
System i

Backing up your system

Version 5 Release 4

���

System i

Backing up your system

Version 5 Release 4

���

Note

Before using this information and the product it supports, read the information in “Notices,” on

page 173 and the manual IBM Systems Safety Notices.

Seventh Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of i5/OS (product number 5722-SS1) and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1996, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Backing up and recovering your system 1

Backing up your system 1

What’s new for V5R4 2

Printable PDF 2

Before you save anything... 3

Preparing your media to save your system . . . 10

Overview of the GO SAVE command 24

Manually saving parts of your system 41

Saving your system while it is active 106

Backup programming techniques 145

Recovering your system 172

Appendix. Notices 173

Trademarks 175

Terms and conditions 175

© Copyright IBM Corp. 1996, 2007 iii

iv System i: Backing up your system

Backing up and recovering your system

Use this information to learn the various ways that you can back up and recover your system and

implement your save strategy.

Backing up your system

The method that you use to back up your system depends upon your backup strategy. If you do not have

a strategy, review the information in Planning a backup and recovery strategy. After reviewing the

information, determine how you should save your data.

Simple strategy

If you choose a simple strategy you can use the GO SAVE command to back up your system. The Save

menu options of the GO SAVE command provide an easy method to back up your system. These Save

menu options include option 21 to save your entire system, option 22 to save your system data, and

option 23 to save your user data. Each of these options requires that your system be in a restricted state.

This means that no users can access your system, and the backup is the only thing that is running on

your system.

Use the GO SAVE command, menu option 21, to save your entire system. Then you can use the other GO

SAVE command menu options to save the parts of your system that change regularly. In addition, you

can use a variety of other save commands to save individual parts of your system.

If you choose a simple save strategy, review Overview of the GO SAVE command to see what parts of

your system GO SAVE command, menu options 21, 22, or 23 save. Then skip to the topic, Preparing your

media to save your system.

Medium and complex strategy

To help you get started with a medium or complex strategy follow these steps:

1. Draw a picture of your system similar to the one in Save commands and menu options. In your

picture, break the section called “User Libraries” into smaller segments that match the way you plan

to save user libraries.

2. Study the information in Save commands and menu options and in Manually saving parts of your

system.

3. Determine how and when you plan to save each part of your system.

If you do not have time to do a full save, you can save your system while it is active. However, you must

have a complete backup of your entire system (which requires a restricted state) before you use these

advanced functions.

Information to back up your system

The method that you use to back up your system depends upon your backup strategy. If you do not have

a strategy, review the information in Planning a backup and recovery strategy. After reviewing the

information, determine how you should save your data.

Note: Read the Code disclaimer information for important legal information.

 Related information

 Backup and recovery FAQ

© Copyright IBM Corp. 1996, 2007 1

What’s new for V5R4

There have been new functions added for V5R4.

1. You can use virtual tape devices to save data directly to system disk units.

2. The Save system information (SAVSYSINF) command can be used to save a subset of the data saved

with the Save System (SAVSYS) command.

3. The integrated file system SAV and RST commands are enhanced to support saving to multiple

devices.

4. There are several new methods to save spooled files.

What’s new as of 31 March 2006

Be sure to permanently apply all Licensed Internal Code PTFs (fixes) before using the SAVSYS command,

or the GO SAVE menu option 21 or 22.

What’s new as of April 2007

IBM® iSeries™ Integration for Windows® Server (5722-WSV) has been converted from a licensed program

to an i5/OS® option in V5R4, and is called Integrated Server Support, i5/OS Option 29. This software

option is required if you are using the System i™ integration with BladeCenter® and System x™ solution.

For more information about backing up integrated servers, see “Saving data for integrated Windows or

Linux servers” on page 100.

How to see what’s new or changed

To help you see where technical changes have been made, this information uses:

v The

image to mark where new or changed information begins.

v The

image to mark where new or changed information ends.

To find other information about what’s new or changed this release, see the Memo to users.

Printable PDF

View or download a PDF version of this Back up your system topic for viewing or printing.

To view or download the PDF version of this document, select Backing up your system (about 1.5 MB).

To view or print any of the following PDFs or redbooks:

v Backup and Recovery

v Backup and recovery frequently asked questions

v A Practical Approach® to Managing Backup, Recovery, and Media Services for OS/400®

You can view or download these related topics:

v Planning a backup and recovery strategy

v Backup, Recovery, and Media Services

v Storage solutions

v Disk management

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2 System i: Backing up your system

|

|
|

|

|
|
|
|
|

http://www.redbooks.ibm.com/abstracts/sg244840.html

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.

4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)

.

Before you save anything...

Read this information before you save anything on your system.

Using the precheck option

Use the precheck option explains how to have the system check certain criteria on each object that you

save on a library-by-library basis. This option is not required.

You can use the precheck (PRECHK) parameter when you save objects to ensure that all of the objects

you intend to save can be successfully saved. If you specify PRECHK(*YES), the system verifies that the

following are true of each object that you are saving on a library-by-library basis:

v The object can be allocated during the save operation. No other job has a conflicting lock on the object.

v The object exists.

v The object is not marked as damaged. The precheck process looks only for damage that has already

been detected. It does not detect new damage to the object header or damage to the contents.

v All members of an object can be allocated if the object is a database file.

v The person that requests the save operation has sufficient authority to save the object.

When you specify PRECHK(*YES), all of the objects you are saving in a library must meet the conditions.

If they do not, no objects in the library are saved. If you specify more than one library on the save

command, the failure of one library to meet the PRECHK tests does not typically prevent the system

from saving other libraries. However, if you specify SAVACT(*SYNCLIB), the entire save operation stops

if one object fails the precheck process.

When you specify PRECHK(*NO), the system performs the checking on an object-by-object basis. The

system bypasses any object that does not meet the conditions, but the save operation continues with

other objects in the library.

 Related concepts

 “Library synchronization” on page 127
All objects in a library reach a checkpoint at the same time. But different libraries reach checkpoints at

different times. This option may be useful if all of the following are true.

Choosing compression type

Choose compression type explains the types of compression that are available.

You can use compression and other capabilities to improve save performance and also use less media for

your save. Data compression compresses data on the media when you perform the save operations. Data

decompression reconstructs data when you perform a restore operation. The system ensures that

information saved can be reconstructed exactly. No data is lost as a result of compression and

decompression.

The two main types of compression are hardware compression and software compression. Most tape

media devices use hardware compression, which is normally faster than software compression. Software

compression takes considerable processing unit resources and may increase your save and restore time.

Backing up and recovering your system 3

|

|

|

http://www.adobe.com/products/acrobat/readstep.html

In addition to data compression, you can use compaction and optimum block size features to streamline

your save. These features are available through parameters on all save commands: .

v Data Compression (DTACPR)

v Data Compaction (COMPACT)

v Use Optimum Block Size (USEOPTBLK)

You can see examples of the parameter values in the SAVSYS command description.

If you save to save files or optical media, you also have three choices available for software compression:

low, medium, and high. If you choose a higher form of compression, your save will take longer, but the

resulting save data will usually be smaller. The following choices are available on the Data Compression

(DTACPR) parameter of the save commands and through the Save Object (QsrSave) and Save Object List

(QSRSAVO) APIs:

v Low — This is the default form of compression for save files and optical media. Low compression is

usually faster than medium or high compression. The compressed data is usually larger than if

medium or high compression is used.

v Medium — This is the default form of compression for optical-DVD media. Medium compression is

usually slower than low compression but faster than high compression. The compressed data is usually

smaller than if low compression is used and larger than if high compression is used.

v High — This form of compression is meant to be used when maximum compression is desired. High

compression is usually noticeably slower than low and medium compression. The compressed data is

usually smaller than if low or medium compression is used.

You can also find more information about compression, compaction, and optimum block size in System i

Performance Capabilities Reference

. The chapter on “Saves and restores using save files” contains

information on the compression ratios for *LOW, *MEDIUM, and *HIGH compression.

 Related concepts

 “Save files” on page 14
Understand what save files are and how to use them in your save and restore operations.

 Related information

 Storage Solutions

Freeing storage when saving

Freeing storage when saving explains how to use the STG parameter to remove an object from your

system after you save it. This only works with a limited number of commands.

Normally, saving an object does not remove it from the system. However, you can use the storage (STG)

parameter on some save commands to free some of the storage that is used by saved objects.

If you specify STG(*FREE), the object description and search values remain on the system. The system

deletes the contents of the object. You can perform operations such as moving and renaming an object

whose storage you freed. However, you must restore the object to use it.

You can use the STG(*FREE) parameter for the object types in the following table:

 Table 1. Object types that support freeing storage

Object Type Description

*FILE1,2 Database files

*STMF3 Stream files

*JRNRCV4 Journal receivers

*PGM5 Programs

*DOC Documents

4 System i: Backing up your system

|

|
|

|

Table 1. Object types that support freeing storage (continued)

Object Type Description

*SQLPKG SQL packages

*SRVPGM Service programs

*MODULE Modules

1 When you free a database file, the system frees the storage that is occupied by the data portion of the object,

but the object description remains on the system. If you save a database file that has already been freed and

free its storage, the system does not save the object description and you receive the following message:

CPF3243 Member xxx already saved with storage freed

If you install the Media and Storage Extensions product on your system, and you save a database file and

free its storage, the system saves the object description.

2 The system does not free the storage occupied by logical file access paths.

3 You can free storage for *STMF objects, but not during a save operation. Free the storage for *STMF objects

with the Save Storage Free ″Qp0lSaveStgFree() API″.

 You can save an *STMF object whose storage has already been freed, but you must restore the *STMF object

before you can use it.

4 You can free storage for a journal receiver if it is detached and all previous journal receivers are deleted or

have their storage freed.

5 Do not specify STG(*FREE) for a program that is running. This causes the program to end abnormally. For

Integrated Language Environment® (ILE) programs, the program does not end abnormally. The system sends

a message that indicates that the system did not save the ILE program.

You can also specify STG(*DELETE) on the Save Document Library Object (SAVDLO) command. This

deletes any filed documents after the system saves them. This includes the object description, the

document description, the search values, and the document contents.

 Related information

 Qp0lSaveStgFree()

How object locking affects save operations

The system locks an object to prevent an update operation while the system saves it.

If the system cannot obtain a lock on an object within the specified time, the system does not save that

object and the system sends a message to the job log. The save-while-active function shortens the time

during which the system locks an object while saving.

Lock Type Needed for Save Operation shows the type of lock the system must obtain successfully to save

an object or to establish a checkpoint for the object for save-while-active processing.

When you specify multiple libraries for a save procedure, the system locks the libraries that you specified

and the libraries are unavailable for use during the save operation. Some or all of the libraries may be

unavailable for use at any given moment.

Size limitations when saving objects

Size limitations when saving objects explains limits for save operations.

When you perform a save operation, the system creates a list of the objects and their descriptions that it

saves. The system saves this list with the objects for use when the system displays the save media or

restores the objects. The list is an internal object that is not accessible to user programs. It does not

Backing up and recovering your system 5

appear in the count of saved objects. The system limits a single list of saved objects to approximately 111

000 related objects. Because the system creates multiple lists for each library that you save, the limits are

rarely exceeded.

You cannot save more than 349 000 objects from a single library. Because you normally store DLOs in

libraries, this limit applies to the QDOC library in the system ASP and the QDOCnnnn libraries in user

ASPs. The following table shows the limits that apply to save and restore operations.

If your save operation fails because you exceed any of these limits, you need to save objects using

separate save commands instead of saving them with a single command.

See Save and restore limits for more information.

 Related reference

 “Saving objects with the SAVOBJ command” on page 64
Use the Save Object (SAVOBJ) command to save one or more objects on your system. You can also use

the QSRSAVO API to save multiple objects.

Restrictions when using save files:

There are some restrictions that you should keep in mind when using save files.

 You can specify only one library when your output media for the save procedure is a save file. When

saving DLOs, you can specify only one ASP when your output media is a save file.

Size limits for save files are 2 146 762 800 512–byte records or approximately 1024 GB.

Verifying what the system saved

Verify what the system saved explains techniques to audit your save strategy. You will learn which

objects the system saved, which objects the system did not save, and when the system last saved an

object.

You can use the joblog or an output file to determine which objects the system saved successfully.

Determining objects that the system saved (save messages):

This information describes how save messages work and what information is available from the out files.

 Save messages show the number of objects that the system saved. The message help of the completion

message includes the volume identifiers of the first 75 volumes of save media that the system used. The

system uses these identifiers to update the status information of each object that the system saved. The

message data contains this information, the last volume ID, and either the last device that the system

used or the save file that the system used.

Note: The system performs overlap processing during normal save operations. The system can write

some libraries to the media while the system preprocesses other libraries. Occasionally the job log

contains preprocessing and completion messages that appear in a different order than the order in

which the system wrote libraries to the media.

If a single command saves multiple libraries, a final completion message (CPC3720 or CPC3721) also

contains the last device that the system used.

Information in Output Files

Most save commands create output that shows what the system saved. Depending on which command

you use, you can direct this output to a printer (OUTPUT(*PRINT)), a database file

(OUTPUT(*OUTFILE)), a stream file, or a user space. The default for save commands is not to create

6 System i: Backing up your system

output. You must request it each time you run the save command. You can change the default for the

OUTPUT parameter for save commands by using the Change Command Default (CHGCMDDFT)

command.

You can do one of two things: print the output and store it with your media, or create a program to

analyze and report on the information in the output file.

You can use the OUTPUT parameter with these commands:

 SAV SAVDLO SAVSAVFDTA SAVSYSINF

SAVCFG SAVLIB SAVSECDTA

SAVCHGOBJ SAVOBJ SAVSYS

If you use an output file for the SAVDLO command, the system uses the file format QSYS/
QAOJSAVO.OJSDLO. Use the Display File Field Description (DSPFFD) command to look for the file

layout.

If you use an output file for any of the other commands that are listed above, the system uses the file

format QSYS/QASAVOBJ.QSRSAV.

The SAVCHGOBJ, SAVLIB, SAVOBJ, and SAV commands have an information type (INFTYPE) parameter

to specify how much detail you want in the output. See Interpret output from save commands for more

information.

The SAV command does not support sending output to an output file. You can send output from the SAV

command to a stream file or to a user space. Interpret output from save (SAV) and restore (RST) shows

the layout for the stream file or user space.

The on-line information for the save commands tells the names of the model database output files they

use for output.

Note: The output file that you specify is in use throughout the save operation. Therefore, the system

cannot save it as part of the operation. Depending on how you perform your save operation, you

may see a CPF379A message in the joblog for the output file. If you want to save the output file

after your save operation has completed, use the SAVOBJ command.

These are some messages that you may see during the verification process:

Message CPF3797: Objects from library <your library name> not saved. Save limit exceeded.

Message CPC3701: Sent for each library that is saved to media.

Message CPC3718 : Completion message for SAVSYSINF command.

Message CPC3722: Sent for each library that is saved to a save file.

Message CPC9410: Completion message for SAVDLO command to media.

Message CPC9063: Completion message for SAVDLO command to save file.

Message CPC370C: Completion message for SAV command to media.

Message CPC370D: Completion message for SAV command to save file.

 Related concepts

Backing up and recovering your system 7

“Interpreting output from save (SAV) and restore (RST)” on page 146
When you use the Save (SAV) command or the Restore (RST) command, you can direct output to a

stream file or to a user space.
 Related reference

 “Interpreting output from save commands” on page 163
This topic contains a list of links to save commands or APIs that you can use to direct output to an

output file.

Determining objects that are not saved:

Determining the objects that are not saved is just as important as determining the objects that the system

saved. The system may not save an object for two basic reasons.

v The object is not in your save plan. For example, you save libraries individually. You add a new

application with new libraries, but forget to update your save procedures.

v The object is in your save plan, but the system did not successfully save it. The system may not save

an object for any of the following reasons:

– It is in use. If you use the save-while-active function, the system waits a certain amount of time to

obtain a lock on the object. If you do not use the save-while-active function, the system does not

wait.

– The system marked the object as damaged.

– You do not have the necessary authority to the object.
When the system cannot save an object, the system skips that object and writes an entry to the job log.

Verifying the job logs that the system creates by your save procedures is very important. If you have

very large save operations, you may want to develop a program that copies the job log to a file and

analyzes it.

You can specify OUTPUT(*OUTFILE) INFTYPE(*ERR) on the SAVLIB, SAVOBJ, and SAVCHGOBJ

commands. This creates an output file that only contains entries for those objects that the system did

not save. Refer to the on-line command help for more information about the specific command.

Periodically verify your backup strategy by the following methods:

v Review when the system saves objects.

v Determine when the system saved the changes that were made to these objects.

Use the information in the object description to determine when the system last saved the object. Base

your method for doing this according to your save strategy. If you save entire libraries, you can verify the

save date for every library on the system. If you save individual objects, you need to verify the save date

for objects in all user libraries.

To verify save dates for libraries, you can do the following:

1. Create an output file that has information about all the libraries by typing:

DSPOBJD OBJ(QSYS/*ALL) OBJTYPE(*LIB) +

 OUTPUT(*OUTFILE) +

 OUTFILE(library-name/file-name)

2. Use a query tool or a program to analyze the output file. The field ODSDAT contains the date that the

object was last saved. You can sequence your report by this field or compare this field to some date in

the past.

You can use a similar technique to check when the system last saved objects in a specific library.

Determining when an object was last saved:

If a library contains an object, you can use the Display Object Description (DSPOBJD) command to find

out when the system saved the object.

8 System i: Backing up your system

If the QSYS library contains an object, you can use the DSPOBJD command to display the appropriate

data area that is shown in Data areas that contain save history.

You can also use the DSPOBJD command to obtain the save history for document library objects (DLO)

in libraries. Use the Display Document Library Object Name (DSPDLONAM) command to find the

system object name and the ASP ID of the DLO. On the DSPOBJD command, specify the system object

name on the OBJ parameter. In the library name field, specify QDOCxxxx where xxxx is the ASP ID. For

example, for auxiliary storage pool (ASP) 2 the library name would be QDOC0002.

Note: For ASP 1, the system ASP, the library name is QDOC, not QDOC0001.

For objects that you store in directories, you can use the output from the SAV command to maintain save

history information. To use the output, you must elect to keep the save history information when you

issue the SAV command. To keep the save history information, specify either *PRINT or a stream file or

user space path name on the OUTPUT parameter of the SAV command.

Note: The output from the SAV command does not store the last saved data for objects in directories. See

Save changed objects in directories for instructions to save only changed objects.

The following commands do not update the save history information for the individual objects that the

system saves:

v Save System (SAVSYS)

v Save Security (SAVSECDTA)

v Save Configuration (SAVCFG)

v Save Save File Data (SAVSAVFDTA)

v Save System Information (SAVSYSINF)

For some save operations, the system updates history information in a data area. In some cases, the

system updates the data area instead of updating the individual objects. In other cases, the system

updates the data area in addition to the individual objects.

Beginning with V5R1, when you install the operating system, the system will update the data areas.

However, the data areas will appear as if you used RSTOBJ to restore them. The system does not support

the QSAVDLOALL data area.

The following table shows these commands and the associated data areas:

 Table 2. Data areas that contain save history

Command Associated Data Area Individual Objects Updated?

SAVCFG QSAVCFG No

SAVLIB *ALLUSR QSAVALLUSR Yes1

SAVLIB *IBM QSAVIBM Yes1

SAVLIB *NONSYS QSAVLIBALL Yes1

SAVSECDTA QSAVUSRPRF No

SAVSTG QSAVSTG No

SAVSYS QSAVSYS, QSAVUSRPRF, QSAVCFG No

SAVSYSINF QSYSINF No

1 If you specify UPDHST(*NO), the system does not update the Date last saved field in either the object or the

data area.

The system uses the save history information when you save objects that have changed since the last save

operation.

Backing up and recovering your system 9

Related reference

 “Saving only changed objects” on page 66
You can use the save changed object function to reduce the amount of save media that you use. You

can also complete your save process in a shorter period of time.

How the system handles damaged objects during a save operation

How the system handles damaged objects during a save operation explains how the system handles

damaged objects. This information also provides you with important information on error messages that

you may see during a save operation.

When the system encounters a damaged object during a save operation, it does one of several things

based on when it detected the damage.

Object that the system marked as damaged before the save operation

The system does not save an object that it marked as damaged, but the save operation continues with the

next object. The operation completes with an indication of how many objects the system saved and how

many it did not save. Diagnostic messages describe the reason that the system did not save each object.

Object that the save operation detects as damaged

The system marks the object as damaged, and the save operation ends. The save operation ends because

the save media may contain part of the damaged object. If the media contains a damaged object, the save

media cannot be used for restore operations. The system sends diagnostic messages.

Object that the system does not detect as damaged

In some unusual cases, a save operation does not detect a damaged object. The save operation may detect

physical damage on the disk, but it may not detect all damage. For example, the system does not attempt

to determine if all bytes within an object are valid and consistent (logical damage). For some cases, you

will not be able to determine a damage condition unless you attempt to use the object (such as calling a

program object). If this type of damage exists, the system restores the object normally.

Preparing your media to save your system

Use this information to select and manage the save media that you will use for all your save functions.

Managing your tapes and other media is an important part of your save operation. If you cannot locate

the correct and undamaged tapes and other media that you need to do a recovery, your system recovery

is more difficult. Here is a list of the save media types:

v Magnetic tape

v Optical media

v Virtual optical

v Save file

v Virtual tape

Successful media management involves making decisions about how to manage your media, writing

down those decisions, and monitoring the procedures regularly.

 Related information

 BRMS

Choosing your save media

Learn about the different types of media that can be used for save and restore operations as well as

which save and restore commands can be used with the different types of media.

10 System i: Backing up your system

|

Tape is the most common media that is used for save and restore operations. You can also save your user

data and your system data to optical media.

The table below shows which save and restore commands support which types of media.

 Table 3. Media Used with the Save Commands

Command Tape Virtual Tape Optical media Virtual Optical Save file

SAVSYS Yes Yes4 Yes1 Yes4 No

SAVCFG Yes Yes Yes Yes Yes

SAVSECDTA Yes Yes Yes Yes Yes

SAVLIB Yes Yes Yes2 Yes Yes

SAVOBJ Yes Yes Yes Yes Yes

SAVCHGOBJ Yes Yes Yes Yes Yes

SAVDLO Yes Yes Yes3 Yes Yes

SAVSAVFDTA Yes Yes Yes Yes No

SAVLICPGM Yes Yes4 Yes1 Yes4 Yes

SAVSTG Yes No No No No

SAV Yes Yes Yes Yes Yes

RUNBCKUP Yes Yes No No No

SAVSYSINF Yes Yes Yes Yes Yes

1 You cannot run this command on an optical media library device.

2 You can specify SAVLIB LIB(*ALLUSR), SAVLIB LIB(*IBM), or SAVLIB

LIB(*NONSYS) when you use optical media. However, you need to initialize your

optical media to the *UDF format. You cannot use optical media that you

initialized to *HPOFS format.

3 You can save document library objects (DLO) from more than one auxiliary storage

pool (ASP) to optical media with a single SAVDLO command. However, you need

to initialize your optical media to the *UDF format. You cannot use optical media

that you initialized to *HPOFS format.

4 In a disaster recovery situation you must have physical media of the Licensed

Internal Code and the operating system to begin your recovery.

Optical media library devices allow you to archive information to optical media, and they provide

backup and recovery capability similar to tape media. The Optical Support book provides more

information about using optical media. If you want to substitute optical media for tape in some of your

existing procedures, you need to evaluate how to assign saved objects to directories on the optical media

and how to name the media.

 Related information

 Storage Solutions

Optical media:

Optical media library devices allow you to archive information to optical media, and they provide

backup and recovery capability similar to tape media.

 Table 4. Consider using optical media as part of your save strategy

Characteristic Comparison

Access to data Optical devices are random access devices. File access is independent to the order

in which the data is stored. Multiple users can access the same volume

simultaneously.

Data transfer rates Data transfer rates for tape tend to be higher than for optical, particularly if you use

tape drive compression.

Backing up and recovering your system 11

||

||||||

||

||
|
|
|

||
|
|
|

||
|

|

|

||

||

||
|
|

||
|

Table 4. Consider using optical media as part of your save strategy (continued)

Characteristic Comparison

Durability Optical media has a life span around 50 years.

Archiving Write Once Read Many (WORM) optical media is made for archiving. Each sector

on the media can only be written to once, when creating and updating files and

directories. When a file is changed or deleted, a new version of the file gets written,

and the old version still exists on the media. This unique characteristic of never

rewriting the same sector is that it allows all previous versions of every file to

remain on the media.

Transportability DVD-RAM media created or written to on the system can be read from any

platform that supports the Universal Disk Format (UDF) file system. UDF is an

industry standard file system.

How random storage mode affects save functions

Optical devices use a random storage mode to save information. Optical devices use a hierarchical file

structure when the system accesses files on the media.

You may specify a path name for the optical file in the save operation beginning with the root directory.

If you specify an asterisk (*), the system generates an optical file name in the root directory (/). If you

specify an ’optical_directory_path_name/*’, the system generates an optical file name in the specified

directory on the optical volume. If the directory does not exist, the system creates the directory.

For example, if you specify SAVLIB LIB(MYLIB) DEV(OPT01) OPTFILE(’MYDIR/*’), the system creates the

following optical file: MYDIR/MYLIB.

The system looks for active files on the optical media volume for the same file that you save currently.

For example, you previously saved a SAVLIB to optical media. Now you run a new SAV command to the

same media; the system ignores the SAVLIB files and does not report any active files for your SAV

command.

In general, the save operation looks for an active file that matches the pathname specified on the

OPTFILE parameter. SAVSYS and options 21 and 22 of the SAVE menu look for any active file.

 Table 5. Checking for active files on optical media

Consideration General information

CLEAR(*NONE) parameter If you specify CLEAR(*NONE) on the save command, the system checks the optical

media volume for active optical files. The system looks for active files with the

same name and path as the specified optical file.

If the system finds an optical file that is identical to the specified optical file, the

system displays an inquiry message. You may respond to the message by cancelling

the process, writing over the existing file on the volume, or inserting a new

cartridge.

If the system does not find any active files and there is enough space on the optical

volume, the system writes the files to the media. If the system does not find enough

available space on the optical media volume, the system prompts you to insert a

new media volume in the media device.

CLEAR(*ALL) parameter The CLEAR(*ALL) parameter automatically clears all of the files on the optical

media volume without prompting.

CLEAR(*AFTER) parameter The CLEAR(*AFTER) parameter clears all the media volumes after the first volume.

If the system encounters the specified optical file on the first volume, the system

sends an inquiry message that allows you to either end the save operation or

replace the file.

12 System i: Backing up your system

|

||

||

||
|
|
|
|
|

||
|
|
|

|

Table 5. Checking for active files on optical media (continued)

Consideration General information

CLEAR(*REPLACE)

parameter

The CLEAR(*REPLACE) parameter automatically replaces active data of the

specified optical file on the media volumes.

Check for active files

parameter on the GO SAVE

command

During a GO SAVE command, menu option 21 or 22, or a SAVSYS command if the

system detects an active file of the specified optical file, it displays message

OPT1563 in the QSYSOPR message queue. During other save command operations,

the system may display message OPT1260 depending on the value of the CLEAR

parameter. If the system does not detect an active file of the specified optical file,

the system checks for available space. If there is room to write the file, the system

writes the file to the current volume in random mode. If there is not enough room,

the system prompts you to insert another optical media volume into your optical

device.

During a GO SAVE command, menu option 21, you specify Y or N at the Check for

active files prompt to see if there are active files on your media volume.

v Check for active files: N option

When you select the Check for active files: N option, the option forces the system

to automatically overwrite all files on your DVD-RAM optical media.

v Check for active files: Y option

When you select the Check for active files: Y option, the option forces the system

to check for active files on your DVD-RAM optical media.

SAVSYS command messages When you run a SAVSYS command to an optical media volume, the system

displays message OPT1503 - Optical volume contains active files if there are active

files on the optical media volume. You can either initialize the media with the

Initialize Optical (INZOPT) command or you can specify CLEAR(*ALL) on the

SAVSYS command to run an unattended save.

 Related information

 Comparison of offline storage

 Optical storage

Tape media:

There are several reasons why tape media might be a good option for your save and restore operations.

 Tape is the most common media that is used for save and restore operations. It has been around for some

time, so it has been widely adopted and continues to be popular. Tape provides several advantages over

other storage methods, for the following reasons:

 Table 6. Consider using tape media as part of your save strategy

Characteristic Comparison

Capacity As the amount of data you create grows, you can increase your capacity by simply

adding additional tape volumes.

Security It is easy to keep your data secure by securely storing backups or copies at an

off-site location. This also guards against on-site data corruption from viruses, fire,

natural disasters, accidental deletions, and other data-loss incidents.

Cost Because you can store a larger amount of data on tape, it has a lower cost per

gigabyte.

Reusability You can rotate your tapes for backups, which means that you have more than one

set of tapes. When one set expires, you can write over the data on it and use the

media again.

 Related information

Backing up and recovering your system 13

Tape

Save files:

Understand what save files are and how to use them in your save and restore operations.

 Using a save file allows you to save and restore objects without first placing save media into your save

media device. You can also use a save file to send objects from one System i environment to another over

communications lines. You can use the save file as an online container to save the contents of a single

library to run overnight. The next day, save the contents of the save file to storage media with the Save

Save File Data (SAVSAVFDTA) command. Objects saved to media using the SAVSAVFDTA command can

be restored directly from save media, using the RSTLIB, RSTOBJ, or RST command.

A few things to consider when saving to save files are:

v Only one library can be saved to a save file.

v You cannot save or send a save file that is larger than the target release allows.

v Performance can vary, depending on other disk activity. Save files can be created on or moved to an

ASP for improved performance and additional protection from system disk device failures.

v The maximum capacity of a save file is about one terabyte. You can specify the maximum size of the

save file on the Create Save File (CRTSAVF) command.

Remember to specify data compression on the save commands to reduce the space for the save file and

the amount of media needed for the SAVSAVFDTA command. (Data compression is not an option on the

SAVSAVFDTA command.)

 Related concepts

 “Choosing compression type” on page 3
Choose compression type explains the types of compression that are available.

Copying save files to media:

You can back up parts of your system to a save file on disk rather than removable save media. However,

you should save the save file to removable media on a set schedule.

 You can save the contents of your save file by two different methods. You can use the Save Save File Data

(SAVSAVFDTA) command to save your save file data as if your objects were saved directly to media. Or,

you can use the Save File Data (SAVFDTA) parameter to save the entire save file to media.

Save Save File Data (SAVSAVFDTA) commandUse the Save Save File Data (SAVSAVFDTA) command to

save objects that appear on the media as if the system saved them directly to the media. For example,

assume that you use the following commands to save a library:

SAVLIB LIB(LIBA) DEV(*SAVF) SAVF(LIBB/SAVFA)

SAVSAVFDTA SAVF(LIBB/SAVFA) DEV(media-device-name)

You can restore library LIBA either from the media volume or from the save file by using the RSTLIB

command. When you use the SAVSAVFDTA command, the system does not save the save file object

itself.

Save file data (SAVFDTA) parameterUse the save file data (SAVFDTA) parameter on the SAVLIB

command, the SAVOBJ command, or the SAVCHGOBJ command. When you specify SAVFDTA(*YES), the

system saves the save file and its contents to save media. You cannot restore individual objects that are in

the save file from the media copy of the save file. You must restore the save file and then restore the

objects from the save file.

The following restrictions apply when specifying SAVFDTA(*YES):

14 System i: Backing up your system

v If you are saving the save file for a system at a previous release, the system saves the save file in a

previous release format. The objects within the save file remain in the release format that was specified

when they were saved to the save file.

v If the save media for the save operation is the same save file, the system only saves the description of

the save file. The system sends message CPI374B, SAVFDTA(*YES) ignored for file <your-file-name>

in library <your-library-name>, and the save operation continues.

Working with save files:

You can use the CL commands that are listed here with save files.

 v The Create Save File (CRTSAVF) command creates a save file that can be used with save and restore

commands to store data. The save file stores data that would otherwise be written to save media. A

save file can also be used as a container to send objects to another System i user on the systems

network architecture distribution services (SNADS) network.

v The Change Save File (CHGSAVF) command changes one or more of the attributes of a save file, such

as the maximum number of records.

v The Override with Save File (OVRSAVF) command overrides or replaces certain attributes of a save

file, or overrides any file with a save file.

v The Display File Description (DSPFD) command displays the attributes of the save file.

v The Clear Save File (CLRSAVF) command clears the contents of a save file.

v The Display Save File (DSPSAVF) command displays the save and restore information in a save file, or

the contents of the save file.

v You can use the Save Object (SAVOBJ) or the Save Library (SAVLIB) command to save the description

of the save file. You can also save the data to tape, optical media, or another save file in a different

library.

v The Save Save File Data (SAVSAVFDTA) command writes the contents of a save file to either tape or

optical media.

Use the following API to work with save files:

The List Save File (QSRLSAVF) API returns the contents of the save file in a user space. The contents of

the save file is returned at a user-selected level of library information, object information, member

information, or spooled files. The QSRLSAVF API returns the same information that is shown on a

DSPSAVF command. In addition, when you specify the SAVF0200 format, the system includes the

following:

v The serial number of the system on which the save operation was performed.

v The ASP from which the object was saved.

The QSYSINC library provides structures for the QSRLSAVF API formats in C, COBOL, and RPG.

About save file security:

The authority you grant for a save file is the same as for any file. Be careful when granting authority for

save files. The authority you grant to the save file allows access to objects in the save file.

 For example, the same file can be read from and written to by a high-level language program. The

authority you grant for a particular save file should depend on what objects are in the file.

Consider the following factors when granting authorities to save files:

v A user with use (*USE) authority can read records and restore objects from the save file. This user can

save the contents of the save file to tape or optical media.

v A user with use (*USE) and add (*ADD) authority can write records and save objects in a save file.

