumnDisplayName(2) returns "NAME"
resultSet.getColumnDisplayName(3) returns "WIID"
resultSet.getColumnDisplayName(4) returns "REASON"

Concepts associés

Syntaxe de la méthode query dans l’API
La syntaxe des requêtes de l’API du Business Process Choreographer est similaire à
celle des requêtes SQL. Une requête peut inclure les clauses Select, Where et
Order-by ainsi que les paramètres Skip-tuples, Threshold et Time-zone.

Conditions d’accès propres à l’utilisateur
Les conditions d’accès propres à l’utilisateur sont ajoutées lorsque l’instruction SQL
SELECT est générée par la requête API. Ces conditions garantissent que seuls ces
objets sont renvoyés à l’appelant parce que conformes à la condition spécifiée par
l’appelant et rendus accessibles à ce dernier.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 279

La condition d’accès n’est ajoutée que si l’utilisateur est un administrateur système.

Requêtes appelées par les utilisateurs autres que les administrateurs
système

La clause SQL générée WHERE combine l’API avec la clause dotée d’une condition
de contrôle d’accès qui est propre à l’utilisateur. La requête n’extrait que les objets
auxquels l’utilisateur est autorisé à accéder, autrement dit, uniquement les objets
pour lesquels l’utilisateur dispose d’un élément de travail. Un élément de travail
représente l’affectation du rôle d’autorisation d’un objet métier à un utilisateur ou
un groupe, comme une tâche ou un processus. Par exemple, si l’utilisateur, John
Smith, est un membre doté du rôle de propriétaire potentiel d’une tâche donnée,
un objet élément de travail existe pour représenter cette relation.

Par exemple, si un utilisateur autre qu’un administrateur système, requiert des
tâches, la condition d’accès suivante est ajoutée à la clause WHERE si les éléments
de travail de groupe ne sont pas activés :
FROM TASK TA, WORK_ITEM WI
WHERE WI.OBJECT_ID = TA.TKIID
AND (WI.OWNER_ID = 'user'

OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

De ce fait, si John Smith souhaite obtenir la liste des tâches dont il est propriétaire
potentiel, l’API contenant la clause se présentera comme suit :
"WORK_ITEM.REASON == WORK_ITEM.REASON.REASON_POTENTIAL_OWNER"

Cette API contenant la clause génère la condition d’accès suivante dans
l’instruction SQL :
FROM TASK TA, WORK_ITEM WI
WHERE WI.OBJECT_ID = TA.TKIID
AND (WI.OWNER_ID = 'JohnSmith'

OR WI.OWNER_ID = null AND WI.EVERYBODY = true)
AND WI.REASON = 1

Cela signifie également que si John Smith souhaite voir les activités et les tâches
dont il est lecteur de processus ou administrateur de processus et pour lesquelles il
dispose d’un élément de travail, une propriété provenant de la vue
PROCESS_INSTANCE doit être ajoutée à la clause Select, Where, ou Order-by de la
requête, telle que PROCESS_INSTANCE.PIID.

Si les éléments de travail de groupe sont activés, une autre condition d’accès est
ajoutée à la clause WHERE qui permet à un utilisateur d’accéder aux objets
auxquels le groupe a accès.

Requêtes appelées par les administrateurs système

Les administrateurs système peuvent appeler la méthode query pour extraire des
objets dotés d’éléments de travail associés. Dans ce cas, un joint à la vue
WORK_ITEM est ajouté à la requête SQL générée, mais sans condition de contrôle
d’accès pour WORK_ITEM.OWNER_ID.

Dans ce cas, la requête SQL des tâches contient ce qui suit :
FROM TASK TA, WORK_ITEM WI
WHERE WI.OBJECT_ID = TA.TKIID

280 Développement et déploiement

queryAll queries

Ce type de requête ne peut être appelé que par les administrateurs système ou les
contrôleurs système. Ni les conditions de contrôle d’accès, ni un joint à la vue
WORK_ITEM ne sont ajoutés. Ce type de requête renvoie toutes les données de
tous les objets.
Concepts associés

API de requête EJB de Business Process Choreographer
Les méthodes query ou queryAll du service API vous permettent d’extraire des
informations stockées relatives aux processus métier et aux tâches.

Exemples de méthodes query et queryAll
Ces exemples montrent la syntaxe de diverses requêtes API générales et des
instructions SQL associées qui sont générées lors du traitement de la requête.
Concepts associés

API de requête EJB de Business Process Choreographer
Les méthodes query ou queryAll du service API vous permettent d’extraire des
informations stockées relatives aux processus métier et aux tâches.
Exemple : requête de tâches à l’état Prêt
Cet exemple indique comment utiliser la méthode query pour extraire les tâches
que l’utilisateur connecté peut exploiter.
Exemple : requête de tâches à l’état Réclamé
Cet exemple indique comment utiliser la méthode query pour extraire les tâches
que l’utilisateur connecté a réclamées.
Exemple : interrogation d’escalades
Cet exemple indique comment utiliser la méthode query pour extraire les escalades
pour l’utilisateur connecté.
Exemple : utilisation de la méthode queryAll
Cet exemple indique comment utiliser la méthode queryAll pour extraire toutes les
activités propres à un modèle de processus.
Exemple : ajout de propriétés de requête à une requête
Cet exemple indique comment utiliser la méthode query pour extraire les tâches
propres à un processus métier. Le processus dispose de propriétés de requête
spécifiques que vous pouvez inclure à la recherche.
Exemple : ajout de propriétés personnalisées à une requête
Cet exemple montre comment utiliser la méthode query pour extraire les tâches
dotées de propriétés personnalisées.

Exemple : requête de tâches à l’état Prêt :

Cet exemple indique comment utiliser la méthode query pour extraire les tâches
que l’utilisateur connecté peut exploiter.

John Smith souhaite obtenir la liste des tâches qui lui ont été affectées. Pour qu’un
utilisateur puisse travailler sur une tâche, celle-ci doit être à l’état Prêt. L’utilisateur
connecté doit également avoir l’élément de travail d’un propriétaire potentiel de la
tâche. Le fragment de code suivant affiche l’appel de méthode query pour cette
requête :
query("DISTINCT TASK.TKIID",

"TASK.KIND IN (TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING)
AND " +

"TASK.STATE = TASK.STATE.STATE_READY AND " +
"WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",
(String)null, (String)null, (Integer)null, (TimeZone)null)

Chapitre 4. Développement d’applications client pour les tâches et processus métier 281

Les actions suivantes sont prises lorsque l’instruction SQL SELECT est générée :
v Une condition pour le contrôle d’accès est ajoutée à la clause Where. Cet

exemple suppose que les éléments de travail de ce groupe ne sont pas activés.
v Les constantes, telles que TASK.STATE.STATE_READY sont remplacées par leurs

valeurs numériques.
v Une clause FROM et les conditions de joint sont ajoutées.

Le fragment de code suivant montre l’instruction SQL qui est générée à partir de la
requête API :
SELECT DISTINCT TASK.TKIID

FROM TASK TA, WORK_ITEM WI,
WHERE WI.OBJECT_ID = TA.TKIID
AND TA.KIND IN (101, 105)
AND TA.STATE = 2
AND WI.REASON = 1
AND (WI.OWNER_ID = 'JohnSmith' OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

Pour restreindre la requête API aux tâches d’un processus spécifique, par exemple,
sampleProcess, la requête ressemble à ce qui suit :
query("DISTINCT TASK.TKIID",

"PROCESS_TEMPLATE.NAME = 'sampleProcess' AND "+
"TASK.KIND IN (TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING)

AND " +
"TASK.STATE = TASK.STATE.STATE_READY AND " +
"WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",
(String)null, (String)null, (Integer)null, (TimeZone)null)

Concepts associés

Exemples de méthodes query et queryAll
Ces exemples montrent la syntaxe de diverses requêtes API générales et des
instructions SQL associées qui sont générées lors du traitement de la requête.

Exemple : requête de tâches à l’état Réclamé :

Cet exemple indique comment utiliser la méthode query pour extraire les tâches
que l’utilisateur connecté a réclamées.

L’utilisateur, John Smith, souhaite rechercher des tâches qu’il a réclamées et qui
sont toujours à l’état Réclamé. La condition qui spécifie ″réclamé par John Smith″
est TASK.OWNER = 'JohnSmith'. Le fragment de code suivant indique l’appel de
méthode query pour la requête :
query("DISTINCT TASK.TKIID",

"TASK.STATE = TASK.STATE.STATE_CLAIMED AND " +
"TASK.OWNER = 'JohnSmith'",
(String)null, (String)null, (Integer)null, (TimeZone)null)

Le fragment de code suivant montre l’instruction SQL qui est générée à partir de la
requête API :
SELECT DISTINCT TASK.TKIID

FROM TASK TA, WORK_ITEM WI,
WHERE WI.OBJECT_ID = TA.TKIID
AND TA.STATE = 8
TA.OWNER = 'JohnSmith'
AND (WI.OWNER_ID = 'JohnSmith' OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

Lorsqu’une tâche est réclamée, les éléments de travail sont créés pour le
propriétaire de la tâche. Ainsi, l’autre façon de former la requête pour les tâches
réclamées de John Smith consiste à ajouter la condition suivante à la requête au
lieu d’utiliser TASK.OWNER = 'JohnSmith':

282 Développement et déploiement

WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_OWNER

Alors la requête ressemble au fragment de code suivant :
query("DISTINCT TASK.TKIID",

"TASK.STATE = TASK.STATE.STATE_CLAIMED AND " +
"WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_OWNER",
(String)null, (String)null, (Integer)null, (TimeZone)null)

Les actions suivantes sont prises lorsque l’instruction SQL SELECT est générée :
v Une condition pour le contrôle d’accès est ajoutée à la clause Where. Cet

exemple suppose que les éléments de travail de ce groupe ne sont pas activés.
v Les constantes, telles que TASK.STATE.STATE_READY sont remplacées par leurs

valeurs numériques.
v Une clause FROM et les conditions de joint sont ajoutées.

Le fragment de code suivant montre l’instruction SQL qui est générée à partir de la
requête API :
SELECT DISTINCT TASK.TKIID

FROM TASK TA, WORK_ITEM WI,
WHERE WI.OBJECT_ID = TA.TKIID
AND TA.STATE = 8
AND WI.REASON = 4
AND (WI.OWNER_ID = 'JohnSmith' OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

John est sur le point de partir en congés, donc son responsable d’équipe, Anne
Grant, souhaite évaluer sa charge de travail actuelle. Anne dispose des droits
d’administration. La requête qu’elle appelle est la même que celle appelée par
John. Cependant, l’instruction SQL qui est générée est différente car Anne est
administrateur. Le fragment de code suivant indique l’instruction SQL générée :
SELECT DISTINCT TASK.TKIID

FROM TASK TA, WORK_ITEM WI,
WHERE TA.TKIID = WI.OBJECT_ID =
AND TA.STATE = 8
AND TA.OWNER = 'JohnSmith')

Du fait qu’Anne est administrateur, une condition de contrôle d’accès n’est pas
ajoutée à la clause WHERE.
Concepts associés

Exemples de méthodes query et queryAll
Ces exemples montrent la syntaxe de diverses requêtes API générales et des
instructions SQL associées qui sont générées lors du traitement de la requête.

Exemple : interrogation d’escalades :

Cet exemple indique comment utiliser la méthode query pour extraire les escalades
pour l’utilisateur connecté.

Lorsqu’une tâche est escaladée, un élément de travail récepteur d’escalade est créé.
L’utilisateur Mary Jones souhaite voir la liste des tâches qui lui ont été escaladées.
Le fragment de code suivant indique l’appel de méthode query pour la requête :
query("DISTINCT ESCALATION.ESIID, ESCALATION.TKIID",

"WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_ESCALATION_RECEIVER",
(String)null, (String)null, (Integer)null, (TimeZone)null)

Les actions suivantes sont prises lorsque l’instruction SQL SELECT est générée :

Chapitre 4. Développement d’applications client pour les tâches et processus métier 283

v Une condition pour le contrôle d’accès est ajoutée à la clause Where. Cet
exemple suppose que les éléments de travail de ce groupe ne sont pas activés.

v Les constantes, telles que TASK.STATE.STATE_READY sont remplacées par leurs
valeurs numériques.

v Une clause FROM et les conditions de joint sont ajoutées.

Le fragment de code suivant indique l’instruction SQL qui est générée à partir de
la requête API :
SELECT DISTINCT ESCALATION.ESIID, ESCALATION.TKIID

FROM ESCALATION ESC, WORK_ITEM WI
WHERE ESC.ESIID = WI.OBJECT_ID
AND WI.REASON = 10
AND
(WI.OWNER_ID = 'MaryJones' OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

Concepts associés

Exemples de méthodes query et queryAll
Ces exemples montrent la syntaxe de diverses requêtes API générales et des
instructions SQL associées qui sont générées lors du traitement de la requête.

Exemple : utilisation de la méthode queryAll :

Cet exemple indique comment utiliser la méthode queryAll pour extraire toutes les
activités propres à un modèle de processus.

La méthode queryAll est disponible uniquement pour les utilisateurs avec des
droits d’administrateur système ou de contrôleur système. Le fragment de code
suivant indique l’appel de méthode queryAll pour la requête permettant d’extraire
toutes les activités propres au modèle de processus, sampleProcess :
queryAll("DISTINCT ACTIVITY.AIID",

"PROCESS_TEMPLATE.NAME = 'sampleProcess'",
(String)null, (String)null, (Integer)null, (TimeZone)null)

Le fragment de code suivant montre la requête SQL qui est générée à partir de la
requête API :
SELECT DISTINCT ACTIVITY.AIID

FROM ACTIVITY AI, PROCESS_TEMPLATE PT
WHERE AI.PTID = PT.PTID
AND PT.NAME = 'sampleProcess'

Du fait que l’appel est invoqué par un administrateur, une condition de contrôle
d’accès n’est pas ajoutée à l’instruction SQL générée. Un joint à la vue
WORK_ITEM n’est pas ajouté non plus. Cela signifie que la requête extrait toutes
les activités du modèle de processus, y compris les activités sans élément de
travail.
Concepts associés

Exemples de méthodes query et queryAll
Ces exemples montrent la syntaxe de diverses requêtes API générales et des
instructions SQL associées qui sont générées lors du traitement de la requête.

Exemple : ajout de propriétés de requête à une requête :

Cet exemple indique comment utiliser la méthode query pour extraire les tâches
propres à un processus métier. Le processus dispose de propriétés de requête
spécifiques que vous pouvez inclure à la recherche.

284 Développement et déploiement

Par exemple, vous souhaitez rechercher toutes les tâches utilisateur à l’état Prêt qui
sont propres à un processus métier. Le processus fournit la propriété de requête
customerID qui est dotée de la valeur CID_12345 et d’un espace de nom. Le
fragment de code suivant indique l’appel de méthode query pour la requête :
query (" DISTINCT TASK.TKIID, TASK_TEMPL.NAME, TASK.STATE,

PROCESS_INSTANCE.NAME",
" QUERY_PROPERTY.NAME = 'customerID' AND " +
" QUERY_PROPERTY.STRING_VALUE = 'CID_12345' AND " +
" QUERY_PROPERTY.NAMESPACE =

'http://www.ibm.com/xmlns/prod/websphere/mqwf/bpel/' AND " +
" TASK.KIND IN

(TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING) AND " +
" TASK.STATE = TASK.STATE.STATE_READY ",
(String)null, (String)null, (Integer)null, (TimeZone)null);

A présent, si vous souhaitez ajouter une deuxième propriété de requête à la
requête, comme par exemple, Priority, avec un espace de nom donné, l’appel de
méthode query de la requête ressemble à ce qui suit :
query (" DISTINCT TASK.TKIID, TASK_TEMPL.NAME, TASK.STATE,

PROCESS_INSTANCE.NAME",
" QUERY_PROPERTY1.NAME = 'customerID' AND " +
" QUERY_PROPERTY1.STRING_VALUE = 'CID_12345' AND " +
" QUERY_PROPERTY1.NAMESPACE =

'http://www.ibm.com/xmlns/prod/websphere/mqwf/bpel/' AND " +
" QUERY_PROPERTY2.NAME = 'Priority' AND " +
" QUERY_PROPERTY2.NAMESPACE =

'http://www.ibm.com/xmlns/prod/websphere/mqwf/bpel/' AND " +
" TASK.KIND IN

(TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING) AND " +
" TASK.STATE = TASK.STATE.STATE_READY ",
(String)null, (String)null, (Integer)null, (TimeZone)null);

Si vous ajoutez plusieurs propriétés de requête à la requête, vous devez numéroter
chaque propriété que vous ajoutez comme indiqué dans le fragment de code.
Cependant, l’interrogation des propriétés personnalisées a une répercussion sur les
performances, car elles se réduisent du fait du nombre de propriétés personnalisées
dans la requête.
Concepts associés

Exemples de méthodes query et queryAll
Ces exemples montrent la syntaxe de diverses requêtes API générales et des
instructions SQL associées qui sont générées lors du traitement de la requête.

Exemple : ajout de propriétés personnalisées à une requête :

Cet exemple montre comment utiliser la méthode query pour extraire les tâches
dotées de propriétés personnalisées.

Par exemple, vous souhaitez rechercher toutes les tâches utilisateur à l’état Prêt
avec la propriété personnalisée customerID et la valeur CID_12345. Le fragment de
code suivant indique l’appel de méthode query pour la requête :
query("DISTINCT TASK.TKIID",

" TASK_CPROP.NAME = 'customerID' AND " +
" TASK_CPROP.STRING_VALUE = 'CID_12345' AND " +
" TASK.KIND IN

(TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING) AND " +
" TASK.STATE = TASK.STATE.STATE_READY ",
(String)null, (String)null, (Integer)null, (TimeZone)null);

A présent, si vous souhaitez extraire les tâches et leurs propriétés personnalisées,
l’appel de méthode query de la requête ressemble à ce qui suit :

Chapitre 4. Développement d’applications client pour les tâches et processus métier 285

query (" DISTINCT TASK.TKIID, TASK_CPROP.NAME, TASK_CPROP.STRING_VALUE",
" TASK.KIND IN

(TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING) AND " +
" TASK.STATE = TASK.STATE.STATE_READY ",
(String)null, (String)null, (Integer)null, (TimeZone)null);

L’instruction SQL qui est générée à partir de cette requête API s’affiche dans le
fragment de code suivant :
SELECT DISTINCT TA.TKIID , TACP.NAME , TACP.STRING_VALUE

FROM TASK TA LEFT JOIN TASK_CPROP TACP ON (TA.TKIID = TACP.TKIID),
WORK_ITEM WI

WHERE WI.OBJECT_ID = TA.TKIID
AND TA.KIND IN (101, 105)
AND TA.STATE = 2
AND (WI.OWNER_ID = 'JohnSmith' OR WI.OWNER_ID IS NULL AND WI.EVERYBODY = 1)

Cette instruction SQL contient un joint extérieur entre la vue TASK et la vue
TASK_CPROP. Cela signifie que les tâches qui répondent à la clause WHERE sont
extraites même si elles ne comportent pas de propriété personnalisée.
Concepts associés

Exemples de méthodes query et queryAll
Ces exemples montrent la syntaxe de diverses requêtes API générales et des
instructions SQL associées qui sont générées lors du traitement de la requête.

Développement d’applications client EJB pour des processus métier et
des tâches utilisateur

Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d’utiliser des processus métier
et des tâches utilisateur installées sur WebSphere Process Server.

A propos de cette tâche

Ces API EJB (Enterprise JavaBeans) permettent de créer des applications client
pour effectuer les opérations suivantes :
v Gérer le cycle de vie des processus et des tâches, depuis leur lancement jusqu’à

leur suppression finale
v Réparer des activités et des processus
v Gérer et distribuer la charge de travail entre les membres d’un groupe de travail

Les API EJB sont fournies sous forme de deux beans enterprise session sans état :
v L’interface BusinessFlowManagerService fournit les méthodes pour les

applications de processus métier.
v L’interface HumanTaskManagerService fournit les méthodes pour les

applications basées sur des tâches.

Pour plus d’informations concernant les API EJB, voir la documentation Java dans
le package com.ibm.bpe.api et le package com.ibm.task.api.

La procédure suivante offre un aperçu des actions à entreprendre pour développer
une application client EJB.

Procédure

1. Déterminez les fonctionnalités que l’application doit offrir.
2. Décidez quels beans session vous souhaitez utiliser.

286 Développement et déploiement

En fonction des scénarios que vous souhaitez implémenter à l’aide de votre
application, vous pouvez choisir l’un des beans session ou les deux.

3. Déterminez quels sont les droits requis par les utilisateurs de l’application.
Les utilisateurs de votre application doivent disposer des rôles d’autorisation
appropriés pour pouvoir appeler les méthodes que vous incluez dans celle-ci et
pour visualiser les objets et les attributs des objets renvoyés par ces méthodes.
Si une instance du bean session approprié est créée, WebSphere Application
Server associe un contexte à cette instance. Le contexte contient des
informations relatives à l’ID principal de l’appelant, à la liste d’appartenance au
groupe et aux rôles. Ces informations sont utilisées à la vérification des droits
d’accès de l’appelant pour chaque appel.
Les informations d’autorisation relatives à chacune des méthodes sont décrites
dans Javadoc.

4. Déterminez de quelle façon rendre l’application.
Les interfaces API EJB peuvent être appelées à distance ou localement.

5. Développez l’application.
a. Accédez à l’API EJB.
b. Utilisez l’API EJB pour interagir avec les processus ou les tâches.

v Recherchez les données.
v Utilisez les données.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 287

Concepts associés

Comparaison entre les interfaces de programmation visant à interagir avec les
processus métier et les tâches utilisateur
Des interfaces de programmation génériques EJB (Enterprise JavaBeans), JMS (Java
Message Service), REST (Representational State Transfer Services) ainsi que des
interfaces de programmation de services Web sont disponibles pour la création
d’applications client interagissant avec des processus métier et des tâches
utilisateur. Chacune de ces interfaces présente des caractéristiques différentes.
Tâches associées

Développement d’applications client pour les tâches et processus métier
Vous pouvez utiliser un outil de modélisation pour compiler et déployer des tâches
et des processus métier. L’interaction avec ces processus et ces tâches se produit
lors de l’exécution. Par exemple, un processus est lancé ou les tâches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des tâches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.
Accès aux API EJB
Les API EJB (Enterprise JavaBeans) sont fournies sous forme de deux beans
enterprise session sans état. Les applications de processus métier et les applications
de tâche accèdent au bean enterprise de session approprié via l’interface home du
bean.
Requête sur des objets liés aux processus métier et aux tâches
Les applications client fonctionnent avec des objets liés à des processus métier et à
des tâches. Vous pouvez effectuer des requêtes de données sur les objets liés aux
processus métier et aux tâches dans la base de données afin d’extraire les
propriétés spécifiques de ces objets.
Développement d’applications pour les processus métier
Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la façon dont vous pourriez développer des
applications pour des actions typiques sur des processus.
Développement d’applications pour des tâches utilisateur
Une tâche représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des tâches utilisateur sont fournis.
Développement d’applications pour les processus métier et les tâches utilisateur
La plupart des scénarios de processus métier nécessitent la participation de
personnes. Par exemple, un processus métier nécessite une interaction humaine
lorsque le processus est démarré ou géré ou lorsque des activités humaines sont
effectuées. Pour supporter de tels scénarios, vous devez utiliser à la fois l’API de
Business Flow Manager et l’API de Human Task Manager.
Gestion des exceptions et des erreurs
Un processus BPEL peut rencontrer une erreur à différents points du processus.
Référence associée

Vue de la base de données Business Process Choreographer
Ces informations de référence décrivent les colonnes disponibles dans les vues de
base de données prédéfinies.

288 Développement et déploiement

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=r6bpc_dbviews

Accès aux API EJB
Les API EJB (Enterprise JavaBeans) sont fournies sous forme de deux beans
enterprise session sans état. Les applications de processus métier et les applications
de tâche accèdent au bean enterprise de session approprié via l’interface home du
bean.

A propos de cette tâche

L’interface BusinessFlowManagerService fournit les méthodes pour les applications
de processus métier et l’interface HumanTaskManagerService fournit les méthodes
pour les applications basées sur des tâches. Il peut s’agir de n’importe quelle
application Java, y compris une autre application Enterprise JavaBeans (EJB).
Tâches associées

Développement d’applications client EJB pour des processus métier et des tâches
utilisateur
Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d’utiliser des processus métier
et des tâches utilisateur installées sur WebSphere Process Server.
Accès à l’interface distante du bean session
Une application client EJB de processus métier ou de tâches utilisateur accède à
l’interface distante du bean session par le biais de l’interface home distante du
bean.
Accès à l’interface locale du bean session
Une application client EJB de processus métier ou de tâches utilisateur accède à
l’interface locale du bean session par le biais de l’interface home locale du bean.

Accès à l’interface distante du bean session
Une application client EJB de processus métier ou de tâches utilisateur accède à
l’interface distante du bean session par le biais de l’interface home distante du
bean.

A propos de cette tâche

Le bean session peut être soit le bean session BusinessFlowManager pour les
applications de processus, soit le bean session HumanTaskManager pour les
applications de tâche.

Procédure

1. Ajoutez à l’interface distante du bean session une référence pointant vers le
descripteur de déploiement d’applications. Ajoutez la référence à l’un des
fichiers suivants :
v Le fichier application-client.xml pour une application client Java 2 Platform

Enterprise Edition (J2EE)
v Le fichier web.xml pour une application Web
v Le fichier ejb-jar.xml pour une application Enterprise JavaBeans (EJB)
La référence à l’interface home distante des applications de processus est
illustrée dans l’exemple suivant :
<ejb-ref>
<ejb-ref-name>ejb/BusinessFlowManagerHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.ibm.bpe.api.BusinessFlowManagerHome</home>
<remote>com.ibm.bpe.api.BusinessFlowManager</remote>
</ejb-ref>

Chapitre 4. Développement d’applications client pour les tâches et processus métier 289

La référence à l’interface home locale des applications de tâche est illustrée
dans l’exemple suivant :
<ejb-ref>
<ejb-ref-name>ejb/HumanTaskManagerHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.ibm.task.api.HumanTaskManagerHome</home>
<remote>com.ibm.task.api.HumanTaskManager</remote>
</ejb-ref>

Si vous utilisez WebSphere Integration Developer pour ajouter la référence EJB
au descripteur de déploiement, la liaison de la référence EJB est
automatiquement créée lors du déploiement de l’application. Pour plus
d’informations concernant l’ajout de références EJB, consultez la documentation
WebSphere Integration Developer.

2. Intégrez les substituts générés dans votre application.
a. Pour les applications de processus, intégrez les fichiers contenus dans le

fichier<racine_installation>/ProcessChoreographer/client/bpe137650.jar et le
fichier d’archive d’entreprise (EAR) de votre application.

b. Pour les applications de tâche, intégrez le fichier <racine_installation>>/
ProcessChoreographer/client/task137650.jar avec le fichier EAR de votre
application.

c. Définissez le paramètre de chemin de classes dans le fichier manifeste du
module d’application afin d’y inclure le fichier JAR.
Le module d’application peut être une application J2EE, une application
Web ou une application EJB.

3. Décidez de la méthode adoptée pour fournir les définitions des objets métier.
Pour utiliser des objets métier dans une application client distante, vous devez
avoir accès aux schémas correspondants pour les objets métier (fichiers XSD ou
WSDL) utilisés pour l’interaction avec un processus ou une tâche. L’accès à ces
fichiers est possible de l’une des manières suivantes :
v Si l’application client n’est pas exécutée dans un environnement géré J2EE,

incluez les fichiers dans le fichier EAR de l’application client.
v Si l’application client est une application Web ou un client EJB exécuté dans

un environnement géré J2EE, vous pouvez soit inclure les fichiers dans le
fichier EAR de l’application client, soit bénéficier du chargement des artefacts
distants.
a. Utilisez l’interface API EJB createMessage de Business Process

Choreographer et les méthodes ClientObjectWrapper.getObject pour
charger les définitions d’objet métier distantes de l’application
correspondante vers le serveur, de façon transparente.

b. Utilisez l’interface de programmation Service Data Object pour créer ou
consulter un objet métier en tant que partie d’un objet métier déjà
instancié. Pour cela, utilisez les méthodes
commonj.sdo.DataObject.createDataObject ou getDataObject sur l’interface
DataObject.

c. Lorsque vous souhaitez créer un objet métier en tant que valeur de
propriété d’un objet métier saisie à l’aide du schéma XML any ou
anyType, utilisez les services Business Object pour créer ou lire votre
objet métier. Pour cela, vous devez définir le contexte de RAL de manière
à pointer vers l’application à partir de laquelle les schémas seront
chargés. Vous pouvez ensuite les services des objets métier appropriés.
Créez par exemple un objet métier dans lequel ″ApplicationName″ est le
nom de l’application qui contient les définitions de vos objets métier.

290 Développement et déploiement

BOFactory bofactory = (BOFactory) new
ServiceManager().locateService("com/ibm/websphere/bo/BOFactory");

com.ibm.wsspi.al.ALContext.setContext
("RALTemplateName", "ApplicationName");

try {
DataObject dataObject = bofactory.create("uriName", "typeName");

} finally {
com.ibm.wsspi.al.ALContext.unset();

}

Lisez par exemple une entrée XML dans laquelle ″ApplicationName″ est
le nom de l’application qui contient les définitions de vos objets métier.
BOXMLSerializer serializerService =

(BOXMLSerializer) new ServiceManager().locateService
("com/ibm/websphere/bo/BOXMLSerializer");

ByteArrayInputStream input = new ByteArrayInputStream(<?xml?>..);

com.ibm.wsspi.al.ALContext.setContext
("RALTemplateName", "ApplicationName");

try {
BOXMLDocument document = serializerService.readXMLDocument(input);
DataObject dataObject = document.getDataObject();

} finally {
com.ibm.wsspi.al.ALContext.unset();

}

4. Localisez l’interface home distante du bean session dans l’interface JNDI (Java
Naming and Directory Interface).
L’exemple suivant illustre cette étape pour une application de processus :
// Obtenir le contexte JNDI initial par défaut
InitialContext initialContext = new InitialContext();

// Rechercher l'interface home distante du bean BusinessFlowManager
Object result =

initialContext.lookup("java :comp/env/ejb/BusinessFlowManagerHome");

// Convertir le résultat de la recherche dans le type approprié
BusinessFlowManagerHome processHome =

(BusinessFlowManagerHome)javax.rmi.PortableRemoteObject.narrow
(result,BusinessFlowManagerHome.class);

L’interface home distante du bean session contient une méthode de création
pour les objets EJB. Cette méthode renvoie l’interface distante du bean session.

5. Accédez à l’interface distante du bean session.
L’exemple suivant illustre cette étape pour une application de processus :
BusinessFlowManager process = processHome.create();

L’accès au bean session ne garantit pas que l’appelant puisse effectuer toutes
les actions sur un certain processus ; l’appelant doit être également autorisé à
effectuer l’action. Lorsqu’une instance du bean session est créée, elle est
associée à un contexte du bean session. Le contexte contient l’ID principal de
l’appelant, la liste d’appartenance au groupe et indique si l’appelant est titulaire
d’un des rôles J2EE de Business Process Choreographer. Le contexte est utilisé
pour vérifier l’autorisation de l’appelant pour chaque appel, même lorsque la
sécurité administrative n’est pas configurée. Si la sécurité administrative n’est
pas configurée, la valeur de l’ID principal de l’appelant est UNAUTHENTICATED.

6. Appelez les fonctions métier exposées par l’interface de service.
L’exemple suivant illustre cette étape pour une application de processus :
process.initiate("MyProcessModel",input);

Chapitre 4. Développement d’applications client pour les tâches et processus métier 291

Les appels venant des applications sont exécutés comme des transactions. Une
transaction est établie et terminée de l’une des façons suivantes :
v Automatiquement par WebSphere Application Server (le descripteur de

déploiement spécifie TX_REQUIRED).
v De manière explicite par l’application. Vous pouvez regrouper les appels

d’application à l’intérieur d’une seule transaction :
// Obtenir l'interface de transaction utilisateur
UserTransaction transaction=

(UserTransaction)initialContext.lookup("java:comp/UserTransaction");

// Commencer une transaction
transaction.begin();

// Appels d'applications ...

// En cas d'aboutissement, valider la transaction
transaction.commit();

Conseil : Afin d’éviter tout conflit de verrouillage de la base de données, évitez
d’exécuter en parallèle des instructions similaires à la suivante :
// Obtenir l'interface de transaction utilisateur
UserTransaction transaction=

(UserTransaction)initialContext.lookup("java:comp/UserTransaction");

transaction.begin();

//Lire l'instance d'activité
process.getActivityInstance(aiid);
//Réclamer l'instance d'activité
process.claim(aiid);

transaction.commit();

La méthode getActivityInstance ainsi que d’autres opérations de lecture
définissent un verrou en lecture. Dans cet exemple, un verrou en lecture sur
l’instance d’activité est mis à niveau vers un verrou U sur l’instance d’activité.
Ceci peut provoquer un blocage de la base de données lorsque ces transactions
sont exécutées en parallèle.

Exemple

Voici un exemple illustrant les étapes 3 à 5 pour une application de tâche.
// Obtenir le contexte JNDI initial par défaut
InitialContext initialContext = new InitialContext();

// Rechercher l'interface home distante du bean HumanTaskManager
Object result =

initialContext.lookup("java:comp/env/ejb/HumanTaskManagerHome");

// Convertir le résultat de la recherche dans le type approprié
HumanTaskManagerHome taskHome =

(HumanTaskManagerHome)javax.rmi.PortableRemoteObject.narrow
(result,HumanTaskManagerHome.class);

...
//Accéder à l'interface distante du bean session
HumanTaskManager task = taskHome.create();

...
//Appeler les fonctions métier exposées par l'interface de service
task.callTask(tkiid,input);

292 Développement et déploiement

Tâches associées

Accès aux API EJB
Les API EJB (Enterprise JavaBeans) sont fournies sous forme de deux beans
enterprise session sans état. Les applications de processus métier et les applications
de tâche accèdent au bean enterprise de session approprié via l’interface home du
bean.

Accès à l’interface locale du bean session
Une application client EJB de processus métier ou de tâches utilisateur accède à
l’interface locale du bean session par le biais de l’interface home locale du bean.

A propos de cette tâche

Le bean session peut être soit le bean session BusinessFlowManager pour les
applications de processus, soit le bean session HumanTaskManager pour les
applications de tâche utilisateur.

Procédure

1. Ajoutez à l’interface locale du bean session une référence pointant vers le
descripteur de déploiement d’applications. Ajoutez la référence à l’un des
fichiers suivants :
v Le fichier application-client.xml pour une application client Java 2 Platform

Enterprise Edition (J2EE)
v Le fichier web.xml pour une application Web
v Le fichier ejb-jar.xml pour une application Enterprise JavaBeans (EJB)
La référence à l’interface home locale des applications de processus est illustrée
dans l’exemple suivant :
<ejb-local-ref>
<ejb-ref-name>ejb/LocalBusinessFlowManagerHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>com.ibm.bpe.api.LocalBusinessFlowManagerHome</local-home>
<local>com.ibm.bpe.api.LocalBusinessFlowManager</local>
</ejb-local-ref>

La référence à l’interface home locale des applications de tâche est illustrée
dans l’exemple suivant :
<ejb-local-ref>
<ejb-ref-name>ejb/LocalHumanTaskManagerHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>com.ibm.task.api.LocalHumanTaskManagerHome</local-home>
<local>com.ibm.task.api.LocalHumanTaskManager</local>
</ejb-local-ref>

Si vous utilisez WebSphere Integration Developer pour ajouter la référence EJB
au descripteur de déploiement, la liaison de la référence EJB est
automatiquement créée lors du déploiement de l’application. Pour plus
d’informations concernant l’ajout de références EJB, consultez la documentation
WebSphere Integration Developer.

2. Localisez l’interface home locale du bean session dans l’interface JNDI (Java
Naming and Directory Interface).
L’exemple suivant illustre cette étape pour une application de processus :
// Obtenir le contexte JNDI initial par défaut
InitialContext initialContext = new InitialContext();

// Lookup the local home interface of the BusinessFlowManager bean

LocalBusinessFlowManagerHome processHome =
(LocalBusinessFlowManagerHome)initialContext.lookup
("java :comp/env/ejb/LocalBusinessFlowManagerHome");

Chapitre 4. Développement d’applications client pour les tâches et processus métier 293

L’interface home locale du bean session contient une méthode de création pour
les objets EJB. Cette méthode renvoie l’interface locale du bean session.

3. Accédez à l’interface locale du bean session.
L’exemple suivant illustre cette étape pour une application de processus :
LocalBusinessFlowManager process = processHome.create();

L’accès au bean session ne garantit pas que l’appelant puisse effectuer toutes
les actions sur un certain processus ; l’appelant doit être également autorisé à
effectuer l’action. Lorsqu’une instance du bean session est créée, elle est
associée à un contexte du bean session. Le contexte contient l’ID principal de
l’appelant, la liste d’appartenance au groupe et indique si l’appelant est titulaire
d’un des rôles J2EE de Business Process Choreographer. Le contexte est utilisé
pour vérifier l’autorisation de l’appelant pour chaque appel, même lorsque la
sécurité administrative n’est pas configurée. Si la sécurité administrative n’est
pas configurée, la valeur de l’ID principal de l’appelant est UNAUTHENTICATED.

4. Appelez les fonctions métier exposées par l’interface de service.
L’exemple suivant illustre cette étape pour une application de processus :
process.initiate("MyProcessModel",input);

Les appels venant des applications sont exécutés comme des transactions. Une
transaction est établie et terminée de l’une des façons suivantes :
v Automatiquement par WebSphere Application Server (le descripteur de

déploiement spécifie TX_REQUIRED).
v De manière explicite par l’application. Vous pouvez regrouper les appels

d’application à l’intérieur d’une seule transaction :
// Obtenir l'interface de transaction utilisateur
UserTransaction transaction=

(UserTransaction)initialContext.lookup("java:comp/UserTransaction");

// Commencer une transaction
transaction.begin();

// Appels d'applications ...

// En cas d'aboutissement, valider la transaction
transaction.commit();

Conseil : Afin d’éviter tout blocage de la base de données, évitez d’exécuter en
parallèle des instructions similaires à la suivante :
// Obtain user transaction interface
UserTransaction transaction=

(UserTransaction)initialContext.lookup("java:comp/UserTransaction");

transaction.begin();

//read the activity instance
process.getActivityInstance(aiid);
//claim the activity instance
process.claim(aiid);

transaction.commit();

La méthode getActivityInstance ainsi que d’autres opérations de lecture
définissent un verrou en lecture. Dans cet exemple, un verrou en lecture sur
l’instance d’activité est mis à niveau vers un verrou U sur l’instance d’activité.
Ceci peut provoquer un blocage de la base de données lorsque ces transactions
sont exécutées en parallèle

294 Développement et déploiement

Exemple

Voici un exemple illustrant les étapes 2 à 4 pour une application de tâche.
//Obtain the default initial JNDI context
InitialContext initialContext = new InitialContext();

//Lookup the local home interface of the HumanTaskManager bean
LocalHumanTaskManagerHome taskHome =

(LocalHumanTaskManagerHome)initialContext.lookup
("java:comp/env/ejb/LocalHumanTaskManagerHome");

...
//Access the local interface of the session bean
LocalHumanTaskManager task =
taskHome.create();

...
//Call the business functions exposed by the service interface
task.callTask(tkiid,input);

Tâches associées

Accès aux API EJB
Les API EJB (Enterprise JavaBeans) sont fournies sous forme de deux beans
enterprise session sans état. Les applications de processus métier et les applications
de tâche accèdent au bean enterprise de session approprié via l’interface home du
bean.

Requête sur des objets liés aux processus métier et aux
tâches

Les applications client fonctionnent avec des objets liés à des processus métier et à
des tâches. Vous pouvez effectuer des requêtes de données sur les objets liés aux
processus métier et aux tâches dans la base de données afin d’extraire les
propriétés spécifiques de ces objets.

A propos de cette tâche

Durant la configuration de Business Process Choreographer, une base de données
relationnelle est associée au conteneur de processus métier et au conteneur de
tâche. La base de données stocke toutes les données de modèle et d’instance
(programme d’exécution) nécessaires à la gestion des processus métier et des
tâches. Utilisez une syntaxe SQL pour rechercher ces données.

Vous pouvez effectuer une requête unique pour extraire une propriété particulière
d’un objet. Vous pouvez également enregistrer les requêtes que vous utilisez
souvent et inclure ces requêtes stockées dans votre application.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 295

Tâches associées

Développement d’applications client EJB pour des processus métier et des tâches
utilisateur
Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d’utiliser des processus métier
et des tâches utilisateur installées sur WebSphere Process Server.
Filtrage de données à l’aide de variables définies dans des requêtes
Un résultat de requête renvoie l’objet répondant aux critères de la recherche. Vous
pouvez filtrer ces résultats selon les valeurs des variables.
Gestion des requêtes stockées
Les requêtes stockées permettent d’enregistrer des requêtes souvent exécutées. La
requête stockée peut soit être une requête disponible pour tous les utilisateurs
(requête publique), soit une requête appartenant à un utilisateur spécifique
(requête privée).
Référence associée

Vue de la base de données Business Process Choreographer
Ces informations de référence décrivent les colonnes disponibles dans les vues de
base de données prédéfinies.

Filtrage de données à l’aide de variables définies dans des
requêtes
Un résultat de requête renvoie l’objet répondant aux critères de la recherche. Vous
pouvez filtrer ces résultats selon les valeurs des variables.

A propos de cette tâche

Vous pouvez définir des variables utilisées par un processus lors de l’exécution
dans son modèle de processus. Vous pouvez, pour ces variables, déclarer sur
quelles parties porte la requête.

Voici un exemple : John Smith appelle sa société d’assurance afin de connaître le
statut de sa demande d’indemnisation suite à un accident de la circulation.
L’administrateur des demandes d’indemnisation recherche le dossier du client par
le biais de son ID client.

Procédure

1. Facultatif : Répertoriez les propriétés des variables dans un processus pouvant
faire l’objet d’une requête.
Identifiez le processus par le biais de l’ID du modèle de processus. Vous
pouvez omettre cette étape si vous connaissez les variables pouvant faire l’objet
de requêtes.
List variableProperties = process.getQueryProperties(ptid);
for (int i = 0; i < variableProperties.size(); i++)
{

QueryProperty queryData = (QueryProperty)variableProperties.get(i);
String variableName = queryData.getVariableName();
String name = queryData.getName();
int mappedType = queryData.getMappedType();
...

}

2. Dressez la liste des instances de processus contenant les variables conformes
aux critères de filtrage.

296 Développement et déploiement

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=r6bpc_dbviews

Pour ce processus, l’ID client est modélisé en tant que partie de la variable
customerClaim pouvant être soumise à la requête. Ainsi, vous pouvez
rechercher la demande d’indemnisation par l’intermédiaire de l’ID client.
QueryResultSet result = process.query

("PROCESS_INSTANCE.NAME, QUERY_PROPERTY.STRING_VALUE",
"QUERY_PROPERTY.VARIABLE_NAME = 'customerClaim' AND " +
"QUERY_PROPERTY.NAME = 'customerID' AND " +
"QUERY_PROPERTY.STRING_VALUE like 'Smith%'",
(String)null, (Integer)null,
(Integer)null, (TimeZone)null);

Cette opération renvoie un ensemble de résultats de requête contenant les noms
d’instance de processus et les valeurs d’ID des clients dont l’identifiant
commence par ’Smith’.

Tâches associées

Requête sur des objets liés aux processus métier et aux tâches
Les applications client fonctionnent avec des objets liés à des processus métier et à
des tâches. Vous pouvez effectuer des requêtes de données sur les objets liés aux
processus métier et aux tâches dans la base de données afin d’extraire les
propriétés spécifiques de ces objets.

Gestion des requêtes stockées
Les requêtes stockées permettent d’enregistrer des requêtes souvent exécutées. La
requête stockée peut soit être une requête disponible pour tous les utilisateurs
(requête publique), soit une requête appartenant à un utilisateur spécifique
(requête privée).

A propos de cette tâche

Une requête stockée est une requête qui est enregistrée dans la base de données et
identifiée par un nom. Une requête privée et une requête publique peuvent être
sauvegardées sous le même nom. Les requêtes enregistrées par différents
utilisateurs peuvent également avoir un nom identique.

Vous pouvez avoir stocké des requêtes pour des objets de processus métier, des
objets de tâche ou une combinaison de ces deux types d’objets.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 297

Concepts associés

Paramètres des requêtes stockées
Une requête stockée est une requête qui est enregistrée dans la base de données et
identifiée par un nom. Les uplets répondant aux critères sont assemblés de
manière dynamique lors de l’exécution de la requête. Pour rendre les requêtes
stockées réutilisables, vous pouvez utiliser les paramètres de la définition de
requête résolus lors de l’exécution.
Tâches associées

Requête sur des objets liés aux processus métier et aux tâches
Les applications client fonctionnent avec des objets liés à des processus métier et à
des tâches. Vous pouvez effectuer des requêtes de données sur les objets liés aux
processus métier et aux tâches dans la base de données afin d’extraire les
propriétés spécifiques de ces objets.
Gestion des requêtes stockées publiques
Les requêtes stockées publiques sont créées par l’administrateur système. Ces
requêtes sont accessibles à tous les utilisateurs.
Gestion des requêtes stockées privées d’autres utilisateurs
Tout utilisateur peut créer des requêtes privées. Seul le propriétaire d’une requête
et l’administrateur système peuvent les utiliser.
Gestion des requêtes stockées privées
Si vous n’êtes pas un administrateur système, vous pouvez créer, exécuter et
supprimer vos propres requêtes stockées privées. Vous pouvez également utiliser
les requêtes stockées publiques créées par l’administrateur système.

Gestion des requêtes stockées publiques :

Les requêtes stockées publiques sont créées par l’administrateur système. Ces
requêtes sont accessibles à tous les utilisateurs.

A propos de cette tâche

En tant qu’administrateur système, vous pouvez créer, visualiser et supprimer des
requêtes stockées publiques. Si vous ne spécifiez aucun ID utilisateur dans l’appel
d’API, on suppose que la requête stockée est une requête stockée publique.

Procédure

1. Créez une requête stockée publique.
Par exemple, le fragment de code suivant crée une requête stockée pour les
instances de processus et l’enregistre sous le nom
CustomerOrdersStartingWithA.
process.createStoredQuery("CustomerOrdersStartingWithA",

"DISTINCT PROCESS_INSTANCE.PIID, PROCESS_INSTANCE.NAME",
"PROCESS_INSTANCE.NAME LIKE 'A%'",
"PROCESS_INSTANCE.NAME",
(Integer)null, (TimeZone)null);

Le résultat de la requête stockée consiste en une liste triée de tous les noms
d’instance de processus commençant par la lettre A et de leurs identifiants
d’instance de processus associés (PIID).

2. Exécutez la requête définie par la requête stockée.
QueryResultSet result = process.query("CustomerOrdersStartingWithA",

new Integer(0), null);

Cette action renvoie les objets qui répondent aux critères. Dans le cas présent,
toutes les commandes client commençant par A.

298 Développement et déploiement

3. Répertoriez les requêtes stockées publiques disponibles.
Le fragment de code suivant vous permet de restreindre aux requêtes publiques
la liste des requêtes renvoyées.
String[] storedQuery = process.getStoredQueryNames(StoredQueryData.KIND_PUBLIC);

4. Facultatif : Vérifiez la requête définie par une requête stockée spécifique.
Une requête stockée privée peut porter le même nom qu’une requête stockée
publique. Si ces noms sont identiques, la requête stockée renvoyée est la
requête privée. Le fragment de code suivant montre comment renvoyer la
requête publique portant le nom spécifié. Si vous utilisez l’API de Human Task
Manager pour extraire des informations sur une requête stockée, utilisez
StoredQuery au lieu de StoredQueryData pour l’objet renvoyé.
StoredQueryData storedQuery = process.getStoredQuery

(StoredQueryData.KIND_PUBLIC, "CustomerOrdersStartingWithA");
String selectClause = storedQuery.getSelectClause();
String whereClause = storedQuery.getWhereClause();
String orderByClause = storedQuery.getOrderByClause();
Integer threshold = storedQuery.getThreshold();
String owner = storedQuery.getOwner();

5. Supprimez une requête stockée publique.
Le fragment de code suivant montre comment supprimer la requête stockée
que vous avez créée à l’étape 1.
process.deleteStoredQuery("CustomerOrdersStartingWithA");

Tâches associées

Gestion des requêtes stockées
Les requêtes stockées permettent d’enregistrer des requêtes souvent exécutées. La
requête stockée peut soit être une requête disponible pour tous les utilisateurs
(requête publique), soit une requête appartenant à un utilisateur spécifique
(requête privée).

Gestion des requêtes stockées privées d’autres utilisateurs :

Tout utilisateur peut créer des requêtes privées. Seul le propriétaire d’une requête
et l’administrateur système peuvent les utiliser.

A propos de cette tâche

En tant qu’administrateur système, vous pouvez gérer des requêtes stockées
privées qui appartiennent à un utilisateur spécifique.

Procédure

1. Créez une requête stockée privée pour l’ID utilisateur Smith.
Par exemple, le fragment de code suivant crée une requête stockée pour les
instances de processus et l’enregistre sous le nom
CustomerOrdersStartingWithA pour l’ID utilisateur Smith.
process.createStoredQuery("Smith", "CustomerOrdersStartingWithA",

"DISTINCT PROCESS_INSTANCE.PIID, PROCESS_INSTANCE.NAME",
"PROCESS_INSTANCE.NAME LIKE 'A%'",
"PROCESS_INSTANCE.NAME",
(Integer)null, (TimeZone)null,
(List)null, (String)null);

La requête stockée renvoie une liste triée de tous les noms d’instance de
processus commençant par la lettre A et de leurs identifiants d’instance de
processus associés (PIID).

2. Exécutez la requête définie par la requête stockée.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 299

QueryResultSet result = process.query
("Smith", "CustomerOrdersStartingWithA",

(Integer)null, (Integer)null, (List)null);
new Integer(0));

Cette action renvoie les objets qui répondent aux critères. Dans le cas présent,
toutes les commandes client commençant par A.

3. Accédez à la liste des noms des requêtes privées appartenant à un utilisateur
donné.
Par exemple, le fragment de code suivant montre comment obtenir la liste des
requêtes privées appartenant à l’utilisateur Smith.
String[] storedQuery = process.getStoredQueryNames("Smith");

4. Affichez les détails d’une requête spécifique.
Le fragment de code suivant montre comment afficher les détails de la requête
CustomerOrdersStartingWithA qui appartient à l’utilisateur Smith.
StoredQueryData storedQuery = process.getStoredQuery

("Smith", "CustomerOrdersStartingWithA");
String selectClause = storedQuery.getSelectClause();
String whereClause = storedQuery.getWhereClause();
String orderByClause = storedQuery.getOrderByClause();
Integer threshold = storedQuery.getThreshold();
String owner = storedQuery.getOwner();

Si vous utilisez l’API de Human Task Manager pour extraire des informations
sur une requête stockée, utilisez StoredQuery au lieu de StoredQueryData pour
l’objet renvoyé.

5. Supprimez une requête stockée privée.
Le fragment de code suivant montre comment supprimer une requête privée
qui appartient à l’utilisateur Smith.
process.deleteStoredQuery("Smith", "CustomerOrdersStartingWithA");

Tâches associées

Gestion des requêtes stockées
Les requêtes stockées permettent d’enregistrer des requêtes souvent exécutées. La
requête stockée peut soit être une requête disponible pour tous les utilisateurs
(requête publique), soit une requête appartenant à un utilisateur spécifique
(requête privée).

Gestion des requêtes stockées privées :

Si vous n’êtes pas un administrateur système, vous pouvez créer, exécuter et
supprimer vos propres requêtes stockées privées. Vous pouvez également utiliser
les requêtes stockées publiques créées par l’administrateur système.

Procédure

1. Créez une requête stockée privée.
Par exemple, le fragment de code suivant crée une requête stockée pour les
instances de processus et l’enregistre sous un nom spécifique. Si aucun ID
utilisateur n’est spécifié, on suppose que la requête stockée est une requête
stockée privée de l’utilisateur connecté.
process.createStoredQuery("CustomerOrdersStartingWithA",

"DISTINCT PROCESS_INSTANCE.PIID, PROCESS_INSTANCE.NAME",
"PROCESS_INSTANCE.NAME LIKE 'A%'",
"PROCESS_INSTANCE.NAME",
(Integer)null, (TimeZone)null);

300 Développement et déploiement

Cette requête renvoie une liste triée de tous les noms d’instance de processus
commençant par la lettre A et de leurs identifiants d’instance de processus
associés (PIID).

2. Exécutez la requête définie par la requête stockée.
QueryResultSet result = process.query("CustomerOrdersStartingWithA",

new Integer(0));

Cette action renvoie les objets qui répondent aux critères. Dans le cas présent,
toutes les commandes client commençant par A.

3. Extrayez une liste des noms de requêtes stockées auxquelles l’utilisateur
connecté peut accéder.
Le fragment de code suivant montre comment extraire les requêtes stockées
auxquelles l’utilisateur connecté peut accéder.
String[] storedQuery = process.getStoredQueryNames();

4. Affichez les détails d’une requête spécifique.
Le fragment de code suivant montre comment afficher les détails de la requête
CustomerOrdersStartingWithA dont l’utilisateur Smith est le propriétaire.
StoredQueryData storedQuery = process.getStoredQuery

("CustomerOrdersStartingWithA");
String selectClause = storedQuery.getSelectClause();
String whereClause = storedQuery.getWhereClause();
String orderByClause = storedQuery.getOrderByClause();
Integer threshold = storedQuery.getThreshold();
String owner = storedQuery.getOwner();

Si vous utilisez l’API de Human Task Manager pour extraire des informations
sur une requête stockée, utilisez StoredQuery au lieu de StoredQueryData pour
l’objet renvoyé.

5. Supprimez une requête stockée privée.
Le fragment de code suivant indique comment supprimer une requête stockée
privée.
process.deleteStoredQuery("CustomerOrdersStartingWithA");

Tâches associées

Gestion des requêtes stockées
Les requêtes stockées permettent d’enregistrer des requêtes souvent exécutées. La
requête stockée peut soit être une requête disponible pour tous les utilisateurs
(requête publique), soit une requête appartenant à un utilisateur spécifique
(requête privée).

Développement d’applications pour les processus métier
Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la façon dont vous pourriez développer des
applications pour des actions typiques sur des processus.

A propos de cette tâche

Un processus métier peut être soit un microflux, soit un processus de longue
durée :
v Les microflux sont des processus métier de courte durée exécutés de manière

synchrone. Après un court moment, le résultat est renvoyé à l’appelant.
v Les processus interruptibles de longue durée sont exécutés en tant que

séquences d’activités chaînées. L’utilisation de certaines constructions dans un
processus engendre des interruptions dans le flux de processus, notamment

Chapitre 4. Développement d’applications client pour les tâches et processus métier 301

l’appel d’une tâche utilisateur, d’un service utilisant une liaison synchrone ou
encore l’utilisation d’activités automatiques.
Les branches parallèles du processus sont généralement accessibles de manière
asynchrone, ce qui signifie que les activités des branches parallèles sont
exécutées simultanément. En fonction du type et du paramètre de transaction de
l’activité, une activité peut être exécutée au sein de sa propre transaction.

302 Développement et déploiement

Tâches associées

Développement d’applications client EJB pour des processus métier et des tâches
utilisateur
Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d’utiliser des processus métier
et des tâches utilisateur installées sur WebSphere Process Server.
Gestion du cycle de vie d’un processus métier
Une instance de processus est créé lorsqu’une méthode API de Business Process
Choreographer pouvant démarrer un processus est appelée. La navigation de
l’instance de processus continue jusqu’à ce que l’ensemble de ses activités se
trouvent à l’état final. Plusieurs actions peuvent être entreprises sur l’instance de
processus afin de gérer son cycle de vie.
Traitement des activités humaines
Les activités humaines sont attribuées aux différentes personnes de votre
organisation par l’intermédiaire des tâches élémentaires. Au démarrage d’un
processus, des éléments de travail sont créés pour les propriétaires potentiels.
Traitement d’un flux de travaux par une seule personne
Certains flux de travaux sont exécutés par une seule personne, par exemple une
commande d’ouvrages sur une librairie en ligne. Ce type de flux de travaux ne
comporte pas de chemins d’accès parallèles. L’API completeAndClaimSuccessor
prend en charge le traitement de ce type de flux de travaux.
Envoi d’un message à une activité en attente
Les activités de messages entrants (également appelées activités de réception,
onMessage dans des activités de sélection, onEvent dans les gestionnaires
d’événements) peuvent être utilisées pour synchroniser un processus d’exécution
avec des événements du ″monde extérieur″. Par exemple, la réception d’un
courrier électronique provenant d’un client en réponse à une demande
d’informations peut correspondre à ce type d’événement.
Gestion des événements
L’ensemble d’un processus métier et chacune de ses portées peuvent être associés à
des gestionnaires d’événements qui sont appelés si l’événement associé se produit.
Les gestionnaires d’événements sont similaires aux activités de réception ou de
sélection en cela qu’un processus peut fournir des opérations de service Web à
l’aide de gestionnaires d’événements.
Analyse des résultats d’un processus
Un processus peut afficher des opérations de services Web modélisées sous forme
d’opérations WSDL (Web Services Description Language) asynchrones ou de type
requête-réponse. Les résultats des processus interruptibles à interface
unidirectionnelle ne peuvent être obtenus par la méthode getOutputMessage, car
ces processus ne produisent pas de résultat. Cependant, vous pouvez interroger le
contenu des variables.
Réparation d’activités
Un processus de longue durée peut contenir des activités dont l’exécution est
également longue. Ces activités peuvent rencontrer des erreurs non interceptées et
se trouver ainsi à l’état arrêté. Une activité à l’état actif peut également sembler ne
plus répondre. Dans les deux cas, un administrateur de processus peut intervenir
sur l’activité de plusieurs manières afin que la navigation du processus puisse se
poursuivre.

Rôles nécessaires pour effectuer des actions sur des instances
de processus
L’accès à l’interface BusinessFlowManager ne garantit pas que l’appelant puisse
effectuer toutes les actions sur un processus donné. L’appelant doit être également
autorisé à effectuer l’action en étant titulaire d’un rôle approprié.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 303

Le tableau suivant indique les actions qu’un rôle spécifique peut effectuer sur une
instance de processus.