Backing up and recovering your system 15

v A user with object operational (*OBJOPR) and object management (*OBJMGT) authority can clear the

contents of a save file using the CLRSAVF command. The clear operation is required first when

replacing existing records in a save file.

v A user with either save system (*SAVSYS) special authority or object existence (*OBJEXIST) authority

for the file can save the description and contents.

Digital signature for a save file

The system verifies any digital signatures present on the save file each time you display the save file or

use the save file in a restore operation. If the signature is not valid you cannot display or use the save file

in a restore operation. The Verify Object on Restore (QVFYOBJRST) system value does not affect the

verification of save files. Therefore, the system verifies the signature every time you display the save file

or use the save file in a restore operation.

 Related information

 Object signing and signature verification

I/O operations on a save file:

There are several considerations apply to input and output operations on a save file.

v Records are always read and written sequentially. The records read from a save file contain sequence

and parity information that is validated when the records are written into another save file. This

information ensures that the records are processed in sequence and have not been changed.

You cannot write a record that has changed since it was retrieved from another save file. You cannot

write a record that is not the next record in sequence. If you attempt either of these, an escape message

is sent to report the error.

v A read of records from the save file can be done only if the entire file has been written.

v The force-end-of-data (FEOD) function is valid for both input and output.

For an input file, FEOD signals end-of-file to the program that does the operation.

To ensure buffered output records are not lost after an FEOD operation completes, they are written to

the file. For an output file, buffered output records are not lost even if the job or system fails.

File-dependent attributes for a save file

v The following file-dependent attributes apply when the save file is open:

– For input operations, the first record returned for a read operation is the one specified by the

parameter POSITION when the file is opened. After the first record is read, all remaining records are

returned sequentially to the end of the file.

– For output operations, new records can be added to the end of records already in the file (specified

using the EXTEND parameter). Each save file record contains sequencing information used by the

system to ensure that a record is not skipped or written more than once.

– If no record length is specified in the high-level language program that opens the file, a length of

528 bytes is assumed. If the program specifies a record length value, it must be 528 bytes.
v No file-dependent parameters (such as format name) can be specified for read or write operations with

a save file. Any file-dependent parameters specified are ignored.

Damage to a save file:

A save file is marked partially damaged if an attempt to read a record or restore an object from the file

encounters an auxiliary storage error. You can restore objects from a partially damaged save file other

than the objects on the damaged part of auxiliary storage.

 The objects on the damaged portion of the auxiliary storage within the save file cannot be restored. When

a file is marked partially damaged, you cannot add more records to it until it is cleared.

16 System i: Backing up your system

Partial damage of the save file itself can occur that is unrelated to auxiliary storage errors. Sometimes a

partial damage message is issued during a SAVSAVFDTA when the system is very busy. This can happen

because an internal operation did not complete within a given time interval. It is most often seen when

the SAVSAVFDTA job is running at a low priority and there is a heavy interactive load on the system.

Although a SAVSAVFDTA can no longer be done from that save file, the objects in the SAVF can be

restored to the system using RSTOBJ.

Sending network files:

The only objects you can send with the Send Network (SNDNETF) command are database file members

or save files. The SNDNETF command creates a save file and copies the information into it.

 The network file is not included in save operations on the destination system until the network file is

received. Once the file is received using the Receive Network File (RCVNETF) command, the copy on the

source system is not saved. Consider backing up the information on the destination system.

Other objects (such as programs or commands) must be saved in a save file before they can be sent using

the SNDNETF command.

Note: Do not use save files to save objects on a system at the current release to distribute them to a

system at a previous release unless TGTRLS(*PRV) is specified on the save command. You may

also specify TGTRLS(VxRxMx) on the save command, where (VxRxMx) is the

previous-release-value. The current release to previous release rules still apply.

Virtual optical media:

Use this information to learn about virtual optical media in your save environment.

 You can use virtual optical media to save images directly to system disk units for convenience, flexibility,

and in some cases improved performance. The following scenarios will give you some examples of ways

that you can utilize virtual optical in your save environment. Virtual optical is beneficial for unattended

saves because it eliminates media errors that could halt an unattended save. If you do not allocate

enough space in the image catalog to save the intended information, virtual optical will use the autoload

feature to create additional images with the same capacity as the last image you loaded, provided the

disk storage is available. You must specify automatic load in the reply list, MSGID(OPT149F), to avoid

receiving a message that interrupts the unattended save.

Ability to duplicate to physical media

When a save is complete to virtual optical, you can transfer it to physical media at any time and not

interfere with system operations. You also have the capability to send the stream files from the virtual

optical save to another system via FTP. If you have multiple systems, your strategy could be to save each

system to virtual optical and then FTP the stream files to a single system where the save to physical

media could take place. You can save the virtual images to tape in optical format, or you can use the

Duplicate Optical (DUPOPT) command to save the image to optical media.

Note: In a disaster recovery situation you must have physical media of the Licensed Internal Code and

the operating system to begin your recovery. If you are saving to virtual optical as part of your

disaster protection strategy, you must then save your Licensed Internal Code and operating system

to physical media from the virtual images. You must also have access to all of your user data,

either on a remote system or on physical media.

Save cumulative PTF record

If you receive fixes on CD-ROM, you can install your fixes from an image catalog. To maintain a

complete record of all of the fixes that you apply, you can save these virtual PTF images to media. Then,

Backing up and recovering your system 17

in a recovery situation, you can restore all of the cumulative PTF images and automatically install them

from the image catalog.

Save to virtual optical

Perform the following steps to save data to virtual optical media.

1. Ensure that the system has enough disk space to hold all the virtual images you are going to create

for your save operation.

2. Create a virtual optical device.

CRTDEVOPT DEVD(virtual-device-name)RSRCNAME(*VRT) ONLINE(*YES)+

TEXT(text-description)

3. Vary on the virtual optical device.

VRYCFG CFGOBJ(virtual-device-name) CFGTYPE(*DEV) STATUS(*ON)

4. Create an image catalog for your save operation.

CRTIMGCLG IMGCLG(catalog-name) DIR(catalog-path) CRTDIR(*YES) +

TEXT(image-description)

5. Add a new image catalog entry with a size of 48MB to 16GB. If you are performing a SAVSYS, the

first volume must be at least 1489 MB to accommodate the Licensed Internal Code. If you plan to save

the full operating system, add a new image catalog entry with a size of 4GB. If you plan to duplicate

image catalogs to physical media, then ensure you select a virtual image size that matches the size of

the media you plan to write to.

ADDIMGCLGE IMGCLG(catalog-name) FROMFILE(*NEW) TOFILE(file-name) +

IMGSIZ(*DVD4700) TEXT(text-description)

ADDIMGCLGE IMGCLG(catalog-name) FROMFILE(*NEW) TOFILE(file-name) +

 IMGSIZ(*CD650) TEXT(catalog-descritpion)

Repeat this step for the number of desired images. You should add the images in the same order as

you plan to restore from them. The virtual images provide spanning capability, with sequence

numbers continuing from one volume to the next.

6. Load the image catalog. This step associates the virtual optical device to the image catalog. Only one

image catalog at a time can be associated with a specific virtual optical device.

LODIMGCLG IMGCLG(catalog-name) DEV(virtual-device-name) OPTION(*LOAD)

7. Initialize the new volume.

INZOPT NEWVOL(volume-name) DEV(virtual-device-name) TEXT(’volume text’)

Repeat this step for the number of new images you want to initialize. Use the WRKIMGCLGE (Work

with image catalog entries) command to select the image to be initialized or use the LODIMGCLGE

(Load or unload image catalog entry) command to continue to the next volume to be initialized.

LODIMGCLGE IMGCLG(catelog-name) IMGCLGIDX(2) OPTION(*MOUNT)

LODIMGCLGE IMGCLG(catelog-name) IMGCLGIDX(1) OPTION(*MOUNT)

When you have completed initializing the new volumes, leave the first entry in mounted status.

8. Run the save command for your desired save operation, listing the virtual optical device in the DEV

parameter.

Note: After you create virtual optical images, they will automatically be included when you perform a

full system save using GO SAVE Option 21. The virtual optical images could significantly increase

the time it takes to complete the Option 21 save operation, even if the image catalog entries do not

contain data. If you want to exclude the virtual images from a full system save, use one of the

following strategies:

v Use the Change Attribute (CHGATR) command to mark the image catalog directory as

non-saveable. For example:

CHGATR OBJ(’/MYINFO’) ATR(*ALWSAV) VALUE(*NO)

18 System i: Backing up your system

v Use the Load Image Catalog (LODIMGCLG) command to make the image catalog ready. Image

catalogs with a ready status will be omitted from the save.

v In an attended save, you can specify to omit the image catalog directories on the Save Object

(SAV) command.
 Related information

 Virtual optical storage

 Installing your fixes from an image catalog

 CRTDEVOPT

 VRYCFG

 CRTIMGCLG

 ADDIMGCLGE

 LODIMGCLG

 INZOPT

 CHGATR

 SAV

Virtual tape media:

You can use virtual tape devices to save data directly to system disk units for convenience, flexibility, and

in some cases improved performance. These scenarios will give you some examples of ways that you can

utilize virtual tape in your save environment.

 Virtual tape is beneficial for unattended saves because it eliminates media errors that could halt an

unattended save. If you do not allocate enough space in the virtual volumes within the image catalog to

save the intended information, virtual tape will use the auto-generate feature to create additional virtual

tape volumes.

Ability to duplicate to physical media

When a save is complete to a virtual tape volume, you can duplicate the data to physical media at any

time and not interfere with system operations. You also have the capability to send the stream files from

the virtual tape save to another system via FTP SSL. If you have multiple systems, your strategy could be

to save each system to virtual tape. Then, FTP the stream files to a single system where the duplication to

the physical media could take place.

Note: In a disaster recovery situation you must have physical media to perform your recovery. If you are

saving to virtual tape as part of your disaster recovery strategy, you must duplicate your virtual

saves to physical media.

Save to virtual tape

Perform the following steps to save data to virtual tape media.

1. Ensure that the system has enough disk space to hold all the virtual images you are going to create

for your save operation.

2. Create a virtual tape device.

CRTDEVTAP DEVD(virtual-device-name) RSRCNAME(*VRT) ONLINE(*YES) +

TEXT(text-description)

3. Vary on the virtual tape device.

VRYCFG CFGOBJ(virtual-device-name) CFGTYPE(*DEV) STATUS(*ON)

4. Create an image catalog for your save operation.

CRTIMGCLG IMGCLG(catalog-name) DIR(catalog-path) CRTDIR(*YES) +

TEXT(catalog-descritpion) TYPE(*TAP)

Backing up and recovering your system 19

|

|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|

|

|

|
|

|

|
|

|

|

|

|
|

5. Add new image catalog entries with a total capacity large enough for the amount of data that you

intend to save. If you plan to duplicate image catalogs to physical media, then ensure you select a

density that has a compatible block size for the device that will be holding your data. The following

command will create a new standard labeled virtual tape volume with a maximum size of 10GB that

will be compatible for duplication to a physical tape device that supports a 256KB maximum block

size. The full 10GB of storage will be allocated at create time.

ADDIMGCLGE IMGCLG(catalog-name) FROMFILE(*NEW) TOFILE(VOL001) +

IMGSIZ(10000) TEXT(text-description) ALCSTG(*IMGSIZ)

VOLNAM(VOL001) VOLTYP(*SL) DENSITY(*VRT256K)

Repeat this step for the number of desired images. You should add the images in the same order as

you plan to restore from them. The virtual images provide spanning capability, with sequence

numbers continuing from one volume to the next. The image size can be as small as 48MB or as large

as 1,000,00MB. If you do not want to pre-allocate the storage you can use ALCSTG(*MIN) and the

storage will only be allocated as it is used for the save.

6. Load the image catalog. This step associates the virtual tape device to the image catalog. Only one

image catalog at a time can be associated with a specific virtual tape device.

LODIMGCLG IMGCLG(catalog-name) DEV(virtual-device-name) OPTION(*LOAD)

7. Run a save command listing the virtual tape device in the DEV parameter. Virtual tape devices

operate similar to tape media library devices so entering the volume names in the volume parameter

automatically mounts the volumes.

Exclude virtual images from a full save

After you create virtual tape images, they will automatically be included when you perform a full system

save using GO SAVE Option 21. The virtual tape images could significantly increase the time it takes to

complete the Option 21 save operation, even if the image catalog entries do not contain data. If you want

to exclude the virtual images from a full system save, use one of the following strategies:

v Use the Change Attribute (CHGATR) command to mark the image catalog directory as non-saveable.

For example:

CHGATR OBJ(’/Catalog-Path’) ATR(*ALWSAV) VALUE(*NO)

v Use the Load Image Catalog (LODIMGCLG) command to make the image catalog ready. Image

catalogs with a ready status will be omitted from the save.

v In an attended save, you can specify to omit the image catalog directories on the Save Object (SAV)

command.
 Related information

 Virtual Tape

Rotating tapes and other media

Learn why rotating your media is a good save procedure practice.

An important part of a good save procedure is to have more than one set of save media. When you

perform a recovery, you may need to go back to an old set of your media if one of the following is true:

v Your most recent set is damaged.

v You discover a programming error that has affected data on your most recent save media.

At a minimum, rotate three sets of media, as follows:

Save 1 Set A

Save 2 Set B

Save 3 Set C

Save 4 Set A

Save 5 Set B

Save 6 Set C

20 System i: Backing up your system

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|

|
|
|

|

|
|
|
|

|
|

|

|
|

|
|

|

|

And so on.

Many installations find that the best approach is to have a different set of media for each day of the

week. This makes it easy for the operator to know which media to mount.

Preparing media and tape drives

Understand why it is important to clean and initialize your tape drives.

You do not have to clean optical media devices as often as tape drives. You must clean your tape units on

a regular basis. The read-write heads collect dust and other material that can cause errors when reading

or writing to tape. In addition, you should also clean the tape unit if you are going to use it for an

extended period of time or if you use new tapes. New tapes tend to collect more material on the

read-write heads of the tape unit. For more specific recommendations, refer to the manual for the specific

tape unit that you are using.

Initialize your tapes with the Initialize Tape (INZTAP) command or the Format tape function available in

iSeries Navigator. Initialize your optical media with the Initialize Optical (INZOPT) command. These

commands prepare your media, and the commands can physically erase all data on the media with the

CLEAR parameter.

For tapes, you can specify the format (or density in bits per inch) before you write to tape. Do this by

using parameters on the INZTAP command when you initialize the tape.

You can specify the format of your optical media. Several optical media types require a particular format.

For erasable media, which allows a choice of format, you should use the *UDF format if you use the

optical media for backup and recovery purposes.

You can use option 21 (Prepare tapes) on the GO BACKUP menu. This provides a simple method of

initializing your media with a naming convention like the ones in Name and label media.

 Related reference

 “Naming and labeling media”
This information provides guidelines for naming and labeling your media.

Naming and labeling media

This information provides guidelines for naming and labeling your media.

When you initialize each media volume with a name, this helps to ensure that your operators load the

correct media for the save operation. Choose media names that help determine what is on the media and

in which media set it belongs. The following table shows an example of how you might initialize your

media and label them externally if you use a simple save strategy. The INZTAP and the INZOPT

commands create a label for each media volume. Each label has a prefix that indicates the day of the

week (A for Monday, B for Tuesday, and so on) and the operation.

Note:

1. You can find more information on the different save strategies in the information about

Planning a backup and recovery strategy.

2. You may use up to 30 characters to label optical media volumes.

 Table 7. Media naming for simple save strategy

Volume Name

(INZTAP) External Label

B23001 Tuesday–GO SAVE command, menu option 23–Media 1

B23002 Tuesday–GO SAVE command, menu option 23–Media 2

B23003 Tuesday–GO SAVE command, menu option 23–Media 3

Backing up and recovering your system 21

Table 7. Media naming for simple save strategy (continued)

Volume Name

(INZTAP) External Label

E21001 Friday–GO SAVE command, menu option 21–Media 1

E21002 Friday–GO SAVE command, menu option 21–Media 2

E21003 Friday–GO SAVE command, menu option 21–Media 3

Your media names and labels for a medium save strategy might look like those in the following table:

 Table 8. Media naming for medium save strategy

Volume Name External Label

E21001 Friday–GO SAVE command, menu option 21–Media 1

E21002 Friday–GO SAVE command, menu option 21–Media 2

AJR001 Monday–Save journal receivers–Media 1

AJR002 Monday–Save journal receivers–Media 2

ASC001 Monday–Save changed objects–Media 1

ASC002 Monday–Save changed objects–Media 2

BJR001 Tuesday–Save journal receivers–Media 1

BJR002 Tuesday–Save journal receivers–Media 2

B23001 Tuesday–GO SAVE command, menu option 23–Media 1

B23002 Tuesday–GO SAVE command, menu option 23–Media 2

Put an external label on each media. The label should show the name of the media, and the most recent

date that you used it for a save operation. Color-coded labels can help you locate and help you store

your media: Yellow for Set A, red for Set B, and so on.

 Related concepts

 “Preparing media and tape drives” on page 21
Understand why it is important to clean and initialize your tape drives.

 Related information

 Planning a backup and recovery strategy

 Storage solutions

Verifying your media

Learn why it is important to verify the correct use of your media.

Good save procedures ensure that you verify that you use the correct media. Depending on the size of

your installation, you may choose to manually verify media, or you may have the system verify the

media.

Manual checking

You can use the default of *MOUNTED for the volume (VOL) parameter on the save commands.

This tells the system to use the currently mounted media. It is up to the operator to load the

correct media in the correct order.

System checking

You specify a list of volume identifiers on the save or restore commands. The system makes sure

that the operator loads the correct media volumes in the order specified on the command. If an

error occurs, the system sends a message to the operator that requests the correct media volume.

The operator can either load another media or override the request.

Expiration dates on the media files are another method that you can use to verify that you use the correct

media. If you rely on your operators to verify the media, you might specify an expiration date

22 System i: Backing up your system

(EXPDATE) of *PERM (permanent) for your save operations. This prevents someone from writing over a

file on the media unintentionally. When you are ready to use the same media again, specify

CLEAR(*ALL) or CLEAR(*REPLACE) for the save operation. CLEAR(*REPLACE) automatically replaces

active data on the media.

If you want the system to verify your media, specify an expiration date (EXPDATE) that ensures that you

do not use the media again too soon. For example, if you rotate five sets of media for daily saves, specify

an expiration date of the current day plus 4 on the save operation. Specify CLEAR(*NONE) on save

operations so the system does not write over unexpired files.

Avoid situations where the operator must regularly respond to (and ignore) messages such as “Unexpired

files on the media”. If operators get in the habit of ignoring routine messages, they might miss important

messages.

Storing your media

What are some guidelines for storing your media?

Store your media where it is safe but accessible. Make sure that they have external labels and that you

organize them well so that you can locate them easily. Store a complete set of backup media at a safe,

accessible location away from your system. When choosing your off-site storage, consider how quickly

you can retrieve the media. Also consider if you have access to your tapes on the weekends and during

holidays. Off-site backup is essential in the case of a site loss.

Handling tape media errors

This information explains the three most common types of media errors and how to handle them.

When reading from or writing to tape, it is normal for some errors to occur. Three types of tape errors

can occur during save and restore operations:

Recoverable errors

Some media devices support recovering from media errors. The system repositions the tape

automatically and tries the operation again.

Unrecoverable errors–processing can continue

In some cases, the system cannot continue to use the current tape, but can continue processing on

a new tape. The system requests you to load another tape. The tape with the irrecoverable error

can be used for restore operations.

Unrecoverable errors–processing cannot continue

In some cases, an irrecoverable media error causes the system to stop the save process. How to

recover from a media error during a SAVLIB operation describes what to do when this type of

error occurs.

Tapes physically wear out after extended use. You can determine if a tape is wearing out by periodically

printing the error log. Use the Print Error Log (PRTERRLOG) command and specify TYPE(*VOLSTAT).

The printed output provides statistics about each tape volume. If you use unique names (volume

identifiers) for your tapes, you can determine which tapes have excessive read or write errors. You

should remove these bad tapes from your media library.

If you suspect that you have a bad tape, use the Display Tape (DSPTAP) or the Duplicate Tape (DUPTAP)

command to check the integrity of the tape. These commands read the entire tape and detect objects on

the tape that the system cannot read.

 Related tasks

 “Recovering from a media error during a SAVLIB operation” on page 51
This information describes the basic recovery steps for a save operation.

Backing up and recovering your system 23

Overview of the GO SAVE command

Use the GO SAVE command to save your entire system or parts of your system that change regularly.

Using the GO SAVE command is a simple way to make sure that you have a good backup of your entire

system. The GO SAVE command presents you with Save menus that make it easy to back up your

system, no matter what backup strategy you decide to use. It is a good idea to use menu option 21 of the

GO SAVE command right after you install your system.

Menu option 21 of the GO SAVE command is the basis for all save strategies. This option allows you to

perform a complete save of all the data on your system. Once you have used menu option 21, you can

use other menu options to save parts of the system, or to use a manual save process.

Another save method uses Backup Recovery and Media Services, which automates your save processes.

BRMS provides a comprehensive and easy solution for your backup and recovery needs.

Important: Be sure to permanently apply all Licensed Internal Code PTFs (fixes) before using the

SAVSYS command, or the GO SAVE menu option 21 or 22.

The following figure illustrates the commands and menu options you can use to save the parts of the

system and the entire system.

24 System i: Backing up your system

|
|

The following information provides an overview and procedures on how to use menu options of the GO

SAVE command:

v Overview of the GO SAVE command menu options explains how to start the GO SAVE command and

provides more information on the various GO SAVE options.

Figure 1. Save commands and menu options

Backing up and recovering your system 25

v Customize your GO SAVE backup instructions allows you to create a list of GO SAVE steps tailored to

your save environment.

v View entire GO SAVE checklist provides you with all of the steps for a GO SAVE operations. Some of

the steps may not apply to your environment.

 Related information

 Backup Recovery and Media Services

GO SAVE command menu options

This information describes the GO SAVE command and the most common menu options that you can

use.

Access the GO SAVE command menu by typing GO SAVE from any command line. From the Save menu,

you see option 21, option 22, and option 23 along with many more save options. A single plus sign (+)

indicates that the option places your system into a restricted state, which means that nothing else can be

running on your system when the menu option is selected. A double plus sign (++) indicates that your

system must be in a restricted state before you can run this option.

26 System i: Backing up your system

GO SAVE: Option 20 (changing the menu defaults):

You can use the Save menu option 20 to change the default values for the GO SAVE command, menu

options 21, 22, and 23. This option simplifies the task of setting your save parameters.

 In order to change the defaults, you must have *CHANGE authority for both the QUSRSYS library and

the QSRDFLTS data area in the QUSRSYS library.

When you enter the GO SAVE command, then select menu option 20, the system displays the default

parameter values for menu options 21, 22, and 23. If this is the first time you have used option 20 from

the Save menu, the system displays the IBM-supplied default parameter values. You can change any or

all of the parameter values to suit your needs. For example, you can specify additional tape devices or

change the message queue delivery default. The system saves the new default values in data area

QSRDFLTS in library QUSRSYS. The system creates the QSRDFLTS data area only after you change the

IBM-supplied default values.

Once you define new values, you no longer need to worry about which, if any, options to change on

subsequent save operations. You can simply review your new default options and then press Enter to

start the save with the new default parameters.

If you have multiple, distributed system with the same save parameters on each system, this option

provides an additional benefit. You can simply define the parameters from the Save menu, using option

20 on one system. Then, save the QSRDFLTS data area, distribute the saved data area to the other system,

and restore it.

GO SAVE: Option 21 (saving the entire system):

Backing up and recovering your system 27

Option 21 saves everything on your system and allows you to perform the save while you are not there.

 Option 21 saves all of your data for additional licensed programs, such as Domino® or System i

integration with BladeCenter and System x (integrated servers) when you select to vary off your network

server. Also, if you have Linux® installed on a secondary logical partition, you can back up that partition

when you select to vary off your network server.

Option 21 puts your system into a restricted state. This means that when the save begins, no users can

access your system and the backup is the only thing that is running on your system. It is best to run this

option overnight for a small system or during the weekend for larger system. If you schedule an

unattended save, make sure your system is in a secure location; after you schedule the save, you will not

be able to use the workstation where the backup is initiated until the save is complete.

Note: If you are saving information on independent ASPs (also called independent disk pools in iSeries

Navigator), make sure that you have varied on the independent ASPs that you want to save before

using option 21.

Tip: If you are using the Hardware Management Console (HMC), you can perform system saves using

Option 21 while you are at a remote location. For example, you can open a shared console on your HMC

from your office, travel to another location and link to the shared session from there. That way, if your

connection drops, you can head back to your office and finish the system save.

 Option

Number

Description Commands

21

Entire server (QMNSAVE)

ENDSBS SBS(*ALL) OPTION(*IMMED)

CHGMSGQ MSGQ(QSYSOPR) DLVRY(*BREAK or *NOTIFY)

SAVSYS

SAVLIB LIB(*NONSYS) ACCPTH(*YES)

SAVDLO DLO(*ALL) FLR(*ANY)

SAV DEV(’/QSYS.LIB/media-device-name.DEVD’) +

 OBJ((’/*’) (’/QSYS.LIB’ *OMIT) +

 (’/QDLS’ *OMIT))1 UPDHST(*YES)

STRSBS SBSD(controlling-subsystem)

1The command omits QSYS.LIB file system because the SAVSYS command and the SAVLIB LIB(*NONSYS) command

both save it. The command omits the QDLS file system because the SAVDLO command saves it.

“Performing a complete save using the GO SAVE checklist” on page 31 provides you with step-by-step

instructions on how to save your entire system with menu option 21 of the GO SAVE command.

 Related tasks

 “Saving independent ASPs” on page 52
Save one or more independent ASPs.

 “Performing a complete save using the GO SAVE checklist” on page 31
Use this checklist to perform a complete save.

 Related reference

 “Saving and restoring spooled files” on page 87
For V5R4, you can use any of the methods described here to save and restore spooled files. This

information contains a table that lists the commands and APIs in order of preference.

 “Manually saving parts of your system” on page 41
Use this information to use save commands to save your system manually. This information applies if

you use a medium or complex save strategy.

 “Methods for saving security data” on page 60
There are several methods that you can use for saving security data.

 “Methods for saving configuration objects in QSYS” on page 61
There are several methods that you can use for saving configuration objects in QSYS.

28 System i: Backing up your system

|
|
|
|

“Methods for saving i5/OS optional libraries (QHLPSYS, QUSRTOOL)” on page 62
There are several methods that you can use for saving i5/OS optional libraries.

 Related information

 Independent disk pools

 SAVLICPGM

GO SAVE: Option 22 (saving system data):

Option 22 saves only your system data. It does not save any user data. Option 22 puts your system into a

restricted state. This means that no users can access your system, and the backup is the only thing that is

running on your system.

 Option

Number

Description Commands

22

System data only

(QSRSAVI)

ENDSBS SBS(*ALL) OPTION(*IMMED)

CHGMSGQ MSGQ(QSYSOPR) DLVRY(*BREAK or *NOTIFY)

SAVSYS

SAVLIB LIB(*IBM) ACCPTH(*YES)

SAV DEV(’/QSYS.LIB/media-device-name.DEVD’) +

 OBJ((’/QIBM/ProdData’) +

 (’/QOpenSys/QIBM/ProdData’)) +

 UPDHST(*YES)

STRSBS SBSD(controlling-subsystem)

“Performing a complete save using the GO SAVE checklist” on page 31 provides you with step-by-step

instructions on how to save your system data with menu option 22 of the GO SAVE command.

 Related tasks

 “Performing a complete save using the GO SAVE checklist” on page 31
Use this checklist to perform a complete save.

 Related reference

 “Methods for saving security data” on page 60
There are several methods that you can use for saving security data.

 “Methods for saving configuration objects in QSYS” on page 61
There are several methods that you can use for saving configuration objects in QSYS.

 “Methods for saving i5/OS optional libraries (QHLPSYS, QUSRTOOL)” on page 62
There are several methods that you can use for saving i5/OS optional libraries.

 Related information

 SAVLICPGM

GO SAVE: Option 23 (saving user data):

Option 23 saves all user data. This information includes files, records, and other data that your users

supply into your system.

 Option 23 puts your system into a restricted state. This means that no users can access your system, and

the backup is the only thing that is running on your system.

Note: If you are saving information on independent disk pools, make sure that you have varied on the

independent disk pools that you want to save before using option 23. For more information see

“Saving independent ASPs” on page 52.

Backing up and recovering your system 29

Option

Number

Description Commands

23 All user data (QSRSAVU) ENDSBS SBS(*ALL) OPTION(*IMMED)

CHGMSGQ MSGQ(QSYSOPR) DLVRY(*BREAK or *NOTIFY)

SAVSECDTA

SAVCFG

SAVLIB LIB(*ALLUSR) ACCPTH(*YES)

SAVDLO DLO(*ALL) FLR(*ANY)

SAV DEV(’/QSYS.LIB/media-device-name.DEVD’) +

 OBJ((’/*’) (’/QSYS.LIB’ *OMIT) +

 (’/QDLS’ *OMIT) +

 (’/QIBM/ProdData’ *OMIT) +

 (’/QOpenSys/QIBM/ProdData’ *OMIT))1 +

 UPDHST(*YES)

STRSBS SBSD(controlling-subsystem)

1Menu option 23 omits the QSYS.LIB file system because the SAVSYS command, the SAVSECDTA command, the

SAVCFG command, and the SAVLIB LIB(*ALLUSR) command save it. The command omits the QDLS file system

because the SAVDLO command saves it. Menu option 23 also omits the /QIBM and /QOpenSys/QIBM directories

because these directories contain IBM supplied objects.

“Performing a complete save using the GO SAVE checklist” on page 31 provides you with step-by-step

instructions on how to save your user data with menu option 23 of the GO SAVE command.

 Related tasks

 “Saving independent ASPs” on page 52
Save one or more independent ASPs.

 “Performing a complete save using the GO SAVE checklist” on page 31
Use this checklist to perform a complete save.

 Related reference

 “Saving and restoring spooled files” on page 87
For V5R4, you can use any of the methods described here to save and restore spooled files. This

information contains a table that lists the commands and APIs in order of preference.

 “Methods for saving security data” on page 60
There are several methods that you can use for saving security data.

 “Methods for saving configuration objects in QSYS” on page 61
There are several methods that you can use for saving configuration objects in QSYS.

 Related information

 Planning for independent disk pools

GO SAVE: Options 40, 41, 42, 43 (saving parts of your system):

You can use the GO SAVE menu options 40, 41, 42, or 43 to save parts of your system.

 Option

Number

Description Commands

40

All libraries other than the

system library (QMNSAVN)

ENDSBS SBS(*ALL) OPTION(*IMMED)

CHGMSGQ MSGQ(QSYSOPR) DLVRY(*BREAK)

CHGMSGQ MSGQ(QSYSOPR) DLVRY(*NOTIFY)

SAVLIB LIB(*NONSYS) ACCPTH(*YES)

STRSBS SBSD(controlling-subsystem)

41

All IBM libraries other than

the system library

SAVLIB LIB(*IBM)

42

All user libraries

SAVLIB LIB(*ALLUSR)

30 System i: Backing up your system

Option

Number

Description Commands

43

All changed objects in user

libraries

SAVCHGOBJ LIB(*ALLUSR)

“Manually saving parts of your system” on page 41 contains information about how to manually save

parts of your system using CL commands.

 Related reference

 “Manually saving parts of your system” on page 41
Use this information to use save commands to save your system manually. This information applies if

you use a medium or complex save strategy.

Performing a complete save using the GO SAVE checklist:

Use this checklist to perform a complete save.

 Use the following checklist for menu options 21, 22, and 23 of the GO SAVE command. When

appropriate, select the option that you require. If you choose to, you can print system information during

the procedure. Otherwise, Printing system information contains detailed instructions on how to print

system information if you do not want the Save menu option command to print your system information

automatically.

Some of the steps in this checklist may not apply to your system configuration. See Identify optional

features that affect your backup for help to determine whether you use optional features in your

environment. If you are still unsure how your system is configured, contact your system administrator.

As an alternative to this checklist, use Customizing your GO SAVE backup in the i5/OS Information

Center to produce a set of instructions that is tailored to your save environment.

Attention: If you are using the Hardware Management Console (HMC), you must back up the HMC in

addition to using the GO SAVE: Option 21 to obtain a complete save of your system. See Backing up and

restoring the HMC.

 1. Sign on with a user profile that has *SAVSYS and *JOBCTL special authorities, and also has sufficient

authority to list different types of system resources. (The QSECOFR user profile contains all of these

authorities.) This ensures that you have the authority that you need to place the system in the

necessary state and to save everything.

 2. Virtual images can significantly increase the time it takes to complete an Option 21 save operation,

even if the image catalog entries do not contain data. If you want to exclude virtual images from a

full system save, use one of the following strategies:

v Use the Change Attribute (CHGATR) command to mark the image catalog directory as

non-saveable. For example:

CHGATR OBJ(’/MYINFO’) ATR(*ALWSAV) VALUE(*NO)

v Use the Load Image Catalog (LODIMGCLG) command to make the image catalog ready. Image

catalogs with a ready status will be omitted from the save.

v In an attended save, you can specify to omit the image catalog directories on the Save Object

(SAV) command.
 3. If you have independent ASPs, make them available before ending iSeries Navigator if you want

them to be included in an Option 21 or 23 save.

Note: If your system includes independent ASPs that are geographically mirrored, it is

recommended that you eliminate them from this GO SAVE option by making them

unavailable. You should save independent ASPs that are geographically mirrored separate

Backing up and recovering your system 31

rzaiubackup_welcome.htm

from this GO SAVE operation. If the geographically mirrored ASPs remain available during

the GO SAVE operation, geographic mirroring is suspended when the system becomes

restricted. When you resume mirroring after the save, a complete synchronization is required.

Synchronization can be a very lengthy process.

 4. If you are operating in a clustered environment and want to save independent ASPs without causing

a failover, or you want to save the cluster environment for a node, you must end the device cluster

resource group and end clustering before you end subsystems.

Use the End Cluster Resource Group ENDCRG command and the End Cluster Node ENDCLUNOD

command. For more information, refer to the online help in the Simple Cluster Management utility

or see Clusters.

 5. If you have OptiConnect controllers, vary them off prior to the save operation. You must vary off

OptiConnect controllers before ending subsystems and performing a save of the entire system, or

before any save that ends the QSOC subsystem. If you do not vary off OptiConnect controllers

before ending subsystems, they go into a failed status, the system marks them as damaged, and the

system does not save them. For more information, see Networking for logical partitions.

 6. If you have IBM WebSphere® MQ for iSeries, V5.3 (5724-B41), you need to quiesce WebSphere MQ,

V5.3 before you save the system. The MQSeries® for i5/OS Administration, GC33–1356 book has

instructions for quiescing WebSphere MQ, V5.3.

 7. If you plan to run the save procedure immediately, make sure that no jobs are running on the

system: type WRKACTJOB .

If you plan to schedule the save procedure to run later, send a message to all users informing them

when the system will be unavailable.

 8. Type GO SAVE at a command prompt to display the Save menu.

 9. To perform an attended save of your system, go to step 11.

10. To perform an unattended save operation, continue with the following steps. An unattended save

operation prevents your save operation from stopping because of unanswered messages:

a. Display the reply list sequence numbers to find what numbers are available for use:

WRKRPYLE

b. If MSGID(CPA3708) is not already in your reply list, add it. For xxxx, substitute an unused

sequence number from 1 through 9999:

ADDRPYLE SEQNBR(xxxx) +

 MSGID(CPA3708) +

 RPY(’G’)

c. If you are using virtual media for your save media, specify automatic load in the reply list,

MSGID(OPT149F), to avoid receiving a message that interrupts the unattended save. If necessary,

virtual optical will use the autoload feature to create additional images with the same capacity as

the last image you loaded, provided the disk storage is available.

d. Change your job to use the reply list and to notify you of any break messages that are sent:

CHGJOB INQMSGRPY(*SYSRPYL) BRKMSG(*NOTIFY)

Note: You can also set up a default so that whenever you select menu options 21, 22, or 23, the

system will always use the reply list. To set up the default, select menu option 20 from the

Save menu. Specify Yes on the Use system reply list option.

11. Select the option (21, 22, or 23) from the Save menu and press the Enter key.

A prompt display describes the function of the menu option that you selected.

12. After reading the Specify Command Defaults prompt display, press the Enter key to continue.

32 System i: Backing up your system

rzaiurzaiu299.htm

13. Type your choices for the Devices prompt. You can specify as many as four tape media device names.

If you specify more than one device, the system automatically switches to the next tape device when

the current tape is full. You may select only one DVD-RAM optical media device.

The first device for options 21 and 22 should be your alternate IPL device. If you are creating media

to install on another system, the device must be compatible with the alternate IPL device for that

system. This ensures that the system can read the SAVSYS media if you need to restore your

Licensed Internal Code and the operating system.

14. Type your choice for the Prompt for commands prompt. Specify N (No) if you want to run an

unattended save. Specify Y (Yes) if you want to change the defaults on the SAVxxx commands.

Note: If Y is specified to change the LABEL parameter for save commands, Y must be specified if

you use this media to restore the system.

15. Type your choice for the Check for active files prompt. Specify Y (Yes) if you want the system to warn

you if active files exist on the save media. The warning you receive gives the following choices:

v Cancel the save operation.

v Insert new media and try the command again.

v Initialize the current media and try the command again.

Note: If you use DVD-RAM optical media for your save, the system sends inquiry messages to the

QSYSOPR message queue when it encounters identical active files. The system sends the

inquiry message for each identical active file that it finds. See Optical media or Storage

Solutions.

Specify N (No) if you want the system to write over any active files on the save media without

warning you.

16. Type your choice for the Message queue delivery prompt. Specify *NOTIFY if you want to do an

unattended save. This prevents communications messages from stopping the save operation. If you

specify *NOTIFY, severity 99 messages that are not associated with the save operation are sent to the

 Specify Command Defaults

Type choices, press Enter.

 Devices TAP01 Names

Prompt for commands Y Y=Yes, N=No

Check for active file Y Y=Yes, N=No

Message queue delivery *BREAK *BREAK, *NOTIFY

Start time *CURRENT *CURENT, time

Vary off network servers *ALL *NONE, *ALL

Unmount file systems Y Y=Yes, N=No

 Specify Command Defaults

Type choice, press Enter.

Print system information N Y=Yes, N=No

Use system reply list N Y=Yes, N=No

Spooled file data *NONE *NONE, *ALL

Backing up and recovering your system 33

rzaiurzaiu298.htm

QSYSOPR message queue without interrupting the save process. For example, messages that request

a new volume be loaded interrupt the save operation because they are associated with the job. You

cannot continue until you reply to these messages.

Specify *BREAK if you want to be interrupted for severity 99 messages that require a reply.

17. Type your choice for the Start time prompt. You may schedule the start of the save operation up to

24 hours later. For example, assume that the current time is 4:30 p.m. on Friday. If you specify 2:30

for the start time, the save operation begins at 2:30 a.m. on Saturday.

Note:

a. The system uses the Delay Job (DLYJOB) command to schedule the save operation. Your

workstation will be unavailable from the time you request the menu option until the save

operation completes.

b. Make sure that your workstation is in a secure location. Your workstation remains signed

on, waiting for the job to start. If the system request function is used to cancel the job,

your workstation displays the Save menu. The workstation remains signed on with your

user profile and your authority.

c. Make sure that the value for the QINACTITV system value is *NONE. If the value for

QINACTITV is other than *NONE, the workstation will vary off in the amount of time

specified. If you changed the value to *NONE, write the old value down.

d. If you specify a delayed start and want your save operation to run unattended, be sure

you have done the following:

v Set up the system reply list.

v Specified *NONE on QINACTITV system value.

v Specified *NOTIFY on message queue delivery.

v Specify *NOTIFY for any break messages.

v Responded N to the Prompt for commands prompt.

v Responded N to Check for active files.
18. Type your choice for the Vary off network servers prompt. If you use iSeries Integration for Windows

Server, you may vary off the network server descriptions before beginning the save procedure.

The Information Center provides additional information about the effects of varying off the network

servers. Select one of the following options to specify which network servers should be varied off

before the save operation is performed:

*NONE

Does not vary off network servers. The save operation will take longer since the network

server data will be saved in a format that allows restoration of individual objects.

*ALL Varies off all network servers. The save operation will take less time but the network server

data will not be saved in a format that allows restoration of individual objects. You will only

be able to restore all of the data from the network servers.
19. Type your choice for the Unmount file system prompt. If you use user-defined file systems (UDFSs),

you should unmount the UDFSs before beginning the save procedure. Specify Y (Yes) if you want to

allow all dynamically mounted file systems to be unmounted. This allows you to save UDFSs and

their associated objects. IBM recommends that you unmount your UDFSs for recovery purposes. For

more information on UDFSs, refer to

OS/400 Network File System Support, SC41-5714-03.

Note: After the save operation completes, the system will not attempt to remount the file systems.

Specify N (No) if you do not want all dynamically mounted file systems to be unmounted. If you

specify N, and you have mounted UDFSs, you will receive a CPFA09E message for each mounted

UDFS. The objects in the mounted UDFS will be saved as if they belong to the mounted over file

system.

34 System i: Backing up your system

20. Type your choice for the Print system information prompt. Specify Y (Yes) if you want to print the

system information. The system information may be useful for disaster recovery. Printing system

information explains how to print your system information manually without using the automatic

GO SAVE command menu option function.

21. Type your choice for the Use system reply list prompt. Specify Y (Yes) if you want to use the system

reply list when the system sends an inquiry message.

22. Type your choice for the Spooled file data prompt. Specify *NONE if you do not want to save spooled

files or *ALL to save spooled files.

Note: Saving spooled files may require more save media and will take additional time.

23. Press the Enter key. If you chose a later start time, your display shows message CPI3716. The

message tells when the save operation was requested and when it will start. You cannot use the

display until the save operation completes. The input-inhibited indicator should appear. You have

completed the steps for setting up the save operation.

If you did not choose a later start time, continue with step 23. If the value for QSYSOPR message

queue delivery is *BREAK with a severity level of 60 or lower, you must respond to the ENDSBS

messages. This is true even if you plan to run an unattended save operation specifying a start

time of *CURRENT.

24. If you responded Y to the system prompt, Prompt for commands, the End Subsystem display

appears. Type any changes and press the Enter key. While the system is ending subsystems, you see

the following messages. You must respond to them if the QSYSOPR message queue is set to *BREAK

with a severity level of 60 or lower. Each message appears at least twice. Press the Enter key to

respond to each message.

a. CPF0994 ENDSBS SBS(*ALL) command being processed

b. CPF0968 System ended to restricted condition

If you responded N to the Prompt for commands prompt, skip to step 25.

25. When the system is ready to perform each major step in the save operation, you are shown the

prompt display for that step. The time between prompt displays may be quite long.

For option 21 (Entire system) these prompt displays appear:

ENDSBS SBS(*ALL) OPTION(*IMMED)

SAVSYS

SAVLIB LIB(*NONSYS) ACCPTH(*YES)

SAVDLO DLO(*ALL) FLR(*ANY)

SAV DEV(’/QSYS.LIB/media-device-name.DEVD’) +

 OBJ((’/*’) (’/QSYS.LIB’ *OMIT) +

 (’/QDLS’ *OMIT)) +

 UPDHST(*YES)

STRSBS SBSD(controlling-subsystem)

For option 22 (System data only) these prompt displays appear:

ENDSBS SBS(*ALL) OPTION(*IMMED)

SAVSYS

SAVLIB LIB(*IBM) ACCPTH(*YES)

SAV DEV(’/QSYS.LIB/media-device-name.DEVD’) +

 OBJ((’/QIBM/ProdData’) +

 (’/QOpenSys/QIBM/ProdData’)) +

 UPDHST(*YES)

STRSBS SBSD(controlling-subsystem)

For option 23 (All user data) these prompt displays appear:

ENDSBS SBS(*ALL) OPTION(*IMMED)

SAVSECDTA

SAVCFG

SAVLIB LIB(*ALLUSR) ACCPTH(*YES)

SAVDLO DLO(*ALL) FLR(*ANY)

SAV DEV(’/QSYS.LIB/media-device-name.DEVD’) +

 OBJ((’/*’) (’/QSYS.LIB’ *OMIT) +

 (’/QDLS’ *OMIT) +

Backing up and recovering your system 35

|
|

|

(’/QIBM/ProdData’ *OMIT) +

 (’/QOpenSys/QIBM/ProdData’ *OMIT)) +

 UPDHST(*YES)

STRSBS SBSD(controlling-subsystem)

Type your changes at each prompt display and press the Enter key.

26. When the system sends a message that asks you to load the next volume, load the next media and

respond to the message. For example, if the message is the following, load the next volume and then

enter R to retry (C cancels the operation):

Device was not ready or next volume was

not loaded (C R)

If a media error occurs

:

If an unrecoverable media error occurs during the SAVLIB procedure, see Recovering from a media

error during a SAVLIB operation in the i5/OS Information Center. You can find this subject under

the Backing up your system topic in the Information Center.

27. You should mount all other user-defined file systems at this point if you unmounted them for the

save operations.

28. Change the QINACTITV system value back to its original value. You wrote this value down in step

17 c.

29. When the save operation completes, print the job log. It contains information about the save

operation. Use it to verify that the operation saved all objects. Type one of the following:

DSPJOBLOG * *PRINT

Or

SIGNOFF *LIST

You have completed the save operation. Make sure that you mark all of your media and store it in a

safe, accessible place.

30. If you ended clustering before running the save operation, restart clustering on the save node from a

node where clustering is already active.

For more information, refer to the online help in the Simple Cluster Management utility or see

Clusters in the i5/OS Information Center.

31. Now restart the device cluster resource group to enable resiliency.

32. When your independent disk pool was saved, the Qdefault.UDFS was unmounted, if you chose to

unmount file systems. In order to use the independent disk pool again, remount Qdefault.UDFS. Do

this step for each independent disk pool that you saved.

TYPE(*UDFS) MOUNT MFS(’/dev/iasp_name/Qdefault.UDFS’) MTOVRDIR(’/iasp-name’)

 Related concepts

 “Saving logical partitions and system applications” on page 96
This information contains a diagram that shows the system from the perspective of the different file

systems available. It shows which SAVxxx commands you can use to save each file system that you

use.
 Related tasks

 “GO SAVE: Option 21 (saving the entire system)” on page 27
Option 21 saves everything on your system and allows you to perform the save while you are not

there.

 “GO SAVE: Option 22 (saving system data)” on page 29
Option 22 saves only your system data. It does not save any user data. Option 22 puts your system

into a restricted state. This means that no users can access your system, and the backup is the only

thing that is running on your system.

36 System i: Backing up your system

“GO SAVE: Option 23 (saving user data)” on page 29
Option 23 saves all user data. This information includes files, records, and other data that your users

supply into your system.

 “Saving independent ASPs” on page 52
Save one or more independent ASPs.

 Related reference

 “Saving data for integrated Windows or Linux servers” on page 100
Listed in this topic are links that lead you to the information about how to use, back up, and recover

data for a System i integration with BladeCenter and System x solution. These integrated servers

combine System i storage, x86-based hardware, and the Linux or Windows operating systems. You can

back up objects, storage spaces, and files for integrated servers.
 Related information

Backing up critical HMC data

 Storage Solutions

 Making a disk pool available

 Linux in a guest partition

Identifying optional features that affect your backup:

Do you use user-defined file systems on this system? A user-defined file system (UDFS) is a file system

that a user creates and manages. To determine if you have any UDFS on your system, use one of the

following methods.

Using iSeries Navigator:

Using iSeries Navigator, expand your system File Systems → Integrated File System → Root → dev →

QASPxx or select the name of an independent disk pool. If UDFS objects exist, they will appear in the

right-hand pane.

Using the character-based interface:

1. At a command line, specify wrklnk ’/dev’ .

2. On the Work with Object Links screen, select option 5 to display the contents of the dev directory.

3. Locate object links beginning with QASPxx or the name of an independent disk pool, and select

Option 5 to display the UDFS within the auxiliary storage pool (ASP).

Do you use virtual storage?:

Virtual media simulates tape, CD or DVD images that are stored directly on your system disk units. To

determine if you store virtual images in image catalogs, do the following:

1. At a command line, specify WRKIMGCLG.

Note: The Work with Image Catalogs (WRKIMGCLG) window displays the name of the image

catalog, the status, and the virtual type.

Do you use independent disk pools?:

An independent disk pool is a collection of disk units that can be brought online or taken offline

independent of the rest of the storage on a system. If you have the necessary authority, you can check

whether independent disk pools are configured on your system. Using iSeries Navigator, expand your

system Configuration and Service → Hardware → Disk Units → Disk pools folder. Independent disk pools

are numbered 33-255.

Have you configured independent disk pools to switch between systems in a cluster:

Backing up and recovering your system 37

A System i cluster is a collection or group of one or more systems or logical partitions that work together

as a single system. If you have the required authority, you can check to see if your independent disk pool

is switchable between systems in a cluster.

1. Using iSeries Navigator, expand your system Configuration and Service → Hardware → Disk Units →

Disk pools folder.

2. Independent disk pool are numbered somewhere between 33 and 255. Right-click the independent

disk pool and select Properties.

3. On the Disk Pool Properties page the General tab displays the field Switchable: Yes if you have

configured your independent disk pool to switch between systems.

Do you use WebSphere MQ, V5.3 on this system?:

The IBM WebSphere MQ for iSeries, V5.3, licensed program provides application programming services

that enable you to code indirect program-to-program communications that use message queues. This

allows programs to communicate with each other independently of their platforms, for example, between

z/OS® and i5/OS.

To check whether you have installed WebSphere MQ, or V5.3 use one of the following methods:

Using iSeries Navigator:

Using iSeries Navigator, expand your system Configuration and Service → Software → Installed

Products. WebSphere MQ, V5.3, is product 5724B41, IBM WebSphere MQ for iSeries

Using the character-based interface:

1. At a command line, specify GO LICPGM.

2. Specify option 10 to display installed licensed programs.

3. If WebSphere MQ for iSeries is installed, 5724B41 appear in the Description column of one of the

5722SS1 lines.

4. If MQ is installed, the Work with Queue Managers (WRKMQM) command allows you to see if you

have configured any queue managers.

Do you use OptiConnect controllers?:

OptiConnect is the system area network that provides high-speed interconnectivity between multiple

systems in a local environment.

To check whether you have installed OptiConnect, use one of the following methods:

Using iSeries Navigator:

Using iSeries Navigator, expand your systemConfiguration and Service → Installed Products → Software.

OptiConnect is option 23 of product 5722-SS1, i5/OS - OptiConnect.

Using the character-based interface:

1. At a command line, specify GO LICPGM.

2. Specify option 10 to display installed licensed programs.

3. If OptiConnect is installed, OptiConnect will appear under the Description column for Licensed

Program 5722-SS1.

Do you use network servers?:

38 System i: Backing up your system

There are several solutions that enable you to run other operating systems on your System i product.

Examples include System i integration with BladeCenter and System x solutions that run an x86-based

Linux or Windows operating system and Linux running in a logical partition.

Do you use the Hardware Management Console?:

If you have a System i5™ model 5xx, your system might be equipped with a Hardware Management

Console (HMC). An HMC is required if you use capacity on demand or logical partitions.

Printing system information:

Printing the system information provides valuable information about your system that will be useful

during a system recovery. It is especially useful if you cannot use your SAVSYS media to recover and

must use your distribution media.

 Printing this information requires *ALLOBJ, *IOSYSCFG, and *JOBCTL authority and produces many

spooled file listings. You may not need to print this information every time you perform a backup.

However, you should print it whenever important information about your system changes.

 1. Print your current disk configuration. This is essential if you plan to do a model upgrade and you

are using mirrored protection. This information is also vital if you need to recover an independent

ASP. Do the following:

a. Sign on with a user profile that has *SERVICE special authority.

b. Type STRSST on a command line and press the Enter key.

c. Specify the service tools user ID and service tools password. These are case-sensitive.

d. Select option 3 Work with disk units on the System Service Tools (SST) display.

e. Select option 1 Display disk configuration on the Work with Disk Units display.

f. Select option 3 Display disk configuration protection on the Display Disk Configuration display.

g. Print the displays there may be several using the PRINT key for each display.

h. Press F3 until you see the Exit System Service Tools display.

i. On the Exit System Service Tools display, press the Enter key.
 2. If you are using logical partitions, print the logical partition configuration information.

a. From the primary partition, type STRSST on a command line and press Enter.

b. If you are using SST, select option 5 Work with system partitions, and press Enter. If you are

using DST, select option 11 Work with system partitions, and press Enter.

c. From the Work With System Partitions menu, select option 1 Display partition information.

d. To display all system I/O resources from the Display Partition Information menu, select option 5.

e. At the Level of detail to display field, type *ALL to set the level of detail to ALL.

f. Press F6 to print the system I/O configuration.

g. Select option 1 and press Enter to print to a spooled file.

h. Press F12 to return to the Display Partition Information menu.

i. Select option 2 Display partition processing configuration.

j. From the Display Partition Processing Configuration display, Press F6 to print the processing

configuration.

k. Press F12 to return to Display Partition Information display.

l. Select option 7 Display communications options.

m. Press F6 to print communication configuration.

n. Select option 1 and press Enter to print to a spooled file.

o. Return to a command line and print these three spooled files.

Backing up and recovering your system 39

|
|
|

3. If you are operating in a clustered environment, print the cluster configuration information. Use the

following commands to print cluster information:

a. Display Cluster Information — DSPCLUINF DETAIL(*FULL) OUTPUT(*PRINT)

b. Display Cluster Resource Group — DSPCRGINF CLUSTER(cluster-name) CRG(*LIST)

OUTPUT(*PRINT)
 4. If you have independent ASPs configured, record the relationship between the independent ASP

name and number. You can find this information in iSeries Navigator. In the Disk Units folder, select

Disk Pools.

 5. Sign on with a user profile that has *ALLOBJ special authority, such as the security officer. The

system lists information only if you have the proper authority. If you sign on as a user with less than

*ALLOBJ authority, some of the listings in these steps may not be complete. You must also be

enrolled in the system directory before you can print a list of all the folders on the system.

 6. If you use the history log or if you have a requirement to keep it, do the following:

a. Display the system log QHST. This automatically brings it up to date. Type:

DSPLOG LOG(QHST) OUTPUT(*PRINT)

b. Display all copies of the system log:

WRKF FILE(QSYS/QHST*)

Look at the list to verify that you saved all copies of the log that you may need later.

Note: The history (QHST) log contains information such as date created, and the last change date

and time. To get more information about the history (QHST) log, select option 8 (Display

file description) on the Work with Files display.

c. To prevent confusion about the date of the log, select the Delete option on the Work with Files

display. Delete all but the current copies of the system log. This step improves the performance of

the SAVSYS command.
 7. Print the system information. You can do this by two different methods:

a. Using the GO SAVE command, on the Specify Command Defaults display, select Y at the Print

system information prompt.

b. Use the PRTSYSINF command.
The following table describes the spooled files that the system creates. The PRTSYSINF command

does not create empty spooled files. If some objects or types of information do not exist on your

system, you may not have all of the files listed below.

 Table 9. Spooled Files Created by the system

Spooled File Name User Data Description of Contents

QPEZBCKUP DSPBCKUPL List of all user libraries

QPEZBCKUP DSPBCKUPL List of all folders

QSYSPRT DSPSYSVAL Current® settings for all system values

QDSPNET DSPNETA Current settings for all network attributes

QSYSPRT DSPCFGL Configuration lists

QSYSPRT DSPEDTD User-defined edit descriptions (a separate spooled file for each)

QSYSPRT DSPPTF Details of all fixes that are installed on your system

QPRTRPYL WRKRYPLE All reply list entries

QSYSPRT DSPRCYAP Settings for access path recovery times

QSYSPRT DSPSRVA Settings for service attributes

QSYSPRT DSPNWSSTG Network server storage spaces information

QSYSPRT DSPPWRSCD Power on/off schedule

40 System i: Backing up your system

Table 9. Spooled Files Created by the system (continued)

Spooled File Name User Data Description of Contents

QSYSPRT DSPHDWRSC Hardware configuration reports (a separate spooled file for each

resource type, such as *CMN or *LWS)

QSYSPRT WRKOPTCFG Optical device descriptions (if your system has an optical device

and optical support is started when you run the command)

QSYSPRT DSPRJECFG Remote job entry configurations

QPDSTSRV DSPDSTSRV SNADS configuration

QPRTSBSD DSPSBSD Subsystem descriptions (a separate spooled file for each subsystem

description on your system)

QSYSPRT DSPSFWRSC Installed licensed programs (Software Resources List)

QPRTOBJD DSPOBJD A list of all the journals on your system

QPDSPJNA WRKJRNA The journal attributes for each journal that is not in the QUSRSYS

library (a separate file for each journal). Typically, journals in the

QUSRSYS library are IBM-supplied journals. If you have your own

journals in the QUSRSYS library, you need to manually print

information about those journals.

QSYSPRT CHGCLNUP Settings for automatic cleanup

QPUSRPRF DSPUSRPRF Current values for the QSECOFR user profile

QPRTJOBD DSPJOBD Current values for the QDFTJOBD job description

QPJOBLOG PRTSYSINF The job log for this job1

1 On your system, this spooled file might be in the QEZJOBLOG output queue.

 8. Print a list of directories in the root directory.

DSPLNK OBJ(’/*’) OUTPUT(*PRINT)

 9. Print any IBM-supplied objects that you have modified, such as the QSYSPRT print file.

10. If you maintain a CL program that contains your configuration information, use the Retrieve

Configuration Source (RTVCFGSRC) command to ensure that the CL program is current.

RTVCFGSRC CFGD(*ALL) CFGTYPE(*ALL) +

 SRCFILE(QGPL/QCLSRC) +

 SRCMBR(SYSCFG)

11. Print these spooled files. Keep this information with your backup log or your save system media for

future reference. If you choose not to print the lists, use the Copy Spooled File (CPYSPLF) command

to copy them to database files. See Save spooled files for information on how to do this. Make sure

that the database files are in a library that is saved when you perform the Save menu option.

Manually saving parts of your system

Use this information to use save commands to save your system manually. This information applies if

you use a medium or complex save strategy.

Use the information that follows if you are saving your system with a medium or complex save strategy.

You can save the information automatically with the GO SAVE command menu options, or you can save

the information manually with individual save commands.

You must save your entire system with menu option 21 of the GO SAVE command before you save parts

of your system. You should also periodically save your entire system after you install prerequisite

program temporary fixes (PTFs) or before a migration or upgrade.

 Related tasks

Backing up and recovering your system 41

“GO SAVE: Options 40, 41, 42, 43 (saving parts of your system)” on page 30
You can use the GO SAVE menu options 40, 41, 42, or 43 to save parts of your system.

 “GO SAVE: Option 21 (saving the entire system)” on page 27
Option 21 saves everything on your system and allows you to perform the save while you are not

there.
 Related information

 Save strategy

Commands for saving parts of your system

This table groups the data that you need to save on your system. Three sections divide the information.

v System data

v System data and related user data

v User data

For detailed information in each section, select the appropriate link the in table.

 Table 10. Saving the parts of your system

Part of your system GO SAVE command menu option Save commands

System data is IBM-supplied data that runs your system hardware and software

Licensed Internal Code Option 21 or 22 SAVSYS

i5/OS objects in QSYS Option 21 or 22 SAVSYS

System data and related user data is a combination of system data and related user data

User profiles Option 21, 22 or 23 SAVSYS or SAVSECDTA

Private authorities Option 21, 22 or 23 SAVSYS or SAVSECDTA

Configuration Objects Option 21, 22, or 23 SAVSYS or SAVCFG

IBM-supplied directories Option 21 or 22 SAV

i5/OS optional libraries Option 21 or 22 SAVLIB *NONSYS or SAVLIB *IBM

Licensed program libraries Option 21 or 22 SAVLIB *NONSYS or SAVLIB *IBM

User data is data that you input to the system

IBM libraries with user data Option 21 or 23 SAVLIB *NONSYS or SAVLIB

*ALLUSR

User libraries Option 21 or 23 SAVLIB *NONSYS or SAVLIB

*ALLUSR

Documents and folders Option 21 or 23 SAVDLO

User objects in directories Option 21 or 23 SAV

Distribution objects Option 21 or 23 SAVDLO

Commands to save specific object types provides you with detailed information on which save command

you can use to save specific types of objects.

42 System i: Backing up your system

Related concepts

 “Saving system data” on page 46
System data is IBM-supplied data that runs the hardware and software for your system. System data

includes the Licensed Internal Code and i5/OS objects in QSYS, libraries, and directories.
 Related reference

 “Saving system information” on page 55
Use the Save system information (SAVSYSINF) command to perform a partial save of the data saved

by the Save system (SAVSYS) command.

 “Saving system data and related user data” on page 48
System data and related user data includes information that the system needs to operate and

information that allows you to use the system.

 “Saving user data in your system” on page 64
User data includes any information that you enter into the system, including the items that are listed

in this topic.

 “Commands for saving specific object types”
This information contains a table that shows you which commands you can use to save each object

type.
 Related information

 SAVSYS

 SAVSECDTA

 SAVCFG

 SAV

 SAVLIB

 SAVDLO

Commands for saving specific object types

This information contains a table that shows you which commands you can use to save each object type.

An X appears in the column for the SAV command if you can use the SAVxxx command to individually

save an object of that type. When you specify SAV OBJ(’/*’), the system saves all objects of all types.

 Table 11. Objects Saved by Commands According to Object Type

Object Type

System

Object Type

SAVxxx Command:

SAV OBJ LIB SECDTA SYS CFG DLO

Alert table *ALRTBL X X X1 X

Authority holder *AUTHLR X6 X6

Authorization list *AUTL X6 X6

Bind directory *BNDDIR X X X1 X

Block special file *BLKSF10 X

C locale description *CLD X X X1 X

Chart format *CHTFMT X X X1 X

Change request descriptor *CRQD X X X1 X

Class *CLS X X X1 X

Class-of-service description *COSD X3 X

Cluster resource group *CRG X X X

Command definition *CMD X X X1 X

Communications side information *CSI X X X1 X

Configuration list3,4 *CFGL X3 X

Connection list3 *CNNL X3 X

Controller description *CTLD X3 X

Cross-system product map *CSPMAP X X X1 X

Backing up and recovering your system 43

Table 11. Objects Saved by Commands According to Object Type (continued)

Object Type

System

Object Type

SAVxxx Command:

SAV OBJ LIB SECDTA SYS CFG DLO

Cross-system product table *CSPTBL X X X1 X

Data area *DTAARA X X X1 X

Data queue2 *DTAQ X X X1 X

Data dictionary *DTADCT X X

Device description

11 *DEVD X3 X

Directory *DIR X

Distributed directory *DDIR X

Distributed stream file *DSTMF X

Distributions *MAIL8 X

Document *DOC X X

Double-byte character set

dictionary

*IGCDCT X X X1 X

Double-byte character set sort

table

*IGCSRT X X X1 X

Double-byte character set font

table

*IGCTBL X X X1 X

Edit description4 *EDTD X X X X

Exit registration *EXITRG X X X X

File2,5 *FILE X X X1,7 X

Filter *FTR X X X1 X

First-in-first-out special file *FIFO X

Folder *FLR X X

Font mapping table *FNTTBL X X X1 X

Font resource *FNTRSC X X X1 X

Forms control table *FCT X X X1 X

Forms definition *FORMDF X X X1 X

Graphics symbol set *GSS X X X1 X

Internet packet exchange

description

*IPXD X3 X3

Job description *JOBD X X X1 X

Job queue2 *JOBQ X X X1 X

Job scheduler *JOBSCD X X X1 X

Journal2 *JRN X X X1 X

Journal receiver *JRNRCV X X X1 X

Library

9 *LIB X7 X

Line description *LIND X3 X

Locale *LOCALE X X X1 X

Management collection *MGTCOL X X X1 X

Media definition *MEDDFN X X X1 X

Menu *MENU X X X1 X

Message file *MSGF X X X1 X

Message queue2 *MSGQ X X X1 X

Mode description *MODD X3 X

Module *MODULE X X X1 X

NetBIOS description *NTBD X3 X

Network interface description *NWID X3 X

Network server configuration *NWSCFG X X X1 X

Network server description *NWSD X3 X

Node group *NODGRP X X X1 X

Node list *NODL X X X1 X

Output queue2,

11 *OUTQ X X X1 X

44 System i: Backing up your system

|

|

Table 11. Objects Saved by Commands According to Object Type (continued)

Object Type

System

Object Type

SAVxxx Command:

SAV OBJ LIB SECDTA SYS CFG DLO

Overlay *OVL X X X1 X

Page definition *PAGDFN X X X1 X

Page segment *PAGSEG X X X1 X

PDF map *PDFMAP X X

Panel group *PNLGRP X X X1 X

Printer description group *PDG X X X1 X

Product availability *PRDAVL X X X1 X

Program *PGM X X X1 X

PSF configuration object *PSFCFG X X X1 X

Query definition *QRYDFN X X X1 X

Query form *QMFORM X X X1 X

Query manager query *QMQRY X X X1 X

Reference code translation table *RCT X X X1 X

System/36™ machine description *S36 X X X1 X

Search index *SCHIDX X X X1 X

Server storage *SVRSTG X X X1 X

Service program *SRVPGM X X X1 X

Session description *SSND X X X1 X

Spelling help dictionary *SPADCT X X X1 X

SQL package *SQLPKG X X X1 X

Stream file *STMF X

Subsystem description *SBSD X X X1 X

Symbolic link *SYMLINK X

System object model object *SOMOBJ X

System resource management

data *SRMDATA8 X3 X

Table *TBL X X X1 X

Time zone description *TIMZON X X

User defined SQL type *SQLUDT X X X1 X

User index *USRIDX X X X1 X

User profile *USRPRF X6 X6

User queue2 *USRQ X X X1 X

User space *USRSPC X X X1 X

Validation list *VLDL X X X1 X

Workstation customization *WSCST X X X1 X

Backing up and recovering your system 45

|

Table 11. Objects Saved by Commands According to Object Type (continued)

Object Type

System

Object Type

SAVxxx Command:

SAV OBJ LIB SECDTA SYS CFG DLO

Notes:

1 If the object is in library QSYS.

2 Save files have the option of saving only the description SAVFDTA(*NO) or the content SAVFDTA(*YES).

Data Queues have the option of saving only the description QDTA(*NONE) or the content QDTA(*DTAQ).

Output Queues have the option of saving only the description SPLFDTA(*NONE) or the content

SPLFDTA(*ALL). See Objects whose contents are not saved for more information.

3 Use the RSTCFG command to restore these objects.

4 Edit descriptions and configuration lists reside only in library QSYS.

5 The SAVSAVFDTA command saves only the contents of save files.

6 Use the RSTUSRPRF command to restore user profiles. Use the RSTAUT command to restore authorities

after you restore the objects that you need. The system restores authorization lists and authority holders

when you use the RSTUSRPRF USRPRF(*ALL) command and parameter.

7 If there are save files in the library, the system saves the save file data by default.

8 Mail and SRM data consists of internal object types.

9 Comparison of special values for SAVLIB command: LIB parameter shows which IBM-supplied libraries that

you cannot save with the SAVLIB command.

10 You can only save block special files when they are not mounted.

11 When a printer device description is saved, the associated output queue located in library QUSRSYS is not

saved.

 Related reference

 “Commands for saving parts of your system” on page 42
This table groups the data that you need to save on your system. Three sections divide the

information.

 “Objects whose contents are not saved” on page 65
For some object types, the system saves only object descriptions, not the contents of the objects.