Action Rôle principal de l’appelant

Lecteur Initiateur Administrateur

createMessage x x x

createWorkItem x

delete x

deleteWorkItem x

forceTerminate x

getActiveEventHandlers x x

getActivityInstance x x

getAllActivities x x

getAllWorkItems x x

getClientUISettings x x x

getCustomProperties x x x

getCustomProperty x x x

getCustomPropertyNames x x x

getFaultMessage x x x

getInputClientUISettings x x x

getInputMessage x x x

getOutputClientUISettings x x x

getOutputMessage x x x

getProcessInstance x x x

getVariable x x x

getWaitingActivities x x x

getWorkItems x x

restart x

resume x

setCustomProperty x x

setVariable x

suspend x

transferWorkItem x

Rôles nécessaires pour effectuer des actions sur les activités de
processus métier
L’accès à l’interface BusinessFlowManager ne garantit pas que l’appelant puisse
effectuer toutes les actions sur une activité donnée. L’appelant doit être également
autorisé à effectuer l’action en étant titulaire d’un rôle approprié.

Le tableau suivant indique les actions qu’un rôle spécifique peut effectuer sur une
instance d’activité.

304 Développement et déploiement

Action Rôle principal de l’appelant

Lecteur Editeur Propriétaire
potentiel

Propriétaire Administrateur

cancelClaim x x

claim x x

complete x x

createMessage x x x x x

createWorkItem x

deleteWorkItem x

forceComplete x

forceRetry x

getActivityInstance x x x x x

getAllWorkItems x x x x x

getClientUISettings x x x x x

getCustomProperties x x x x x

getCustomProperty x x x x x

getCustomPropertyNames x x x x x

getFaultMessage x x x x x

getFaultNames x x x x x

getInputMessage x x x x x

getOutputMessage x x x x x

getVariable x x x x x

getVariableNames x x x x x

getInputVariableNames x x x x x

getOutputVariableNames x x x x x

getWorkItems x x x x x

setCustomProperty x x x

setFaultMessage x x x

setOutputMessage x x x

setVariable x

transferWorkItem x

Réservé au
propriétaires
ou
administra-
teurs
potentiels

x

Gestion du cycle de vie d’un processus métier
Une instance de processus est créé lorsqu’une méthode API de Business Process
Choreographer pouvant démarrer un processus est appelée. La navigation de
l’instance de processus continue jusqu’à ce que l’ensemble de ses activités se
trouvent à l’état final. Plusieurs actions peuvent être entreprises sur l’instance de
processus afin de gérer son cycle de vie.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 305

A propos de cette tâche

Des exemples fournis illustrent la façon dont vous pourriez développer des
applications pour les actions de cycle de vie typiques sur les processus.
Tâches associées

Développement d’applications pour les processus métier
Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la façon dont vous pourriez développer des
applications pour des actions typiques sur des processus.
Démarrage de processus métier
La façon dont un processus métier est démarré varie selon que le processus est un
microflux ou un processus de longue durée. Le service qui démarre le processus
est également important par rapport à la façon dont un processus est démarré ; le
processus peut avoir soit un service de démarrage unique, soit plusieurs services
de démarrage.
Mise en suspens et reprise d’un processus métier
Vous pouvez mettre en suspens une instance de processus de niveau supérieur de
longue durée pendant qu’elle est en cours d’exécution, puis la relancer
ultérieurement.
Redémarrage d’un processus métier
Vous pouvez redémarrer une instance de processus se trouvant à l’état terminé,
arrêté, échoué ou compensé.
Arrêt d’une instance de processus
Il s’avère parfois nécessaire pour quelqu’un disposant de droits d’administrateur
de processus d’arrêter une instance de processus de niveau supérieur dans un état
irrécupérable. Etant donné qu’une instance de processus se termine
immédiatement, sans attendre l’arrêt de sous processus ou d’activités en cours,
vous ne devez terminer une instance de processus que dans des situations
exceptionnelles.
Suppression d’instances de processus
Les instances de processus terminées sont automatiquement supprimées de la base
de données de Business Process Choreographer si la propriété correspondante est
définie pour le modèle de processus dans le modèle de processus. Vous pouvez
choisir de conserver les instances de processus dans votre base de données, par
exemple, pour rechercher des données relatives aux instances de processus qui ne
sont pas consignées dans le journal d’audit. Cependant, les données d’instance de
processus stockées n’ont pas seulement une incidence sur l’espace disque et les
performances mais elles empêchent la création d’instances de processus utilisant
les mêmes valeurs d’ensembles de corrélation. Vous devez par conséquent
supprimer régulièrement les données d’instances de processus de la base de
données.

Démarrage de processus métier :

La façon dont un processus métier est démarré varie selon que le processus est un
microflux ou un processus de longue durée. Le service qui démarre le processus
est également important par rapport à la façon dont un processus est démarré ; le
processus peut avoir soit un service de démarrage unique, soit plusieurs services
de démarrage.

306 Développement et déploiement

A propos de cette tâche

Des exemples sont fournis pour illustrer la façon dont vous pouvez développer des
applications pour les scénarios de démarrage habituels des microflux et des
processus longue durée.
Tâches associées

Gestion du cycle de vie d’un processus métier
Une instance de processus est créé lorsqu’une méthode API de Business Process
Choreographer pouvant démarrer un processus est appelée. La navigation de
l’instance de processus continue jusqu’à ce que l’ensemble de ses activités se
trouvent à l’état final. Plusieurs actions peuvent être entreprises sur l’instance de
processus afin de gérer son cycle de vie.
Exécution d’un microflux contenant un service de démarrage unique
Un microflux peut être lancé par une activité de réception ou une activité de
sélection. Le service de démarrage est unique si le microflux démarre avec une
activité de réception ou lorsque l’activité de sélection n’a qu’une définition
onMessage.
Exécution d’un microflux contenant un service de démarrage non unique
Un microflux peut être lancé par une activité de réception ou une activité de
sélection. Le service de démarrage n’est pas unique si le microflux démarre avec
une activité de sélection possédant plusieurs définitions onMessage.
Démarrage d’un processus de longue durée contenant un service de démarrage
unique
Si le service de démarrage est unique, vous pouvez utiliser la méthode de
déclenchement et transmettre le nom du modèle de processus en tant que
paramètre. C’est le cas lorsque le processus de longue durée démarre avec une
activité de sélection ou de réception unique et lorsque l’activité de sélection unique
n’a qu’une définition onMessage.
Démarrage d’un processus de longue durée contenant un service de démarrage
non unique
Un processus de longue durée peut être lancé par le biais de plusieurs activités de
sélection ou de réception déclenchantes. Vous pouvez utiliser la méthode de
déclenchement pour lancer le processus. Si le service de démarrage n’est pas
unique, par exemple si le processus démarre avec plusieurs activités de réception
ou de sélection ou avec une activité de sélection possédant plusieurs définitions
onMessage, vous devez identifier le service à appeler.

Exécution d’un microflux contenant un service de démarrage unique :

Un microflux peut être lancé par une activité de réception ou une activité de
sélection. Le service de démarrage est unique si le microflux démarre avec une
activité de réception ou lorsque l’activité de sélection n’a qu’une définition
onMessage.

A propos de cette tâche

Si le microflux implémente une opération de requête-réponse, c’est à dire si le
processus contient une réponse, vous pouvez utiliser la méthode d’appel pour
exécuter le processus transmettant le nom de modèle de processus comme
paramètre d’appel.

Si le micro-flux est une opération unidirectionnelle, exécutez le processus via la
méthode sendMessage. Cette méthode n’est pas traitée dans l’exemple.

Procédure

Chapitre 4. Développement d’applications client pour les tâches et processus métier 307

1. Facultatif : Répertoriez les modèles de processus pour trouver le nom du
processus que vous voulez exécuter.
Cette étape est facultative si vous connaissez déjà le nom du processus.
ProcessTemplateData[] processTemplates = process.queryProcessTemplates
("PROCESS_TEMPLATE.EXECUTION_MODE =

PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_MICROFLOW",
"PROCESS_TEMPLATE.NAME",
new Integer(50),
(TimeZone)null);

Les résultats sont classés par nom. La requête renvoie un tableau contenant les
50 premiers modèles classés pouvant être lancés par la méthode d’appel.

2. Lancez le processus avec un message de sortie du type approprié.
Lorsque vous créez le message, vous devez spécifier le nom de son type de
message de manière à ce qu’il contienne la définition du message.
ProcessTemplateData template = processTemplates[0];
//create a message for the single starting receive activity
ClientObjectWrapper input = process.createMessage

(template.getID(),
template.getInputMessageTypeName());

DataObject myMessage = null;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)input.getObject();
//set the strings in the message, for example, a customer name
myMessage.setString("CustomerName", "Smith");

}

//run the process
ClientObjectWrapper output = process.call(template.getName(), input);
DataObject myOutput = null;
if (output.getObject() != null && output.getObject() instanceof DataObject)
{

myOutput = (DataObject)output.getObject();
int order = myOutput.getInt("OrderNo");

}

Cette opération crée une instance du modèle de processus, CustomerTemplate,
et transfère quelques données client. L’opération renvoie uniquement lorsque le
processus est terminé. Le résultat du processus, OrderNo, est renvoyé à
l’appelant.

Tâches associées

Démarrage de processus métier
La façon dont un processus métier est démarré varie selon que le processus est un
microflux ou un processus de longue durée. Le service qui démarre le processus
est également important par rapport à la façon dont un processus est démarré ; le
processus peut avoir soit un service de démarrage unique, soit plusieurs services
de démarrage.

Exécution d’un microflux contenant un service de démarrage non unique :

Un microflux peut être lancé par une activité de réception ou une activité de
sélection. Le service de démarrage n’est pas unique si le microflux démarre avec
une activité de sélection possédant plusieurs définitions onMessage.

308 Développement et déploiement

A propos de cette tâche

Si le microflux implémente une opération de requête-réponse, c’est à dire si le
processus contient une réponse, vous pouvez utiliser la méthode d’appel pour
exécuter le processus transmettant l’ID du service de démarrage comme paramètre
d’appel.

Si le micro-flux est une opération unidirectionnelle, exécutez le processus via la
méthode sendMessage. Cette méthode n’est pas traitée dans l’exemple.

Procédure

1. Facultatif : Répertoriez les modèles de processus pour trouver le nom du
processus que vous voulez exécuter.
Cette étape est facultative si vous connaissez déjà le nom du processus.
ProcessTemplateData[] processTemplates = process.queryProcessTemplates
("PROCESS_TEMPLATE.EXECUTION_MODE =

PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_MICROFLOW",
"PROCESS_TEMPLATE.NAME",
new Integer(50),
(TimeZone)null);

Les résultats sont classés par nom. La requête renvoie un tableau contenant les
50 premiers modèles classés pouvant être lancés en tant que microflux.

2. Déterminez le service de démarrage à appeler.
Cet exemple utilise le premier modèle trouvé.
ProcessTemplateData template = processTemplates[0];
ActivityServiceTemplateData[] startActivities =

process.getStartActivities(template.getID());

3. Lancez le processus avec un message de sortie du type approprié.
Lorsque vous créez le message, vous devez spécifier le nom de son type de
message de manière à ce qu’il contienne la définition du message.
ActivityServiceTemplateData activity = startActivities[0];
//create a message for the service to be called
ClientObjectWrapper input =

process.createMessage(activity.getServiceTemplateID(),
activity.getActivityTemplateID(),
activity.getInputMessageTypeName());

DataObject myMessage = null;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)input.getObject();
//set the strings in the message, for example, a customer name
myMessage.setString("CustomerName", "Smith");

}
//run the process
ClientObjectWrapper output = process.call(activity.getServiceTemplateID(),

activity.getActivityTemplateID(),
input);

//check the output of the process, for example, an order number
DataObject myOutput = null;
if (output.getObject() != null && output.getObject() instanceof DataObject)
{

myOutput = (DataObject)output.getObject();
int order = myOutput.getInt("OrderNo");

}

Cette opération crée une instance du modèle de processus, CustomerTemplate,
et transfère quelques données client. L’opération renvoie uniquement lorsque le
processus est terminé. Le résultat du processus, OrderNo, est renvoyé à
l’appelant.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 309

Tâches associées

Démarrage de processus métier
La façon dont un processus métier est démarré varie selon que le processus est un
microflux ou un processus de longue durée. Le service qui démarre le processus
est également important par rapport à la façon dont un processus est démarré ; le
processus peut avoir soit un service de démarrage unique, soit plusieurs services
de démarrage.

Démarrage d’un processus de longue durée contenant un service de démarrage unique :

Si le service de démarrage est unique, vous pouvez utiliser la méthode de
déclenchement et transmettre le nom du modèle de processus en tant que
paramètre. C’est le cas lorsque le processus de longue durée démarre avec une
activité de sélection ou de réception unique et lorsque l’activité de sélection unique
n’a qu’une définition onMessage.

Procédure

1. Facultatif : Répertoriez les modèles de processus pour trouver le nom du
processus que vous voulez lancer.
Cette étape est facultative si vous connaissez déjà le nom du processus.
ProcessTemplateData[] processTemplates = process.queryProcessTemplates

("PROCESS_TEMPLATE.EXECUTION_MODE =
PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_LONG_RUNNING",

"PROCESS_TEMPLATE.NAME",
new Integer(50),
(TimeZone)null);

Les résultats sont classés par nom. La requête renvoie un tableau contenant les
50 premiers modèles classés pouvant être lancés par la méthode de
déclenchement.

2. Lancez le processus avec un message de sortie du type approprié.
Lorsque vous créez le message, vous devez spécifier le nom de son type de
message de manière à ce qu’il contienne la définition du message. Si vous
spécifiez un nom d’instance de processus, il ne doit pas commencer par un trait
de soulignement. Si aucun nom d’instance de processus n’est spécifié,
l’identifiant d’instance de processus (PIID) au format chaîne est utilisé en tant
que nom.
ProcessTemplateData template = processTemplates[0];
//create a message for the single starting receive activity
ClientObjectWrapper input = process.createMessage

(template.getID(),
template.getInputMessageTypeName());

DataObject myMessage = null;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)input.getObject();
//set the strings in the message, for example, a customer name
myMessage.setString("CustomerName", "Smith");

}
//start the process
PIID piid = process.initiate(template.getName(), "CustomerOrder", input);

Cette opération crée une instance, CustomerOrder, et transfère quelques
données client. Lorsque le processus démarre, l’opération renvoie à l’appelant
l’identifiant objet de la nouvelle instance de processus.
L’initiateur de l’instance de processus est défini pour l’appelant de la requête.
Cette personne reçoit un élément de travail pour l’instance de processus. Les
administrateurs du processus, les lecteurs et les éditeurs de l’instance de
processus sont déterminés et reçoivent des éléments de travail pour l’instance

310 Développement et déploiement

de processus. Les instances d’activité suivie sont déterminées. Elles sont lancées
automatiquement, ou, si ce sont des activités manuelles, de réception ou de
sélection, des éléments de travail sont créés pour les éventuels propriétaires.

Tâches associées

Démarrage de processus métier
La façon dont un processus métier est démarré varie selon que le processus est un
microflux ou un processus de longue durée. Le service qui démarre le processus
est également important par rapport à la façon dont un processus est démarré ; le
processus peut avoir soit un service de démarrage unique, soit plusieurs services
de démarrage.

Démarrage d’un processus de longue durée contenant un service de démarrage non
unique :

Un processus de longue durée peut être lancé par le biais de plusieurs activités de
sélection ou de réception déclenchantes. Vous pouvez utiliser la méthode de
déclenchement pour lancer le processus. Si le service de démarrage n’est pas
unique, par exemple si le processus démarre avec plusieurs activités de réception
ou de sélection ou avec une activité de sélection possédant plusieurs définitions
onMessage, vous devez identifier le service à appeler.

Procédure

1. Facultatif : Répertoriez les modèles de processus pour trouver le nom du
processus que vous voulez lancer.
Cette étape est facultative si vous connaissez déjà le nom du processus.
ProcessTemplateData[] processTemplates = process.queryProcessTemplates

("PROCESS_TEMPLATE.EXECUTION_MODE =
PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_LONG_RUNNING",

"PROCESS_TEMPLATE.NAME",
new Integer(50),
(TimeZone)null);

Les résultats sont classés par nom. La requête renvoie un tableau contenant les
50 premiers modèles classés pouvant être lancés en tant que processus de
longue durée.

2. Déterminez le service de démarrage à appeler.
ProcessTemplateData template = processTemplates[0];
ActivityServiceTemplateData[] startActivities =

process.getStartActivities(template.getID());

3. Lancez le processus avec un message de sortie du type approprié.
Lorsque vous créez le message, vous devez spécifier le nom de son type de
message de manière à ce qu’il contienne la définition du message. Si vous
spécifiez un nom d’instance de processus, il ne doit pas commencer par un trait
de soulignement. Si aucun nom d’instance de processus n’est spécifié,
l’identifiant d’instance de processus (PIID) au format chaîne est utilisé en tant
que nom.
ActivityServiceTemplateData activity = startActivities[0];
//create a message for the service to be called
ClientObjectWrapper input = process.createMessage

(activity.getServiceTemplateID(),
activity.getActivityTemplateID(),
activity.getInputMessageTypeName());

DataObject myMessage = null;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)input.getObject();
//set the strings in the message, for example, a customer name

Chapitre 4. Développement d’applications client pour les tâches et processus métier 311

myMessage.setString("CustomerName", "Smith");
}
//start the process
PIID piid = process.sendMessage(activity.getServiceTemplateID(),

activity.getActivityTemplateID(),
input);

Cette opération crée une instance et transfère quelques données client. Lorsque
le processus démarre, l’opération renvoie à l’appelant l’identifiant objet de la
nouvelle instance de processus.
L’initiateur de l’instance de processus est défini pour l’appelant de la requête et
reçoit un élément de travail pour l’instance de processus. Les administrateurs
du processus, les lecteurs et les éditeurs de l’instance de processus sont
déterminés et reçoivent des éléments de travail pour l’instance de processus.
Les instances d’activité suivie sont déterminées. Elles sont lancées
automatiquement, ou, si ce sont des activités manuelles, de réception ou de
sélection, des éléments de travail sont créés pour les éventuels propriétaires.

Tâches associées

Démarrage de processus métier
La façon dont un processus métier est démarré varie selon que le processus est un
microflux ou un processus de longue durée. Le service qui démarre le processus
est également important par rapport à la façon dont un processus est démarré ; le
processus peut avoir soit un service de démarrage unique, soit plusieurs services
de démarrage.

Mise en suspens et reprise d’un processus métier :

Vous pouvez mettre en suspens une instance de processus de niveau supérieur de
longue durée pendant qu’elle est en cours d’exécution, puis la relancer
ultérieurement.

Avant de commencer

L’appelant doit être un administrateur de l’instance de processus ou un
administrateur de processus métier. Pour qu’une instance de processus puisse être
mise en suspens, elle doit se trouver à l’état exécution en cours ou échec en cours.

A propos de cette tâche

Vous pouvez avoir besoin de mettre en suspens une instance de processus, par
exemple, pour pouvoir configurer l’accès à un système dorsal qui est utilisé
ultérieurement dans le processus. Une fois que les conditions prérequises pour le
processus sont remplies, vous pouvez reprendre l’instance de processus. Vous
pouvez également souhaiter interrompre un processus afin de résoudre un
problème engendrant l’échec de l’instance de processus, puis le reprendre une fois
le problème résolu.

Procédure

1. Obtenez le processus en cours d’exécution, CustomerOrder, que vous souhaitez
mettre en suspens.
ProcessInstanceData processInstance =

process.getProcessInstance("CustomerOrder");

2. Mettez l’instance de processus en suspens.
PIID piid = processInstance.getID();
process.suspend(piid);

312 Développement et déploiement

Cette action suspend l’instance de processus de niveau supérieur spécifiée.
L’instance de processus passe à l’état mis en suspens. Les sous-processus dont
l’attribut autonomy est défini sur enfant (child) sont également suspendus, s’ils
étaient en cours d’exécution, en état d’échec, terminés ou en cours de
compensation. Les tâches en ligne associées à cette instance de processus sont
également interrompues, ce qui n’est pas le cas des tâches autonomes.
Dans cet état, des activités lancées peuvent être terminées mais aucune nouvelle
activité n’est activée, par exemple, une activité humaine associée à l’état
réclamé peut être terminée.

3. Reprenez l’instance de processus.
process.resume(piid);

Cette action met l’instance de processus et ses sous processus dans l’état où ils
se trouvaient avant d’être mis en suspens.

Tâches associées

Gestion du cycle de vie d’un processus métier
Une instance de processus est créé lorsqu’une méthode API de Business Process
Choreographer pouvant démarrer un processus est appelée. La navigation de
l’instance de processus continue jusqu’à ce que l’ensemble de ses activités se
trouvent à l’état final. Plusieurs actions peuvent être entreprises sur l’instance de
processus afin de gérer son cycle de vie.

Redémarrage d’un processus métier :

Vous pouvez redémarrer une instance de processus se trouvant à l’état terminé,
arrêté, échoué ou compensé.

Avant de commencer

L’appelant doit être un administrateur de l’instance de processus ou un
administrateur de processus métier.

A propos de cette tâche

Le redémarrage d’une instance de processus est similaire au démarrage initial
d’une instance de processus. Toutefois, lorsqu’une instance de processus est
redémarrée, l’identifiant de l’instance de processus est connu et le message d’entrée
pour l’instance est disponible.

Si le processus possède plusieurs activités de réception ou activités de sélection
(également appelées activités de choix de réception) capables de créer l’instance de
processus, tous les messages qui appartiennent à ces activités sont utilisés pour le
redémarrage de l’instance de processus. Si l’une de ces activités implémentent une
opération de requête-réponse, la réponse est envoyée à nouveau lors du survol de
l’activité de réponse associée.

Procédure

1. Obtenez le processus que vous souhaitez redémarrer.
ProcessInstanceData processInstance =

process.getProcessInstance("CustomerOrder");

2. Redémarrez l’instance de processus.
PIID piid = processInstance.getID();
process.restart(piid);

Cette action redémarrez l’instance de processus spécifiée.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 313

Tâches associées

Gestion du cycle de vie d’un processus métier
Une instance de processus est créé lorsqu’une méthode API de Business Process
Choreographer pouvant démarrer un processus est appelée. La navigation de
l’instance de processus continue jusqu’à ce que l’ensemble de ses activités se
trouvent à l’état final. Plusieurs actions peuvent être entreprises sur l’instance de
processus afin de gérer son cycle de vie.

Arrêt d’une instance de processus :

Il s’avère parfois nécessaire pour quelqu’un disposant de droits d’administrateur
de processus d’arrêter une instance de processus de niveau supérieur dans un état
irrécupérable. Etant donné qu’une instance de processus se termine
immédiatement, sans attendre l’arrêt de sous processus ou d’activités en cours,
vous ne devez terminer une instance de processus que dans des situations
exceptionnelles.

Procédure

1. Procédez à l’extraction de l’instance de processus devant être arrêtée.
ProcessInstanceData processInstance =

process.getProcessInstance("CustomerOrder");

2. Arrêtez l’instance de processus.
Si vous arrêtez une instance de processus, vous pouvez arrêter l’instance de
processus avec ou sans compensation.
Pour arrêter l’instance de processus avec compensation :
PIID piid = processInstance.getID();
process.forceTerminate(piid, CompensationBehaviour.INVOKE_COMPENSATION);

Pour arrêter l’instance de processus sans compensation :
PIID piid = processInstance.getID();
process.forceTerminate(piid);

Si vous arrêtez l’instance de processus avec compensation, la compensation du
processus est exécutée comme si une erreur était survenue sur la portée de
niveau supérieur. Si vous arrêtez l’instance de processus sans compensation,
l’instance de processus est arrêtée aussitôt sans attendre que les activités en
cours, les tâches à effectuer ou les tâches d’appel intégrées ne se terminent
normalement.
Les applications démarrées par le processus et les tâches autonomes liées au
processus ne sont pas arrêtées par la requête d’arrêt forcé. Si l’arrêt de ces
applications est prévu, vous devez ajouter à l’application du processus les
déclarations destinées à mettre fin explicitement aux applications initiées par le
processus.

Tâches associées

Gestion du cycle de vie d’un processus métier
Une instance de processus est créé lorsqu’une méthode API de Business Process
Choreographer pouvant démarrer un processus est appelée. La navigation de
l’instance de processus continue jusqu’à ce que l’ensemble de ses activités se
trouvent à l’état final. Plusieurs actions peuvent être entreprises sur l’instance de
processus afin de gérer son cycle de vie.

Suppression d’instances de processus :

Les instances de processus terminées sont automatiquement supprimées de la base
de données de Business Process Choreographer si la propriété correspondante est
définie pour le modèle de processus dans le modèle de processus. Vous pouvez

314 Développement et déploiement

choisir de conserver les instances de processus dans votre base de données, par
exemple, pour rechercher des données relatives aux instances de processus qui ne
sont pas consignées dans le journal d’audit. Cependant, les données d’instance de
processus stockées n’ont pas seulement une incidence sur l’espace disque et les
performances mais elles empêchent la création d’instances de processus utilisant
les mêmes valeurs d’ensembles de corrélation. Vous devez par conséquent
supprimer régulièrement les données d’instances de processus de la base de
données.

A propos de cette tâche

Pour supprimer une instance de processus, vous devez traiter les droits
d’administrateur et l’instance de processus doit être une instance de processus de
niveau supérieur.

L’exemple suivant montre comment supprimer toutes les instances de processus
terminées.

Procédure

1. Répertoriez les instances de processus qui sont terminées.
QueryResultSet result =

process.query("DISTINCT PROCESS_INSTANCE.PIID",
"PROCESS_INSTANCE.STATE =

PROCESS_INSTANCE.STATE.STATE_FINISHED",
(String)null, (Integer)null, (TimeZone)null);

Cette opération renvoie un ensemble de résultats de requête qui répertorie les
instances de processus terminées.

2. Supprimez les instances de processus terminées.
while (result.next())
{

PIID piid = (PIID) result.getOID(1);
process.delete(piid);

}

Cette action supprime l’instance de processus sélectionnée et ses tâches en ligne
de la base de données.

Tâches associées

Gestion du cycle de vie d’un processus métier
Une instance de processus est créé lorsqu’une méthode API de Business Process
Choreographer pouvant démarrer un processus est appelée. La navigation de
l’instance de processus continue jusqu’à ce que l’ensemble de ses activités se
trouvent à l’état final. Plusieurs actions peuvent être entreprises sur l’instance de
processus afin de gérer son cycle de vie.

Traitement des activités humaines
Les activités humaines sont attribuées aux différentes personnes de votre
organisation par l’intermédiaire des tâches élémentaires. Au démarrage d’un
processus, des éléments de travail sont créés pour les propriétaires potentiels.

A propos de cette tâche

Lorsqu’une activité humaine est activée, une instance d’activité et une tâche à
effectuer associée sont créées en même temps. Le traitement de l’activité humaine
et la gestion de l’élément de travail sont délégués à l’application Human Task
Manager. Toute modification d’état au niveau de l’instance d’activité est reflétée
dans l’instance d’activité et inversement.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 315

Un propriétaire potentiel réclame l’activité. Cette personne est responsable de
fournir les informations pertinentes et de mener l’activité à terme.

Procédure

1. Répertoriez les activités appartenant à une personne connectée et qui sont
prêtes à être traitées :
QueryResultSet result =

process.query("ACTIVITY.AIID",
"ACTIVITY.STATE = ACTIVITY.STATE.STATE_READY AND
ACTIVITY.KIND = ACTIVITY.KIND.KIND_STAFF AND
WORK_ITEM.REASON =

WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",
(String)null, (Integer)null, (TimeZone)null);

Cette action renvoie un ensemble de résultats de requête contenant les activités
pouvant être gérées par la personne connectée.

2. Réclamez l’activité à gérer :
if (result.size() > 0)
{
result.first();
AIID aiid = (AIID) result.getOID(1);
ClientObjectWrapper input = process.claim(aiid);
DataObject activityInput = null ;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

activityInput = (DataObject)input.getObject();
// lire les valeurs
...

}
}

Une fois l’activité réclamée, le message d’entrée de l’activité est renvoyé.
3. Une fois la gestion de l’activité terminée, terminez celle-ci. L’activité peut se

terminer correctement, ou produire un message d’erreur. En cas de succès de
l’activité, un message de sortie est transmis. En cas d’échec de l’activité, celle-ci
est mise en état d’échec ou d’arrêt et un message d’erreur est transmis. Vous
devez créer les messages appropriés pour ces opérations. Lorsque vous créez le
message, vous devez spécifier le nom de son type de message de manière à ce
qu’il contienne la définition du message.
a. Pour terminer l’activité correctement, créez un message de sortie.

ActivityInstanceData activity = process.getActivityInstance(aiid);
ClientObjectWrapper output =

process.createMessage(aiid, activity.getOutputMessageTypeName());
DataObject myMessage = null ;
if (output.getObject()!= null && output.getObject() instanceof DataObject)
{

myMessage = (DataObject)output.getObject();
//définir les parties du message d'erreur, par exemple un numéro d'ordre
myMessage.setInt("OrderNo", 4711);

}

//fin de l'activité
process.complete(aiid, output);

Cette opération définit un message de sortie contenant le numéro de
commande.

b. Pour terminer l’activité lorsque se produit une erreur, créez un message
d’erreur.

316 Développement et déploiement

//retrieve the faults modeled for the human task activity
List faultNames = process.getFaultNames(aiid);

//create a message of the appropriate type
ClientObjectWrapper myFault =

process.createMessage(aiid, faultNames.get(0));

// set the parts in your fault message, for example, an error number
DataObject myMessage = null ;
if (myFault.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)myFault.getObject();
//set the parts in the message, for example, a customer name
myMessage.setInt("error",1304);

}

process.complete(aiid, myFault,(String)faultNames.get(0));

Cette action définit l’activité comme ayant l’état en échec ou arrêté. Si le
paramètre continueOnError de l’activité contenue dans le modèle de
processus est défini sur la valeur true, l’activité est mise en état d’échec et la
navigation se poursuit. Si le paramètre continueOnError est défini sur false
et que l’erreur n’est pas traitée dans la portée environnante, l’activité est
mise à l’état arrêté. Lorsque l’activité se trouve dans cet état, elle peut être
réparée via un arrêt ou un redémarrage forcé.

Tâches associées

Développement d’applications pour les processus métier
Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la façon dont vous pourriez développer des
applications pour des actions typiques sur des processus.

Traitement d’un flux de travaux par une seule personne
Certains flux de travaux sont exécutés par une seule personne, par exemple une
commande d’ouvrages sur une librairie en ligne. Ce type de flux de travaux ne
comporte pas de chemins d’accès parallèles. L’API completeAndClaimSuccessor
prend en charge le traitement de ce type de flux de travaux.

A propos de cette tâche

Dans une librairie en ligne, l’acheteur accomplit une série d’actions afin de
commander un ouvrage. Cette séquence d’actions peut être implémentée comme
une série d’activités humaines (tâches à accomplir). Si l’acheteur décide de
commander plusieurs livres, cela équivaut à réclamer l’activité humaine suivante.
Ce type de flux de travaux est également appelé flux de pages du fait que les
définitions d’interface sont associées aux activités de contrôle portant sur le flux
des boîtes de dialogue dans l’interface utilisateur.

L’API completeAndClaimSuccessor effectue une activité humaine et demande la
suivante dans la même instance de processus pour l’utilisateur connecté. L’API
renvoie ensuite les informations sur l’activité réclamée suivante, y compris le
message d’entrée à traiter. L’activité suivante étant disponible dans la même
transaction que celle de l’activité terminée, le comportement transactionnel de
toutes les activités humaines du modèle de processus doit être défini sur
participates.

Comparez cet exemple avec celui qui utilise à la fois l’API de Business Flow
Manager et l’API de Human Task Manager.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 317

Procédure

1. Réclamez la première activité dans la séquence d’activités.
//
//Requête portant sur la liste des activités pouvant être réclamées par
//l'utilisateur connecté
QueryResultSet result =

process.query("ACTIVITY.AIID",
"PROCESS_INSTANCE.NAME = 'CustomerOrder' AND
ACTIVITY.STATE = ACTIVITY.STATE.STATE_READY AND
ACTIVITY.KIND = ACTIVITY.KIND.KIND_STAFF AND
WORK_ITEM.REASON =

WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",
(String)null, (Integer)null, (TimeZone)null);

...
//
//Réclamer la première activité
//
if (result.size() > 0)
{
result.first();
AIID aiid = (AIID) result.getOID(1);
ClientObjectWrapper input = process.claim(aiid);
DataObject activityInput = null ;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

activityInput = (DataObject)input.getObject();
// lire les valeurs
...

}
}

Une fois l’activité réclamée, le message d’entrée de l’activité est renvoyé.
2. Une fois la gestion de l’activité terminée, terminez celle-ci et réclamez l’activité

suivante.
Pour terminer l’activité, un message de sortie est créé. Lorsque vous créez le
message de sortie, vous devez spécifier le nom de son type de message de
manière à ce qu’il contienne la définition du message.
ActivityInstanceData activity = process.getActivityInstance(aiid);
ClientObjectWrapper output =

process.createMessage(aiid, activity.getOutputMessageTypeName());
DataObject myMessage = null ;
if (output.getObject()!= null && output.getObject() instanceof DataObject)
{

myMessage = (DataObject)output.getObject();
//définir les parties du message d'erreur, par exemple un numéro d'ordre
myMessage.setInt("OrderNo", 4711);

}

//Fin de l'activité et réclamation de la suivante
CompleteAndClaimSuccessorResult successor =

process.completeAndClaimSuccessor(aiid, output);

Cette opération définit un message de sortie contenant le numéro de
commande et réclame l’activité suivante de la séquence. Si AutoClaim est défini
pour les activités de succession et que plusieurs chemins d’accès peuvent être
utilisés, toutes les activités de succession sont réclamées et une activité aléatoire
est renvoyée en tant qu’activité suivante. Si aucune activité de succession
supplémentaire ne peut être affectée à cet utilisateur, la valeur Null est
renvoyée.
Si le processus contient des chemins parallèles pouvant être suivis, que ces
chemins contiennent des activités humaines et que l’utilisateur connecté est le

318 Développement et déploiement

propriétaire potentiel de plusieurs de ces activités, une activité aléatoire est
automatiquement réclamée et renvoyée comme activité suivante.

3. Traitement de l’activité suivante.
String name = successor.getActivityName();

ClientObjectWrapper nextInput = successor.getInputMessage();
if (nextInput.getObject()!=

null && nextInput.getObject() instanceof DataObject)
{

activityInput = (DataObject)input.getObject();
// lire les valeurs
...

}

aiid = successor.getAIID();

4. Poursuivez à l’étape 2 pour terminer l’activité.
Tâches associées

Développement d’applications pour les processus métier
Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la façon dont vous pourriez développer des
applications pour des actions typiques sur des processus.
Traitement par une seule personne d’un flux de travaux contenant des tâches
utilisateur
Certains flux de travaux sont exécutés par une seule personne, par exemple une
commande d’ouvrages sur une librairie en ligne. Cet exemple démontre comment
implémenter sous forme d’une série d’activités humaines (tâches à effectuer) la
séquence d’actions nécessaires pour commander un livre. Les API de Business
Flow Manager et Human Task Manager sont toutes les deux utilisées pour traiter
le flux de travaux.

Envoi d’un message à une activité en attente
Les activités de messages entrants (également appelées activités de réception,
onMessage dans des activités de sélection, onEvent dans les gestionnaires
d’événements) peuvent être utilisées pour synchroniser un processus d’exécution
avec des événements du ″monde extérieur″. Par exemple, la réception d’un
courrier électronique provenant d’un client en réponse à une demande
d’informations peut correspondre à ce type d’événement.

A propos de cette tâche

Vous pouvez utiliser des tâches d’origine pour envoyer le message à l’activité.

Procédure

1. Répertoriez les modèles de services d’activité attendant un message de
l’utilisateur connecté dans une instance de processus avec un ID d’instance de
processus spécifique.
ActivityServiceTemplateData[] services = process.getWaitingActivities(piid);

2. Envoyez un message au premier service en attente.
On suppose que le premier service est celui que vous souhaitez servir.
L’appelant doit être un démarreur potentiel de l’activité recevant le message ou
un administrateur de l’instance de processus.
VTID vtid = services[0].getServiceTemplateID();
ATID atid = services[0].getActivityTemplateID();
String inputType = services[0].getInputMessageTypeName();

Chapitre 4. Développement d’applications client pour les tâches et processus métier 319

// créer un message pour le service à appeler
ClientObjectWrapper message =

process.createMessage(vtid,atid,inputMessageTypeName);
DataObject myMessage = null;
if (message.getObject()!= null && message.getObject() instanceof DataObject)
{

myMessage = (DataObject)message.getObject();
//set the strings in the message, for example, chocolate is to be ordered
myMessage.setString("Order", "chocolate");

}

// envoi du message à l'activité en attente
process.sendMessage(vtid, atid, message);

}

Cette opération envoie le message spécifié au service d’activité en attente et
transfère certaines données de commande.
Vous pouvez également spécifier l’identifiant de l’instance de processus afin de
veiller à ce que le message soit envoyé à l’instance de processus spécifiée. Si
l’identifiant de l’instance de processus n’est pas spécifié, le message est envoyé
au service d’activité et à l’instance de processus identifiée par les valeurs de
corrélation du message. Si l’identifiant de l’instance de processus est spécifié,
l’instance de processus trouvée à l’aide des valeurs de corrélation est vérifiée
afin de veiller à ce qu’elle possède bien l’identifiant de l’instance de processus
spécifiée.

Tâches associées

Développement d’applications pour les processus métier
Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la façon dont vous pourriez développer des
applications pour des actions typiques sur des processus.

Gestion des événements
L’ensemble d’un processus métier et chacune de ses portées peuvent être associés à
des gestionnaires d’événements qui sont appelés si l’événement associé se produit.
Les gestionnaires d’événements sont similaires aux activités de réception ou de
sélection en cela qu’un processus peut fournir des opérations de service Web à
l’aide de gestionnaires d’événements.

A propos de cette tâche

Vous pouvez appeler un gestionnaire d’événements autant de fois que vous le
souhaitez tant que la portée correspondante est en cours d’exécution. Par ailleurs,
plusieurs instances d’un gestionnaire d’événements peuvent être activées en même
temps.

Le fragment de code suivant montre comment obtenir les gestionnaires
d’événements actifs pour une instance de processus donnée et comment envoyer
un message d’entrée.

Procédure

1. Déterminez les données de l’identifiant d’instance de processus et répertoriez
les gestionnaires d’événements actifs pour le processus.
ProcessInstanceData processInstance =

process.getProcessInstance("CustomerOrder2711");
EventHandlerTemplateData[] events = process.getActiveEventHandlers(

processInstance.getID());

2. Envoyez le message d’entrée.

320 Développement et déploiement

Cet exemple utilise le premier gestionnaire d’événements trouvé.
EventHandlerTemplateData event = null;
if (events.length > 0)
{

event = events[0];

// créer un message pour le service à appeler
ClientObjectWrapper input = process.createMessage(
event.getID(), event.getInputMessageTypeName());

if (input.getObject() != null && input.getObject() instanceof DataObject)
{

DataObject inputMessage = (DataObject)input.getObject();
// définir le contenu du message, par exemple, un nom de client, numéro
de commande
inputMessage.setString("CustomerName", "Smith");
inputMessage.setString("OrderNo", "2711");

// envoyer le message
process.sendMessage(event.getProcessTemplateName(),

event.getPortTypeNamespace(),
event.getPortTypeName(),
event.getOperationName(),

input);
}

}

Cette opération envoie le message spécifié au gestionnaire d’événements actif
pour le processus.

Tâches associées

Développement d’applications pour les processus métier
Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la façon dont vous pourriez développer des
applications pour des actions typiques sur des processus.

Analyse des résultats d’un processus
Un processus peut afficher des opérations de services Web modélisées sous forme
d’opérations WSDL (Web Services Description Language) asynchrones ou de type
requête-réponse. Les résultats des processus interruptibles à interface
unidirectionnelle ne peuvent être obtenus par la méthode getOutputMessage, car
ces processus ne produisent pas de résultat. Cependant, vous pouvez interroger le
contenu des variables.

A propos de cette tâche

Les résultats du processus ne sont stockés dans la base de données que si le
modèle de processus dont dérive l’instance de processus ne spécifie pas une
suppression automatique des instances de processus dérivées.

Procédure

Analysez les résultats des processus. Vérifiez par exemple le numéro de
commande.
QueryResultSet result = process.query

("PROCESS_INSTANCE.PIID",
"PROCESS_INSTANCE.NAME = 'CustomerOrder' AND
PROCESS_INSTANCE.STATE =

PROCESS_INSTANCE.STATE.STATE_FINISHED",
(String)null, (Integer)null, (TimeZone)null);

if (result.size() > 0)

Chapitre 4. Développement d’applications client pour les tâches et processus métier 321

{
result.first();
PIID piid = (PIID) result.getOID(1);
ClientObjectWrapper output = process.getOutputMessage(piid);
DataObject myOutput = null;
if (output.getObject() != null && output.getObject() instanceof DataObject)
{

myOutput = (DataObject)output.getObject();
int order = myOutput.getInt("OrderNo");

}
}

Tâches associées

Développement d’applications pour les processus métier
Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la façon dont vous pourriez développer des
applications pour des actions typiques sur des processus.

Réparation d’activités
Un processus de longue durée peut contenir des activités dont l’exécution est
également longue. Ces activités peuvent rencontrer des erreurs non interceptées et
se trouver ainsi à l’état arrêté. Une activité à l’état actif peut également sembler ne
plus répondre. Dans les deux cas, un administrateur de processus peut intervenir
sur l’activité de plusieurs manières afin que la navigation du processus puisse se
poursuivre.

A propos de cette tâche

L’API de Business Process Choreographer propose les méthodes de réparation
d’activité forceRetry et forceComplete. Plusieurs exemples illustrent l’ajout et la
réparation d’actions pour des activités de vos applications.
Tâches associées

Développement d’applications pour les processus métier
Un processus métier est un ensemble d’activités de nature professionnelle qui sont
appelées dans un ordre spécifique pour atteindre un objectif professionnel. Des
exemples fournis illustrent la façon dont vous pourriez développer des
applications pour des actions typiques sur des processus.
Forcer une activité à se terminer
Les activités situées dans des processus de longue durée rencontrent parfois des
erreurs. Si ces erreurs ne sont pas interceptes par un gestionnaire d’erreurs dans la
portée et si le modèle d’activité associé spécifie que l’activité doit s’arrêter
lorsqu’une erreur se produit, l’activité est mise à l’état arrêté de manière à pouvoir
être réparée. Dans cet état, vous pouvez forcer l’activité à se terminer.
Nouvelle tentative d’exécution d’une activité arrêtée
Si une activité d’un processus de longue durée rencontre une erreur non
interceptée dans la portée et si le modèle d’activité associé spécifie que l’activité
doit s’arrêter lorsqu’une erreur se produit, l’activité est mise à l’état arrêté de
manière à pouvoir être réparée. Vous pouvez tenter d’exécuter à nouveau l’activité.

Forcer une activité à se terminer :

Les activités situées dans des processus de longue durée rencontrent parfois des
erreurs. Si ces erreurs ne sont pas interceptes par un gestionnaire d’erreurs dans la
portée et si le modèle d’activité associé spécifie que l’activité doit s’arrêter
lorsqu’une erreur se produit, l’activité est mise à l’état arrêté de manière à pouvoir
être réparée. Dans cet état, vous pouvez forcer l’activité à se terminer.

322 Développement et déploiement

A propos de cette tâche

Vous pouvez également forcer l’achèvement des activités en cours d’exécution si,
par exemple, une activité ne répond pas.

Des exigences supplémentaires existent pour certains types d’activités.

Activités humaines
Vous pouvez transmettre des paramètres dans l’appel forcer à terminer,
comme le message qui aurait du être envoyé ou l’erreur qui aurait dû être
détectée.

Activités de script
Vous ne pouvez pas transmettre de paramètres dans l’appel forcer à
terminer. Cependant, vous devez définir les variables qui doivent être
réparées.

Activités d’appel
Vous pouvez également forcer l’achèvement des activités d’appel appelant
un service asynchrone qui n’est pas un sous-processus si ces activités sont
dans l’état en cours d’exécution. Vous pouvez en avoir besoin, par
exemple, si le service asynchrone est appelé et ne répond pas.

Procédure

1. Répertoriez les activités arrêtées qui se trouvent à l’état arrêté.
QueryResultSet result =

process.query("DISTINCT ACTIVITY.AIID",
"ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND
PROCESS_INSTANCE.NAME='CustomerOrder'",
(String)null, (Integer)null, (TimeZone)null);

Cette opération renvoie les activités arrêtées pour l’instance de processus
CustomerOrder.

2. Achevez l’activité ; une activité humaine arrêtée, par exemple.
Dans cet exemple, un message de sortie est transmis.
if (result.size() > 0)
{

result.first();
AIID aiid = (AIID) result.getOID(1);
ActivityInstanceData activity = process.getActivityInstance(aiid);
ClientObjectWrapper output =

process.createMessage(aiid, activity.getOutputMessageTypeName());
DataObject myMessage = null;
if (output.getObject()!= null && output.getObject() instanceof DataObject)
{

myMessage = (DataObject)output.getObject();
//set the parts in your message, for example, an order number
myMessage.setInt("OrderNo", 4711);

}

boolean continueOnError = true;
process.forceComplete(aiid, output, continueOnError);

}

Cette action effectue l’activité. Si une erreur survient, le paramètre
continueOnError détermine l’action à entreprendre en cas d’erreur lors du
traitement de la requête forceComplete.
Dans l’exemple, continueOnError est vrai. Cette valeur signifie que si une
erreur se produit, l’activité est mise à l’état d’échec. L’erreur se propage aux

Chapitre 4. Développement d’applications client pour les tâches et processus métier 323

portées de l’activité jusqu’à ce qu’elle soit gérée ou que la portée du processus
soit atteinte. Le processus est alors mis à l’état d’échec en cours avant
d’atteindre finalement l’état d’échec.

Tâches associées

Réparation d’activités
Un processus de longue durée peut contenir des activités dont l’exécution est
également longue. Ces activités peuvent rencontrer des erreurs non interceptées et
se trouver ainsi à l’état arrêté. Une activité à l’état actif peut également sembler ne
plus répondre. Dans les deux cas, un administrateur de processus peut intervenir
sur l’activité de plusieurs manières afin que la navigation du processus puisse se
poursuivre.

Nouvelle tentative d’exécution d’une activité arrêtée :

Si une activité d’un processus de longue durée rencontre une erreur non
interceptée dans la portée et si le modèle d’activité associé spécifie que l’activité
doit s’arrêter lorsqu’une erreur se produit, l’activité est mise à l’état arrêté de
manière à pouvoir être réparée. Vous pouvez tenter d’exécuter à nouveau l’activité.

A propos de cette tâche

Vous pouvez définir des variables utilisées par l’activité. à l’exception des activités
de script, vous pouvez également transmettre des paramètres dans l’appel forcer la
nouvelle tentative, comme le message qui était attendu par l’activité.

Procédure

1. Répertoriez les activités arrêtées.
QueryResultSet result =

process.query("DISTINCT ACTIVITY.AIID",
"ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND
PROCESS_INSTANCE.NAME='CustomerOrder'",
(String)null, (Integer)null, (TimeZone)null);

Cette opération renvoie les activités arrêtées pour l’instance de processus
CustomerOrder.

2. Tentez à nouveau d’exécuter l’activité, une activité humaine, par exemple.
if (result.size() > 0)
{

result.first();
AIID aiid = (AIID) result.getOID(1);
ActivityInstanceData activity = process.getActivityInstance(aiid);
ClientObjectWrapper input =

process.createMessage(aiid, activity.getOutputMessageTypeName());
DataObject myMessage = null;
if (input.getObject()!= null && input.getObject() instanceof DataObject)

{
myMessage = (DataObject)input.getObject();
//set the strings in your message, for example, chocolate is to be ordered
myMessage.setString("OrderNo", "chocolate");

}

boolean continueOnError = true;
process.forceRetry(aiid, input, continueOnError);

}

Cette opération tente à nouveau d’exécuter l’activité. Si une erreur se produit,
le paramètre continueOnError détermine l’action à entreprendre en cas d’erreur
lors du traitement de la requête forceRetry.

324 Développement et déploiement

Dans l’exemple, continueOnError est vrai. Cela signifie que si une erreur se
produit durant le traitement de la requête forceRetry, l’activité est mise en état
échec. L’erreur se propage aux portées de l’activité jusqu’à ce qu’elle soit gérée
ou que la portée du processus soit atteinte. Le processus est alors mis à l’état
d’échec en cours, puis un gestionnaire d’erreur au niveau du processus est
exécuté avant que le processus n’atteigne l’état d’échec.

Tâches associées

Réparation d’activités
Un processus de longue durée peut contenir des activités dont l’exécution est
également longue. Ces activités peuvent rencontrer des erreurs non interceptées et
se trouver ainsi à l’état arrêté. Une activité à l’état actif peut également sembler ne
plus répondre. Dans les deux cas, un administrateur de processus peut intervenir
sur l’activité de plusieurs manières afin que la navigation du processus puisse se
poursuivre.

Interface BusinessFlowManagerService
L’interface BusinessFlowManagerService permet l’accès aux fonctions de processus
métier pouvant être appelées par une application client.

Les méthodes pouvant être appelées par l’intermédiaire de l’interface
BusinessFlowManagerService varient selon l’état du processus ou de l’activité et
des droits d’accès de l’utilisateur de l’application qui contient la méthode. Les
méthodes principales de manipulation des objets de processus métier sont
répertoriées dans cette rubrique. Plus plus d’information sur ces méthodes et
d’autres méthodes fournies par l’interface BusinessFlowManagerService, consultez
Javadoc dans le package com.ibm.bpe.api.

Modèles de processus

Le modèle de processus est un exemple de processus mis à niveau, déployé et
installé contenant la spécification d’un processus métier. Vous pouvez l’instancier
et le démarrer en lançant les demandes appropriées, par exemple, sendMessage().
L’exécution de l’instance de processus est automatiquement gérée par le serveur.

Tableau 41. Méthodes API pour les modèles de processus

Méthode Description

getProcessTemplate Extrait le modèle de processus spécifié.

queryProcessTemplates Extrait des modèles de processus stockés
dans la base de données.

Traitement d’instances

Les méthodes API suivantes sont liées au démarrage des instances de processus.

Tableau 42. Les méthodes API sont liées au démarrage des instances de processus.

Méthode Description

call Crée et exécute un microflux.

callWithReplyContext Crée et exécute un microflux avec un service
à démarrage unique ou un processus longue
durée provenant du modèle de processus
spécifié. L’appel attend le renvoi du résultat
en mode asynchrone.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 325

Tableau 42. Les méthodes API sont liées au démarrage des instances de processus. (suite)

Méthode Description

callWithUISettings Crée et exécute un processus et renvoie le
message de sortie et les paramètres de
l’interface utilisateur (UI) du client.

initiate Crée et exécute une instance de processus et
démarre son traitement. Cette méthode est
adaptée aux processus longue durée. Vous
pouvez également appliquer cette méthode
aux microflux destinés à être déclenchés,
puis laissés sans surveillance.

sendMessage Envoie le message spécifié au service
d’activité et à l’instance de processus
spécifiés. Si une instance de processus
possédant les mêmes valeurs que l’ensemble
de corrélations n’existe pas, celle-ci est créée.
Le processus peut posséder des services de
démarrage uniques ou non.

getStartActivities Renvoie des informations sur les activités
qui peuvent démarrer une instance de
processus à partir du modèle de processus
spécifié.

getActivityServiceTemplate Extrait le modèle de service de l’activité
spécifiée.

Tableau 43. Méthodes API pour le contrôle du cycle de vie des instances de processus

Méthode Description

suspend Met en suspens l’exécution d’une instance
de processus de longue durée, de niveau
supérieur se trouvant à l’état d’échec en
cours ou d’exécution en cours.

resume Reprend l’exécution d’une instance de
processus de longue durée, de niveau
supérieur se trouvant à l’état mis en
suspens.

restart Redémarre une instance de processus de
longue durée, de niveau supérieur se
trouvant à l’état terminé, échoué ou arrêté.

forceTerminate Termine l’instance de processus de niveau
supérieur spécifiée, ses sous-processus avec
autonomie enfant et ses activités en cours
d’exécution, réclamées, ou en attente

delete Supprime l’instance de processus de niveau
supérieur spécifiée et ses sous-processus
avec autonomie enfant.

query Extrait à partir de la base de données les
propriétés correspondant aux critères de
recherche.

Activités

Pour les activités d’appel, vous pouvez spécifier dans le modèle de processus que
ces activités doivent continuer dans des situations d’erreur. Si l’indicateur

326 Développement et déploiement

continueOnError est défini sur false et qu’une erreur non gérée survient, l’activité
passe à l’état arrêté. L’administrateur du processus peut ensuite réparer l’activité .
L’indicateur continueOnError et les fonctions de réparation associées peuvent être
utilisés, par exemple, pour un processus de longue durée où les activités d’appel
échouent occasionnellement mais où l’effort requis pour modéliser la compensation
et la gestion des erreurs est trop important.

Les méthodes suivantes sont disponibles pour l’utilisation et la réparation des
activités.

Tableau 44. Méthodes API pour le contrôle du cycle de vie des instances d’activité

Méthode Description

claim Réclame une instance d’activité prête pour
permettre à un utilisateur d’utiliser l’activité.

cancelClaim Annule la réclamation de l’instance
d’activité.

complete Termine l’instance d’activité.

completeAndClaimSuccessor Effectue une instance d’activité et demande
la suivante dans la même instance de
processus pour l’utilisateur connecté.

forceComplete Force l’exécution des éléments suivants :

v Une instance d’activité se trouvant à l’état
en cours d’exécution ou arrêté.

v Une activité de tâche utilisateur se
trouvant à l’état prêt ou réclamé.

v Une attente d’attente se trouvant à l’état
en attente.

forceRetry Force la répétition des éléments suivants :

v Une instance d’activité se trouvant à l’état
en cours d’exécution ou arrêté.

v Une activité de tâche utilisateur se
trouvant à l’état prêt ou réclamé.

query Extrait à partir de la base de données les
propriétés correspondant aux critères de
recherche.

Variables et propriétés personnalisées

L’interface fournit une méthode get et une méthode set pour l’extraction et la
définition de valeurs pour les variables. Vous pouvez aussi associer les propriétés
mentionnées aux instances de processus et d’activité et les en extraire. Le noms de
propriétés personnalisées et des valeurs doivent être de type java.lang.String.

Tableau 45. Méthodes API pour les variables et les propriétés personnalisées

Méthode Description

getVariable Extrait la variable spécifiée.

setVariable Définit la variable spécifiée.

getCustomProperty Extrait la propriété personnalisée indiquée
de l’activité ou instance de processus
indiqué.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 327

Tableau 45. Méthodes API pour les variables et les propriétés personnalisées (suite)

Méthode Description

getCustomProperties Extrait les propriétés personnalisées de
l’activité ou de l’instance de processus
indiquée.

getCustomPropertyNames Extrait les noms des propriétés
personnalisées pour l’instance d’activité ou
de processus spécifiée.

setCustomProperty Stocke les valeurs spécifiques aux propriétés
personnalisées correspondant à l’instance
d’activité ou de processus spécifiée.

Développement d’applications pour des tâches utilisateur
Une tâche représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des tâches utilisateur sont fournis.

A propos de cette tâche

Pour plus d’informations concernant l’API de Human Task Manager, voir la
documentation Java dans le package com.ibm.task.api.

328 Développement et déploiement

Tâches associées

Développement d’applications client EJB pour des processus métier et des tâches
utilisateur
Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d’utiliser des processus métier
et des tâches utilisateur installées sur WebSphere Process Server.
Démarrage d’une tâche d’appel qui appelle une interface synchrone
Une tâche d’appel est associée au composant SCA (Service Component
Architecture). Une fois la tâche démarrée, elle appelle le composant SCA. Ne
démarrez une tâche d’appel synchrone que si le composant SCA associé peut être
appelé de manière synchrone.
Démarrage d’une tâche d’appel qui appelle une interface asynchrone
Une tâche d’appel est associée au composant SCA (Service Component
Architecture). Une fois la tâche démarrée, elle appelle le composant SCA. Ne
démarrez une tâche d’appel asynchrone que si le composant SCA associé peut être
appelé de manière asynchrone.
Création et lancement d’une instance de tâche
Ce scénario indique comment créer une instance de modèle de tâche permettant de
définir une tâche de collaboration (également appelée tâche utilisateur et de
démarrer l’instance de tâche.
Traitement des tâches à effectuer ou des tâches de collaboration
Les tâches à effectuer (également appelées tâches de participation dans l’API) ou les
tâches de collaboration (également appelées tâches utilisateur dans l’API) sont
attribuées à diverses personnes de votre organisation par le biais des éléments de
travail. Les tâches à effectuer et leurs éléments de travail associés sont créés, par
exemple, lorsqu’un processus navigue jusqu’à une activité humaine.
Mise en suspens et reprise d’une instance de tâche
Vous pouvez interrompre les instances de tâche de collaboration (également
appelées tâches utilisateur dans l’API) ou les instances de tâche à effectuer
(également appelées tâches de participation dans l’API).
Analyse des résultats d’une tâche
Une tâche à effectuer (également appelée tâche de participation dans l’API) ou une
tâche de collaboration (également appelée tâche utilisateur dans l’API) fonctionne de
manière asynchrone. Si un gestionnaire de réponses est indiqué lors du démarrage
d’une tâche, le message de sortie est automatiquement retourné à la fin de celle-ci.
Dans le cas contraire, le message doit être extrait explicitement.
Arrêt d’une instance de tâche
Il s’avère parfois nécessaire pour quelqu’un disposant de droits d’administration
d’arrêter une instance de tâche dans un état irrécupérable. Etant donné qu’une
instance de tâche s’arrête instantanément, cette opération ne doit être exécutée que
dans des situations exceptionnelles.
Suppression d’instances de tâche
Les instances de tâche ne sont automatiquement supprimées que lorsqu’elles sont
terminées, à condition que cela soit spécifié dans le modèle de tâche associé dont
dérivent les instances. Cet exemple montre comment supprimer toutes les instances
de tâche qui sont terminées mais ne sont pas supprimées automtiquement.
Libération d’une tâche réclamée
Lorsqu’un propriétaire potentiel réclame une tâche, il lui incombe de mener la
tâche à son terme. Toutefois, certaines tâches réclamées doivent être libérées pour
afin qu’un autre propriétaire potentiel puisse la réclamer à son tour.
Gestion des tâches élémentaires
Durant la durée de vie d’une instance d’activité ou de tâche, l’ensemble des
personnes associées à l’objet peut changer, par exemple, si une personne est en

Chapitre 4. Développement d’applications client pour les tâches et processus métier 329

congé, si de nouvelles personnes sont engagées ou si la charge de travail doit être
redistribuée. Pour autoriser ces modifications, vous devez développer des
applications afin de créer, supprimer ou transférer les tâches élémentaires.
Création de modèles de tâche et d’instances de tâche à l’exécution
Un outil de modélisation, comme WebSphere Integration Developer, permet
habituellement de compiler des modèles de tâche. Vous installez les modèles de
tâche dans WebSphere Process Server et créez des instances à partir de ces modèles
en utilisant, par exemple, Business Process Choreographer Explorer. Cependant,
vous pouvez également créer des instances de tâche utilisateur ou de participation
lors de l’exécution.
Référence associée

Interface HumanTaskManagerService
L’interface HumanTaskManagerService permet l’accès aux fonctions relatives aux
tâches pouvant être appelées par des clients locaux ou distants.