Saving system data

System data is IBM-supplied data that runs the hardware and software for your system. System data

includes the Licensed Internal Code and i5/OS objects in QSYS, libraries, and directories.

The easiest way to save your system data is with menu option 22 of the GO SAVE command. This saves

all of your system data as well as security data and configuration data.

To manually save your system data, use the SAVSYS commands. You can use the same device that you

use for the SAVSYS command to perform an initial program load (IPL) of your system. You can also use

the SAVSYS save media to perform the IPL.

SAVSYS

SAVLIB LIB(*IBM) ACCPTH(*YES)

SAV DEV(’/QSYS.LIB/media-device-name.DEVD’) +

 OBJ((’/QIBM/ProdData’) +

 (’/QOpenSys/QIBM/ProdData’)) +

 UPDHST(*YES)

Important: Be sure to permanently apply all Licensed Internal Code PTFs (fixes) before using the

SAVSYS command, or the GO SAVE menu option 21 or 22.

 Related reference

46 System i: Backing up your system

||
|
|
|

|
|

rzaiurzaiu199.htm
rzaiurzaiu116.htm

“Commands for saving parts of your system” on page 42
This table groups the data that you need to save on your system. Three sections divide the

information.
 Related information

 SAVSYS command in CL reference

Methods for saving Licensed Internal Code:

There are several methods that you can use to save licensed internal code.

 Table 12. Licensed Internal Code information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Licensed Internal Code Your Licensed Internal

Code changes when you

apply Program Temporary

Fixes (PTFs) or when you

install new releases of the

operating system.

No Yes

 Common save method for system information Requires restricted state?

SAVSYS Yes

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 22 Yes

Note: DO NOT use a tape that you created through DST with option 5=Save Licensed Internal Code

from the IPL or Install the System menu. Only do this if Software Services instructs you to use this

type of tape. This process creates a tape that does not contain the Licensed Internal Code PTF

Inventory information or the i5/OS Operating System. If you recover your system with this type of

tape, you need to re-install the Licensed Internal Code from either SAVSYS tapes or from your

distribution media. After you re-install the Licensed Internal Code, you can load PTFs onto your

system.

Methods for saving system information:

There are several methods that you can use to save system information.

 Table 13. System information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

System information System information, such as

system values and access

path recovery times change

regularly.

Yes Yes

 Common save method for system information Requires restricted state?

SAVSYS Yes

SAVSYSINF No

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 22 Yes

Backing up and recovering your system 47

|

Methods for saving operating system objects:

There are several methods that you can use to save operating system objects.

 Table 14. Operating system objects information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Operating system objects Operating system objects

change under two

circumstances. First, when

you apply Program

Temporary Fixes (PTFs).

Second, when you install a

new release of the operating

system.

No1 Yes

Note:

1 You should not change objects or store user data in these IBM-supplied libraries or folders. When

you install a new release of the operating system, the installation may destroy these changes. If

you make changes to objects in these libraries, note them carefully in a log for future reference.

 Common save method for system information Requires restricted state?

SAVSYS Yes

SAVSYSINF No

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 22 Yes

Saving system data and related user data

System data and related user data includes information that the system needs to operate and information

that allows you to use the system.

This information includes:

v User profiles

v Private authorities

v Configuration objects

v IBM-supplied directories

v i5/OS optional libraries (QHLPSYS and QUSRTOOL)

v Licensed program libraries (QRPG, QCBL, and Qxxxx)
 Related reference

 “Commands for saving parts of your system” on page 42
This table groups the data that you need to save on your system. Three sections divide the

information.

Saving libraries with the SAVLIB command:

Save one or more libraries. You can use this information to save your i5/OS optional libraries. This

information also includes special SAVLIB parameters and how to select libraries on your system.

 Use the Save Library (SAVLIB) command or menu option 21 of the GO SAVE command to save one or

more libraries. When you specify libraries by name on the SAVLIB command, the system saves the

libraries in the order in which you list them. You may specify generic values for the LIB parameter.

 Related reference

48 System i: Backing up your system

|

“Methods for saving i5/OS optional libraries (QHLPSYS, QUSRTOOL)” on page 62
There are several methods that you can use for saving i5/OS optional libraries.

 “Methods for saving user libraries” on page 89
This information describes common save methods for saving user libraries.

 “Methods for saving Q libraries that contain user data” on page 90
This information describes common save methods for Q libraries that contain data.

Special values for the SAVLIB command:

The Save Library (SAVLIB) command allows you to use special values to specify groups of libraries. This

table shows which IBM-supplied libraries the system saves for each special value.

 The Save Library (SAVLIB) command allows you to use the special values *NONSYS, *ALLUSR, and

*IBM to specify groups of libraries. When you use a special value to save libraries, the system saves the

libraries in alphabetical order by name.

 Table 15. Comparison of special values for SAVLIB command: LIB parameter. The system saves all of the libraries

that are marked with an X.

Library Name *NONSYS *IBM *ALLUSR

Both user and

IBM-supplied libraries

All IBM-supplied libraries

that do not contain user

data

All user libraries and IBM

supplied libraries that

contain user data

QDOCxxxx1

QDSNX X X

QGPL7 X X

QGPL38 X X

QMGTC X X

QMGTC2 X X

QMPGDATA X X

QMQMDATA X X

QMQMPROC X X

QPFRDATA X X

QRCL X X

QRCLxxxxx6 X X

QRCYxxxxx6

QRECOVERY3

QRPLOBJ3

QRPLxxxxx6

QSPL3

QSPLxxxx1,3

QSRV3

QSRVAGT X X

QSYS2

QSYSxxxxx6

QSYS27 X X

QSYS2xxxxx6,

7 X X

QS36F X X

QTEMP3

QUSER38 X X

QUSRADSM X X

QUSRBRM X X

QUSRDIRCL X X

QUSRDIRDB X X

QUSRIJS X X

Backing up and recovering your system 49

Table 15. Comparison of special values for SAVLIB command: LIB parameter (continued). The system saves all of

the libraries that are marked with an X.

Library Name *NONSYS *IBM *ALLUSR

Both user and

IBM-supplied libraries

All IBM-supplied libraries

that do not contain user

data

All user libraries and IBM

supplied libraries that

contain user data

QUSRINFSKR X X

QUSRNOTES X X

QUSROND X X

QUSRPYMSVR X X

QUSRPOSGS X X

QUSRPOSSA X X

QUSRRDARS X X

QUSRSYS7 X X

QUSRVI X X

QUSRVxRxMx4 X X

Qxxxxxx5 X X

#CGULIB X X

#COBLIB X X

#DFULIB X X

#DSULIB X X

#LIBRARY X X

#RPGLIB X X

#SDALIB X X

#SEULIB X X

1 Where xxxx is a value from 0002 to 0032, corresponding to an auxiliary storage pool (ASP).

2 Use the SAVSYS command to save information in the QSYS library.

3 These libraries contain temporary information. They are not saved or restored.

4 A different library name, format QUSRVxRxMx, may have been created by the user for each previous release

supported by IBM. This library contains user commands to be compiled in a CL program for a previous

release. For the QUSRVxRxMx user library, the VxRxMx is the version, release, and modification level of a

previous release that IBM continues to support.

5 Qxxxxxx refers to any other library that starts with the letter Q. These libraries are intended to contain

IBM-supplied objects. They are not saved when you specify *ALLUSR. .
6 Where xxxxx is a value from 00033 to 00255, corresponding to an independent auxiliary storage pool (ASP).

7 The SAVLIB LIB(*NONSYS), SAVLIB LIB(*ALLUSR), and SAVCHGOBJ LIB(*ALLUSR) functions save

libraries QSYS2, QGPL, QUSRSYS, and QSYS2xxxxx libraries first on the media if they are located on the

ASPs specified by the ASPDEV parameter. The other libraries follow in alphabetical order by ASP device

name. Libraries on independent ASPs are saved before libraries on the system and basic user ASPs. The IBM

libraries are restored first and contain the prerequisite objects necessary for other libraries that follow in the

restore process.

 Related information

 CL finder

OMITLIB parameter and OMITOBJ parameter for the SAVLIB command:

This information explains two parameters for the SAVLIB command.

50 System i: Backing up your system

OMITLIB parameter for the SAVLIB command:

You can exclude one or more libraries by using the OMITLIB parameter. The system does not save

libraries that you exclude. You may specify generic values for the OMITLIB parameter.

Here is an example of omitting a group of libraries from a SAVLIB operation:

SAVLIB LIB(*ALLUSR) OMITLIB(TEMP*)

An example of using the OMITLIB parameter along with generic library naming appears as: SAVLIB

LIB(T*) OMITLIB(TEMP). The system saves all libraries that begin with the letter ’T’ except for the library

that is named TEMP.

You can also use the OMITLIB parameter with generic naming while performing concurrent save

operations to different media devices:

SAVLIB LIB(*ALLUSR) DEV(first-media-device) OMITLIB(A* B* $* #* @*...L*)

SAVLIB LIB(*ALLUSR) DEV(second-media-device) OMITLIB(M* N* ...Z*)

Tips and restrictions for the SAVLIB command:

This information describes considerations that you should keep in mind when using the SAVLIB

command

 When you save a large group of libraries, you should place your system in a restricted state. This ensures

that the system saves all of the important objects. For example, if subsystem QSNADS or directory

shadowing is active, the system does not save files whose names begin with QAO in library QUSRSYS. The

QAO* files in library QUSRSYS are very important files. If the system does not save the QAO* files, you

should end the QSNADS subsystem (End Subsystem (ENDSBS) command or End Directory Shadow

System (ENDDIRSHD) command). Then you can save the QAO* files.

Be sure that you regularly save the QGPL library and the QUSRSYS library. These IBM-supplied libraries

contain information that is important to your system and it changes regularly.

Restrictions for the SAVLIB command::

1. You can only specify one library if you save to a save file.

2. You may not run multiple concurrent SAVLIB commands that use the same library. A SAVLIB and

Restore Library (RSTLIB) command may not run concurrently using the same library.

Recovering from a media error during a SAVLIB operation:

This information describes the basic recovery steps for a save operation.

 If an irrecoverable media error occurs when you save multiple libraries, restart the procedure with the

Start Library (STRLIB) parameter on the SAVLIB command.

The basic recovery steps for a save operation are:

1. Check the job log to determine the library where the previous save operation failed. Find the last

library saved, which is indicated by a successful completion message.

2. Load the next media volume and ensure that you initialized the media volume. If you were using

menu option 21, 22, or 23 when the save operation failed, skip to step 4.

3. Type the SAVxxx command you were using with the same parameter values. Add the STRLIB and

OMITLIB parameters and specify the last library that was saved successfully. For example, if you

were running a SAVLIB *ALLUSR and CUSTLIB was the last library that was successfully saved, you

would type:

Backing up and recovering your system 51

SAVLIB LIB(*ALLUSR) DEV(media-device-name) +

 STRLIB(CUSTLIB) OMITLIB(CUSTLIB)

This starts the save operation on the library after the last successfully saved library. You have

completed restarting the SAVLIB operation.

4. If you were using a menu option, select that menu option again.

5. On the Specify Command Defaults display, type Y for the Prompt for commands prompt. When the

system displays prompts for commands that you have completed successfully, press F12 (cancel).

When the system displays the prompt for the SAVLIB command, specify the STRLIB and OMITLIB

parameters as shown in step 3.

Note: Restoring the system using this set of media requires two RSTLIB commands to restore the

libraries.

 Related reference

 “Handling tape media errors” on page 23
This information explains the three most common types of media errors and how to handle them.

Saving independent ASPs:

Save one or more independent ASPs.

 You can save independent ASPs (also known as independent disk pools in iSeries Navigator) separately

or you can save them as part of a full system save (GO SAVE: Option 21), or when you save all user data

(GO SAVE: Option 23). In either case, you must make the independent ASPs available before you perform

the save. Refer to the following scenarios and choose the option that best fits your needs.

 Related tasks

 “GO SAVE: Option 21 (saving the entire system)” on page 27
Option 21 saves everything on your system and allows you to perform the save while you are not

there.

 “GO SAVE: Option 23 (saving user data)” on page 29
Option 23 saves all user data. This information includes files, records, and other data that your users

supply into your system.

 “Performing a complete save using the GO SAVE checklist” on page 31
Use this checklist to perform a complete save.

 Related information

 Planning for independent ASPs

 Backup, Recovery and Media Services

 Making a disk pool unavailable

Saving the current ASP group:

Perform the following commands to save the current independent ASP group (the primary ASP and any

associated secondary ASPs).

Note: If you are saving independent ASPs that are geographically mirrored, it is recommended that you

save the production copy. Quiesce any applications that affect the data in the independent ASP

prior to the save. You may also want to consider Backup, Recovery and Media Services.

1. SETASPGRP ASPGRP(primary-ASP-name)

2. SAVSECDTA ASPDEV(*CURASPGRP)

3. SAVLIB LIB(*ALLUSR) ASPDEV(*CURASPGRP)

4. Unmount any QDEFAULT user-defined file systems in the current independent ASP group

5. SAV OBJ((’/dev/*’)) UPDHST(*YES) ASPDEV(*CURASPGRP)

6. Mount any QDEFAULT user-defined file systems that were unmounted in an earlier step

52 System i: Backing up your system

Saving UDFS ASP:

Perform the following commands to save an available UDFS ASP.

1. SAVSECDTA ASPDEV(ASP-name)

2. Unmount any QDEFAULT user-defined file systems in the UDFS ASP that you are saving

3. SAV OBJ((’/dev/*’)) UPDHST(*YES) ASPDEV(ASP-name)

4. Mount any QDEFAULT user-defined file systems that were unmounted in an earlier step

Saving independent ASPs as part of a full system save (Option 21):

If you make independent ASPs available, they will be included in an Option 21 save.1 Follow the

checklist in Use GO SAVE: Option 21, 22, and 23, and note extra requirements if you are operating in a

clustered environment. Before you end subsystems and restrict your system, make sure that your current

job does not use integrated file system objects in the independent ASP. Also, do not perform a

SETASPGRP command; Option 21 will perform the necessary commands to save the independent ASPs

that you have made available. In addition to the commands listed in Save your whole system with GO

SAVE: Option 21, the system performs the following commands for each available ASP group during an

Option 21 save:

v SETASPGRP ASPGRP(asp-group-name)

v SAVLIB LIB(*NONSYS) ASPDEV(*CURASPGRP)

v SAV OBJ((’/dev/*’)) UPDHST(*YES) ASPDEV(*CURASPGRP)

The system then performs the following command for each available user-defined file system (UDFS)

ASP.

SAV OBJ((’/dev/*’)) UPDHST(*YES) ASPDEV(udfs-asp-name) 84

The system will also perform a CHKTAP ENDOPT(*UNLOAD) command after 85 the last SAV command

it processes.

Saving independent ASPs when you save all user data (Option 23):

If you make independent ASPs available, they will be included in an Option 23 save.1 Follow the

checklist in Use GO SAVE: Option 21, 22, and 23, and note extra requirements if you are operating in a

clustered environment. Before you end subsystems and restrict your system, make sure that your current

job does not use integrated file system objects in the independent ASP. Also, do not perform a

SETASPGRP command; Option 23 will perform the necessary commands to save the independent ASPs

that you have made available. In addition to the commands listed in Save user data with GO SAVE:

Option 23, the system performs the following commands for each available ASP group during an Option

23 save:

v SETASPGRP ASPGRP(asp-group-name)

v SAVLIB LIB(*ALLUSR) ASPDEV(*CURASPGRP)

v SAV OBJ((’/dev/*’)) UPDHST(*YES) ASPDEV(*CURASPGRP)

The system then performs the following command for each available user-defined file system (UDFS)

ASP.

v SAV OBJ((’/dev/*’)) UPDHST(*YES) ASPDEV(udfs-asp-name)

The system will also perform a CHKTAP ENDOPT(*UNLOAD) command after the last SAV command it

processes.

1 If your system includes independent ASPs that are geographically mirrored, it is recommended

that you eliminate them from this GO SAVE option by making them unavailable. You should

save independent ASPs that are geographically mirrored separately, as described in Save the

current ASP group. If the geographically mirrored ASPs remain available during the GO SAVE

Backing up and recovering your system 53

operation, geographic mirroring is suspended when the system becomes restricted. When you

resume mirroring after the save, a complete synchronization is required. Synchronization can be a

very lengthy process.

Example of save order for independent ASPs with GO SAVE: Option 21 or 23:

When you choose to perform a full-system save (Option 21) or to save all user data (Option 23),

independent disk pools are saved alphabetically. Secondary ASPs are saved along with their primary.

 Save

order

Independent ASP name Independent ASP type What is saved Command

1 Apples Primary Libraries SAVLIB LIB (*NONSYS

or *ALLUSR) Cantaloupe Secondary

2 Apples Primary User-defined file systems SAV OBJ((’/dev/*’))

Cantaloupe Secondary

3 Bananas UDFS User-defined file systems SAV OBJ((’/dev/*’))

Saving security data:

This information describes the commands that save user profiles, private authorities, authorization lists,

and authority holders.

 SAVSYS or SAVSECDTA command

Use the SAVSYS command or the Save Security Data (SAVSECDTA) command to save the following

security data:

v User profiles

v Private authorities

v Authorization lists

v Authority holders

You can use the SAVSYS or SAVESECDTA commands to save private authorities for objects on

independent ASPs.

The systen stores additional security data with each object. The system saves this security data when it

saves the object, as follows:

v Public authority

v Owner and owner authority

v Primary group and primary group authority

v Authorization list linked to object

To save security data, the command does not require that your system be in a restricted state. However,

you cannot delete user profiles while the system saves security data. If you change user profiles or grant

authority while you save security data, your saved information may not reflect the changes.

To reduce the size of a large user profile, do one or more of the following:

v Transfer ownership of some objects to another user profile.

v Remove the private authority to some objects for that user profile.

Your system stores authority information for objects in the /QNTC file systems. The information about

iSeries Integration for Windows Server describes how to save security data for Windows Server.

54 System i: Backing up your system

Note: If you use authorization lists to secure objects in library QSYS, you should write a program to

produce a file of those objects. Include this file in the save. This is because the association between

the object and the authorization list is lost during a restore operation due to QSYS being restored

prior to user profiles. Refer to ″What You Should Know About Restoring User Profiles″ in the

Backup and Recovery book

for more information.

QSRSAVO API

You can use the Save Objects List (QSRSAVO) API to save User Profiles.

 Related reference

 “Methods for saving security data” on page 60
There are several methods that you can use for saving security data.

Saving configuration information:

This information describes when to use the SAVCFG command and the SAVSYS command and what

object types are saved.

 Use the Save Configuration (SAVCFG) command or the SAVSYS (Save System) command to save

configuration objects. The SAVCFG command does not require a restricted state. However, if your system

is active, the SAVCFG command bypasses the following configuration objects:

v Devices that the system is creating.

v Devices that the system is deleting.

v Any device that is using the associated system resource management object.

When you save your configuration by using the SAVCFG command or the SAVSYS command, the system

saves the following object types:

 Object types saved

*CFGL *CTLD *NWID

*CNNL *DEVD *NWSD

*CIO *LIND *SRM

*COSD *MODD

*CRGM *NTBD

Note: You might think of system information, such as system values and network attributes, as

configuration information. However, the system does not store this type of information in

configuration objects. The SAVCFG command does not save system information. The SAVSYS

command saves it because the system stores it in the QSYS library.

 Related tasks

 “Starting the save storage procedure” on page 102
After you complete the prerequisites listed here, you can begin the save storage procedure.

 Related reference

 “Methods for saving configuration objects in QSYS” on page 61
There are several methods that you can use for saving configuration objects in QSYS.

Saving system information:

Use the Save system information (SAVSYSINF) command to perform a partial save of the data saved by

the Save system (SAVSYS) command.

 Note:

Backing up and recovering your system 55

|

|

|
|

|

1. The SAVSYSINF command increases the time and complexity it takes to recover your system.

2. Do not use the SAVSYSINF command as a replacement for the SAVSYS command, and do not

use it for a system upgrade or migration. You must have performed a successful SAVSYS before

using this command.

3. The SAVSYSINF command is only intended for customers who cannot bring their system to

restricted state and take the necessary downtime it takes to perform a SAVSYS command. A

SAVSYSINF should be considered a ″partial″ of a complete SAVSYS. During a complete system

recovery the SAVSYSINF save will also need to be recovered along with the complete SAVSYS.

4. If you are using the SAVSYSINF command in your backup strategy, the PTF save files must

remain on the system until the next SAVSYS command is run. For the Restore System

Information (RSTSYSINF) command to recover the system to the current state, SAVSYS requires

the PTF save files for all operating system PTFs that have been applied after the last SAVSYS

command was run. Do not run the Delete Program Temporary Fix (DLTPTF) command unless

you run it just before or after the SAVSYS command. For more information see Clean up fixes.

*SAVSYS or *ALLOBJ special authority is required to use the SAVSYSINF command. You can not restore

a SAVSYSINF to another existing system. You can use the SAVSYSINF for system recovery when you are

recovering a system using the SAVSYS and SAVSYSINF media. The data saved by the SAVSYSINF is

cumulative from the last SAVSYS.

When you save your system information by using the SAVSYSINF command, the system saves the

following object types from QSYS:

 Object types that are saved

*JOBD *JOBQ *EDTD

*JRN *MSGF 1

*SBSD

*CLS *MSGQ *TBL

*IGCTBL *DTAARA *CMD 1

1

objects changed since the last SAVSYS

Additional items that are saved include the following:

 Additional items that are saved

System reply list Service attributes Environment variables

Most system values Network attributes PTFs applied since the last SAVSYS 1

for 5722SS1 2and 5722999 2

1

If you load PTFs, you must copy them into *SERVICE. This enables SAVSYSINF to find the save files of the PTFs.

The Copy PTFs (CPYPTF) service attribute specifies whether to copy PTF save files into *SERVICE when PTFs are

loaded from a tape or optical device. Use the CHGSRVA CPYPTF(*YES) command to change the service attribute on

your system to copy PTF save files when loading PTFs from media.

2

SAVSYSINF will save PTFs for licensed programs 5722SS1 and 5722999 which were temporarily or permanently

applied since the last SAVSYS. In addition, for loaded PTFs, the IPL action will be checked to determine if the PTF

should be included. Loaded PTFs, scheduled to be applied at the next IPL, (IPL action 1 or 3) will be saved. PTFs

scheduled to be removed at the next IPL, (IPL action 2 or 4) will not be saved.

Items that are not saved as part of SAVSYSINF command include the following:

 Items that are not saved

Licensed Internal Code QSYS library System values that are not saved

Configuration objects (use the

SAVCFG command)

Security data (use the SAVSECDTA

command)

The SAVSYSINF command may be incorporated into a save strategy once a base SAVSYS in restricted

state is successful. It is recommended that a save of the entire system including a SAVSYS be done in

56 System i: Backing up your system

|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

||

|

||
|||
|||
|
|
|
|
|
|
|
|
|
|

|

||
|||
|
|
|
|
|

|

|
|

restricted state. This can be accomplished by performing a Go Save Option 21, a combination of an

Option 22 and 23, or by using the equivalent functions within BRMS.

Once you have a base SAVSYS, you may perform some or all of these save commands to capture

changed or updated information:

SAVLIB LIB(*IBM)

SAV OBJ((’/QIBM/ProdData’)(’/QOpenSys/QIBM/ProdData’)) UPDHST(*YES)

SAVSYSINF

These are other save commands that should be used on a daily basis to save user data:

SAVESECDTA

SAVCFG

SAVLIB LIB(*ALLUSR)

SAVDLO DLO(*ALL) FLR(*ANY)

SAV OBJ((’/*’)(’/QSYS.LIB’*OMIT)(’/QDLS’*OMIT))UPHST(*YES)

SAVSYSINF

Example SAVSYSINF:

This command saves the system information to the save file named SAVF in library QGPL. The save file

will be cleared automatically. Information about what was saved will be written to the first member of

the file name OUTPUT in library QGPL. The file and member will be created if they do not exist.

SAVSYSINF DEV(*SAVF) SAVF(QGPL/SAVF) CLEAR(*ALL) +

 OUPUT(*OUTFILE) OUTFILE(QGPL/OUPUT)

 Related concepts

 “Saving your system while it is active” on page 106
The save-while-active function allows you to use your system during all or part of the save process,

that is, save your system while it is active.
 Related reference

 “Commands for saving parts of your system” on page 42
This table groups the data that you need to save on your system. Three sections divide the

information.
 Related information

Restore System Information

System values that are not saved:

Most system values are saved when you use the Save System Information (SAVSYSINF) command, or

restored with the Restore System Information (RSTSYSINF) command. However, certain system values

are not saved as part of the SAVSYSINF command.

 Table 16. System values that are not saved as part of SAVSYSINF

System values that are not saved as part of SAVSYSINF

QABNORMSW Previous end of system indicator. This system value

cannot be changed.

QADLSPLA System value no longer used by the operating system.

QAUTOSPRPT System value no longer used by the operating system.

QBOOKPATH System value no longer used by the operating system.

QCENTURY Date and time related system values are not saved or

restored.

Backing up and recovering your system 57

|
|

|
|

|
|
|

|

|
|
|
|
|
|

|

|
|
|

|
|

|

|
|
|

|

|
|
|

|

|

|

|
|
|

||

|

||
|

||

||

||

||
|

Table 16. System values that are not saved as part of SAVSYSINF (continued)

System values that are not saved as part of SAVSYSINF

QCONSOLE Specifies the name of the display device that is the

console. You cannot change this system value. The

system changes this system value when the console is

varied on.

QDATE Date and time related system values are not saved or

restored.

QDATETIME Date and time related system values are not saved or

restored.

QDAY Date and time related system values are not saved or

restored.

QDAYOFWEEK Date and time related system values are not saved or

restored.

QHOUR Date and time related system values are not saved or

restored.

QIGC Double-byte character set (DBCS) version installed

indicator. Specifies whether the DBCS version of the

system is installed. You cannot change QIGC; it is set by

the system.

QIPLSTS Initial program load (IPL) status. Indicates which form of

IPL has occurred. You can refer to this value in your

recovery programs, but you cannot change it.

QJOBMSGQTL System value no longer used by the operating system.

QJOBMSGQSZ System value no longer used by the operating system.

QMINUTE Date and time related system values are not saved or

restored.

QMODEL The number or letters used to identify the model of the

system. You cannot change QMODEL.

QMONTH Date and time related system values are not saved or

restored.

QPRCFEAT This is the processor feature code level of the system.

You cannot change QPRCFEAT.

QPWDLVL To avoid possible security related problems, QPWDLVL

will not be saved or restored. Refer to Chapter 7 of the

Security Reference manual for considerations when

moving from one password level to another.

QSECOND Date and time related system values are not saved or

restored.

QSRLNBR This value cannot be changed. It is retrieved from the

data fields by the system when installing the i5/OS

licensed program.

QSTRPRTWTR Start print writers at IPL. Specifies whether print writers

were started. This value is either set by the system at IPL

time or by the user on the IPL Options display. This

value can only be displayed or retrieved.

QSVRAUTITV System value no longer used by the operating system.

QTIME Date and time related system values are not saved or

restored

58 System i: Backing up your system

|

|

||
|
|
|

||
|

||
|

||
|

||
|

||
|

||
|
|
|

||
|
|

||

||

||
|

||
|

||
|

||
|

||
|
|
|

||
|

||
|
|

||
|
|
|

||

||
|

Table 16. System values that are not saved as part of SAVSYSINF (continued)

System values that are not saved as part of SAVSYSINF

QUTCOFFSET Cannot change this system value, it is set during a

change to system value QTIMZON.

Password related system values. All of the password related system values may not be

restored. Refer to Chapter 7 of the Security Reference

manual for more information

QYEAR Date and time related system values are not saved or

restored.

Saving licensed programs:

Save licensed programs for backup purposes or to distribute licensed programs to other systems in your

organization. Use this information to save Licensed program libraries.

 You can use the SAVLIB command or the Save Licensed Program (SAVLICPGM) command to save

licensed programs. These methods work well for two different purposes:

v If you are saving licensed programs in case you need them for a recovery, use the SAVLIB command.

You can save just the libraries that contain licensed programs by specifying SAVLIB LIB(*IBM). Or, you

can save the libraries that contain licensed programs when you save other libraries by specifying

SAVLIB LIB(*NONSYS).

v If you are saving licensed programs to distribute them to other systems in your organization, use the

SAVLICPGM command. You can use a save file as the output for the SAVLICPGM command. You can

then send the save file over your communications network.
 Related information

 Central Site Distribution

 SAVLICPGM

Methods for saving system data and related user data:

This information provides you with several different methods to save your system data and related user

data. These methods include the GO SAVE command and manual save commands and APIs.

 The easiest way to save all of your user data and system data is with menu option 21 of the GO SAVE

command. This saves all of your system data as well as the related user data.

The following commands allow you to manually save your system and user data:

v SAVSECDTA (Save Security Data)

v SAVCFG (Save Configuration)

v SAV (Save Object in the Integrated file system or in directories)

v SAVLIB (Save Library)

v SAVLICPGM (Save Licensed Programs)

The following links provide you with detailed information on various save commands and save APIs:

v QSRSave API in the API reference

v QSRSAVO API in the API reference

v SAV command in CL reference

v SAVCFG command in CL reference

v SAVCHGOBJ command in CL reference

v SAVDLO command in CL reference

Backing up and recovering your system 59

|

|

||
|

||
|
|

||
|
|

|

v SAVLIB command in CL reference

v SAVOBJ command in CL reference

v SAVSAVFDTA command in CL reference

v SAVSECDTA command in CL reference

v SAVSYS command in CL reference

v SAVLICPGM command in CL reference

The following information explains the various methods that you can use to save your system data and

related user data:

Methods for saving security data:

There are several methods that you can use for saving security data.

 Table 17. Information about security data

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Security data Security data—user profiles,

private authorities, and

authorization lists—change

regularly as you add new

users and objects or if you

change authorities.

Yes Some

 Common save method for security data Requires restricted state?

SAVSYS1 Yes

SAVSECDTA1 No

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 22 Yes

GO SAVE command, menu option 23 No2

QSRSAVO API (for saving user profiles) No3

Note:

1 SAVSYS and SAVSECDTA do not save authority information for objects in the QNTC file

systems. The system saves authority information with the Windows server objects.

2 When you use option 23 from the GO SAVE command menu, the default is to place your

system in a restricted state. If you choose the prompting option, you can cancel the display

that puts your system in a restricted state.

 Important: For procedures where the system does not require a restricted state, you must

ensure that the system can get the locks necessary to save the information. You should

place your system in a restricted state whenever you save multiple libraries, documents, or

directories, unless you use the save-while-active function.

3 You must have *SAVSYS special authority to save user profiles with the QSRSAVO API

Save security data contains information on how to back up the authority data for your users and objects.

 Related concepts

 “Saving your system while it is active” on page 106
The save-while-active function allows you to use your system during all or part of the save process,

that is, save your system while it is active.

60 System i: Backing up your system

Related tasks

 “GO SAVE: Option 21 (saving the entire system)” on page 27
Option 21 saves everything on your system and allows you to perform the save while you are not

there.

 “GO SAVE: Option 22 (saving system data)” on page 29
Option 22 saves only your system data. It does not save any user data. Option 22 puts your system

into a restricted state. This means that no users can access your system, and the backup is the only

thing that is running on your system.

 “GO SAVE: Option 23 (saving user data)” on page 29
Option 23 saves all user data. This information includes files, records, and other data that your users

supply into your system.
 Related reference

 “Saving security data” on page 54
This information describes the commands that save user profiles, private authorities, authorization

lists, and authority holders.

 “QSRSAVO API” on page 65
You can use the Save Objects List (QSRSAVO) application programming interface (API) to save

multiple objects.
 Related information

 SAVSYS

 SAVSECDTA

Methods for saving configuration objects in QSYS:

There are several methods that you can use for saving configuration objects in QSYS.

 Table 18. Configuration objects in QSYS information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Configuration objects in

QSYS

Configuration objects in

QSYS change regularly. This

happens when you add or

change configuration

information with

commands or with the

Hardware Service Manager

function. These objects may

also change when you

update licensed programs.

Yes No

 Common save method for configuration objects in QSYS Requires restricted state?

SAVSYS Yes

SAVCFG No1

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 22 Yes

GO SAVE command, menu option 23 No2

1 Important: For procedures where the system does not require a restricted state, you must ensure

that the system can get the locks necessary to save the information. You should place your system

in a restricted state whenever you save multiple libraries, documents, or directories, unless you

use the save-while-active function.

Backing up and recovering your system 61

2 When you use option 23 from the GO SAVE command menu, the default is to place your system

in a restricted state. If you choose the prompting option, you can cancel the display that puts

your system in a restricted state.

Save configuration information contains information about how to save your configuration objects.

 Related concepts

 “Saving your system while it is active” on page 106
The save-while-active function allows you to use your system during all or part of the save process,

that is, save your system while it is active.
 Related tasks

 “GO SAVE: Option 21 (saving the entire system)” on page 27
Option 21 saves everything on your system and allows you to perform the save while you are not

there.

 “GO SAVE: Option 22 (saving system data)” on page 29
Option 22 saves only your system data. It does not save any user data. Option 22 puts your system

into a restricted state. This means that no users can access your system, and the backup is the only

thing that is running on your system.

 “GO SAVE: Option 23 (saving user data)” on page 29
Option 23 saves all user data. This information includes files, records, and other data that your users

supply into your system.
 Related reference

 “Saving configuration information” on page 55
This information describes when to use the SAVCFG command and the SAVSYS command and what

object types are saved.
 Related information

 SAVSYS

 SAVCFG

Methods for saving i5/OS optional libraries (QHLPSYS, QUSRTOOL):

There are several methods that you can use for saving i5/OS optional libraries.

 Table 19. i5/OS optional libraries (QHLPSYS, QUSRTOOL) information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

i5/OS optional libraries

(QHLPSYS, QUSRTOOL)

i5/OS optional libraries

(QHLPSYS, QUSRTOOL)

change when you apply

Program Temporary Fixes

(PTFs) or when you install

new releases of the

operating system.

No1 Yes

 Common save method Requires restricted state?

SAVLIB*NONSYS Yes

SAVLIB *IBM No2,

3

SAVLIB library-name No3

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 22 Yes

1 You should avoid changing objects or storing user data in these IBM-supplied libraries or folders.

62 System i: Backing up your system

You could lose or destroy these changes when you install a new release of the operating system.

If you make changes to objects in these libraries, note them carefully in a log for future reference.

2 You do not need to put your system into a restricted state, but it is recommended.

3 Important: For procedures where the system does not require a restricted state, you must ensure

that the system can get the locks necessary to save the information. You should place your system

in a restricted state whenever you save multiple libraries, documents, or directories, unless you

use the save-while-active function.

Save libraries with the SAVLIB command explains how to save one or more libraries. This information

also includes special SAVLIB parameters and how to select libraries on your system.

 Related concepts

 “Saving your system while it is active” on page 106
The save-while-active function allows you to use your system during all or part of the save process,

that is, save your system while it is active.
 Related tasks

 “GO SAVE: Option 21 (saving the entire system)” on page 27
Option 21 saves everything on your system and allows you to perform the save while you are not

there.

 “GO SAVE: Option 22 (saving system data)” on page 29
Option 22 saves only your system data. It does not save any user data. Option 22 puts your system

into a restricted state. This means that no users can access your system, and the backup is the only

thing that is running on your system.
 Related reference

 “Saving libraries with the SAVLIB command” on page 48
Save one or more libraries. You can use this information to save your i5/OS optional libraries. This

information also includes special SAVLIB parameters and how to select libraries on your system.
 Related information

 SAVLIB

Methods for saving licensed program libraries (QRPG, QCBL, Qxxxx):

There are several methods that you can use for saving licensed program libraries.

 Table 20. Licensed program libraries (QRPG, QCBL, Qxxxx) information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Licensed program libraries

(QRPG, QCBL, Qxxxx)

When you update licensed

programs

No1 Yes

 Common save method for licensed program libraries (QRPG, QCBL,

Qxxxx) Requires restricted state?

SAVLIB *NONSYS Yes

SAVLIB *IBM No2,

3

SAVLICPGM No3

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 22 Yes

1 You should avoid changing objects or storing user data in these IBM-supplied libraries or folders.

You could lose or destroy these changes when you install a new release of the operating system.

If you make changes to objects in these libraries, note them carefully in a log for future reference.

Backing up and recovering your system 63

2 You do not need to put your system into a restricted state, but it is recommended.

3 Important: For procedures where the system does not require a restricted state, you must ensure

that the system can get the locks necessary to save the information. You should place your system

in a restricted state whenever you save multiple libraries, documents, or directories, unless you

use the save-while-active function.
 Related information

 SAVLIB

Saving user data in your system

User data includes any information that you enter into the system, including the items that are listed in

this topic.

v User profiles

v Private authorities

v Configuration objects

v IBM libraries with User Data (QGPL, QUSRSYS, QS36F, #LIBRARY)

v User libraries (LIBA, LIBB, LIBC, LIBxxxx)

v Documents and folders

v Distribution objects

v User objects in directories
 Related reference

 “Commands for saving parts of your system” on page 42
This table groups the data that you need to save on your system. Three sections divide the

information.

Saving objects with the SAVOBJ command:

Use the Save Object (SAVOBJ) command to save one or more objects on your system. You can also use

the QSRSAVO API to save multiple objects.

 Unless you specify that storage is to be freed, this command does not affect objects (other than having

the change history updated). You may specify generic values for the LIB parameter with this command.

You might run multiple concurrent SAVOBJ operations (including the QSRSAVO API) against a single

library.

 Related concepts

 “Size limitations when saving objects” on page 5
Size limitations when saving objects explains limits for save operations.

Saving multiple objects with the SAVOBJ command:

The parameters of the SAVOBJ command can be used to specify multiple objects in many ways. This

information describes some of the most useful parameters.

 Parameter Description

Object (OBJ) Can be *ALL, a generic name, or a list of as many as 300 specific names and

generic names.

Object type (OBJTYPE) Can be *ALL or a list of types. For example, you can save all job descriptions

and subsystem descriptions by specifying OBJ(*ALL) and OBJTYPE(*JOBD

*SBSD).

Library (LIB) Can be a single library or a list of as many as 300 library names. You may

specify generic values for this parameter.1

64 System i: Backing up your system

Parameter Description

Omit object (OMITOBJ) Allows you to specify up to 300 objects to exclude from the SAVOBJ command.

You may specify generic values for this parameter. If you use generic values, or

supply a specific object type, you can actually omit more than 300 objects.1

Omit library (OMITLIB) Allows you to exclude from 1 to 300 libraries. You may specify generic values

for this parameter.1

1

Use the Command user space (CMDUSRSPC) parameter on the save commands to specify up to 32767 names for the

parameters.

When you save from more than one library, you can specify one or more object types, but you must

specify OBJ(*ALL) for the object name. Libraries are processed in the order that is specified in the library

(LIB) parameter.

QSRSAVO API:

You can use the Save Objects List (QSRSAVO) application programming interface (API) to save multiple

objects.

 The QSRSAVO API is similar to the SAVOBJ command except that you can associate a specific object type

with each object name that you specify. This provides more granularity in what you save with a single

command. The QSRSAVO API also allows you to save one or more user profiles.

 Related reference

 “Methods for saving security data” on page 60
There are several methods that you can use for saving security data.

 Related information

 API finder

 QSRSAVO API

Objects whose contents are not saved:

For some object types, the system saves only object descriptions, not the contents of the objects.

 The following table shows these object types:

 Table 21. Object Types Whose Contents Are Not Saved

Object Type Contents Not Saved

Job queues (*JOBQ) Jobs

Journals (*JRN) List of currently journaled objects. List of associated journal receivers.

Logical files (*FILE) Physical files making up logical files are not saved when the logical file is saved.

Access paths owned by logical files are saved with the physical file if access path

(*YES) is specified on the save command.

Message queues (*MSGQ) Messages

Output queues (*OUTQ)1 Spooled files

Save file (*SAVF) When SAVFDTA(*NO) is specified.

User Queue (*USRQ) User queue entries

1 The default value for parameter does not save spooled files. To save spooled files specify SPLFDTA (*ALL). This

will allow you to save all of your spooled files.

Note: Data queue (DTAQ) contents are not saved if QDTA(*NONE) is specified or if it is a DDM data queue.

 Related reference

Backing up and recovering your system 65

|
|

|

|

 ../apifinder/finder.htm

“Commands for saving specific object types” on page 43
This information contains a table that shows you which commands you can use to save each object

type.

Saving only changed objects:

You can use the save changed object function to reduce the amount of save media that you use. You can

also complete your save process in a shorter period of time.

 Related reference

 “Determining when an object was last saved” on page 8
If a library contains an object, you can use the Display Object Description (DSPOBJD) command to

find out when the system saved the object.
 Related information

Lotus® Domino reference library

Saving Changed Objects (SAVCHGOBJ) command:

Use the Save Changed Objects (SAVCHGOBJ) command to save only those objects that have changed

since a specified time.

 The options for specifying objects, object types, and libraries are similar to those for the SAVOBJ

command:

v You can specify up to 300 different libraries by using the LIB parameter. You can use specific or generic

values.

v You can omit up to 300 libraries by using the OMITLIB parameter. You can specify generic values for

this parameter.

v You can omit up to 300 objects by using the OMITOBJ parameter. You can specify generic values for

this parameter.

Note: Use the Command user space (CMDUSRSPC) parameter on the save commands to specify up to

32767 names for the parameters.

You can perform multiple concurrent SAVCHGOBJ operations against a single library. This can be helpful

if you need to save different parts of a library to different media devices simultaneously, as shown in the

following example:

SAVCHGOBJ OBJ(A* B* C* $* #* @* ...L*) DEV(media-device-name-one) LIB(library-name)

SAVCHGOBJ OBJ(M* N* O* ...Z*) DEV(media-device-name-two) LIB(library-name)

Saving changed objects in directories:

This information describes how to use the CHGPERIOD parameter of the SAV command to save objects

that have changed.

 You can use the change period (CHGPERIOD) parameter on the Save (SAV) command to save objects

that changed since a specified time, objects that last changed during a specific time period, or objects that

were changed since they were last saved.

If you specify CHGPERIOD(*LASTSAVE), you get any object that changed since any save operation you

performed for that object with UPDHST(*YES) specified. If you use this method several times during a

week, the resulting media will look like Table 23 on page 69.

To perform a save operation that includes all objects that changed since the last complete save of a

directory (similar to what is shown in Table 22 on page 68), do one of the following:

v Specify a date and time for the CHGPERIOD parameter.

66 System i: Backing up your system

|
|

http://www.ibm.com/servers/eserver/iseries/domino/library.html

v Specify UPDHST(*YES) for a complete save operation. Specify UPDHST(*NO) and

CHGPERIOD(*LASTSAVE) when you save changed objects.

You can also use the SAV command to save objects that have not changed since a particular time by

specifying CHGPERIOD(*ALL *ALL date time). This might be useful to archive old information before you

remove it.

The system keeps a record of when it last changed the object. It also records whether it changed the

object since the last save or not. The system does not store data for when it last saved the object.

Select option 8 on the Work With Object Links (WRKLNK) display to view the attributes that describe

whether an object in a directory changed since you last saved it.

Note: If you use the operating system of a client workstation to save an object, the PC archive indicator

will be set to ’No’. Since file systems accessed through the network system do not distinguish

between save operations, the system archive indicator for those file systems will always match the

PC archive indicator. Therefore, changed objects in the file systems accessed through the network

system that have been saved by a client workstation save operation will not be saved by a save

operation until they have been changed again.

The UPDHST parameter value controls updating of the system save history and PC save history:

v *NO - The system does not update the save history. The PC archive attribute and the system archive

attribute do not change.

v *YES - The system updates the save history. For file systems that you access through the network

server, the PC archive attribute is set to ’No’. For other file systems, the server archive attribute is set

to ’No’.

v *SYS - The system updates the system save history. The system archive attribute is set to ’No’.

v *PC - The system updates the PC save history. The PC archive attribute is set to ’No’.

 Related concepts

 “How the system updates changed object information with the SAVCHGOBJ command” on page 69
The changed object information kept by the system is a date and a timestamp. When the system

creates an object, the system places a timestamp in the changed field. Any change to the object causes

the system to update the date and timestamp.

 “Using the Save (SAV) command” on page 74
This information explains how to use the SAV command with the OBJ parameter.

Saving changed objects when you use journaling:

Journal Management describes how to set up journaling. When you use journaling, the system uses one or

more journal receivers to keep a record of changes that occur to the journaled objects.

 If you are journaling data areas, data queues, or database files, you probably do not want to save those

journaled objects when you save changed objects. You should save the journal receivers rather than the

journaled objects.

The journaled objects (OBJJRN) parameter of the SAVCHGOBJ command controls whether the system

saves journaled objects or not. If you specify *NO, which is the default, the system does not save an

object if both of these conditions are true:

v The system journaled the object at the time specified for the REFDATE and REFTIME parameters on

the SAVCHGOBJ command.

v The object is currently being journaled.

The OBJJRN parameter applies only to journaled data areas, data queues, and database files. It does not

apply to journaled Integrated File System Integrated File System objects.

Backing up and recovering your system 67

Related information

 Journal management

Saving changed document library objects:

You can use the Save Document Library Object (SAVDLO) command to save DLOs that have changed

since a particular time.

 When you specify SAVDLO DLO(*CHG), the default setting saves DLOs that changed since you saved all

DLOs for that user ASP (SAVDLO DLO(*ALL) FLR(*ANY)). When you save changed DLOs, the system

also saves the distribution objects in the QUSRSYS library, which are called unfiled mail.

Note: The system saves documents that a distribution (unfiled mail) refers to if they have changed since

the last time that you saved them. If you have Version 3 Release 1 or later, the system does not

save these documents when you specify DLO(*MAIL).

 Related reference

 “Methods for saving distribution objects” on page 91
This information describes common save methods for distribution objects.

 “Methods for saving IBM-supplied document library objects and folders” on page 94
This information describes common save methods for saving IBM supplied document library objects.

Additional considerations for SAVCHGOBJ:

If you need to save changed objects as part of your save strategy, you must ensure that any partial save

activity that occurs between your full save operations does not affect what you save with the

SAVCHGOBJ command.

 If users occasionally save individual objects, you may want them to specify UPDHST(*NO). That prevents

their save activity from having an impact on the overall SAVCHGOBJ strategy.

Note: The most common way to use the SAVCHGOBJ command is to specify REFDATE(*SAVLIB). If you

have a new library that has never been saved, it is not saved when you specify SAVCHGOBJ

REFDATE(*SAVLIB).

Using SAVCHGOBJ–Example:

In a typical environment, you might use the SAVLIB command once a week and the SAVCHGOBJ

command every day. Because the default for SAVCHGOBJ is from the last SAVLIB operation, the media

that the SAVCHGOBJ command produces tends to grow during the week.

What follows shows an example of using SAVCHGOBJ during a typical week. Assume that you save the

entire library on Sunday night and the SAVCHGOBJ command is used each evening during the week:

 Table 22. SAVCHGOBJ Command: Cumulative

Day Files That Changed That Day Media Contents

Monday FILEA, FILED FILEA, FILED

Tuesday FILEC FILEA, FILEC, FILED

Wednesday FILEA, FILEF FILEA, FILEC, FILED, FILEF

Thursday FILEF FILEA, FILEC, FILED, FILEF

Friday FILEB FILEA, FILEB, FILEC, FILED, FILEF

If a failure occurred on Thursday morning, you would:

1. Restore the library from Sunday evening.

68 System i: Backing up your system

2. Restore all the objects from Wednesday’s SAVCHGOBJ media volumes.

When you use this technique of saving everything that changed since the last SAVLIB, recovery is easier.

You need to restore only the media volumes from the most recent SAVCHGOBJ operation.

Changing the reference date and time: The default for the command is to save objects that have changed

since the library was last saved using the SAVLIB command. You can specify a different reference date

and time by using the reference date (REFDATE) and reference time (REFTIME) parameters on the

SAVCHGOBJ command. This allows you to save only objects that have changed since the last

SAVCHGOBJ operation.

This may reduce the amount of media and the time for the save operation. Here is an example:

 Table 23. SAVCHGOBJ Command–Not Cumulative

Day Files That Changed That Day Media Contents

Monday FILEA, FILED FILEA, FILED

Tuesday FILEC FILEC

Wednesday FILEA, FILEF FILEA, FILEF

Thursday FILEF FILEF

Friday FILEB FILEB

You can restore the SAVCHGOBJ media from earliest to latest. Or you can display each media volume

and restore only the latest version of each object.

How the system updates changed object information with the SAVCHGOBJ command:

The changed object information kept by the system is a date and a timestamp. When the system creates

an object, the system places a timestamp in the changed field. Any change to the object causes the system

to update the date and timestamp.

 Use the DSPOBJD command and specify DETAIL(*FULL) to display the date and time of the last change

for a specific object. Use the Display File Description (DSPFD) command to display the last change date

for a database member.

To display the last change date for a document library object, do the following:

1. Use the Display DLO Name (DSPDLONAM) command to display the system name for the DLO and

the ASP where it is located.

2. Use the DSPOBJD command, specifying the system name, the name of the document library for the

ASP (such as QDOC0002 for ASP 2), and DETAIL(*FULL).

Some common operations that result in a change of the date and time are:

v Create commands

v Change commands

v Restore commands

v Add and remove commands

v Journal commands

v Authority commands

v Moving or duplicating an object

These activities do not cause the system to update the change date and time:

v Message queue. When the system sends a message or when the system receives a message.

v Data queue. When the system sends an entry or when the system receives and entry.

Backing up and recovering your system 69

When you IPL, the system changes all of the job queues and output queues.

Change Information for Database Files and Members: For database files, the SAVCHGOBJ command

saves the file description and any members that changed.

Some operations change the change date and time of the file and all of its members. Examples are the

CHGOBJOWN, RNMOBJ, and MOVOBJ commands. If you save a file with 5 or more members, the

system updates the change date for the library because it creates a recovery object in the library to

improve save performance.

Operations that affect only the content or attributes of a member change only the date and time of the

members. Examples are:

v Using the Clear Physical File Member (CLRPFM) command

v Updating a member by using source entry utility (SEU)

v Updating a member with a user program.

The SAVCHGOBJ command can be useful for backing up typical source files. Normally, a source file has

many members, and only a small percentage of members change every day.

 Related concepts

 “Saving changed objects in directories” on page 66
This information describes how to use the CHGPERIOD parameter of the SAV command to save

objects that have changed.

Saving database files:

This information describes what the system does when you save a database file.

 Use the SAVOBJ command to save individual database files. You can use the FILEMBR (file member)

parameter to save:

v A list of members from one database file.

v The same group of members from multiple files.

Here is what the system does when you save a database file:

 Table 24. Saving database files

Type of File What is saved

Physical file, TYPE(*DATA), keyed access path1 Description, data, access path

Physical file, TYPE(*DATA), access path not keyed Description, data

Physical file, TYPE(*SRC), keyed access path Description, data

Logical file2 Description

1 The following types of access paths are included as keyed access paths: keyed access paths, primary key

constraints, unique constraints, referential constraints.

2 You can save the access path for a logical file by saving the associated physical files using the SAVLIB,

SAVOBJ, or SAVCHGOBJ command and specify the ACCPTH parameter..

The description for a file may include the following:

v Definitions of triggers and the programs that are associated with the file, but not the programs

themselves. You must save the programs separately.

v Definitions of any constraints for the file.

70 System i: Backing up your system

Special considerations apply when you restore a file that has trigger programs or constraints defined. You

can find additional information about how the system restores files with triggers and files with referential

constraints in the Backup and Recovery book.

 Related concepts

 “Saving journaled objects” on page 73
When you save a journaled object, the system writes an entry to the journal for each object that you

save. However, there are a few considerations that you should keep in mind when saving journaled

objects.
 Related information

 SAVOBJ command

Saving access paths:

When you restore a database file, but you did not save the access path to the database, the system

rebuilds the access path. You can significantly reduce the amount of time it takes you to recover if you

save the access paths. However, the process that saves access paths increases the time for the save

operation and the amount of media that you use.

 To save access paths that are owned by logical files, specify ACCPTH(*YES) on the SAVCHGOBJ,

SAVLIB, and SAVOBJ commands when you save the physical files. The system saves access paths when

you save the physical file because the physical file contains the data that is associated with the access

path. When you save the logical file, you are saving only the description of the logical file.

When a save command (SAVLIB, SAVOBJ, SAVCHGOBJ, SAVRSTLIB, SAVRSTOBJ, or SAVRSTCHG) is

performed, the save access paths parameter value is determined by the QSAVACCPTH system value

when ACCPTH(*SYSVAL) is specified. When ACCPTH(*YES) or ACCPTH(*NO) is specified, this system

value is ignored. If access paths are to be saved, the process that saves access paths increases the time for

the save operation and the amount of media that you use. However, by having the access paths saved,

you significantly reduce the amount of time it takes to recover a system because the access paths do not

need to be rebuilt.

The system saves access paths that logical files own, and that are not used for referential constraints if all

of the following are true:

v You specify ACCPTH(*YES) on the save command for the physical files.

v All based-on physical files under the logical file are in the same library and are being saved at the

same time on the same save command.

v The logical file is MAINT(*IMMED) or MAINT(*DLY).

In all cases, the systemsaves an access path only if it is valid and not damaged at the time of the save

operation.

When you save a physical file that is not a source file, the system saves the following types of access

paths with it, even if you do or do not specify ACCPTH(*YES):

v Keyed access paths that are owned by the physical file

v Primary key constraints

v Unique constraints

v Referential constraints

If the based-on physical files and the logical files are in different libraries, the system saves the access

paths. However, the system may not restore these access paths. Look for information about restoring

access paths in the Backup and Recovery book

.

Backing up and recovering your system 71

EXAMPLE - Saving files in a network:

This information describes a physical file and how logical files have access paths over the physical file.

 The following figure shows a physical file, FILEA in the LIB1 library. Logical file FILEB in LIB1 and

logical file FILEC in LIB2 have access paths over physical file FILEA in LIB1.

The following table shows which parts of this file network different commands save:

Figure 2. Saving Access Paths

72 System i: Backing up your system

Table 25. Saving a File Network

Command What is saved

SAVLIB LIB(LIB1)

 ACCPTH(*YES)

FILEA: description, data, keyed access path

FILEB: description, access path

FILEC: access path

SAVOBJ OBJ(FILEA) LIB(LIB1)

 ACCPTH(*YES)

FILEA: description, data, keyed access path

FILEB: access path

FILEC: access path

SAVLIB LIB(LIB2)

 ACCPTH(*YES)

FILEC: description

Saving files with referential constraints:

Referential constraints link multiple files together in a network, similar to the network for access paths. You

might think of this as a relationship network. If possible, you should save all the files in a relationship

network in a single save operation.

 If you restore files that are in a relationship network during separate restore operations, the system must

verify that the relationships are still valid and current. You can avoid this process and improve restore

performance if you save and restore relationship networks in a single operation.

The Backup and Recovery book

has more information about the considerations when restoring

relationship networks.

Saving journaled objects:

When you save a journaled object, the system writes an entry to the journal for each object that you save.

However, there are a few considerations that you should keep in mind when saving journaled objects.

 v When you start journaling an object, save that object after you start journaling it.

v After you add a new physical file member to a journaled database file, you should save that database

file.

v Save an integrated file system object after it is added to a directory which has the inherit journaling

attribute on.

You can journal the objects that are listed below:

v Database files

v Data areas

v Data queues

v Byte stream files

v Directories

v Symbolic links

 Related reference

 “Saving database files” on page 70
This information describes what the system does when you save a database file.

Saving journals and journal receivers:

This information describes the commands that you should use to save journals and journal receivers. It

also contains some special considerations for you to keep in mind when using these commands.

Backing up and recovering your system 73

Use the SAVOBJ, SAVCHGOBJ, SAV, or SAVLIB command to save journals and journal receivers that are

in user libraries. Use the SAVSYS command to save the journals and journal receivers that are in the

QSYS library.

You can save a journal or journal receiver even when you journal objects to it. The save operation always

starts at the beginning of the journal receiver. If you save a journal receiver that is currently attached, you

receive a diagnostic message.

If you specified MNGRCV(*USER) for a journal on the CRTJRN command or the CHGJRN command,

save the detached receiver immediately after running the CHGJRN command.

If you specified MNGRCV(*SYSTEM), do one of the following:

v Set up a regular procedure for saving detached receivers. Use this procedure to determine which

detached journal receivers that you need to save:

1. Type WRKJRNA JRN(library-name/journal-name)

2. On the Work with Journal Attributes display, press F15 (Work with receiver directory).
v Create a program to monitor for message CPF7020 in the journal’s message queue. This saving sends

this message when you detach the receiver. Save the receiver that the message identifies.
 Related information

 Journal management

Saving file systems:

The integrated file system is a part of the i5/OS program that supports stream input/output and storage

management similar to personal computers and UNIX® operating systems. The integrated file system also

provides an integrating structure over all information that you store in the system.

 You can view all objects on the system from the perspective of a hierarchical directory structure.

However, in most cases, you view objects in the way that is most common for a particular file system.

For example, you usually view objects in the QSYS.LIB file system from the perspective of libraries. You

usually view objects in the QDLS file system as documents within folders.

Similarly, you should save objects in different file systems with the methods that are designed for each

particular file system. You can find several good examples of how to use the SAV command in the CL

reference information in the i5/OS Information Center.

 Related information

 SAV command in the CL reference information

Using the Save (SAV) command:

This information explains how to use the SAV command with the OBJ parameter.

 The SAV command allows you to save the following data:

v A specific object

v A directory or subdirectory

v An entire file system

v Objects that meet search value

You can also save the items in this list by using the QsrSave API. For more information, refer to the

System API Reference.

The Objects (OBJ) parameter on the SAV command supports the use of wildcard characters and the

directory hierarchy. When you have a specific subset of similar objects within a directory subtree that you

74 System i: Backing up your system

want to save, you can use the Name pattern (PATTERN) parameter to further define the objects that are

identified in the (OBJ) parameter. For example, you could have a directory ’/MyDir’ that contains 100

subdirectories, Dir1 through Dir100, that each contain 100 .jpg files, Photo1.jpg through Photo100.jpg,

with corresponding backup files, Photo1.bkp through Photo100.bkp. To save all of the .jpg files in

’/MyDir’, but omit the backup files, you could issue the following command:

SAV OBJ((’/MyDir’)) PATTERN((’*.bkp’ *OMIT))

When you use the SAV command to save the current directory SAV OBJ(’*’) and the current directory is

empty (it has no files or subdirectories), the system does not save anything. The command does not save

the one *DIR object that represents the current directory. However, when you explicitly specify the

directory by name SAV OBJ(’/mydir’) you include the *DIR object in your save. The same applies to the

home directory.

Another feature that the SAV command offers is the Scan objects (SCAN) parameter for purposes such as

virus protection. If exit programs are registered with any of the integrated file system scan-related exit

points, you can specify whether objects will be scanned while being saved. This parameter also allows

you to indicate whether objects that previously failed a scan should be saved.

When you use the SAV command, you can specify OUTPUT(*PRINT) to receive a report of what the

system saved. You can also direct the output to a stream file or to a user space. The SAV command does

not provide the option to create an output file. Interpret output from save (SAV) and restore (RST)

describes output file format information from the SAV and RST commands.

 Related concepts

 “Interpreting output from save (SAV) and restore (RST)” on page 146
When you use the Save (SAV) command or the Restore (RST) command, you can direct output to a

stream file or to a user space.

 “Saving changed objects in directories” on page 66
This information describes how to use the CHGPERIOD parameter of the SAV command to save

objects that have changed.
 Related information

 Integrated File System Scan on Close API (Exit Program)

 Integrated File System Scan on Open API (Exit Program)

 Integrated file system

Specifying the device name:

When you use the SAV command, you use a pathname to specify objects to be saved. The pathname

consists of a sequence of directory names that are followed by the name of the object.

 You also use the pathname for the values of other parameters, such as the device (DEV) parameter. For

example, on the SAVLIB command, you specify DEV(TAP01). To use device TAP01 on the SAV command,

you specify:

DEV(’/QSYS.LIB/TAP01.DEVD’)

To use a save file name MYSAVF in library QGPL on the SAVF command, you specify:

DEV(’/QSYS.LIB/QGPL.LIB/MYSAVF.FILE’)

You may want to create symbolic links for devices that you specify with the SAV command to simplify

keying and to reduce errors. For example, you can create a symbolic link for the media device description

that is called either TAP01 or OPT01. If you wish to use symbolic links, it is recommended that you

perform a one-time setup of symbolic links in the root directory. For each tape device on your system,

type the following:

ADDLNK OBJ(’/qsys.lib/media-device-name.devd’) NEWLNK(media-device-name) +

 LNKTYPE(*SYMBOLIC)

Backing up and recovering your system 75

If the current directory is the root directory, then an example of the SAV command using the symbolic

link would be the following:

SAV DEV(media-device-name) +

 OBJ((’/*’) (’/QDLS’ *OMIT) (’/QSYS.LIB’ *OMIT))

All subsequent path names on the command would need to begin from the root directory.

Note: If the root directory is not the current directory, be sure to specify DEV(’/media-device-name’) on

the SAV command.

Saving objects that have more than one name:

You can give more than one name to objects on the system. An additional name for an object is

sometimes called a link. This information describes how linking works.

 Some links, referred to as hard links, point directly to the object. Other links are more like a nickname for

an object. The nickname does not point directly to the object. Instead, you can think of the nickname as

an object that contains the name of the original object. This type of link is referred to as a soft link, or a

symbolic link.

If you create links for objects, study the examples that follow to ensure that your save strategy saves both

the contents of objects and all their possible names.

The following figure shows an example of a hard link: The root directory contains UserDir. UserDir

contains JCHDIR and DRHDIR. JCHDIR contains FILEA that has a hard link to Object A. DRHDIR

contains FILEB which also contains a hard link to Object A.

 You can save Object A with either of the following commands. For both commands, you get the

description of the specified object and the contents of object.

v SAV OBJ(’/UserDir/JCHDIR/FILEA’)

v SAV OBJ(’/UserDir/DRHDIR/FILEB’)

Figure 3. An Object with Hard Links–Example

76 System i: Backing up your system

If you use only the first command (JCHDIR), you have not saved the fact that FILEB is also named in the

DRHDIR directory.

You can use any of the following commands to get the data once and both names (hard links) for the file:

v SAV OBJ((’/UserDir’))

v SAV OBJ((’/UserDir/JCHDIR’) (’/UserDir/DRHDIR’))

v SAV OBJ((’/UserDir/JCHDIR/FILEA’) (’/UserDir/DRHDIR/FILEB’))

The following figure shows an example of a symbolic link: The root directory contains QSYS.LIB and

Customer. QSYS.LIB contains CUSTLIB.LIB. CUSTLIB.LIB contains CUSTMAS.FILE. Customer is a

symbolic link to CUSTMAS.FILE.

 Following are several commands you can use to save the CUSTMAS file (both description and data):

v SAVLIB LIB(CUSTLIB)

v SAVOBJ OBJ(CUSTMAS) LIB(CUSTLIB)

v SAV (’/QSYS.LIB/CUSTLIB.LIB/CUSTMAS.FILE’)

v SAV (’/QSYS.LIB/CUSTLIB.LIB’)

None of these commands saves the fact that the CUSTMAS file has a “nickname” of customer in the root

directory.

If you specify SAV OBJ(’/customer’), you save the fact that customer is a nickname for the CUSTMAS

file. You do not save the description of the CUSTMAS file or its contents.

Saving across different types of file systems:

This information describes restrictions that apply when you use the SAV command to save objects from

more than one file system at the same time.

Figure 4. An Object with a Symbolic Link–Example

Backing up and recovering your system 77

v Different file systems support different types of objects and different methods of naming objects.

Therefore, when you save objects from more than one file system with the same command, you cannot

specify object names or object types. You can save all objects from all file systems, or you can omit

some file systems. These combinations are valid:

– Saving all objects on the system: OBJ(’/*’)

Note: Using this command is not the same as using option 21 from the GO SAVE command menu.

Following are the differences between SAV OBJ(’/*’) and option 21:

- SAV OBJ(’/*’) does not put the system in a restricted state.

- SAV OBJ(’/*’) does not start the controlling subsystem when it finishes.

- SAV OBJ(’/*’) does not provide prompting to change default options.
– Saving all objects in all file systems except the QSYS.LIB file system and the QDLS file system:

OBJ((’/*’) (’/QSYS.LIB’ *OMIT) (’/QDLS’ *OMIT))

– Saving all objects in all files systems except the QSYS.LIB file system, the QDLS file system, and one

or more other file systems: OBJ((’/*’) (’/QSYS.LIB’ *OMIT) (’/QDLS’ *OMIT) (’/other values’

*OMIT))

v Values for other parameters of the SAV command are supported only for some file systems. You must

choose values that are supported by all file systems. Specify the following parameters and values:

CHGPERIOD

Default

PRECHK

*NO

UPDHST

*YES

LABEL

*GEN

SAVACT

*NO

OUTPUT

*NONE

SUBTREE

*ALL

SYSTEM

*LCL

DEV Must be a tape device or an optical device
v The SAV OBJ(’/*’) command parameters require the following:

– The system must be in a restricted state.

– You must have *SAVSYS or *ALLOBJ special authority.

– You must specify VOL(*MOUNTED).

– You must specify SEQNBR(*END).

Note: SAV OBJ(’/*’) is not the recommended method for saving the entire system. Use menu option 21

of the GO SAVE command to save the entire system.

When saving objects from the QSYS.LIB file system:

This information lists restrictions that apply when you use the SAV command to save objects from the

QSYS.LIB (library) file system.

78 System i: Backing up your system

v The OBJ parameter must have only one name.

v The OBJ parameter must match the way that you can specify objects on the SAVLIB command and the

SAVOBJ command:

– You can save a library: OBJ(’/QSYS.LIB/library-name.LIB’)

– You can save all the objects in a library: OBJ(’/QSYS.LIB/library-name.LIB/*’)

– You can save all objects of a particular type in a library: OBJ(’/QSYS.LIB/library-name.LIB/
*.object-type’)

– You can save a specific object name and object type in a library:

OBJ(’/QSYS.LIB/library-name.LIB/object-name.object-type’)

– You can save all the members in a file by using either of the following:

- OBJ(’/QSYS.LIB/library-name.LIB/file-name.FILE/*’)

- OBJ(’/QSYS.LIB/library-name.LIB/file-name.FILE/*.MBR’)

– You can save a specific member in a file:

OBJ(’/QSYS.LIB/library-name.LIB/

 file-name.FILE/member-name.MBR’)

v You can specify only the object types that the SAVOBJ command allows. For example, you cannot use

the SAV command to save user profiles, because the SAVOBJ command does not allow

OBJTYPE(*USRPRF).

v You cannot save some libraries in the QSYS.LIB file system with the SAVLIB command because of the

type of information that they contain. Following are examples:

– The QDOC library, because it contains documents

– The QSYS library, because it contains system objects.