Démarrage d’une tâche d’appel qui appelle une interface
synchrone
Une tâche d’appel est associée au composant SCA (Service Component
Architecture). Une fois la tâche démarrée, elle appelle le composant SCA. Ne
démarrez une tâche d’appel synchrone que si le composant SCA associé peut être
appelé de manière synchrone.

A propos de cette tâche

Un tel composant SCA peut, par exemple, être implémenté en tant que microflux
ou en tant que classe Java simple.

Ce scénario crée une instance d’un modèle de tâche et transmet certaines données
client. La tâche reste à l’état actif jusqu’à la fin de l’opération bidirectionnelle. Le
résultat de la tâche, OrderNo, est renvoyé à l’appelant.

Procédure

1. Facultatif : Répertoriez les modèles de tâche pour trouver le nom de la tâche
d’appel que vous voulez exécuter.
Cette étape est facultative si vous connaissez déjà le nom de la tâche.
TaskTemplate[] taskTemplates = task.queryTaskTemplates
("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_ORIGINATING",
"TASK_TEMPL.NAME",
new Integer(50),
(TimeZone)null);

Les résultats sont classés par nom. La requête renvoie un tableau contenant les
50 premiers modèles d’origine classés.

2. Créez un message d’entrée pour le type approprié.
TaskTemplate template = taskTemplates[0];

// créer un a message pour la tâche sélectionnée
ClientObjectWrapper input = task.createInputMessage(template.getID());
DataObject myMessage = null ;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)input.getObject();
//définir les parties du message, par exemple, un nom de client
myMessage.setString("CustomerName", "Smith");

}

3. Créez la tâche et exécutez la tâche de façon synchrone.

330 Développement et déploiement

Pour qu’une tâche s’exécute de façon synchrone, il doit s’agir d’une opération
bidirectionnelle. L’exemple utilise la méthode createAndCallTask pour créer et
exécuter la tâche.
ClientObjectWrapper output = task.createAndCallTask(template.getName(),

template.getNamespace(),
input);

4. Analysez le résultat de la tâche.
DataObject myOutput = null;
if (output.getObject() != null && output.getObject() instanceof DataObject)
{

myOutput = (DataObject)output.getObject();
int order = myOutput.getInt("OrderNo");

}

Tâches associées

Développement d’applications pour des tâches utilisateur
Une tâche représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des tâches utilisateur sont fournis.

Démarrage d’une tâche d’appel qui appelle une interface
asynchrone
Une tâche d’appel est associée au composant SCA (Service Component
Architecture). Une fois la tâche démarrée, elle appelle le composant SCA. Ne
démarrez une tâche d’appel asynchrone que si le composant SCA associé peut être
appelé de manière asynchrone.

A propos de cette tâche

Un tel composant SCA peut, par exemple, être implémenté en tant que processus à
long terme ou en tant qu’opération unidirectionnelle.

Ce scénario crée une instance d’un modèle de tâche et transmet certaines données
client.

Procédure

1. Facultatif : Répertoriez les modèles de tâche pour trouver le nom de la tâche
d’appel que vous voulez exécuter.
Cette étape est facultative si vous connaissez déjà le nom de la tâche.
TaskTemplate[] taskTemplates = task.queryTaskTemplates

("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_ORIGINATING",
"TASK_TEMPL.NAME",
new Integer(50),
(TimeZone)null);

Les résultats sont classés par nom. La requête renvoie un tableau contenant les
50 premiers modèles d’origine classés.

2. Créez un message d’entrée pour le type approprié.
TaskTemplate template = taskTemplates[0];

// créer un a message pour la tâche sélectionnée
ClientObjectWrapper input = task.createInputMessage(template.getID());
DataObject myMessage = null ;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)input.getObject();
//définir les parties du message, par exemple, un nom de client
myMessage.setString("CustomerName", "Smith");

}

Chapitre 4. Développement d’applications client pour les tâches et processus métier 331

3. Créez la tâche et exécutez-la de façon asynchrone.
L’exemple utilise la méthode createAndStartTask pour créer et exécuter la
tâche.
task.createAndStartTask(template.getName(),

template.getNamespace(),
input,
(ReplyHandlerWrapper)null);

Tâches associées

Développement d’applications pour des tâches utilisateur
Une tâche représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des tâches utilisateur sont fournis.

Création et lancement d’une instance de tâche
Ce scénario indique comment créer une instance de modèle de tâche permettant de
définir une tâche de collaboration (également appelée tâche utilisateur et de
démarrer l’instance de tâche.

Procédure

1. Facultatif : Répertoriez les modèles de tâche pour trouver le nom de la tâche de
collaboration que vous voulez exécuter.
Cette étape est facultative si vous connaissez déjà le nom de la tâche.
TaskTemplate[] taskTemplates = task.queryTaskTemplates
("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_HUMAN",
"TASK_TEMPL.NAME",
new Integer(50),
(TimeZone)null);

Les résultats sont classés par nom. La requête renvoie un tableau contenant les
50 premiers modèles de tâche classés.

2. Créez un message d’entrée pour le type approprié.
TaskTemplate template = taskTemplates[0];

// créer un a message pour la tâche sélectionnée
ClientObjectWrapper input = task.createInputMessage(template.getID());
DataObject myMessage = null ;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)input.getObject();
//définir les parties du message, par exemple, un nom de client
myMessage.setString("CustomerName", "Smith");

}

3. Création et démarrage de la tâche de collaboration (aucun gestionnaire de
réponse n’est spécifié dans cet exemple).
L’exemple utilise la méthode createAndStartTask pour créer et démarrer la
tâche.
TKIID tkiid = task.createAndStartTask(template.getName(),

template.getNamespace(),
input,
(ReplyHandlerWrapper)null);

Des éléments de travail sont créés pour les personnes concernées par l’instance
de tâche. Un propriétaire potentiel, par exemple, peut réclamer la nouvelle
instance de tâche.

4. Réclamation de l’instance de tâche.
ClientObjectWrapper input2 = task.claim(tkiid);
DataObject taskInput = null ;
if (input2.getObject()!= null && input2.getObject() instanceof DataObject)

332 Développement et déploiement

{
taskInput = (DataObject)input2.getObject();
// lire les valeurs
...

}

Une fois l’instance de tâche réclamée, le message d’entrée de la tâche est
renvoyé.

Tâches associées

Développement d’applications pour des tâches utilisateur
Une tâche représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des tâches utilisateur sont fournis.

Traitement des tâches à effectuer ou des tâches de collaboration
Les tâches à effectuer (également appelées tâches de participation dans l’API) ou les
tâches de collaboration (également appelées tâches utilisateur dans l’API) sont
attribuées à diverses personnes de votre organisation par le biais des éléments de
travail. Les tâches à effectuer et leurs éléments de travail associés sont créés, par
exemple, lorsqu’un processus navigue jusqu’à une activité humaine.

A propos de cette tâche

L’un des propriétaires potentiels réclame la tâche associée à l’élément de travail.
Cette personne est responsable de fournir les informations pertinentes et de mener
la tâche à terme.

Procédure

1. Répertoriez les tâches appartenant à une personne connectée qui sont prêtes à
être effectuées.
QueryResultSet result =

task.query("TASK.TKIID",
"TASK.STATE = TASK.STATE.STATE_READY AND
(TASK.KIND = TASK.KIND.KIND_PARTICIPATING OR
TASK.KIND = TASK.KIND.KIND_HUMAN)AND
WORK_ITEM.REASON =

WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",
(String)null, (Integer)null, (TimeZone)null);

Cette opération renvoie un ensemble de résultats de requête contenant les
tâches pouvant être effectuées par la personne connectée.

2. Réclamez la tâche à effectuer.
if (result.size() > 0)
{

result.first();
TKIID tkiid = (TKIID) result.getOID(1);
ClientObjectWrapper input = task.claim(tkiid);
DataObject taskInput = null ;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

taskInput = (DataObject)input.getObject();
// lire les valeurs
...

}
}

Une fois la tâche réclamée, le message d’entrée de la tâche est renvoyé.
3. Une fois le travail de la tâche effectué, terminez la tâche.

La tâche peut se terminer correctement ou par un message d’erreur. Si la tâche
s’exécute correctement, un message de sortie est transmis. Si la tâche ne

Chapitre 4. Développement d’applications client pour les tâches et processus métier 333

s’exécute pas correctement, un message d’erreur est transmis. Vous devez créer
les messages appropriés pour ces opérations.
a. Pour terminer la tâche correctement, créez un message de sortie.

ClientObjectWrapper output =
task.createOutputMessage(tkiid);

DataObject myMessage = null ;
if (output.getObject()!= null && output.getObject() instanceof DataObject)
{

myMessage = (DataObject)output.getObject();
//set the parts in your message, for example, an order number
myMessage.setInt("OrderNo", 4711);

}

//fin de la tâche
task.complete(tkiid, output);

Cette opération définit un message de sortie contenant le numéro de
commande. La tâche est mise à l’état terminé.

b. Pour terminer la tâche lorsque se produit une erreur, créez un message
d’erreur.
//retrieve the faults modeled for the task List faultNames =
task.getFaultNames(tkiid);
ListfaultNames input = task.getFaultNames(tkiid);

//create a message of the appropriate type
ClientObjectWrapper myFault =

task.createFaultMessage(tkiid, (String)faultNames.get(0));

// définir les parties du message d'erreur, par exemple un numéro d'erreur
DataObject myMessage = null ;
if (myFault.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)myFault.getObject();
//définir les parties du message, par exemple, un nom de client
myMessage.setInt("error",1304);

}

task.complete(tkiid, (String)faultNames.get(0), myFault);

Cette action définit un message d’erreur qui contient le code d’erreur. La
tâche est mise à l’état d’échec.

Tâches associées

Développement d’applications pour des tâches utilisateur
Une tâche représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des tâches utilisateur sont fournis.

Mise en suspens et reprise d’une instance de tâche
Vous pouvez interrompre les instances de tâche de collaboration (également
appelées tâches utilisateur dans l’API) ou les instances de tâche à effectuer
(également appelées tâches de participation dans l’API).

Avant de commencer

L’instance de tâche peut se trouver à l’état prêt ou réclamé. Elle peut être
transférée à un niveau supérieur. L’appelant doit être le propriétaire, l’émetteur ou
l’administrateur de l’instance de tâche.

334 Développement et déploiement

A propos de cette tâche

Vous pouvez mettre une instance de tâche en suspens durant son exécution. Il peut
également être souhaitable d’effectuer cette opération dans le but de recueillir des
informations nécessaires pour achever la tâche. Une fois ces informations
disponibles, vous pouvez reprendre l’exécution de l’instance de tâche.

Procédure

1. Obtention de la liste des tâches réclamées par l’utilisateur connecté.
QueryResultSet result = task.query("DISTINCT TASK.TKIID",

"TASK.STATE = TASK.STATE.STATE_CLAIMED",
(String)null,
(Integer)null,
(TimeZone)null);

Cette opération renvoie un ensemble de résultats de requête contenant une liste
des tâches réclamées par l’utilisateur connecté.

2. Met en suspens l’instance de tâche.
if (result.size() > 0)
{

result.first();
TKIID tkiid = (TKIID) result.getOID(1);
task.suspend(tkiid);

}

Cette action met en suspens l’instance de tâche spécifiée. L’instance de tâche est
placée dans l’état Interrompu.

3. Reprise de l’instance de processus.
task.resume(tkiid);

Cette action remet l’instance de tâche dans l’état où elle se trouvait avant sa
mise en suspens.

Tâches associées

Développement d’applications pour des tâches utilisateur
Une tâche représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des tâches utilisateur sont fournis.

Analyse des résultats d’une tâche
Une tâche à effectuer (également appelée tâche de participation dans l’API) ou une
tâche de collaboration (également appelée tâche utilisateur dans l’API) fonctionne de
manière asynchrone. Si un gestionnaire de réponses est indiqué lors du démarrage
d’une tâche, le message de sortie est automatiquement retourné à la fin de celle-ci.
Dans le cas contraire, le message doit être extrait explicitement.

A propos de cette tâche

Les résultats de la tâche ne sont stockés dans la base de données que si le modèle
de tâche dont dérive l’instance de tâche ne spécifie pas une suppression
automatique des instances de tâche dérivées.

Procédure

Analysez les résultats de la tâche.
L’exemple illustre le contrôle du numéro d’ordre d’une tâche effectuée avec succès.
QueryResultSet result = task.query("DISTINCT TASK.TKIID",

"TASK.NAME = 'CustomerOrder' AND
TASK.STATE = TASK.STATE.STATE_FINISHED",

Chapitre 4. Développement d’applications client pour les tâches et processus métier 335

(String)null, (Integer)null, (TimeZone)null);
if (result.size() > 0)
{

result.first();
TKIID tkiid = (TKIID) result.getOID(1);
ClientObjectWrapper output = task.getOutputMessage(tkiid);
DataObject myOutput = null;
if (output.getObject() != null && output.getObject() instanceof DataObject)
{

myOutput = (DataObject)output.getObject();
int order = myOutput.getInt("OrderNo");

}
}

Tâches associées

Développement d’applications pour des tâches utilisateur
Une tâche représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des tâches utilisateur sont fournis.

Arrêt d’une instance de tâche
Il s’avère parfois nécessaire pour quelqu’un disposant de droits d’administration
d’arrêter une instance de tâche dans un état irrécupérable. Etant donné qu’une
instance de tâche s’arrête instantanément, cette opération ne doit être exécutée que
dans des situations exceptionnelles.

Procédure

1. Procédez à l’extraction de l’instance de tâche devant être arrêtée.
Task taskInstance = task.getTask(tkiid);

2. Arrêtez l’instance de tâche.
TKIID tkiid = taskInstance.getID();
task.terminate(tkiid);

L’instance de tâche est arrêtée aussitôt sans attendre les tâches en instance.
Tâches associées

Développement d’applications pour des tâches utilisateur
Une tâche représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des tâches utilisateur sont fournis.

Suppression d’instances de tâche
Les instances de tâche ne sont automatiquement supprimées que lorsqu’elles sont
terminées, à condition que cela soit spécifié dans le modèle de tâche associé dont
dérivent les instances. Cet exemple montre comment supprimer toutes les instances
de tâche qui sont terminées mais ne sont pas supprimées automtiquement.

Procédure

1. Répertoriez les instances de tâche qui sont terminées.
QueryResultSet result =

task.query("DISTINCT TASK.TKIID",
"TASK.STATE = TASK.STATE.STATE_FINISHED",
(String)null, (Integer)null, (TimeZone)null);

Cette opération renvoie un ensemble de résultats de requête qui répertorie les
instances de tâche terminées.

2. Supprimez les instances de tâche terminées.

336 Développement et déploiement

while (result.next())
{
TKIID tkiid = (TKIID) result.getOID(1);
task.delete(tkiid);
}

Tâches associées

Développement d’applications pour des tâches utilisateur
Une tâche représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des tâches utilisateur sont fournis.

Libération d’une tâche réclamée
Lorsqu’un propriétaire potentiel réclame une tâche, il lui incombe de mener la
tâche à son terme. Toutefois, certaines tâches réclamées doivent être libérées pour
afin qu’un autre propriétaire potentiel puisse la réclamer à son tour.

A propos de cette tâche

Il s’avère parfois nécessaire pour un utilisateur disposant de droits
d’administration de libérer une tâche réclamée. Cette situation peut se produire,
par exemple, lorsqu’une tâche doit être effectuée en l’absence du propriétaire de la
tâche. Le propriétaire de la tâche peut également libérer une tâche réclamée.

Procédure

1. Répertoriez les tâches réclamées possédées par une personne spécifique, par
exemple, Smith.
QueryResultSet result =

task.query("DISTINCT TASK.TKIID",
"TASK.STATE = TASK.STATE.STATE_CLAIMED AND
TASK.OWNER = 'Smith'",
(String)null, (Integer)null, (TimeZone)null);

Cette opération renvoie un ensemble de résultats de requête répertoriant les
tâches réclamées par cette personne, Smith.

2. Libérez la tâche réclamée.
if (result.size() > 0)
{

result.first();
TKIID tkiid = (TKIID) result.getOID(1);
task.cancelClaim(tkiid, true);

}

Cette opération renvoie la tâche à l’état prêt de manière à ce qu’elle puisse être
réclamée par l’un des autres propriétaires éventuels. Toute donnée de sortie
définie par le propriétaire d’origine est maintenue.

Tâches associées

Développement d’applications pour des tâches utilisateur
Une tâche représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des tâches utilisateur sont fournis.

Gestion des tâches élémentaires
Durant la durée de vie d’une instance d’activité ou de tâche, l’ensemble des
personnes associées à l’objet peut changer, par exemple, si une personne est en
congé, si de nouvelles personnes sont engagées ou si la charge de travail doit être
redistribuée. Pour autoriser ces modifications, vous devez développer des
applications afin de créer, supprimer ou transférer les tâches élémentaires.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 337

A propos de cette tâche

Une tâche élémentaire correspond à l’affectation d’un objet à un utilisateur ou à un
groupe d’utilisateurs pour un motif particulier. Cet objet est généralement une
instance d’activité humaine, une instance de processus ou une instance de tâche.
Les motifs sont dérivés du rôle conféré à l’utilisateur pour l’objet. Un objet peut
comporter plusieurs éléments de travail étant donné qu’un utilisateur peut avoir
différents rôles associés à l’objet, et qu’un élément de travail est créé pour chacun
de ces rôles. Une instance de tâche à effectuer peut par exemple avoir un élément
de travail administrateur, lecteur, éditeur et propriétaire en même temps.

Les actions pouvant être menées pour gérer les tâches élémentaires dépendent du
rôle de l’utilisateur : par exemple, un administrateur peut créer, supprimer et
transférer des tâches élémentaires, alors que le propriétaire de la tâche ne peut que
transférer des tâches élémentaires.
v Créez une tâche élémentaire.

// query the task instance for which an additional
// administrator is to be specified
QueryResultSet result = task.query("TASK.TKIID",

"TASK.NAME='CustomerOrder'",
(String)null, (Integer)null,
(TimeZone)null);

if (result.size() > 0)
{

result.first();
// create the work item
task.createWorkItem((TKIID)(result.getOID(1)),

WorkItem.REASON_ADMINISTRATOR,"Smith");
}

Cette opération crée une tâche élémentaire pour l’utilisateur Smith qui a un rôle
d’administration.

v Supprimez une tâche élémentaire.
// query the task instance for which a work item is to be deleted
QueryResultSet result = task.query("TASK.TKIID",

"TASK.NAME='CustomerOrder'",
(String)null, (Integer)null,
(TimeZone)null);

if (result.size() > 0)
{

result.first();
// delete the work item
task.deleteWorkItem((TKIID)(result.getOID(1)),

WorkItem.REASON_READER,"Smith");
}

Cette opération supprime la tâche élémentaire pour l’utilisateur Smith qui a un
rôle de lecteur.

v Transférez une tâche élémentaire.
// query the task that is to be rescheduled
QueryResultSet result =

task.query("DISTINCT TASK.TKIID",
"TASK.NAME='CustomerOrder' AND
TASK.STATE=TASK.STATE.STATE_READY AND
WORK_ITEM.REASON=WORK_ITEM.REASON.REASON_POTENTIAL_OWNER AND
WORK_ITEM.OWNER_ID='Miller'",
(String)null, (Integer)null, (TimeZone)null);

if (result.size() > 0)
{

result.first();
// transfer the work item from user Miller to user Smith

338 Développement et déploiement

// so that Smith can work on the task
task.transferWorkItem((TKIID)(result.getOID(1)),

WorkItem.REASON_POTENTIAL_OWNER,"Miller","Smith");
}

Cette opération transfère la tâche élémentaire à l’utilisateur Smith de manière à
ce qu’il puisse travailler avec.

Tâches associées

Développement d’applications pour des tâches utilisateur
Une tâche représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des tâches utilisateur sont fournis.

Création de modèles de tâche et d’instances de tâche à
l’exécution
Un outil de modélisation, comme WebSphere Integration Developer, permet
habituellement de compiler des modèles de tâche. Vous installez les modèles de
tâche dans WebSphere Process Server et créez des instances à partir de ces modèles
en utilisant, par exemple, Business Process Choreographer Explorer. Cependant,
vous pouvez également créer des instances de tâche utilisateur ou de participation
lors de l’exécution.

A propos de cette tâche

Cette opération peut être nécessaire, par exemple, quand la définition de tâche
n’est pas disponible lors du déploiement de l’application, quand les tâches d’une
procédure ne sont pas encore connues ou quand une tâche est requise pour mener
à bien une collaboration ad hoc dans un groupe.

Vous pouvez modéliser les tâches à effectuer ou les tâches de collaboration ad-hoc
en créant des instances de la classe com.ibm.task.api.TaskModel, et les utiliser pour
créer un modèle de tâche réutilisable ou créer directement une instance de tâche à
exécution unique. Pour créer une instance de la classe TaskModel, un ensemble de
méthodes de fabrique est disponible dans la classe de fabrique
com.ibm.task.api.ClientTaskFactory. La modélisation des tâches utilisateur lors de
l’exécution se base sur EMF (Eclipse Modeling Framework).

Procédure

1. Créez un ensemble de ressources org.eclipse.emf.ecore.resource.ResourceSet à
l’aide de la méthode de fabrique createResourceSet.

2. Facultatif : Si vous avez l’intention d’utiliser des types de message complexes,
vous pouvez soit les définir à l’aide de org.eclipse.xsd.XSDFactory, que vous
pouvez obtenir grâce à la méthode de fabrique getXSDFactory(), soit importer
directement un schéma XML existant à l’aide de la méthode de fabrique
loadXSDSchema.
Pour rendre les types complexes disponibles au serveur WebSphere Process
Server, déployez-les dans le cadre d’une application d’entreprise.

3. Créez ou importez une définition WSDL (Web Services Definition Language)
du type javax.wsdl.Definition.
Vous pouvez créer une nouvelle définition WSDL à l’aide de la méthode
createWSDLDefinition. Puis vous pouvez lui ajouter un type de port et une
opération. Vous pouvez également importer directement une définition WSDL
existante à l’aide de la méthode de fabrique loadWSDLDefinition.

4. Créez la définition de tâche à l’aide de la méthode de fabrique createTTask.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 339

Si vous voulez ajouter ou manipuler des éléments de tâche plus complexes,
vous pouvez utiliser la classe com.ibm.wbit.tel.TaskFactory que vous vous
pouvez récupérer à l’aide de la méthode de fabrique getTaskFactory.

5. Créez le modèle de tâche en utilisant la méthode de fabrique createTaskModel,
puis envoyez-lui le regroupement de ressources que vous avez créé à l’étape 1
et qui rassemble tous les autres artefacts que vous avez créés depuis lors.

6. Facultatif : Validez le modèle à l’aide de la méthode TaskModel validate.

Résultats

Utilisez l’une des méthodes create de l’API EJB Human Task Manager dont le
paramètre TaskModel permet de créer un modèle de tâche réutilisable ou de créer
directement une instance de tâche à exécution unique.
Tâches associées

Développement d’applications pour des tâches utilisateur
Une tâche représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des tâches utilisateur sont fournis.
Création de tâches d’exécution utilisant des types Java simples
Cet exemple crée une tâche d’exécution utilisant des types Java simples, comme un
objet String, dans son interface.
Création de tâches d’exécution utilisant des types complexes
Cet exemple crée une tâche d’exécution utilisant des types complexes dans son
interface. Les types complexes sont déjà définis, c’est-à-dire que le système de
fichiers local du client possède des fichiers XSD contenant la description des types
complexes.
Création de tâches d’exécution utilisant une interface existante
Cet exemple crée une tâche d’exécution utilisant une interface déjà définie,
c’est-à-dire que le système de fichiers local possède un fichier contenant la
description de l’interface.
Création de tâches d’exécution utilisant une interface à partir d’une application
d’appel
Cet exemple crée une tâche d’exécution utilisant une interface appartenant à
l’application d’appel. Par exemple, une tâche d’exécution est créée dans un
fragment de code Java d’un processus métier et utilise une interface à partir de
l’application de processus.

Création de tâches d’exécution utilisant des types Java simples :

Cet exemple crée une tâche d’exécution utilisant des types Java simples, comme un
objet String, dans son interface.

A propos de cette tâche

L’exemple s’exécute uniquement à l’intérieur du contexte de l’application
d’entreprise appelante pour laquelle les ressources sont chargées.

Procédure

1. Accédez à ClientTaskFactory et créez un ensemble de ressources contenant les
définitions du nouveau modèle de tâche.
ClientTaskFactory factory = ClientTaskFactory.newInstance();
ResourceSet resourceSet = factory.createResourceSet();

2. Créez la définition WSDL et ajoutez les descriptions des opérations.

340 Développement et déploiement

// Création de l'interface WSDL
Definition definition = factory.createWSDLDefinition

(resourceSet, new QName("http://www.ibm.com/task/test/", "test"));

// Création d'un type de port
PortType portType = factory.createPortType(definition, "doItPT");

// Création d'une opération ; les messages d'entrée et de sortie sont de type
Chaîne :
// aucun message d'erreur n'est spécifié
Operation operation = factory.createOperation

(definition, portType, "doIt",
new QName("http://www.w3.org/2001/XMLSchema", "string"),
new QName("http://www.w3.org/2001/XMLSchema", "string"),
(Map)null);

3. Créez le modèle EMF de la nouvelle tâche utilisateur.
Si vous créez une instance de tâche, une date valid-from (UTCDate) n’est pas
obligatoire.
TTask humanTask = factory.createTTask(resourceSet,

TTaskKinds.HTASK_LITERAL,
"TestTask",
new UTCDate("2005-01-01T00:00:00"),
"http://www.ibm.com/task/test/",
portType,
operation);

Cette étape initialise les propriétés du modèle de tâche avec des valeurs par
défaut.

4. Modifiez les propriétés du modèle de tâche utilisateur.
// Utilisation des méthodes du package the com.ibm.wbit.tel package, par exemple :
humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// Extraction de la fabrique de tâches pour créer ou modifier les éléments de
tâches composites
TaskFactory taskFactory = factory.getTaskFactory();

// Spécification des paramètres d'escalade
TVerb verb = taskFactory.createTVerb();
verb.setName("John");

// Création de 'escalationReceiver' et ajout d'instruction
TEscalationReceiver escalationReceiver =

taskFactory.createTEscalationReceiver();
escalationReceiver.setVerb(verb);

// Création d'escalade et ajout de destinataire
TEscalation escalation = taskFactory.createTEscalation();
escalation.setEscalationReceiver(escalationReceiver);

5. Créez le modèle de tâche contenant toutes les définitions de ressources.
TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

6. Validez le modèle de tâche et corrigez les éventuels incidents de validation
rencontrés.
ValidationProblem[] validationProblems = taskModel.validate();

7. Créez l’instance ou le modèle de tâche d’exécution.
L’interface HumanTaskManagerService permet de créer l’instance de tâche ou
le modèle de tâche. Du fait que l’application utilise des types Java simples
uniquement, il est inutile de spécifier un nom d’application.
v Le fragment de code suivant crée une instance de tâche :

atask.createTask(taskModel, (String)null, "HTM");

v Le fragment de code suivant crée un modèle de tâche :

Chapitre 4. Développement d’applications client pour les tâches et processus métier 341

task.createTaskTemplate(taskModel, (String)null);

Résultats

Si une instance de tâche d’exécution est créée, elle peut à présent être démarrée. Si
un modèle de tâche d’exécution est créé, vous pouvez à présent créer des instances
de tâche à partir du modèle.
Tâches associées

Création de modèles de tâche et d’instances de tâche à l’exécution
Un outil de modélisation, comme WebSphere Integration Developer, permet
habituellement de compiler des modèles de tâche. Vous installez les modèles de
tâche dans WebSphere Process Server et créez des instances à partir de ces modèles
en utilisant, par exemple, Business Process Choreographer Explorer. Cependant,
vous pouvez également créer des instances de tâche utilisateur ou de participation
lors de l’exécution.

Création de tâches d’exécution utilisant des types complexes :

Cet exemple crée une tâche d’exécution utilisant des types complexes dans son
interface. Les types complexes sont déjà définis, c’est-à-dire que le système de
fichiers local du client possède des fichiers XSD contenant la description des types
complexes.

A propos de cette tâche

L’exemple s’exécute uniquement à l’intérieur du contexte de l’application
d’entreprise appelante pour laquelle les ressources sont chargées.

Procédure

1. Accédez à ClientTaskFactory et créer un ensemble de ressources contenant les
définitions du nouveau modèle de tâche.
ClientTaskFactory factory = ClientTaskFactory.newInstance();
ResourceSet resourceSet = factory.createResourceSet();

2. Ajoutez les définitions XSD de vos types complexes à l’ensemble de ressources
pour les mettre à votre disposition lors de la définition d’opérations.
Les fichiers sont relatifs à l’emplacement d’exécution du code.
factory.loadXSDSchema(resourceSet, "InputBO.xsd");
factory.loadXSDSchema(resourceSet, "OutputBO.xsd");

3. Créez la définition WSDL et ajoutez les descriptions des opérations.
// Création de l'interface WSDL
Definition definition = factory.createWSDLDefinition

(resourceSet, new QName("http://www.ibm.com/task/test/", "test"));

// Création d'un type de port
PortType portType = factory.createPortType(definition, "doItPT");

// Création d'une opération ; le message d'entrée est un objet InputBO,
// le message de sortie un objet OutputBO ;
// aucun message d'erreur n'est spécifié
Operation operation = factory.createOperation

(definition, portType, "doIt",
new QName("http://Input", "InputBO"),
new QName("http://Output", "OutputBO"),
(Map)null);

4. Créez le modèle EMF de la nouvelle tâche utilisateur.

342 Développement et déploiement

Si vous créez une instance de tâche, une date valid-from (UTCDate) n’est pas
obligatoire.
TTask humanTask = factory.createTTask(resourceSet,

TTaskKinds.HTASK_LITERAL,
"TestTask",
new UTCDate("2005-01-01T00:00:00"),
"http://www.ibm.com/task/test/",
portType,
operation);

Cette étape initialise les propriétés du modèle de tâche avec des valeurs par
défaut.

5. Modifiez les propriétés du modèle de tâche utilisateur.
// Utilisation des méthodes du package the com.ibm.wbit.tel package,
par exemple :
humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// Extraction de la fabrique de tâches pour créer ou modifier les éléments de
tâches composites
TaskFactory taskFactory = factory.getTaskFactory();

// Spécification des paramètres d'escalade
TVerb verb = taskFactory.createTVerb();
verb.setName("John");

// Création de 'escalationReceiver' et ajout d'instruction
TEscalationReceiver escalationReceiver =

taskFactory.createTEscalationReceiver();
escalationReceiver.setVerb(verb);

// Création d'escalade et ajout de destinataire
TEscalation escalation = taskFactory.createTEscalation();
escalation.setEscalationReceiver(escalationReceiver);

6. Créer le modèle de tâche contenant toutes les définitions de ressources.
TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

7. Validez le modèle de tâche et corrigez les éventuels incidents de validation
rencontrés.
ValidationProblem[] validationProblems = taskModel.validate();

8. Créez l’instance ou le modèle de tâche d’exécution.
L’interface HumanTaskManagerService permet de créer l’instance de tâche ou
le modèle de tâche. Vous devez fournir un nom d’application contenant les
définitions de type de données pour les rendre accessibles. L’application doit
également contenir une tâche ou un processus factice permettant son
chargement par Business Process Choreographer.
v Le fragment de code suivant crée une instance de tâche :

task.createTask(taskModel, "BOapplication", "HTM");

v Le fragment de code suivant crée un modèle de tâche :
task.createTaskTemplate(taskModel, "BOapplication");

Résultats

Si une instance de tâche d’exécution est créée, elle peut à présent être démarrée. Si
un modèle de tâche d’exécution est créé, vous pouvez à présent créer des instances
de tâche à partir du modèle.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 343

Tâches associées

Création de modèles de tâche et d’instances de tâche à l’exécution
Un outil de modélisation, comme WebSphere Integration Developer, permet
habituellement de compiler des modèles de tâche. Vous installez les modèles de
tâche dans WebSphere Process Server et créez des instances à partir de ces modèles
en utilisant, par exemple, Business Process Choreographer Explorer. Cependant,
vous pouvez également créer des instances de tâche utilisateur ou de participation
lors de l’exécution.

Création de tâches d’exécution utilisant une interface existante :

Cet exemple crée une tâche d’exécution utilisant une interface déjà définie,
c’est-à-dire que le système de fichiers local possède un fichier contenant la
description de l’interface.

A propos de cette tâche

L’exemple s’exécute uniquement à l’intérieur du contexte de l’application
d’entreprise appelante pour laquelle les ressources sont chargées.

Procédure

1. Accédez à ClientTaskFactory et créez un ensemble de ressources contenant les
définitions du nouveau modèle de tâche.
ClientTaskFactory factory = ClientTaskFactory.newInstance();
ResourceSet resourceSet = factory.createResourceSet();

2. Accédez à la définition WSDL et aux descriptions des opérations.
La description d’interface est relative à l’emplacement d’exécution du code.
Definition definition = factory.loadWSDLDefinition(

resourceSet, "interface.wsdl");
PortType portType = definition.getPortType(

new QName(definition.getTargetNamespace(), "doItPT"));
Operation operation = portType.getOperation

("doIt", (String)null, (String)null);

3. Créez le modèle EMF de la nouvelle tâche utilisateur.
Si vous créez une instance de tâche, une date valid-from (UTCDate) n’est pas
obligatoire.
TTask humanTask = factory.createTTask(resourceSet,

TTaskKinds.HTASK_LITERAL,
"TestTask",
new UTCDate("2005-01-01T00:00:00"),
"http://www.ibm.com/task/test/",
portType,
operation);

Cette étape initialise les propriétés du modèle de tâche avec des valeurs par
défaut.

4. Modifiez les propriétés du modèle de tâche utilisateur.
// Utilisation des méthodes du package the com.ibm.wbit.tel package, par exemple :
humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// Extraction de la fabrique de tâches pour créer ou modifier les éléments de
tâches composites
TaskFactory taskFactory = factory.getTaskFactory();

// Spécification des paramètres d'escalade
TVerb verb = taskFactory.createTVerb();
verb.setName("John");

344 Développement et déploiement

// Création de 'escalationReceiver' et ajout d'instruction
TEscalationReceiver escalationReceiver =

taskFactory.createTEscalationReceiver();
escalationReceiver.setVerb(verb);

// Création d'escalade et ajout de destinataire
TEscalation escalation = taskFactory.createTEscalation();
escalation.setEscalationReceiver(escalationReceiver);

5. Créez le modèle de tâche contenant toutes les définitions de ressources.
TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

6. Validez le modèle de tâche et corrigez les éventuels incidents de validation
rencontrés.
ValidationProblem[] validationProblems = taskModel.validate();

7. Créez l’instance ou le modèle de tâche d’exécution.
L’interface HumanTaskManagerService permet de créer l’instance de tâche ou
le modèle de tâche. Vous devez fournir un nom d’application contenant les
définitions de type de données pour les rendre accessibles. L’application doit
également contenir une tâche ou un processus factice permettant son
chargement par Business Process Choreographer.
v Le fragment de code suivant crée une instance de tâche :

task.createTask(taskModel, "BOapplication", "HTM");

v Le fragment de code suivant crée un modèle de tâche :
task.createTaskTemplate(taskModel, "BOapplication");

Résultats

Si une instance de tâche d’exécution est créée, elle peut à présent être démarrée. Si
un modèle de tâche d’exécution est créé, vous pouvez à présent créer des instances
de tâche à partir du modèle.
Tâches associées

Création de modèles de tâche et d’instances de tâche à l’exécution
Un outil de modélisation, comme WebSphere Integration Developer, permet
habituellement de compiler des modèles de tâche. Vous installez les modèles de
tâche dans WebSphere Process Server et créez des instances à partir de ces modèles
en utilisant, par exemple, Business Process Choreographer Explorer. Cependant,
vous pouvez également créer des instances de tâche utilisateur ou de participation
lors de l’exécution.

Création de tâches d’exécution utilisant une interface à partir d’une application
d’appel :

Cet exemple crée une tâche d’exécution utilisant une interface appartenant à
l’application d’appel. Par exemple, une tâche d’exécution est créée dans un
fragment de code Java d’un processus métier et utilise une interface à partir de
l’application de processus.

A propos de cette tâche

L’exemple s’exécute uniquement à l’intérieur du contexte de l’application
d’entreprise appelante pour laquelle les ressources sont chargées.

Procédure

1. Accédez à ClientTaskFactory et créez un ensemble de ressources contenant les
définitions du nouveau modèle de tâche.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 345

ClientTaskFactory factory = ClientTaskFactory.newInstance();

// Spécification du chargeur de classe de contexte pour rechercher les ressources
suivantes
ResourceSet resourceSet = factory.createResourceSet

(Thread.currentThread().getContextClassLoader());

2. Accédez à la définition WSDL et aux descriptions des opérations.
Indiquez le chemin d’accès à l’intérieur du fichier JAR de package contenant.
Definition definition = factory.loadWSDLDefinition(resourceSet,

"com/ibm/workflow/metaflow/interface.wsdl");
PortType portType = definition.getPortType(
new QName(definition.getTargetNamespace(), "doItPT"));

Operation operation = portType.getOperation
("doIt", (String)null, (String)null);

3. Créez le modèle EMF de la nouvelle tâche utilisateur.
Si vous créez une instance de tâche, une date valid-from (UTCDate) n’est pas
obligatoire.
TTask humanTask = factory.createTTask(resourceSet,

TTaskKinds.HTASK_LITERAL,
"TestTask",
new UTCDate("2005-01-01T00:00:00"),
"http://www.ibm.com/task/test/",
portType,
operation);

Cette étape initialise les propriétés du modèle de tâche avec des valeurs par
défaut.

4. Modifiez les propriétés du modèle de tâche utilisateur.
// Utilisation des méthodes du package the com.ibm.wbit.tel package, par exemple :
humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// Extraction de la fabrique de tâches pour créer ou modifier les éléments de
tâches composites
TaskFactory taskFactory = factory.getTaskFactory();

// Spécification des paramètres d'escalade
TVerb verb = taskFactory.createTVerb();
verb.setName("John");

// Création de 'escalationReceiver' et ajout d'instruction
TEscalationReceiver escalationReceiver =

taskFactory.createTEscalationReceiver();
escalationReceiver.setVerb(verb);

// Création d'escalade et ajout de destinataire
TEscalation escalation = taskFactory.createTEscalation();
escalation.setEscalationReceiver(escalationReceiver);

5. Créez le modèle de tâche contenant toutes les définitions de ressources.
TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

6. Validez le modèle de tâche et corrigez les éventuels incidents de validation
rencontrés.
ValidationProblem[] validationProblems = taskModel.validate();

7. Créez l’instance ou le modèle de tâche d’exécution.
L’interface HumanTaskManagerService permet de créer l’instance de tâche ou
le modèle de tâche. Vous devez fournir un nom d’application contenant les
définitions de type de données pour les rendre accessibles.
v Le fragment de code suivant crée une instance de tâche :

task.createTask(taskModel, "WorkflowApplication", "HTM");

v Le fragment de code suivant crée un modèle de tâche :

346 Développement et déploiement

task.createTaskTemplate(taskModel, "WorkflowApplication");

Résultats

Si une instance de tâche d’exécution est créée, elle peut à présent être démarrée. Si
un modèle de tâche d’exécution est créé, vous pouvez à présent créer des instances
de tâche à partir du modèle.
Tâches associées

Création de modèles de tâche et d’instances de tâche à l’exécution
Un outil de modélisation, comme WebSphere Integration Developer, permet
habituellement de compiler des modèles de tâche. Vous installez les modèles de
tâche dans WebSphere Process Server et créez des instances à partir de ces modèles
en utilisant, par exemple, Business Process Choreographer Explorer. Cependant,
vous pouvez également créer des instances de tâche utilisateur ou de participation
lors de l’exécution.

Interface HumanTaskManagerService
L’interface HumanTaskManagerService permet l’accès aux fonctions relatives aux
tâches pouvant être appelées par des clients locaux ou distants.

Différentes méthodes peuvent être appelées selon l’état de la tâche et les droits
d’accès de l’utilisateur de l’application contenant la méthode en question. Les
méthodes principales de manipulation des objets de tâche sont répertoriées dans
cette rubrique. Plus plus d’information sur ces méthodes et d’autres méthodes
fournies par l’interface HumanTaskManagerService, consultez Javadoc dans le
package com.ibm.task.api.

Modèles de tâches

Les méthodes suivantes sont disponibles pour les modèles de tâches.

Tableau 46. Méthodes API pour les modèles de tâches

Méthode Description

getTaskTemplate Extrait le modèle de tâche spécifié.

createAndCallTask Crée et exécute une instance de tâche à
partir du modèle de tâche et attend le
résultat de façon synchrone.

createAndStartTask Crée et démarre une instance de tâche à
partir du modèle de tâche spécifié.

createTask Crée une instance de tâche à partir du
modèle de tâche spécifié.

createInputMessage Crée un message d’entré pour le modèle de
tâche indiqué. Par exemple, crée un message
pouvant servir à démarrer une tâche.

queryTaskTemplates Extrait des modèles de tâche stockés dans la
base de données.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 347

Instances de tâches

Les méthodes suivantes sont disponibles pour les instances de tâches.

Tableau 47. Méthodes API pour les modèles de tâches

Méthode Description

getTask Extrait une instance de tâche ; l’instance de
tâche peut se trouver dans n’importe quel
état.

callTask Démarre une tâche d’appel en mode
synchrone.

startTask Démarre une tâche qui a déjà été créée.

suspend Interrompt la tâche de collaboration ou la
tâche à effectuer.

resume Reprend la tâche de collaboration ou la
tâche à effectuer.

terminate Arrête l’instance de tâche spécifiée. Si une
tâche d’appel est arrêtée, cette action n’a
aucun impact sur le service appelé.

delete Supprime l’instance de tâche spécifiée.

claim Réclame la tâche en vue de son traitement.

update Met à jour l’instance de tâche.

complete Termine l’instance de tâche.

cancelClaim Libère une instance de tâche réclamée afin
de permettre son traitement par un autre
propriétaire potentiel.

createWorkItem Crée un élément de travail pour l’instance
de tâche.

transferWorkItem Transfère l’élément de travail à un
propriétaire spécifié.

deleteWorkItem Supprime l’élément de travail.

Escalades

Les méthodes suivantes sont disponibles pour les escalades.

Tableau 48. Méthodes API de gestion des escalades

Méthode Description

getEscalation Extrait l’instance d’escalade spécifiée.

Propriétés personnalisées

Les tâches, les modèles de tâche et les escalades peuvent tous posséder des
propriétés personnalisées. L’interface fournit une méthode get et une méthode set
pour l’extraction et la définition de valeurs des propriétés personnalisées. Vous
pouvez aussi associer les propriétés mentionnées aux instances de tâche et les en
extraire. Le noms de propriétés personnalisées et des valeurs doivent être de type
java.lang.String. Les méthodes suivantes sont adaptées aux tâches, modèles de
tâche et escalades.

348 Développement et déploiement

Tableau 49. Méthodes API pour les variables et les propriétés personnalisées

Méthode Description

getCustomProperty Extrait la propriété personnalisée
mentionnée de l’instance de tâche spécifiée.

getCustomProperties Extrait les propriétés personnalisées de
l’instance de tâche spécifiée.

getCustomPropertyNames Extrait les noms des propriétés
personnalisées pour l’instance de tâche.

setCustomProperty Stocke les valeurs spécifiques aux propriétés
personnalisées correspondant à l’instance de
tâche spécifiée.

Tâches associées

Développement d’applications pour des tâches utilisateur
Une tâche représente le moyen par lequel des composants appellent des humains
en tant que services ou par lequel des humains appellent des services. Des
exemples d’applications typiques pour des tâches utilisateur sont fournis.
Référence associée

Actions autorisées pour les tâches
Les actions pouvant être effectuées sur une tâche varient selon qu’il s’agit d’une
tâche à effectuer, d’une tâche collaborative, d’une tâche d’appel ou d’une tâche
d’administration.

Actions autorisées pour les tâches :

Les actions pouvant être effectuées sur une tâche varient selon qu’il s’agit d’une
tâche à effectuer, d’une tâche collaborative, d’une tâche d’appel ou d’une tâche
d’administration.

Vous ne pouvez pas utiliser toutes les actions disponibles à travers l’interface
HumanTaskManager sur tous les types de tâche. Le tableau suivant indique les
actions que vous pouvez effectuer sur chaque type de tâche.

Action

Type de tâche

Tâche à effectuer Tâche de
collaboration

Tâche d’appel Tâche
d’administration

callTask X

cancelClaim X X1

claim X X1

complete X X1 X

completeWithFollowOnTask4 X X1

completeWithFollowOnTask5 X3 X3

createFaultMessage X X X X

createInputMessage X X X X

createOutputMessage X X X X

createWorkItem X X1 X X

delete X1 X1 X X1

deleteWorkItem X X1 X X

getCustomProperty X X1 X X

Chapitre 4. Développement d’applications client pour les tâches et processus métier 349

Action

Type de tâche

Tâche à effectuer Tâche de
collaboration

Tâche d’appel Tâche
d’administration

getDocumentation X X1 X X

getFaultNames X X1

getFaultMessage X X1 X

getInputMessage X X1 X

getOutputMessage X X1 X

getUsersInRole X X1 X X

getTask X X1 X X

getUISettings X X1 X X

resume X X1

setCustomProperty X X1 X X

setFaultMessage X X1

setOutputMessage X X1

startTask X1 X1 X X

startTaskAsSubtask6 X X1

startTaskAsSubtask7 X3 X3

suspend X X1

suspendWithCancelClaim X X1

terminate X1 X1 X1

transferWorkItem X X1 X X

update X X1 X X

Remarques :

1. Uniquement pour les tâches autonomes, ad-hoc et les modèles de tâches

2. Uniquement pour les tâches autonomes, en ligne intégrées aux processus métier et ad-hoc

3. Uniquement pour les tâches autonomes et ad-hoc

4. Les types de tâches pouvant comporter des tâches de suivi

5. Les types de tâches pouvant être utilisés en tant que tâches de suivi

6. Les types de tâches pouvant posséder des sous-tâches

7. Les types de tâches pouvant être utilisés en tant que sous-tâches

Référence associée

Interface HumanTaskManagerService
L’interface HumanTaskManagerService permet l’accès aux fonctions relatives aux
tâches pouvant être appelées par des clients locaux ou distants.

Développement d’applications pour les processus métier et
les tâches utilisateur

La plupart des scénarios de processus métier nécessitent la participation de
personnes. Par exemple, un processus métier nécessite une interaction humaine
lorsque le processus est démarré ou géré ou lorsque des activités humaines sont
effectuées. Pour supporter de tels scénarios, vous devez utiliser à la fois l’API de
Business Flow Manager et l’API de Human Task Manager.

350 Développement et déploiement

A propos de cette tâche

Pour impliquer des personnes dans des scénarios de processus métier, vous
pouvez inclure les types de tâche suivants dans le processus métier :
v Une tâche d’appel en ligne (également appelée tâche de départ dans l’API).

Vous pouvez fournir une tâche d’appel pour chaque activité de réception, pour
chaque élément onMessage de l’activité de sélection et pour chaque élément
onEvent du gestionnaire d’événements. Cette tâche peut alors contrôler les
utilisateurs autorisés à démarrer un processus ou à communiquer avec une
instance de processus en cours d’exécution.

v Une tâche d’administration.
Vous pouvez fournir une tâche d’administration afin d’indiquer qui est autorisé
à administrer le processus ou à effectuer des opérations d’administration sur les
activité du processus qui ont échoué.

v Une tâche à effectuer (également appelée tâche de participation dans l’API).
Les tâches à effectuer implémentent une activité humaine. Ce type d’activité
vous permet de faire participer des utilisateurs au processus.

Les activités humaines du processus métier représentent les tâches à effectuer
réalisées par les utilisateurs dans le scénario de processus métier. Pour réaliser de
tels scénarios, vous pouvez utiliser à la fois l’API de Business Flow Manager et
l’API de Human Task Manager.
v Le processus métier est le conteneur de toutes les activités appartenant au

processus, y compris les activités humaines qui sont représentées par les tâches à
effectuer. Lorsqu’une instance de processus est créée, un ID objet unique (PIID)
lui est affecté.

v Lorsqu’une activité humaine est activée au cours de l’exécution de l’instance de
processus, une instance d’activité est créée, qui est identifiée par son ID objet
(AIID) unique. En même temps, une instance de tâche à effectuer en ligne est
également créée, qui est identifiée par son ID objet (TKIID). La relation entre
l’activité humaine et l’instance de tâche est créée par le biais des ID objet :
– L’ID tâche à effectuer de l’instance d’activité est défini en fonction du TKIID

de la tâche à effectuer associée.
– L’ID de contexte de confinement de l’instance de tâche est défini en fonction

de l’instance de processus qui contient l’instance d’activité associée.
– L’ID de contexte parent de l’instance de tâche est défini en fonction de l’AIID

de l’instance d’activité associée.
v Les cycles de vie de toutes les instances de tâche à effectuer en ligne sont gérés

par l’instance de processus. Lorsque l’instance de processus est supprimée, les
instances de tâches le sont également. En d’autres termes, toutes les tâches dont
l’ID de contexte de confinement est défini en fonction du PIID de l’instance de
processus sont automatiquement supprimées.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 351

Tâches associées

Développement d’applications client EJB pour des processus métier et des tâches
utilisateur
Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d’utiliser des processus métier
et des tâches utilisateur installées sur WebSphere Process Server.
Déterminer les modèles de processus ou les activités pouvant être démarrés
Un processus métier peut être démarré en appelant les méthodes call, initiate ou
sendMessage de l’API de Business Flow Manager. Si le processus n’a qu’une seule
activité de démarrage, vous pouvez utiliser la signature de méthode dont le
paramètre doit être un nom de modèle de processus. Si le processus comporte
plusieurs activités de démarrage, vous devez identifier l’activité de démarrage de
manière explicite.
Traitement par une seule personne d’un flux de travaux contenant des tâches
utilisateur
Certains flux de travaux sont exécutés par une seule personne, par exemple une
commande d’ouvrages sur une librairie en ligne. Cet exemple démontre comment
implémenter sous forme d’une série d’activités humaines (tâches à effectuer) la
séquence d’actions nécessaires pour commander un livre. Les API de Business
Flow Manager et Human Task Manager sont toutes les deux utilisées pour traiter
le flux de travaux.

Déterminer les modèles de processus ou les activités pouvant
être démarrés
Un processus métier peut être démarré en appelant les méthodes call, initiate ou
sendMessage de l’API de Business Flow Manager. Si le processus n’a qu’une seule
activité de démarrage, vous pouvez utiliser la signature de méthode dont le
paramètre doit être un nom de modèle de processus. Si le processus comporte
plusieurs activités de démarrage, vous devez identifier l’activité de démarrage de
manière explicite.

A propos de cette tâche

Lorsqu’un processus métier est modélisé, le modélisateur peut décider que seul un
sous-ensemble d’utilisateurs est autorisé à créer une instance de processus à partir
du modèle de processus. Ceci est effectué en associant une tâche d’appel en ligne à
une activité de démarrage du processus, puis en précisant les restrictions
d’autorisation appliquées à cette tâche. Seuls les utilisateurs qui sont des
démarreurs ou des administrateurs potentiels de la tâche sont autorisés à créer une
instance de la tâche, et par conséquent, une instance du modèle de processus.

Si aucune tâche d’appel en ligne n’est associée à l’activité de démarrage, ou si les
restrictions d’autorisation ne sont pas indiquées pour la tâche, tous les utilisateurs
peuvent créer une instance de processus à l’aide de l’activité de démarrage.

Un processus peut avoir plusieurs activités de démarrage, chacune avec différentes
requêtes d’utilisateurs pour des démarreurs ou des administrateurs potentiels. Cela
signifie qu’un utilisateur peut être autorisé à démarrer un processus avec l’activité
A, mais pas avec l’activité B.

Procédure

1. Utilisez l’API de Business Flow Manager pour créer la liste des versions
courantes des modèles de processus qui sont à l’état démarré.

352 Développement et déploiement

Conseil : La méthode queryProcessTemplates exclut uniquement les modèles
de processus qui font partie des applications n’ayant pas encore démarré. Par
conséquent, si vous utilisez cette méthode sans filtrer les résultats, vous
obtiendrez toutes les versions des modèles de processus indépendamment de
l’état dans lequel ils se trouvent.
// current timestamp in UTC format, converted to yyyy-mm-ddThh:mm:ss
String now = (new UTCDate()).toXsdString();
String whereClause = "PROCESS_TEMPLATE.STATE =

PROCESS_TEMPLATE.STATE.STATE_STARTED AND
PROCESS_TEMPLATE.VALID_FROM =
(SELECT MAX(VALID_FROM) FROM PROCESS_TEMPLATE
WHERE NAME=PROCESS_TEMPLATE.NAME AND
VALID_FROM <= TS('" + now + "'))";

ProcessTemplateData[] processTemplates = process.queryProcessTemplates
(whereClause,

"PROCESS_TEMPLATE.NAME",
(Entier)null, (FuseauHoraire)null);

Les résultats sont triés par nom de modèle de processus.
2. Créez la liste des modèles de processus et celle des activités de démarrage pour

lesquelles l’utilisateur est autorisé.
La liste des modèles de processus contient les modèles de processus ayant une
activité de démarrage unique. Soit ces activités sont non protégées, soit
l’utilisateur connecté est autorisé à les démarrer. Sinon, vous pouvez regrouper
les modèles de processus qui peuvent être démarrés par au moins une activité
de démarrage.

Conseil : Un administrateur de processus peut également créer une instance de
processus. Pour obtenir la liste complète des modèles, vous devez aussi lire le
modèle de tâche d’administration qui est associé au modèle de processus, puis
vérifier si l’utilisateur est connecté en tant qu’administrateur.
List authorizedProcessTemplates = new ArrayList();
List authorizedActivityServiceTemplates = new ArrayList();

3. Déterminez les activités de démarrage pour chacun des modèles de processus.
for(int i=0; i<processTemplates.length; i++)
{

ProcessTemplateData template = processTemplates[i];
ActivityServiceTemplateData[] startActivities =

process.getStartActivities(template.getID());

4. Pour chaque activité de démarrage, récupérez l’ID du modèle de tâche d’appel
en ligne associé.
for(int j=0; j<startActivities.length; j++)
{

ActivityServiceTemplateData activity = startActivities[j];
TKTID tktid = activity.getTaskTemplateID();

a. Si un modèle de tâche d’appel n’existe pas, cela signifie que le modèle de
processus n’est pas sécurisé par cette activité de démarrage.
Dans pareil cas, tout utilisateur peut créer une instance de processus à l’aide
de cette activité de démarrage.
boolean isAuthorized = false;

if (tktid == null)
{

isAuthorized = true;
authorizedActivityServiceTemplates.add(activity);

}

b. Si un modèle de tâche d’appel existe, utilisez l’API de Human Task
Manager pour vérifier les autorisations dont dispose l’utilisateur connecté.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 353

Dans l’exemple, l’utilisateur connecté s’appelle Smith. Il est impératif que
l’utilisateur connecté soit un démarreur potentiel de la tâche d’appel ou un
administrateur.
if (tktid != null)

{
isAuthorized =

task.isUserInRole
(tkid, "Smith", WorkItem.REASON_POTENTIAL_STARTER) ||

task.isUserInRole(tktid, "Smith", WorkItem.REASON_ADMINISTRATOR);

if (isAuthorized)
{

authorizedActivityServiceTemplates.add(activity);
}

}

Si l’utilisateur correspond au rôle indiqué ou si les critères d’affectation des
utilisateurs pour ce rôle ne sont pas définis, la méthode isUserInRole
renvoie la valeur true.

5. Vérifiez s’il est possible de démarrer le processus à l’aide du nom du modèle
de processus uniquement.
if (isAuthorized && startActivities.length == 1)

{
authorizedProcessTemplates.add(template);

}

6. Arrêtez les boucles.
} // end of loop for each activity service template

} // end of loop for each process template

Tâches associées

Développement d’applications pour les processus métier et les tâches utilisateur
La plupart des scénarios de processus métier nécessitent la participation de
personnes. Par exemple, un processus métier nécessite une interaction humaine
lorsque le processus est démarré ou géré ou lorsque des activités humaines sont
effectuées. Pour supporter de tels scénarios, vous devez utiliser à la fois l’API de
Business Flow Manager et l’API de Human Task Manager.

Traitement par une seule personne d’un flux de travaux
contenant des tâches utilisateur
Certains flux de travaux sont exécutés par une seule personne, par exemple une
commande d’ouvrages sur une librairie en ligne. Cet exemple démontre comment
implémenter sous forme d’une série d’activités humaines (tâches à effectuer) la
séquence d’actions nécessaires pour commander un livre. Les API de Business
Flow Manager et Human Task Manager sont toutes les deux utilisées pour traiter
le flux de travaux.

A propos de cette tâche

Dans une librairie en ligne, l’acheteur accomplit une série d’actions afin de
commander un ouvrage. Cette séquence d’actions peut être implémentée comme
une série d’activités humaines (tâches à accomplir). Si l’acheteur décide de
commander plusieurs livres, cela équivaut à réclamer l’activité humaine suivante.
Les informations sur la séquence de tâches sont gérées par le Business Flow
Manager, alors que les tâches elles-mêmes sont gérées par le Human Task
Manager.

Comparez cet exemple avec celui qui utilise uniquement l’API de Business Flow
Manager.

354 Développement et déploiement

Procédure

1. Utilisez l’API de Business Flow Manager pour accéder à l’instance de processus
que vous voulez traiter.
Dans cet exemple, il s’agit d’une instance du processus CustomerOrder.
ProcessInstanceData processInstance =

process.getProcessInstance("CustomerOrder");
String piid = processInstance.getID().toString();

2. Utilisez l’API de Human Task Manager pour interroger les tâches à effectuer
prêtes (de type tâche de participation) qui font partie de l’instance de processus
indiquée.
Utilisez l’ID de contexte de confinement de la tâche pour spécifier l’instance du
processus de confinement. Pour un flux de travaux exécuté par une seule
personne, la requête renvoie la tâche à effectuer qui est associée à la première
activité manuelle dans la séquence d’activités manuelles.
//
// Query the list of to-do tasks that can be claimed by the logged-on user
// for the specified process instance
//
QueryResultSet result =

task.query("DISTINCT TASK.TKIID",
"TASK.CONTAINMENT_CTX_ID = ID('" + piid + "') AND
TASK.STATE = TASK.STATE.STATE_READY AND
TASK.KIND = TASK.KIND.KIND_PARTICIPATING AND
WORK_ITEM.REASON=WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

(String)null, (Integer)null, (TimeZone)null);

3. Réclamez la tâche à effectuer qui est renvoyée.
if (result.size() > 0)
{
result.first();
TKIID tkiid = (TKIID) result.getOID(1);
ClientObjectWrapper input = task.claim(tkiid);
DataObject activityInput = null ;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

taskInput = (DataObject)input.getObject();
// read the values
...

}
}

Une fois la tâche réclamée, le message d’entrée de la tâche est renvoyé.
4. Déterminez l’activité humaine qui est associée à la tâche à effectuer.

Pour établir une corrélation entre les activités et les tâches correspondantes,
vous pouvez utiliser l’une des méthodes suivantes.
v La méthode task.getActivityID :

AIID aiid = task.getActivityID(tkiid);

v L’ID de contexte parent qui fait partie de l’objet tâche :
AIID aiid = null;
Task taskInstance = task.getTask(tkiid);

OID oid = taskInstance.getParentContextID();
if (oid != null and oid instanceof AIID)
{

aiid = (AIID)oid;
}

5. Lorsque vous avez terminé de traiter la tâche, utilisez l’API de Business Flow
Manager pour terminer la tâche ainsi que l’activité humaine qui lui est associée,
puis réclamez l’activité humaine suivante dans l’instance de processus.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 355

Pour terminer l’activité humaine, un message de sortie est transmis. Lorsque
vous créez le message de sortie, vous devez spécifier le nom de son type de
message de manière à ce qu’il contienne la définition du message.
ActivityInstanceData activity = process.getActivityInstance(aiid);
ClientObjectWrapper output =

process.createMessage(aiid, activity.getOutputMessageTypeName());
DataObject myMessage = null ;
if (output.getObject()!= null && output.getObject() instanceof DataObject)
{

myMessage = (DataObject)output.getObject();
//set the parts in your message, for example, an order number
myMessage.setInt("OrderNo", 4711);

}

//complete the human task activity and its associated to-do task,
// and claim the next human task activity
CompleteAndClaimSuccessorResult successor =

process.completeAndClaimSuccessor(aiid, output);

Cette opération définit un message de sortie contenant le numéro de
commande et réclame l’activité humaine suivante de la séquence. Si AutoClaim
est défini pour les activités de succession et que plusieurs chemins d’accès
peuvent être utilisés, toutes les activités de succession sont réclamées et une
activité aléatoire est renvoyée en tant qu’activité suivante. Si aucune activité de
succession supplémentaire ne peut être affectée à cet utilisateur, la valeur Null
est renvoyée.
Si le processus contient des chemins parallèles pouvant être suivis, que ces
chemins contiennent des activités humaines et que l’utilisateur connecté est le
propriétaire potentiel de plusieurs de ces activités, une activité aléatoire est
automatiquement réclamée et renvoyée comme activité suivante.

6. Exécutez l’activité humaine suivante.
ClientObjectWrapper nextInput = successor.getInputMessage();
if (nextInput.getObject()!=

null && nextInput.getObject() instanceof DataObject)
{

activityInput = (DataObject)input.getObject();
// read the values
...

}

aiid = successor.getAIID();

7. Passez à l’étape 5 afin de terminer l’activité humaine et de récupérer l’activité
humaine suivante.

356 Développement et déploiement

Tâches associées

Développement d’applications pour les processus métier et les tâches utilisateur
La plupart des scénarios de processus métier nécessitent la participation de
personnes. Par exemple, un processus métier nécessite une interaction humaine
lorsque le processus est démarré ou géré ou lorsque des activités humaines sont
effectuées. Pour supporter de tels scénarios, vous devez utiliser à la fois l’API de
Business Flow Manager et l’API de Human Task Manager.
Traitement d’un flux de travaux par une seule personne
Certains flux de travaux sont exécutés par une seule personne, par exemple une
commande d’ouvrages sur une librairie en ligne. Ce type de flux de travaux ne
comporte pas de chemins d’accès parallèles. L’API completeAndClaimSuccessor
prend en charge le traitement de ce type de flux de travaux.

Gestion des exceptions et des erreurs
Un processus BPEL peut rencontrer une erreur à différents points du processus.

A propos de cette tâche

Les erreurs BPEL (Business Process Execution Language) proviennent des éléments
suivants :
v Appels de service Web (erreurs WSDL (Web Services Description Language))
v Activités d’émission
v Erreurs standard BPEL reconnues par Business Process Choreographer

Il existe des mécanismes pour gérer ces erreurs : Pour résoudre les erreurs liées à
une instance de processus, utilisez l’un des mécanismes suivants :
v Transférez le contrôle aux gestionnaires d’erreur correspondants
v Effectuez une compensation du travail précédent du processus
v Arrêtez le processus afin de laisser quelqu’un d’autre remédier à la situation

(forcer la nouvelle tentative, forcer à terminer)

Un processus BPEL peut également renvoyer des erreurs à l’appelant d’une
opération fournie par le processus. Vous pouvez modéliser l’erreur dans le
processus sous forme d’activité de réponse avec un nom d’erreur et des données
d’erreur. Ces erreurs sont renvoyées à l’appelant API sous forme d’exceptions
vérifiées.

Si un processus BPEL ne gère pas d’erreurs BPEL ou si une exception API survient,
une exception d’exécution est renvoyée à l’appelant de l’API. Par exemple, une
exception API est lancée lorsque le modèle de processus à partir duquel une
instance doit être créée n’existe pas.

La gestion des erreurs et des exceptions est décrite dans les tâches suivantes.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 357

Tâches associées

Développement d’applications client EJB pour des processus métier et des tâches
utilisateur
Les API EJB fournissent un ensemble de méthodes génériques pour le
développement d’applications client EJB permettant d’utiliser des processus métier
et des tâches utilisateur installées sur WebSphere Process Server.
Gestion des exceptions de l’API EJB de Business Process Choreographer
Si une méthode de l’interface BusinessFlowManagerService ou
HumanTaskManagerService ne se termine pas correctement, une exception est
générée, indiquant la cause de l’erreur. Vous pouvez gérer cette exception de
manière spécifique pour guider l’appelant.
Vérification de l’erreur définie pour une activité de tâche utilisateur
Lorsqu’une activité de tâche utilisateur est traitée, elle peut s’exécuter
correctement. Dans ce cas, vous pouvez transmettre un message de sortie. Si
l’activité de tâche utilisateur ne se termine pas correctement, vous pouvez
transmettre un message d’erreur.
Vérification d’une erreur survenue lors d’une activité d’appel arrêtée
Dans un processus conçu de façon appropriée, les exceptions et les erreurs sont
généralement gérées par des gestionnaires d’erreur. Vous pouvez extraire les
informations relatives à l’exception ou à l’erreur qui s’est produite pour une
activité d’appel provenant de l’instance d’activité.
Vérification de l’erreur ou de l’exception non gérée survenue lors de l’échec d’une
instance de processus
Dans un processus conçu de façon appropriée, les exceptions et les erreurs sont
généralement gérées par un gestionnaire d’erreur. Si le processus implémente une
opération bi-directionnelle, vous pouvez extraire des informations sur une erreur
ou une exception gérée à partir de la propriété du nom de l’erreur de l’objet de
l’instance de processus. Pour les erreurs, vous pouvez également extraire le
message d’erreur correspondant à l’aide de l’API getFaultMessage.

Gestion des exceptions de l’API EJB de Business Process
Choreographer
Si une méthode de l’interface BusinessFlowManagerService ou
HumanTaskManagerService ne se termine pas correctement, une exception est
générée, indiquant la cause de l’erreur. Vous pouvez gérer cette exception de
manière spécifique pour guider l’appelant.

A propos de cette tâche

Cependant, il est de coutume de gérer uniquement un sous-ensemble des
exceptions de manière spécifique et de fournir un guide général pour les autres
exceptions potentielles. Toutes les exceptions spécifiques héritent d’une classe
générique ProcessException ou TaskException. Interceptez les exceptions
génériques avec une instruction finale catch(ProcessException) ou
catch(TaskException). Cette instruction permet de veiller à la compatibilité
ascendante de votre programme d’application car elle prend en compte toutes les
autres exceptions qui peuvent survenir.

358 Développement et déploiement

Tâches associées

Gestion des exceptions et des erreurs
Un processus BPEL peut rencontrer une erreur à différents points du processus.

Vérification de l’erreur définie pour une activité de tâche
utilisateur
Lorsqu’une activité de tâche utilisateur est traitée, elle peut s’exécuter
correctement. Dans ce cas, vous pouvez transmettre un message de sortie. Si
l’activité de tâche utilisateur ne se termine pas correctement, vous pouvez
transmettre un message d’erreur.

A propos de cette tâche

Vous pouvez lire le message d’erreur pour déterminer la cause de l’erreur.

Procédure

1. Répertoriez les activités de tâche se trouvant à l’état d’échec ou arrêté.
QueryResultSet result =

process.query("ACTIVITY.AIID",
"(ACTIVITY.STATE = ACTIVITY.STATE.STATE_FAILED OR

ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED) AND
ACTIVITY.KIND=ACTIVITY.KIND.KIND_STAFF",
(String)null, (Integer)null, (TimeZone)null);

Cette opération renvoie un ensemble de résultats de requête contenant des
activités en échec ou arrêtées.

2. Lisez le nom de l’erreur.
if (result.size() > 0)
{

result.first();
AIID aiid = (AIID) result.getOID(1);
ClientObjectWrapper faultMessage = process.getFaultMessage(aiid);
DataObject fault = null ;
if (faultMessage.getObject() != null && faultMessage.getObject() instanceof DataObject)
{

fault = (DataObject)faultMessage.getObject();
Type type = fault.getType();
String name = type.getName();
String uri = type.getURI();

}
}

Cela renvoie le nom de l’erreur. Vous pouvez aussi analyser l’exception non
prise en charge d’une activité arrêtée au lieu d’extraire le nom de l’erreur.

Tâches associées

Gestion des exceptions et des erreurs
Un processus BPEL peut rencontrer une erreur à différents points du processus.

Vérification d’une erreur survenue lors d’une activité d’appel
arrêtée
Dans un processus conçu de façon appropriée, les exceptions et les erreurs sont
généralement gérées par des gestionnaires d’erreur. Vous pouvez extraire les
informations relatives à l’exception ou à l’erreur qui s’est produite pour une
activité d’appel provenant de l’instance d’activité.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 359

A propos de cette tâche

Si une activité entraîne une erreur, le type d’erreur détermine les actions que vous
pouvez effectuer pour réparer l’activité.

Procédure

1. Répertoriez les activités humaines qui sont en état arrêté.
QueryResultSet result =

process.query("ACTIVITY.AIID",
"ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND
ACTIVITY.KIND=ACTIVITY.KIND.KIND_INVOKE",
(String)null, (Integer)null, (TimeZone)null);

Cette opération renvoie un ensemble de résultats de requête contenant des
activités d’appel arrêtées.

2. Lisez le nom de l’erreur.
if (result.size() > 0)
{

result.first();
AIID aiid = (AIID) result.getOID(1);
ActivityInstanceData activity = process.getActivityInstance(aiid);

ProcessException excp = activity.getUnhandledException();
if (excp instanceof ApplicationFaultException)
{
ApplicationFaultException fault = (ApplicationFaultException)excp;
String faultName = fault.getFaultName();
}

}

Tâches associées

Gestion des exceptions et des erreurs
Un processus BPEL peut rencontrer une erreur à différents points du processus.

Vérification de l’erreur ou de l’exception non gérée survenue lors
de l’échec d’une instance de processus
Dans un processus conçu de façon appropriée, les exceptions et les erreurs sont
généralement gérées par un gestionnaire d’erreur. Si le processus implémente une
opération bi-directionnelle, vous pouvez extraire des informations sur une erreur
ou une exception gérée à partir de la propriété du nom de l’erreur de l’objet de
l’instance de processus. Pour les erreurs, vous pouvez également extraire le
message d’erreur correspondant à l’aide de l’API getFaultMessage.

A propos de cette tâche

Si une instance de processus échoue parce qu’une exception n’est pas gérée par
l’un des gestionnaire d’erreur, vous pouvez extraire des informations sur
l’exception non gérée à partir de l’objet de l’instance de processus. En revanche, si
une erreur est interceptée par un gestionnaire d’erreur, les informations sur l’erreur
ne sont pas disponibles. Vous pouvez, cependant, extraire le message et le nom de
l’erreur et les renvoyer à l’appelant à l’aide de l’exception FaultReplyException.

Procédure

1. Répertoriez les instances de processus présentant l’état Echoué.
QueryResultSet result =

process.query("PROCESS_INSTANCE.PIID",
"PROCESS_INSTANCE.STATE =

PROCESS_INSTANCE.STATE.STATE_FAILED",
(String)null, (Integer)null, (TimeZone)null);

360 Développement et déploiement

Cette opération renvoie un ensemble de résultats de requête contenant les
instances de processus ayant échoué.

2. Prenez connaissances des informations concernant l’exception non gérée.
if (result.size() > 0)
{

result.first();
PIID piid = (PIID) result.getOID(1);
ProcessInstanceData pInstance = process.getProcessInstance(piid);

ProcessException excp = pInstance.getUnhandledException();
if (excp instanceof RuntimeFaultException)
{
RuntimeFaultException xcp = (RuntimeFaultException)excp;
Throwable cause = xcp.getRootCause();
}
else if (excp instanceof StandardFaultException)
{
StandardFaultException xcp = (StandardFaultException)excp;
String faultName = xcp.getFaultName();
}
else if (excp instanceof ApplicationFaultException)
{
ApplicationFaultException xcp = (ApplicationFaultException)excp;
String faultName = xcp.getFaultName();
}

}

Résultats

Utilisez ces informations pour rechercher le nom de l’erreur ou la cause principale
du problème.
Tâches associées

Gestion des exceptions et des erreurs
Un processus BPEL peut rencontrer une erreur à différents points du processus.

Développement d’applications API de service Web
Vous pouvez développer des applications client accédant à des applications de
processus métier et de tâches utilisateur via des API de services Web.

A propos de cette tâche

Vous pouvez développer des applications client dans n’importe quel
environnement client de service Web, y compris les services Web Java et Microsoft
.NET.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 361

Concepts associés

Copie d’artefacts
Un certain nombre doivent être copiés depuis l’environnement WebSphere afin de
créer des applications client.
Développement d’applications client dans l’environnement de services Web Java
Vous pouvez utiliser n’importe quel environnement de développement Java
compatible avec les services Web Java pour développer des applications client
destinées aux API de service Web.
Développement d’applications client dans l’environnement .NET
Microsoft .NET offre un puissant environnement de développement permettant de
connecter des applications via des services Web.
Composants de service Web et séquence de contrôle
Un certain nombre de composants côté client et côté serveur font partie de la
séquence de contrôle qui représente une requête et une réponse de service Web.
Présentation des API des services Web
Les API des services Web permettent de développer des applications client qui
accèdent aux processus métier et aux tâches utilisateur s’exécutant en
environnement Business Process Choreographer à l’aide de services Web.
Comparaison entre les interfaces de programmation visant à interagir avec les
processus métier et les tâches utilisateur
Des interfaces de programmation génériques EJB (Enterprise JavaBeans), JMS (Java
Message Service), REST (Representational State Transfer Services) ainsi que des
interfaces de programmation de services Web sont disponibles pour la création
d’applications client interagissant avec des processus métier et des tâches
utilisateur. Chacune de ces interfaces présente des caractéristiques différentes.
Tâches associées

Développement d’applications client pour les tâches et processus métier
Vous pouvez utiliser un outil de modélisation pour compiler et déployer des tâches
et des processus métier. L’interaction avec ces processus et ces tâches se produit
lors de l’exécution. Par exemple, un processus est lancé ou les tâches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des tâches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.
Développement d’applications client
Le processus de développement d’applications client comprend un certain nombre
d’étapes.
Requêtes sur des objets liés aux processus métier et aux tâches
Vous pouvez utiliser les API de services Web pour effectuer des requêtes de
données sur les objets liés aux processus métier et aux tâches dans la base de
données Business Process Choreographer, afin d’extraire les propriétés spécifiques
de ces objets.

Composants de service Web et séquence de contrôle
Un certain nombre de composants côté client et côté serveur font partie de la
séquence de contrôle qui représente une requête et une réponse de service Web.

Une séquence de contrôle typique se présente comme suit.
1. Côté client :

a. Une application client (fournie par l’utilisateur) émet une requête de service
Web.

362 Développement et déploiement

b. Un client proxy (également fourni par l’utilisateur, mais pouvant être généré
automatiquement par des utilitaires côté client) encapsule la requête de
service dans une enveloppe de requête SOAP.

c. L’infrastructure de développement côté client réachemine la requête vers
une adresse URL définie en tant que noeud final du service Web.

2. Le réseau transmet la requête au noeud final de service Web via le protocole
HTTP ou HTTPS.

3. Côté serveur :
a. L’API de service Web générique reçoit la requête et la décode.
b. La requête est soit gérée directement par les composants génériques

Business Flow Manager ou Human Task Manager, soit transmise au
processus métier ou à la tâche utilisateur spécifiés.

c. Les données renvoyées sont encapsulées dans une enveloppe de réponse
SOAP.

4. Le réseau transmet la réponse à l’environnement côté-client via le protocole
HTTP ou HTTPS.

5. De retour côté client :
a. L’infrastructure de développement côté client décode l’enveloppe de

réponse SOAP.
b. Le client proxy extrait les données de la réponse SOAP et les transmet à

l’application client.
c. L’application client traite les données renvoyées selon les nécessités.

Tâches associées

Développement d’applications API de service Web
Vous pouvez développer des applications client accédant à des applications de
processus métier et de tâches utilisateur via des API de services Web.

Présentation des API des services Web
Les API des services Web permettent de développer des applications client qui
accèdent aux processus métier et aux tâches utilisateur s’exécutant en
environnement Business Process Choreographer à l’aide de services Web.

L’API des services Web Business Process Choreographer dispose de deux interfaces
de services Web distinctes (types de port WSDL) :
v API Business Flow Manager. Elle permet aux applications client d’avoir une

interaction avec des microflux et des processus longue durée, par exemple :
– Créer des modèles et des instances de processus
– Réclamer des processus existants
– Rechercher un processus à partir de son ID
Pour consulter la liste complète des actions possibles, voir «Développement
d’applications pour les processus métier», à la page 301.

v API Human Task Manager. Elle permet aux applications client d’effectuer les
opérations suivantes :
– Créer et lancer des tâches
– Réclamer des tâches existantes
– Exécuter des tâches
– Rechercher une tâche à partir de son ID
– Rechercher un ensemble de tâches.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 363

Pour consulter la liste complète des actions possibles, voir «Développement
d’applications pour des tâches utilisateur», à la page 328.

Les applications client peuvent utiliser l’une des interfaces de service Web ou les
deux.

Exemple

La structure suivante peut convenir pour une application client qui accède à l’API
du service Web Human Task Manager afin de traiter une tâche utilisateur de
participation :
1. L’application client envoie un appel de service Web query au serveur

WebSphere Process Server demandant la liste des tâches de participation sur
lesquelles un utilisateur devra travailler.

2. La liste des tâches de participation est renvoyée dans une enveloppe de
réponse SOAP/HTTP.

3. L’application client envoie alors un appel de service Web claim pour demander
l’une des tâches de participation.

4. WebSphere Process Server renvoie le message d’entrée de la tâche.
5. L’application client envoie un appel de service Web complete pour achever la

tâche par un message de sortie ou d’erreur.
Tâches associées

Développement d’applications API de service Web
Vous pouvez développer des applications client accédant à des applications de
processus métier et de tâches utilisateur via des API de services Web.

Exigences en termes de processus métier et de tâches
utilisateur

Les processus métier et les tâches utilisateur développés au moyen de WebSphere
Integration Developer pour être exécutés dans l’application Business Process
Choreographer doivent être conformes à des règles spécifiques afin d’être
accessibles via les API de services Web.

Les exigences sont les suivantes :
1. Les interfaces des processus métier et des tâches utilisateur doivent être

définies à l’aide du style ″document/literal wrapped″ défini dans l’API Java
pour la spécification XML-RPC (JAX-RPC 1.1). Il s’agit du style par défaut
défini pour l’ensemble des processus métier et des tâches utilisateur développés
avec l’ID de poste de travail.

2. Les messages d’erreur accessibles aux processus métier et aux tâches utilisateur
des opérations de service Web doivent comprendre un seul composant de
message WSDL défini au moyen d’un élément de schéma XML. Par exemple :
<wsdl:part name="myFault" element="myNamespace:myFaultElement"/>

Information associée

Page de téléchargement d’API Java pour XML-RPC (JAX-RPC)

Quel style de langage WSDL dois-je utiliser ?

Développement d’applications client
Le processus de développement d’applications client comprend un certain nombre
d’étapes.

364 Développement et déploiement

http://java.sun.com/xml/downloads/jaxrpc.html
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/

Procédure

1. Décidez quelle API de services Web votre application client doit utiliser : l’API
de Business Flow Manager, l’API de Human Task Manager ou les deux.

2. Exportez les fichiers nécessaires depuis l’environnement de WebSphere Process
Server. Vous pouvez également copier les fichiers depuis le CD client
WebSphere Process Server.

3. Dans l’environnement de développement d’applications client que vous avez
sélectionné, générez un client proxy à l’aide des artefacts exportés.

4. Facultatif : Générez des classes auxiliaires. Les classes auxiliaires sont requises si
votre application client interagit directement avec des tâches ou des processus
concrets présents sur le serveur WebSphere. Elles ne sont toutefois pas
obligatoires si votre application client est uniquement destinée à exécuter des
tâches génériques telles que l’émission de requêtes.

5. Développez le code de votre application client.
6. Ajoutez les mécanismes de sécurité nécessaires à votre application client.
Tâches associées

Développement d’applications API de service Web
Vous pouvez développer des applications client accédant à des applications de
processus métier et de tâches utilisateur via des API de services Web.

Copie d’artefacts
Un certain nombre doivent être copiés depuis l’environnement WebSphere afin de
créer des applications client.

Deux méthodes permettent d’obtenir ces artefacts :
v Publiez et exportez-les depuis l’environnement WebSphere Process Server.
v Copiez les fichiers depuis le CD client WebSphere Process Server.
Concepts associés

Utilisation de fichiers sur le CD du client
Une solution alternative visant à exporter des artefacts depuis l’environnement du
serveur WebSphere consiste à copier les fichiers requis pour la génération d’une
application client à partir du CD du client WebSphere Process Server.
Tâches associées

Développement d’applications API de service Web
Vous pouvez développer des applications client accédant à des applications de
processus métier et de tâches utilisateur via des API de services Web.
Publication et exportation d’artefacts depuis l’environnement de serveurs
Avant d’être en mesure de développer des applications client pour accéder aux API
de services Web, vous devez publier et exporter un certain nombre d’artefacts à
partir de l’environnement de serveurs WebSphere.

Publication et exportation d’artefacts depuis l’environnement de
serveurs
Avant d’être en mesure de développer des applications client pour accéder aux API
de services Web, vous devez publier et exporter un certain nombre d’artefacts à
partir de l’environnement de serveurs WebSphere.

A propos de cette tâche

Les artefacts à exporter sont les suivants :
v Fichiers WSDL (Web Service Definition Language) décrivant les types de port et

les opérations qui génèrent les API de services Web.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 365

v Fichiers XSD (XML Schema Definition) contenant des définitions de types de
données référencés par des services et des méthodes dans les fichiers WSDL.

v Fichiers XSD et WSDL supplémentaires décrivant des objets métier. Les objets
métier décrivent des tâches utilisateur ou des processus métier concrets
s’exécutant sur le serveur WebSphere. Ces fichiers supplémentaires sont requis
uniquement si votre application client doit interagir directement avec les tâches
utilisateur ou les processus métier concrets via les API de services Web. Ils ne
sont pas nécessaires si votre application client est uniquement destinée à
exécuter des tâches génériques, tels que l’émission de requêtes.

Une fois ces artefacts publiés, vous devez les copier dans votre environnement de
programmation client, dans lequel ils sont utilisés pour générer un client proxy et
des classes auxiliaires.
Concepts associés

Copie d’artefacts
Un certain nombre doivent être copiés depuis l’environnement WebSphere afin de
créer des applications client.
Tâches associées

Spécification de l’adresse du noeud final de service Web
L’adresse du noeud final de service Web est l’adresse URL qu’une application
client doit spécifier pour accéder aux API de services Web. L’adresse du noeud
final est inscrite dans le fichier WSDL que vous exportez pour générer un client
proxy pour votre application client.
Publication des fichiers WSDL
Un fichier WSDL (Web Service Definition Language) contient la description
détaillée de toutes les opérations accessibles avec une API de services Web. Des
fichiers WSDL séparés sont disponibles pour les API de services Web Business
Flow Manager et Human Task Manager. Vous devez d’abord publier ces fichiers
WSDL, puis les copier de l’environnement WebSphere vers votre environnement de
développement, où ils serviront à générer un client proxy.
Exportation des objets métier
Les processus métier et les tâches utilisateur disposent d’interfaces bien définies les
rendant accessibles depuis l’extérieur en tant que services Web. Si ces interfaces
font référence à des objets métier, vous devez exporter les définitions d’interface et
les objets métier vers votre environnement de programmation client.

Spécification de l’adresse du noeud final de service Web :

L’adresse du noeud final de service Web est l’adresse URL qu’une application
client doit spécifier pour accéder aux API de services Web. L’adresse du noeud
final est inscrite dans le fichier WSDL que vous exportez pour générer un client
proxy pour votre application client.

A propos de cette tâche

L’adresse du noeud final de service Web à utiliser dépend de la configuration de
votre serveur WebSphere :
v Scénario 1. Un seul serveur WebSphere. L’adresse du noeud final WebSphere à

spécifier est le nom d’hôte et le numéro de port du serveur, par exemple
host1:9080.

v Scénario 2 : Un cluster WebSphere est composé de plusieurs serveurs. L’adresse
du noeud final WebSphere à spécifier est le nom d’hôte et le numéro de port du
serveur hébergeant les API de services Web, par exemple host2:9081.

366 Développement et déploiement

v Scénario 3 : Un serveur Web est configuré en tant que système frontal. L’adresse
du noeud final WebSphere à spécifier est le nom d’hôte et le numéro de port du
serveur Web, par exemple : host:80.

Par défaut, l’adresse du noeud final de service Web adopte le format
protocole://hôte:port/racine_contexte/chemin d’accès fixe. Où :
v protocole. Protocole de communication utilisé entre l’application client et le

serveur WebSphere. Le protocole par défaut est HTTP. Vous pouvez également
utiliser le protocole HTTPS (HTTP sur SSL), plus sécurisé. Il est recommandé
d’utiliser HTTPS.

v hôte:port. Nom d’hôte et numéro de port d’accès au système hébergeant les API
de service Web. Ces valeurs varient selon la configuration du serveur WebSphere
; si, par exemple, votre application client accède à l’application directement ou
par l’intermédiaire d’un serveur Web frontal.

v racine_contexte. Vous pouvez affecter n’importe quelle valeur à la racine de
contexte. La valeur choisie doit néanmoins être unique dans chaque cellule
WebSphere. La valeur par défaut utilise un suffixe ″node_server/cluster″ pour
éliminer les risques de conflit entre les noms.

v chemin_accès_fixe correspond à /sca/com/ibm/bpe/api/BFMWS (pour l’API de
Business Flow Manager) ou à /sca/com/ibm/task/api/HTMWS (pour l’API de
Human Task Manager) et ne peut pas être modifié.

L’adresse du noeud final de service Web est initialement spécifiée lors de la
configuration du conteneur de processus métier ou du conteneur de tâche
utilisateur :

Procédure

1. Connectez-vous à la console d’administration avec un ID utilisateur titulaire
des droits d’administrateur.

2. Sélectionnez Applications → Modules SCA.

Remarque : Vous pouvez également sélectionner Applications → Applications
d’entreprise pour afficher la liste de toutes les applications d’entreprise
disponibles.

3. Sélectionnez BPEContainer (pour le conteneur de processus métier) ou
TaskContainer (pour le conteneur de tâches utilisateur) dans la liste des
modules ou applications SCA.

4. Sélectionnez l’option Fournir les informations URL du noeud final HTTP
(Fournir les informations URL du noeud final HTTP) dans la liste Propriétés
supplémentaires.

5. Sélectionnez l’un des préfixes par défaut dans la liste ou entrez un préfixe
personnalisé. Utilisez un préfixe issu de la liste de préfixes par défaut si vos
applications client doivent se connecter directement au serveur d’applications
hébergeant l’API de services Web. Sinon, indiquez un préfixe personnalisé.

6. Cliquez sur Appliquer pour copier le préfixe sélectionné dans le module SCA.
7. Cliquez sur OK. Les données URL sont sauvegardées dans votre espace de

travail.

Résultats

Vous pouvez afficher la valeur en cours dans la console d’administration (par
exemple pour le conteneur de processus métier : Applications d’entreprise →
BPEContainer → Afficher le descripteur de déploiement).

Chapitre 4. Développement d’applications client pour les tâches et processus métier 367

Dans le fichier WSDL exporté, l’attribut location de l’élément soap:address
contient l’adresse spécifiée pour le noeud final de services Web. Par exemple :
<wsdl:service name="BFMWSService">

<wsdl:port name="BFMWSPort" binding="this:BFMWSBinding">
<soap:address location="https://myserver:9080/WebServicesAPIs/sca/com/ibm/bpe/api/BFMWS"/>

Tâches associées

Publication et exportation d’artefacts depuis l’environnement de serveurs
Avant d’être en mesure de développer des applications client pour accéder aux API
de services Web, vous devez publier et exporter un certain nombre d’artefacts à
partir de l’environnement de serveurs WebSphere.

Publication des fichiers WSDL :

Un fichier WSDL (Web Service Definition Language) contient la description
détaillée de toutes les opérations accessibles avec une API de services Web. Des
fichiers WSDL séparés sont disponibles pour les API de services Web Business
Flow Manager et Human Task Manager. Vous devez d’abord publier ces fichiers
WSDL, puis les copier de l’environnement WebSphere vers votre environnement de
développement, où ils serviront à générer un client proxy.

Avant de commencer

Avant de publier les fichiers, assurez-vous que l’adresse du noeud final de services
Web correcte est spécifiée. Il s’agit de l’adresse URL qu’une application client
utilise pour accéder aux API de services Web.

A propos de cette tâche

La publication des fichiers WSDL n’est nécessaire qu’une fois.

Remarque : Si vous disposez du CD client WebSphere Process Server, vous pouvez
copier les fichiers directement depuis cet emplacement vers votre environnement
de programmation client.
Tâches associées

Publication et exportation d’artefacts depuis l’environnement de serveurs
Avant d’être en mesure de développer des applications client pour accéder aux API
de services Web, vous devez publier et exporter un certain nombre d’artefacts à
partir de l’environnement de serveurs WebSphere.
Publication du WSDL des processus métier
La console d’administration permet de publier le fichier WSDL.
Publication du WSDL des tâches utilisateur
La console d’administration permet de publier le fichier WSDL.

Publication du WSDL des processus métier :

La console d’administration permet de publier le fichier WSDL.

Procédure

1. Connectez-vous à la console d’administration avec un ID utilisateur titulaire
des droits d’administrateur.

2. Sélectionnez Applications → Modules SCA

368 Développement et déploiement

Remarque : Vous pouvez également sélectionner Applications → Applications
d’entreprise pour afficher la liste de toutes les applications d’entreprise
disponibles.

3. Choisissez l’application BPEContainer dans la liste des applications ou
modules SCA.

4. Sélectionnez l’option Publier des fichiers WSDL dans la liste des Propriétés
supplémentaires

5. Cliquez sur le fichier zip dans la liste.
6. Dans la fenêtre de téléchargement de fichiers qui s’affiche, cliquez sur

Enregistrer.
7. Accédez à un dossier local et cliquez sur Enregistrer.

Résultats

Le fichier zip exporté est nommé BPEContainer_WSDLFiles.zip. Il contient un
fichier WSDL qui décrit les services Web, ainsi que tous les fichiers XSD référencés
dans le fichier WSDL.
Tâches associées

Publication des fichiers WSDL
Un fichier WSDL (Web Service Definition Language) contient la description
détaillée de toutes les opérations accessibles avec une API de services Web. Des
fichiers WSDL séparés sont disponibles pour les API de services Web Business
Flow Manager et Human Task Manager. Vous devez d’abord publier ces fichiers
WSDL, puis les copier de l’environnement WebSphere vers votre environnement de
développement, où ils serviront à générer un client proxy.

Publication du WSDL des tâches utilisateur :

La console d’administration permet de publier le fichier WSDL.

Procédure

1. Connectez-vous à la console d’administration avec un ID utilisateur titulaire
des droits d’administrateur.

2. Sélectionnez Applications → Modules SCA

Remarque : Vous pouvez également sélectionner Applications → Applications
d’entreprise pour afficher la liste de toutes les applications d’entreprise
disponibles.

3. Choisissez l’application TaskContainer dans la liste des applications ou
modules SCA.

4. Sélectionnez l’option Publier des fichiers WSDL dans la liste des Propriétés
supplémentaires

5. Cliquez sur le fichier zip dans la liste.
6. Dans la fenêtre de téléchargement de fichiers qui s’affiche, cliquez sur

Enregistrer.
7. Accédez à un dossier local et cliquez sur Enregistrer.

Résultats

Le fichier zip exporté est nommé TaskContainer_WSDLFiles.zip. Il contient un
fichier WSDL qui décrit les services Web, ainsi que tous les fichiers XSD référencés
dans le fichier WSDL.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 369

Tâches associées

Publication des fichiers WSDL
Un fichier WSDL (Web Service Definition Language) contient la description
détaillée de toutes les opérations accessibles avec une API de services Web. Des
fichiers WSDL séparés sont disponibles pour les API de services Web Business
Flow Manager et Human Task Manager. Vous devez d’abord publier ces fichiers
WSDL, puis les copier de l’environnement WebSphere vers votre environnement de
développement, où ils serviront à générer un client proxy.

Exportation des objets métier :

Les processus métier et les tâches utilisateur disposent d’interfaces bien définies les
rendant accessibles depuis l’extérieur en tant que services Web. Si ces interfaces
font référence à des objets métier, vous devez exporter les définitions d’interface et
les objets métier vers votre environnement de programmation client.

A propos de cette tâche

Cette procédure doit être répétée pour chaque objet métier avec lequel votre
application client entre en interaction.

Dans WebSphere Process Server, les objets métier définissent le format des
messages de requête, de réponse et d’erreur qui interagissent avec les processus
métier ou les tâches utilisateur. Ces messages peuvent également contenir les
définitions des types de données complexes.

Par exemple, pour créer et démarrer une tâche utilisateur, les éléments
d’information suivants doivent être transmis à l’instance de tâche :
v Le nom du modèle de tâche
v L’espace de nom du modèle de tâche.
v Un message d’entrée contenant les données métier mises en forme
v Un encapsuleur de réponse pour le renvoi du message de réponse
v Un message d’erreur pour le renvoi des erreurs et des exceptions

Ces éléments sont encapsulés dans un objet métier unique. Toutes les opérations de
l’interface du service Web sont modélisées sous forme d’opération
″document/littéral encapsulé″. Les paramètres d’entrée et de sortie relatifs à ces
opérations sont encapsulés dans des documents d’encapsulation. Les autres objets
métier définissent la réponse correspondante et les formats des messages d’erreur.

Pour permettre la création et le démarrage du processus métier ou de la tâche
utilisateur via un service Web, l’application client côté client doit pouvoir accéder à
ces objets d’encapsulation.

Cette configuration est réalisée en exportant les objets métier depuis
l’environnement WebSphere sous forme de fichiers WSDL (Web Service Definition
Language) et XSD (XML Schema Definition), en important les définitions des types
de données dans l’environnement de programmation client, puis en les
convertissant en classes auxiliaires en vue de leur utilisation par l’application
client.

Procédure

1. Lancez l’espace de travail WebSphere Integration Developer s’il n’est pas déjà
en cours d’exécution.

370 Développement et déploiement

2. Sélectionnez le module de bibliothèque contenant les objets métier à exporter.
Un module de bibliothèque est un fichier compressé contenant les objets métier
requis.

3. Exportez le module de bibliothèque.
4. Copiez les fichiers exportés vers votre environnement de développement

d’applications client.

Exemple

En supposant qu’un processus métier expose l’opération de service Web suivante :
<wsdl:operation name="updateCustomer">

<wsdl:input message="tns:updateCustomerRequestMsg" name="updateCustomerRequest"/>
<wsdl:output message="tns:updateCustomerResponseMsg" name="updateCustomerResponse"/>
<wsdl:fault message="tns:updateCustomerFaultMsg" name="updateCustomerFault"/>

</wsdl:operation>

avec les messages WSDL définis comme suit :
<wsdl:message name="updateCustomerRequestMsg">

<wsdl:part element="types:updateCustomer" name="updateCustomerParameters"/>
</wsdl:message>
<wsdl:message name="updateCustomerResponseMsg">

<wsdl:part element="types:updateCustomerResponse" name="updateCustomerResult"/>
</wsdl:message>
<wsdl:message name="updateCustomerFaultMsg">

<wsdl:part element="types:updateCustomerFault" name="updateCustomerFault"/>
</wsdl:message>

Les éléments concrets définis par l’utilisateur types:updateCustomer,
types:updateCustomerResponse et types:updateCustomerFault doivent être
transmis vers et depuis les API de services Web au moyen des paramètres
<xsd:any> dans toutes les opérations génériques (call, sendMessage etc.) exécutées
par l’application client. Ces éléments définis par le client sont créés, sérialisés et
désérialisés côté application client à l’aide des classes auxiliaires générées par les
fichiers XSD exportés.
Tâches associées

Publication et exportation d’artefacts depuis l’environnement de serveurs
Avant d’être en mesure de développer des applications client pour accéder aux API
de services Web, vous devez publier et exporter un certain nombre d’artefacts à
partir de l’environnement de serveurs WebSphere.

Utilisation de fichiers sur le CD du client
Une solution alternative visant à exporter des artefacts depuis l’environnement du
serveur WebSphere consiste à copier les fichiers requis pour la génération d’une
application client à partir du CD du client WebSphere Process Server.

Dans ce cas, vous devez modifier manuellement l’adresse de noeud final des
services Web par défaut des API Business Flow Manager API ou Human Task
Manager.

Si l’application client doit pouvoir accéder aux deux API, vous devez éditer
l’adresse de noeud final par défaut pour les deux API.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 371

Concepts associés

Copie d’artefacts
Un certain nombre doivent être copiés depuis l’environnement WebSphere afin de
créer des applications client.
Tâches associées

Copie de fichiers depuis le CD client
Les fichiers requis pour accéder aux API de services Web sont disponibles sur le
CD client WebSphere Process Server.
Changement manuel d’adresse du noeud final de service Web
Si vous copiez les fichiers depuis le CD-ROM du client, vous devez remplacer
l’adresse du noeud final du service Web spécifiée dans les fichiers WSDL par celle
du serveur hébergeant les API des services Web.

Copie de fichiers depuis le CD client :

Les fichiers requis pour accéder aux API de services Web sont disponibles sur le
CD client WebSphere Process Server.

Procédure

1. Accédez au CD client et au répertoire ProcessChoreographer\client.
2. Copiez les fichiers nécessaires à votre environnement de développement

d’applications client.
Pour l’API de Business Flow Manager, copiez :

BFMWS.wsdl
Décrit les services Web disponibles dans l’API de services Web Business
Flow Manager. Ce fichier contient l’adresse du noeud final.

BFMIF.wsdl
Décrit les paramètres et le type de données pour chaque service Web
dans l’API de services Web Business Flow Manager.

BFMIF.xsd
Décrit les types de données utilisés dans l’API de services Web
Business Flow Manager.

BPCGEN.xsd
Contient des types de données communs entre les API de services Web
Business Flow Manager et Human Task Manager.

Pour l’API de Human Task Manager, copiez :

HTMWS.wsdl
Décrit les services Web disponibles dans l’API de services Web Human
Task Manager. Ce fichier contient l’adresse du noeud final.

HTMIF.wsdl
Décrit les paramètres et le type de données pour chaque service Web
dans l’API de services Web Human Task Manager.

HTMIF.xsd
Décrit les types de données utilisés dans l’API de services Web Human
Task Manager.

BPCGEN.xsd
Contient des types de données communs entre les API de services Web
Business Flow Manager et Human Task Manager.

Remarque : Le fichier BPCGen.xsd est commun aux deux API.

372 Développement et déploiement

Que faire ensuite

Après avoir copié les fichiers, vous devez modifier manuellement l’adresse du
noeud final de l’API de services Web dans les fichiers BFMWS.wsdl ou
HTMWS.wsdl par celle du serveur d’applications WebSphere hébergeant les API
de services Web.
Concepts associés

Utilisation de fichiers sur le CD du client
Une solution alternative visant à exporter des artefacts depuis l’environnement du
serveur WebSphere consiste à copier les fichiers requis pour la génération d’une
application client à partir du CD du client WebSphere Process Server.

Changement manuel d’adresse du noeud final de service Web :

Si vous copiez les fichiers depuis le CD-ROM du client, vous devez remplacer
l’adresse du noeud final du service Web spécifiée dans les fichiers WSDL par celle
du serveur hébergeant les API des services Web.

A propos de cette tâche

Vous pouvez utiliser la console d’administration pour définir l’adresse du noeud
final de service Web avant d’exporter les fichiers WSDL. Si, toutefois, vous copiez
les fichiers WSDL depuis le CD-ROM du client WebSphere Process Server, vous
devez modifier manuellement l’adresse par défaut du noeud final de service Web.

L’adresse du noeud final de service Web à utiliser dépend de la configuration de
votre serveur WebSphere :
v Scénario 1 : Une instance unique du serveur WebSphere est configurée. L’adresse

du noeud final WebSphere à spécifier est le nom d’hôte et le numéro de port du
serveur, par exemple host1:9080.

v Scénario 2 : Un cluster WebSphere est composé de plusieurs serveurs. L’adresse
du noeud final WebSphere à spécifier est le nom d’hôte et le numéro de port du
serveur hébergeant les API de services Web, par exemple host2:9081.

v Scénario 3 : Un serveur Web est configuré en tant que système frontal. L’adresse
du noeud final WebSphere à spécifier est le nom d’hôte et le numéro de port du
serveur Web, par exemple : host:80.

Concepts associés

Utilisation de fichiers sur le CD du client
Une solution alternative visant à exporter des artefacts depuis l’environnement du
serveur WebSphere consiste à copier les fichiers requis pour la génération d’une
application client à partir du CD du client WebSphere Process Server.
Tâches associées

Modification du noeud final de l’API de Business Flow Manager
Si vous copiez les fichiers de l’API de Business Flow Manager depuis le CD-ROM
WebSphere Process Server, vous devez modifier manuellement l’adresse par défaut
du noeud final.
Modification du noeud final de l’API de Human Task Manager
Si vous copiez les fichiers de l’API de Human Task Manager depuis le CD-ROM
WebSphere Process Server, vous devez modifier manuellement l’adresse par défaut
du noeud final.

Modification du noeud final de l’API de Business Flow Manager :

Chapitre 4. Développement d’applications client pour les tâches et processus métier 373

Si vous copiez les fichiers de l’API de Business Flow Manager depuis le CD-ROM
WebSphere Process Server, vous devez modifier manuellement l’adresse par défaut
du noeud final.

Procédure

1. Accédez au répertoire contenant les fichiers copiés depuis le CD-ROM du
client.

2. Ouvrez le fichier BFMWS.wsdl dans un éditeur de texte ou un éditeur XML.
3. Localisez l’élément soap:address (vers la fin du fichier).
4. Remplacez la valeur de l’attribut location par l’URL HTTP du serveur sur

lequel l’API du service Web fonctionne. Pour cela :
a. Vous pouvez remplacer http par https afin d’utiliser le protocole HTTPS,

plus sécurisé.
b. Remplacez localhost par l’adresse IP ou le nom d’hôte associé à l’adresse de

noeud final du serveur de l’API des services Web.
c. Remplacez 9080 par le numéro de port du serveur d’applications.
d. Remplacez BPEContainer_N1_server1 par la racine de contexte de

l’application exécutant l’API des services Web. La racine de contexte par
défaut est composée comme suit :
v BPEContainer. Nom de l’application.
v N1. Nom du noeud.
v server1. Nom du serveur.

e. Ne modifiez pas la partie fixe de l’URL (/sca/com/ibm/bpe/api/BFMWS) .

Par exemple, si l’application s’exécute sur le serveur s1.n1.ibm.com et que le
serveur accepte les requêtes SOAP/HTTP au port 9080, modifiez l’élément
soap:address comme suit :
<soap:address location="http://si.n1.ibm.com:9080/

BPEContainer_N1_server1/sca/com/ibm/bpe/api/BFMWS"/>

Tâches associées

Changement manuel d’adresse du noeud final de service Web
Si vous copiez les fichiers depuis le CD-ROM du client, vous devez remplacer
l’adresse du noeud final du service Web spécifiée dans les fichiers WSDL par celle
du serveur hébergeant les API des services Web.

Modification du noeud final de l’API de Human Task Manager :

Si vous copiez les fichiers de l’API de Human Task Manager depuis le CD-ROM
WebSphere Process Server, vous devez modifier manuellement l’adresse par défaut
du noeud final.

Procédure

1. Accédez au répertoire contenant les fichiers copiés depuis le CD-ROM du
client.

2. Ouvrez le fichier HTMWS.wsdl dans un éditeur de texte ou un éditeur XML.
3. Localisez l’élément soap:address (vers la fin du fichier).
4. Remplacez la valeur de l’attribut location par l’adresse de noeud final correcte.

Pour cela :
a. Vous pouvez remplacer http par https afin d’utiliser le protocole HTTPS,

plus sécurisé.
b. Remplacez localhost par l’adresse IP ou le nom d’hôte associé à l’adresse de

noeud final du serveur de l’API des services Web.

374 Développement et déploiement

c. Remplacez 9080 par le numéro de port du serveur d’applications.
d. Remplacez HTMContainer_N1_server1 par la racine de contexte de

l’application exécutant l’API des services Web. La racine de contexte par
défaut est composée comme suit :
v HTMContainer. Nom de l’application.
v N1. Nom du noeud.
v server1. Nom du serveur.

e. Ne modifiez pas la partie fixe de l’URL (/sca/com/ibm/task/api/HTMWS).

Par exemple, si l’application s’exécute sur le serveur s1.n1.ibm.com et que le
serveur accepte les requêtes SOAP/HTTPS au port 9081, modifiez l’élément
soap:address comme suit :
<soap:address location="https://si.n1.ibm.com:9081/

HTMContainer_N1_server1/sca/com/ibm/task/api/HTMWS"/>

Tâches associées

Changement manuel d’adresse du noeud final de service Web
Si vous copiez les fichiers depuis le CD-ROM du client, vous devez remplacer
l’adresse du noeud final du service Web spécifiée dans les fichiers WSDL par celle
du serveur hébergeant les API des services Web.

Développement d’applications client dans l’environnement de
services Web Java

Vous pouvez utiliser n’importe quel environnement de développement Java
compatible avec les services Web Java pour développer des applications client
destinées aux API de service Web.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 375

Tâches associées

Développement d’applications API de service Web
Vous pouvez développer des applications client accédant à des applications de
processus métier et de tâches utilisateur via des API de services Web.
Génération d’un client proxy (services Web Java)
Les applications client de service Web utilisent un client proxy pour gérer
l’interaction avec les API de services Web.
Création de classes auxiliaires pour les processus BPEL (services Web Java)
Les objets métier référencés dans les requêtes d’API concrètes (par exemple,
sendMessage, ou call) nécessitent que les applications client utilisent les éléments
de style ″document/literal wrapped″. Les applications client requièrent des classes
auxiliaires pour leur permettre de générer les éléments d’encapsulation nécessaires.
Création d’une application client (services Web Java)
Une application client envoie des requêtes et reçoit des réponses vers et depuis les
API de services Web. En utilisant un client proxy pour gérer les communications et
des classes auxiliaires pour formater les types de données, une application client
peut appeler les méthodes de service Web comme s’il s’agissait de fonctions
locales.
Renforcement de la sécurité (services Web Java)
Vous devez sécuriser les communications du service Web en mettant en oeuvre des
mécanismes de sécurité dans l’application client.
Ajout d’un support de transaction (services Web Java)
Les applications client de service Web Java peuvent être configurées pour
permettre au traitement de la requête côté serveur de participer à la transaction
client, en transmettant un contexte d’application client en tant que requête de
service. Ce support de transaction atomique est défini dans la spécification Web
Services-Atomic Transaction (WS-AT).

Génération d’un client proxy (services Web Java)
Les applications client de service Web utilisent un client proxy pour gérer
l’interaction avec les API de services Web.

A propos de cette tâche

Un client proxy destiné aux services Web Java contient un certain nombre de
classes de Bean Java qui sont appelées par l’application client pour exécuter des
demandes de services Web. Le client proxy gère l’assemblage des paramètres de
services sous forme de messages SOAP, envoie des messages SOAP au service Web
via HTTP, reçoit des réponses du service Web et transmet toutes les données
renvoyées à l’application client.

Par conséquent, un client proxy permet à une application d’appeler un service Web
comme s’il s’agissait d’une fonction locale.

Remarque : La génération d’un client proxy n’est nécessaire qu’une fois. Toutes les
applications client accédant aux mêmes API de services Web peuvent alors utiliser
le même client proxy.

Dans l’environnement de services Web IBM, il existe deux façons de générer un
client proxy :
v A l’aide des environnements de développement intégrés Rational Application

Developer ou WebSphere Integration Developer.
v A l’aide de l’outil de ligne de commande WSDL2Java.

376 Développement et déploiement

Les autres environnements de développement de services Web Java comprennent
généralement l’outil WSDL2Java ou des fonctions de génération d’applications
client de propriétés.
Concepts associés

Développement d’applications client dans l’environnement de services Web Java
Vous pouvez utiliser n’importe quel environnement de développement Java
compatible avec les services Web Java pour développer des applications client
destinées aux API de service Web.
Tâches associées

Utilisation de Rational Application Developer pour générer un client de proxy
L’environnement de développement intégré Rational Application Developer vous
permet de générer un client proxy pour votre application client.
Utilisation de WSDL2Java pour générer un client proxy
WSDL2Java est un outil de ligne de commande qui génère un client proxy. Un
client proxy simplifie la programmation des applications client.

Utilisation de Rational Application Developer pour générer un client de proxy :

L’environnement de développement intégré Rational Application Developer vous
permet de générer un client proxy pour votre application client.

Avant de commencer

Avant de générer un client proxy, vous devez avoir préalablement exporté les
fichiers WSDL décrivant les API de services Web pour les processus métier et les
tâches utilisateur depuis l’environnement WebSphere (ou le CD client WebSphere
Process Server), puis les avoir copiés dans votre environnement de programmation
client.

Procédure

1. Ajoutez à votre projet le fichier WSDL approprié.
v Pour les processus métier :

a. Décompressez le fichier d’exportation
BPEContainer_nomnoeud_nomserveur_WSDLFiles.zip dans un répertoire
temporaire.

b. Importez le sous-répertoire META-INF à partir du répertoire décompressé
BPEContainer_nomnoeud_nomserveur.ear/b.jar.

v Pour les tâches utilisateur:
a. Décompressez le fichier d’exportation

TaskContainer_nomnoeud_nomserveur_WSDLFiles.zip dans un répertoire
temporaire.

b. Importez le sous-répertoire META-INF à partir du répertoire décompressé
TaskContainer_nomnoeud_nomserveur.ear/h.jar.

Un nouveau répertoire wsdl et une structure de sous-répertoire sont créés dans
votre projet.

2. Modifiez les propriétés de l’assistant de Service Web :
a. Dans Rational Application Developer, sélectionnez Préférences → Services

Web → Génération de code → Programme d’exécution IBM WebSphere.

b. Sélectionnez l’option Générer Java à partir de WSDL en style non
encapsulé (Generate Java from WSDL using the no wrapped style).

Chapitre 4. Développement d’applications client pour les tâches et processus métier 377

Remarque : Si vous n’êtes pas en mesure de sélectionner l’option Web services
(services web) dans le menuPreferences (Préférences), vous devez d’abord
activer les fonctions requises comme suit : Window (Fenêtre) → Preferences
(Préférences) → Workbench (Workbench) → (Capabilities (Fonctions). Cliquez
sur Web Service Developer (Développeur de services web), puis sur OK.
Ensuite, ouvrez une nouvelle fois la fenêtre Preferences (Préférences), puis
modifiez l’option Code Generation (Génération de code).

3. Sélectionnez le fichier BFMWS.WSDL ou le fichier HTMWS.WSDL situé dans le
répertoire wsdlnouvellement créé.

4. Cliquez avec le bouton droit et sélectionnez Web Services (Services web) →
Generate client (Générer un client).
Avant d’entamer le reste de la procédure, assurez-vous que le serveur a
démarré.

5. Dans la fenêtre Web services (Services web), cliquez sur Next (Suivant) afin
d’accepter toutes les valeurs par défaut.

6. Dans la fenêtre Web Service Selection (Sélection des services web), cliquez
également sur Next (Suivant) afin d’accepter toutes les valeurs par défaut.

7. Dans la fenêtre Client Environment Configuration (Configuration de
l’environnement client) :
a. Cliquez sur Edit (Editer), puis sélectionnez la valeur IBM WebSphere pour

l’option Web service runtime (Exécution des services web)
b. Sélectionnez la valeur 1.4 pour l’option J2EE Version (Version J2EE).
c. Cliquez sur OK.
d. Cliquez sur Suivant.

8. Cette étape est nécessaire uniquement si vous devez générer un client de
services comportant à la fois des API de Business Process et des API de Human
Task Web Services, puisqu’il existe des méthodes en double dans les deux
fichiers WSDL.
a. Dans la fenêtre Proxy des services web, sélectionnez Define custom

mapping for namespace to package (Définir le mappage personnalisé pour
l’espace de nom à compresser), puis cliquez sur OK.

b. Dans la fenêtre de mappage de l’espace nom Web Service Client (Client de
service web) à compresser, ajoutez les espaces de nom et package suivants :
Pour BFMWS.wsdl :

Espace de nom Package

http://www.ibm.com/xmlns/prod/websphere/business-process/
types/6.0

com.ibm.sca.bpe

http://www.ibm.com/xmlns/prod/websphere/business-process/
services/6.0

com.ibm.sca.bpe

http://www.ibm.com/xmlns/prod/websphere/business-process/
services/6.0/Binding

com.ibm.sca.bpe

http://www.ibm.com/xmlns/prod/websphere/bpc-common/
types/6.0

com.ibm.sca.bpe

Pour HTMWS.wsdl :

Espace de nom Package

http://www.ibm.com/xmlns/prod/websphere/human-task/
types/6.0

com.ibm.sca.task

378 Développement et déploiement

Espace de nom Package

http://www.ibm.com/xmlns/prod/websphere/human-task/
services/6.0

com.ibm.sca.task

http://www.ibm.com/xmlns/prod/websphere/human-task/
services/6.0/Binding

com.ibm.sca.task

http://www.ibm.com/xmlns/prod/websphere/bpc-common/
types/6.0

com.ibm.sca.task

Si vous êtes invité à confirmer l’écrasement, cliquez sur YesToAll
(OuiPourTous).

9. Cliquez sur Finish (Terminer).

Résultats

Un client proxy contenant un certain nombre de classes Java proxy, locator et
helper est généré et ajouté à votre projet. Le descripteur de déploiement est
également mis à jour.
Tâches associées

Génération d’un client proxy (services Web Java)
Les applications client de service Web utilisent un client proxy pour gérer
l’interaction avec les API de services Web.

Utilisation de WSDL2Java pour générer un client proxy :

WSDL2Java est un outil de ligne de commande qui génère un client proxy. Un
client proxy simplifie la programmation des applications client.

Avant de commencer

Avant de générer un client proxy, vous devez avoir préalablement exporté les
fichiers WSDL décrivant les API de services Web pour les processus métier ou les
tâches utilisateur depuis l’environnement WebSphere (ou le CD client WebSphere
Process Server), puis les avoir copiés dans votre environnement de programmation
client.

A propos de cette tâche

Procédure

1. Utilisation de l’outil WSDL2Java pour générer un client proxy : Entrez :
wsdl2java options WSDLfilepath

Où :
v options comprend :

-noWrappedOperations (-w)
Désactive la détection des opérations encapsulées. Des beans Java
sont générés pour les messages de requête et de réponse.

Remarque : Il ne s’agit pas de la valeur par défaut.

-role (-r)
Spécifiez la valeur client pour générer les fichiers et établir des
liaisons de développement côté client.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 379

-container (-c)
Conteneur côté client à utiliser. Les arguments admis sont les
suivants :

client Conteneur client.

ejb Conteneur d’EJB (Enterprise JavaBeans).

none Aucun conteneur.

web Conteneur Web.

-output (-o)
Dossier dans lequel sont stockés les fichiers générés.

Pour obtenir la liste complète des paramètres WSDL2Java, utilisez le
commutateur de ligne de commande -help ou reportez-vous à l’aide en ligne
relative à l’outil WSDL2Java dans WID/RAD.

v WSDLfilepath désigne le chemin d’accès et le nom du fichier WSDL exporté
depuis l’environnement WebSphere ou copié depuis le CD client.

L’exemple suivant permet de générer un client proxy pour l’API de services
Web ’Human Task Activities’ :
call wsdl2java.bat -r client -c client -noWrappedOperations

-output c:\ws\proxyClient c:\ws\bin\HTMWS.wsdl

2. Incluez à votre projet les fichiers classe générés.
Tâches associées

Génération d’un client proxy (services Web Java)
Les applications client de service Web utilisent un client proxy pour gérer
l’interaction avec les API de services Web.

Création de classes auxiliaires pour les processus BPEL
(services Web Java)
Les objets métier référencés dans les requêtes d’API concrètes (par exemple,
sendMessage, ou call) nécessitent que les applications client utilisent les éléments
de style ″document/literal wrapped″. Les applications client requièrent des classes
auxiliaires pour leur permettre de générer les éléments d’encapsulation nécessaires.

Avant de commencer

Pour créer des classes auxiliaires, vous devez avoir préalablement exporté le fichier
WSDL de l’API des services Web depuis l’environnement WebSphere Process
Server.