You cannot use the SAV command to save these entire libraries:

 Libraries that you cannot save using the SAV command

QDOC QRPLOBJ QSYS

QDOCxxxx1 QRPLxxxxx2 QSYSxxxxx2

QRECOVERY QSRV QTEMP

QRCYxxxxx2 QSPL QSPLxxxx3

1 Where xxxx is a value from 0002 to 0032, corresponding to an ASP.

2 Where xxxxx is a value from 00033 to 00255, corresponding to an independent ASP.

3 Where xxxxx is a value from 0002 to 0255, corresponding to an ASP.

v Other parameters must have these values:

SUBTREE

*ALL

SYSTEM

*LCL

OUTPUT

*NONE

CHGPERIOD

– Start date cannot be *LASTSAVE

– End date must be *ALL

– End time must be *ALL

– Default, if you specify a file member

When saving objects from the QDLS file system:

Backing up and recovering your system 79

This information lists restrictions that apply when you use the SAV command to save objects from the

QDLS (document library services) file system.

 v The OBJ and SUBTREE parameters must be one of the following:

– OBJ(’/QDLS/path/folder-name’) SUBTREE(*ALL)

– OBJ(’/QDLS/path/document-name’) SUBTREE(*OBJ)

v Other parameters must have these values:

SYSTEM

*LCL

OUTPUT

*NONE

CHGPERIOD

– Start date cannot be *LASTSAVE

– End date must be *ALL

– End time must be *ALL

– Default, if OBJ(’/QDLS/path-name/document-name’) SUBTREE(*ALL) specified

PRECHK

*NO

UPDHST

*YES

SAVACT

Cannot be *SYNC

SAVACTMSGQ

*NONE

Backing up the integrated file system:

Learn how to improve your integrated file system backups.

 Using concurrent backup operations

Reduce your backup windows by using multiple concurrent backups. To implement this approach you

will need to determine some way to group your integrated file system data. Then you need separate SAV

commands to concurrently save each of the subsets. You will need to consider the potential resource

contention that can occur on the hardware resources being used. For example, performing concurrent

backups on groups of data that are stored on the same set of disk units may cause contention on those

disk units. You may decide to use multiple tape drives or a tape library system with multiple drives to

run multiple concurrent SAV commands.

For more information about concurrent backups, see Saving to multiple devices to reduce your save

window.

Using online backups: These topics are things that you can consider to use for online backups.

Using BRMS online backup of Lotus® servers support

Backup, Recovery and Media Services (BRMS) supports online backups of Lotus server databases (such

as Domino and Quickplace). An online backup is a backup that you do while your Lotus server

databases are in use; there are no save-while-active synchronization points. You can direct your online

backups to a tape device, media library, save file, or a Tivoli® Storage Manager server. BRMS can also

80 System i: Backing up your system

|

|

|

|
|
|
|
|
|
|

|
|

|

|

|
|
|
|

create control groups that make it easy to use concurrent backups. Performing an online backup does not

improve the performance of your backup. However, since your applications remain active, the duration

of the backup is less important.

For more information about BRMS online backups, see Backup, Recovery, and Media Services.

If you decide to use the BRMS online backup support, you can tune the performance of the backup to

your data. For more information, see Performance tuning on the BRMS web page.

Using save-while-active

The SAV command provides the SAVACT, SAVACTMSGQ, and SAVACTOPT parameters to support

saving objects while active.

For more information, see Saving your system while it is active.

Backing up less data: These topics are things that you can consider to use for backing up less data.

Using the CHGPERIOD parameter to only save changed objects

The SAV command provides a CHGPERIOD parameter that can be used to find and save only objects

that have changed. In some cases, this can be an effective way to reduce the amount of data you need to

back up. However, the system still needs to look at each object to determine which objects have changed.

If you have many files it may still take a long time to determine which objects have changed.

Structuring your directories to easily back up new files, omit data, or group your data

It might be beneficial to consider your backup strategy when you structure and name your directories.

You may be able to group and name your files in some way that will make it easier to include or omit

groups of directories or objects from your backups. You might want to group the directories such that

you can back up all of the directories and files for an application, a user, or specified time period.

For example, if you are creating many files each day or each week, it might be useful to create a directory

to contain the new files. Consider implementing a naming convention for the directories such that you

can back up only the directory that contains the new objects or omit older directories.

Example: Create a directory structure that uses the year, month, and week to store new objects.

/2003

/2003/01/01

/2003/01/01

/2003/01/02

/2003/01/03

/2003/01/04

/2003/02

Omitting objects from the backup

The SAV command provides the OBJ parameter that specifies the objects to be included and omitted from

the backup. The OBJ parameter lets you specify a list of 300 values to be included or omitted from the

SAV command. The values can be either specific directories or objects or generic values that provide wild

card support for the objects to be included or omitted.

Here are some examples of reasons why you might want to omit a directory or object from your backup:

v The directory or object is temporary and is not required if you need to recover your system.

v The directory or object is already backed up and has not changed since the last full backup.

Backing up and recovering your system 81

|
|
|

|

|
|

|

|
|

|

|

|

|
|
|
|

|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|

|

|

|

http://www.ibm.com/servers/eserver/iseries/service/brms/
http://www.ibm.com/servers/eserver/iseries/service/brms/domperftune.html

v You are trying to group your integrated file system data so you can run multiple concurrent SAV

commands.

Pattern Parameter

The SAV command provides the PATTERN parameter which lets you specify a list of 300 values which

are used to group the save by either including or omitting objects which qualify for the save based on the

OBJ parameter. The values can be either specific object names or generic values that provide wild card

support for the objects to be included or omitted.

Here are some examples of reasons why you might want to include or omit objects which qualify for the

save based on the OBJ parameter:

v You want to save an entire directory tree, but omit objects of a specific type or name.

v You want to save all objects of a specific type without specifying which directories they may reside in.

Note: While less data may be saved, the amount of time to save the data may be increased. If patterns

are specified on the PATTERN parameter, any object which qualifies for the save is compared to

the list of objects on the PATTERN parameter.
For more information about the SAV command parameters, see SAV in the Programming topic of the

i5/OS Information Center.

Journal changes and save journal receivers

You can journal changes to directories, stream files, and symbolic links. If you implement journaling on

your integrated file system data, you may need to change your save strategy. Your new strategy should

be to back up the objects less frequently and instead back up the journal receivers that contain the

changes you’ve made to the objects. This could reduce the amount of data you need to back up.

However, you will need to understand and consider the implications to your recovery procedures.

Implement Hierarchical Storage Management (HSM)

If you have historical integrated file system data that is infrequently needed you might benefit from

implementing Hierarchical Storage Management. Hierarchical Storage Management (HSM) automatically

and transparently manages customer data across a storage hierarchy. The storage hierarchy can consist of

high performance disk, compressed disk, and tape libraries.

When and how often data is accessed on your system depends on the type of data. A set of data that is

currently being used may be accessed many times a day (hot data), or it may have become historical data

which is accessed less frequently (cold data).

Through the Backup, Recovery and Media Services (BRMS) user-defined policies, HSM can migrate or

archive and dynamically retrieve infrequently used data or historical data up or down a hierarchy of

storage devices

For more information, see Hierarchical Storage Management

.

Saving to save files (SAVF) then saving the SAVFs to tape with SAVSAVFDTA

Some customers have found that they can reduce their backup window by first backing up their data to a

save file (SAVF) rather than saving directly to tape. Significant performance improvements were made to

backups to save files. Of course if you back up to a save file, you need to have adequate disk space

available for the save file. Chapter 15 of the System i Performance Capabilities Reference

can help

you evaluate this approach on your system. You also will need to back up your save files to tape by

82 System i: Backing up your system

|
|

|

|
|
|
|

|
|

|

|

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|

|

|

|
|
|

|
|

using the Save Save File Data (SAVSAVFDTA) command. However, the SAVSAVFDTA command does not

need to be completed during your backup window.

Reducing or eliminating auditing during backup or recovery operations

Measurements show that performing security auditing during save or restore operations (*SAVRST

auditing) can decrease performance. Auditing provides valuable information about the actions being

performed on your system and who is performing those actions. However, you need to balance the value

of that information against the time you have available to perform a backup or recovery. This is

especially true if you need to recover all or many objects in the integrated file system.

For more information about security auditing, see chapter 9 of System i Security Reference

.

Reducing the number of objects scanned during the backup

Specifying the SCAN parameter during the backup may have significant performance impacts if scanning

is enabled on the system. Scanning objects may be a valuable part of your system security, but you need

to consider the amount of time scanning will add to your backup window.

Saving user-defined file systems:

A user-defined file system (UDFS) is a file system that you can create and manage yourself. You can create

multiple UDFSs, with unique names.

 You can specify other attributes for a UDFS when you create it. These attributes include:

v An auxiliary storage pool (ASP) number where you store the objects in the UDFS.

v The case-sensitivity that the names of all UDFS objects follow.

Note: If the UDFS is on an independent disk pool, ensure that the independent disk pool is varied on

and that the UDFS is unmounted before you start the save.

 Related reference

 “Methods for saving network server storage spaces” on page 92
This information describes common save methods for network server storage spaces information.

How the system stores user-defined file systems:

In a UDFS, as in the “root” (/) and QOpenSys file systems, users can create directories, stream files,

symbolic links, and local sockets.

 A single block special file object (*BLKSF) represents a UDFS. When you create a UDFS, the system also

creates an associated block special file. You can only access the block special file through the Integrated

File System generic commands, application programming interface (API), and the QFileSvr.400 interface.

Block special file names must be of the form:

/dev/QASPxx/udfs_name.udfs

Where xx is the system or basic ASP number (1–32) where the user stores the UDFS and udfs_name is the

unique name of the UDFS. Note that the UDFS name must end in the .udfs extension. If the UDFS is

stored in an independent ASP, the block special file name will be of the form:

/dev/device-description/udfs_name.udfs

A UDFS exists only in two states: mounted and unmounted. When you mount a UDFS, you can access

the objects within it. When you unmount a UDFS, you cannot access the objects within it.

Backing up and recovering your system 83

|
|

|

|
|
|
|
|

|

|

|
|
|

In order to access the objects within a UDFS, you must ’mount’ the UDFS on a directory (for example,

/home/JON). When you mount a UDFS on a directory, you cannot access the original contents of that

directory. Also, you can access the contents of the UDFS through that directory. For example, the

/home/JON directory contains a file /home/JON/payroll. A UDFS contains three directories mail, action, and

outgoing. After mounting the UDFS on /home/JON, the /home/JON/payroll file is inaccessible, and the

three directories become accessible as /home/JON/mail, /home/JON/action, and /home/JON/outgoing. After

you unmount the UDFS, the /home/JON/payroll file is accessible again, and the three directories in the

UDFS become inaccessible.

 Related information

OS/400 Network File System Support

Saving an unmounted UDFS: In most cases, you should unmount any user-defined file systems before

you perform a save or restore operation. Use the DSPUDFS command to determine if you mounted a

UDFS or if you unmounted a UDFS.

The system saves objects from an unmounted UDFS if you specify the *BLKSF for the UDFS which is

contained in an ASP or independent ASP (/dev/qaspxx). The system saves information about the UDFS

(for example, the ASP number, authority, and case sensitivity).

To save an unmounted UDFS, specify:

SAV OBJ((’/dev/QASP02/udfs_name.udfs’))

Restrictions when you save an unmounted UDFS:

There are some restrictions that you must take into consideration when saving an unmounted UDFS.

1. You cannot specify individual objects from UDFSs for the object (OBJ) parameter on a SAV command.

2. You cannot view or work with objects in an unmounted UDFS. Therefore, you cannot determine the

amount of storage or time that the system requires for the save operation after you unmount the

UDFS.

3. SUBTREE(*ALL) is required.

Saving a mounted UDFS:

Ordinarily, you should unmount user-defined file systems (UDFS) before save and restore operations.

Menu options 21, 22, and 23 of the GO SAVE command provide an option to unmount UDFSs prior to

the save.

 If a save includes objects from mounted UDFSs, only pathname information is saved. The system saves

the objects as if they are in the file system over which the UDFS is mounted. The system does not save

any information about the UDFSs or ASPs that contain the saved objects, and the system issues the

following message:

CPD3788 - File system information not saved for <your udfs>

The system does not save objects that are contained in a directory over which you mount a UDFS. For

example, if directory /appl has objects in it and if you mount a UDFS over /appl, the system does not

save the objects in /appl. The system only saves the objects in the UDFS.

You may mount your UDFS as read-only. Because the system does not save any file system information

for a mounted UDFS, the system does not save the read-only attribute. Therefore, the system restores the

objects from the UDFS without the read-only attribute.

If the mounted UDFS is read-only and you specify UPDHST(*YES), the system issues message CPI3726

that indicates that the system did not update the save history for objects.

84 System i: Backing up your system

To save a mounted UDFS, specify the following command:

SAV OBJ((’/appl/dir1’)

Where the system mounted the UDFS over directory /appl/dir1.

Saving document library objects (DLOs):

The system provides the capability to store documents and folders in a hierarchy (documents within a

folder within another folder). Document library objects (DLOs) are documents and folders. The following

topics tell you:

 Related reference

 “Methods for saving distribution objects” on page 91
This information describes common save methods for distribution objects.

 “Methods for saving IBM-supplied document library objects and folders” on page 94
This information describes common save methods for saving IBM supplied document library objects.

How the system stores and uses document library objects:

The system provides the capability to store documents and folders in a hierarchy (documents within a

folder within another folder). Document library objects (DLOs) are documents and folders.

 To simplify storage management, the system stores all DLOs in one or more libraries. The name of the

library in the system ASP is QDOC. Each user ASP that contains DLOs has a document library called

QDOCnnnn, where nnnn is the number that is assigned to the ASP. From a user perspective, DLOs are

not in libraries. The system files them in folders. You manipulate DLOs by using DLO commands and

menus.

Some licensed programs use DLO support.

Within the integrated file system, the QDLS (Document Library Services) file system provides DLO

support.

The system uses a set of search index files in the QUSRSYS library to keep track of all the DLOs on the

system. The names of these database files begin with the characters QAOSS. The system uses other QAO*

files in the QUSRSYS library to track distributions and support text search capabilities. You should

periodically save these files in QUSRSYS. Menu options 21 and 23 of the GO SAVE command save both

library QUSRSYS and all the DLOs on the system.

You can use the Save Document Library Object (SAVDLO) command to manually save one or more

documents. This does not affect documents unless you specify the settings to free or delete storage. You

can save a single document or more than one document.

Methods for saving multiple documents:

There are several different methods to save multiple documents.

v Save all of your documents by typing: SAVDLO DLO(*ALL) FLR(*ANY).

v Save all documents in a list of folders by typing: SAVDLO DLO(*ALL) FLR(folder). You can specify up to

300 generic or specific folder names on the Folder (FLR) parameter.

v You can run multiple SAVDLO commands concurrently for documents within a single ASP or in

multiple ASPs. You can run one or more SAVDLO commands concurrently with one or more Restore

Document Library Object (RSTDLO) commands that use the same ASP. Here is an example of running

concurrent SAVDLO operations with generic values:

SAVDLO DLO(*ANY) DEV(first-device) FLR(A* B* C* ...L*) +

SAVDLO DLO(*ANY) DEV(second-device) FLR(M* N* O* ...Z*)

Backing up and recovering your system 85

v Save all documents in an ASP by typing: SAVDLO DLO(*ALL) FLR(*ANY) ASP(n).

You may want to move the folders that contain user documents to user ASPs. You can save the DLOs

in those ASPs regularly and not save the system ASP. This eliminates the extra time and media for

saving the system folders for iSeries Access Family, which change infrequently.

Note: When you save iSeries Access Family, you must also run the SAV command. The following

shows all the parameters that are needed to save everything in the integrated file system which

picks up iSeries Access Family.

SAV DEV(’/QSYS.LIB/media-device-name.DEVD’) +

 OBJ((’/*’) +

 (’/QSYS.LIB’ *OMIT) +

 (’/QDLS’ *OMIT)) +

 UPDHST(*YES)

v Save a list of documents, by user-defined name or by system object name.

v Save all documents that meet certain search values. The following table shows the parameters you can

use if you specify DLO(*SEARCH).

 Table 26. Parameters for DLO(*SEARCH)

Parameter Definition

FLR Folder

SRCHTYPE *ALL, for all folders that meet the search criteria

CHKFORMRK Marked for offline storage

CHKEXP Document expiration date

CRTDATE Creation date

DOCCLS Document class

OWNER Owner

REFCHGDATE Document last changed date

REFCHGTIME Document last changed time

v Save all distribution objects (mail) by typing: SAVDLO DLO(*MAIL).

v Save all distribution objects, new folders, new documents, and changed documents by typing: SAVDLO

DLO(*CHG). This is another method for reducing the effect of online information on the amount of time

and media that it takes to save DLOs. Save document library objects (DLOs) provides more

information about specifying DLO(*CHG).

You can use the OMITFLR parameter to exclude folders from the save operation. The OMITFLR

parameter will allow up to 300 generic or specific folder names.

The OMITFLR parameter is useful if you want to omit folders that never change or only change

infrequently. You can also use it to remove a group of folders from one save operation while you

concurrently save that group to a different media device.

When you save DLOs from more than one ASP with the same operation, the system creates a separate

file on the media for each ASP. When you restore DLOs from the media, you must specify the sequence

numbers to restore the DLOs from more than one ASP.

Authority that is required for the SAVDLO command: The following parameter combinations for the

SAVDLO command require either *ALLOBJ special authority, *SAVSYS special authority, or *ALL

authority to the documents. You also need enrollment in the system directory:

v DLO(*ALL) FLR(*ANY)

v DLO(*CHG)

v DLO(*MAIL)

v DLO(*SEARCH) OWNER(*ALL)

v DLO(*SEARCH) OWNER(user-profile-name)

86 System i: Backing up your system

Note: You can always save your own DLOs. You must have the authorities that are specified to specify

another user profile for the owner parameter.

Methods for reducing disk space that is used by documents:

Documents tend to accumulate and require more and more storage. This information describes different

methods that you can use to reduce disk space that is used for documents.

 v Saving documents and delete them (STG(*DELETE)). These documents no longer appear when you

search for documents.

v Saving documents and free storage (STG(*FREE)). These documents appear when you search and the

system marks them as offline.

v Moving documents to a user ASP. You can establish different backup strategies and different recovery

strategies for these user ASPs.

v Using the Reorganize Document Library Object (RGZDLO) command.

When you save documents, specify search values such as the storage mark on the document or the

document expiration date to identify which documents should have their storage freed.

Output from the SAVDLO command:

You can use the OUTPUT parameter on the SAVDLO command to show information about the saved

documents, folders, and mail. You can either print the output (OUTPUT(*PRINT)) or save it to a database

file (OUTPUT(*OUTFILE)).

 If you print the output, you should be aware of device dependencies:

v The heading information in the output is device-dependent. All information does not appear for all

devices.

v The printer file for the SAVDLO command uses a character identifier (CHRID) of 697 500. If your

printer does not support this character identifier, the system displays message CPA3388. To print the

SAVDLO output and not receive message CPA3388, specify the following before specifying *PRINT on

the SAVDLO command:

CHGPRTF FILE(QSYSOPR/QPSAVDLO) CHRID(*DEV)

If you use an output file, the system uses the file format QSYS/QAOJSAVO.OJSDLO.

 Related information

 Printing

Saving and restoring spooled files:

For V5R4, you can use any of the methods described here to save and restore spooled files. This

information contains a table that lists the commands and APIs in order of preference.

 Before V5R4, you must use indirect methods to save and restore spooled files. These indirect methods

might not preserve all of the attributes.

 Table 27. Save and restore spooled files

Save Methods Restore Methods

Spooled file attributes

preserved When used

SAVLIB, SAVOBJ

commands SAVRSTLIB,

SAVRSTOBJ commands

QSRSAVO API Save menu

options 21-23

RSTLIB, RSTOBJ commands

SAVRSTLIB, SAVRSTOBJ

commands QSRRSTO API

Restore menu options 21-23

Data and all attributes i5/OS V5R4 only

Backing up and recovering your system 87

|
|

||

||
|
||

|
|
|
|
|

|
|
|
|

||

Table 27. Save and restore spooled files (continued)

Save Methods Restore Methods

Spooled file attributes

preserved When used

QSPOPNSP, QSPGETSP,

QUSRSPLA APIs

QSPCRTSP, QSPPUTSP,

QSPCLOSP APIs

Data, but not all attributes i5/OS V5R4 and earlier

CPYSPLF, SAVOBJ

commands

CPYF command Textual data only i5/OS V5R4 and earlier

When you save an output queue with the save commands, menu, or QSRSAVO API, you can choose to

save all its spooled files. You can do this by specifying *ALL for the Spooled file data (SPLFDTA)

command parameter, menu prompt or API key. When you restore output queues with the restore

commands, menu, or QSRRSTO API, you can choose to restore any saved spooled files that do not

already exist on the system. You can do this by specifying *NEW for the SPLFDTA parameter, prompt, or

key. With the QSRSAVO and QSRRSTO APIs, you can also choose to save or restore spooled files by

using a set of selection criteria. If you save spooled files with the QSRSAVO API using selection criteria

and the *SPLF special library value, then you must use the QSRRSTO API with the *SPLF special library

value to restore the spooled files.

This example describes how to save spooled files:

1. Create an output queue to store the spooled files.

CRTOUTQ OUTQ(lib-name/que-name)

2. Use the Work with Spooled File (WRKSPLF) command to list the spooled files.

3. Use option 2, Change Spooled File Attributes (CHGSPLFA) command to move the spooled files you

wish to save to the output queue you created.

4. Use the Save Object (SAVOBJ) command to save the spooled file data.

SAVOBJ OBJ(que-name) LIB(lib-name) DEV(dev-name) OBJTYPE(*OUTQ) SPLFDTA(*ALL)

This example describes how to restore spooled files:

1. Restore spooled files that are not already on the system.

RSTOBJ OBJ(que-name) SAVLIB(lib-name) DEV(dev-name)

OBJTYPE(*OUTQ) SPLFDTA(*NEW)

Using spooled file APIs

If your source or target system is earlier than V5R4, you can use spooled file APIs as an indirect method

to save and restore spooled files. This method preserves the spooled file data stream but not all of the

attributes.

To save spooled files:

v The spooled files are opened using the Open Spooled File (QSPOPNSP) API.

v The spooled file data is retrieved using the Get Spooled File Data (QSPGETSP) API.

v The spooled file attributes are retrieved using the User Spooled File Attributes (QUSRSPLA)API.

To restore spooled files:

1. The spooled files are created using the Create Spooled File (QSPCRTSP) API .

2. The spooled file data is written to a new spooled file using the Put Spooled File Data (QSPPUTSP)

API.

3. The spooled file is closed using the Close Spooled File (QSPCLOSP) API.

88 System i: Backing up your system

|

||
|
||

|
|
|
|
||

|
|
|||

|

|
|
|
|
|
|
|
|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

The System API Reference in the i5/OS Information Center includes information about these APIs. You

can find an example and a tool for using these APIs in the QUSRTOOL library in the TSRINFO member

of the QATTINFO file.

Copying spooled files to database files

If your source or target system is earlier than V5R4, you can copy data between spooled files and

database files as an indirect method to save and restore spooled files. This method copies textual data

only and not advanced function attributes such as graphics and variable fonts. This method does not

provide a complete solution for saving your spooled files.

The Copy Spooled File (CPYSPLF) command saves spooled file data to a database file. The Copy File

(CPYF) command can copy data from a database file to a spooled file. Refer to Restoring Previous

Release User Data to a New System in the Backup and Recovery book for more details.

View Entire GO SAVE checklist includes more information about menu options 21, 22, and 23 of the GO

SAVE command.

Refer to Print restrictions in the Information center within the Print topic for restrictions of saving and

restoring spooled files.

 Related tasks

 “GO SAVE: Option 21 (saving the entire system)” on page 27
Option 21 saves everything on your system and allows you to perform the save while you are not

there.

 “GO SAVE: Option 23 (saving user data)” on page 29
Option 23 saves all user data. This information includes files, records, and other data that your users

supply into your system.
 Related information

 Save and restore spooled files

Methods for saving user data:

You can use these link references to learn how you can save user data in your system.

 An easy way to save all of your user data is with GO SAVE command, menu option 23.

The following commands allow you to manually save user data:

v SAVSECDTA

v SAVCFG

v SAVLIB *ALLUSR

v SAVDLO

v SAV
 Related information

 SAVCFG command in CL reference

 SAVCHGOBJ command in CL reference

 SAVDLO command in CL reference

 SAVLIB command in CL reference

 SAVOBJ command in CL reference

 SAV command in CL reference

Methods for saving user libraries:

Backing up and recovering your system 89

This information describes common save methods for saving user libraries.

 Table 28. User libraries information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

User libraries

User libraries change

regularly.

Yes No

 Common save method for user libraries Requires restricted state?

SAVLIB *NONSYS Yes

SAVLIB *ALLUSR No

SAVLIB library-name No1

SAVCHGOBJ No1

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 23 No1,

2

1 Important: For procedures where the system does not require a restricted state, you must ensure

that the system can get the locks necessary to save the information. You should put your system

in a restricted state whenever you save multiple libraries, documents, or directories, unless you

use the save-while-active function.

2 When you use option 23 from the GO SAVE command menu, the default is to place your system

in a restricted state. If you choose the prompting option, you can cancel the display that puts

your system in a restricted state.

These library objects change when you update licensed programs.

Save libraries with the SAVLIB command explains how to save one or more libraries. This information

also includes special SAVLIB parameters and how to select libraries on your system.

 Related concepts

 “Saving your system while it is active” on page 106
The save-while-active function allows you to use your system during all or part of the save process,

that is, save your system while it is active.
 Related reference

 “Saving libraries with the SAVLIB command” on page 48
Save one or more libraries. You can use this information to save your i5/OS optional libraries. This

information also includes special SAVLIB parameters and how to select libraries on your system.

Methods for saving Q libraries that contain user data:

This information describes common save methods for Q libraries that contain data.

90 System i: Backing up your system

Table 29. Q libraries that contain user data information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Q libraries that contain user

data include QGPL,

QUSRSYS, QDSNX, and

others.

“Special values for the

SAVLIB command” on page

49 includes a complete list

of Q libraries that contain

user data.

These libraries change

regularly.

Yes Yes

To save the system directory files, you must end the QSNADS subsystem before saving the QUSRSYS

library.

If you have the iSeries Integration for Windows Server you must vary off the network server descriptions

before saving the QUSRSYS library. This allows the server to obtain the necessary locks on the system

storage spaces in the library.

 Common save method for Q libraries that contain user data Requires restricted state?

SAVLIB *NONSYS Yes

SAVLIB *ALLUSR No1

SAVLIB library-name No1

SAVCHGOBJ No1

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 23 No1,

2

1 Important: For procedures where the system does not require a restricted state, you must ensure

that the system can get the locks necessary to save the information. You should put your system

in a restricted state whenever you save multiple libraries, documents, or directories, unless you

use the save-while-active function.

2 When you use option 23 from the GO SAVE command menu, the default is to place your system

in a restricted state. If you choose the prompting option, you can cancel the display that puts

your system in a restricted state.

Save libraries with the SAVLIB command explains how to save one or more libraries. This information

also includes special SAVLIB parameters and how to select libraries on your system.

 Related concepts

 “Saving your system while it is active” on page 106
The save-while-active function allows you to use your system during all or part of the save process,

that is, save your system while it is active.
 Related reference

 “Saving libraries with the SAVLIB command” on page 48
Save one or more libraries. You can use this information to save your i5/OS optional libraries. This

information also includes special SAVLIB parameters and how to select libraries on your system.

Methods for saving distribution objects:

This information describes common save methods for distribution objects.

Backing up and recovering your system 91

Table 30. Distribution objects information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Distribution objects

Distribution objects in

QUSRSYS change regularly.

Yes No

 Common save method for distribution objects Requires restricted state?

SAVDLO No1

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 23 No1,

2

GO SAVE command, menu option 30 Yes

GO SAVE command, menu option 32 Yes

1 Important: For procedures where the system does not require a restricted state, you must ensure

that the system can get the locks necessary to save the information. You should put your system

in a restricted state whenever you save multiple libraries, documents, or directories, unless you

use the save-while-active function.

2 When you use option 23 from the GO SAVE command menu, the default is to place your system

in a restricted state. If you choose the prompting option, you can cancel the display that puts

your system in a restricted state.
 Related concepts

 “Saving your system while it is active” on page 106
The save-while-active function allows you to use your system during all or part of the save process,

that is, save your system while it is active.

 “Saving changed document library objects” on page 68
You can use the Save Document Library Object (SAVDLO) command to save DLOs that have changed

since a particular time.
 Related reference

 “Saving document library objects (DLOs)” on page 85
The system provides the capability to store documents and folders in a hierarchy (documents within a

folder within another folder). Document library objects (DLOs) are documents and folders. The

following topics tell you:

Methods for saving network server storage spaces:

This information describes common save methods for network server storage spaces information.

 Table 31. Network server storage spaces information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Network server storage

spaces

Network server storage

spaces for IBM iSeries

Integration for Windows

Server licensed programs

(QFPNWSSTG directory)

change regularly.

Yes Yes

 Common save method for network server storage spaces Requires restricted state?

SAV1 No

92 System i: Backing up your system

Common save method for network server storage spaces Requires restricted state?

GO SAVE command, menu option 211 Yes

GO SAVE command, menu option 231 No2,

3

1 You must vary off the network servers. You can perform this option from the GO SAVE

command menu if you select option 21, 22, or 23. Select the network servers you wish to vary off

from the Specify Command Defaults screen.

2 When you use option 23 from the GO SAVE command menu, the default is to place your system

in a restricted state. If you choose the prompting option, you can cancel the display that puts

your system in a restricted state.

3 Important: For procedures where the system does not require a restricted state, you must ensure

that the system can get the locks necessary to save the information. You should put your system

in a restricted state whenever you save multiple libraries, documents, or directories, unless you

use the save-while-active function.
 Related concepts

 “Saving logical partitions and system applications” on page 96
This information contains a diagram that shows the system from the perspective of the different file

systems available. It shows which SAVxxx commands you can use to save each file system that you

use.

 “Saving your system while it is active” on page 106
The save-while-active function allows you to use your system during all or part of the save process,

that is, save your system while it is active.
 Related reference

 “Methods for saving user-defined file systems”
This information describes common save methods for user-defined file systems information.

 “Saving user-defined file systems” on page 83
A user-defined file system (UDFS) is a file system that you can create and manage yourself. You can

create multiple UDFSs, with unique names.

Methods for saving user-defined file systems:

This information describes common save methods for user-defined file systems information.

 Table 32. User-defined file systems information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

User-defined file systems

User-defined file systems

change regularly.

Yes Some

You should unmount all user-defined file systems before you perform the save operation. You can

perform this option from the GO SAVE command menu if you select option 21, 22, or 23. Then select Y at

the Unmount file systems prompt on the Specify Command Defaults screen.

 Common save method for user-defined file systems (UDFS) Requires restricted state?

SAV No1

GO SAVE command, menu option 21 Yes

1 Important: For procedures where the system does not require a restricted state, you must ensure

Backing up and recovering your system 93

that the system can get the locks necessary to save the information. You should put your system

in a restricted state whenever you save multiple libraries, documents, or directories, unless you

use the save-while-active function.
 Related reference

 “Methods for saving network server storage spaces” on page 92
This information describes common save methods for network server storage spaces information.

Methods for saving directories in the Root and the QOpenSys file systems:

This information describes common save methods for directories in the Root and the QOpenSys file

systems information.

 Table 33. Directories in the Root and the QOpenSys file systems information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Directories in the Root and

the QOpenSys file systems

Directories in the Root and

QOpenSys file systems

change regularly.

Yes Some

 Common save method for directories in the Root and the QOpenSys file

systems Requires restricted state?

SAV No

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 23 No1,

2

1 When you select menu option 23 of the GO SAVE command, the command menu option places

your system in a restricted state by default. If you choose the prompting option, you can cancel

the display that puts your system in a restricted state.

2 Important: For procedures where the system does not require a restricted state, you must ensure

that the system can get the locks necessary to save the information. You should put your system

in a restricted state whenever you save multiple libraries, documents, or directories, unless you

use the save-while-active function.
 Related concepts

 “Saving your system while it is active” on page 106
The save-while-active function allows you to use your system during all or part of the save process,

that is, save your system while it is active.
 Related information

Lotus® Domino reference library

Methods for saving IBM-supplied document library objects and folders:

This information describes common save methods for saving IBM supplied document library objects.

 Table 34. IBM-supplied document library objects and folders information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

IBM-supplied document

library objects and folders

(usually start with Q, used

by iSeries Access Family)

These library objects change

when you update licensed

programs.

No1 Yes

94 System i: Backing up your system

http://www-03.ibm.com/servers/eserver/iseries/domino/library.html

1 You should avoid changing objects or storing user data in these IBM-supplied libraries or folders.

You could lose or destroy these changes when you install a new release of the operating system.

If you make changes to objects in these libraries, note them carefully in a log for future reference.

 Common save method for IBM-supplied document library objects and

folders Requires restricted state?

SAVDLO2 No3

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 23 No3,

4

GO SAVE command, menu option 30 Yes

GO SAVE command, menu option 32 Yes

2 To ensure that the system saves all iSeries Access Family data, end subsystem QSERVER.

3 Important: For procedures where the system does not require a restricted state, you must ensure

that the system can get the locks necessary to save the information. You should put your system

in a restricted state whenever you save multiple libraries, documents, or directories, unless you

use the save-while-active function.

4 When you use option 23 from the GO SAVE command menu, the default is to place your system

in a restricted state. If you choose the prompting option, you can cancel the display that puts

your system in a restricted state.
 Related concepts

 “Saving your system while it is active” on page 106
The save-while-active function allows you to use your system during all or part of the save process,

that is, save your system while it is active.

 “Saving changed document library objects” on page 68
You can use the Save Document Library Object (SAVDLO) command to save DLOs that have changed

since a particular time.
 Related reference

 “Saving document library objects (DLOs)” on page 85
The system provides the capability to store documents and folders in a hierarchy (documents within a

folder within another folder). Document library objects (DLOs) are documents and folders. The

following topics tell you:

Methods for saving user document library objects and folders:

This information describes common save methods for saving user document library objects.

 Table 35. User document library objects and folders information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

User document library

objects and folders

User document library

objects and folders change

regularly.

Yes Some

 Common save method for user document library objects and folders Requires restricted state?

SAVDLO No

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 23 No1,

2

GO SAVE command, menu option 30 Yes

Backing up and recovering your system 95

Common save method for user document library objects and folders Requires restricted state?