A propos de cette tâche

Les opérations call() et sendMessage() des API de services Web permettent
l’interaction avec les processus BPEL de WebSphere Process Server. Le message
d’entrée de l’opération call() attend l’indication de l’encapsuleur document/littéral
figurant dans le message d’entrée du processus.

Il existe différentes techniques permettant de générer des classes auxiliaires pour
une tâche utilisateur ou un processus BPEL, notamment :
1. Utilisez l’objet SoapElement.

Dans l’environnement Rational Application Developer disponible dans
WebSphere Integration Developer, le moteur de service Web prend en charge
JAX-RPC 1.1. Dans JAX-RPC 1.1, l’objet SoapElement étend un élément DOM
(Document Object Model), de sorte qu’il est possible d’utiliser l’API DOM pour
créer, lire, charger et enregistrer des messages SOAP.

380 Développement et déploiement

Supposons, par exemple, que le fichier WSDL contienne le message d’entrée
suivant pour un processus de flux de travaux ou une tâche utilisateur :
<xsd:element name="operation1">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="input1" nillable="true" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

Le fichier WSDL est créé lorsque vous développez un module de processus ou
de tâche utilisateur.
Pour créer le message SOAP correspondant dans votre application client à
l’aide de l’API du DOM :
SOAPFactory soapfactoryinstance = SOAPFactory.newInstance();
SOAPElement soapmessage = soapfactoryinstance.createElement

("operation1", namespaceprefix, interfaceURI);
SOAPElement inputelement = soapfactoryinstance.createElement("input1");
inputelement.addTextNode(message value);
soapmessage.addChildElement(outputelement);

L’exemple suivant illustre comment créer des paramètres d’entrée pour
l’opération sendMessage dans votre application client :
SendMessage inWsend = new SendMessage();
inWsend.setProcessTemplateName(processtemplatename);
inWsend.setPortType(porttype);
inWsend.setOperation(operationname);
inWsend.set_any(soapmessage);

2. Utilisez la fonction de liaison de données personnalisée de WebSphere.
Cette technique est décrite dans les articles developerWorks suivants :
v How to choose a custom mapping technology for Web services (Choix d’une

technologie de mappage personnalisée pour les services Web)
v Developing Web Services with EMF SDOs for complex XML schema

(Développement de services Web à l’aide d’objets SDO pour un schéma XML
complexe)

Concepts associés

Développement d’applications client dans l’environnement de services Web Java
Vous pouvez utiliser n’importe quel environnement de développement Java
compatible avec les services Web Java pour développer des applications client
destinées aux API de service Web.

Interoperability With Patterns and Strategies for Document-Based Web
Services (Interopérabilité avec modèles et stratégies pour des services Web basés
sur des documents)

Web Services support for Schema/WSDL(s) containing optional JAX-RPC
1.0/1.1 XML Schema Types (Prise en charge des services Web pour des
schémas/WSDL contenant des types de schéma XML JAX-RPC 1.0/1.1
facultatifs)

Création d’une application client (services Web Java)
Une application client envoie des requêtes et reçoit des réponses vers et depuis les
API de services Web. En utilisant un client proxy pour gérer les communications et
des classes auxiliaires pour formater les types de données, une application client
peut appeler les méthodes de service Web comme s’il s’agissait de fonctions
locales.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 381

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0601_gallardo/0601_gallardo.html?ca=dnw-704
http://www-128.ibm.com/developerworks/webservices/library/ws-emfsdo/
http://java.sun.com/developer/technicalArticles/xml/jaxrpcpatterns2/
http://java.sun.com/developer/technicalArticles/xml/jaxrpcpatterns2/
http://java.sun.com/developer/technicalArticles/xml/jaxrpcpatterns2/
http://www-1.ibm.com/support/docview.wss?uid=swg21207642
http://www-1.ibm.com/support/docview.wss?uid=swg21207642
http://www-1.ibm.com/support/docview.wss?uid=swg21207642
http://www-1.ibm.com/support/docview.wss?uid=swg21207642

Avant de commencer

Avant de commencer à créer une application client, générez le client proxy et les
classes auxiliaires éventuellement requises.

A propos de cette tâche

Vous pouvez développer des applications client à l’aide de n’importe quel outil
compatible avec les services Web, tel que IBM Rational Application Developer
(RAD). Vous pouvez créer tous types d’applications de services Web pour appeler
les API de services Web génériques.

Procédure

1. Créez un projet d’application client.
2. Générez le client proxy et ajoutez les classes auxiliaires Java dans votre projet.
3. Codez votre application client.
4. Générez le projet.
5. Exécutez l’application client.

Exemple

L’exemple suivant illustre comment utiliser l’API de services Web Business Flow
Manager.
// create the proxy

BFMIFProxy proxy = new BFMIFProxy();
// prepare the input data for the operation

GetProcessTemplate iW = new GetProcessTemplate();
iW.setIdentifier(your_process_template_name);

// invoke the operation
GetProcessTemplateResponse oW = proxy.getProcessTemplate(iW);

// process output of the operation
ProcessTemplateType ptd = oW.getProcessTemplate();
System.out.println("getName= " + ptd.getName());
System.out.println("getPtid= " + ptd.getPtid());

Concepts associés

Développement d’applications client dans l’environnement de services Web Java
Vous pouvez utiliser n’importe quel environnement de développement Java
compatible avec les services Web Java pour développer des applications client
destinées aux API de service Web.

Renforcement de la sécurité (services Web Java)
Vous devez sécuriser les communications du service Web en mettant en oeuvre des
mécanismes de sécurité dans l’application client.

A propos de cette tâche

WebSphere Application Server prend en charge les mécanismes de sécurité
suivants pour les API des services Web :
v Le jeton de nom d’utilisateur
v LTPA (Lightweight Third Party Authentication)

382 Développement et déploiement

Concepts associés

Développement d’applications client dans l’environnement de services Web Java
Vous pouvez utiliser n’importe quel environnement de développement Java
compatible avec les services Web Java pour développer des applications client
destinées aux API de service Web.
Tâches associées

Implémentation du jeton du nom d’utilisateur
Le mécanisme de sécurité relatif au jeton du nom d’utilisateur fournit une
autorisation d’accès via un nom d’utilisateur et un mot de passe.
Implémentation du mécanisme de sécurité LTPA
Le mécanisme de sécurité LTPA (Lightweight Third Party Authentication) peut être
utilisé lorsque l’application client s’exécute au sein d’un contexte de sécurité
précédemment établi.

Implémentation du jeton du nom d’utilisateur :

Le mécanisme de sécurité relatif au jeton du nom d’utilisateur fournit une
autorisation d’accès via un nom d’utilisateur et un mot de passe.

A propos de cette tâche

Le mécanisme de sécurité relatif au jeton du nom d’utilisateur vous permet
d’implémenter différents gestionnaires d’appel. Selon le choix que vous avez effectué
:
v Vous êtes invité à indiquer un nom d’utilisateur et un mot de passe chaque fois

que vous exécutez l’application client.
v Le nom d’utilisateur et le mot de passe sont inscrits dans le descripteur de

déploiement.

Dans tous les cas, le nom d’utilisateur et le mot de passe doivent correspondre à
ceux d’un rôle autorisé dans le conteneur de tâches utilisateur ou de processus
métier correspondant.

Le nom d’utilisateur et le mot de passe sont encapsulés dans l’enveloppe du
message de la requête, et apparaissent ainsi ″en clair″ dans l’en-tête du message
SOAP. Il est, par conséquent, vivement recommandé de configurer l’application
client afin qu’elle utilise le protocole de communication HTTPS (HTTP via SSL).
Toutes les communications sont alors cryptées. Vous pouvez sélectionner le
protocole de communication HTTPS lorsque vous spécifiez l’adresse URL du
noeud final de l’API du service Web.

Pour définir un jeton de nom d’utilisateur :

Procédure

1. Créez un jeton de sécurité :
a. Ouvrez l’Editeur de déploiement de votre module
b. Cliquez sur l’onglet Extension de service web.
c. Sous Références aux services, les références aux services web suivantes

peuvent apparaître :
v service/BFMWSService pour les processus métier
v service/HTMWSService pour les tâches utilisateur

Chapitre 4. Développement d’applications client pour les tâches et processus métier 383

Ce qui apparaît dépend de si BFMWS.wsdl (pour le processus métier),
HTMWS.wsdl (pour la tâche utilisateur) ou les deux, ont été ajoutés au
moment de générer le client de proxy.

d. Pour les deux références aux services :
1) Sélectionnez l’une des Références aux services.
2) Développez la section Configuration du générateur de demande.
3) Développez la sous-section Jeton de sécurité.
4) Cliquez sur Ajouter. La fenêtre Jeton de sécurité apparaît.
5) Dans la zone Nom, entrez le nom du nouveau jeton de sécurité :

UserNameTokenBFM ou UserNameTokenHTM .
6) Dans la zone de liste déroulante Type de jeton, sélectionnez Nom

d’utilisateur. (La zone Nom local est automatiquement renseignée avec
une valeur par défaut.)

7) Laissez le champ URI vide. Les jetons de nom d’utilisateur ne
nécessitent pas de valeur URI.

8) Cliquez sur OK.
2. Créez un générateur de jeton :

a. Ouvrez l’Editeur de déploiement de votre module
b. Cliquez sur l’onglet Liaison de service web

c. Sous les Références aux services, les mêmes références aux services web
sont mentionnées à l’étape précédente :
v service/BFMWSService pour les processus métier
v service/HTMWSService pour les tâches utilisateur

d. Pour les deux références aux services :
1) Sélectionnez l’une des Références aux services.
2) Développez la section Configuration de la sécurité de liaison du

générateur de demande.
3) Développez la sous-section Générateur de jeton.
4) Cliquez sur Ajouter. La fenêtre Générateur de jeton apparaît.
5) Dans la zone Nom, tapez le nom du nouveau générateur de jeton, par

exemple ″UserNameTokenGeneratorBFM″ ou
″UserNameTokenGeneratorHTM″.

6) Dans la zone Classe du générateur de jeton, assurez-vous que la
classe de générateur de jeton suivante est sélectionnée :
com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator.

7) Dans la zone de liste déroulante Jeton de sécurité, sélectionnez le jeton
de sécurité approprié que vous avez créé antérieurement.

8) Cochez la case Use Value Type (Utiliser le type de valeur).
9) Dans le champ Value Type (Type de valeur), sélectionnez Username

Token (Jeton nom d’utilisateur). (La zone Local name (Nom local) est
automatiquement renseignée avec le Username Token (Jeton
utilisateur) que vous avez choisi.)

10) Dans la zone Call back handler (Gestionnaire des rappels), saisissez
″com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler″
(qui vous invite à fournir le nom d’utilisateur et le mot de passe
lorsque vous lancez l’application client) ou
″com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler″.

384 Développement et déploiement

11) Si vous choisissez NonPromptCallbackHandler, vous devez indiquer
un nom d’utilisateur et un mot de passe valides dans le champ
correspondant du descripteur de déploiement.

12) Cliquez sur OK.
Tâches associées

Renforcement de la sécurité (services Web Java)
Vous devez sécuriser les communications du service Web en mettant en oeuvre des
mécanismes de sécurité dans l’application client.
Information associée

IBM WebSphere Developer - Journal technique : Sécurité des services Web avec
WebSphere Application Server V6

Implémentation du mécanisme de sécurité LTPA :

Le mécanisme de sécurité LTPA (Lightweight Third Party Authentication) peut être
utilisé lorsque l’application client s’exécute au sein d’un contexte de sécurité
précédemment établi.

A propos de cette tâche

Le mécanisme de sécurité LTPA est disponible uniquement si votre application
client s’exécute au sein d’un environnement sécurisé dans lequel un contexte de
sécurité a déjà été établi. Par exemple, si votre application client s’exécute dans un
conteneur EJB (Enterprise JavaBeans), le client EJB doit se connecter avant de
pouvoir appeler l’application client. Un contexte de sécurité est alors établi. Si
l’application client EJB appelle le service Web, le gestionnaire d’appel LTPA extrait
le jeton LTPA du contexte de sécurité, puis l’ajoute au message de la requête SOAP.
Côté serveur, le jeton LTPA est géré par le mécanisme LTPA.

Pour implémenter le mécanisme de sécurité LTPA :

Procédure

1. Dans l’environnement Rational Application Developer disponible dans
WebSphere Integration Developer, choisissez Liaison de service Web →
Configuration de la sécurité de liaison du générateur de requête → Générateur
de jeton.

2. Créez un jeton de sécurité :
a. Ouvrez l’Editeur de déploiement de votre module
b. Cliquez sur l’onglet WS Extension (Extension de service web).
c. Sous Service References (Références aux services), les références aux

services web suivantes peuvent apparaître :
v service/BFMWSService pour les processus métier
v service/HTMWSService pour les tâches utilisateur
Ce qui apparaît dépend de si BFMWS.wsdl (pour le processus métier),
HTMWS.wsdl (pour la tâche utilisateur) ou les deux, ont été ajoutés au
moment de générer le client de proxy.

d. Pour les deux références aux services :
1) Sélectionnez l’une des Références aux services.
2) Développez la section Request Generator Configuration (Demander la

configuration du générateur).
3) Développez la sous-section Username Token (Jeton de sécurité).

Chapitre 4. Développement d’applications client pour les tâches et processus métier 385

http://www-128.ibm.com/developerworks/websphere/techjournal/0604_singh/0604_singh.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0604_singh/0604_singh.html

4) Cliquez sur Add (Ajouter). La fenêtre Security Token (Jeton de sécurité)
apparaît.

5) Dans la zone Name (Nom), entrez le nom du nouveau jeton de sécurité :
LTPATokenBFM ou LTPATokenHTM .

6) Dans la zone de liste déroulante Token Type (Type de jeton),
sélectionnez LTPAToken (Jeton LTPA). (Les zones URI et Local Name
(Nom local) sont automatiquement renseignées avec les valeurs par
défaut.)

7) Cliquez sur OK.
3. Créez un générateur de jeton :

a. Ouvrez le Deployment Editor (Editeur de déploiement) de votre module
b. Cliquez sur l’onglet WS Binding (Liaison de service web)

c. Sous les Services References (Références aux services), les mêmes
références aux services web sont mentionnées à l’étape précédente :
v service/BFMWSService pour les processus métier
v service/HTMWSService pour les tâches utilisateur

d. Pour les deux références aux services :
1) Sélectionnez l’une des Références aux services.
2) Développez la section Security Request Generator Binding

Configuration (Configuration de la sécurité de liaison du générateur
de requête).

3) Développez la sous-section Token Generator (Générateur de jeton).
4) Cliquez sur Add (Ajouter). La fenêtre Générateur de jeton apparaît.
5) Dans la zone Nom, tapez le nom du nouveau générateur de jeton, par

exemple ″LTPATokenGeneratorBFM″ ou ″LTPATokenGeneratorHTM″.
6) Dans la zone Token Generatr Class (Classe du générateur de jeton),

assurez-vous que la classe de générateur de jeton suivante est
sélectionnée : com.ibm.wsspi.wssecurity.token.LTPATokenGenerator.

7) Dans la zone de liste déroulante Security Token (Jeton de sécurité),
sélectionnez le jeton de sécurité approprié que vous avez créé
antérieurement.

8) Cochez la case Use Value Type (Utiliser le type de valeur).
9) Dans le champ Value Type (Type de valeur), sélectionnez LTPAToken

(Jeton LTPA). (Les zones URI et Local Name (Nom local) sont
automatiquement renseignées avec le LTPA Token (Jeton LTPA) que
vous avez choisi.)

10) Dans la zone Call back handler (Gestionnaire des rappels), saisissez
″com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler″.

11) Cliquez sur OK.

Résultats

Lors de l’exécution, l’élément LTPATokenCallbackHandler extrait le jeton LTPA du
contexte de sécurité existant et l’ajoute au message de la requête SOAP.

386 Développement et déploiement

Tâches associées

Renforcement de la sécurité (services Web Java)
Vous devez sécuriser les communications du service Web en mettant en oeuvre des
mécanismes de sécurité dans l’application client.

Ajout d’un support de transaction (services Web Java)
Les applications client de service Web Java peuvent être configurées pour
permettre au traitement de la requête côté serveur de participer à la transaction
client, en transmettant un contexte d’application client en tant que requête de
service. Ce support de transaction atomique est défini dans la spécification Web
Services-Atomic Transaction (WS-AT).

A propos de cette tâche

WebSphere Application Server exécute chaque requête d’API de services Web en
tant que transaction atomique distincte. Les applications client peuvent être
configurées en vue d’utiliser un support de transaction pour :
v Participer à la transaction. Le traitement des requêtes côté serveur est effectué

dans le contexte de transaction de l’application client. Si, par la suite, le serveur
rencontre un problème alors que la requête d’API de services Web est en cours
d’exécution et est invalidée, la requête de l’application client est également
invalidée.

v Ne pas utiliser de prise en charge de la transaction. WebSphere Application
Server crée néanmoins une transaction afin d’exécuter la requête mais le
traitement de la requête côté serveur n’est pas effectué au moyen du contexte de
transaction de l’application client.

Concepts associés

Développement d’applications client dans l’environnement de services Web Java
Vous pouvez utiliser n’importe quel environnement de développement Java
compatible avec les services Web Java pour développer des applications client
destinées aux API de service Web.

Développement d’applications client dans l’environnement
.NET

Microsoft .NET offre un puissant environnement de développement permettant de
connecter des applications via des services Web.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 387

Tâches associées

Développement d’applications API de service Web
Vous pouvez développer des applications client accédant à des applications de
processus métier et de tâches utilisateur via des API de services Web.
Génération d’un client proxy (.NET)
Les applications client .NET utilisent un client proxy pour gérer l’interaction avec
les API de service Web. Un client proxy permet d’isoler les applications client hors
de la complexité du protocole de messagerie de service Web.
Création de classes auxiliaires pour les processus BPEL (.NET)
Certaines opérations d’API de services Web nécessitent que les applications client
utilisent des éléments encapsulés ″document/littéral″. Les applications client
requièrent des classes auxiliaires pour leur permettre de générer les éléments
d’encapsulation nécessaires.
Création d’une application client (.NET)
Une application client envoie des requêtes et reçoit des réponses vers et depuis les
API de services Web. En utilisant un client proxy pour gérer les communications et
des classes auxiliaires pour formater les types de données, une application client
peut appeler les méthodes de service Web comme s’il s’agissait de fonctions
locales.
Renforcement de la sécurité (.NET)
Vous pouvez sécuriser les communications des services Web en intégrant des
mécanismes de sécurité à vos applications client.

Génération d’un client proxy (.NET)
Les applications client .NET utilisent un client proxy pour gérer l’interaction avec
les API de service Web. Un client proxy permet d’isoler les applications client hors
de la complexité du protocole de messagerie de service Web.

Avant de commencer

Pour créer un client proxy, vous devez avoir préalablement exporté les fichiers
WSDL depuis l’environnement WebSphere et les avoir copiés dans votre
environnement de programmation client.

Remarque : Si vous disposez du CD client WebSphere Process Server, vous pouvez
également copier les fichiers depuis cet emplacement.

A propos de cette tâche

Un client proxy comprend un ensemble de classes de bean C#. Chaque classe
contient l’ensemble des méthodes et objets exposés par le biais d’un service Web
unique. Les méthodes du service gèrent l’assemblage des paramètres sous forme
de messages SOAP complets, envoie les messages SOAP au service Web via le
protocole HTTP, reçoit les réponses émises par le service Web et traite les données
éventuellement renvoyées.

Remarque : La génération d’un client proxy n’est nécessaire qu’une fois. Toutes les
applications client accédant aux API de service Web peuvent utiliser le même client
proxy.

Procédure

1. Utilisez la commande WSDL pour générer un client proxy : Entrez :
wsdl options WSDLfilepath

Où :

388 Développement et déploiement

v options comprend :

/language
Permet de spécifier le langage utilisé pour créer la classe proxy.
L’option par défaut est C#. Vous pouvez également spécifier VB
(Visual Basic), JS (JScript) ou VJS (Visual J#) comme argument de
langage.

/output
Nom du fichier de sortie qualifié par le suffixe approprié. Par
exemple : proxy.cs

/protocol
Protocole mis en oeuvre dans la classe proxy. Le paramètre par
défaut est SOAP.

Pour obtenir une liste complète des paramètres WSDL.exe, utilisez le
commutateur de ligne de commande /? ou reportez-vous à l’aide en ligne
relative à l’outil WSDL dans Visual Studio.

v WSDLfilepath désigne le chemin d’accès et le nom du fichier WSDL exporté
depuis l’environnement WebSphere ou copié depuis le CD client.

L’exemple suivant permet de générer un client proxy pour l’API de services
Web Human Task Manager :
wsdl /language:cs /output:proxyclient.cs c:\ws\bin\HTMWS.wsdl

2. Compilez le client proxy sous forme de bibliothèque de liaison dynamique
(DLL).

Concepts associés

Développement d’applications client dans l’environnement .NET
Microsoft .NET offre un puissant environnement de développement permettant de
connecter des applications via des services Web.

Création de classes auxiliaires pour les processus BPEL (.NET)
Certaines opérations d’API de services Web nécessitent que les applications client
utilisent des éléments encapsulés ″document/littéral″. Les applications client
requièrent des classes auxiliaires pour leur permettre de générer les éléments
d’encapsulation nécessaires.

Avant de commencer

Pour créer des classes auxiliaires, vous devez avoir préalablement exporté le fichier
WSDL de l’API des services Web depuis l’environnement WebSphere Process
Server.

A propos de cette tâche

Les opérations call() et sendMessage() des API de services Web déclenchent le
lancement des processus BPEL dans WebSphere Process Server. Le message
d’entrée de l’opération call() attend l’indication de l’encapsuleur document/littéral
figurant dans le message d’entrée du processus BPEL. Pour générer les beans et les
classes nécessaires aux processus BPEL, copiez l’élément <wsdl:types> dans un
nouveau fichier XSD, puis utilisez l’outil xsd.exe pour générer des classes
auxiliaires.

Procédure

1. Exportez le fichier WSDL de l’interface de processus BPEL depuis WebSphere
Integration Developer, si vous n’avez pas déjà effectué cette opération.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 389

2. Ouvrez le fichier WSDL dans un éditeur de texte ou un éditeur XML.
3. Copiez le contenu des éléments enfants de l’élément <wsdl:types> et copiez-le

dans un nouveau fichier squelette XSD.
4. Appliquez l’outil xsd.exe au fichier XSD :

call xsd.exe file.xsd /classes /o

Où :

file.xsd
Fichier de définitions de schéma XML à convertir.

/classes (/c)
Génère des classes auxiliaires correspondant au contenu du ou des
fichier(s) XSD spécifié(s).

/output (/o)
Spécifie le répertoire de sortie des fichiers générés. Si ce répertoire est
omis, le répertoire par défaut est le répertoire en cours.

Par exemple :
call xsd.exe ProcessCustomer.xsd /classes /output:c:\temp

5. Ajout du fichier classe généré à votre application client. Si vous utilisez Visual
Studio, par exemple, vous pouvez effectuer cette opération avec l’option de
menu Projet → Ajouter élément existant (Add Existing Item).

Exemple

Si le fichier ProcessCustomer.wsdl contient les éléments suivants :
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:bons1="http://com/ibm/bpe/unittest/sca"

xmlns:tns="http://ProcessTypes/bpel/ProcessCustomer"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
name="ProcessCustomer"
targetNamespace="http://ProcessTypes/bpel/ProcessCustomer">

<wsdl:types>
<xsd:schema targetNamespace="http://ProcessTypes/bpel/ProcessCustomer"

xmlns:bons1="http://com/ibm/bpe/unittest/sca"
xmlns:tns="http://ProcessTypes/bpel/ProcessCustomer"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:import namespace="http://com/ibm/bpe/unittest/sca"
schemaLocation="xsd-includes/http.com.ibm.bpe.unittest.sca.xsd"/>

<xsd:element name="doit">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="input1" nillable="true" type="bons1:Customer"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="doitResponse">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="output1" nillable="true" type="bons1:Customer"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>
</wsdl:types>

<wsdl:message name="doitRequestMsg">
<wsdl:part element="tns:doit" name="doitParameters"/>

</wsdl:message>
<wsdl:message name="doitResponseMsg">
<wsdl:part element="tns:doitResponse" name="doitResult"/>

390 Développement et déploiement

</wsdl:message>
<wsdl:portType name="ProcessCustomer">
<wsdl:operation name="doit">

<wsdl:input message="tns:doitRequestMsg" name="doitRequest"/>
<wsdl:output message="tns:doitResponseMsg" name="doitResponse"/>

</wsdl:operation>
</wsdl:portType>

</wsdl:definitions>

Le fichier XSD résultant contient les éléments suivants :
<xsd:schema xmlns:bons1="http://com/ibm/bpe/unittest/sca"

xmlns:tns="http://ProcessTypes/bpel/ProcessCustomer"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://ProcessTypes/bpel/ProcessCustomer">

<xsd:import namespace="http://com/ibm/bpe/unittest/sca"
schemaLocation="Customer.xsd"/>

<xsd:element name="doit">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="input1" type="bons1:Customer" nillable="true"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="doitResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="output1" type="bons1:Customer" nillable="true"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Concepts associés

Développement d’applications client dans l’environnement .NET
Microsoft .NET offre un puissant environnement de développement permettant de
connecter des applications via des services Web.
Information associée

Documentation Microsoft relative à l’outil XSD (XML Schema Definition,
XSD.EXE)

Création d’une application client (.NET)
Une application client envoie des requêtes et reçoit des réponses vers et depuis les
API de services Web. En utilisant un client proxy pour gérer les communications et
des classes auxiliaires pour formater les types de données, une application client
peut appeler les méthodes de service Web comme s’il s’agissait de fonctions
locales.

Avant de commencer

Avant de commencer à créer une application client, générez le client proxy et les
classes auxiliaires éventuellement requises.

A propos de cette tâche

Vous pouvez développer des applications client .NET à l’aide de n’importe quel
outil de développement compatible avec .NET, comme par exemple Visual Studio
.NET. Vous pouvez créer tout type d’application .NET afin d’appeler les API de
services Web génériques.

Procédure

Chapitre 4. Développement d’applications client pour les tâches et processus métier 391

http://msdn2.microsoft.com/en-us/library/x6c1kb0s(vs.71).aspx
http://msdn2.microsoft.com/en-us/library/x6c1kb0s(vs.71).aspx

1. Créez un projet d’application client. Vous pouvez par exemple créer une
application WinFX Windows® dans Visual Studio.

2. Dans les options du projet, ajoutez une référence au fichier DLL (Dynamic Link
Library) du client proxy. Ajoutez à votre projet toutes les classes auxiliaires
contenant les définitions d’objets métier. Visual Studio, par exemple, vous
pouvez effectuer cette opération avec l’option de menu Projet → Ajouter
élément existant (Add existing item).

3. Créez un objet client proxy. Par exemple :
HTMClient.HTMReference.HumanTaskManagerComponent1Export_HumanTaskManagerHttpService service =

new HTMClient.HTMReference.HumanTaskManagerComponent1Export_HumanTaskManagerHttpService();

4. Déclarez tout type de données d’objet métier utilisé dans les messages transmis
vers et depuis le service Web. Par exemple :
HTMClient.HTMReference.TKIID id = new HTMClient.HTMReference.TKIID();

ClipBG bg = new ClipBG();
Clip clip = new Clip();

5. Appelez les fonctions de service Web spécifiques et spécifiez les paramètres
obligatoires éventuels. Par exemple, pour créer et démarrer une tâche
utilisateur :
HTMClient.HTMReference.createAndStartTask task =
new HTMClient.HTMReference.createAndStartTask();
HTMClient.HTMReference.StartTask sTask =
new HTMClient.HTMReference.StartTask();

sTask.taskName = "SimpleTask";
sTask.taskNamespace = "http://myProcess/com/acme/task";
sTask.inputMessage = bg;
task.inputTask = sTask;

id = service.createAndStartTask(task).outputTask;

6. Les processus et les tâches distants sont identifiés par des ID persistants (id
dans l’exemple précédent). Par exemple, pour réclamer une tâche utilisateur
précédemment créée :
HTMClient.HTMReference.claimTask claim = new HTMClient.HTMReference.claimTask();
claim.inputTask = id;

Concepts associés

Développement d’applications client dans l’environnement .NET
Microsoft .NET offre un puissant environnement de développement permettant de
connecter des applications via des services Web.

Renforcement de la sécurité (.NET)
Vous pouvez sécuriser les communications des services Web en intégrant des
mécanismes de sécurité à vos applications client.

A propos de cette tâche

Ces mécanismes de sécurité peuvent inclure le jeton de nom d’utilisateur (nom
d’utilisateur et mot de passe) ou des jetons de sécurité binaires personnalisés et
XML.

Procédure

1. Téléchargez et installez le module WSE (Web Services Enhancements) 2.0 SP3
pour Microsoft .NET. Ce module est accessible à l’adresse suivante :
http://www.microsoft.com/downloads/details.aspx?familyid=1ba1f631-c3e7-
420a-bc1e-ef18bab66122&displaylang=en

392 Développement et déploiement

http://www.microsoft.com/downloads/details.aspx?familyid=1ba1f631-c3e7-420a-bc1e-ef18bab66122&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=1ba1f631-c3e7-420a-bc1e-ef18bab66122&displaylang=en

2. Modifiez comme suit le code client proxy généré.
Modifiez :

public class Export1_MyMicroflowHttpService : System.Web.Services.Protocols.SoapHttpClientProtocol {

En :
public class Export1_MyMicroflowHttpService : Microsoft.Web.Services2.WebServicesClientProtocol {

Remarque : Ces modifications seront perdues si vous régénérez le client proxy
en exécutant l’outil WSDL.exe.

3. Modifiez le code de l’application client en ajoutant les lignes suivantes en début
de fichier :

using System.Web.Services.Protocols;
using Microsoft.Web.Services2;
using Microsoft.Web.Services2.Security.Tokens;
...

4. Ajoutez le code de mise en oeuvre du mécanisme de sécurité souhaité. Le code
suivant, par exemple, ajoute une protection par nom d’utilisateur et mot de
passe :

string user = "U1";
string pwd = "password";
UsernameToken token = new UsernameToken(user, pwd, PasswordOption.SendPlainText);

me._proxy.RequestSoapContext.Security.Tokens.Clear();
me._proxy.RequestSoapContext.Security.Tokens.Add(token);

Concepts associés

Développement d’applications client dans l’environnement .NET
Microsoft .NET offre un puissant environnement de développement permettant de
connecter des applications via des services Web.

Requêtes sur des objets liés aux processus métier et aux
tâches

Vous pouvez utiliser les API de services Web pour effectuer des requêtes de
données sur les objets liés aux processus métier et aux tâches dans la base de
données Business Process Choreographer, afin d’extraire les propriétés spécifiques
de ces objets.

A propos de cette tâche

La base de données Business Process Choreographer stocke les données de modèle
(model) et d’instance (runtime) nécessaires à la gestion des processus métier et des
tâches.

Les applications client peuvent, par l’intermédiaire des API de services Web,
extraire de la base de données des informations relatives aux processus métier et
aux tâches.

Les applications client vous permettent d’effectuer une requête unique pour
extraire une propriété particulière d’un objet. Vous pouvez sauvegarder les
requêtes que vous exécutez le plus souvent. Ces requêtes stockées peuvent ensuite
être extraites et utilisées par votre application client.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 393

Concepts associés

Requêtes portant sur des objets liés aux processus métier et aux tâches à l’aide des
API de services Web
L’interface de requête des API de service Web vous permet d’obtenir des
informations stockées relatives aux processus métier et aux tâches.
Tâches associées

Développement d’applications API de service Web
Vous pouvez développer des applications client accédant à des applications de
processus métier et de tâches utilisateur via des API de services Web.
Gestion des requêtes stockées
Les requêtes stockées permettent d’enregistrer des requêtes souvent exécutées. La
requête stockée peut soit être une requête disponible pour tous les utilisateurs
(requête publique), soit une requête appartenant à un utilisateur spécifique
(requête privée).

Requêtes portant sur des objets liés aux processus métier et aux
tâches à l’aide des API de services Web
L’interface de requête des API de service Web vous permet d’obtenir des
informations stockées relatives aux processus métier et aux tâches.

Les applications client utilisent une syntaxe de type SQL pour interroger la base de
données.

Exemple de services Java Web
string processTemplateName = "ProcessCustomerLR";
query query1 = new query();
query1.selectClause = "DISTINCT PROCESS_INSTANCE.STARTED, PROCESS_INSTANCE.PIID";
query1.whereClause =

"PROCESS_INSTANCE.TEMPLATE_NAME = '" + processTemplateName + "'";
query1.orderByClause = "PROCESS_INSTANCE.STARTED";
query1.threshold = null;
query1.timeZone = "UTC"; query1.skipTuples = null;
queryResponse queryResponse1 = proxy.query(query1);

Les informations extraites de la base de données sont renvoyées via les API de
service Web sous forme d’ensemble de résultats de requête.

Par exemple :
QueryResultSetType queryResultSet = queryResponse1.queryResultSet;
if (queryResultSet != null) {

Console.WriteLine("--> QueryResultSetType");
Console.WriteLine(" . size= " + queryResultSet.size);
Console.WriteLine(" . numberColumns= " + queryResultSet.numberColumns);
string indent = " . ";

// -- the query column info
QueryColumnInfoType[] queryColumnInfo = queryResultSet.QueryColumnInfo;
if (queryColumnInfo.Length > 0) {

Console.WriteLine();
Console.WriteLine("= . QueryColumnInfoType size= " + queryColumnInfo.Length);
Console.Write(" | tableName ");
for (int i = 0; i < queryColumnInfo.Length ; i++) {

Console.Write(" | " + queryColumnInfo[i].tableName.PadLeft(20));
}
Console.WriteLine();
Console.Write(" | columnName ");
for (int i = 0; i < queryColumnInfo.Length ; i++) {

Console.Write(" | " + queryColumnInfo[i].columnName.PadLeft(20));
}
Console.WriteLine();

394 Développement et déploiement

Console.Write(" | data type ");
for (int i = 0; i < queryColumnInfo.Length ; i++) {

QueryColumnInfoTypeType tt = queryColumnInfo[i].type;
Console.WriteLine(" | " + tt.ToString());

}
Console.WriteLine();

}
else {

Console.WriteLine("--> queryColumnInfo= <null>");
}

// - the query result values
string[][] result = queryResultSet.result;
if (result !=null) {

Console.WriteLine();
Console.WriteLine("= . result size= " + result.Length);
for (int i = 0; i < result.Length; i++) {

Console.Write(indent +i);
string[] row = result[i];
for (int j = 0; j < row.Length; j++) {

Console.Write(" | " + row[j]);
}
Console.WriteLine();

}
}
else {

Console.WriteLine("--> result= <null>");
}

}
else {

Console.WriteLine("--> QueryResultSetType= <null>");
}

La fonction de requête renvoie des éléments en fonction des droits d’accès de
l’appelant. L’ensemble de résultats de requête contient uniquement les propriétés
des objets que l’appelant est autorisé à consulter.

Des vues prédéfinies des bases de données sont disponibles pour vous permettre
de rechercher les propriétés de l’objet. Pour les modèles de processus, la fonction
de requête possède la syntaxe suivante :
ProcessTemplateData[] queryProcessTemplates

(java.lang.String whereClause,
java.lang.String orderByClause,
java.lang.Integer threshold,
java.util.TimeZone timezone);

Pour les modèles de tâches, la fonction de requête présente la syntaxe suivante :
TaskTemplate[] queryTaskTemplates

(java.lang.String whereClause,
java.lang.String orderByClause,
java.lang.Integer threshold,
java.util.TimeZone timezone);

Pour d’autres objets liés aux processus métier et aux tâches, la fonction de requête
a la syntaxe suivante :
QueryResultSet query (java.lang.String selectClause,

java.lang.String whereClause,
java.lang.String orderByClause,
java.lang.Integer skipTuples
java.lang.Integer threshold,
java.util.TimeZone timezone);

Chapitre 4. Développement d’applications client pour les tâches et processus métier 395

L’interface de requête contient également une méthode queryAll. Vous pouvez
utiliser cette méthode pour extraire toutes les données pertinentes concernant un
objet, par exemple, à des fins de contrôle. L’appelant de la méthode queryAll doit
disposer de l’un des rôles Java 2 Platform, Enterprise Edition (J2EE) suivants :
BPESystemAdministrator, BPESystemMonitor, TaskSystemAdministrator ou
TaskSystemMonitor. Le contrôle de l’autorisation à l’aide de l’élément de travail
correspondant de l’objet n’est pas appliqué.

Exemple pour .NET

ProcessTemplateType[] templates = null;

try {
queryProcessTemplates iW = new queryProcessTemplates();
iW.whereClause = "PROCESS_TEMPLATE.STATE=PROCESS_TEMPLATE.STATE.STATE_STARTED";
iW.orderByClause = null;
iW.threshold = null;
iW.timeZone = null;

Console.WriteLine("--> queryProcessTemplates ... ");
Console.WriteLine("--> query: WHERE " + iW.whereClause + " ORDER BY " +

iW.orderByClause + " THRESHOLD " + iW.threshold + " TIMEZONE" + iW.timeZone);

templates = proxy.queryProcessTemplates(iW);

if (templates.Length < 1) {
Console.WriteLine("--> No templates found :-(");

}
else {

for (int i = 0; i < templates.Length ; i++) {
Console.Write("--> found template with ptid: " + templates[i].ptid);
Console.WriteLine(" and name: " + templates[i].name);
/* ... other properties of ProcessTemplateType ... */
}

}
}
catch(Exception e) {

Console.WriteLine("exception= " + e);
}

Tâches associées

Requêtes sur des objets liés aux processus métier et aux tâches
Vous pouvez utiliser les API de services Web pour effectuer des requêtes de
données sur les objets liés aux processus métier et aux tâches dans la base de
données Business Process Choreographer, afin d’extraire les propriétés spécifiques
de ces objets.

Gestion des requêtes stockées
Les requêtes stockées permettent d’enregistrer des requêtes souvent exécutées. La
requête stockée peut soit être une requête disponible pour tous les utilisateurs
(requête publique), soit une requête appartenant à un utilisateur spécifique
(requête privée).

A propos de cette tâche

Une requête stockée est une requête qui est enregistrée dans la base de données et
identifiée par un nom. Une requête privée et une requête publique peuvent être
sauvegardées sous le même nom. Les requêtes enregistrées par différents
utilisateurs peuvent également avoir un nom identique.

396 Développement et déploiement

Vous pouvez avoir stocké des requêtes pour des objets de processus métier, des
objets de tâche ou une combinaison de ces deux types d’objets.
Tâches associées

Requêtes sur des objets liés aux processus métier et aux tâches
Vous pouvez utiliser les API de services Web pour effectuer des requêtes de
données sur les objets liés aux processus métier et aux tâches dans la base de
données Business Process Choreographer, afin d’extraire les propriétés spécifiques
de ces objets.

Gestion des requêtes stockées publiques
Les requêtes stockées publiques sont créées par l’administrateur système. Ces
requêtes sont accessibles à tous les utilisateurs.
Gestion de requêtes stockées privées pour d’autres utilisateurs
Tout utilisateur peut créer des requêtes privées. Seul le propriétaire d’une
requête et l’administrateur système peuvent les utiliser.
Gestion des requêtes stockées privées
Si vous n’êtes pas un administrateur système, vous pouvez créer, exécuter et
supprimer vos propres requêtes stockées privées. Vous pouvez également
utiliser les requêtes stockées publiques créées par l’administrateur système.

Développement d’applications client à l’aide de l’API JMS de Business
Process Choreographer

Vous pouvez développer des applications client accédant aux applications de
processus métier de façon asynchrone grâce à l’API JMS (Java Messaging Service).

A propos de cette tâche

Les applications client JMS échangent des messages de demande et de réponse
avec l’API JMS. Pour créer un message de demande, l’application client remplit le
corps du message JMS TextMessage avec un élément XML représentant
l’encapsuleur document/littéral de l’opération correspondante.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 397

Concepts associés

Exigences des processus métier
Les processus métier développés au moyen de WebSphere Integration Developer
pour être exécutés dans l’application Business Process Choreographer doivent être
conformes à des règles spécifiques afin d’être accessibles via l’API JMS.
Autorisation pour les affichages JMS
Pour autoriser l’accès à l’interface JMS, des paramètres de sécurité doivent être
activés dans WebSphere Application Server.
Comparaison entre les interfaces de programmation visant à interagir avec les
processus métier et les tâches utilisateur
Des interfaces de programmation génériques EJB (Enterprise JavaBeans), JMS (Java
Message Service), REST (Representational State Transfer Services) ainsi que des
interfaces de programmation de services Web sont disponibles pour la création
d’applications client interagissant avec des processus métier et des tâches
utilisateur. Chacune de ces interfaces présente des caractéristiques différentes.
Tâches associées

Développement d’applications client pour les tâches et processus métier
Vous pouvez utiliser un outil de modélisation pour compiler et déployer des tâches
et des processus métier. L’interaction avec ces processus et ces tâches se produit
lors de l’exécution. Par exemple, un processus est lancé ou les tâches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des tâches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.
Accès à l’interface JMS
Pour envoyer et recevoir des messages par le biais de l’interface JMS, une
application doit d’abord créer une connexion au bus BPC.cellname.Bus, créer une
session, puis générer des expéditeurs et des destinataires de message.
Copie d’artefacts pour les applications client JMS
Un certain nombre d’artefacts peuvent être copiés à partir de l’environnement
WebSphere Process Server pour faciliter la création d’applications client JMS.
Vérification du message de réponse pour les exceptions de métier
Les applications client JMS doivent vérifier l’en-tête de message de tous les
messages de réponse pour les exceptions de métier.
Exemple : exécution d’un processus de longue durée à l’aide de l’API JMS de
Business Process Choreographer
Cet exemple montre comment créer une application client générique utilisant l’API
JMS pour exploiter des processus de longue durée.

Exigences des processus métier
Les processus métier développés au moyen de WebSphere Integration Developer
pour être exécutés dans l’application Business Process Choreographer doivent être
conformes à des règles spécifiques afin d’être accessibles via l’API JMS.

Les exigences sont les suivantes :
1. Les interfaces des processus métier doivent être définies à l’aide du style

″document/literal wrapped″ défini dans l’API Java pour la spécification
XML-RPC (JAX-RPC 1.1). Il s’agit du style par défaut défini pour l’ensemble
des processus métier et des tâches utilisateur développés avec WebSphere
Integration Developer.

2. Les messages d’erreur accessibles aux processus métier et aux tâches utilisateur
des opérations de service Web doivent comprendre un seul composant de
message WSDL défini au moyen d’un élément de schéma XML. Par exemple :

398 Développement et déploiement

<wsdl:part name="myFault" element="myNamespace:myFaultElement"/>

Tâches associées

Développement d’applications client à l’aide de l’API JMS de Business Process
Choreographer
Vous pouvez développer des applications client accédant aux applications de
processus métier de façon asynchrone grâce à l’API JMS (Java Messaging Service).
Information associée

Page de téléchargement d’API Java pour XML-RPC (JAX-RPC)

Quel style de langage WSDL dois-je utiliser ?

Autorisation pour les affichages JMS
Pour autoriser l’accès à l’interface JMS, des paramètres de sécurité doivent être
activés dans WebSphere Application Server.

Lorsque le conteneur de processus métier est installé, le rôle JMSAPIUser doit être
mappé avec un ID utilisateur. Cet ID utilisateur permet d’émettre toutes les
demandes de l’API JMS. Par exemple, si JMSAPIUser est mappé avec ″Utilisateur
A″, toutes les demandes de l’API JMS apparaissent dans le moteur de processus
avec pour origine ″Utilisateur A″.

Le rôle JMSAPIUser doit être affecté aux autorités suivantes :

Demande Autorisation requise

forceTerminate Administrateur de processus

sendEvent Propriétaire potentiel d’activité ou
administrateur de processus

Remarque : Pour toutes les demandes, aucune autorisation spéciale n’est requise.

L’autorité spéciale est accordée à une personne avec le rôle d’administrateur de
processus métier. Un administrateur de processus métier est un rôle spécial. Il est
différent de celui de l’administrateur de processus d’une instance de processus. Il
dispose de tous les privilèges.

Vous ne pouvez pas supprimer l’ID utilisateur du lanceur de processus à partir de
votre registre des utilisateurs alors que l’instance du processus existe. Si vous
supprimez cet ID utilisateur, la navigation dans ce processus ne peut se
poursuivre. Vous recevrez l’exception suivante dans le fichier journal du système :
no unique ID for: <ID utilisateur>

Tâches associées

Développement d’applications client à l’aide de l’API JMS de Business Process
Choreographer
Vous pouvez développer des applications client accédant aux applications de
processus métier de façon asynchrone grâce à l’API JMS (Java Messaging Service).

Accès à l’interface JMS
Pour envoyer et recevoir des messages par le biais de l’interface JMS, une
application doit d’abord créer une connexion au bus BPC.cellname.Bus, créer une
session, puis générer des expéditeurs et des destinataires de message.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 399

http://java.sun.com/xml/downloads/jaxrpc.html
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/

A propos de cette tâche

Le serveur de processus accepte les messages Java Message Service (JMS) qui
suivent le paradigme point-à-point. Une application qui envoie ou qui reçoit des
messages JMS doit exécuter les actions suivantes.

L’exemple suivant suppose que le client JMS est exécuté dans un environnement
géré (Enterprise JavaBeans, client d’application ou conteneur de client Web). Si
vous voulez exécuter le client JMS dans un environnement J2SE, consultez la
rubrique ″Client IBM pour JMS sur J2SE avec IBM WebSphere Application Server″
à la page http://www-1.ibm.com/support/docview.wss?uid=swg24012804.

Procédure

1. Créez une connexion au BPC.nomcellule.Bus. Il n’existe pas de fabrique de
connexions préconfigurée pour les requêtes d’une application client :
l’application client peut soit utiliser la commande ReplyConnectionFactory de
l’API JMS, soit créer sa propre fabrique de connexions, auquel cas elle peut
utiliser la recherche JNDI (Java Naming and Directory Interface) pour récupérer
la fabrique de connexions. Le nom de recherche JNDI doit être identique au
nom indiqué lors de la configuration de la file d’attente des demandes externes
de Business Process Choreographer. L’exemple suivant suppose que
l’application client crée sa propre fabrique de connexions nommée
″jms/clientCF″.
//Obtain the default initial JNDI context.
Context initialContext = new InitialContext();

// Look up the connection factory.
// Create a connection factory that connects to the BPC bus.
// Call it, for example, "jms/clientCF".
// Also configure an appropriate authentication alias.
ConnectionFactory connectionFactory =

(ConnectionFactory)initialcontext.lookup("jms/clientCF");

// Create the connection.
Connection connection = connectionFactory.createConnection();

2. Créez une session afin de pouvoir créer les expéditeurs et les destinataires de
message.
// Create a transaction session using auto-acknowledgement.
Session session = connection.createSession(true, Session.AUTO_ACKNOWLEDGE);

3. Créez un expéditeur de message pour envoyer les messages. Le nom de
recherche JNDI doit être identique au nom indiqué lors de la configuration de
la file d’attente des demandes externes de Business Process Choreographer.
// Look up the destination of the Business Process Choreographer input queue to
// send messages to.
Queue sendQueue = (Queue) initialcontext.lookup("jms/BFMJMSAPIQueue");

// Create a message producer.
MessageProducer producer = session.createProducer(sendQueue);

4. Créez un destinataire de message pour recevoir les réponses. Le nom de
recherche JNDI de la destination de la réponse peut indiquer une destination
définie par l’utilisateur, mais il peut également indiquer la destination de la
réponse par défaut (définie par Business Process Choreographer)
jms/BFMJMSReplyQueue. Dans les deux cas, la destination de la réponse doit être
basée sur BPC.<cellname>.Bus.

400 Développement et déploiement

http://www-1.ibm.com/support/docview.wss?uid=swg24012804

// Look up the destination of the reply queue.
Queue replyQueue = (Queue) initialcontext.lookup("jms/BFMJMSReplyQueue");

// Create a message consumer.
MessageConsumer consumer = session.createConsumer(replyQueue);

5. Envoyez un message.
// Start the connection.
connection.start();

// Create a message - see the task descriptions for examples - and send it.
// This method is defined elsewhere ...
String payload = createXMLDocumentForRequest();
TextMessage requestMessage = session.createTextMessage(payload);

// Set mandatory JMS header.
// targetFunctionName is the operation name of JMS API
// (for example, getProcessTemplate, sendMessage)
requestMessage.setStringProperty("TargetFunctionName", targetFunctionName);

// Set the reply queue; this is mandatory if the replyQueue
// is not the default queue (as it is in this example).
requestMessage.setJMSReplyTo(replyQueue);

// Send the message.
producer.send(requestMessage);

// Get the message ID.
String jmsMessageID = requestMessage.getJMSMessageID();

session.commit();

6. Recevez la réponse.
// Receive the reply message and analyse the reply.
TextMessage replyMessage = (TextMessage) consumer.receive();

// Get the payload.
String payload = replyMessage.getText();

session.commit();

7. Mettez fin à la connexion, puis libérez les ressources.
// Final housekeeping; free the resources.
session.close();
connection.close();

Remarque : Vous n’êtes pas obligé de mettre fin à la connexion après chaque
transaction. Une fois la connexion démarrée, vous pouvez échanger n’importe
quel nombre de messages de demande et de réponse avant de mettre fin à la
connexion. L’exemple illustre un cas simple avec un appel unique au sein
d’une méthode métier unique.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 401

Concepts associés

Structure d’un message JMS de Business Process Choreographer
L’en-tête et le corps d’un message JMS doivent avoir une structure prédéfinie.
Tâches associées

Développement d’applications client à l’aide de l’API JMS de Business Process
Choreographer
Vous pouvez développer des applications client accédant aux applications de
processus métier de façon asynchrone grâce à l’API JMS (Java Messaging Service).

Structure d’un message JMS de Business Process
Choreographer
L’en-tête et le corps d’un message JMS doivent avoir une structure prédéfinie.

Un message JMS (Java Message Service) se compose des éléments suivants :
v Un en-tête de message pour l’identification du message et l’acheminement de

l’information.
v Le corps (charge) du message qui renferme le contenu.

Business Process Choreographer ne prend en charge que les formats de message
texte.

En-tête de message

JMS permet aux clients d’accéder à certains champs d’en-tête de message.

Les champs d’en-tête suivants peuvent être définis par un client JMS de Business
Process Choreographer :
v JMSReplyTo

Destination à laquelle est envoyée la réponse à une requête. Si ce champ n’est
pas spécifié dans le message de requête, la réponse est alors envoyée à la
destination de réponse par défaut de l’interface d’exportation (l’exportation
correspond à l’affichage de l’interface client d’un composant de processus
métier). Il est possible d’obtenir cette destination à l’aide de
initialContext.lookup(″jms/BFMJMSReplyQueue″);

v TargetFunctionName

Le nom de l’opération WSDL pourrait être ″queryProcessTemplates″, par
exemple. Ce champ doit toujours être défini. Notez que TargetFunctionName
spécifie l’opération de l’interface du message JMS générique décrite ici. A ne pas
confondre avec les opérations fournies par des tâches ou des processus concrets
pouvant être appelés indirectement à l’aide de l’opération call ou sendMessage,
par exemple.

Un client Business Process Choreographer peut également accéder aux champs
d’en-tête suivants :
v JMSMessageID

Identifie un message de manière unique. Défini par le fournisseur JMS lorsque le
message est envoyé. Si le client définit le champ JMSMessageID avant l’envoi du
message, il est systématiquement remplacé par le fournisseur JMS. Si l’ID du
message est requis à des fins d’authentification, le client peut alors obtenir le
paramètre JMSMessageID après l’envoi du message.

v JMSCorrelationID

Relie les messages. Ne pas définir ce champ. Un message de réponse Business
Process Choreographer contient toujours le champ JMSMessageID du message
de requête.

402 Développement et déploiement

Chaque message de réponse contient les champs d’en-tête JMS suivants :
v IsBusinessException

″False″ pour les messages de sortie WSDL ou ″True″ pour les messages d’erreur
WSDL.

Les exceptions ServiceRuntimeExceptions ne sont pas renvoyées aux applications
client asynchrones. Lorsqu’une exception sévère se produit lors du traitement d’un
message de requête JMS, une erreur d’exécution est générée, ce qui provoque
l’annulation de la transaction en cours de traitement. Le message de requête JMS
est alors relivré. Si l’erreur se produit prématurément dans la phase d’exportation
SCA du traitement du message (par exemple, lors de sa désérialisation), de
nouvelles tentatives sont exécutées jusqu’au nombre maximum de livraisons
échouées spécifié par la destination de réception de la fonction d’exportation SCA.
Une fois ce nombre atteint, le message de requête est ajouté à la destination
d’exception système du bus Business Process Choreographer. Cependant, si l’échec
se produit lors du traitement réel de la requête par le composant SCA de Business
Flow Manager, le message de requête échoué est géré par l’infrastructure de
gestion des événements en échec de WebSphere Process Server, autrement dit, on
se retrouve dans la base de données de gestion des événements échoués si les
tentatives ne permettent pas de résoudre la situation exceptionnelle.

Corps du message

Le corps du message JMS est une chaîne contenant un document XML représentant
l’élément encapsuleur du document/littéral de l’opération.

Voici l’exemple simple d’un corps de message de requête valide :
<?xml version="1.0" encoding="UTF-8"?>
<_6:queryProcessTemplates xmlns:_6="http://www.ibm.com/xmlns/prod/

websphere/business-process/services/6.0">
<whereClause>PROCESS_TEMPLATE.STATE IN (1)</whereClause>
</_6:queryProcessTemplates>

Tâches associées

Accès à l’interface JMS
Pour envoyer et recevoir des messages par le biais de l’interface JMS, une
application doit d’abord créer une connexion au bus BPC.cellname.Bus, créer une
session, puis générer des expéditeurs et des destinataires de message.

Copie d’artefacts pour les applications client JMS
Un certain nombre d’artefacts peuvent être copiés à partir de l’environnement
WebSphere Process Server pour faciliter la création d’applications client JMS.

A propos de cette tâche

Ces artefacts sont obligatoires uniquement si vous utilisez BOXMLSerializer pour
créer le corps du message JMS. Pour l’API JMS, ces artefacts sont:

BFMIF.wsdl
BFMIF.xsd
BPCGen.xsd
wsa.xsd

Vous pouvez obtenir ces artefacts de différentes manières :
v Publiez et exportez les artefacts à partir de l’environnement WebSphere Process

Server.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 403

Ces artefacts client se trouvent dans le répertoire racine_installation\
ProcessChoreographer\client.

v Copiez les fichiers qui se trouvent dans le répertoire racine_installation\
ProcessChoreographer\client du CD du client WebSphere Process Server.

Résultats
Tâches associées

Développement d’applications client à l’aide de l’API JMS de Business Process
Choreographer
Vous pouvez développer des applications client accédant aux applications de
processus métier de façon asynchrone grâce à l’API JMS (Java Messaging Service).

Vérification du message de réponse pour les exceptions de
métier

Les applications client JMS doivent vérifier l’en-tête de message de tous les
messages de réponse pour les exceptions de métier.

A propos de cette tâche

Une application client JMS doit d’abord vérifier la propriété IsBusinessException
de l’en-tête du message de réponse.

Par exemple :

Exemple
// receive response message
Message receivedMessage = ((JmsProxy) getToBeInvokedUponObject().receiveMessage();
String strResponse = ((TextMessage) receivedMessage).getText();

if (receivedMessage.getStringProperty("IsBusinessException") {
// strResponse is a bussiness fault
// any api can end w/a processFaultMsg
// the call api also w/a businessFaultMsg
}
else {

// strResponse is the output message
}

Tâches associées

Développement d’applications client à l’aide de l’API JMS de Business Process
Choreographer
Vous pouvez développer des applications client accédant aux applications de
processus métier de façon asynchrone grâce à l’API JMS (Java Messaging Service).

Exemple : exécution d’un processus de longue durée à l’aide
de l’API JMS de Business Process Choreographer

Cet exemple montre comment créer une application client générique utilisant l’API
JMS pour exploiter des processus de longue durée.

Procédure

1. Configurez l’environnement JMS, comme décrit dans «Accès à l’interface JMS»,
à la page 399.

2. Obtenez une liste des définitions de processus installées.
v Envoyez la commande queryProcessTemplates.
v Cette commande renvoie une liste d’objets ProcessTemplate.

404 Développement et déploiement

3. Obtenez une liste d’activités de démarrage (activités de réception ou de
sélection avec createInstance="yes").
v Envoyez getStartActivities.
v Cette commande renvoie une liste d’objets InboundOperationTemplate.

4. Créez un message d’entrée. Ce message est propre à l’environnement et peut
nécessiter l’emploi d’artefacts prédéployés, propres à chaque processus.

5. Créez une instance de processus.
v Emettez une instruction sendMessage.
Grâce à l’API JMS, vous pouvez également utiliser l’opération call pour
l’interaction avec des opérations de demande-réponse de longue durée fournies
par un processus métier. Cette opération renvoie le résultat ou l’erreur
d’opération à la destination de réponse spécifiée, même après une longue
période. Par conséquent, si vous utilisez l’opération call, il n’est pas nécessaire
d’utiliser les opérations query et getOutputMessage pour que le message de
sortie de processus ou d’erreur s’affiche.

6. Facultatif : Obtenez les messages de sortie des instances de processus en
répétant la procédure suivante :
a. Emettez la commande query pour obtenir l’état achevé de l’instance de

processus.
b. Emettez la commande getOutputMessage .

7. Facultatif : Travaillez maintenant sur les opérations supplémentaires présentées
par le processus :
a. Envoyez les commandes getWaitingActivities ou getActiveEventHandlers

pour obtenir une liste des objets InboundOperationTemplate.
b. Créez des messages d’entrée.
c. Envoyez les messages à l’aide de la commande sendMessage.

8. Facultatif : Obtenez et définissez des propriétés personnalisées définies sur le
processus ou les activités qu’il contient, en utilisant les commandes
getCustomProperties et setCustomProperties.

9. Terminez le travail sur l’instance de processus :
a. Envoyez delete et terminate pour mettre fin au processus de longue durée.

Tâches associées

Développement d’applications client à l’aide de l’API JMS de Business Process
Choreographer
Vous pouvez développer des applications client accédant aux applications de
processus métier de façon asynchrone grâce à l’API JMS (Java Messaging Service).

Développement d’applications Web pour les processus métier et
tâches utilisateur à l’aide de composants JSF

Business Process Choreographer offre un certain nombre de composants JavaServer
Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de tâches utilisateur à des applications Web.

A propos de cette tâche

WebSphere Integration Developer permet de générer une application Web. Pour les
applications comprenant des tâches utilisateurs, vous pouvez générer un client JSF
personnalisé. Pour plus d’informations sur la génération d’un client JSF, consultez
le centre de documentation de WebSphere Integration Developer.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 405

Vous pouvez également développer votre client Web à l’aide des composants JSF
fournis par Business Process Choreographer.