GO SAVE command, menu option 32 Yes

1 When you use option 23 from the GO SAVE command menu, the default is to place your system

in a restricted state. If you choose the prompting option, you can cancel the display that puts

your system in a restricted state.

2 Important: For procedures where the system does not require a restricted state, you must ensure

that the system can get the locks necessary to save the information. You should put your system

in a restricted state whenever you save multiple libraries, documents, or directories, unless you

use the save-while-active function.

Methods for saving IBM-supplied directories without user data:

This information describes common save methods for IBM supplied directories without user data

information.

 Table 36. IBM-supplied directories without user data information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

IBM-supplied directories

without user data

IBM-supplied directories

without user data change

when you apply Program

Temporary Fixes (PTFs).

They also change when you

install a new release of the

operating system, or when

you update licensed

programs.

No Yes

 Common save method for IBM-supplied directories without user data Requires restricted state?

SAV Yes

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 22 Yes

Saving logical partitions and system applications

This information contains a diagram that shows the system from the perspective of the different file

systems available. It shows which SAVxxx commands you can use to save each file system that you use.

Important: For procedures where the system does not require a restricted state, you must ensure that the

system can get the locks necessary to save the information. A restricted state is recommended whenever

you save multiple libraries, documents, or directories, unless you use the save-while-active function

If you are saving data on a logical partition with Linux installed, you must use Option 21. See View

entire GO SAVE checklist. If you want to save only that logical partition, or selected data from that

partition, you must use third party software.

The diagram shows the save commands that can be used for different file systems:

v The root (/) file system is saved with SAV.

v QSYS.LIB can be saved with SAVSYS, SAVCFG, SAVSECDTA, SAVLIB, SAVOBJ, SAVCHGOBJ, or SAV.

v QDLS (Document library services) can be saved with SAVDLO, or SAV.

v QOpenSys Open systems) is saved with SAV.

96 System i: Backing up your system

v QNetware (Novell Netware) is saved with SAV.

v Domino server data directory (Domino for iSeries) is saved with SAV.

v User-defined file systems (/dev/QASPxx/) or (/dev/asp-name/) are saved with SAV.

v Other file systems are saved with SAV as well.

Note: The following file systems are not saveable:

v NFS

v QFileSvr.400
 Related concepts

 “Saving your system while it is active” on page 106
The save-while-active function allows you to use your system during all or part of the save process,

that is, save your system while it is active.
 Related tasks

 “Performing a complete save using the GO SAVE checklist” on page 31
Use this checklist to perform a complete save.

 Related reference

 “Methods for saving network server storage spaces” on page 92
This information describes common save methods for network server storage spaces information.

 Related information

Figure 5. File Systems–Save Commands

Backing up and recovering your system 97

Lotus® Domino reference library

Saving logical partitions:

Each logical partition functions like an independent system, so you should perform backups accordingly.

However, you can also connect them together, or even to another system.

 Connecting them together, or connecting them to another system has some of the same backup benefits

as a clustered environment and as a set of connected systems. In these ways, logical partitions can

provide you with some unique and helpful backup procedures for your system.

This section covers the information you need to know to make backing up data on your logical partitions

easier.

Attention: If you are using the Hardware Management Console (HMC), you must back up the HMC in

addition to saving the individual logical partitions.

 Related information

 Clustered environment

Backing up and restoring the HMC

Backup considerations with logical partitions:

The process of backing up a logical partition is fundamentally the same as backing up a system without

logical partitions. Each logical partition requires its own save strategy.

 Here are a few items that should affect how you plan your backup strategy:

v It is important to remember that each logical partition functions independently of any others. Therefore

you cannot perform a single, entire system backup. Instead, you need to back up each logical partition

separately.

v As part of your backup strategy, remember that a processor failure, main storage failure, failure in the

primary partition, or disaster shuts down the entire system. This may require you to recover all or

some of your logical partitions. Therefore, plan carefully how you use your logical partitions and how

often you need to perform a backup of each logical partition.

v You can generally perform these backups at the same time since each logical partition functions like an

independent system. This can reduce the time that is required for performing backups.

v If any secondary partitions switch a removable media device between themselves, you must back up

each of these logical partitions sequentially. You must manually remove and add the removable media

device between the logical partitions after each save. Use iSeries Navigator to change resources for

logical partitions.

v The system automatically maintains the configuration data for your logical partitions. This data is not

saved to or restored from removable media.

v You should print your system configuration when you make changes to your logical partition

configuration.

v Any function that requires you to power off or restart the system (like applying program temporary

fixes [PTFs]) requires special care. If you need to power off or restart only a secondary partition, then

you may safely do it. However, if you need to power off or restart the primary partition, then you

need to power off all the secondary partitions before you perform that function.

 Related concepts

 “Backing up a logical partition” on page 99
Each logical partition functions like an independent system, and needs to be backed up individually.

 Related information

98 System i: Backing up your system

http://www-03.ibm.com/servers/eserver/iseries/domino/library.html

Backing up and restoring the HMC

Partitioning the server

Backing up a logical partition:

Each logical partition functions like an independent system, and needs to be backed up individually.

 You cannot include multiple logical partitions in the same save operation. You must back up each logical

partition individually. However, you can perform a backup for each logical partition at the same time

(provided all logical partitions have a dedicated removable media device).

The system automatically maintains the configuration data for your logical partitions. You cannot save it

to removable media.

You need to make two copies of each backup you perform because you should always store one copy off

site in case of a disaster.

It is essential that you have a backup and recovery strategy for each logical partition so that you do not

lose any of your important data.

If you have any advanced program-to-program communications (APPC) controls configured that use

OptiConnect on the logical partition, vary off these controllers before performing the save. If you do not

vary off these controllers, they go into a failed status, are marked as damaged, and are not saved.

You must perform each backup from the console or a workstation that is attached to that logical partition.

Follow the steps in Back up your system as you back up each logical partition.

 Related concepts

 “Backup considerations with logical partitions” on page 98
The process of backing up a logical partition is fundamentally the same as backing up a system

without logical partitions. Each logical partition requires its own save strategy.

 “Saving logical partition configuration data”
Logical partition configuration data is automatically maintained for the life of the physical system.

Each logical partition load source contains the configuration data.
 Related tasks

 “Recommended recovery procedures after eliminating save-outage time” on page 134
If you perform save-while-active operations to eliminate save outage time and you specified

*NOCMTBDY for the SAVACTWAIT pending record changes value, you can be left with objects that

are saved with partial transactions.
 Related information

 Journal management

Backing up critical HMC data

Backing up and recovering AIX logical partitions that use i5/OS virtual I/O resources

 OptiConnect

Saving logical partition configuration data:

Logical partition configuration data is automatically maintained for the life of the physical system. Each

logical partition load source contains the configuration data.

Backing up and recovering your system 99

Only disaster recovery to a different physical system would require that you rebuild the configuration

from the beginning. You should print your system configuration when you make changes to your logical

partition configuration. This printout will help you as you rebuild the configuration.

During a save operation, the configuration data for the logical partition is not saved to the media volume.

This allows data to be restored to a system even if it has logical partitions. However, you can work with

the configuration data for logical partitions as needed for recovery purposes.

Attention: Logical partitions that you keep powered off for extended periods should be restarted at least

once after any change to the logical partition configuration. This allows the system to update

the changes on that logical partition’s load source.

Attention: If you are using the Hardware Management Console (HMC), you must back up the HMC in

addition to saving the individual logical partitions.

 Related concepts

 “Backing up a logical partition” on page 99
Each logical partition functions like an independent system, and needs to be backed up individually.

 Related information

Backing up and restoring the HMC

Backing up critical HMC data

Saving data for integrated Windows or Linux servers:

Listed in this topic are links that lead you to the information about how to use, back up, and recover data

for a System i integration with BladeCenter and System x solution. These integrated servers combine

System i storage, x86-based hardware, and the Linux or Windows operating systems. You can back up

objects, storage spaces, and files for integrated servers.

 v Back up and recover integrated Windows servers

v Back up the NWSD and other objects associated with an integrated Windows server

v Back up individual integrated Windows server files and directories
 Related tasks

 “Performing a complete save using the GO SAVE checklist” on page 31
Use this checklist to perform a complete save.

Saving NetWare Enhanced Integration information:

The best way for you to back up your Novell data is through PC-workstation-based software.

 You can use a stand-alone PC server that is attached to your system for NetWare Enhanced Integration.

Your system communicates with the Novell Server through /QNetWare, but it does not save any

Netware data on the system. You store all of your Netware data on the stand-alone PC server.

The best way for you to back up your Novell data is through PC-workstation-based software such as IBM

Tivoli Storage Manager. However, you can use your system to save the data on your remote stand-alone

PC server. Do this through the /QNetWare file system with the SAV command.

Here is the directory that NetWare Enhanced Integration uses: /QNetWare

Your system uses the /QNetWare directory to access data on your stand-alone Netware server.

Saving storage (Licensed Internal Code data and disk unit data)

There are important factors to remember when saving Licensed Internal Code data and disk unit data.

100 System i: Backing up your system

|
|
|
|

|

|

|

http://www.tivoli.com/products/index/storage_mgr/
http://www.tivoli.com/products/index/storage_mgr/

The save storage process copies the Licensed Internal Code and all of the disk unit data to tape. The

media volume that the system produces is a sector-by-sector copy of all permanent data on configured

disk units. You cannot restore individual objects from the save tape.

Note: You should use the save and restore storage processes for disaster backup and recovery along with

the standard commands for saving and restoring. This procedure is not intended to be used for

copying or distributing data to other systems. IBM does not support using the processes for saving

and restoring storage as a means to distribute the Licensed Internal Code and the operating system

to other system.

Purpose of saving storage:

This information explains several purposes for saving storage.

v The processes for saving and restoring storage provide a one-step method for backing up and

recovering the data on an entire system. The restore storage process is an easy and fast method for

restoring the data for an entire system.

v The save storage media is for a complete system recovery, and you cannot use it to restore individual

objects. You must complement a save storage approach with the SAVSYS, SAVLIB, SAVDLO, and SAV

commands.

v To properly carry out a save storage approach, you should have multiple levels of your backup media.

v The save storage operation does not save disk sectors that are not used or that contain temporary data.

Hardware considerations for saving storage:

Learn the limitations of hardware during a save storage procedure.

v If the tape unit supports hardware data compression, then tape unit uses hardware data compression.

If the tape unit does not support device data compression, then you may use programming data

compression. Generally if the tape unit device operates faster than possible for data compression, the

tape unit writes data without compression to the device.

v The system only uses one tape unit.

v The save storage process does not start unless all of the configured disk units are operating.

v The system cannot use some tape units as an alternate IPL device. In these cases, you cannot use these

tape units to restore the Licensed Internal Code and the Licensed Internal Code PTFs from the save

storage tape.

v The disk configuration of the restoring system must be the same as the disk configuration of the saving

system. The disk types and models must be the same or equivalent with some additional devices.

Serial numbers and physical addresses do not have to be the same. All disk units that were saved are

required for the restore operation.

v A virtual tape device cannot be used.

Operational considerations for saving storage:

Before you save storage, take the information in this topic into consideration.

v You can only run the save storage process when the system is in a restricted state.

v The user must have save system (*SAVSYS) special authority to use the Save Storage (SAVSTG)

command.

v The SAVSTG command causes the system to power down and starts the system again as though you

specified PWRDWNSYS RESTART(*YES). An initial program load (IPL) of the system occurs after the

command completes. The save storage function implicitly occurs during the IPL of the system from the

dedicated service tools (DST) function.

Attention logical partitioning users:

Backing up and recovering your system 101

|

– If you are going to use this command on the primary

partition, be sure to power off all secondary partitions before

running the command.

– In order to save your entire system configuration, you must

save each logical partition individually.
v You can save the first tape without an operator being present. After you save the first tape, DST

messages appear that ask for the next tape so the save operation can continue.

v As the amount of storage on the system increases, the chance of an irrecoverable media error increases.

Clean the tape unit frequently.

v You must specify a device name on the command. Expiration date (EXPDATE) and clear (CLEAR)

parameters are optional. You cannot specify a volume ID.

v The save storage process does not start unless the console is available. If the console is not available, a

system reference code appears on the control panel.

v When the save storage operation completes successfully, a normal IPL occurs.

Recovering from save storage errors:

If a tape error occurs, the system attempts to recover from the error by automatically trying the operation

again.

 If the system cannot recover, you can resume the save storage operation on a new tape volume. The

operation continues from the last completed tape volume that was saved.

Saving storage for mirrored protection:

If the system is using mirrored protection, only one copy of the data from each mirrored pair is saved.

When you restore your system by using the SAVSTG tapes, mirrored protection will not be active.

 Starting the save storage procedure:

After you complete the prerequisites listed here, you can begin the save storage procedure.

 Related reference

 “Saving configuration information” on page 55
This information describes when to use the SAVCFG command and the SAVSYS command and what

object types are saved.

Do These Things Before You Begin::

v Initialize at least three more tapes than you think that you will need to complete the save operation.

Initialize them as standard-labeled tapes and specify the maximum density for the tape unit you are

using. The number of tapes that you need depends on the size of the system, the number of objects,

and the capacity of the tape.

Each tape should have a volume ID of SAVEDS and an external label that allows you to easily identify

the tape. Ensure that each of the tapes support the same density.

v Clean the read/write heads of the tape unit.

v Apply any program temporary fixes (PTFs).

v Print a list of all the PTFs currently on the system. Type the following and press the Enter key:

DSPPTF LICPGM(*ALL) OUTPUT(*PRINT)

v Ensure that you saved the hardware configuration information from the system. Use the Save

Configuration (SAVCFG) command or the Save System (SAVSYS) command to save the configuration

objects. The restore storage procedure uses the SAVSYS media volume or the SAVCFG media volume

to restore the hardware configuration information.

v Print a list of the current network attributes. Type the following and press the Enter key:

102 System i: Backing up your system

DSPNETA OUTPUT(*PRINT)

Keep this Network Attributes list with the tapes that are written during the save storage operation.

Attention logical partitioning users:

v Using the Save Storage (SAVSTG) command will cause your

system to perform an IPL. If you are running this command on

the primary partition, you must quiesce the secondary partitions

before continuing.

v In order to save your entire system configuration, you must save

each logical partition individually.
1. Sign on at the console with a user profile that has *SAVSYS special authority.

2. Notify users that the system will be unavailable.

3. Change the QSYSOPR message queue to break mode:

CHGMSGQ MSGQ(QSYSOPR) DLVRY(*BREAK) SEV(60)

4. Type the following to bring the system to a restricted state:

ENDSBS SBS(*ALL) OPTION(*CNTRLD) DELAY(600)

Note: For the delay parameter, specify a number of seconds that allows your system time to bring

most jobs to a normal end. On a large, busy system, you may need a longer delay.

The system sends messages to the QSYSOPR message queue. These messages indicate that the

subsystems ended, and the system is in a restricted state. When the subsystems have ended, continue

with the next step.

5. Load the first media volume of the SAVSTG media, and make the media device ready.

6. Check the control panel on your processor to ensure that the system is in normal mode.

Note: You can access the control panel information through the control panel on the system, through

the Hardware Management Console (HMC) or through system service tools (SST) on the

primary partition.

7. If you are not using logical partitioning, continue with the next step. Otherwise, if you are performing

this operation from the primary partition, be sure to power down all secondary partitions.

8. Enter the save storage command, such as:

SAVSTG DEV(TAP01) CLEAR(*ALL)

You can also enter an expiration date (EXPDATE(mmddyy)).

9. Press the Enter key. The system will power down with a restart IPL. This is similar to PWRDWNSYS

OPTION(*IMMED) RESTART(*YES). This means that when you enter the command, the system will

power down and perform an automatic IPL.

When the IPL occurs, a dedicated service tools (DST) function starts saving storage. If the operator

correctly loads the media volume and the expiration date check passes, the operator does not need to

be present for the first media volume.

If you load the media volume correctly, the following save status display continually displays the

progress of the save operation.

 Function Status

 You selected to save storage.

 1 % Complete

Backing up and recovering your system 103

|
|
|

The Percent saved field on the display estimates the progress of the total amount of saved sectors.

However, this estimate does not accurately predict the time it takes to save or the number of tapes

that you need to complete the save operation. The reason is that the system does not save unused

sectors.

Responding to messages:

While the SAVSTG procedure is running, you may see either the Handle Tape or Diskette Intervention

display or the Device Intervention Required display.

 Handle Tape or Diskette Intervention

Device:

I/O manager code : _________

Type choice, press Enter.

 Action . 1=Cancel

 3=Continue

F3=Exit F12=Cancel

End of tape encountered. Load next volume.

 Device Intervention Required

Device type. : _____

I/O manager code : _________

Type choice, press enter

 Action . 1=Cancel

 2=Ignore

 3=Continue

 4=Format

When one of these displays appears, look for messages at the bottom of the display or for an I/O

manager code on the display. Respond to the display by using the following information:

 Table 37. Handling SAVSTG Messages

Message or Code Your Action

End of tape encountered. Load next volume. Load the next tape volume. Select option 3 (Continue),

and press the Enter key.

Active files exist on media. To continue the save operation to tape, select option 2

(Ignore) to ignore the active files. Press the Enter key.

Tape unit not ready. Make the tape unit ready, select option 3 (Continue), and

press the Enter key.

Media is write protected. Replace the tape with a tape that is not write-protected

and select option 3 (Retry). Press the Enter key.

Device is not able to process the media format. Select option 4 (Format), and press the Enter key.

Tape or diskette loaded is blank. Select option 4 (Format), and press the Enter key.

I/O manager code 8000 0001C. Replace the tape with a tape that can be formatted to the

requested density and select option 3 (Retry). Press the

Enter key.

If an irrecoverable tape media error occurs, do the following:

104 System i: Backing up your system

1. Remove the tape that failed from the tape device. Do not put the tape that failed with the other tapes

that you already used during the save storage operation. You cannot use the failed tape during the

restore storage operation.

2. Load a different tape in the media device.

3. Press the F3 key to return to the Use Dedicated Service Tools menu.

4. Go to “Resuming a save storage operation.”

Completing the SAVSTG process:

When the last tape is complete and no errors have occurred, the tape automatically rewinds and a normal

IPL occurs. You will then need to follow some specific steps to complete the process.

 Do the following:

1. The system updates the data area QSAVSTG in library QSYS to show the date and time of the save

operation. Use the Display Object Description (DSPOBJD) command to display the date and time of

the save storage operation.

2. Ensure that the save operation completed successfully. Use the Display Log (DSPLOG) command to

display the history (QHST) log:

DSPLOG QHST

Or use the Display Message (DSPMSG) command to display the QSYSOPR messages:

DSPMSG QSYSOPR

Look for a save storage completion message or diagnostic messages that indicate that the system

could not read some sectors. If the system found any damaged sectors that it could not read, this

means that your tapes may not be complete. If you use them to restore storage, the operation may

fail. Contact your service representative for assistance. Then repeat the save storage operation.

This completes the save storage procedure. If you do not want the system to perform an automatic IPL,

you can use an autostart job, which powers down the system.

Canceling a save storage operation:

To cancel the save storage operation, press the F19 key. This action cancels an active save storage

operation.

 Resuming a save storage operation:

There are certain requisites that your system must meet before you can resume a save storage operation.

 You can use this procedure only if the following conditions are true:

v The save storage operation finished saving the Licensed Internal Code.

v The save storage operation completed writing to at least one tape during the save storage operation.

v You attached all disk units, and the disk units are operating.

If an error occurs that stops a save storage operation (for example, system power loss, operator error, or

tape drive error), you can start the save storage operation again.

Do the following to resume the save storage operation:

1. Select manual mode on the control panel of your processor.

2. Power on the system by using the Power switch or the Power button. The IPL or Install the System

menu is shown.

3. Select option 3 (Use Dedicated Service Tools (DST)) and press the Enter key.

Backing up and recovering your system 105

4. Sign on DST by using the password that is assigned to your system for full DST authority. The Use

Dedicated Service Tools (DST) menu that appears on the console.

5. From the Use Dedicated Service Tools (DST) menu, select option 9 (Work with save storage and

restore storage) and press the Enter key.

6. Select option 4 (Resume save storage) and press the Enter key.

If the system does not allow you to resume the save storage operation, a display with an explanation

appears on the console.

7. If you see the Resume Save Storage display on the console, load the tape that the system last wrote

to when the save storage operation stopped. Press the Enter key.

8. If the volume identifier of the tape that is loaded is different from the volume identifier of the first

save storage tape, the Device Intervention Required display appears. The message at the bottom says

that the Wrong volume loaded.

To continue the save operation, type SAVEDS on the ″New volume″ line and select option 4 to format

the tape.

Saving your system while it is active

The save-while-active function allows you to use your system during all or part of the save process, that

is, save your system while it is active.

You can use the save-while-active function, along with your other backup and recovery procedures, to

reduce or eliminate your outage for particular save operations. The amount of time during the backup

process that you cannot use the system is the save-outage time. The save-while-active function allows

you to use your system during all or part of the save process, that is, save your system while it is active.

This allows you to reduce or eliminate your save-outage time. In contrast, other save functions allow no

access, or only allow read access, to the objects as you are saving them.

 Related concepts

 “Saving logical partitions and system applications” on page 96
This information contains a diagram that shows the system from the perspective of the different file

systems available. It shows which SAVxxx commands you can use to save each file system that you

use.
 Related reference

 “Methods for saving security data” on page 60
There are several methods that you can use for saving security data.

 “Methods for saving configuration objects in QSYS” on page 61
There are several methods that you can use for saving configuration objects in QSYS.

 “Methods for saving i5/OS optional libraries (QHLPSYS, QUSRTOOL)” on page 62
There are several methods that you can use for saving i5/OS optional libraries.

 “Methods for saving user libraries” on page 89
This information describes common save methods for saving user libraries.

 “Methods for saving Q libraries that contain user data” on page 90
This information describes common save methods for Q libraries that contain data.

 “Methods for saving network server storage spaces” on page 92
This information describes common save methods for network server storage spaces information.

 “Methods for saving distribution objects” on page 91
This information describes common save methods for distribution objects.

 “Methods for saving directories in the Root and the QOpenSys file systems” on page 94
This information describes common save methods for directories in the Root and the QOpenSys file

systems information.

 “Methods for saving IBM-supplied document library objects and folders” on page 94
This information describes common save methods for saving IBM supplied document library objects.

106 System i: Backing up your system

“Saving system information” on page 55
Use the Save system information (SAVSYSINF) command to perform a partial save of the data saved

by the Save system (SAVSYS) command.
 Related information

 SAVLICPGM

Save-while-active and your backup and recovery strategy

How your save-while-active function fits into your backup and recovery strategy depends on whether

you will reduce or eliminate your save-outage time. These pages contain information to help you decide

how you will use the save-while-active function. It also contains pages with technical descriptions of the

save-while-active function.

How the save-while-active function fits into your backup and recovery strategy depends on if you plan

to reduce or eliminate your save-outage time.

 Related concepts

 “Eliminating save-outage time: Overview” on page 125
This information tells you what happens when you use the save-while-active function to eliminate

your save-outage time.

 “Reducing save-outage time: Overview” on page 124
This information tells you what happens when you use the save-while-active function to reduce your

save-outage time.

Reducing your save-outage time: Reducing your save-outage time is the easiest way to use the

save-while-active function. When you use this option, the restore procedure is the same as when you

perform a standard save. In addition, you can use the save-while-active function to reduce your

save-outage time without using journaling or commitment control. Unless you have no tolerance for a

save-outage time, you should use the save-while-active function to reduce your save outage.

Eliminating your save-outage time: You can use the save-while-active function to eliminate your save

outage. Use this option only if you have no tolerance for a save-outage time. You should use the

save-while-active function to eliminate your save-outage time only for objects that you protect with

journaling or commitment control. In addition you will have considerably more complex recovery

procedures. You should consider these more complex recovery procedures in your disaster recovery plan.

Making your decision: This topic might help you decide how the save-while-active function fits into

your backup and recovery plan. Review your applications. Other procedures that you use in your backup

and recovery strategy still apply. You should still consider them when you review your backup and

recovery procedures. You might conclude one of the following:

v Your current save strategy is adequate for your scheduled save-outage time.

v Critical application libraries are candidates for save-while-active processing.

v Your critical application libraries are candidates, but might require modification to minimize recovery

procedures.

v Critical documents or folders are candidates.

v All application libraries are candidates because of a compressed save-outage time.

v You will use save-while-active to reduce your save-outage time because you can tolerate a small save

outage time.

v You will use save-while-active to eliminate your save-outage time for the following reasons:

– You have no tolerance for a save-outage time.

– You are already using journaling and commitment control.

– You plan to use journaling and commitment control.

The following pages may help you make an informed decision on how to use the save-while-active

function.

Backing up and recovering your system 107

Save-while-active function:

The save-while-active function is an option on several i5/OS save commands. It allows you to save parts

of your system without putting your system in a restricted state.

 You can use the save-while-active function to reduce your save outage or to eliminate your save outage.

 Related concepts

 “Save-while-active restrictions” on page 115

How it works: i5/OS objects consist of units of storage, which are called pages. When you use the

save-while-active function to save an object, the system creates two images of the pages of the object:

v The first image contains the updates to the object with which normal system activity works.

v The second image is an image of the object at a single point in time. The save-while-active job uses this

image to save the object to the media.

In other words, when an application makes changes to an object during a save-while-active job, the

system uses one image of the object’s pages to make the changes. At the same time, the system uses the

other image to save the object to the media. The image that the system saves does not have the changes

you made during the save-while-active job. The image on the media is as it existed when the system

reached a checkpoint.

Checkpoints: The checkpoint for an object is the instant in time that the system creates an image of that

object. The image that the system creates at that instant in time is the checkpoint image of the object.

Creating a checkpoint image is similar to taking a photograph of a moving automobile. The point in time

that you took the photograph would equate to the checkpoint. The photograph of the moving automobile

would equate to the checkpoint image. When the system has finished making the checkpoint image of

the object, the object has reached a checkpoint.

Despite the name save-while-active, you cannot change objects while the system obtains their checkpoint

images. The system allocates (or locks) objects as it obtains checkpoint images. After the system obtains

the checkpoint images, you can change the objects.

Synchronization: When you save more than one object, you must choose when the objects will reach a

checkpoint in relationship to each other. This is synchronization. There are three kinds of synchronization:

v Full synchronizationWith full synchronization, the checkpoints for all of the objects occur at the same

time. The checkpoints occur during a time period in which no changes can occur to the objects. IBM

strongly recommends that you use full synchronization, even when you are saving objects in only one

library.

v Library synchronizationWith library synchronization, the checkpoints for all of the objects in a library

occur at the same time.

v System-defined synchronizationWith system-defined synchronization, the system decides when the

checkpoints for the objects occur. The checkpoints for the objects may occur at different times resulting

in complex restore procedures.

Save-outage time: The amount of time during the backup process that you cannot use the system is the

save-outage time. You can use the save-while-active function to reduce or eliminate your save outage.

The easiest and recommended way to use the save-while-active function is to reduce your save-outage

time. You can reduce your save-outage time by ending your applications that change objects. You can

restart the applications after the system has reached a checkpoint for those objects. You can choose to

have the save-while-active function send a notification when it completes the checkpoint processing. After

the save-while-active function completes checkpoint processing, it is safe to start your applications again.

When you use the save-while-active function in this way, the save-outage time can be much less than

with normal save operations.

108 System i: Backing up your system

You can also use the save-while-active function to eliminate your save-outage time. When you use the

save-while-active function to eliminate your save-outage time, you do not end the applications that make

changes to the objects you save. However, the save operation affects the performance and response time

of your applications. You should also use journaling or commitment control for all of the objects you are

saving when using save-while-active in this way. Using the save-while-active function to eliminate your

save-outage time may also greatly increase the complexity of your recovery procedures.

Save-while-active commands: The save-while-active function is an option on the i5/OS save commands

listed below:

 Command Function

SAVLIB Save Library

SAVOBJ Save Object

SAVCHGOBJ Save Changed Objects

SAVDLO Save Document Library Objects

SAV Save

SAVRSTLIB Save/Restore Library

SAVRSTOBJ Save/Restore Object

SAVRSTCHG Save/Restore Changed Objects

SAVRSTDLO Save/Restore Document Library Objects

SAVRST Save/Restore

Checkpoint processing with save-while-active:

Checkpoint processing occurs after the system determines exactly which objects it will save for a

particular library. If the save-while-active request is for multiple libraries, then the system performs

checkpoint processing for all libraries in the save request.

 Checkpoint processing does not require that the system maintain two complete copies of the objects you

are saving. The system only maintains two copies of the pages of the object that the applications are

changing while you are performing the save. The more pages that applications change for an object

during the save-while-active request, the greater the storage requirement for the object. After the system

completes checkpoint processing to create the checkpoint image of the page, performance decreases

slightly for the first update to a page. The performance impact varies depending on the disk type,

available disk storage, and processor model. Further updates to the same changed page do not require

any additional processing with respect to the checkpoint version of the page.

The following figure shows how the system maintains a checkpoint image of an object during a

save-while-active operation. The shaded parts of the diagram represent the checkpoint version of the

object. An explanation of the steps follows the figure.

Backing up and recovering your system 109

The figure above shows a timeline with T1 — T5:

1. Time T1 is the save preprocessing phase of the save-while-active operation. The object reaches a

checkpoint at the end of time T1.

2. Time T2 shows an update to the object, referred to as C1. The update occurs while the

save-while-active request saves the object to the media.

a. An application makes a request to update C1.

b. The system first makes a copy of the original page.

c. The applications make the change to the object.
The original page copied is then part of the checkpoint image for the object.

3. Time T3 shows that the object received two additional changes, C2 and C3. Any additional change

requests that are made to the pages of the object already changed for C1, C2, or C3 do not require any

additional processing. At the end of time T3, the save-while-active request has completely saved the

object to the media.

4. Time T4 shows that the system no longer maintains copied pages for the checkpoint image of the

object because the system no longer needs them.

5. Time T5 shows the object on the system has the C1, C2, and C3 changes. But the copy, or image, of

the object saved to the media does not contain those changes.

 Related concepts

Save post-processing
Checkpoint image being
saved to media

Checkpoint
processing
complete

End of
save
request

Start of
save
request

C2

C1

C3

C2

C1

C3

Object to
be saved

Object on
the system
after the
save

Object on
the save-
while-
active
media

C2

C3

Checkpoint image
completely saved
to media

Pages of the
object before
updates C1,
C2, and C3
are made

Additional
updates
C2 and C3
made to the
object

Pages used
for checkpoint
image no
longer
maintained

The image of the object saved to the media is the conceptual
image of the object after checkpoint processing is completed.

Save preprocessing

a. Request to
make update
C1 to the
object

b. Copy
unchanged
page of the
object

c. Make update
C1 to the
object

C1C1

T1 T2 T3 T4 T5

RV2W419-2

Figure 6. System management of updates to objects after checkpoint processing is complete

110 System i: Backing up your system

“Commitment control with save-while-active” on page 112
This information applies if you are using commitment control and save-while-active to eliminate your

save-outage time. This information applies only if you are not specifiying *NOCMTBDY for handling

pending record changes on the SAVACTWAIT parameter.

Timestamp processing with save-while-active:

The save-active-time for an object can be useful when you determine which recovery procedures to use

after you restore objects from the media.

 All of the changes made to the object before the save active timestamp will be present for the object on

the save-while-active media. The changes made to the object after the save active timestamp will not be

present for the object on the save-while-active media.

If you specify UPDHST(*YES) on the save command, the system records the date and time that it

performs a save operation for an object. The system takes the timestamp early during the save

preprocessing phase. The timestamp identifies when the save operation started for the object. This

timestamp is the save-time for the object. Multiple objects that you save with one save request will have

the same save time if they all reside in the same library. This timestamp displays in the save date/time

field when you use the Display Object Description (DSPOBJD) command displays.

The save-while-active function introduces an additional timestamp that relates to save processing. This

additional timestamp is the save-active-time for an object. The save-active-time identifies the time an

object that you saved with the save-while-active function object reached the checkpoint. The

save-active-time is the same for all of the objects that reach a checkpoint together.

When you use the Display Object Description (DSPOBJD) command, the save-active-time displays in the

save active date/time field. The system only updates the save-active-time for an object if you specify

UPDHST(*YES) on the save command when you request the save-while-active operation.

Some objects do not require special save-while-active checkpoint processing. Therefore the

save-while-active timestamp is the same time that the object’s description is saved. Examples of this are

object types *JOBQ and *OUTQ that have only their descriptions saved, not their contents. This is also

true for files that do not have any members.

For physical file members, the last save date/time information that the DSPFD command identifies is

either the last save-time or the last save-active-time. The information that displays depends on which

type of save operation you last performed for each of the members.

The recovery considerations do not apply if you are using the save-while-active function to reduce your

save-outage time.

 Related tasks

 “Recommended recovery procedures after eliminating save-outage time” on page 134
If you perform save-while-active operations to eliminate save outage time and you specified

*NOCMTBDY for the SAVACTWAIT pending record changes value, you can be left with objects that

are saved with partial transactions.
 Related information

 Journal management

Recovery procedure considerations: This consideration applies to journaled objects that are saved with the

save-while-active function. The start of save journal entry in journal contains both the save-time and

save-active-time. The object saved journal entry in the journal also contains both the save-time and

save-active-time. Look for the journal entry that identifies when the journaled file member reached the

checkpoint. All journal entries after this journal entry for a journaled object will not be reflected in the

Backing up and recovering your system 111

data that is saved during a save-while-active operation. This information may be useful when you

determine what recovery procedures are necessary after restoring journaled objects from the

save-while-active media.

Commitment control with save-while-active:

This information applies if you are using commitment control and save-while-active to eliminate your

save-outage time. This information applies only if you are not specifiying *NOCMTBDY for handling

pending record changes on the SAVACTWAIT parameter.