Procédure

1. Créez un projet dynamique et modifiez les propriétés Web Project Features
pour inclure les composants de base JSF.
Pour plus d’informations sur la création d’un projet Web, accédez au centre de
documentation de WebSphere Integration Developer.

2. Ajoutez les fichiers archive Java (JAR) préalables de Business Process
Choreographer Explorer.
Ajoutez les fichiers suivants au répertoire WEB-INF/lib de votre projet :
v bpcclientcore.jar
v bfmclientmodel.jar
v htmclientmodel.jar
v bpcjsfcomponents.jar

Si vous déployez votre application web sur un serveur distant, ajoutez
également les fichiers suivants. Ces fichiers sont nécessaires pour accéder à
distance aux API de Business Process Choreographer.
v bpe137650.jar
v task137650.jar
Dans WebSphere Process Server, ces fichiers se trouvent tous dans le répertoire
suivant :
v Sous Windows : racine_installation\ProcessChoreographer\client
v Sur les systèmes UNIX®, Linux® et i5/OS : racine_installation/

ProcessChoreographer/client
3. Ajoutez les références EJB requises pour le descripteur de déploiement

d’applications Web, le fichier web.xml.
<ejb-ref id="EjbRef_1">

<ejb-ref-name>ejb/BusinessProcessHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.ibm.bpe.api.BusinessFlowManagerHome</home>
<remote>com.ibm.bpe.api.BusinessFlowManager</remote>

</ejb-ref>
<ejb-ref id="EjbRef_2">

<ejb-ref-name>ejb/HumanTaskManagerEJB</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.ibm.task.api.HumanTaskManagerHome</home>
<remote>com.ibm.task.api.HumanTaskManager</remote>

</ejb-ref>
<ejb-local-ref id="EjbLocalRef_1">

<ejb-ref-name>ejb/LocalBusinessProcessHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>com.ibm.bpe.api.LocalBusinessFlowManagerHome</local-home>
<local>com.ibm.bpe.api.LocalBusinessFlowManager</local>

</ejb-local-ref>
<ejb-local-ref id="EjbLocalRef_2">

<ejb-ref-name>ejb/LocalHumanTaskManagerEJB</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>com.ibm.task.api.LocalHumanTaskManagerHome</local-home>
<local>com.ibm.task.api.LocalHumanTaskManager</local>

</ejb-local-ref>

4. Ajoutez les composants JSF de Business Process Choreographer Explorer à
l’application JSF.
a. Ajoutez les références de bibliothèque de balises requises pour les

applications dans les fichiers JavaServer Pages (JSP). En généralement, les

406 Développement et déploiement

ressources requises sont les bibliothèques de balises JSF et HTML et la
bibliothèque de balises requise par les composants JSF.
v <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

v <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

v <%@ taglib uri="http://com.ibm.bpe.jsf/taglib" prefix="bpe" %>

b. Ajoutez une balise <f:view> au corps de la page JSP et une balise <h:form>
à la balise <f:view>.

c. Ajoutez les composants JSF aux fichiers JSP.
Selon votre application, ajoutez les composants List, Details, CommandBar
ou Message aux fichiers JSP. Vous pouvez ajouter plusieurs instances à
chaque composant.

d. Configurez les beans gérés dans le fichier de configuration JSF.
Le fichier de configuration par défaut est faces-config.xml. Ce fichier réside
dans le répertoire WEB-INF de l’application Web.
Selon le composant que vous ajoutez à votre fichier JSP, vous devez
également ajouter les références à la requête et aux objets d’encapsulation
au fichier de configuration JSF. Pour s’assurer d’un traitement correct des
erreurs, vous devez également définir un bean d’erreur et une cible de
navigation pour la page d’erreur dans le fichier de configuration JSF.
Utilisez BPCError comme nom pour le bean d’erreur et error comme nom
pour la cible de navigation de la page d’erreur.
<faces-config>
...
<managed-bean>

<managed-bean-name>BPCError</managed-bean-name>
<managed-bean-class>com.ibm.bpc.clientcore.util.ErrorBeanImpl
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

...
<navigation-rule>
...
<navigation-case>
<description>
Page générale des erreurs.
</description>
<from-outcome>error</from-outcome>
<to-view-id>/Error.jsp</to-view-id>
</navigation-case>
...
</navigation-rule>
</faces-config>

Lorsque des situations d’erreur entraînent le déclenchement de la page
d’erreur, l’exception est définie au niveau du bean d’erreur.

e. Implémentez le code personnalisé requis pour la prise en charge des
composants JSF.

5. Déployez l’application.
Si vous déployez l’application dans un environnement de déploiement réseau,
modifiez les noms JNDI (Java Naming and Directory Interface) des ressources
cible avec des valeurs permettant de trouver les API de Business Flow Manager
et Human Task Manager dans votre cellule.
v Si vos conteneurs de processus métier sont configurés sur un autre serveur

au sein de la même cellule gérée, les noms se présentent de la manière
suivante :

Chapitre 4. Développement d’applications client pour les tâches et processus métier 407

cellule/noeuds/nomnoeud/serveurs/nomserveur/com/ibm/bpe/api/BusinessManagerHome
cellule/noeuds/nomnoeud/serveurs/nomserveur/com/ibm/task/api/HumanTaskManagerHome

v Si vos conteneurs de processus métier sont configurés sur un serveur au sein
de la même cellule, les noms se présentent de la manière suivante :
cellule/clusters/nomcluster/com/ibm/bpe/api/BusinessFlowManagerHome
cellule/clusters/nomcluster/com/ibm/task/api/HumanTaskManagerHome

Mappez les références EJB avec les noms JNDI ou ajoutez manuellement les
références au fichier ibm-web-bnd.xmi.
Le tableau suivant dresse la liste des liaisons de référence et leurs mappages
par défaut.

Tableau 50. Mappage des liaisons de référence aux noms JNDI

Liaison de référence Nom JNDI Commentaires

ejb/BusinessProcessHome com/ibm/bpe/api/BusinessFlowManagerHome Bean session distant

ejb/LocalBusinessProcessHome com/ibm/bpe/api/BusinessFlowManagerHome Bean session local

ejb/HumanTaskManagerEJB com/ibm/task/api/HumanTaskManagerHome Bean session distant

ejb/LocalHumanTaskManagerEJB com/ibm/task/api/HumanTaskManagerHome Bean session local

Résultats

Votre application Web déployée contient les fonctionnalités fournies par les
composants de Business Process Choreographer Explorer.

Que faire ensuite

Si vous utilisez des JSP personnalisés pour les messages de processus et de tâche,
vous devez mapper les modules web qui sont utilisés pour déployer les JSP avec
les mêmes serveurs que ceux avec lesquels est mappé le client JSF personnalisé.

408 Développement et déploiement

Concepts associés

Composants Exemples de Business Process Choreographer Explorer
Les composants Business Process Choreographer Explorer constituent un ensemble
d’éléments réutilisables configurables basés sur la technologie JavaServer Faces
(JSF). Vous pouvez imbriquer ces éléments dans des applications Web. Les
applications Web peuvent alors accéder à des applications de processus métier et
de tâches utilisateur installées.
Traitement des erreurs dans les composants JSF
Les composants JavaServer Faces (JSF) exploitent un bean géré prédéfini, BPCError,
pour le traitement des erreurs. Lorsque des situations d’erreur entraînent le
déclenchement de la page d’erreur, l’exception est définie au niveau du bean
d’erreur.
Tâches associées

Développement d’applications client pour les tâches et processus métier
Vous pouvez utiliser un outil de modélisation pour compiler et déployer des tâches
et des processus métier. L’interaction avec ces processus et ces tâches se produit
lors de l’exécution. Par exemple, un processus est lancé ou les tâches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des tâches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.
Ajout du composant List à une application JSF
Le composant List de Business Process Choreographer Explorer permet d’afficher
une liste d’objets de modèle client tel qu’une liste d’instances de processus métier
ou une instance de tâche.
Ajout du composant Details à une application JSF
Le composant Details de Business Process Choreographer Explorer permet
d’afficher les propriétés de tâches, de tâches élémentaires, d’instances de processus
et de modèles de processus.
Ajout du composant CommandBar à une application JSF
Utilisez le composant CommandBar de Business Process Choreographer Explorer
pour permettre l’affichage d’une barre comportant des boutons de commande. Ces
boutons représentent des commandes opérant dans une vue détails d’un objet ou
des objets sélectionnés d’une liste.
Ajout du composant Message à une application JSF
Le composant Message de l’explorateur du Chorégraphe de processus métier
permet d’afficher des objets de données et des types de primitive dans une
application JavaServer Faces (JSF).
Référence associée

Convertisseurs et intitulés par défaut d’objets de modèle client
Les objets de modèle client implémentent les interfaces correspondantes de l’API
de Business Process Choreographer.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 409

Composants Exemples de Business Process Choreographer
Explorer

Les composants Business Process Choreographer Explorer constituent un ensemble
d’éléments réutilisables configurables basés sur la technologie JavaServer Faces
(JSF). Vous pouvez imbriquer ces éléments dans des applications Web. Les
applications Web peuvent alors accéder à des applications de processus métier et
de tâches utilisateur installées.

Les composants consistent en un ensemble de composants JSF et un ensemble
d’objets modèle client. La relation entre les composants et Business Process
Choreographer, Business Process Choreographer Explorer et d’autres clients
personnalisés est représentée dans la figure suivante.

Composants JSF

Les composants de Business Process Choreographer Explorer comprennent les
composants JSF suivants. Ces composants JSF sont insérés dans les fichiers
JavaServer Pages (JSP) lorsque vous générez des applications Web de gestion des
processus métier et tâches utilisateur.
v Composant List

Le composant List affiche dans un tableau, une liste d’objets d’application tels
que des tâches, des activités, des instances de processus, des modèles de
processus, des éléments de travail ou des escalades. Ce composant possède un
gestionnaire de liste associé.

410 Développement et déploiement

v Composant Details
Le composant Details permet d’afficher les propriétés de tâches, d’éléments de
travail, d’instances de processus et modèles de processus. Ce composant possède
un gestionnaire de détails associé.

v Composant CommandBar
Le composant CommandBar permet d’afficher une barre avec boutons de
commande. Ces boutons représentent des commandes qui agissent sur l’objet
dans une vue détails ou les objets sélectionnés d’une liste. Ces objets sont
fournis par un gestionnaire de listes ou un gestionnaire de détails.

v Composant Message
Le composant Message affiche un message pouvant contenir un objet SDO
(Service Data Object) ou un type simple.

Objets de modèle client

Les objets de modèle client sont utilisés avec les composants JSF. Les objets
implémentent certaines interfaces de l’API de Business Process Choreographer
sous-jacent et encapsule l’objet d’origine. Les objets de modèle client fournissent un
support multilingue pour les libellés et les convertisseurs de certaines propriétés.
Tâches associées

Développement d’applications Web pour les processus métier et tâches utilisateur à
l’aide de composants JSF
Business Process Choreographer offre un certain nombre de composants JavaServer
Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de tâches utilisateur à des applications Web.

Traitement des erreurs dans les composants JSF
Les composants JavaServer Faces (JSF) exploitent un bean géré prédéfini, BPCError,
pour le traitement des erreurs. Lorsque des situations d’erreur entraînent le
déclenchement de la page d’erreur, l’exception est définie au niveau du bean
d’erreur.

Ce bean met en oeuvre l’interface com.ibm.bpc.clientcore.util.ErrorBean. L’affichage
de la page d’erreur a lieu dans les cas suivants :
v Lorsqu’une erreur se produit durant l’exécution d’une requête définie pour un

gestionnaire de listes, et que cette erreur est générée en tant qu’erreur
ClientException par la méthode execute d’une commande

v Lorsqu’une erreur ClientException est émise par la méthode execute d’une
commande et qu’il ne s’agit pas d’une erreur ErrorsInCommandException, ou
qu’elle ne met pas en oeuvre l’interface CommandBarMessage

v Si un message d’erreur est affiché dans le composant et que vous suivez
l’hyperlien lié au message

Une mise en oeuvre par défaut de l’interface
com.ibm.bpc.clientcore.util.ErrorBeanImpl est disponible.

L’interface est définie comme suit :
public interface ErrorBean {

public void setException(Exception ex);

/*
* Cette méthode d'accès set permet de transmettre l'environnement
* local et l'exception. Ainsi, les méthodes getExceptionMessage

Chapitre 4. Développement d’applications client pour les tâches et processus métier 411

* peuvent renvoyer des chaînes localisées
*
*/
public void setException(Exception ex, Locale locale);

public Exception getException();
public String getStack();
public String getNestedExceptionMessage();
public String getNestedExceptionStack();
public String getRootExceptionMessage();
public String getRootExceptionStack();

/*
* Cette méthode renvoie le message d'exception
* concaténé de façon récursive avec les messages de
* toutes les exceptions imbriquées.
*/
public String getAllExceptionMessages();

/*
* Cette méthode renvoie la pile d'exceptions
* concaténée de façon récursive avec les piles
* toutes les exceptions imbriquées.
*/
public String getAllExceptionStacks();

}

Tâches associées

Développement d’applications Web pour les processus métier et tâches utilisateur à
l’aide de composants JSF
Business Process Choreographer offre un certain nombre de composants JavaServer
Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de tâches utilisateur à des applications Web.

Convertisseurs et intitulés par défaut d’objets de modèle
client

Les objets de modèle client implémentent les interfaces correspondantes de l’API
de Business Process Choreographer.

Les composants List et Details fonctionnent sur tout type de bean. Vous pouvez
afficher toutes les propriétés d’un bean. Toutefois, si vous voulez définir les
convertisseurs et les intitulés utilisés pour les propriétés d’un bean, vous devez
utiliser soit la balise column du composant List, soit la balise property du
composant Details. Au lieu de définir les convertisseurs et les intitulés, vous
pouvez définir des convertisseurs et des intitulés par défaut pour les propriétés en
définissant les méthodes statiques suivantes. Vous pouvez définir les méthodes
statiques suivantes :
static public String getLabel(String property,Locale locale);
static public com.ibm.bpc.clientcore.converter.SimpleConverter

getConverter(String property);

Le tableau suivant répertorie les objets de modèle client qui implémentent les
classes d’API Business Flow Manager et Human Task Manager et fournissent les
intitulés et le convertisseur par défaut pour leurs propriétés. Cet encapsulage des
interfaces fournit des intitulés sensibles et des convertisseurs pour un ensemble de
propriétés. Le tableau suivant répertorie les correspondances entre les interfaces de
Business Process Choreographer et les objets de modèle client.

412 Développement et déploiement

Tableau 51. Mappage d’interfaces de Business Process Choreographer avec des objets de modèle client

Interface de Business Process Choreographer Classe d’objet de modèle client

com.ibm.bpe.api.ActivityInstanceData com.ibm.bpe.clientmodel.bean.ActivityInstanceBean

com.ibm.bpe.api.ActivityServiceTemplateData com.ibm.bpe.clientmodel.bean.ActivityServiceTemplateBean

com.ibm.bpe.api.ProcessInstanceData com.ibm.bpe.clientmodel.bean.ProcessInstanceBean

com.ibm.bpe.api.ProcessTemplateData com.ibm.bpe.clientmodel.bean.ProcessTemplateBean

com.ibm.task.api.Escalation com.ibm.task.clientmodel.bean.EscalationBean

com.ibm.task.api.Task com.ibm.task.clientmodel.bean.TaskInstanceBean

com.ibm.task.api.TaskTemplate com.ibm.task.clientmodel.bean.TaskTemplateBean

Tâches associées

Développement d’applications Web pour les processus métier et tâches utilisateur à
l’aide de composants JSF
Business Process Choreographer offre un certain nombre de composants JavaServer
Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de tâches utilisateur à des applications Web.

Ajout du composant List à une application JSF
Le composant List de Business Process Choreographer Explorer permet d’afficher
une liste d’objets de modèle client tel qu’une liste d’instances de processus métier
ou une instance de tâche.

Procédure

1. Ajoutez le composant List au fichier JavaServer Pages (JSP).
Ajoutez la balise bpe:list> à la balise h:form. La balise bpe:list> doit contenir
un attribut de modèle. Ajoutez des balises bpe:column à la balise bpe:list pour
ajouter les propriétés des objets qui doivent figurer à chaque ligne de la liste.
L’exemple suivant illustre l’ajout d’un composant List afin d’afficher des
instances de tâche.
<h:form>

<bpe:list model="#{TaskPool}">
<bpe:column name="name" action="taskInstanceDetails" />
<bpe:column name="state" />
<bpe:column name="kind" />
<bpe:column name="owner" />
<bpe:column name="originator" />

</bpe:list>

</h:form>

L’attribut de modèle fait référence à un bean géré, TaskPool. Le bean géré
fournit la liste d’objets Java traités par itération, puis affichés dans des lignes
individuelles.

2. Configurez le bean géré référencé par la balise bpe:list.
Pour le composant List, ce bean géré doit être une instance de la classe
com.ibm.bpe.jsf.handler.BPCListHandler.
L’exemple suivant illustre l’ajout d’un bean géré TaskPool au fichier de
configuration.
<managed-bean>
<managed-bean-name>TaskPool</managed-bean-name>
<managed-bean-class>com.ibm.bpe.jsf.handler.BPCListHandler</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

<managed-property>

Chapitre 4. Développement d’applications client pour les tâches et processus métier 413

<property-name>query</property-name>
<value>#{TaskPoolQuery}</value>

</managed-property>
<managed-property>

<property-name>type</property-name>
<value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

</managed-property>
</managed-bean>

<managed-bean>
<managed-bean-name>TaskPoolQuery</managed-bean-name>
<managed-bean-class>sample.TaskPoolQuery</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

<managed-property>
<property-name>type</property-name>
<value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

</managed-property>
</managed-bean>

<managed-bean>
<managed-bean-name>htmConnection</managed-bean-name>
<managed-bean-class>com.ibm.task.clientmodel.HTMConnection</managed-bean-class>
<managed-bean-scope>application</managed-bean-scope>

<managed-property>
<property-name>jndiName</property-name>
<value>java:comp/env/ejb/LocalHumanTaskManagerEJB</value>

</managed-property>
</managed-bean>

L’exemple indique que TaskPool possède deux propriétés configurables : query
et type. La valeur de la propriété query fait référence à un autre bean géré,
TaskPoolQuery. La valeur de la propriété type indique la classe de bean dont
les propriétés s’affichent dans les colonnes de la liste affichée. L’instance de
requête associée possède également un type de propriété. Si un type de
propriété est indiqué, il doit être identique au type indiqué pour le gestionnaire
de liste.
Vous pouvez ajouter n’importe quel type de logique de requête à l’application
JSF à partir du moment où le résultat de la requête peut être représenté sous
forme de liste de beans fortement typés. Par exemple, la requête TaskPoolQuery
est implémentée à l’aide d’une liste d’objets
com.ibm.task.clientmodel.bean.TaskInstanceBean.

3. Ajoutez le code personnalisé du bean géré figurant en référence dans le
gestionnaire de liste.
L’exemple suivant illustre l’ajout de code personnalisé du bean géré TaskPool.
public class TaskPoolQuery implements Query {

public List execute throws ClientException {

// Rechercher dans le fichier faces-config le bean géré "htmConnection".
//
FacesContext ctx = FacesContext.getCurrentInstance();
Application app = ctx.getApplication();
ValueBinding htmVb = app.createValueBinding("#{htmConnection}");
htmConnection = (HTMConnection) htmVb.getValue(ctx);
HumanTaskManagerService taskService =

htmConnection.getHumanTaskManagerService();

// Appel de la méthode de requête effective sur le service Human Task Manager.
//
// Ajouter à l'instruction de sélection les colonnes de base de données
// de toutes les propriétés à afficher dans la liste
//
QueryResultSet queryResult = taskService.query(
"DISTINCT TASK.TKIID, TASK.NAME, TASK.KIND, TASK.STATE, TASK.TYPE,"

414 Développement et déploiement

+ "TASK.STARTER, TASK.OWNER, TASK.STARTED, TASK.ACTIVATED, TASK.DUE,
TASK.EXPIRES, TASK.PRIORITY",

"TASK.KIND IN(101,102,105) AND TASK.STATE IN(2)
AND WORK_ITEM.REASON IN (1)",

(Chaîne)null,
(Integer)null,
(TimeZone)null);

List applicationObjects = transformToTaskList (queryResult);
return applicationObjects ;

}

private List transformToTaskList(QueryResultSet result) {

ArrayList array = null;
int entries = result.size();
array = new ArrayList(entries);

// Transformation de chaque ligne de QueryResultSet en bean d'instance de tâche.
for (int i = 0; i < entries; i++) {

result.next();
array.add(new TaskInstanceBean(result, connection));

}
return array ;
}

}

Le bean TaskPoolQuery interroge les propriétés des objets Java. Ce bean doit
implémenter l’interface com.ibm.bpc.clientcore.Query. Quand il actualise son
contenu, le gestionnaire de liste appelle la méthode execute de la requête.
L’appel renvoie une liste d’objets Java. La méthode getType doit renvoyer le
nom de classe des objets Java renvoyés.

Résultats

Votre application JSF contient à présent une page JavaServer affichant les
propriétés de la liste d’objets demandée : état, type, propriétaire et émetteur des
tâches d’instance disponibles, par exemple.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 415

Concepts associés

Mode de traitement des listes
Chaque instance du composant List est associée à une instance de la classe
com.ibm.bpe.jsf.handler.BPCListHandler.
Informations de fuseau horaire propres à l’utilisateur
Les composants JavaServer Faces (JSF) offrent un utilitaire de gestion des
informations de fuseau horaire propre à l’utilisateur dans le composant List.
Traitement des erreurs dans le composant List
Lorsque vous utilisez le composant List pour afficher des listes dans votre
application JSF, vous pouvez tirer parti des fonctions de traitement d’erreurs
fournies par la classe com.ibm.bpe.jsf.handler.BPCListHandler.
Tâches associées

Développement d’applications Web pour les processus métier et tâches utilisateur à
l’aide de composants JSF
Business Process Choreographer offre un certain nombre de composants JavaServer
Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de tâches utilisateur à des applications Web.
Référence associée

Composant List : définitions de balises
Le composant List de Business Process Choreographer Explorer affiche dans un
tableau, une liste d’objets d’application tels que des tâches, des activités, des
instances de processus, des modèles de processus, des éléments de travail ou des
escalades.

Mode de traitement des listes
Chaque instance du composant List est associée à une instance de la classe
com.ibm.bpe.jsf.handler.BPCListHandler.

Le gestionnaire de listes effectue le suivi des éléments sélectionnés dans la liste
associée et fournit un mécanisme de notification pour associer les entrées de liste
aux pages de détails des différents types d’éléments. Le gestionnaire de listes est
lié au composant List via l’attribut model contenu dans la balise bpe:list.

Le système de notification du gestionnaire de listes est mis en oeuvre via l’interface
com.ibm.bpe.jsf.handler.ItemListener. Des implémentations de cette interface
peuvent être enregistrées dans le fichier de configuration de votre application JSF
(JavaServer Faces).

La notification est déclenchée en cas d’activation d’un lien dans la liste. Les liens
de toutes les colonnes pour lesquelles l’attribut action est défini, s’affichent. La
valeur de l’attribut action est soit une cible de navigation JSF, soit une méthode
d’action JSF qui renvoie une cible de navigation JSF.

La classe BPCListHandler fournit également une méthode refreshList. Vous pouvez
appliquer cette méthode à des liaisons de méthodes JSF afin de mettre en oeuvre
un contrôle d’interface utilisateur visant à réexécuter la requête.

Mises en oeuvre de requêtes

Le gestionnaire de listes peut être utilisé pour afficher toutes sortes d’objets, ainsi
que les propriétés de ces derniers. Le contenu de la liste affichée dépend de la liste
des objets renvoyés par la mise en oeuvre de l’interface
com.ibm.bpc.clientcore.Query configurée pour le gestionnaire de listes. Vous

416 Développement et déploiement

pouvez définir la requête par voie de programme via la méthode setQuery de la
classe BPCListHandler, ou la configurer dans les fichiers de configuration JSF de
l’application.

L’exécution de requêtes peut concerner non seulement les API de Business Process
Choreographer, mais également toute autre source d’informations accessible par le
biais de votre application, telle qu’un système de gestion de contenus ou une base
de données. La seule condition requise est que le résultat de la requête soit
renvoyé sous forme d’une liste java.util.List contenant les objets de la méthode
execute.

Le type des objets renvoyés doit garantir que les méthodes d’accès get appropriées
sont disponibles pour toutes les propriétés affichées dans les colonnes de la liste
faisant l’objet de la requête. Pour vous assurer que le type d’objet renvoyé
correspond bien aux définitions de la liste, vous pouvez utiliser le nom de classe
qualifié complet des objets renvoyés en tant que valeur de propriété du type
concerné dans l’instance BPCListHandler définie par le fichier de configuration JSF.
Ce nom peut être renvoyé dans l’appel getType de la mise en oeuvre de la requête.
Lors de l’exécution, le gestionnaire de listes contrôle que les types d’objet sont bien
conformes aux définitions.

Pour créer un mappage entre des messages d’erreur et des entrées spécifiques
d’une liste, les objets renvoyés par la requête doivent mettre en oeuvre une
méthode comportant la signature public Object getID().

Convertisseurs et intitulés par défaut

Les éléments renvoyés par une requête doivent être des beans et leurs classes
doivent correspondre à la classe spécifiée comme le type dans la définition de la
classe BPCListHandler ou de l’interface com.ibm.bpc.clientcore.Query. De plus, le
composant List vérifie si la classe d’éléments ou une superclasse implémente les
méthodes suivantes :
static public String getLabel(String property,Locale locale);
static public com.ibm.bpc.clientcore.converter.SimpleConverter

getConverter(String property);

Si ces méthodes sont définies pour les beans, le composant List utilise l’intitulé
comme intitulé par défaut pour la liste et SimpleConverter comme convertisseur
par défaut pour la propriété. Vous pouvez remplacer ces paramètres par les
attributs label et converterID de la balise bpe:list. Pour plus d’informations sur
l’interface SimpleConverter et ColumnTag class, reportez-vous à la documentation
Java.
Tâches associées

Ajout du composant List à une application JSF
Le composant List de Business Process Choreographer Explorer permet d’afficher
une liste d’objets de modèle client tel qu’une liste d’instances de processus métier
ou une instance de tâche.

Informations de fuseau horaire propres à l’utilisateur
Les composants JavaServer Faces (JSF) offrent un utilitaire de gestion des
informations de fuseau horaire propre à l’utilisateur dans le composant List.

La classe BPCListHandler utilise l’interface com.ibm.bpc.clientcore.util.User pour
obtenir des informations sur le fuseau horaire et l’environnement local de chaque
utilisateur. Pour les besoins du composant List la mise en oeuvre de l’interface doit
être configurée de sorte que user soit le nom du bean géré défini dans le fichier

Chapitre 4. Développement d’applications client pour les tâches et processus métier 417

fichier de configuration JSF (JavaServer Faces). Si cette entrée est absente du fichier
de configuration, la valeur renvoyée est celle du fuseau horaire dans lequel
WebSphere Process Server est exécuté.

L’interface com.ibm.bpc.clientcore.util.User est définie comme suit :
public interface User {

/**
* Environnement local utilisé par le client de l'utilisateur.
* @return Locale.
*/
public Locale getLocale();
/**
* Fuseau horaire utilisé par le client de l'utilisateur.
* @return TimeZone.
*/
public TimeZone getTimeZone();

/**
* Nom de l'utilisateur.
* @return nom de l'utilisateur.
*/
public String getName();

}

Tâches associées

Ajout du composant List à une application JSF
Le composant List de Business Process Choreographer Explorer permet d’afficher
une liste d’objets de modèle client tel qu’une liste d’instances de processus métier
ou une instance de tâche.

Traitement des erreurs dans le composant List
Lorsque vous utilisez le composant List pour afficher des listes dans votre
application JSF, vous pouvez tirer parti des fonctions de traitement d’erreurs
fournies par la classe com.ibm.bpe.jsf.handler.BPCListHandler.

Erreurs se produisant lors de l’exécution de requêtes ou de
commandes

Si une erreur se produit lors de l’exécution d’une requête, la classe BPCListHandler
fait une distinction entre les erreurs dues à des droits d’accès insuffisants et les
autres exceptions. Pour intercepter les erreurs dues à des droits d’accès
insuffisants, le paramètre rootCause de l’exception ClientException lancée par la
méthode execute de la requête doit être une exception de type
com.ibm.bpe.api.EngineNotAuthorizedException ou
com.ibm.task.api.NotAuthorizedException. Le composant List affiche le message
d’erreur à la place du résultat de la requête.

Si l’erreur n’est pas provoquée par des droits d’accès insuffisants, la classe
BPCListHandler transmet l’objet exception à la mise en oeuvre d’interface
com.ibm.bpc.clientcore.util.ErrorBean qui est définie par la clé BPCError dans le
fichier de configuration de l’application JSF. Une fois l’exception définie, la cible de
navigation de l’erreur est appelée.

Erreurs se produisant lors du traitement d’entités affichées dans une
liste

La classe BPCListHandler met en oeuvre l’interface
com.ibm.bpe.jsf.handler.ErrorHandler. Vous pouvez fournir des informations sur

418 Développement et déploiement

ces erreurs via le paramètre de mappage de type java.util.Map inclus dans la
méthode setErrors. Dans cette mappe, des identifiants sont associés à des clés et
des exceptions sont associées à des valeurs. Les identifiants doivent
obligatoirement être les valeurs renvoyées par la méthode getID de l’objet ayant
provoqué l’erreur. Si la mappe est définie et qu’un ID correspond à l’une des
entités de la liste, le gestionnaire de listes ajoute automatiquement à la liste une
colonne contenant le message d’erreur.

Pour éviter que la liste ne contienne des messages d’erreur périmés, réinitialisez la
mappe d’erreurs. La mappe est initialisée automatiquement dans les cas suivants :
v La classe BPCListHandler de la méthode refreshList est appelée.
v Une nouvelle requête est envoyée à la classe BPCListHandler.
v Le composant CommandBar est utilisé pour déclencher des actions concernant

les entités contenues dans la liste. Le composant CommandBar utilise ce
mécanisme comme méthode de traitement des erreurs.

Tâches associées

Ajout du composant List à une application JSF
Le composant List de Business Process Choreographer Explorer permet d’afficher
une liste d’objets de modèle client tel qu’une liste d’instances de processus métier
ou une instance de tâche.

Composant List : définitions de balises
Le composant List de Business Process Choreographer Explorer affiche dans un
tableau, une liste d’objets d’application tels que des tâches, des activités, des
instances de processus, des modèles de processus, des éléments de travail ou des
escalades.

Le composant List comprend deux balises de composant JSF : bpe:list et
bpe:column. La balise bpe:column est un sous-élément de la balise bpe:list.

Classe de composants

com.ibm.bpe.jsf.component.ListComponent

Syntaxe exemple
<bpe:list model="#{ProcessTemplateList}">

rows="20"
styleClass="list"
headerStyleClass="listHeader"
rowClasses="normal">

<bpe:column name="name" action="processTemplateDetails"/>
<bpe:column name="validFromTime"/>
<bpe:column name="executionMode" label="Execution mode"/>
<bpe:column name="state" converterID="my.state.converter"/>
<bpe:column name="autoDelete"/>
<bpe:column name="description"/>

</bpe:list>

Attributs de balise

Le corps de la balise bpe:list ne peut contenir que des balises bpe:column. Quand
la table s’affiche, le composant List effectue une itération sur sa liste d’objets
d’application et affiche toutes les colonnes de chaque objet.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 419

Tableau 52. Attributs bpe:list

Attribut Obligatoire Description

buttonStyleClass non Classe de styles CSS pour l’affichage des
boutons dans la zone de pied de page.

cellStyleClass non Classe de styles CSS pour l’affichage de
cellules de tableau.

checkbox non Détermine si la case à cocher de sélection
multiple est affichée. L’attribut possède la
valeur true ou false. Si la valeur est
définie sur true, la colonne de case à
cocher est affichée.

headerStyleClass non Classe de styles CSS pour l’affichage de
l’entête de tableau.

model oui Liaison de valeur d’un bean géré de la
classe
com.ibm.bpe.jsf.handler.BPCListHandler.

rows non Nombre de lignes affichées par page. Si le
nombre d’éléments est supérieur au
nombre de lignes, des boutons de
pagination s’affichent à la fin du tableau.
Les expressions de valeur ne sont pas
prises en charge pour cet attribut.

rowClasses non Classe de styles CSS pour l’affichage des
lignes du tableau.

selectAll non Si cet attribut est défini à true, tous les
éléments de la liste sont sélectionnés par
défaut.

styleClass non Classe de styles CSS pour l’affichage du
tableau contenant les titres, les lignes et
les boutons de pagination.

Tableau 53. Attributs bpe:column

Attribut Obligatoire Description

action non Si cet attribut est indiqué, un lien s’affiche
dans cette colonne. Quand vous cliquez
sur ce lien, cela provoque le
déclenchement d’une méthode d’action
JavaServer Faces ou de la cible de
navigation Faces. Une méthode d’action
JavaServer Faces possède la signature :
String method().

converterID non L’identificateur du convertisseur Faces
utilisé pour convertir la valeur de la
propriété. Si cet attribut n’est pas défini,
l’identificateur du convertisseur Faces
fourni par le modèle pour cette propriété
est utilisé.

label non Expression littérale ou de liaison de
valeur utilisée en tant qu’intitulé de
l’en-tête de la colonne ou de la cellule de
la ligne d’en-tête de table. Si cet attribut
n’est pas défini, l’intitulé fourni par le
modèle pour cette propriété est utilisé.

420 Développement et déploiement

Tableau 53. Attributs bpe:column (suite)

Attribut Obligatoire Description

name oui Nom de la propriété qui est affichée dans
cette colonne.

Tâches associées

Ajout du composant List à une application JSF
Le composant List de Business Process Choreographer Explorer permet d’afficher
une liste d’objets de modèle client tel qu’une liste d’instances de processus métier
ou une instance de tâche.

Ajout du composant Details à une application JSF
Le composant Details de Business Process Choreographer Explorer permet
d’afficher les propriétés de tâches, de tâches élémentaires, d’instances de processus
et de modèles de processus.

Procédure

1. Ajoutez le composant Details au fichier JavaServer Pages (JSP).
Ajoutez la balise bpe:details à la balise <h:form>. La balise bpe:details doit
contenir un attribut de modèle. Vous pouvez ajouter des propriétés au
composant Details à l’aide de la balise bpe:property.
L’exemple suivant illustre l’ajout d’un composant Details afin d’afficher
quelques-unes des propriétés d’une instance de tâche.
<h:form>

<bpe:details model="#{TaskInstanceDetails}">
<bpe:property name="displayName" />
<bpe:property name="owner" />
<bpe:property name="kind" />
<bpe:property name="state" />
<bpe:property name="escalated" />
<bpe:property name="suspended" />
<bpe:property name="originator" />
<bpe:property name="activationTime" />
<bpe:property name="expirationTime" />

</bpe:details>

</h:form>

L’attribut de modèle fait référence à un bean géré, TaskInstanceDetails. Le bean
fournit les propriétés de l’objet Java.

2. Configurez le bean géré référencé par la balise bpe:details.
Pour le composant Details, ce bean géré doit être une instance de la classe
com.ibm.bpe.jsf.handler.BPCDetailsHandler. Cette classe de gestionnaire
encapsule un objet Java et expose ses propriétés publiques au composant
Details.
L’exemple suivant illustre l’ajout d’un bean géré TaskInstanceDetails au fichier
de configuration.
<managed-bean>

<managed-bean-name>TaskInstanceDetails</managed-bean-name>
<managed-bean-class>com.ibm.bpe.jsf.handler.BPCDetailsHandler</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>

<property-name>type</property-name>
<value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

</managed-property>
</managed-bean>

Chapitre 4. Développement d’applications client pour les tâches et processus métier 421

L’exemple montre que le bean TaskInstanceDetails bean possède une propriété
type configurable. La valeur de la propriété type indique la classe de bean
(com.ibm.task.clientmodel.bean.TaskInstanceBean) dont les propriétés s’affichent
dans les lignes de détail générées. La classe de bean peut correspondre à
n’importe quelle classe JavaBeans. Si le bean fournit des intitulés de conversion
et de propriété par défaut, le convertisseur et l’intitulé sont utilisés pour le
rendu de la même manière que le composant List.

Résultats

Votre application JSF contient à présent une page JavaServer affichant les détails de
l’objet spécifié (une instance de tâche, par exemple).
Tâches associées

Développement d’applications Web pour les processus métier et tâches utilisateur à
l’aide de composants JSF
Business Process Choreographer offre un certain nombre de composants JavaServer
Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de tâches utilisateur à des applications Web.
Référence associée

Composant Details : définitions de balises
Le composant Details de Business Process Choreographer Explorer permet
d’afficher les propriétés de tâches, d’éléments de travail, d’instances de processus
et modèles de processus.

Composant Details : définitions de balises
Le composant Details de Business Process Choreographer Explorer permet
d’afficher les propriétés de tâches, d’éléments de travail, d’instances de processus
et modèles de processus.

Le composant Details comprend deux balises de composant JSF : bpe:details et
bpe:property. La balise bpe:property est un sous-élément de la balise bpe:details.

Classe de composants

com.ibm.bpe.jsf.component.DetailsComponent

Syntaxe exemple
<bpe:details model=”#{MyActivityDetails}”>

<bpe:property name=”name”/>
<bpe:property name=”owner”/>
<bpe:property name=”activated”/>

</bpe:details>

<bpe:details model=”#{MyActivityDetails}” style=”style” styleClass=”cssStyle”>
style=”style”
styleClass=”cssStyle”

</bpe:details>

Attributs de balise

Les balises bpe:property permettent d’indiquer à la fois le sous-ensemble
d’attributs affichés et l’ordre d’affichage de ces attributs. Si la balise détails ne
contient pas de balise d’attribut, elle affiche tous les attributs disponibles de l’objet
modèle.

422 Développement et déploiement

Tableau 54. Attributs bpe:details

Attribut Obligatoire Description

columnClasses non Liste des classes de style CSS séparées par
des virgules et utilisées pour l’affichage de
colonnes.

id non ID du composant JavaServer Faces.

model oui Liaison de valeur d’un bean géré de la
classe
com.ibm.bpe.jsf.handler.BPCDetailsHandler.

rowClasses non Liste des classes de style CSS séparées par
des virgules et utilisées pour l’affichage
des lignes.

styleClass non Classe CSS utilisée pour l’affichage de
l’élément HTML.

Tableau 55. Attributs bpe:property

Attribut Obligatoire Description

converterID non Identificateur utilisé pour l’enregistrement
du convertisseur dans le fichier de
configuration JavaServer Faces (JSF).

label non Libellé de la propriété. Si cet attribut n’est
pas défini, un libellé par défaut est fourni
par la classe de modèle client.

name oui Nom de la propriété à afficher. Ce nom
doit correspondre à une propriété nommée
définie dans la classe de modèle client
correspondant.

Tâches associées

Ajout du composant Details à une application JSF
Le composant Details de Business Process Choreographer Explorer permet
d’afficher les propriétés de tâches, de tâches élémentaires, d’instances de processus
et de modèles de processus.

Ajout du composant CommandBar à une application JSF
Utilisez le composant CommandBar de Business Process Choreographer Explorer
pour permettre l’affichage d’une barre comportant des boutons de commande. Ces
boutons représentent des commandes opérant dans une vue détails d’un objet ou
des objets sélectionnés d’une liste.

A propos de cette tâche

Quand l’utilisateur clique sur un bouton dans l’interface, la commande
correspondante est exécutée sur les objets sélectionnés. Vous pouvez ajouter et
étendre le composant CommandBar dans votre application JSF (JavaServer Faces).

Procédure

1. Ajoutez le composant CommandBar au fichier JavaServer Pages (JSP).
Ajoutez la balise bpe:commandbar à la balise <h:form>. La balise bpe:commandbar
doit contenir un attribut de modèle.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 423

L’exemple suivant illustre l’ajout d’un composant CommandBar, ce dernier
fournissant des commandes de régénération et de réclamation pour une liste
d’instances de tâches.
<h:form>

<bpe:commandbar model="#{TaskInstanceList}">
<bpe:command commandID="Refresh" >

action="#{TaskInstanceList.refreshList}"
label="Refresh"/>

<bpe:command commandID="MyClaimCommand" >
label="Claim" >
commandClass="<customcode>"/>

</bpe:commandbar>

</h:form>

L’attribut model fait référence à un bean géré. Ce bean doit implémenter
l’interface ItemProvider et fournir les objets Java sélectionnés. Le composant
CommandBar est généralement utilisé soit avec le composant List, soit avec le
composant Details dans le même fichier JSP. En général, le modèle spécifié dans
la balise correspond à celui qui est indiqué dans le composant List ou Details
sur la même page. Pour un composant List, la commande agit donc sur les
éléments sélectionnés dans la liste.
Dans cet exemple, l’attribut model fait référence au bean géré TaskInstanceList.
Ce bean fournit les objets sélectionnés dans la liste des instances de tâches. Il
doit implémenter l’interface ItemProvider. Cette interface est implémentée par
les classes BPCListHandler et BPCDetailsHandler.

2. Facultatif : Configurez le bean géré référencé par la balise bpe:commandbar.
Si l’attribut model de CommandBar fait référence à un bean géré qui est déjà
configuré, par exemple dans le cas d’une liste ou d’un gestionnaire de détails,
aucune configuration complémentaire n’est requise. Si vous n’utilisez ni la
classe BPCListHandler, ni la classe BPCDetailsHandler pour le modèle, vous
devez faire référence à un autre objet comportant une classe qui implémente
l’interface ItemProvider.

3. Ajoutez le code implémentant les commandes personnalisés vers l’application
JSF.
Le fragment de code ci-dessous montre comment écrire une classe de
commandes qui implémente l’interface Command. Cette classe de commandes
(MyClaimCommand) est désignée par la balise bpe:command dans le fichier JSP.
public class MyClaimCommand implements Command {

public String execute(List selectedObjects) throws ClientException {
if(selectedObjects != null && selectedObjects.size() > 0) {

try {
// Déterminer HumanTaskManagerService à partir d'un bean HTMConnection.
// Configurer le bean dans le fichier faces-config.xml pour faciliter
// l'accès à l'application JSF.
FacesContext ctx = FacesContext.getCurrentInstance();
ValueBinding vb =

ctx.getApplication().createValueBinding("{htmConnection}");
HTMConnection htmConnection = (HTMConnection) htmVB.getValue(ctx);
HumanTaskManagerService htm =

htmConnection.getHumanTaskManagerService();

Iterator iter = selectedObjects.iterator() ;
while(iter.hasNext()) {

try {
TaskInstanceBean task = (TaskInstanceBean) iter.next() ;
TKIID tiid = task.getID() ;

424 Développement et déploiement

htm.claim(tiid) ;
task.setState(new Integer(TaskInstanceBean.STATE_CLAIMED)) ;

}
catch(Exception e) {

; // Erreur lors de l'itération ou réclamation d'une instance
de tâche.

// Ignorer pour mieux comprendre l'exemple.
}

}
}
catch(Exception e) {

; // Erreur de configuration ou de communication.
// Ignorer pour mieux comprendre l'exemple.

}
}
return null;

}

// Implémentations par défaut
public boolean isMultiSelectEnabled() { return false; }
public boolean[] isApplicable(List itemsOnList) {return null; }
public void setContext(Object targetModel) {; // Non utilisé ici }
}

La commande est traitée ainsi :
a. Une commande est appelée quand un utilisateur clique sur le bouton

correspondant dans la barre de commandes. Le composant CommandBar
extrait les éléments sélectionnés depuis le fournisseur d’éléments indiqué
dans l’attribut model et transmet la liste d’objets sélectionnés à la méthode
execute de l’instance commandClass.

b. Facultatif : L’attribut commandClass fait référence à une implémentation de
commande personnalisée mettant en oeuvre l’interface Command. Cela
signifie que la commande doit implémenter la méthode public String
execute(List selectedObjects) throws ClientException. Elle renvoie le résultat
permettant de déterminer la prochaine règle de navigation de l’application
JSF.

c. Facultatif : Après l’exécution de la commande, le composant CommandBar
évalue l’attribut action. L’attribut action peut être une chaîne statique ou
une liaison de méthode vers une méthode d’action ayant la signature public
String Method(). L’attribut action permet de remplacer le résultat d’une
classe de commandes ou d’indiquer explicitement un résultat pour les règles
de navigation. L’attribut action n’est pas traité si la commande génère une
exception autre que ErrorsInCommandException.

d. Si aucune classe de commandes n’est spécifiée pour l’attribut
commandClass, l’action est immédiatement appelée. Par exemple, pour la
commande refresh utilisée dans l’exemple, c’est l’expression de valeur JSF
#{TaskInstanceList.refreshList} qui est appelée au lieu d’une commande.

Résultats

Votre application JSF contient à présent une page JSP implémentant une barre de
commandes personnalisée.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 425

Concepts associés

Mode de traitement des commandes
Utilisez le composant CommandBar pour intégrer des boutons d’action à votre
application. Le composant crée les boutons qui correspondent aux actions dans
l’interface utilisateur et traite les événements générés lors du clic sur un bouton.
Tâches associées

Développement d’applications Web pour les processus métier et tâches utilisateur à
l’aide de composants JSF
Business Process Choreographer offre un certain nombre de composants JavaServer
Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de tâches utilisateur à des applications Web.
Référence associée

Composant CommandBar : définitions de balises
Le composant CommandBar de Business Process Choreographer Explorer permet
d’afficher une barre comportant des boutons de commande. Ces boutons agissent
sur l’objet dans une vue détails ou les objets sélectionnés d’une liste.

Mode de traitement des commandes
Utilisez le composant CommandBar pour intégrer des boutons d’action à votre
application. Le composant crée les boutons qui correspondent aux actions dans
l’interface utilisateur et traite les événements générés lors du clic sur un bouton.

Ces boutons déclenchent des fonctions agissant sur les objets renvoyés par une
interface com.ibm.bpe.jsf.handler.ItemProvider tels que la classe BPCListHandler,
ou encore la classe BPCDetailsHandler. Le composant CommandBar utilise le
fournisseur d’éléments défini par la valeur de l’attribut model contenu dans la
balise bpe:commandbar.

Lorsqu’un clic est effectué sur un bouton situé dans la section dédiée à la barre de
commandes dans l’interface utilisateur de l’application, l’événement associé est
traité comme suit par le composant CommandBar.
1. Le composant CommandBar identifie la mise en oeuvre de l’interface

com.ibm.bpc.clientcore.Command spécifiée pour le bouton ayant généré
l’événement.

2. Si le modèle associé au composant CommandBar met en oeuvre l’interface
com.ibm.bpe.jsf.handler.ErrorHandler, la méthode clearErrorMap est appelée
pour effacer les messages d’erreur consécutifs aux événements antérieurs.

3. La méthode getSelectedItems de l’interface ItemProvider est appelée. La liste
des entités renvoyées est transmise à la méthode execute de la commande, puis
cette dernière est appelée.

4. Le composant CommandBar détermine la cible de navigation JSF (JavaServer
Faces). Si aucun attribut action n’est spécifié dans la balise bpe:commandbar, la
cible de navigation est spécifiée par la valeur renvoyée de la méthode execute.
Si l’attribut action est défini sur une liaison de méthode JSF, la chaîne renvoyée
par la méthode est interprétée comme étant la cible de navigation. L’attribut
action peut également spécifier une cible de navigation explicite.

426 Développement et déploiement

Tâches associées

Ajout du composant CommandBar à une application JSF
Utilisez le composant CommandBar de Business Process Choreographer Explorer
pour permettre l’affichage d’une barre comportant des boutons de commande. Ces
boutons représentent des commandes opérant dans une vue détails d’un objet ou
des objets sélectionnés d’une liste.

Composant CommandBar : définitions de balises
Le composant CommandBar de Business Process Choreographer Explorer permet
d’afficher une barre comportant des boutons de commande. Ces boutons agissent
sur l’objet dans une vue détails ou les objets sélectionnés d’une liste.

Le composant CommandBar comprend deux balises de composant JSF :
bpe:commandbar et bpe:command. La balise bpe:command est un sous-élément de la
balise bpe:commandbar.

Classe de composants

com.ibm.bpe.jsf.component.CommandBarComponent

Syntaxe exemple
<bpe:commandbar model="#{TaskInstanceList}">

<bpe:command
commandID="Work on"
label="Work on..."
commandClass="com.ibm.bpc.explorer.command.WorkOnTaskCommand"
context="#{TaskInstanceDetailsBean}"/>

<bpe:command
commandID="Cancel"
label="Cancel"
commandClass="com.ibm.task.clientmodel.command.CancelClaimTaskCommand"
context="#{TaskInstanceList}"/>

</bpe:commandbar>

Attributs de balise

Tableau 56. Attributs bpe:commandbar

Attribut Obligatoire Description

buttonStyleClass non Classe de styles CSS pour l’affichage des
boutons de la barre de commandes.

id non ID du composant JavaServer Faces.

model oui Expression de liaison de valeur vers un bean
géré implémentant une interface
ItemProvider. Ce bean géré est généralement
la classe
com.ibm.bpe.jsf.handler.BPCListHandler ou la
classe
com.ibm.bpe.jsf.handler.BPCDetailsHandler
utilisée par le composant List ou Details dans
le même fichier JavaServer Pages (JSP) que le
composant CommandBar.

styleClass non Classe de styles CSS pour l’affichage de la
barre de commandes.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 427

Tableau 57. Attributs bpe:command

Attribut Obligatoire Description

action non Méthode d’action JavaServer Faces ou cible
de navigation Faces qui est déclenchée par le
bouton de commande. La cible de navigation
qui est renvoyée par l’action écrase toutes les
autres règles de navigation. L’action est
appelée lorsqu’une exception n’est pas émise
ou lorsqu’une exception
ErrorsInCommandException est émise par la
commande.

commandClass non Le nom de la classe de commande. Une
instance de la classe est créée par le
composant CommandBar, puis elle est
exécutée lorsque le bouton de commande est
sélectionné.

commandID oui ID de la commande.

context non Un objet qui fournit du contexte pour les
commandes qui sont spécifiées à l’aide de
l’attribut commandClass. L’objet de contexte
est extrait lors du premier accès à la barre de
commandes.

immediate non Indique le moment du déclenchement de la
commande. Si la valeur de cet attribut est
définie sur true, la commande est déclenchée
avant le traitement de l’entrée de la page. La
valeur par défaut est false.

label oui Libellé du bouton affiché dans la barre de
commandes.

rendu non Détermine si un bouton a été rendu. La
valeur de l’attribut peut être une valeur
booléenne ou une expression de valeur.

styleClass non Classe CSS utilisée pour l’affichage du
bouton. Ce style se substitue au style de
bouton défini pour la barre de commandes.

Tâches associées

Ajout du composant CommandBar à une application JSF
Utilisez le composant CommandBar de Business Process Choreographer Explorer
pour permettre l’affichage d’une barre comportant des boutons de commande. Ces
boutons représentent des commandes opérant dans une vue détails d’un objet ou
des objets sélectionnés d’une liste.

Ajout du composant Message à une application JSF
Le composant Message de l’explorateur du Chorégraphe de processus métier
permet d’afficher des objets de données et des types de primitive dans une
application JavaServer Faces (JSF).

A propos de cette tâche

Si le message est de type primitif, un libellé et un champ de saisie sont affichés. Si
le type de message est un objet de données, le composant traverse l’objet et affiche
les éléments à l’intérieur de l’objet.

428 Développement et déploiement

Procédure

1. Ajoutez le composant Message au fichier JavaServer Pages (JSP).
Ajoutez la balise bpe:form à la balise <h:form>. La balise bpe:form doit contenir
un attribut model.
L’exemple suivant illustre l’ajout d’un composant Message.
<h:form>

<h:outputText value="Input Message" />
<bpe:form model="#{MyHandler.inputMessage}" readOnly="true" />

<h:outputText value="Output Message" />
<bpe:form model="#{MyHandler.outputMessage}" />

</h:form>

L’attribut model du composant Message fait référence à un objet
com.ibm.bpc.clientcore.MessageWrapper. Cet objet encapsuleur enveloppe un
objet SDO (Service Data Object) ou une primitive de type Java, par exemple de
type int ou boolean. Dans l’exemple, le message est fourni par une propriété
du bean géré MyHandler.

2. Configurez le bean géré référencé par la balise bpe:form.
L’exemple suivant illustre l’ajout d’un bean géré MyHandler au fichier de
configuration.
<managed-bean>
<managed-bean-name>MyHandler</managed-bean-name>
<managed-bean-class>com.ibm.bpe.sample.jsf.MyHandler</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

<managed-property>
<property-name>type</property-name>
<value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

</managed-property>

</managed-bean>

3. Ajoutez du code personnalisé à l’application JSF.
L’exemple suivant illustre l’implémentation de messages d’entrée et de sortie.
public class MyHandler implements ItemListener {

private TaskInstanceBean taskBean;
private MessageWrapper inputMessage, outputMessage

/* Listener method, e.g. when a task instance was selected in a list handler.
* Ensure that the handler is registered in the faces-config.xml or manually.
*/
public void itemChanged(Object item) {

if(item instanceof TaskInstanceBean) {
taskBean = (TaskInstanceBean) item ;

}
}

/* Get the input message wrapper
*/
public MessageWrapper getInputMessage() {

try{
inputMessage = taskBean.getInputMessageWrapper() ;

}
catch(Exception e) {

; //...ignore errors for simplicity
}
return inputMessage;

}

Chapitre 4. Développement d’applications client pour les tâches et processus métier 429

/* Get the output message wrapper
*/
public MessageWrapper getOutputMessage() {

Extraction du message du bean. Si aucun message n'existe, créez-en
// un si la tâche a été réclamée par l'utilisateur. Assurez-vous que
// seuls les propriétaires (potentiels ou non) peuvent manipuler le message

de sortie.
try{

outputMessage = taskBean.getOutputMessageWrapper();
if(outputMessage == null
&& taskBean.getState() == TaskInstanceBean.STATE_CLAIMED) {

HumanTaskManagerService htm = getHumanTaskManagerService();
outputMessage = new MessageWrapperImpl();
outputMessage.setMessage(

htm.createOutputMessage(taskBean.getID()).getObject()
);

}
}
catch(Exception e) {

; //...ignore errors for simplicity
}
return outputMessage

}
}

Le bean géré MyHandler implémente l’interface
com.ibm.jsf.handler.ItemListener pour permettre son enregistrement en tant
qu’écouteur d’éléments du gestionnaires de listes. Quand l’utilisateur clique sur
un élément dans la liste, le bean MyHandler est informé sur l’élément
sélectionné via la méthode itemChanged(Object item). Le gestionnaire contrôle
le type d’élément, puis stocke une référence à l’objet TaskInstanceBean associé.
Pour utiliser cette interface, ajoutez une entrée dans la liste itemListener du
gestionnaire de listes approprié, qui se trouve dans le fichier faces-config.xml.
Le bean MyHandler fournit les méthodes getInputMessage et
getOutputMessage. Ces deux méthodes retournent un objet MessageWrapper.
Les méthodes délèguent les appels du bean d’instance de tâche référencé. Si
l’instance de tâche renvoie la valeur null, par exemple parce qu’un message
n’est pas défini, le gestionnaire crée et stocke un nouveau message vide. Le
composant Message affiche les messages fournis par le bean MyHandler.

Résultats

Votre application JSF contient à présent une page JSP permettant d’afficher des
objets de données et des types primitifs.

430 Développement et déploiement

Tâches associées

Développement d’applications Web pour les processus métier et tâches utilisateur à
l’aide de composants JSF
Business Process Choreographer offre un certain nombre de composants JavaServer
Faces (JSF). Vous pouvez étendre et intégrer ces composants pour ajouter une
fonction de processus métier et de tâches utilisateur à des applications Web.
Référence associée

Composant Message : définitions de balises
Le composant Message de Business Process Choreographer Explorer affiche des
objets commonj.sdo.DataObject et des types de primitive, tels que des entiers et des
chaînes, dans une application JavaServer Faces (JSF).

Composant Message : définitions de balises
Le composant Message de Business Process Choreographer Explorer affiche des
objets commonj.sdo.DataObject et des types de primitive, tels que des entiers et des
chaînes, dans une application JavaServer Faces (JSF).

Le composant Message comprend la balise de composant JSF : bpe:form.

Classe de composants

com.ibm.bpe.jsf.component.MessageComponent

Syntaxe exemple
<bpe:form model="#{TaskInstanceDetailsBean.inputMessageWrapper}"

simplification="true" readOnly="true"
styleClass4table="messageData"
styleClass4output="messageDataOutput">

</bpe:form>

Attributs de balise

Tableau 58. Attributs bpe:form

Attribut Obligatoire Description

id non ID du composant JavaServer Faces.

model oui Expression de liaison de valeur qui fait
référence à un objet
commonj.sdo.DataObject ou à un objet
com.ibm.bpc.clientcore.MessageWrapper.

readOnly non Si cet attribut est réglé sur true, un
formulaire s’affiche en lecture seule. Par
défaut, cet attribut est réglé sur false.

simplification non Si cet attribut est réglé sur true, les
propriétés contenant des types simples et
ayant une cardinalité de 0 ou de 1 sont
affichées. Par défaut, cet attribut est défini
sur true.

style4validinput non Style CSS (feuille de styles en cascade)
pour l’affichage de valeur d’entrée valide.

style4invalidinput non Style CSS pour l’affichage de valeur
d’entrée incorrecte.

styleClass4invalidInput non Nom de classe de style CSS pour
l’affichage de valeur d’entrée incorrecte.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 431

Tableau 58. Attributs bpe:form (suite)

Attribut Obligatoire Description

styleClass4output non Nom de classe de styles CSS pour
l’affichage d’éléments sortants.

styleClass4table non Nom de classe du style de tableau CSS
pour l’affichage des tableaux affichés par
le composant de message.

styleClass4validInput non Nom de classe de style CSS pour
l’affichage de valeur d’entrée correcte.

Tâches associées

Ajout du composant Message à une application JSF
Le composant Message de l’explorateur du Chorégraphe de processus métier
permet d’afficher des objets de données et des types de primitive dans une
application JavaServer Faces (JSF).

Développement des pages JSP pour les messages de tâche et de
processus

Business Process Choreographer Explorer fournit des formulaires d’entrée et de
sortie par défaut pour afficher et saisir les données métier. Vous pouvez utiliser des
pages JSP pour créer des formulaires d’entrée et de sortie définis par l’utilisateur.

A propos de cette tâche

Pour inclure des pages JSP (JavaServer Pages) définies par l’utilisateur dans le
client Web, vous devez les indiquer lorsque vous modélisez une tâche utilisateur
dans WebSphere Integration Developer. Par exemple, vous pouvez fournir des
pages JSP pour une tâche spécifique et pour les messages d’entrée et de sortie
associés, ainsi que pour un rôle utilisateur spécifique ou pour tous les rôles
utilisateur. Lors de l’exécution, les pages JSP définies par l’utilisateur sont incluses
dans l’interface utilisateur pour afficher les données de sortie et collecter les
données d’entrée.

Les formulaires personnalisés ne sont pas des pages Web autonomes ; il s’agit de
fragments de code HTML que Business Process Choreographer Explorer intègre
dans un formulaire HTML (par exemple, les fragments pour tous les libellés et les
zones d’entrée d’un message).

Lorsqu’un utilisateur clique sur un bouton de la page contenant les formulaires
personnalisés, les données d’entrée sont soumises et validées dans Business Process
Choreographer Explorer. La validation dépend du type des propriétés fournies et
des paramètres locaux utilisés dans le navigateur. Si les données d’entrée ne
peuvent pas être validées, la même page s’affiche de nouveau et les informations
relatives aux erreurs de validation sont fournies dans l’attribut de demande
messageValidationErrors. Les informations sont fournies sous forme d’un plan qui
mappe l’expression XPath (XML Path Expression) des propriétés non valides avec
les exceptions de validation qui ont eu lieu.

Pour ajouter des formulaires personnalisés à Business Process Choreographer
Explorer, exécutez les opérations suivantes à l’aide de WebSphere Integration
Developer :

Procédure

432 Développement et déploiement

1. Créez les formulaires personnalisés.
Les pages JSP définies par l’utilisateur pour les formulaires d’entrée et de sortie
utilisés dans l’interface Web doivent accéder aux données de messages. Utilisez
les fragments Java d’un JSP ou le langage d’exécution JSP pour accéder aux
données du message. Les données contenues dans les formulaires sont
accessibles via le contexte de requête.

2. Affectez les pages JSP à une tâche.
Ouvrez la tâche utilisateur dans l’éditeur de tâches utilisateur. Dans les
paramètres client, indiquez l’emplacement des pages JSP définies par
l’utilisateur et le rôle auquel s’applique le formulaire personnalisé (par
exemple, administrateur). Les paramètres client de l’explorateur du
Chorégraphe de processus métier sont stockés dans le modèle de tâche. Lors de
l’exécution, ces paramètres sont extraits avec le modèle de tâche.

3. Compressez les pages JSP définies par l’utilisateur dans une archive Web
(fichier WAR).
Vous pouvez inclure le fichier WAR dans le fichier EAR (Enterprise Archive)
avec le module contenant les tâches ou déployer le fichier WAR séparément. Si
les JSP sont déployés séparément, faites en sorte qu’ils soient disponibles sur le
serveur où est déployé Business Process Choreographer Explorer ou le client
défini par l’utilisateur.
Si vous utilisez des JSP personnalisés pour les messages de processus et de
tâche, vous devez mapper les modules web qui sont utilisés pour déployer les
JSP avec les mêmes serveurs que ceux avec lesquels est mappé le client JSF
personnalisé.

Résultats

Les formulaires personnalisés s’affichent dans Business Process Choreographer
Explorer lors de l’exécution.
Concepts associés

Fragments JSP définis par l’utilisateur
Les fragments JSP (JavaServer Pages) définis par l’utilisateur sont intégrés à une
balise de formulaire HTML. Lors de l’exécution, Business Process Choreographer
Explorer inclut ces fragments dans la page affichée.
Tâches associées

Développement d’applications client pour les tâches et processus métier
Vous pouvez utiliser un outil de modélisation pour compiler et déployer des tâches
et des processus métier. L’interaction avec ces processus et ces tâches se produit
lors de l’exécution. Par exemple, un processus est lancé ou les tâches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des tâches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.

Fragments JSP définis par l’utilisateur
Les fragments JSP (JavaServer Pages) définis par l’utilisateur sont intégrés à une
balise de formulaire HTML. Lors de l’exécution, Business Process Choreographer
Explorer inclut ces fragments dans la page affichée.

Le fragment JSP défini par l’utilisateur du message d’entrée est intégré avant le
fragment JSP du message de sortie.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 433

<html....>
...
<form...>

Message JSP d'entrée (affichage du message d'entrée de la tâche)

Message JSP de sortie (affichage du message de sortie de la tâche)

</form>
...

</html>

Les fragments JSP définis par l’utilisateur étant intégrés à une balise de formulaire
HTML, vous pouvez ajouter des éléments d’entrée. Le nom de l’élément d’entrée
doit correspondre à l’expression XPath (XML Path Language) de l’élément de
données. Il est important de faire précéder de la valeur de préfixe fournie le nom
de l’élément d’entrée :
<input id="address"

type="text"
name="${prefix}/selectPromotionalGiftResponse/address"
value="${messageMap['/selectPromotionalGiftResponse/address"]}
size="60"
align="left" />

La valeur de préfixe est fournie sous forme d’attribut de demande. L’attribut
garantit l’unicité du nom d’entrée dans le formulaire d’inclusion. Le préfixe est
généré par Business Process Choreographer Explorer et ne doit pas être modifié :
String prefix = (String)request.getAttribute("prefix");

L’élément de préfixe est défini uniquement si le message peut être modifié dans le
contexte spécifié. Les données de sortie peuvent s’afficher de différentes façons
selon l’état de la tâche utilisateur. Par exemple, si l’état de la tâche est Réclamé, les
données de sortie peuvent être modifiées. Toutefois, si l’état de la tâche est
Terminé, les données peuvent uniquement être affichées. Dans votre fragment JSP,
vous pouvez vérifier si l’élément de préfixe existe et afficher le message en
conséquence. L’instruction JSTL suivante montre comment vérifier si l’élément de
préfixe est défini :
...
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
...
<c:choose>

<c:when test="${not empty prefix}">
<!--Read/write mode-->

</c:when>
<c:otherwise>

<!--Read-only mode-->
</c:otherwise>

</c:choose>

434 Développement et déploiement

Tâches associées

Développement des pages JSP pour les messages de tâche et de processus
Business Process Choreographer Explorer fournit des formulaires d’entrée et de
sortie par défaut pour afficher et saisir les données métier. Vous pouvez utiliser des
pages JSP pour créer des formulaires d’entrée et de sortie définis par l’utilisateur.

Création de modules d’extension pour personnaliser les
fonctionnalités des tâches utilisateur

Business Process Choreographer fournit une infrastructure permettant le traitement
des événements qui surviennent lors du traitement des tâches utilisateur.
L’application des modules d’extension est également conçue pour vous permettre
d’adapter les fonctionnalités à vos besoins. Vous pouvez utiliser les interfaces de
fournisseur de services SPI (Service Provider Interfaces) afin de créer des modules
d’extension personnalisés pour la gestion des événements et le post-traitement des
requêtes de personnel.

A propos de cette tâche

Vous pouvez créer des modules d’extension pour des événements liés à des API de
tâche utilisateur et à des notifications d’escalade. Vous pouvez également créer un
plug-in qui traite les résultats renvoyés par la résolution des utilisateurs. Vous
pouvez par exemple, lors de pics périodes, ajouter des utilisateurs à la liste de
résultats afin de rééquilibrer la charge de travail.

avant de pouvoir utiliser le module d’extension, vous devez les installer et les
enregistrer. Vous pouvez enregistrer le module d’extension pour permettre le
post-traitement des résultats des requêtes de personnel avec l’application
TaskContainer. Dans ce cas, le module d’extension est disponible pour toutes les
tâches.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 435

Tâches associées

Développement d’applications client pour les tâches et processus métier
Vous pouvez utiliser un outil de modélisation pour compiler et déployer des tâches
et des processus métier. L’interaction avec ces processus et ces tâches se produit
lors de l’exécution. Par exemple, un processus est lancé ou les tâches sont
réclamées et effectuées. Vous pouvez utiliser Business Process Choreographer
Explorer pour interagir avec des processus ou des tâches, ou vous pouvez utiliser
les API de Business Process Choreographer afin de développer des clients
personnalisés pour ces interactions.
Création de gestionnaires d’événements d’API
Un événement d’API se produit lorsqu’une méthode d’API manipule une tâche
utilisateur. Utilisez l’interface SPI du plug-in de gestionnaire d’événements d’API
pour créer des plug-in permettant de gérer les événements de tâche envoyés par
l’API ou par les événements internes ayant des événements API équivalents.
Création de gestionnaire d’événements de notification
Les événements de notification surviennent lors de l’escalade de tâches utilisateur.
Business Process Choreographer fournit des fonctionnalités permettant la gestion
des escalades, telles que la création d’éléments de travail d’escalade ou l’envoi de
messages électroniques. Vous pouvez créer des gestionnaires d’événements de
notification pour personnaliser le mode de traitement des escalades.
Installation des modules d’extension du gestionnaire d’événements d’API et du
gestionnaire d’événements de notification
Pour pouvoir utiliser un module d’extension de gestionnaire d’événements d’API
ou de notification, vous devez l’installer de sorte qu’il soit accessible au conteneur
de tâches.
Enregistrement des modules d’extension du gestionnaire d’événements d’API et du
gestionnaire d’événements de notification avec des modèles de tâche et des tâches
Vous pouvez enregistrer les modules d’extension pour les gestionnaires
d’événements d’API et les gestionnaires d’événements de notification avec des
tâches et des modèles de tâche à différentes occasions : lors de la création d’une
tâche ad-hoc, de la mise à jour d’une tâche existante, de la création d’un modèle de
tâche ou de la définition d’un modèle de tâche.
Création, installation et exécution de plug-ins en vue du post-traitement des
résultats des requêtes sur les utilisateurs
La résolution d’utilisateurs renvoie une liste des utilisateurs auxquels un rôle
spécifique est affecté, par exemple, le propriétaire potentiel d’une tâche. Vous
pouvez créer un plug-in pour modifier les résultats des requêtes d’utilisateurs
renvoyés par la résolution des utilisateurs. Par exemple, pour améliorer
l’équilibrage de charge, vous pourriez avoir un plug-in qui supprime les
utilisateurs du résultat de la requête s’ils ont déjà une charge de travail élevée.

Création de gestionnaires d’événements d’API
Un événement d’API se produit lorsqu’une méthode d’API manipule une tâche
utilisateur. Utilisez l’interface SPI du plug-in de gestionnaire d’événements d’API
pour créer des plug-in permettant de gérer les événements de tâche envoyés par
l’API ou par les événements internes ayant des événements API équivalents.

A propos de cette tâche

Exécutez les étapes suivantes pour créer un gestionnaire d’événements d’API

Procédure

436 Développement et déploiement

1. Rédigez une classe qui implémente l’interface APIEventHandlerPlugin3 ou
étend la classe d’implémentation APIEventHandler. Cette classe peut appeler
les méthodes d’autres classes.
v Si vous utilisez l’interface APIEventHandlerPlugin3, vous devez implémenter

toutes les méthodes de l’interface APIEventHandlerPlugin3 et de l’interface
APIEventHandlerPlugin.

v Si vous étendez la classe d’implémentation APIEventHandler, remplacez les
méthodes selon vos besoins.

Cette classe s’exécute dans le contexte d’une application d’entreprise EJB J2EE
(Enterprise Java 2 Enterprise Edition). Assurez-vous que cette classe et ses
classes auxiliaires suivent la spécification EJB.

Remarque : Pour appeler l’interface HumanTaskManagerService à partir de
cette classe, n’appelez pas de méthode qui mette à jour la tâche ayant produit
l’événement. Cette action peut entraîner une incohérence des données de tâche
dans la base de données.

2. Assemblez la classe du plug-in et ses classes auxiliaires dans un fichier JAR.
Pour rendre le fichier JAR disponible, vous pouvez procéder de l’une des
manières suivantes :
v En tant que fichier JAR d’utilitaire dans le fichier EAR de l’application.
v En tant que bibliothèque partagée installée avec le fichier EAR de

l’application.
v En tant que bibliothèque partagée installée avec l’application TaskContainer.

Dans ce cas, le module d’extension est disponible pour toutes les tâches.
3. Créez un fichier de configuration de fournisseur de services pour le plug-in

dans le répertoire META-INF/services/ du fichier JAR.
Le fichier de configuration fournit le mécanisme permettant d’identifier et de
charger le plug-in. Ce fichier est conforme à la spécification de l’interface du
fournisseur de services Java 2.
a. Créez un fichier portant le nomcom.ibm.task.spi.nom_module

extensionAPIEventHandlerPlugin, où nom_module extension est le nom du
plug-in.
Par exemple, si votre plug-in s’appelle Customer et qu’il implémente
l’interface com.ibm.task.spi.APIEventHandlerPlugin3, le nom du fichier de
configuration estcom.ibm.task.spi.CustomerAPIEventHandlerPlugin.

b. La première ligne de ce fichier, qui ne doit être ni une ligne de commentaire
(c’est-à-dire commençant par le signe #) ni une ligne vide, doit spécifier le
nom qualifié complet de la classe de module d’extension créée à l’étape 1.
Par exemple, si la classe de votre plug-in est MyAPIEventHandler et se trouve
dans le module com.customer.plugins, la première ligne du fichier de
configuration doit contenir l’entrée suivante :
com.customer.plugins.MyAPIEventHandler.

Résultats

Vous avez un fichier JAR installable qui contient un plug-in gérant les événements
d’API et un fichier de configuration du fournisseur de services pouvant être utilisé
pour charger le plug-in.

Remarques : Vous ne disposez que d’une propriété eventHandlerName pour
enregistrer à la fois les gestionnaires d’événements d’API et les gestionnaires
d’événements de notification. Pour utiliser à la fois un gestionnaire d’événement

Chapitre 4. Développement d’applications client pour les tâches et processus métier 437

d’API If et un gestionnaire d’événement de notification, il est nécessaire que les
implémentations des plug-ins portent le même nom (Customer comme nom de
gestionnaire d’événement pour l’implémentation de SPI, par exemple).

Vous pouvez implémenter les deux plug-ins à l’aide d’une seule classe ou de
classes distinctes. Dans les deux cas, vous devez créer deux fichiers dans le
répertoire META-INF/services/ de votre fichier JAR (par exemple,
com.ibm.task.spi.CustomerNotificationEventHandlerPlugin et
com.ibm.task.spi.CustomerAPIEventHandlerPlugin).

Regroupez l’implémentation du plug-in et les classes auxiliaires dans un seul
fichier JAR.

Pour rendre effective une modification de l’implémentation, remplacez le fichier
JAR contenu dans la bibliothèque partagée, déployez à nouveau le fichier EAR
associé et redémarrez le serveur.

Que faire ensuite

Vous devez maintenant installer et enregistrer le module d’extension afin de le
rendre disponible pour le conteneur de tâches utilisateur lors de l’exécution. Vous
pouvez enregistrer des gestionnaires d’événements liés à l’API avec une instance
de tâche, un modèle de tâche ou un composant d’application.
Concepts associés

Gestionnaires d’événements d’API
Les événements d’API surviennent lorsqu’une tâche utilisateur est modifiée ou
change d’état. Pour permettre le traitement de ces événements d’API, le
gestionnaire d’événements est appelé directement avant la modification de la tâche
(méthode pré-événement) et juste après le renvoi de l’appel API (méthode
post-événement).
Tâches associées

Création de modules d’extension pour personnaliser les fonctionnalités des tâches
utilisateur
Business Process Choreographer fournit une infrastructure permettant le traitement
des événements qui surviennent lors du traitement des tâches utilisateur.
L’application des modules d’extension est également conçue pour vous permettre
d’adapter les fonctionnalités à vos besoins. Vous pouvez utiliser les interfaces de
fournisseur de services SPI (Service Provider Interfaces) afin de créer des modules
d’extension personnalisés pour la gestion des événements et le post-traitement des
requêtes de personnel.

Gestionnaires d’événements d’API
Les événements d’API surviennent lorsqu’une tâche utilisateur est modifiée ou
change d’état. Pour permettre le traitement de ces événements d’API, le
gestionnaire d’événements est appelé directement avant la modification de la tâche
(méthode pré-événement) et juste après le renvoi de l’appel API (méthode
post-événement).

Si la méthode pré-événement génère une exception ApplicationVetoException,
l’action de l’API n’est pas exécutée, l’exception est renvoyée à l’appelant de l’API
et la transaction associée à l’événement est annulée. Si la méthode pré-événement a
été déclenchée par un événement interne et qu’une exception
ApplicationVetoException est générée, l’événement interne (par exemple une
réclamation automatique) n’est pas exécuté mais une exception est renvoyée à
l’application client. Dans ce cas, un message d’information est enregistré dans le

438 Développement et déploiement

fichier SystemOut.log. Si la méthode d’API génère une exception au cours du
traitement, celle-ci est interceptée et transmise à la méthode post-événement.
L’exception est de nouveau transmise à l’appelant lorsque la méthode
post-événement est renvoyée.

Les règles suivantes s’appliquent aux méthodes pré-événement :
v Les méthodes pré-événement reçoivent les paramètres de la méthode d’API ou

de l’événement interne associé(e).
v Les méthodes pré-événement peuvent générer une exception

ApplicationVetoException pour empêcher la poursuite du traitement.

Les règles suivantes s’appliquent aux méthodes post-événement :
v Les méthodes post-événement reçoivent les paramètres fournis à l’appel d’API,

puis renvoient les valeurs. Si une exception est émise par l’implémentation d’une
méthode d’API, la méthode post-événement reçoit également l’exception.

v Les méthodes post-événement ne modifient pas les valeurs renvoyées.
v Les méthodes post-événement ne peuvent pas générer d’exceptions. Les

exceptions d’exécution sont consignées, mais ignorées.

Pour implémenter les gestionnaires d’événements d’API, vous pouvez au choix
faire appel à l’interface APIEventHandlerPlugin3, qui étend l’interface
APIEventHandlerPlugin, ou bien étendre la classe d’implémentation SPI par défaut
com.ibm.task.spi.APIEventHandler. Si votre gestionnaire d’événements hérite de la
classe d’implémentation par défaut, il implémente toujours la version la plus
récente de l’interface SPI. Si vous effectuez une mise à niveau vers une version
plus récente de Business Process Choreographer, quelques modifications doivent
être apportées si vous souhaitez utiliser de nouvelles méthodes d’interface SPI.

Si un gestionnaire d’événements de notification et un gestionnaire d’événements
d’API sont présents simultanément, ils doivent tous deux porter le même nom, car
il n’est possible de nommer qu’un seul gestionnaire.
Tâches associées

Création de gestionnaires d’événements d’API
Un événement d’API se produit lorsqu’une méthode d’API manipule une tâche
utilisateur. Utilisez l’interface SPI du plug-in de gestionnaire d’événements d’API
pour créer des plug-in permettant de gérer les événements de tâche envoyés par
l’API ou par les événements internes ayant des événements API équivalents.

Création de gestionnaire d’événements de notification
Les événements de notification surviennent lors de l’escalade de tâches utilisateur.
Business Process Choreographer fournit des fonctionnalités permettant la gestion
des escalades, telles que la création d’éléments de travail d’escalade ou l’envoi de
messages électroniques. Vous pouvez créer des gestionnaires d’événements de
notification pour personnaliser le mode de traitement des escalades.

A propos de cette tâche

Pour implémenter les gestionnaires d’événements de notification, vous pouvez soit
faire appel à l’interface NotificationEventHandlerPlugin, soit dériver la classe
d’implémentation SPI par défaut com.ibm.task.spi.NotificationEventHandler.

Suivez la procédure ci-après pour créer un gestionnaire d’événements de
notification.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 439

Procédure

1. Générez une classe qui implémente l’interface NotificationEventHandlerPlugin
ou étend la classe d’implémentation NotificationEventHandler. Cette classe
permet d’appeler les méthodes des autres classes.
Si vous utilisez l’interface NotificationEventHandlerPlugin, vous devez
implémenter toutes les méthodes de cette interface. Si vous étendez la classe
d’implémentation SPI, remplacez les méthodes selon vos besoins.
Cette classe s’exécute dans le contexte d’une application d’entreprise EJB J2EE
(Enterprise Java 2 Enterprise Edition). Assurez-vous que cette classe et ses
classes auxiliaires suivent les la spécification EJB.
Le module d’extension est appelé avec les droits d’accès associés au rôle
EscalationUser. Ce rôle est défini lorsque le conteneur des tâches utilisateur est
configuré.

Remarque : Pour appeler l’interface HumanTaskManagerService à partir de
cette classe, n’appelez pas de méthode qui mette à jour la tâche ayant produit
l’événement. Cette action peut entraîner une incohérence des données de tâche
dans la base de données.

2. Assemblez la classe du plug-in et ses classes auxiliaires dans un fichier JAR.
Pour rendre le fichier JAR disponible, vous pouvez procéder de l’une des
manières suivantes :
v En tant que fichier JAR d’utilitaire dans le fichier EAR de l’application.
v En tant que bibliothèque partagée installée avec le fichier EAR de

l’application.
v En tant que bibliothèque partagée installée avec l’application TaskContainer.

Dans ce cas, le module d’extension est disponible pour toutes les tâches.
3. Assemblez la classe du module d’extension et ses classes auxiliaires dans un

fichier JAR.
Si les classes auxiliaires sont utilisées par plusieurs applications J2EE, vous
pouvez les regrouper dans un fichier JAR distinct que vous enregistrez sous
forme de bibliothèque partagée.

4. Créez un fichier de configuration de fournisseur de services pour le module
d’extension dans le répertoire META-INF/services/ de votre fichier JAR.
Le fichier de configuration fournit le mécanisme d’identification et de
chargement du module d’extension. Ce fichier est conforme à la spécification
de l’interface du fournisseur de services Java 2.
a. Créez un fichier nommé

com.ibm.task.spi.nom_module_extensionNotificationEventHandlerPlugin,
ou nom_module_extension est le nom du module d’extension.
Si, par exemple, votre module d’extension est nommé HelpDeskRequest
(nom du gestionnaire d’événements) et qu’il implémente l’interface
com.ibm.task.spi.NotificationEventHandlerPlugin, le fichier de configuration
porte le nom
com.ibm.task.spi.HelpDeskRequestNotificationEventHandlerPlugin.

b. La première ligne de ce fichier, qui ne doit être ni une ligne de commentaire
(c’est-à-dire commençant par le signe #) ni une ligne vide, doit spécifier le
nom qualifié complet de la classe de module d’extension créée à l’étape 1.
Si par exemple la classe de module d’extension porte le nom
MyEventHandler et est incluse dans le package com.customer.plugins, la
première ligne du fichier de configuration doit contenir l’entrée suivante :
com.customer.plugins.MyEventHandler.

440 Développement et déploiement

Résultats

Vous disposez d’un fichier JAR installable contenant un module d’extension qui
gère les événements de notification et d’un fichier de configuration de fournisseur
de services pouvant servir à charger le module d’extension. Vous pouvez
enregistrer des gestionnaires d’événements liés à l’API avec une instance de tâche,
un modèle de tâche ou un composant d’application.

Remarques : Vous ne disposez que d’une propriété eventHandlerName pour
enregistrer à la fois les gestionnaires d’événements d’API et les gestionnaires
d’événements de notification. Pour utiliser à la fois un gestionnaire d’événement
d’API If et un gestionnaire d’événement de notification, il est nécessaire que les
implémentations des plug-ins portent le même nom (Customer comme nom de
gestionnaire d’événement pour l’implémentation de SPI, par exemple).

Vous pouvez implémenter les deux plug-ins à l’aide d’une seule classe ou de
classes distinctes. Dans les deux cas, vous devez créer deux fichiers dans le
répertoire META-INF/services/ de votre fichier JAR (par exemple,
com.ibm.task.spi.CustomerNotificationEventHandlerPlugin et
com.ibm.task.spi.CustomerAPIEventHandlerPlugin).

Regroupez l’implémentation du plug-in et les classes auxiliaires dans un seul
fichier JAR.

Pour rendre effective une modification de l’implémentation, remplacez le fichier
JAR contenu dans la bibliothèque partagée, déployez à nouveau le fichier EAR
associé et redémarrez le serveur.

Que faire ensuite

Vous devez maintenant installer et enregistrer le module d’extension afin de le
rendre disponible pour le conteneur de tâches utilisateur lors de l’exécution. Vous
pouvez enregistrer des gestionnaires d’événements de notification avec une
instance de tâche, un modèle de tâche ou un composant d’application.
Tâches associées

Création de modules d’extension pour personnaliser les fonctionnalités des tâches
utilisateur
Business Process Choreographer fournit une infrastructure permettant le traitement
des événements qui surviennent lors du traitement des tâches utilisateur.
L’application des modules d’extension est également conçue pour vous permettre
d’adapter les fonctionnalités à vos besoins. Vous pouvez utiliser les interfaces de
fournisseur de services SPI (Service Provider Interfaces) afin de créer des modules
d’extension personnalisés pour la gestion des événements et le post-traitement des
requêtes de personnel.

Installation des modules d’extension du gestionnaire
d’événements d’API et du gestionnaire d’événements de
notification

Pour pouvoir utiliser un module d’extension de gestionnaire d’événements d’API
ou de notification, vous devez l’installer de sorte qu’il soit accessible au conteneur
de tâches.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 441

A propos de cette tâche

La façon dont vous installez le plug-in dépend de si le plug-in doit être utilisé par
une seule application J2EE (Java 2 Enterprise Edition) ou par plusieurs
applications.

Procédez de l’une des manières suivantes pour installer un module d’extension.
v Installez un module d’extension pour qu’il soit utilisé par une seule application

J2EE.
Ajoutez le fichier JAR du module d’extension au fichier JAR de l’application.
Dans l’éditeur du descripteur de déploiement de WebSphere Integration
Developer, installez le fichier JAR de votre plug-in en tant que fichier JAR
d’utilitaire de projet pour l’application J2EE du module EJB d’entreprise
(enterprise JavaBeans) principal.

v Installez un module d’extension pour qu’il soit utilisé par plusieurs applications
J2EE.
Placez le fichier JAR dans une bibliothèque partagée de WebSphere Application
Server et associez la bibliothèque aux applications devant accéder au plug-in.
Pour rendre le fichier JAR accessible dans un environnement de déploiement
réseau, distribuez manuellement le fichier JAR sur chaque noeud hébergeant un
serveur ou un membre de cluster sur lequel l’une de vos applications est
déployée. Vous pouvez utiliser la portée de la cible de déploiement de vos
applications, c’est-à-dire le serveur ou le cluster sur lequel les applications sont
déployées, ou bien la portée de cellule. Souvenez-vous que les classes des
modules d’extension sont alors visibles dans toute la portée de déploiement
sélectionnée.

Que faire ensuite

Vous pouvez, maintenant, enregistrer le module d’extension.
Tâches associées

Création de modules d’extension pour personnaliser les fonctionnalités des tâches
utilisateur
Business Process Choreographer fournit une infrastructure permettant le traitement
des événements qui surviennent lors du traitement des tâches utilisateur.
L’application des modules d’extension est également conçue pour vous permettre
d’adapter les fonctionnalités à vos besoins. Vous pouvez utiliser les interfaces de
fournisseur de services SPI (Service Provider Interfaces) afin de créer des modules
d’extension personnalisés pour la gestion des événements et le post-traitement des
requêtes de personnel.

Enregistrement des modules d’extension du gestionnaire
d’événements d’API et du gestionnaire d’événements de
notification avec des modèles de tâche et des tâches

Vous pouvez enregistrer les modules d’extension pour les gestionnaires
d’événements d’API et les gestionnaires d’événements de notification avec des
tâches et des modèles de tâche à différentes occasions : lors de la création d’une
tâche ad-hoc, de la mise à jour d’une tâche existante, de la création d’un modèle de
tâche ou de la définition d’un modèle de tâche.

442 Développement et déploiement

A propos de cette tâche

Vous pouvez enregistrer des modules d’extension pour les gestionnaires
d’événements d’API et les gestionnaires d’événements de notification avec des
tâches à différents niveaux :

Modèle de tâche
Toutes les tâches créées à l’aide du modèle utilisent les mêmes
gestionnaires

Modèle de tâche ad-hoc
Les tâches créées à l’aide du modèle utilisent les mêmes gestionnaires

Tâche ad-hoc
La tâche créée utilise les gestionnaires spécifiés

Tâche existante
La tâche utilise les gestionnaires spécifiés

Vous pouvez enregistrer un module d’extension en suivant l’une des procédures
suivantes.
v Pour les modèles de tâches modélisés dans WebSphere Integration Developer,

spécifiez le module d’extension dans le modèle de tâche.
v Pour les tâches ad-hoc ou modèles de tâches ad-hoc, spécifiez le module

d’extension au moment de la création du tâche ou du modèle de tâche.
Utilisez la méthode setEventHandlerName de la classe TTask pour enregistrer le
nom du gestionnaire d’événements.

v Modifiez le gestionnaire d’événements pour une instance de tâche lors de
l’exécution.
La méthode update(Task task) vous permet d’utiliser un autre gestionnaire
d’événements pour une instance de tâche lors de l’exécution. L’appelant doit
disposer de droit d’accès administrateur pour mettre à jour cette propriété.

Tâches associées

Création de modules d’extension pour personnaliser les fonctionnalités des tâches
utilisateur
Business Process Choreographer fournit une infrastructure permettant le traitement
des événements qui surviennent lors du traitement des tâches utilisateur.
L’application des modules d’extension est également conçue pour vous permettre
d’adapter les fonctionnalités à vos besoins. Vous pouvez utiliser les interfaces de
fournisseur de services SPI (Service Provider Interfaces) afin de créer des modules
d’extension personnalisés pour la gestion des événements et le post-traitement des
requêtes de personnel.

Création, installation et exécution de plug-ins en vue du
post-traitement des résultats des requêtes sur les utilisateurs

La résolution d’utilisateurs renvoie une liste des utilisateurs auxquels un rôle
spécifique est affecté, par exemple, le propriétaire potentiel d’une tâche. Vous
pouvez créer un plug-in pour modifier les résultats des requêtes d’utilisateurs
renvoyés par la résolution des utilisateurs. Par exemple, pour améliorer
l’équilibrage de charge, vous pourriez avoir un plug-in qui supprime les
utilisateurs du résultat de la requête s’ils ont déjà une charge de travail élevée.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 443

A propos de cette tâche

Vous ne pouvez avoir qu’un seul plug-in de post-traitement : autrement dit, le
plug-in doit gérer les résultats des requêtes sur les utilisateurs provenant de toutes
les tâches. Votre plug-in peut ajouter ou supprimer des utilisateurs, ou modifier les
informations d’utilisateur ou de groupe. Il peut également modifier le type de
résultat, par exemple, provenant d’une liste d’utilisateurs à un groupe, ou à tout le
monde.

Du fait que l’exécution des plug-in n’a lieu qu’après la résolution des utilisateurs,
toutes les règles de confidentialité ou de sécurité éventuellement définies ont déjà
été appliquées. Le plug-in reçoit des informations sur les utilisateurs qui ont été
supprimés pendant la résolution des utilisateurs (dans la clé de mappe
HTM_REMOVED_USERS). Vous devez vous assurer que le plug-in utilise ces
informations de contexte pour préserver les règles de confidentialité ou de sécurité
dont vous disposez éventuellement.

Pour implémenter le post-traitement des résultats de requête d’utilisateur, vous
utilisez l’interface StaffQueryResultPostProcessorPlugin. L’interface contient des
méthodes permettant de modifier les résultats de requête pour les tâches, les
escalades, les modèles de tâche et les composants d’application.

Exécutez les étapes suivantes pour créer un plug-in permettant le post-traitement
des résultats d’une requête d’utilisateur.

Procédure

1. Ecrivez une classe implémentant l’interface
StaffQueryResultPostProcessorPlugin.
Cette classe s’exécute dans le contexte d’une application d’entreprise EJB J2EE
(Enterprise Java 2 Enterprise Edition). Cette classe peut appeler les méthodes
d’autres classes. Assurez-vous que cette classe et ses classes auxiliaires suivent
les la spécification EJB.

Remarque : Pour appeler l’interface HumanTaskManagerService à partir de
cette classe, n’appelez pas de méthode qui mette à jour la tâche ayant produit
l’événement. Cette action peut entraîner une incohérence des données de tâche
dans la base de données.
Vous devez implémenter toutes les méthodes dans l’interface. Ces méthodes
incluent des informations relatives aux critères d’affectation d’utilisateurs au
modèle de tâche, à la tâche ou au rôle d’escalade en question.
v La définition des critères d’affectation d’utilisateurs est spécifiée sous forme

d’entrée dans le paramètre context du type Map. Pour accéder à ces
informations, procédez comme suit :
Map pacAsMap = (Map) context.get("HTM_VERB");

// extrait le nom des critères d'affectation d'utilisateurs
String pacName = (String) pacAsMap.get("HTM_VERB_NAME");

// extrait les noms de paramètre des critères d'affectation d'utilisateurs
Set paramNames = pacAsMap.keySet();

// extrait la valeur d'un paramètre spécifique
String paramValue = (String) pacAsMap.get(paramName);

444 Développement et déploiement

v Les variables de substitution spécifiées en tant que valeurs pour le
paramètre des critères d’affectation d’utilisateurs sont des entrées du
paramètre context du type Map. Pour accéder à ces informations, procédez
comme suit :
Object replVarObj = pacAsMap.get(replVarName);
if (replVarObj instanceof String)

String replVarValue = (String) replVarObj;
if (replVarObj instanceof String[])

String[] replVarValues = (String[]) replVarObj;

v L’objet StaffQueryResult est créé en accédant à un annuaire de personnes au
cours de la résolution des utilisateurs, par exemple en accédant à l’annuaire
de personnes de Virtual Member Manager.
L’objet StaffQueryResult contient des informations sur les entrées
d’utilisateur extraites lors de la résolution des utilisateurs. Pour plus
d’informations, consultez les informations de référence Javadoc concernant
l’interface StaffQueryResultPostProcessorPlugin.

v La liste des utilisateurs explicitement exclus lors de la résolution des
utilisateurs est stockée en tant qu’entrée du paramètre context du type Map.
Pour accéder à ces informations, procédez comme suit :
String[] removedUserIDs = (String[]) context.get("HTM_REMOVED_USERS");

L’exemple suivant indique comment modifier le rôle d’éditeur d’une tâche
appelée SpecialTask.
public StaffQueryResult processStaffQueryResult

(StaffQueryResult originalStaffQueryResult,
Task task,
int role,
Map context)

{
StaffQueryResult newStaffQueryResult = originalStaffQueryResult;
StaffQueryResultFactory staffResultFactory =

StaffQueryResultFactory.newInstance();
if (role == com.ibm.task.api.WorkItem.REASON_EDITOR &&

task.getName() != null &&
task.getName().equals("SpecialTask"))

{
UserData user = staffResultFactory.newUserData

("SuperEditor",
new Locale("en-US"),

"SuperEditor@company.com");
ArrayList userList = new ArrayList();
userList.add(user);

newStaffQueryResult = staffResultFactory.newStaffQueryResult(userList);
}
return(newStaffQueryResult);

}

2. Assemblez la classe du plug-in et ses classes auxiliaires dans un fichier JAR.
Vous pouvez rentre le fichier JAR disponible dans une bibliothèque partagée et
l’associer avec le conteneur de tâches. Dans ce cas, le module d’extension
devient disponible pour toutes les tâches.

3. Créez un fichier de configuration de fournisseur de services pour le plug-in
dans le répertoire META-INF/services/ du fichier JAR.
Le fichier de configuration fournit le mécanisme permettant d’identifier et de
charger le plug-in. Ce fichier est conforme à la spécification de l’interface du
fournisseur de services Java 2.
a. Créez un fichier portant le nom com.ibm.task.spi.nom_plug-

inStaffQueryResultPostProcessorPlugin, où nom_plug-in correspond au
nom du plug-in.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 445

Par exemple, si votre plug-in s’appelle MyHandler et qu’il implémente
l’interface com.ibm.task.spi.StaffQueryResultPostProcessorPlugin, le nom du
fichier de configuration sera
com.ibm.task.spi.MyHandlerStaffQueryResultPostProcessorPlugin.

b. La première ligne de ce fichier, qui ne doit être ni une ligne de commentaire
(c’est-à-dire commençant par le signe #) ni une ligne vide, doit spécifier le
nom qualifié complet de la classe de module d’extension créée à l’étape 1.
Par exemple, si la classe de votre plug-in est StaffPostProcessor et se
trouve dans le module com.customer.plugins, la première ligne du fichier
de configuration doit contenir l’entrée suivante :
com.customer.plugins.StaffPostProcessor. Vous avez un fichier JAR
installable qui contient un plug-in assurant le post-traitement des résultats
de requête d’utilisateur et un fichier de configuration du fournisseur de
services pouvant être utilisé pour charger le plug-in.

4. Installez le module d’extension.
Vous ne pouvez avoir qu’un seul plug-in de post-traitement pour les résultats
de requête d’utilisateur. Vous devez installer le plug-in en tant que bibliothèque
partagée.
a. Définissez une bibliothèque partagée de WebSphere Application Server pour

le module d’extension. Définissez la bibliothèque partagée dans la portée du
serveur ou cluster sur lequel Business Process Choreographer est configuré.
Ensuite, associez cette bibliothèque partagée à l’application TaskContainer.
Cette étape ne doit être effectuée qu’une seule fois.

b. Rendez le fichier JAR de plug-in disponible pour chaque installation de
WebSphere Process Server affectée qui héberge un serveur ou un membre
de cluster.

5. Enregistrez le plug-in.
a. Dans la console d’administration, accédez à la page Propriétés

personnalisées de Human Task Manager.
Cliquez sur Serveurs → Serveurs d’applications → nom_serveur dans un
environnement autonome, sur sur Serveurs → Clusters → nom_cluster si
Business Process Choreographer est configuré dans un cluster. Sous
Intégration métier, sélectionnez Human Task Manager. Dans Propriétés
supplémentaires, cliquez sur Propriétés personnalisées.

b. Ajoutez une propriété personnalisée nommée Staff.PostProcessorPlugin et
ainsi que la valeur du nom que vous avez donné à votre plug-in (MyHandler
dans cet exemple).

Le module d’extension est désormais disponible pour effectuer le
post-traitement des résultats de requête du personnel. Si vous modifier le
fichier JAR, remplacez le fichier dans la bibliothèque partagée, puis redémarrez
le serveur.

6. Exécutez le plug-in. Le plug-in de post-traitement est appelé une fois que les
opérations d’affectation et de substitution des utilisateurs sont terminées. Le
plug-in est appelé en utilisant les informations spécifiées par l’interface
StaffQueryResultPostProcessorPlugin.

446 Développement et déploiement

Tâches associées

Création de modules d’extension pour personnaliser les fonctionnalités des tâches
utilisateur
Business Process Choreographer fournit une infrastructure permettant le traitement
des événements qui surviennent lors du traitement des tâches utilisateur.
L’application des modules d’extension est également conçue pour vous permettre
d’adapter les fonctionnalités à vos besoins. Vous pouvez utiliser les interfaces de
fournisseur de services SPI (Service Provider Interfaces) afin de créer des modules
d’extension personnalisés pour la gestion des événements et le post-traitement des
requêtes de personnel.

Chapitre 4. Développement d’applications client pour les tâches et processus métier 447

448 Développement et déploiement

Partie 2. Déploiement des applications

© Copyright IBM Corp. 2005, 2009 449

450 Développement et déploiement

Chapitre 5. Présentation de la préparation et de l’installation
de modules

L’installation de modules (également appelée déploiement) active ces modules soit
dans un environnement de test, soit dans un environnement de production. Cette
présentation décrit brièvement les environnements de test et de production, ainsi
que certaines étapes de l’installation de modules.

Remarque : Le processus d’installation d’applications dans un environnement de
production est similaire au processus décrit dans la rubrique «Développement et
déploiement d’applications» présente dans le centre de documentation de
WebSphere Application Server Network Deployment, version 6. Si vous ne
connaissez pas ces rubriques, reportez-vous y en premier.

Avant d’installer un module dans un environnement de production, vérifiez à
chaque fois les modifications dans un environnement de test. Pour installer des
modules dans un environnement de test, utilisez WebSphere Integration Developer
(voir le centre de documentation WebSphere Integration Developer pour plus
d’informations). Pour installer des modules dans un environnement de production,
utilisez WebSphere Process Server.

Cette rubrique décrit les concepts et les tâches nécessaires à la préparation et à
l’installation de modules dans un environnement de production. Les autres
rubriques décrivent les fichiers contenant les objets que votre module utilise et
vous aide à déplacer ce module de l’environnement de test vers l’environnement
de production. Il est important de comprendre ces fichiers et leur contenu pour
être sûr d’avoir installé vos modules correctement.

© Copyright IBM Corp. 2005, 2009 451

Concepts associés

Présentation des bibliothèques et des fichiers JAR
Les modules utilisent souvent des artefacts qui se trouvent dans des bibliothèques.
Les bibliothèques et les artefacts sont inclus dans les fichiers d’archive Java (JAR)
que vous identifiez lors du déploiement d’un module.
Présentation du fichier EAR
Un fichier EAR est un élément critique du déploiement d’une application de
service sur un serveur de production.
Tâches associées

Préparation au déploiement sur un serveur
Après avoir développé et testé un module, vous devez l’exporter d’un système de
test vers un environnement de production en vue de son déploiement. Pour
installer une application, vous devez également déterminer les chemins requis lors
de l’exportation du module et les bibliothèques requises par celui-ci.
Information associée

Remarques concernant l’installation d’applications de service sur des clusters
L’installation d’une application de service sur un cluster implique d’autres
exigences. Il est important de les garder à l’esprit lors de l’installation
d’applications de service sur un cluster.

Présentation des bibliothèques et des fichiers JAR
Les modules utilisent souvent des artefacts qui se trouvent dans des bibliothèques.
Les bibliothèques et les artefacts sont inclus dans les fichiers d’archive Java (JAR)
que vous identifiez lors du déploiement d’un module.

Lors du développement d’un module, il est possible d’identifier certaines
ressources ou composants qui peuvent être utilisés par différentes parties du
module. Ces ressources ou composants peuvent être des objets créés lors du
développement du module ou des objets existants se trouvant dans une
bibliothèque déjà déployée sur le serveur. Cette rubrique décrit les bibliothèques et
les fichiers dont vous aurez besoin lors de l’installation d’une application.

Bibliothèque

Une bibliothèque contient des objets ou des ressources utilisés par plusieurs
modules dans WebSphere Integration Developer. Les artefacts peuvent se trouver
dans des fichiers JAR, des fichiers archive de ressources (RAR) ou des fichiers
archive de services (WAR). Ces artefacts sont notamment :
v des interfaces ou des descripteurs de services Web (fichiers ayant une extension

.wsdl) ;
v des définitions de schéma XML d’objets métier (fichiers ayant une extension

.xsd) ;
v des mappes d’objets métier (fichiers ayant une extension .map) ;
v des définitions de relations et de rôles (fichiers ayant une extension .rel et .rol).

Lorsqu’un module doit utiliser un artefact, le serveur recherche cet artefact à partir
du chemin d’accès aux classes EAR et le charge, s’il n’est pas déjà chargé dans la
mémoire. A partir de ce moment, toute requête portant sur l’artefact utilise cette
copie jusqu’à son remplacement. La figure 29, à la page 453 illustre les composants
et les bibliothèques d’une application.

452 Développement et déploiement

Figure 29. Relations entre module, composants et bibliothèques

Chapitre 5. Présentation de la préparation et de l’installation de modules 453

Fichiers JAR, RAR et WAR

Un certain nombre de fichiers peuvent contenir des composants d’un module. Ces
fichiers sont décrits en détails dans la spécification Java Platform, Enterprise
Edition (J2EE). Une description détaillée des fichiers JAR est disponible dans la
spécification JAR.

Dans WebSphere Process Server, un fichier JAR contient également une application
qui est la version assemblée du module comprenant toutes les références de prise
en charge et les interfaces vers tous les autres composants de service utilisés par le
module. Pour installer l’application complète, vous avez besoin de ce fichier JAR et
de toutes autres bibliothèques : fichiers JAR, fichiers WAR (archive Web), fichiers
RAR (archive de ressources), fichiers JAR de bibliothèques de transfert (EJB -
Enterprise Java Beans) ou de toutes autres archives, et vous devez créer un fichier
EAR installable à l’aide de la commande serviceDeploy .

Conventions de dénomination pour les modules de transfert

Dans la bibliothèque, des conventions de dénomination s’appliquent aux noms des
modules de transfert. Ces noms sont uniques pour un module spécifique. Nommez
les autres modules requis pour déployer l’application en veillant à éviter tout
conflit avec les noms des modules de transfert. Pour un module nommé myService,
les noms de modules de transfert sont les suivants :
v myServiceApp
v myServiceEJB
v myServiceEJBClient
v myServiceWeb

Remarque : La commande serviceDeploy crée le module de transfert myServiceWeb
uniquement si le service inclut un service de type de port WSDL.

Remarques concernant l’utilisation de bibliothèques

L’utilisation de bibliothèques assure la cohérence des objets métier et celle du
traitement entre les différents modules étant donné que chaque module appelant
dispose de sa propre copie d’un composant spécifique. Pour empêcher les
incohérences et les erreurs, il est important de veiller à ce que les modifications
apportées aux composants et aux objets métiers utilisés par les modules appelants
soient coordonnées avec l’ensemble des modules appelants. Pour mettre les
modules appelants à jour, procédez comme suit :
1. copiez le module et la copie la plus récente des bibliothèques sur le serveur de

production ;
2. recréez le fichier EAR installable à l’aide de la commande serviceDeploy ;
3. arrêtez l’application en cours d’exécution qui contient le module appelant et

réinstallez-la ;
4. redémarrez l’application qui contient le module appelant.

454 Développement et déploiement

http://java.sun.com/javaee/reference/index.jsp
http://java.sun.com/javaee/reference/index.jsp

Concepts associés

Présentation de la préparation et de l’installation de modules
L’installation de modules (également appelée déploiement) active ces modules soit
dans un environnement de test, soit dans un environnement de production. Cette
présentation décrit brièvement les environnements de test et de production, ainsi
que certaines étapes de l’installation de modules.
Présentation du fichier EAR
Un fichier EAR est un élément critique du déploiement d’une application de
service sur un serveur de production.
Tâches associées

Préparation au déploiement sur un serveur
Après avoir développé et testé un module, vous devez l’exporter d’un système de
test vers un environnement de production en vue de son déploiement. Pour
installer une application, vous devez également déterminer les chemins requis lors
de l’exportation du module et les bibliothèques requises par celui-ci.
Information associée

Remarques concernant l’installation d’applications de service sur des clusters
L’installation d’une application de service sur un cluster implique d’autres
exigences. Il est important de les garder à l’esprit lors de l’installation
d’applications de service sur un cluster.

Présentation du fichier EAR
Un fichier EAR est un élément critique du déploiement d’une application de
service sur un serveur de production.

Un fichier d’archive d’entreprise (EAR) est un fichier compressé qui contient les
bibliothèques, les beans enterprise et les fichiers JAR nécessaires au déploiement de
l’application.

Les fichiers JAR sont créés lors de l’exportation des modules d’application à partir
de WebSphere Integration Developer. Ce fichier JAR et toutes autres bibliothèques
d’artefacts ou objets sont utilisés en tant qu’entrées dans le processus d’installation.
La commande serviceDeploy crée un fichier EAR à partir des fichiers d’entrée
contenant les descriptions des composants et le code Java qui forment l’application.

Chapitre 5. Présentation de la préparation et de l’installation de modules 455

Concepts associés

Présentation de la préparation et de l’installation de modules
L’installation de modules (également appelée déploiement) active ces modules soit
dans un environnement de test, soit dans un environnement de production. Cette
présentation décrit brièvement les environnements de test et de production, ainsi
que certaines étapes de l’installation de modules.
Présentation des bibliothèques et des fichiers JAR
Les modules utilisent souvent des artefacts qui se trouvent dans des bibliothèques.
Les bibliothèques et les artefacts sont inclus dans les fichiers d’archive Java (JAR)
que vous identifiez lors du déploiement d’un module.
Tâches associées

Préparation au déploiement sur un serveur
Après avoir développé et testé un module, vous devez l’exporter d’un système de
test vers un environnement de production en vue de son déploiement. Pour
installer une application, vous devez également déterminer les chemins requis lors
de l’exportation du module et les bibliothèques requises par celui-ci.
Information associée

Remarques concernant l’installation d’applications de service sur des clusters
L’installation d’une application de service sur un cluster implique d’autres
exigences. Il est important de les garder à l’esprit lors de l’installation
d’applications de service sur un cluster.

Préparation au déploiement sur un serveur
Après avoir développé et testé un module, vous devez l’exporter d’un système de
test vers un environnement de production en vue de son déploiement. Pour
installer une application, vous devez également déterminer les chemins requis lors
de l’exportation du module et les bibliothèques requises par celui-ci.

Avant de commencer

Avant de commencer, vous devez avoir développé et testé vos modules sur un
serveur de test et résolu les incidents et les problèmes liés aux performances.

Important : Pour éviter de remplacer une application ou un module s’exécutant
déjà dans un environnement de déploiement, assurez-vous que le nom du module
ou de l’application est différent de celui déjà installé.

A propos de cette tâche

Cette tâche vérifie que toutes les pièces nécessaires d’une application sont
disponibles et rassemblées dans les bons fichiers pour être amenées vers le serveur
de production.

Remarque : Vous pouvez également exporter un fichier d’archive d’entreprise
(EAR) à partir de WebSphere Integration Developer et installer ce fichier
directement dans WebSphere Process Server.

Important : Si les services internes d’un composant utilisent une base de données,
installez l’application sur un serveur connecté directement à une base de données.

Procédure

1. Localisez le dossier contenant les composants du module que vous souhaitez
déployer.

456 Développement et déploiement

Le dossier contenant les composants doit porter le nom module-nomet contenir
un fichier nommé module.module correspondant au module de base.

2. Vérifiez que tous les composants contenus dans le module se trouvent dans les
sous-dossiers de composant sous le dossier du module.
Pour faciliter l’utilisation, nommez le sous-dossier de la façon suivante
module/composant.

3. Vérifiez que tous les fichiers comprenant chacun des composants font partie du
bon sous-dossier de composant et ont un nom ressemblant à
composant-fichier-nom.composant.
Les fichiers de composants contiennent les définitions de chaque composant
individuel à l’intérieur du module.

4. Vérifiez que tous les autres composants et artefacts se trouvent bien dans les
sous-dossiers de composants qui exigent leur présence.
Lors de cette étape, vous allez vérifier que toutes les références à des outils
nécessaires à un composant sont disponibles. Les noms de composants ne
doivent pas entrer en conflit avec les noms que la commande serviceDeploy
utilise pour hiérarchiser les modules. Voir convention de dénomination des
modules de transfert.

5. Vérifiez que le fichier de références, module.references, existe bien dans le
dossier module de l’étape 1, à la page 456.
Le fichier de références définit les références et les interfaces à l’intérieur du
module.

6. Vérifiez que le fichier câblage, module.wires, existe bien dans le dossier
composant.
Le fichier câblage complète les connexions entre les références et les interfaces
du module.

7. Vérifiez que le fichier manifeste, module.manifest, existe bien dans le dossier
composant.
Le manifeste liste les composants contenus dans le module. Il contient
également une instruction de chemin de classes afin de permettre à la
commande serviceDeploy de localiser tout autre module nécessaire au module.

8. Créez un fichier compressé ou un fichier JAR du module représentant l’entrée
de la commande serviceDeploy que vous utiliserez afin de préparer
l’installation du module vers le serveur de production.

Exemple de structure de dossier pour un module MyValue avant
déploiement

Ce qui suit illustre la structure de répertoire du module MyValueModule
comprenant les composants MyValue, CustomerInfo et StockQuote.
MyValueModule

MyValueModule.manifest
MyValueModule.references
MyValueModule.wiring
MyValueClient.jsp

process/myvalue
MyValue.component
MyValue.java
MyValueImpl.java

service/customerinfo
CustomerInfo.component
CustomerInfo.java
Customer.java
CustomerInfoImpl.java

service/stockquote

Chapitre 5. Présentation de la préparation et de l’installation de modules 457

StockQuote.component
StockQuote.java
StockQuoteAsynch.java
StockQuoteCallback.java
StockQuoteImpl.java

Que faire ensuite

Installez le module sur les systèmes de production comme décrit à la rubrique
Installation d’un module sur un serveur de productionInstallation d’un module sur
un serveur de production.
Concepts associés

Présentation de la préparation et de l’installation de modules
L’installation de modules (également appelée déploiement) active ces modules soit
dans un environnement de test, soit dans un environnement de production. Cette
présentation décrit brièvement les environnements de test et de production, ainsi
que certaines étapes de l’installation de modules.
Présentation des bibliothèques et des fichiers JAR
Les modules utilisent souvent des artefacts qui se trouvent dans des bibliothèques.
Les bibliothèques et les artefacts sont inclus dans les fichiers d’archive Java (JAR)
que vous identifiez lors du déploiement d’un module.
Présentation du fichier EAR
Un fichier EAR est un élément critique du déploiement d’une application de
service sur un serveur de production.
Information associée

Remarques concernant l’installation d’applications de service sur des clusters
L’installation d’une application de service sur un cluster implique d’autres
exigences. Il est important de les garder à l’esprit lors de l’installation
d’applications de service sur un cluster.

Remarques concernant l’installation d’applications de service sur des
clusters

L’installation d’une application de service sur un cluster implique d’autres
exigences. Il est important de les garder à l’esprit lors de l’installation
d’applications de service sur un cluster.

Les clusters apportent de nombreux avantages à votre environnement de
traitement grâce aux économies d’échelle, ce qui permet d’équilibrer la charge des
requêtes entre serveurs et fournit un niveau de disponibilité pour les clients des
applications. Avant d’installer une application contenant des services sur un
cluster, tenez compte des points suivants :
v Les utilisateurs de l’applications ont-ils besoin de la puissance et de la

disponibilité de traitement des clusters ?
Si c’est le cas, la mise en cluster est la solution adéquate. La mise en cluster
augmente la disponibilité et la capacité de vos applications.

v Le cluster est-il préparé correctement pour les applications de service ?
Vous devez configurer le cluster correctement avant d’installer et de démarrer la
première application contenant un service. Le cluster doit être configuré
correctement pour que les requêtes soient traitées correctement.

v Un cluster de secours est-il installé ?
Vous devez installer l’application sur le cluster de secours également.

458 Développement et déploiement

Concepts associés

Présentation de la préparation et de l’installation de modules
L’installation de modules (également appelée déploiement) active ces modules soit
dans un environnement de test, soit dans un environnement de production. Cette
présentation décrit brièvement les environnements de test et de production, ainsi
que certaines étapes de l’installation de modules.
Présentation des bibliothèques et des fichiers JAR
Les modules utilisent souvent des artefacts qui se trouvent dans des bibliothèques.
Les bibliothèques et les artefacts sont inclus dans les fichiers d’archive Java (JAR)
que vous identifiez lors du déploiement d’un module.
Présentation du fichier EAR
Un fichier EAR est un élément critique du déploiement d’une application de
service sur un serveur de production.
Tâches associées

Préparation au déploiement sur un serveur
Après avoir développé et testé un module, vous devez l’exporter d’un système de
test vers un environnement de production en vue de son déploiement. Pour
installer une application, vous devez également déterminer les chemins requis lors
de l’exportation du module et les bibliothèques requises par celui-ci.

Chapitre 5. Présentation de la préparation et de l’installation de modules 459

460 Développement et déploiement

Chapitre 6. Déploiement d’un module

Vous pouvez déployer un module ou un module de médiation généré par
WebSphere Integration Developer, dans un environnement de production
WebSphere Process Server en suivant la procédure ci-dessous.

Avant de commencer

Avant de déployer une application de service sur un serveur de production,
assemblez et testez l’application sur un serveur test. A l’issue du test, exportez les
fichiers adéquats comme cela est décrit dans Préparation du déploiement sur un
serveur dans le fichier PDF Développement et déploiement de modules et
transférez les fichiers sur le système de production en vue du déploiement. Pour
plus d’informations, consultez les centres de documentation WebSphere Integration
Developer et WebSphere Application Server Network Deployment.

Procédure

1. Copiez le module et d’autres fichiers sur le serveur de production.
Les modules et ressources (fichiers EAR, JAR, RAR et WAR) requis par
l’application sont transférés sur votre environnement de production.

2. Exécutez la commandeserviceDeploy pour créer un fichier EAR installable.
Cette étape définit le module auprès du serveur en préparation de l’installation
de l’application en production.
a. Localisez le fichier JAR qui contient le module à déployer.
b. Exécutez la commande serviceDeploy en utilisant le fichier JAR de l’étape

précédente comme entrée.
3. Installez le fichier EAR à partir de l’étape 2. Le mode d’installation des

applications dépend de la destination : serveur autonome ou serveur dans une
cellule.

Remarque : Vous pouvez utiliser la console d’administration ou unscript pour
installer l’application. Pour plus d’informations, voir le centre de
documentation WebSphere Application Server.

4. Sauvegardez la configuration. Le module est installé en tant qu’application.
5. Lancez l’application.

Résultats

L’application est active ; le flux de travail doit circuler via le module.

Que faire ensuite

Contrôlez l’application pour vous assurer que le serveur traite correctement les
demandes.

© Copyright IBM Corp. 2005, 2009 461

Tâches associées

Installation de modules SCA versionnés dans un environnement de production
Vous pouvez déployer des modules SCA versionnés dans la phase d’exécution.
Chaque version d’un module existe parallèlement aux autres versions actuellement
installées sur le serveur ou dans la cellule.
Installation d’un module SCA avec la console
Avant de démarrer l’exécution d’un module ou d’un module de médiation, vous
devez le déployer sur un serveur ou un cluster. Le déploiement implique la
création d’un fichier EAR installable et l’installation du fichier EAR sur le serveur
ou le cluster.
Création d’un fichier EAR installable via serviceDeploy
Pour installer une application dans l’environnement de production, utilisez les
fichiers copiés sur le serveur de production et créez un fichier EAR installable.
Déploiement d’applications à l’aide des tâches ANT Apache
Les tâches permettent de définir le déploiement de plusieurs applications sur
WebSphere Process Server et de les exécuter sans surveillance sur un serveur.

Installation de modules SCA versionnés dans un environnement de
production

Vous pouvez déployer des modules SCA versionnés dans la phase d’exécution.
Chaque version d’un module existe parallèlement aux autres versions actuellement
installées sur le serveur ou dans la cellule.

Avant de commencer

Assurez-vous d’effectuer les opérations suivantes avant d’installer un module SCA
versionné dans votre environnement de production :
v Dans WebSphere Integration Developer, précisez que le module est versionné et

exportez-le en vue d’un déploiement sur la ligne de commande. Pour plus
d’informations, voir la rubrique sur la création de bibliothèques et de modules
versionnés.

v Déterminez si vous souhaitez déployer simultanément différentes versions du
module sur un seul serveur ou si vous souhaitez déployer simultanément
plusieurs instances du même module versionné sur divers clusters de la même
cellule.

A propos de cette tâche

Pour installer des modules versionnés, procédez comme suit :

Procédure

1. Exécutez serviceDeploy sur le module versionné que vous avez exporté pour
générer un fichier EAR installable.
serviceDeploy nomModule.zip

La commande serviceDeploy renvoie un fichier EAR installable dont le nom
inclut la version, et parfois, des informations sur l’ID de la cellule.

2. Installez le module d’une des manières suivantes :
v Dans la console d’administration, cliquez sur Modules SCA et cliquez sur le

bouton Installer de la page Modules SCA.
v Dans la console d’administration, cliquez sur Applications > Installation

d’une nouvelle application.

462 Développement et déploiement

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx/topic/com.ibm.wbit.620.help.basics.doc/topics/tcrtvers.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx/topic/com.ibm.wbit.620.help.basics.doc/topics/tcrtvers.html

v Exécutez la commande wsadmin AdminApp.install.
3. Si vous souhaitez installer un module versionné sur plusieurs serveurs ou

clusters dans une cellule, effectuez l’opération suivante pour chaque instance de
module désirée :
a. Exécutez la commande createVersionedSCAModule pour créer une instance

du module.
createVersionedSCAModule -archiveAbsolutePath rép_archive_entrée
-workingDirectory rép_travail -uniqueCellID ID_cellule

b. Installez le fichier EAR résultant comme décrit dans l’étape 2, à la page 462.
4. Facultatif : Exécutez la commande validateSCAImportExportInformation pour

confirmer l’existence de toutes les liaisons SCA et liaisons d’exportation du
sélecteur dans le fichier EAR spécifié.

Résultats

Votre environnement de production compte désormais une ou de plusieurs
applications versionnées. Ces dernières peuvent toutes être administrées via la
console d’administration ou à l’aide des commandes d’administration
correspondantes.

Remarque : Pour conserver les informations de gestion des versions, le processus
d’installation modifie automatiquement le nom du module pour s’assurer qu’il est
unique au sein du serveur ou de la cellule via l’exécution de la commande
serviceDeploy ou createVersionedSCAModule. Ces commandes ajoutent le numéro
de version, un ID de cellule unique ou le nom du module d’origine.
nomModule_vvaleurVersion_iDCellule unique

Par exemple, si vous avez suivi les étapes contenues dans cette section, le
déploiement de la version 1.0.1 du module processusFacturation entraîne la
création d’un module appelé processusFacturation_v1_0_1 et d’une application de
service installée appelée processusFacturation_v1_0_1App. Si vous indiquez
également un ID de cellule unique (exemple : Cellule5), le module porte le nom
processusFacturation_v1_0_1_Cellule5 et l’application de service installée, le nom
processusFacturation_v1_0_1_Cellule5App.
Tâches associées

Déploiement d’un module de
Vous pouvez déployer un module ou un module de médiation généré par
WebSphere Integration Developer, dans un environnement de production
WebSphere Process Server en suivant la procédure ci-dessous.

Installation d’un module SCA avec la console
Avant de démarrer l’exécution d’un module ou d’un module de médiation, vous
devez le déployer sur un serveur ou un cluster. Le déploiement implique la
création d’un fichier EAR installable et l’installation du fichier EAR sur le serveur
ou le cluster.

Avant de commencer

Si vous avez exporté votre module ou module de médiation vers un fichier JAR,
utilisez la commande serviceDeploy pour créer un fichier EAR installable à partir
du fichier JAR. Pour plus d’informations, reportez-vous au Chapitre 6,
«Déploiement d’un module», à la page 461.

Chapitre 6. Déploiement d’un module 463

A propos de cette tâche

Vous devez installer le fichier EAR sur un serveur ou un cluster avant de pouvoir
lancer l’exécution du module ou du module de médiation.

Au lieu d’utiliser la console d’administration, vous pouvez utiliser d’autres
méthodes pour installer le fichier EAR, telles que la commande AdminApp.install
ou AdminApp.installinteractive à l’aide de l’outil wsadmin.

Important : Si, après avoir commencé la procédure, vous ne souhaitez plus
installer l’application, cliquez sur Annuler : ne vous contentez pas de passer sur
une autre page de la console d’administration.

Procédure

1. A partir de la console d’administration, cliquez sur Applications → Installer
une nouvelle application dans le panneau de navigation de la console. La
première des deux pages de la préparation de l’installation de l’application
s’affiche.

2. Dans la première page Préparation de l’installation de l’application :
a. Indiquez le chemin d’accès complet du fichier EAR. Pour plus

d’informations, voir Installation des applications à l’aide de la console.
b. Indiquez si vous acceptez les valeurs par défaut ou indiquez de nouvelles

valeurs :
Me prévenir uniquement lorsque des informations supplémentaires sont
requises.

Affiche uniquement la phase de mappage du module et les autres
phases dans lesquelles vous devez fournir des informations.

Me montrer toutes les options et tous les paramètres d’installation.
Affiche toutes les phases de l’installation. Pour utiliser Générer les
liaisons par défaut, qui permet d’entrer les valeurs par défaut pour
les liaisons non renseignées, sélectionnez cette option.

c. Cliquez sur Suivant.
3. L’installation d’un fichier EAR contenant un flux de médiation est identique à

l’installation de tout autre fichier EAR d’application d’entreprise dans
WebSphere Application Server. Pour obtenir des informations détaillées pour
renseigner la seconde page de la préparation de l’installation de l’application
et préciser les options dans les dernières étapes de l’assistant, voir Installation
des applications à l’aide de la console.

4. Lorsque vous installez un module de médiation ou un module contenant un
flux de médiation, vous pouvez effectuer une étape supplémentaire. Dans le
panneau Modifier les propriétés du module, vous pouvez modifier les valeurs
des propriétés du module. Si les propriétés appartiennent à un groupe, elles
s’affichent dans une section à développer sinon vous les voyez immédiatement.

Résultats

Vous pouvez à présent démarrer le module ou module de médiation.

464 Développement et déploiement

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=pix&product=was-nd-mp&topic=trun_app_instwiz
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=pix&product=was-nd-mp&topic=trun_app_instwiz
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=pix&product=was-nd-mp&topic=trun_app_instwiz

Tâches associées

Déploiement d’un module de
Vous pouvez déployer un module ou un module de médiation généré par
WebSphere Integration Developer, dans un environnement de production
WebSphere Process Server en suivant la procédure ci-dessous.

Création d’un fichier EAR installable via serviceDeploy
Pour installer une application dans l’environnement de production, utilisez les
fichiers copiés sur le serveur de production et créez un fichier EAR installable.

Avant de commencer

Avant de commencer cette tâche, vous devez disposer d’un fichier JAR contenant
le module et les services que vous déployez sur le serveur. Pour plus
d’informations, voir «Préparation du déploiement vers un serveur».

A propos de cette tâche

La commande serviceDeploy utilise un fichier JAR, d’autres fichiers EAR, JAR,
RAR, WAR et ZIP dépendants et crée un fichier EAR que vous pouvez installer sur
un serveur.

Procédure

1. Localisez le fichier JAR qui contient le module à déployer.
2. Exécutez la commande serviceDeploy en utilisant le fichier JAR de l’étape

précédente comme entrée.
Cette étape crée un fichier EAR.

Remarque : Suivez la procédure suivante sur une console d’administration.
3. Sélectionnez le fichier EAR à installer dans la console d’administration du

serveur.
4. Cliquez sur Sauvegarder pour installer le fichier EAR.
Tâches associées

Déploiement d’un module de
Vous pouvez déployer un module ou un module de médiation généré par
WebSphere Integration Developer, dans un environnement de production
WebSphere Process Server en suivant la procédure ci-dessous.

Déploiement d’applications à l’aide des tâches ANT Apache
Les tâches permettent de définir le déploiement de plusieurs applications sur
WebSphere Process Server et de les exécuter sans surveillance sur un serveur.

Avant de commencer

Cette tâche suppose que :
v Les applications déployées ont déjà été développées et testées.
v Les applications doivent être installées sur le(s) même(s) serveur(s).
v Vous avez certaines connaissances en tâches ANT Apache.
v Vous comprenez le processus de déploiement.

Des informations sur le développement et le test d’applications se trouvent dans le
centre de documentation WebSphere Integration Developer.

Chapitre 6. Déploiement d’un module 465

La section de référence Documentation sur les interfaces API et SPI générées
fournit des informations détaillées sur les interfaces de programme d’application.
Les tâches ANT Apache sont décrites dans le module com.ibm.websphere.ant.tasks.
Pour la présente rubrique, les tâches utilisées sont ServiceDeploy et
InstallApplication.

A propos de cette tâche

Si vous devez installer des applications multiples simultanément, développez une
tâche ANT Apache, avant le déploiement. La tâche ANT Apache peut alors
déployer et installer les applications sur les serveurs sans que vous n’ayez à
intervenir.

Procédure

1. Identifiez les applications à déployer.
2. Créez un fichier JAR pour chaque application.
3. Copiez les fichiers JAR sur les serveurs cible.
4. Créez une tâche ANT Apache pour exécuter la commande ServiceDeploy afin

de créer un fichier EAR pour chaque serveur.
5. Créez une tâche ANT Apache pour exécuter la commande InstallApplication

pour chaque fichier EAR depuis l’étape 4 sur les serveurs concernés.
6. Exécutez la tâche ANT ServiceDeploy Apache pour créer le ficher EAR pour les

applications.
7. Exécutez la tâche ANT InstallApplication Apache afin d ’installer les fichiers

EAR à partir de l’étape 6.

Résultats

Les applications sont correctement déployées sur les serveurs cible.

Exemple de déploiement automatique d’une application

Dans cet exemple de déploiement d’une application sans surveillance, une tâche
ANT Apache est contenue dans un fichier myBuildScript.xml.
<?xml version="1.0">

<project name="OwnTaskExample" default="main" basedir=".">
<taskdef name="servicedeploy"

classname="com.ibm.websphere.ant.tasks.ServiceDeployTask" />
<target name="main" depends="main2">
<servicedeploy scaModule="c:/synctest/SyncTargetJAR"
ignoreErrors="true"
outputApplication="c:/synctest/SyncTargetEAREAR"
workingDirectory="c:/synctest"
noJ2eeDeploy="true"
cleanStagingModules="true"/>

</target>
</project>

Cette instruction montre comment appeler la tâche ANT Apache.
${WAS}/bin/ws_ant -f myBuildScript.xml

Conseil : Plusieurs applications peuvent être déployées automatiquement en
ajoutant des instructions de projet supplémentaires au fichier.

466 Développement et déploiement

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=welc_ref_javadoc

Que faire ensuite

Utilisez la console d’administration pour vérifier que les applications nouvellement
installées sont démarrées et traitent le flux de travail correctement.
Tâches associées

Déploiement d’un module de
Vous pouvez déployer un module ou un module de médiation généré par
WebSphere Integration Developer, dans un environnement de production
WebSphere Process Server en suivant la procédure ci-dessous.

Chapitre 6. Déploiement d’un module 467

468 Développement et déploiement

Chapitre 7. Installation des applications de tâche utilisateur et
de processus métier

Vous pouvez distribuer les modules SCA (Service Component Architecture)
contenant des processus métier ou des tâches utilisateur, ou les deux, sur des cibles
de déploiement. Une cible de déploiement peut être un serveur ou un cluster.

Avant de commencer

Vérifiez que Business Flow Manager et Human Task Manager sont installés et
configurés pour chaque serveur d’applications ou cluster sur lequel vous souhaitez
installer l’application.

A propos de cette tâche

Vous pouvez installer des applications de processus métier et de tâche à partir de
la console d’administration ou de la ligne de commande, ou en exécutant un script
d’administration.

Résultats

Après l’installation d’une application de processus métier ou de tâche utilisateur,
tous les modèles de processus métier et de tâche utilisateur passent à l’état
″Démarré″. Vous pouvez créer des instances de processus et de tâche à partir de
ces modèles.

Que faire ensuite

Pour pouvoir créer des instances de processus ou de tâche, vous devez démarrer
l’application.

© Copyright IBM Corp. 2005, 2009 469

Concepts associés

Installation d’applications de processus métier et de tâches utilisateur dans un
environnement de déploiement réseau
Lorsque des modèles de processus ou de tâches utilisateur sont installés dans un
environnement de déploiement réseau, les actions suivantes sont automatiquement
exécutées par le programme d’installation des applications.
Déploiement des processus métier et des tâches utilisateur
Lorsque WebSphere Integration Developer ou le déploiement de service génère du
code de déploiement pour votre processus ou votre tâche, chaque composant de
processus ou composant de tâche est mappé avec un bean entreprise de session.
L’ensemble du code de déploiement est mis en forme dans le fichier d’application
d’entreprise (EAR). De plus, pour chaque processus, une classe Java représentant le
code Java dans ce processus est générée et imbriquée dans le fichier EAR au cours
de l’installation de l’application d’entreprise. Chaque nouvelle version d’un modèle
devant être déployé doit être mise en forme dans une nouvelle application
d’entreprise.
Tâches associées

Installation d’applications de processus métier et de tâche utilisateur en mode
interactif
Vous pouvez installer une application en mode interactif lors son exécution à l’aide
de l’outil wsadmin et du script installInteractive. Vous pouvez utiliser le script
pour modifier les paramètres qui ne sont pas modifiables si vous utilisez la console
d’administration pour installer l’application.
Désinstallation d’applications de processus métier et de tâche utilisateur à l’aide de
la console d’administration
Vous pouvez utiliser la console d’administration pour désinstaller des applications
contenant des processus métier ou des tâches utilisateur.
Désinstallation d’applications de processus métier et de tâches humaines à l’aide
d’une commande d’administration
L’utilisation du script bpcTemplates.jacl est une alternative à l’emploi de la console
d’administration pour désinstaller des applications qui contiennent des processus
métier ou des tâches humaines.

Installation d’applications de processus métier et de tâches utilisateur
dans un environnement de déploiement réseau

Lorsque des modèles de processus ou de tâches utilisateur sont installés dans un
environnement de déploiement réseau, les actions suivantes sont automatiquement
exécutées par le programme d’installation des applications.

L’application est installée par étapes. Chaque étape doit être exécutée avec succès
pour que la suivante puisse débuter.
1. L’installation d’application démarre sur le gestionnaire de déploiement.

Au cours de cette étape, les modèles de processus métier et de tâche utilisateur
sont configurés dans le référentiel de configuration WebSphere. L’application
est également validée. Si des erreurs se produisent, elles sont consignées dans
les fichiers System.out et System.err, ou en tant qu’entrées FFDC dans le
gestionnaire de déploiement.

2. L’installation de l’application se poursuit sur l’agent de noeud.
Au cours de cette étape, l’installation de l’application sur une instance de
serveur d’applications est déclenchée. Cette instance de serveur d’applications
est soit la cible de déploiement, soit fait partie de celle-ci. Si la cible de
déploiement est un cluster comprenant plusieurs membres, l’instance du

470 Développement et déploiement

serveur est choisie arbitrairement parmi les membres de ce cluster. Si des
erreurs se produisent au cours de cette étape, elles sont consignées dans les
fichiers SystemOut.log et SystemErr.log, ou en tant qu’entrées FFDC sur l’agent
de noeud.

3. L’application s’exécute sur l’instance de serveur.
Au cours de cette étape, les modèles de processus métier et de tâche utilisateur
sont déployés dans la base de données de Business Process Choreographer sur
la cible de déploiement. Si des erreurs se produisent, elles sont consignées dans
les fichiers System.out et SystemErr.log ou en tant qu’entrées FFDC sur
l’instance de serveur.

Tâches associées

Installation des applications de tâche utilisateur et de processus métier
Vous pouvez distribuer les modules SCA (Service Component Architecture)
contenant des processus métier ou des tâches utilisateur, ou les deux, sur des cibles
de déploiement. Une cible de déploiement peut être un serveur ou un cluster.

Déploiement des processus métier et des tâches utilisateur
Lorsque WebSphere Integration Developer ou le déploiement de service génère du
code de déploiement pour votre processus ou votre tâche, chaque composant de
processus ou composant de tâche est mappé avec un bean entreprise de session.
L’ensemble du code de déploiement est mis en forme dans le fichier d’application
d’entreprise (EAR). De plus, pour chaque processus, une classe Java représentant le
code Java dans ce processus est générée et imbriquée dans le fichier EAR au cours
de l’installation de l’application d’entreprise. Chaque nouvelle version d’un modèle
devant être déployé doit être mise en forme dans une nouvelle application
d’entreprise.

Lorsque vous installez une application d’entreprise qui contient des processus
métier ou des tâches utilisateur, ces derniers sont stockés dans des modèles de
processus métier ou des modèles de tâches utilisateur, au sein de la base de
données du Business Process Choreographer. Les modèles nouvellement installés
sont, par défaut, à l’état démarré. Toutefois, l’application d’entreprise nouvellement
installée se trouve à l’état arrêté. Chaque application d’entreprise installée peut être
démarrée et arrêtée individuellement.

Vous pouvez déployer de nombreuses versions différentes d’un modèle de
processus ou de tâche, chacune dans un application d’entreprise différente.
Lorsque vous installez une nouvelle application d’entreprise, la version du modèle
qui est installée est déterminée comme suit :
v Si le nom du modèle et l’espace de nom cible n’existent pas, un nouveau modèle

est installé.
v Si le nom du modèle et l’espace de nom cible sont identiques à ceux du modèle

existant, mais que la date de début de validité est différente, une nouvelle
version du modèle existant est installée.

Remarque : Le nom du modèle est dérivé du nom du composant et non du
processus métier ou de la tâche utilisateur.

Si vous n’indiquez pas de date de début de validité, la date est déterminée de la
façon suivante :
v Si vous utilisez WebSphere Integration Developer, la date de début de validité

correspond à la date de modélisation de la tâche utilisateur ou du processus
métier.

Chapitre 7. Installation des applications de tâche utilisateur et de processus métier 471

v Si vous utilisez le déploiement de service, la date de début de validité
correspond à la date d’exécution de la commande serviceDeploy. Seules les
tâches collaboratives affichent la date d’installation de l’application comme date
de début de validité.

Tâches associées

Installation des applications de tâche utilisateur et de processus métier
Vous pouvez distribuer les modules SCA (Service Component Architecture)
contenant des processus métier ou des tâches utilisateur, ou les deux, sur des cibles
de déploiement. Une cible de déploiement peut être un serveur ou un cluster.

Installation d’applications de processus métier et de tâche utilisateur
en mode interactif

Vous pouvez installer une application en mode interactif lors son exécution à l’aide
de l’outil wsadmin et du script installInteractive. Vous pouvez utiliser le script
pour modifier les paramètres qui ne sont pas modifiables si vous utilisez la console
d’administration pour installer l’application.

A propos de cette tâche

Procédez comme suit pour installer des applications de processus métier en mode
interactif.

Procédure

1. Démarrez l’outil wsadmin.
Dans le répertoire racine_profil/bin, entrez wsadmin.

2. Installez l’application.
Dans l’invite de ligne de commande, entrez la commande suivante :
$AdminApp installInteractive application.ear

où application.ear désigne le nom qualifié du fichier EAR (Enterprise Archive)
contenant votre application de processus. Une série de tâches vous permet de
modifier les valeurs définies pour l’application.

3. Sauvegardez les modifications apportées à la configuration.
Dans l’invite de ligne de commande, entrez la commande suivante :
$AdminConfig save

Vous devez sauvegarder vos modifications afin de transférer les mises à jour au
référentiel de configuration maître. Si un processus de scriptage se termine et
que vous n’avez pas sauvegardé vos modifications, celles-ci sont supprimées.

472 Développement et déploiement

Tâches associées

Installation des applications de tâche utilisateur et de processus métier
Vous pouvez distribuer les modules SCA (Service Component Architecture)
contenant des processus métier ou des tâches utilisateur, ou les deux, sur des cibles
de déploiement. Une cible de déploiement peut être un serveur ou un cluster.
Configuration de la source de données d’une application de processus et des
paramètres de référence d’ensemble
Il peut être nécessaire de configurer les applications de processus exécutant des
instructions SQL pour une infrastructure de base de données spécifique. Ces
instructions SQL peuvent être issues d’activités de service d’information ou
peuvent correspondre à des instructions exécutées lors du processus d’installation
ou du démarrage d’une instance.

Configuration de la source de données d’une application de
processus et des paramètres de référence d’ensemble

Il peut être nécessaire de configurer les applications de processus exécutant des
instructions SQL pour une infrastructure de base de données spécifique. Ces
instructions SQL peuvent être issues d’activités de service d’information ou
peuvent correspondre à des instructions exécutées lors du processus d’installation
ou du démarrage d’une instance.

A propos de cette tâche

Lorsque vous installez l’application, vous pouvez spécifier les types de sources de
données suivants :
v Sources de données pour l’exécution d’instructions SQL lors de l’installation du

processus
v Sources de données pour l’exécution d’instructions SQL lors du démarrage d’une

instance de processus
v Sources de données pour l’exécution d’activités de fragments SQL

La source de données requise pour exécuter une activité de fragments SQL est
définie dans une variable BPEL de type tDataSource. Le schéma de base de
données et les noms de table requis pour une activité de fragments SQL sont
définis dans des variables BPEL de type tSetReference. Vous pouvez configurer les
valeurs initiales de ces deux variables.

Vous pouvez spécifier les sources de données à l’aide de l’outil wsadmin.

Procédure

1. Installez l’application de processus de manière interactive à l’aide de l’outil
wsadmin.

2. Parcourez les tâches jusqu’à atteindre celles permettant de mettre à jour des
sources de données et des références d’ensemble.
Configurez ces paramètres pour votre environnement. L’exemple suivant
présente les paramètres que vous pouvez modifier pour chacune de ces tâches.

3. Enregistrez vos modifications.

Exemple : Mise à jour de sources de données et des références
d’ensemble à l’aide de l’outil wsadmin

Dans la tâche Mise à jour des sources de données, vous pouvez modifier les
valeurs des sources de données par des valeurs de variables initiales utilisées lors

Chapitre 7. Installation des applications de tâche utilisateur et de processus métier 473

de l’installation du processus ou au démarrage de ce dernier. Dans la tâche Mise à
jour des références d’ensemble, vous pouvez configurer les paramètres liés au
schéma de base de données et aux noms de table.
Task[24] : Mise à jour des sources de données

//Modifiez les valeurs des sources de données pour les variables initiales lors du
démarrage du processus

Nom du processus : Test
// Nom du modèle de processus
Démarrage du processus ou heure d'installation : Process start
// Indique si la valeur spécifiée est évaluée
//lors du démarrage ou de l'installation du processus
Instruction ou variable : Variable
// Indique qu'une variable de source de données doit être modifiée
Nom de la source de données : MyDataSource
// Nom de la variable
Nom JNDI :[jdbc/sample] :jdbc/newName
// Définit le nom JNDI sur jdbc/newName

Task[25]: Mise à jour des références d'ensemble

// Modifiez les valeurs des références d'ensemble utilisées en tant que valeurs
initiales pour les variables BPEL

Nom du processus : Test
// Nom du modèle de processus
Variable : SetRef
// Nom de la variable BPEL
Nom JNDI :[jdbc/sample] :jdbc/newName
// Définit le nom JNDI de la source de données de référence de l'ensemble sur
jdbc/newName
Nom du schéma : [IISAMPLE]
// Nom du schéma de la base de données
Préfixe de schéma : [] :
// Préfixe du nom du schéma.
// Ce paramètre s'applique uniquement si le nom du schéma est généré.
Nom de table : [SETREFTAB] : NEWTABLE
// Définit le nom de la table de base de données sur NEWTABLE
Préfixe de table : [] :
// Préfixe du nom de table.
// Ce paramètre s'applique uniquement si le nom de la table est généré.

Tâches associées

Installation d’applications de processus métier et de tâche utilisateur en mode
interactif
Vous pouvez installer une application en mode interactif lors son exécution à l’aide
de l’outil wsadmin et du script installInteractive. Vous pouvez utiliser le script
pour modifier les paramètres qui ne sont pas modifiables si vous utilisez la console
d’administration pour installer l’application.

Désinstallation d’applications de processus métier et de tâche
utilisateur à l’aide de la console d’administration

Vous pouvez utiliser la console d’administration pour désinstaller des applications
contenant des processus métier ou des tâches utilisateur.

Avant de commencer

Pour désinstaller une application contenant des processus métier ou des tâches
humaines, assurez-vous que les conditions suivantes sont remplies :

474 Développement et déploiement

v Si l’application est installée sur un serveur autonome, le serveur doit être
démarré et avoir accès à la base de données de Business Process Choreographer.

v Si l’application est installée sur un cluster, le gestionnaire de déploiement et au
moins un membre du cluster doivent être en cours d’exécution. Le membre de
cluster doit avoir accès à la base de données de Business Process Choreographer.

v Si l’application est installée sur un serveur géré, le gestionnaire de déploiement
et ce serveur doivent être en cours d’exécution. Le serveur doit avoir accès à la
base de données de Business Process Choreographer.

v Il n’existe pas d’instance de modèle de processus métier ou de tâche utilisateur.

A propos de cette tâche

Pour désinstaller une application d’entreprise contenant des processus métier ou
des tâches utilisateur, effectuez les opérations suivantes :

Procédure

1. Cliquez sur Applications → Applications d’entreprise dans le panneau de
navigation de la console d’administration.

2. Sélectionnez l’application à désinstaller et cliquez sur Arrêter.
Cette étape échoue si des instances de processus ou de tâche existent toujours
dans l’application. Vous pouvez soit utiliser Business Process Choreographer
Explorer pour supprimer les instances, soit utiliser l’option -force décrite à la
section «Désinstallation d’applications de processus métier et de tâches
humaines à l’aide d’une commande d’administration».

3. Sélectionnez l’application à désinstaller et cliquez sur Désinstaller.
4. Cliquez sur Sauvegarder pour enregistrer les modifications.

Résultats

L’application est désinstallée.
Tâches associées

Installation des applications de tâche utilisateur et de processus métier
Vous pouvez distribuer les modules SCA (Service Component Architecture)
contenant des processus métier ou des tâches utilisateur, ou les deux, sur des cibles
de déploiement. Une cible de déploiement peut être un serveur ou un cluster.

Désinstallation d’applications de processus métier et de tâches
humaines à l’aide d’une commande d’administration

L’utilisation du script bpcTemplates.jacl est une alternative à l’emploi de la console
d’administration pour désinstaller des applications qui contiennent des processus
métier ou des tâches humaines.

Avant de commencer

Pour désinstaller une application contenant des processus métier ou des tâches
humaines, assurez-vous que les conditions suivantes sont remplies :
v Si l’application est installée sur un serveur autonome, le serveur doit être

démarré et avoir accès à la base de données de Business Process Choreographer.
v Si l’application est installée sur un cluster, le gestionnaire de déploiement et au

moins un membre du cluster doivent être en cours d’exécution. Le membre de
cluster doit avoir accès à la base de données de Business Process Choreographer.

Chapitre 7. Installation des applications de tâche utilisateur et de processus métier 475

v Si l’application est installée sur un serveur géré, le gestionnaire de déploiement
et ce serveur doivent être en cours d’exécution. Le serveur doit avoir accès à la
base de données de Business Process Choreographer.

v Aucune instance de modèle de processus métier ou de tâche humaine, quel que
soit son état, n’est présente, sauf si vous comptez utiliser l’option -force.

v Si vous souhaitez utiliser l’option -force et que la sécurité administrative est
activée, vérifiez que votre ID utilisateur dispose de droits d’administrateur ou
d’opérateur.

v Assurez-vous que le processus serveur auquel le client d’administration se
connecte est en cours d’exécution. Pour vous assurer que le client
d’administration se connecte automatiquement au processus serveur, ne spécifiez
pas l’option -conntype NONE en tant qu’option de commande.

A propos de cette tâche

Les étapes suivantes expliquent comment utiliser le script bpcTemplates.jacl pour
désinstaller des applications contenant des modèles de processus métier ou de
tâche utilisateur.

Procédure

1. Si des instances de processus ou de tâche sont encore associées aux modèles
contenus dans l’application que vous comptez désinstaller, supprimez-les en
appliquant l’une des procédures suivantes (ou les deux) :
v Utilisez Business Process Choreographer Explorer pour supprimer les

instances.
v Utilisez l’option -force pour supprimer les instances associées aux modèles,

arrêter les modèles et les désinstaller, le tout en une seule opération. Utilisez
cette option avec précaution car elle supprime également toutes les données
associées aux instances en cours d’exécution.

2. Passez dans le répertoire des scripts d’administration de Business Process
Choreographer.
Sous Windows, entrez :
cd racine_installation\ProcessChoreographer\admin

Sous Linux, UNIX et i5/OS, entrez :
cd racine_installation/ProcessChoreographer/admin

3. Arrêtez les modèles et désinstallez l’application correspondante.
Sous Windows, entrez :
racine_installation\bin\wsadmin -f bpcTemplates.jacl

[-user nom_utilisateur]
[-password mot_de_passe_utilisateur]
-uninstall nom_application
[-force]

Sous Linux, UNIX et i5/OS, entrez :
racine_installation/bin/wsadmin -f bpcTemplates.jacl

[-user nom_utilisateur]
[-password mot_de_passe_utilisateur]
-uninstall nom_application
[-force]

Où :

nom_utilisateur
Si la sécurité administrative est activée, indiquez l’ID utilisateur à utiliser
pour l’authentification.

476 Développement et déploiement

mot_de_passe_utilisateur
Si la sécurité administrative est activée, indiquez le mot de passe de l’ID
utilisateur à utiliser pour l’authentification.

nom_application
Nom de l’application à désinstaller.

-force
Entraîne l’arrêt et la suppression des instances en cours d’exécution avant
que l’application ne soit désinstallée. Utilisez cette option avec précaution
car elle supprime également toutes les données associées aux instances en
cours d’exécution.

Résultats

L’application est désinstallée.
Tâches associées

Installation des applications de tâche utilisateur et de processus métier
Vous pouvez distribuer les modules SCA (Service Component Architecture)
contenant des processus métier ou des tâches utilisateur, ou les deux, sur des cibles
de déploiement. Une cible de déploiement peut être un serveur ou un cluster.

Chapitre 7. Installation des applications de tâche utilisateur et de processus métier 477

478 Développement et déploiement

Chapitre 8. Adaptateurs et installation

Les adaptateurs permettent à votre application de communiquer avec d’autres
composants du système d’information d’entreprise.

La procédure d’installation des adaptateurs est décrite dans la rubrique
Configuration et utilisation des adaptateurs du centre de documentation de
WebSphere Integration Developer.

© Copyright IBM Corp. 2005, 2009 479

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=welcome_infocenter

480 Développement et déploiement

Chapitre 9. Identification et résolution des incidents lors d’un
échec de déploiement

Ce chapitre décrit les étapes nécessaires afin de déterminer la cause d’un problème
survenu lors du déploiement d’une application. Il présente également des solutions
possibles.

Avant de commencer

Cette rubrique suppose que les conditions suivantes sont remplies :
v Vous comprenez les principes de base du débogage d’un module.
v Les fonctions de journalisation et de trace sont actives pendant le déploiement

du module.

A propos de cette tâche

La tâche de résolution des incidents de déploiement commence lorsque vous
recevez une notification d’erreur. Lors d’un échec de déploiement, il existe divers
symptômes que vous devez inspecter avant d’agir.

Procédure

1. Déterminez si l’installation de l’application a échoué.
Cherchez dans le fichier SystemOut.log des messages qui indiquent la cause de
l’échec. Les raisons de l’échec de l’installation d’une application peuvent être
notamment les suivantes :
v Vous essayez d’installer une application sur plusieurs serveurs dans la même

cellule Network Deployment.
v Une application possède le même nom qu’un module existant de la cellule

Network Deployment dans laquelle vous installez l’application.
v Vous essayez de déployer des modules J2EE dans un fichier EAR sur

différents serveurs cible.

Important : Si l’installation a échoué et que l’application contient des services,
vous devez supprimer toutes les destinations SIBus ou les spécifications
d’activation J2C créées avant l’échec et avant la tentative de réinstallation de
l’application. Le moyen le plus simple de supprimer ces artefacts est de cliquer
sur Sauvegarder -> Annuler tout après l’échec. Si vous enregistrez par
inadvertance les modifications, vous devez supprimer manuellement les
destinations SIBus destinations et les spécifications d’activation J2C (voir les
rubriques concernant la suppression des destinations SIBusand et les
spécifications d’activation J2C, à la section Administration).

2. Si l’application est installée correctement, examinez-la pour déterminer si elle a
été démarrée avec succès.
Si le démarrage de l’application a échoué, l’échec s’est produit lorsque le
serveur a tenté d’initier les ressources de l’application.
a. Cherchez dans le fichier SystemOut.log des messages qui vous indiquent

comment continuer.
b. Déterminez si les ressources requises par l’application sont disponibles

et/ou si leur démarrage a réussi.

© Copyright IBM Corp. 2005, 2009 481

Les ressources qui n’ont pas démarré empêchent une application de
s’exécuter. Cela empêche la perte d’informations. Les raisons pour lesquelles
une ressource ne démarre pas incluent :
v Les liaisons sont spécifiées de manière incorrecte
v Les ressources sont configurées de manière incorrecte
v Les ressources ne se trouvent pas dans le fichier RAR (fichier archive de

ressources)
v Des ressources Web ne se trouvent pas dans le fichier WAR (fichier

archive de services Web)
c. Déterminez si des composants sont manquants.

La raison de l’absence d’un composant est un fichier EAR mal compilé.
Assurez-vous que tous les composants requis par le module se trouvent
dans les dossiers appropriés du système test sur lequel vous avez compilé le
fichier JAR (archive Java). «Préparation du déploiement sur un serveur»
contient des informations supplémentaires.

3. Regardez si des informations circulent dans l’application.
Même une application en cours d’exécution peut rencontrer un échec lors du
traitement des informations. Les raisons de ce problème sont similaires à celles
qui sont mentionnées à l’étape 2b, à la page 481.
a. Déterminez si l’application utilise des services contenus dans une autre

application. Vérifiez que l’autre application est installée et a démarré avec
succès.

b. Déterminez si les liaisons d’importation et d’exportation de tous les services
contenus dans d’autres applications utilisées par l’application défaillante
sont configurées correctement. Utilisez la console d’administration pour
examiner et corriger les liaisons.

4. Corrigez le problème et relancez l’application.
Tâches associées

Suppression des spécifications d’activation J2C
Le système génère des spécifications d’application J2C lors de l’installation d’une
application contenant des services. Dans certains cas, vous devez supprimer ces
spécifications avant de réinstaller l’application.
Suppression des destinations SIBus
Les destinations de bus d’intégration de services (SIbus) contiennent les messages
en cours de traitement au niveau des modules SCA. En cas d’incident, il peut être
nécessaire de supprimer des destinations de bus pour résoudre le problème.

Suppression des spécifications d’activation J2C
Le système génère des spécifications d’application J2C lors de l’installation d’une
application contenant des services. Dans certains cas, vous devez supprimer ces
spécifications avant de réinstaller l’application.

Avant de commencer

Si vous supprimez la spécification en raison de l’échec de l’installation d’une
application, assurez-vous que le nom JNDI (Java Naming and Directory Interface)
du module correspond au nom du module dont l’installation a échoué. La seconde
partie du nom JNDI correspond au nom du module qui a implémenté la
destination. Par exemple, dans sca/SimpleBOCrsmA/ActivationSpec,
SimpleBOCrsmA correspond au nom du module.

482 Développement et déploiement

Rôle de sécurité requis pour cette tâche : Lorsque la sécurité et les autorisations
par rôle sont activées, vous devez être connecté en tant qu’administrateur ou
configurateur pour exécuter cette tâche.

A propos de cette tâche

Supprimez les spécifications d’activation J2C lorsque vous enregistrez par mégarde
une configuration après avoir installé une application qui contient des services et
ne nécessite aucune spécification.

Procédure

1. Localisez la spécification d’activation à supprimer.
Les spécifications sont contenues dans le panneau relatif aux adaptateurs de
ressources. Accédez à ce panneau en cliquant sur Ressources > Adaptateurs de
ressources.
a. Localisez l’adaptateur de ressources SPI du composant de messagerie de

plateforme.
Pour cela, vous devez vous placer au niveau du noeud pour un serveur
autonome ou au niveau du serveur pour un environnement de
déploiement.

2. Affichez les spécifications d’activation J2C associées à l’adaptateur de
ressources SPI du composant de messagerie de plateforme.
Cliquez sur le nom de l’adaptateur de ressources, un panneau répertoriant les
spécifications associées s’affiche.

3. Supprimez toutes les spécifications dont le Nom JNDI correspond à celui du
module que vous avez supprimé.
a. Cochez la case située en regard de chacune des spécifications concernées.
b. Cliquez sur Supprimer.

Résultats

Le système supprime les spécifications sélectionnées de l’écran d’affichage.

Que faire ensuite

Sauvegardez les modifications.
Tâches associées

Identification et résolution des incidents lors d’un échec de déploiement
Ce chapitre décrit les étapes nécessaires afin de déterminer la cause d’un problème
survenu lors du déploiement d’une application. Il présente également des solutions
possibles.
Suppression des destinations SIBus
Les destinations de bus d’intégration de services (SIbus) contiennent les messages
en cours de traitement au niveau des modules SCA. En cas d’incident, il peut être
nécessaire de supprimer des destinations de bus pour résoudre le problème.

Suppression des destinations SIBus
Les destinations de bus d’intégration de services (SIbus) contiennent les messages
en cours de traitement au niveau des modules SCA. En cas d’incident, il peut être
nécessaire de supprimer des destinations de bus pour résoudre le problème.

Chapitre 9. Identification et résolution des incidents lors d’un échec de déploiement 483

Avant de commencer

Si vous supprimez la destination en raison de l’échec de l’installation d’une
application, assurez-vous que le nom du module de la destination correspond au
nom du module dont l’installation a échoué. La seconde partie du nom de la
destination correspond au nom du module qui a implémenté la destination. Par
exemple, dans sca/SimpleBOCrsmA/component/test/sca/cros/simple/cust/
Customer, SimpleBOCrsmA correspond au nom du module.

Rôle de sécurité requis pour cette tâche : Lorsque la sécurité et les autorisations
par rôle sont activées, vous devez être connecté en tant qu’administrateur ou
configurateur pour exécuter cette tâche.

A propos de cette tâche

Supprimez les destinations SIBus lorsque vous enregistrez par mégarde une
configuration après avoir installé une application qui contient des services et
n’avez plus besoin des destinations.

Remarque : Cette tâche supprime la destination du bus système SCA uniquement.
Vous devez également supprimer les entrées du bus d’application avant de
réinstaller une application qui contient des services (voir la rubrique Suppression
des spécifications d’activation J2C dans la section relative à l’administration de ce
centre de documentation).

Procédure

1. Connectez-vous à la console d’administration.
2. Affichez les destinations sur le bus système SCA.

a. Dans la sous-fenêtre de navigation, cliquez sur Intégration de service → bus

b. Dans la sous-fenêtre de contenu, cliquez sur SCA.SYSTEM.nom_cellule.Bus

c. Dans Ressources de destination, cliquez sur Destinations

3. Cochez la case en regard de chaque destination associée à un nom du module
correspondant au module en cours de suppression.

4. Cliquez sur Supprimer.

Résultats

Le panneau affiche uniquement les destinations restantes.

Que faire ensuite

Supprimez les spécifications d’activation J2C associées au module qui a créé ces
destinations.
Tâches associées

Identification et résolution des incidents lors d’un échec de déploiement
Ce chapitre décrit les étapes nécessaires afin de déterminer la cause d’un problème
survenu lors du déploiement d’une application. Il présente également des solutions
possibles.
Suppression des spécifications d’activation J2C
Le système génère des spécifications d’application J2C lors de l’installation d’une
application contenant des services. Dans certains cas, vous devez supprimer ces
spécifications avant de réinstaller l’application.

484 Développement et déploiement

Partie 3. Annexes

© Copyright IBM Corp. 2005, 2009 485

486 Développement et déploiement

Remarques

Ces informations concernent initialement des produits et services fournis aux
Etats-Unis.

Le présent document peut contenir des informations ou des références concernant
certains produits, logiciels ou services IBM non annoncés dans ce pays. Contactez
votre représentant IBM local pour plus d’informations sur les produits et services
actuellement disponibles dans votre pays. Toute référence à un produit,
programme ou service IBM n’implique pas que seul ce produit, programme ou
service IBM puisse être utilisé. Tout autre produit, programme ou service
fonctionnellement équivalent peut être utilisé s’il n’enfreint aucun droit de
propriété intellectuelle d’IBM. Il est de la responsabilité de l’utilisateur d’évaluer et
de vérifier lui-même les installations et applications réalisées avec des produits,
logiciels ou services non expressément référencés par IBM.

IBM peut détenir des brevets ou des demandes de brevet couvrant les produits
mentionnés dans le présent document. La remise de ce document ne vous donne
aucun droit de licence sur ces brevets ou demandes de brevet. Si vous désirez
recevoir des informations concernant l’acquisition de licences, veuillez en faire la
demande par écrit à l’adresse suivante :

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Pour les demandes relatives aux licences concernant les produits utilisant un jeu de
caractères double octet, prenez contact avec le service IBM Intellectual Property
Department de votre pays ou envoyez vos questions par écrit à :

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

Le paragraphe suivant ne s’applique ni au Royaume-Uni, ni dans aucun pays
dans lequel il serait contraire aux lois locales. LE PRESENT DOCUMENT EST
LIVRE EN L’ETAT. IBM DECLINE TOUTE RESPONSABILITE, EXPLICITE OU
IMPLICITE, RELATIVE AUX INFORMATIONS QUI Y SONT CONTENUES, Y
COMPRIS EN CE QUI CONCERNE LES GARANTIES DE NON-CONTREFACON
ET D’APTITUDE A L’EXECUTION D’UN TRAVAIL DONNE. Certaines juridictions
n’autorisent pas l’exclusion des garanties implicites, auquel cas l’exclusion
ci-dessus ne vous sera pas applicable.

Le présent document peut contenir des inexactitudes ou des coquilles. Ce
document est mis à jour périodiquement. Chaque nouvelle édition inclut les mises
à jour. IBM peut, à tout moment et sans préavis, modifier les produits et logiciels
décrits dans ce document.

Les références à des sites Web non IBM sont fournies à titre d’information
uniquement et n’impliquent en aucun cas une adhésion aux données qu’ils

© Copyright IBM Corp. 2005, 2009 487

contiennent. Les éléments figurant sur ces sites Web ne font pas partie des
éléments du présent produit IBM et l’utilisation de ces sites relève de votre seule
responsabilité.

IBM pourra utiliser ou diffuser, de toute manière qu’elle jugera appropriée et sans
aucune obligation de sa part, tout ou partie des informations qui lui seront
fournies.

Les licenciés souhaitant obtenir des informations permettant : (i) l’échange des
données entre des logiciels créés de façon indépendante et d’autres logiciels (dont
celui-ci), et (ii) l’utilisation mutuelle des données ainsi échangées, doivent adresser
leur demande à :

IBM Corporation
1001 Hillsdale Blvd., Suite 400
Foster City, CA 94404
Etats-Unis

Ces informations peuvent être soumises à des conditions particulières, prévoyant
notamment le paiement d’une redevance.

Le logiciel sous licence décrit dans ce document et tous les éléments sous licence
disponibles s’y rapportant sont fournis par IBM conformément aux dispositions de
l’ICA, des Conditions internationales d’utilisation des logiciels IBM ou de tout
autre accord équivalent.

Toute données de performance contenues dans ce document ont été déterminées
dans un environnement contrôlé. Par conséquent, les résultats peuvent varier de
manière significative selon l’environnement d’exploitation utilisé. Certaines
mesures évaluées sur des systèmes en cours de développement ne sont pas
garanties sur tous les systèmes disponibles. En outre, elles peuvent résulter
d’extrapolations. Les résultats peuvent donc varier. Il incombe aux utilisateurs de
ce document de vérifier si ces données sont applicables à leur environnement
d’exploitation.

Les informations concernant des produits non IBM ont été obtenues auprès des
fournisseurs de ces produits, par l’intermédiaire d’annonces publiques ou via
d’autres sources disponibles. IBM n’a pas testé ces produits et ne peut pas
confirmer avec exactitude les performances, la compatibilité ou toutes autres
déclarations relatives aux produits non fournis par IBM. Toute question concernant
les performances de produits non IBM doit être adressée aux fournisseurs de ces
produits.

Toute instruction relative aux intentions d’IBM pour ses opérations à venir est
susceptible d’être modifiée ou annulée sans préavis, et doit être considérée
uniquement comme un objectif.

Le présent document peut contenir des exemples de données et de rapports utilisés
couramment dans l’environnement professionnel. Ces exemples mentionnent des
noms fictifs de personnes, de sociétés, de marques ou de produits à des fins
illustratives ou explicatives uniquement. Toute ressemblance avec des noms de
personnes, de sociétés ou des données réelles serait purement fortuite.

LICENCE DE COPYRIGHT :

488 Développement et déploiement

Le présent logiciel contient des exemples de programmes d’application en langage
source destinés à illustrer les techniques de programmation sur différentes
plateformes d’exploitation. Vous avez le droit de copier, de modifier et de
distribuer ces exemples de programmes sous quelque forme que ce soit et sans
paiement d’aucune redevance à IBM, à des fins de développement, d’utilisation, de
vente ou de distribution de programmes d’application conformes aux interfaces de
programmation des plateformes pour lesquels ils ont été écrits. Ces programmes
n’ont pas été rigoureusement testés dans toutes les conditions. Par conséquent,
IBM ne peut garantir la fiabilité, la maintenabilité ou le fonctionnement de ces
programmes.

Toute copie totale ou partielle de ces programmes exemples et des oeuvres qui en
sont dérivées doit comprendre une notice de copyright, libellée comme suit : (c)
(votre société) (année). Des segments de codes sont dérivés des Programmes
exemples d’IBM Corp. (c) Copyright IBM Corp. _entrez l’année ou les années_. All
rights reserved.

Si vous visualisez ces informations en ligne, il se peut que les photographies et
illustrations en couleur n’apparaissent pas à l’écran.

Informations relatives à l’interface de programmation

Si elle est fournie, la documentation sur l’interface de programmation aide les
utilisateurs à créer des applications en utilisant le produit.

Les interfaces de programmation génériques permettent aux utilisateurs d’écrire
des applications, qui bénéficient des services proposés par les outils du produit.

Cependant, cette documentation peut également comporter des informations de
diagnostic, de modification et de personnalisation. Les informations de diagnostic,
de modification et de personnalisation sont fournies à des fins de débogage de vos
applications.

Avertissement : N’utilisez pas les informations de diagnostic, de modification et
d’optimisation en guise d’interface de programmation car elles peuvent être
modifiées sans préavis.

Marques et marques de service

IBM, le logo IBM et ibm.com sont des marques d’International Business Machines
aux Etats-Unis et/ou dans certains autres pays. Si ces marques et d’autres marques
d’IBM sont accompagnées d’un symbole de marque (R ou TM), ces symboles
signalent des marques d’IBM aux Etats-Unis à la date de publication de ce
document. Ces marques peuvent aussi être des marques déposées ou reconnues
comme telles par le droit coutumier sur les marques dans d’autres pays. La liste
actualisée de toutes les marques d’IBM est disponible sur la page Web ″Copyright
and trademark information″ à www.ibm.com/legal/copytrade.shtml.

Java est une marque de Sun Microsystems, Inc. aux Etats-Unis et/ou dans certains
autres pays.

Les autres noms de sociétés, de produits et de services peuvent appartenir à des
tiers.

Ce produit inclut un logiciel développé par Eclipse Project
(http://www.eclipse.org).

Remarques 489

http://www.ibm.com/legal/copytrade.shtml
http://www.eclipse.org

IBM WebSphere Process Server for Multiplatforms, version 6.2

490 Développement et déploiement

����

	Manuels PDF et Centre de documentation
	Table des matières
	Figures
	Tableaux
	Partie 1. Développement d′applications
	Chapitre 1. Développement de solutions d′intégration métier
	Modèle de programmation pour l′intégration métier
	Architecture et modèles d′intégration métier
	Scénarios d′intégration métier
	Rôles, produits et défis techniques
	Infrastructure d′objets métier
	Architecture de composants de service
	Processus métier
	Tâches utilisateur

	Création d′applications d′intégration métier

	Chapitre 2. Développement de modules de service
	Présentation du développement de modules
	Développement de composants de service
	Appel de composants
	Appel dynamique d′un composant
	Présentation de l′isolement des modules et des cibles
	Liaisons HTTP

	Chapitre 3. Guides et techniques de programmation
	Programmation d′objets métier
	Tableaux dans les objets métier
	Création d′objets métier imbriqués
	Instance unique d′un objet métier imbriqué
	Création de plusieurs instances d′objets métier imbriqués
	Utilisation d′un objet métier imbriqué défini par un caractère générique
	Utilisation des objets métier dans les groupes de modèles

	Objets métier : renforcement du schéma et prise en charge du schéma industriel
	Différenciation d′éléments portant le même nom
	Différenciation de propriétés portant le même nom
	Résolution de noms de propriétés contenant des points
	Utilisation de l′objet de séquence pour définir l′ordre des données
	Utilisation de AnySimpleType pour les types simples
	Utilisation de AnyType pour les types complexes
	Utilisation de la balise Any pour définir des éléments globaux de types complexes
	Utilisation de AnyAttribute pour définir les attributs globaux de types complexes

	Remplacement d′une conversion d′objet SDO en Java
	Remplacement de l′implémentation d′architecture SCA générée
	Règles en exécution de la conversion de Java en objets SDO

	Validation de document XML
	Propagation d′en-tête de protocole à partir de liaisons d′exportation non SCA
	Gestion des règles métier
	Modèle de programmation
	Groupe de règles métier
	Propriétés de groupes de règles métier
	Opération
	Règle métier
	Ensemble de règles
	Table de décision
	Modèles et paramètres
	Validation
	Suivi des modifications
	BusinessRuleManager
	Traitement des exceptions
	Autorisation

	Exemples
	Exemple 1 : extraction et impression de l′ensemble des groupes de règles métier
	Exemple 2 : Extraire et afficher tous les groupes de règles métier, les jeux de règles et les tables de décision
	Exemple 3 : extraction de groupes de règles métier par propriétés multiples, avec l′opérateur AND
	Exemple 4 : extraction de groupes de règles métier par propriétés multiples, avec l′opérateur OR
	Exemple 5 : extraction de groupes de règles métier à l′aide d′une requête complexe
	Exemple 6 : mise à jour d′une propriété de groupe de règles métier et publication du groupe de règles métier
	Exemple 7 : mise à jour des propriétés contenues dans plusieurs groupes de règles métier et publication des groupes de règles
	Exemple 8 : modification de la règle métier par défaut d′un groupe de règles métier
	Exemple 9 : planification d′une autre règle d′opération au sein d′un groupe de règles métier
	Exemple 10 : modification d′une valeur de paramètre dans un modèle d′un ensemble de règles
	Exemple 11 : Ajouter une nouvelle règle depuis un modèle vers un jeu de règles
	Exemple 12 : Modifier et publier un modèle d′une table de décision en changeant la valeur d′un paramètre
	Exemple 13 : Ajout d′une valeur de condition et d′actions dans une table de décision
	Exemple 14 : Gestion des erreurs dans un jeu de règles
	Exemple 15 : Gestion des erreurs dans un groupe de règles métier
	Autres exemples de requêtes

	Classes d′opérations communes
	Classe Formatter
	Classe RuleArtifactUtility

	Chapitre 4. Développement d′applications client pour les tâches et processus métier
	Comparaison entre les interfaces de programmation visant à interagir avec les processus métier et les tâches utilisateur
	Requêtes portant sur les données des processus métier et des tâches
	Comparaison des interfaces de programmation destinées à l′extraction de données de processus et de tâche
	Tables de requêtes dans Business Process Choreographer
	Tables de requêtes prédéfinies
	Tables de requêtes supplémentaires
	Tables de requêtes composites
	Développement des tables de requêtes
	Filtres et critères de sélection des tables de requêtes
	Autorisation pour les tables de requêtes
	Types d′attribut pour les tables de requêtes
	Requêtes sur des tables de requêtes
	Requêtes sur des tables de requêtes pour l′extraction de métadonnées
	Internationalisation pour les métadonnées des tables de requêtes
	Tables de requêtes et performances des requêtes

	API de requête EJB de Business Process Choreographer
	Syntaxe de la méthode query dans l′API
	Conditions d′accès propres à l′utilisateur
	Exemples de méthodes query et queryAll

	Développement d′applications client EJB pour des processus métier et des tâches utilisateur
	Accès aux API EJB
	Accès à l′interface distante du bean session
	Accès à l′interface locale du bean session

	Requête sur des objets liés aux processus métier et aux tâches
	Filtrage de données à l′aide de variables définies dans des requêtes
	Gestion des requêtes stockées

	Développement d′applications pour les processus métier
	Rôles nécessaires pour effectuer des actions sur des instances de processus
	Rôles nécessaires pour effectuer des actions sur les activités de processus métier
	Gestion du cycle de vie d′un processus métier
	Traitement des activités humaines
	Traitement d′un flux de travaux par une seule personne
	Envoi d′un message à une activité en attente
	Gestion des événements
	Analyse des résultats d′un processus
	Réparation d′activités
	Interface BusinessFlowManagerService

	Développement d′applications pour des tâches utilisateur
	Démarrage d′une tâche d′appel qui appelle une interface synchrone
	Démarrage d′une tâche d′appel qui appelle une interface asynchrone
	Création et lancement d′une instance de tâche
	Traitement des tâches à effectuer ou des tâches de collaboration
	Mise en suspens et reprise d′une instance de tâche
	Analyse des résultats d′une tâche
	Arrêt d′une instance de tâche
	Suppression d′instances de tâche
	Libération d′une tâche réclamée
	Gestion des tâches élémentaires
	Création de modèles de tâche et d′instances de tâche à l′exécution
	Interface HumanTaskManagerService

	Développement d′applications pour les processus métier et les tâches utilisateur
	Déterminer les modèles de processus ou les activités pouvant être démarrés
	Traitement par une seule personne d′un flux de travaux contenant des tâches utilisateur

	Gestion des exceptions et des erreurs
	Gestion des exceptions de l′API EJB de Business Process Choreographer
	Vérification de l′erreur définie pour une activité de tâche utilisateur
	Vérification d′une erreur survenue lors d′une activité d′appel arrêtée
	Vérification de l′erreur ou de l′exception non gérée survenue lors de l′échec d′une instance de processus

	Développement d′applications API de service Web
	Composants de service Web et séquence de contrôle
	Présentation des API des services Web
	Exigences en termes de processus métier et de tâches utilisateur
	Développement d′applications client
	Copie d′artefacts
	Publication et exportation d′artefacts depuis l′environnement de serveurs
	Utilisation de fichiers sur le CD du client

	Développement d′applications client dans l′environnement de services Web Java
	Génération d′un client proxy (services Web Java)
	Création de classes auxiliaires pour les processus BPEL (services Web Java)
	Création d′une application client (services Web Java)
	Renforcement de la sécurité (services Web Java)
	Ajout d′un support de transaction (services Web Java)

	Développement d′applications client dans l′environnement .NET
	Génération d′un client proxy (.NET)
	Création de classes auxiliaires pour les processus BPEL (.NET)
	Création d′une application client (.NET)
	Renforcement de la sécurité (.NET)

	Requêtes sur des objets liés aux processus métier et aux tâches
	Requêtes portant sur des objets liés aux processus métier et aux tâches à l′aide des API de services Web
	Gestion des requêtes stockées

	Développement d′applications client à l′aide de l′API JMS de Business Process Choreographer
	Exigences des processus métier
	Autorisation pour les affichages JMS
	Accès à l′interface JMS
	Structure d′un message JMS de Business Process Choreographer

	Copie d′artefacts pour les applications client JMS
	Vérification du message de réponse pour les exceptions de métier
	Exemple : exécution d′un processus de longue durée à l′aide de l′API JMS de Business Process Choreographer

	Développement d′applications Web pour les processus métier et tâches utilisateur à l′aide de composants JSF
	Composants Exemples de Business Process Choreographer Explorer
	Traitement des erreurs dans les composants JSF
	Convertisseurs et intitulés par défaut d′objets de modèle client
	Ajout du composant List à une application JSF
	Mode de traitement des listes
	Informations de fuseau horaire propres à l′utilisateur
	Traitement des erreurs dans le composant List
	Composant List : définitions de balises

	Ajout du composant Details à une application JSF
	Ajout du composant CommandBar à une application JSF
	Mode de traitement des commandes
	Composant CommandBar : définitions de balises

	Ajout du composant Message à une application JSF
	Composant Message : définitions de balises

	Développement des pages JSP pour les messages de tâche et de processus
	Fragments JSP définis par l′utilisateur

	Création de modules d′extension pour personnaliser les fonctionnalités des tâches utilisateur
	Création de gestionnaires d′événements d′API
	Création de gestionnaire d′événements de notification
	Installation des modules d′extension du gestionnaire d′événements d′API et du gestionnaire d′événements de notification
	Enregistrement des modules d′extension du gestionnaire d′événements d′API et du gestionnaire d′événements de notification ave
	Création, installation et exécution de plug-ins en vue du post-traitement des résultats des requêtes sur les utilisateurs

	Partie 2. Déploiement des applications
	Chapitre 5. Présentation de la préparation et de l′installation de modules
	Présentation des bibliothèques et des fichiers JAR
	Présentation du fichier EAR
	Préparation au déploiement sur un serveur
	Remarques concernant l′installation d′applications de service sur des clusters

	Chapitre 6. Déploiement d′un module
	Installation de modules SCA versionnés dans un environnement de production
	Installation d′un module SCA avec la console
	Création d′un fichier EAR installable via serviceDeploy
	Déploiement d′applications à l′aide des tâches ANT Apache

	Chapitre 7. Installation des applications de tâche utilisateur et de processus métier
	Installation d′applications de processus métier et de tâches utilisateur dans un environnement de déploiement réseau
	Déploiement des processus métier et des tâches utilisateur
	Installation d′applications de processus métier et de tâche utilisateur en mode interactif
	Configuration de la source de données d′une application de processus et des paramètres de référence d′ensemble

	Désinstallation d′applications de processus métier et de tâche utilisateur à l′aide de la console d′administration
	Désinstallation d′applications de processus métier et de tâches humaines à l′aide d′une commande d′administration

	Chapitre 8. Adaptateurs et installation
	Chapitre 9. Identification et résolution des incidents lors d′un échec de déploiement
	Suppression des spécifications d′activation J2C
	Suppression des destinations SIBus

	Partie 3. Annexes
	Remarques