 If an object receives updates under commitment control during the checkpoint processing phase of a

save-while-active operation, the system saves the object at a commitment boundary. The system saves all

objects that reach a checkpoint together at the same common commitment boundary.

During the save preprocessing phase of a save-while-active request, the system ensures that it saves the

objects commitment boundary as follows:

v If the job performing the save-while-active request is not currently at a commitment boundary, the save

request ends without saving any objects. This processing is the same for any save request.

v If updates are in progress for any objects in a group that are reaching a checkpoint together, the system

delays the checkpoint. The checkpoint resumes when all of the transactions reach a commitment

boundary. The system waits the amount of time specified on the second element of SAVACTWAIT

parameter for these transactions to reach a commitment boundary. If uncommitted transactions still

exist when the specified time expires, the save request ends.

v The system identifies which jobs have commitment definitions that are not currently at a commitment

boundary and are delaying the checkpoint processing. The system waits until uncommitted

transactions delay checkpoint processing for a group of objects for approximately 30 seconds. The

system then sends a CPI8365 message to the QSYSOPR message queue for each job that is delaying the

save-while-active request. After you receive these messages, you can then take the appropriate actions

to bring all commitment definitions for those jobs to a commitment boundary.

v When no more commitment definitions are delaying the save-while-active job, the save-while-active job

completes the checkpoint processing for the objects. After the checkpoint processing ends, the system

allows changes for those objects under commitment control.

v If a commitment definition has uncommitted changes, it could possibly delay a save-while-active

request. The uncommitted changes could delay the save-while-active request even though the changes

are not for any database files. This situation can occur if you are journaling any of the database files to

the same journal as the commitment definition is using for unrelated, uncommitted changes and if you

specify a value greater than 0 for the second element of the SAVACTWAIT parameter.

v If an application is performing a read-for-update operation but no changes have been made, the

application is considered to have started a commit cycle. The system allows a checkpoint to be

established in the middle of a commit cycle as long as no changes have been made. Checkpoint

processing does not stop if the application is performing only a read-for-update operation.

v The system temporarily delays a job that has all commitment definitions at a commitment boundary

when both of the following are true:

– When it is likely that an application will change an object that is under commitment control

– When that object is reaching a checkpoint

The system holds that job until the objects reach a checkpoint, or the checkpoint processing for the

object exceeds the time specified on the SAVACTWAIT parameter. During the time the system delays a

job at a commitment boundary, the Work Active Job (WRKACTJOB) command displays CMTW as the

job status.

 Related concepts

 “Performance considerations for save-while-active” on page 113
While you can run save-while-active operations any time, save-while-active operations will affect the

performance of other applications you are running.

112 System i: Backing up your system

Related tasks

 “Checkpoint processing with save-while-active” on page 109
Checkpoint processing occurs after the system determines exactly which objects it will save for a

particular library. If the save-while-active request is for multiple libraries, then the system performs

checkpoint processing for all libraries in the save request.

Commitment control with save-while-active and *NOCMTBDY: This information applies if you are using

commitment control and save-while-active to eliminate your save-outage time. This information applies

only if you specified *NOCMTBDY for handling pending record changes on the SAVACTWAIT

parameter.

v If the job performing the save-while-active request is not currently at a commitment boundary, the save

continues and objects are saved with partial transactions.

v If updates other than pending record changes are in progress for any objects in a group that are

reaching a checkpoint together, the system delays the checkpoint. The checkpoint resumes when all of

the transactions reach a commitment boundary. The system waits the amount of time specified on the

third element of SAVACTWAIT parameter for these transactions to reach a commitment boundary. If

uncommitted transactions still exist when the specified time expires, the save request ends.

Considerations and restrictions for the save-while-active function:

The save-while-active function affects important aspects of your system such as performance, auxiliary

storage, and commitment control. The pages that follow contain considerations and restrictions in regard

to these aspects of your system.

 The pages that apply to you depend on whether you are reducing or eliminating your save-outage time.

Use dynamic device allocation to allocate tape drives more efficiently.

Performance considerations for save-while-active:

While you can run save-while-active operations any time, save-while-active operations will affect the

performance of other applications you are running.

 You should run save-while active operations during times of low system activity. A few interactive jobs or

batch jobs that are primarily read-only, are examples of activities that allow better system performance

during the save-while-active operation.

In general, the system performs checkpoint processing faster for a small number of larger objects than for

a large number of smaller objects.

You should not use the save-while-active function when the system is very busy or when there is very

little disk storage available. Before you save large amounts of data (such as all user libraries), you should

initially use the save-while-active function on a limited amount of data. Using the save-while-active

feature on a limited amount of data will help you determine its impact on your system’s performance

and storage.

 Related concepts

 “Save-while-active restrictions” on page 115

 “Commitment control with save-while-active” on page 112
This information applies if you are using commitment control and save-while-active to eliminate your

save-outage time. This information applies only if you are not specifiying *NOCMTBDY for handling

pending record changes on the SAVACTWAIT parameter.

Central processing unit (CPU) and save-while-active:

Backing up and recovering your system 113

The relationship between the system’s CPU and a save-while-active operation depends on the available

CPU capacity and the characteristics of other jobs on the system

Available CPU capacity: The amount of CPU capacity that is available for the save process can have a

large influence on the time required for the save operation to complete. Therefore, be prepared for the

save-while-active operation to take longer than a save operation on a restricted system. The change in the

time required for the save operation to complete may be as little as 10 percent longer to four to five times

longer or more. This depends on the system resources that are available for the save. As a guideline,

allow only about 30% of the CPU for workloads that are running in the background.

Characteristics of other jobs on the system: The active jobs during a save-while-active operation can affect

both the response time and the duration of the save operation. Try to use the save-while-active function

when CPU utilization is low and the amount of update activity on the system is low.

Auxiliary storage activity and save-while-active:

When choosing the time period for a save-while-active operation, evaluate the activity in auxiliary

storage without save-while-active processing.

 Ideally, disks should be less than 30 percent busy before adding the activity for the save operation. This is

due to the heavy auxiliary storage activity that is added with the save-while-active operation.

Main storage (memory) and save-while active:

How a save-while-active operation affects main storage depends on three items,

v Pageable size of the machine pool

v Job priority and pool usage

v Number and size of objects

Pageable size of the machine pool: Additional pages are required in the machine pool for the system to use

during the save-while-active operation. Additionally, saving many small objects or file members places

additional requirements on the pageable portion of the machine pool. You should consider the addition of

1200KB to the machine pool a minimum. Additional memory may improve the response time and the

save-time.

Additional megabytes of storage for the machine pool may help performance if saving thousands of

small objects or file members (less than 50KB object sizes). You should monitor the machine pool for

paging activity.

Job priority and pool usage: You must decide which jobs have priority: the save operation or the other

activity on the system. You should give the save operation a lower priority than the interactive jobs, but a

higher priority than other batch jobs. This priority will maintain the best response time for interactive

jobs, but still allow the save to complete as quickly as possible. In addition, separate the save operation

from other work on your system by using a separate memory pool. The size of this separate pool should

be a minimum of 10MB (16MB if you are using a high speed tape device). The full synchronization and

library synchronization options generally require a few additional megabytes of memory. If there are

thousands of objects or file members in the save-while-active operation, you should add more memory to

the memory pool. This is especially true if the objects are small. To determine the correct pool size for

your system, monitor the paging activity in the pool during a save and adjust the memory as necessary.

However, if the pool is a shared memory pool, then the settings in the system value, QPFRADJ, will

adjust its performance.

Number and size of objects: If you are saving many small objects or file members, the paging in the

machine pool may increase. You should monitor paging in the machine pool. You should take steps to

minimize paging to maintain better overall system performance. These recommendations are also apply

for normal save and restore operations.

114 System i: Backing up your system

DLO activity and save-while-active:

If the save-while-active operation is run at a time when users are updating document library objects

(DLO), the save-while-active process may affect these users.

 When users are changing document library objects, they may notice a delay if the save-while-active

operation is performing checkpoint processing for the document library objects.

For example, an application may be editing a document while a save-while-active operation is running. It

is possible that the application could attempt to update the document when the save-while-active

operation is performing checkpoint processing on that document. If that happens, the application will

probably wait until checkpoint processing completes before it can make the update. If the

save-while-active job is running at low priority, or on a busy system, the application may wait for an

extended time.

If the save-while-active operation does not complete checkpoint processing for the document library

objects within 30 minutes, the user function ends abnormally. The abnormal end of the user function

indicates there is a problem. The system administrator should determine why the save-while-active

process is taking an excessive amount of time for the document library objects to reach a checkpoint.

Then, the system administrator should take the appropriate action to correct the problem. This may

require contacting your service representative.

Storage considerations for save-while-active:

The save-while-active function uses more disk storage than normal save operations.

 As applications change the objects in a save-while-active operation, the system makes copies of the data

that reach a checkpoint. The system could run out of available storage if the following happens:

v The data on your system uses a high percentage of the disk capacity.

v A large amount of the data changes during a save-while-active operation.

If the system sends messages that it is running out of storage, you should be prepared to stop the save

operation or some applications.

The full synchronization option uses the most additional storage. The system-defined synchronization

option uses the least additional storage.

 Related concepts

 “Save-while-active restrictions”

Save-while-active restrictions: The following restrictions apply to all of the commands which provide the

save-while-active function.

v The save-while-active function is only available on the commands listed in Save-while-active function.

v You cannot use the save-while-active function in the following situations:

– When all subsystems have ended. If you have ended all subsystems, the save operation is the only

user job that is active. It must finish before you can restart your subsystems and applications. The

following save operations require that you end all subsystems. Therefore, you cannot use the

save-while-active function with these operations:

- Saving the system library

- Saving all libraries

- Saving the entire system
– When freeing or deleting storage during a save operation. If specifying STG(*FREE) or

STG(*DELETE) on a save command, or CHKFORMRK(*YES) on the SAVDLO command, you cannot

use the save-while-active function.

Backing up and recovering your system 115

v You should not use the save-while-active function when the system is very busy or when there is very

little disk storage available. Before you save large amounts of data (such as all user libraries), you

should initially use the save-while-active function on a limited amount of data. Using the

save-while-active feature on a limited amount of data will help you determine its impact on your

system’s performance and storage.

v You should not load, apply, or remove program temporary fixes (PTF)s when running a

save-while-active operation.

v You must issue separate save commands to use the save-while-active function for objects in libraries,

document library objects, and objects in directories. If you need to synchronize objects you are saving

with different commands, first end your applications until all of the objects have reached a checkpoint.

– If you have only one media device, each command must finish before the next can start. If you use

the save-while-active function to reduce your save-outage time, save folders and directories first.

Save libraries last. Saving the objects in this order will probably provide the greatest reduction in the

save-outage time.

– If you have multiple media devices, and you use the save-while-active function to reduce your

save-outage time, save libraries, folders, and directories concurrently. This will probably provide the

greatest reduction in you save-outage time.
v You cannot save objects that you create after the save operation begins.

v You cannot save objects that other jobs are using during checkpoint processing.

v Do not use System Service Tools (SST) functions for objects you are currently saving by a

save-while-active operation.

 Related concepts

 “Save-while-active function” on page 108
The save-while-active function is an option on several i5/OS save commands. It allows you to save

parts of your system without putting your system in a restricted state.

 “Performance considerations for save-while-active” on page 113
While you can run save-while-active operations any time, save-while-active operations will affect the

performance of other applications you are running.

 “Storage considerations for save-while-active” on page 115
The save-while-active function uses more disk storage than normal save operations.

 Related reference

 “Save-while-active object locking rules” on page 117
The object locking rules that the system uses for save-while-active requests are less restrictive than the

rules it uses for other save operations.

Library restrictions:

v Full synchronization is not available when you use save all IBM libraries using SAVLIB LIB(*IBM).

v If you have specified *NOCMTBDY for the SAVACTWAIT parameter, you cannot save any *IBM library

or any library that begins with Q (except for QGPL).

Integrated file system restrictions: Consider the following when using the save-while-active function with

the SAV or SAVRST commands with integrated file systems:

v The wait time option is not available.

v When you are saving objects in libraries or document library objects, the considerations stated for those

objects also apply.

Document library restrictions: Consider the following considerations when you use the save-while-active

function to save document library objects.

v Full synchronization is not available. Only system-defined synchronization is available.

116 System i: Backing up your system

v Checkpoint notification is not available. This means that you cannot determine when it would be safe

to restart your applications that use document library objects. When saving document library objects,

the benefit of the save-while-active function is that objects are allocated for a shorter time than with

normal save operations.

v You may cannot save documents during save-while-active processing if a reclaim operation (RCLDLO

command) is running.

v Folders may not be saved during save-while-active processing if a reorganize operation (RGZDLO

command) or a reclaim operation (RCLDLO command) is running.

v Some applications use application programming interfaces (APIs) or shared folders to work with a

document like a personal computer. When they update document data, they save the updates to a

temporary file. The application does not permanently write changes to the document until the

application session ends. Therefore these applications can update a document while a save-while-active

operation is running.

Other applications update documents directly as the application receives data. For example, some

spreadsheet applications and image applications work this way. If this type of application updates a

document while a save-while-active operation is running, the application does not save document. The

job log receives Diagnostic messages CPF8A80:Document in use and CPF90AC:Document not saved to

indicate that the application did not save the object because the object was in use.

Save-while-active object locking rules:

The object locking rules that the system uses for save-while-active requests are less restrictive than the

rules it uses for other save operations.

 These object locking rules allow users to perform update operations and use most object-level commands

after the system performs checkpoint processing. Generally, the system keeps a shared, no update

(*SHRNUP) lock on the objects through the checkpoint processing. After the establishes checkpoints, the

system unlocks most of the objects. Other objects remain allocated with a shared for read (*SHRRD) lock.

The following table shows the locks a normal save operation holds, by a save-while-active operation

during checkpoint processing, and by a save-while-active operation after checkpoint processing is

complete.

 Table 38. Lock Type Needed for Save Operation

Save-While-Active

Object Type SAVACT(*NO) Establish Checkpoint After Checkpoint

Most object types *SHRNUP *SHRNUP None

Configuration object None

1 1

Data area *SHRNUP *SHRRD None

Database members *SHRNUP *SHRRD None

Document *SHRNUP *SHRRD None

Folder *SHRRD *SHRRD None

Job queue *SHRRD *SHRRD None

Journal *SHRRD *SHRRD None

Journal receiver *SHRRD *SHRRD *SHRRD

Library, when the library or an object in it is

being saved

*SHRUPD *SHRUPD *SHRRD

Output queue *SHRRD *SHRRD None

Product load *SHRNUP *SHRNUP *SHRRD

Spooled file *EXCL *EXCL

5

System resource management object *SHRNUP

1 1

User profiles, authorization lists, and

authority holders

*SHRRD

1 1

Object, if STG(*FREE) is specified *EXCL2 1 1

Backing up and recovering your system 117

||

Table 38. Lock Type Needed for Save Operation (continued)

Save-While-Active

Object Type SAVACT(*NO) Establish Checkpoint After Checkpoint

Objects in directories Share with readers Share with readers3, 4 Share with readers

and writers3

1 The save-while-active function is not available when saving these objects.

2 Applies to document, file, journal receiver, module, program, SQL package, and service program. Other

types remain as listed previously.

3 Objects in QNTC are not synchronized with SAVACT(*SYNC). Furthermore, all locks for these file systems

will be released before the checkpoint message is sent.

4 Objects that are saved with SAVACTOPT(*ALWCKPWRT) and have the QP0L_ATTR_ALWCKPWRT system

attribute set, have an implied share with readers and writers lock.
5 A lock is held that prevents another save action against the spooled file. All other spooled file actions, such

as displaying, copying, deleting, and printing, are allowed.

These locking rules pertain to object-level locks and not database record-level locks. The locking rules

allow the opening and closing of database file members and any record-level I/O operations to database

file members during any phase of the save-while-active operation.

 Related concepts

 “Save-while-active restrictions” on page 115

Object locking: During save-while-active checkpoint processing:

During checkpoint processing, these locking rules can conflict with object-level lock types of exclusive

allow read (*EXCLRD); exclusive, no read (*EXCL); and share update (*SHRUPD).

 Some object-level system commands and user applications can acquire these lock types. User applications

that acquire these object-level locks generally conflict with save-while-active operations until the

checkpoint processing is complete for the objects. User applications that use system commands that

require these object-level locks also conflict with save-while-active operations until the checkpoint

processing is complete for the objects. Lock conflicts can prevent the save operation from saving the

object. Lock conflicts can also can prevent applications from using the object. To eliminate lock conflicts

during checkpoint processing, you should end your applications until checkpoint processing is complete.

If you are saving spooled files with SPLFDTA(*ALL) specified, quiesce your spooling writers until

checkpoint processing is complete. To quiesce the spooling writers, hold the output queues of each

spooling writer or end the spooling writer.

In general, checkpoint processing operations prevent the following list of operations from occurring for

objects you are saving.

v Changing an object

v Deleting an object

v Renaming an object

v Moving an object to a different library or folder

v Changing the ownership of an object

v Compressing or decompressing an object

Object locking: After save-while-active checkpoint processing:

After completing checkpoint processing, an attempt to perform one of the operations that are listed in

this topic will result in a message stating that the library is in use.

118 System i: Backing up your system

||
|

|
|
|

v Performing additional save or restore operations on objects or libraries being saved

v Deleting, renaming, or reclaiming a library from which objects are being saving.

v Loading, applying, removing, or installing PTFs that affect a library from which objects are saved

v Saving, restoring, installing, or deleting licensed programs that contain a library from objects you are

saving

In addition, the following object types have operations that are restricted after checkpoint processing is

complete. An attempt to perform one of the operations that are listed below the following objects below

will result in a message stating that the object is in use:

*FILE-PF (physical file):

v Using the Change Physical File (CHGPF) command with the parameter specifications of SRCFILE,

ACCPTHSIZ, NODGRP, or PTNKEY to change a physical file.

v Using an SQL Alter Table statement to change a physical file.

*JRN (journal):

v Deleting a journal with an associated journal receiver.

v Using the Work with Journal (WRKJRN) interface to recover a journal that has an associated journal

receiver you are saving.

*JRNRCV (journal receiver):

v Deleting or moving the journal receiver.

v Deleting the journal with which the receiver is associated.

v Using the Work with Journal (WRKJRN) interface to recover a damaged journal receiver.

*PRDLOD (product load):

v Deleting, moving, or renaming the product load.

Restrictions for commitment control with save-while-active:

Restrictions for commitment control with save-while-active consist of object-level resource restrictions and

application programming interface (API) resource restrictions.

 Related information

 Commitment Control

Object-level resource restrictions: You cannot make object-level resource changes for objects under

commitment control that are in the object-level resource library while the system performs checkpoint

processing for those objects. You cannot make object-level resource changes if either of the following are

true:

v The commitment definition is at a commitment boundary.

v Only record-level changes have been made in the uncommitted transaction.

For this situation, the change does not occur until the save-while-active request completes checkpoint

processing for the library. After a delay of approximately 60 seconds, you receive inquiry message

CPA8351. The inquiry message allows you to continue to wait for the checkpoint processing to complete

or to cancel the request for the object-level resource. If the job is a batch job, the QSYSOPR message

queue receives inquiry message CPA8351.

Application programming interface (API) resource restrictions: You can register an API resource within a

commitment control transaction with the QTNADDCR API. If you set the Allow save while active field

to Y when you use this API, the considerations in this topic do not apply.

Backing up and recovering your system 119

You cannot place resources under commitment control if the system is performing checkpoint processing

for any save-while-active request and either of the following are true:

v With the Add Commitment Resource API (QTNADDCR program), the commitment definition is at a

commitment boundary.

v Only record-level changes have been made in the uncommitted transaction.

For this situation, the add is delayed until checkpoint processing is complete for the save-while-active

request. After a delay of approximately 60 seconds, you receive inquiry message CPA8351. The inquiry

message allows you to continue to wait for the checkpoint processing to complete or to cancel the request

for the API resource. If the job is a batch job, the QSYSOPR message queue receives the inquiry message

CPA8351.

If a commitment definition has an API commitment resource associated with it, and checkpoint

processing is being performed for any save-while-active request, then the job performing a commit or

rollback operation for the commitment definition is delayed immediately after the commit or rollback has

been performed. The system delays the job until the completion of checkpoint processing for the

save-while-active request. After the checkpoint processing is complete, control is returned back to the job

issuing the commit or rollback. This delay is necessary because a commitment definition with an API

commitment resource is only considered to be at a commitment boundary immediately after a commit or

rollback operation but before control is returned to the user program. Once the commit or rollback

operation returns control back to the user program, the commitment definition is no longer considered to

be at a commitment boundary.

Saving to multiple devices to reduce your save window:

Use these save methods to decrease your save window by saving to multiple devices.

 Setting up saves to multiple devices

You can reduce your save window by using multiple devices. When you save to multiple devices you

can use one of two techniques. You can issue a single save operation as one job, or you can issue multiple

save operations as several jobs.

Single save operation

Save (or restore) operations identify a media file by the device (DEV), sequence number (SEQNBR),

volume identifiers (VOL), and file label (LABEL) parameters. These parameters only allow one media file

to be identified. However, a parallel save (or restore) operation uses more than one media file. You can

solve this problem by using a media definition.

A media definition (*MEDDFN) allows you to identify more than one media file. A media definition

defines the devices, sequence numbers, and volume identifiers that the parallel save operation will use.

A media definition also allows you to specify whether to save the data in parallel or serial format and

whether to use dynamic device allocation.

You create a media definition by using the Create Media Definition (QsrCreateMediaDefinition (ILE) or

QSRCRTMD (OPM)) API.

Multiple save operation

When you issue multiple save operations to save different sets of data to different media devices, you

perform concurrent saves. The following scenarios provide some examples of situations when you may

want to perform concurrent saves within the Integrated File System.

v Save the complete Integrated File System structure and all user libraries concurrently:

120 System i: Backing up your system

|
|

|
|

|
|

SAV DEV(’/QSYS.LIB/TAP01.DEVD’) OBJ((’/*’) (’/QSYS.LIB’ *OMIT) (’/QDLS’ *OMIT))

SAVLIB LIB(*ALLUSR) DEV(TAP02)

v Save separate unmounted user-defined file systems concurrently:

SAV DEV(’/QSYS.LIB/TAP01.DEVD’) OBJ((’/dev/udfs-directory/udfs-01.udfs’)

SAV DEV(’/QSYS.LIB/TAP02.DEVD’) OBJ((’/dev/udfs-directory/udfs-02.udfs’)

Saving libraries to multiple devices for a single save operation:

You can perform a save operation while using more than one media device simultaneously.

 A traditional save to a single device produces one or more tape files on the tape media. A media file is

produced for each saved library. When data is saved to multiple devices in a single operation, the data

can be saved in parallel format. The data in each media file is spread across each device. Each device

may contain pieces of each saved object. When saving multiple libraries to multiple devices in a single

operation, the data can also be saved in serial format. The data for each media file is entirely written to

one device. Each device contains entire libraries.

You can perform a save operation while using more than one media device simultaneously. If you save a

single library, the data that is produced on the save media will have a parallel save format. The data is

spread across the media devices. If you use Backup, Recovery and Media Services (BRMS), the save

format is also parallel.

If you save multiple libraries to more than one media device, the system saves each library to a single

device in serial format. If you use BRMS to save multiple libraries to more than one media device, the

format could be a mixture of parallel and serial formats.

The following shows when the system will use a parallel or serial save.

Note: This table shows the default format. However, you now have the capability to specify the media

definition and how the devices will be allocated.

 Table 39. Library parallel and serial saves

Save scenario Using SAVLIB, SAVOBJ command

2 Using BRMS

Save one library to multiple devices Parallel Parallel

Save multiple libraries to multiple

devices

Serial1 Could be a mixture of parallel and

serial1

1 You can save these libraries in parallel format by creating data area QTEMP/QSRPARFMT. This capability

does not apply if LIB(*ALLUSR), LIB(*IBM), or LIB(*NONSYS) is specified on the SAVLIB command.

Note: This function is now available through the Create Media Definition (QSRCRTMD) API.

2 To save to multiple devices using the SAVxxx commands, you must use a media definition (*MEDDFN).

This table shows the correlation between the libraries being saved and some possible results of the media

files that are produced.

 Table 40. Libraries saved

Data saved Number of devices Format Tape media files produced

Library A 1 Serial A

Library A 2 Parallel Device 1: A

Device 2: A

Libraries A, B, C, D 1 Serial A, B, C, D

Libraries A, B, C, D 2 Parallel Device 1: A, B, C, D

Device 2: A, B, C, D

Backing up and recovering your system 121

|
|

|
|

||

||||

||||

||||
|

||||

||||
|

Table 40. Libraries saved (continued)

Data saved Number of devices Format Tape media files produced

Libraries A, B, C, D 2 Serial Device 1: A,C

Device 2: B, D

Once you create a media definition, a convenient way to save all of your user libraries to multiple

devices is to specify SAVLIB LIB(*ALLUSR) DEV(*MEDDFN). If you happen to have a particularly large

library that you do not want to save in serial format, you could omit that library and save it individually

in parallel format.

Backup Recovery Media Services (BRMS) provides an easy to use interface that allows you to perform

parallel save operations without creating a media definition. You specify which tape devices to use in

parallel, and BRMS builds and manages the media definition for you.

Saving the Integrated File System using multiple devices for a single save operation:

A traditional save to a single device produces one tape file on the tape media. You can perform a save

operation while using more than one media devices simultaneously.

 Integrated File System data saved by a single SAV command using multiple devices will be in a parallel

save format. The data is spread across the media devices. If you use Backup, Recovery and Media

Services (BRMS), the save format is also parallel.

Note: Using a media definition to save your Integrated File System data to a single device specified in a

*MEDDFN is the same as specifying that device on the SAV command. It is not beneficial to use a

*MEDDFN when saving to a single device. The data is saved in serial format.

 Table 41. Integrated File System parallel saves

Save scenario Using SAV command Using BRMS

Save integrated file systems to

multiple devices

Parallel Parallel

This table shows the correlation between the Integrated File System being saved and the name of the

media files being produced.

 Table 42. Integrated File System saved

Data saved Number of devices Format Tape media files produced

Integrated File System data 1 Serial SAVdatetime

Integrated File System data 2 Parallel Device 1: SAVdatetime

Device 2: SAVdatetime

Once you create a media definition, a convenient way to save the entire Integrated File System to

multiple devices is to specify SAV DEV (’/QSYS.LIB/Y.LIB/X.meddfn’) OBJ ((’/*’) (’/QSYS.LIB’ *OMIT)

(’/QDLS’ *OMIT).

Backup Recovery Media Services/400 (BRMS) provides an easy to use interface that allows you to

perform parallel save operations without creating a media definition. You specify which tape devices to

use in parallel, and BRMS builds and manages the media definition for you.

1.

Note: Performing a parallel save with large objects may improve performance. However, if saving

small objects, the performance may decrease.

122 System i: Backing up your system

|

||||

||||
|
|

|

|

|
|

|
|
|

|
|
|

||

|||

|
|
||

|

|
|

||

||||

||||

||||
|
|

|
|
|

|
|
|

|

|
|

2.

Note: Restoring individual objects from a parallel save may take a substantial amount of time.

Dynamic device allocation:

Dynamic device allocation allows you to allocate tape devices as they are needed.

 There are three ways to allocate your tape devices.

v All tape devices needed for the save operation are allocated in the beginning.

v Only one tape device is allocated at the beginning of a save operation. The maximum number of

devices are allocated when data is ready to be written.

v The number of devices specified for the minimum parallel device resources field is allocated at the

beginning of a save operation. Additional devices are allocated when data is ready to be written.

Note: Use the Create Media Definition API to specify your preferred value.

Dynamic tape allocation restrictions

v Initially all of the save operations will continue to allocate at least one device. Any operation that does

not use a media definition will allocate its device at the beginning of the operation.

v Devices will not be dynamically deallocated.

v The dynamically allocated devices will be limited to these points in time

– After a save-while-active checkpoint.

– When the initial library data is ready to be written to an available device.

Restrictions for saving to multiple devices:

The devices that you specify in a media definition must be compatible standalone tape devices or tape

media library devices.

 The tape volumes that you specify must have compatible media formats.

Note: Your results may depend on the device type that you use. This is because different device types

may identify different formats for the same media. For example, one 8 mm device may identify a

tape as having an FMT7GB format, while a different 8 mm device might identify the same tape as

having an FMT5GB format.

You may use a media definition on the following commands and APIs:

 Name API1 Command2

Save Library SAVLIB

Save Object QSRSAVO SAVOBJ

Save QsrSave SAV

Save Changed Object SAVCHGOBJ

Restore Library RSTLIB

Restore Object (Library) RSTOBJ

Restore Object Integrated File System QsrRestore RST

Create Media Definition

 QsrCreateMediaDefinition

QSRCRTMD

Delete Media Definition

 QsrDeleteMediaDefinition

QSRDLTMD

DLTMEDDFN

Backing up and recovering your system 123

|

|

|

|

|

|

|
|

|
|

|

|

|
|

|

|

|

|

|

Name API1 Command2

Retrieve Media Definition

 QsrRetrieveMediaDefinition

QSRRTVMD

1 For more information regarding these APIs, refer to System API reference.

2 For more information regarding these CL commands, refer to System CL Command reference.

You must have *USE authority to the media definition, *EXECUTE authority to the media definition

library, and normal save or restore authority for each device you specify in the media definition.

You cannot use a media definition if the save or restore command or API specifies any of the following:

v Volume identifiers

v A sequence number

v A save file

v An optical file

You cannot use a media definition if your system has been enabled for CD-ROM premastering by using

the Handle CD-ROM Premastering State (QlpHandleCDState) API.

Parallel format and media definition usage restrictions

v SAVLIB LIB(*ALLUSR, *IBM, *NONSYS) cannot save data in parallel format. You will receive this error

message if you specify a media definition in parallel format.

v A media definition cannot be used to restore a list of libraries or generic libraries.
 Related information

 API finder

 System CL Command reference

 BRMS

 Create Media Definition (QsrCreateMediaDefinition (ILE) or QSRCRTMD (OPM))

Reducing save-outage time: Overview

This information tells you what happens when you use the save-while-active function to reduce your

save-outage time.

Reducing your save-outage time is the recommended way to use the save-while-active function. To

reduce your save-outage time, you can end the applications that make changes to the objects you are

saving. You can restart the applications when the system has established a checkpoint for

application-dependent objects.

An application-dependent object is any object that applications use and update. By using the

save-while-active to reduce your save-outage time, you will have to perform no additional recovery

procedures when you restore the objects.

You can specify to have the system send you a message when it has completed checkpoint processing of

the following:

v For all objects within a particular library

v For all libraries in the save request

You can start the applications again when all application-dependent objects have reached a checkpoint.

The checkpoint images of the objects that you save then appear as if you performed a dedicated save

during the time the applications were ended.

124 System i: Backing up your system

|

|
|

|

If you are saving objects from multiple libraries and a common application-dependency that spans the

libraries exists, do not restart the applications right away. You should wait until checkpoint processing

has completed for all the libraries in the save request. When the checkpoint processing has completed for

all the libraries, you can then restart the applications.

This method can substantially reduce your save-outage time, even though it does not eliminate it.

 Related concepts

 “Reducing your save-outage time” on page 129
Use the save-while-active function to reduce your save-outage time. This is the easiest way to use the

save-while-active function.

 “Save-while-active and your backup and recovery strategy” on page 107
How your save-while-active function fits into your backup and recovery strategy depends on whether

you will reduce or eliminate your save-outage time. These pages contain information to help you

decide how you will use the save-while-active function. It also contains pages with technical

descriptions of the save-while-active function.

Eliminating save-outage time: Overview

This information tells you what happens when you use the save-while-active function to eliminate your

save-outage time.

The save-while-active function can eliminate your outage for particular save operations by not waiting

for applications to end before starting the save procedure. However, you will have more complex and

longer recovery procedures after restoring objects from the media.

You will have more complex recovery procedures because eliminating your save-outage time saves

objects at different application boundaries. For save-while-active purposes, an application boundary is a

point in time:

v When all of the objects that a particular application is dependent upon are at a consistent state in

relationship to each other.

v When the objects are also in a state where you can start or restart the application.

When you choose to eliminate your save-outage time, applications can update the objects you are saving

before the objects reach a checkpoint. When this happens the system cannot determine if the images of

those objects reached application boundaries when you restore those objects. Therefore at restore time,

you need to define recovery procedures to bring those objects to a common application boundary. You

will need these recovery procedures to bring the objects to a consistent state in relationship to each other.

For this reason you should protect the objects you are saving with journaling or commitment control.

Furthermore, if you do not use commitment control, partial transactions can be saved without your

knowledge. When you use commitment control, you can choose to have the save operation save all

objects at transaction boundaries. However, if applications do not reach commitment boundaries within

the specified time, the save operation will fail.

You should consider each of the following when you determine these recovery procedures:

v If the objects that the applications are dependent on consist entirely of database files or if they depend

on other object types such as integrated file system objects.

v If the objects that the applications are dependent on are in a single library or span multiple libraries.

v If the objects that the applications are dependent on are journaled objects.

v If the changes the applications made to the objects are under commitment control.

 Related concepts

 “Save-while-active and your backup and recovery strategy” on page 107
How your save-while-active function fits into your backup and recovery strategy depends on whether

Backing up and recovering your system 125

you will reduce or eliminate your save-outage time. These pages contain information to help you

decide how you will use the save-while-active function. It also contains pages with technical

descriptions of the save-while-active function.

 “Considerations for recovery procedures after eliminating save-outage time” on page 133
This topic discusses some of the considerations for save-while-active recovery procedures. In general,

the system cannot preserve application boundaries because they are defined by the application. It is

left up to you to provide for any of the appropriate recovery procedures when you use the

save-while-active function to eliminate your save-outage time.

 “Example: Restoring libraries after reducing save-outage time” on page 131
This example shows a typical restore procedure after you reduce save-outage time in a library. Your

exact use of the function may differ, based on your specific application requirements.
 Related tasks

 “Recommended recovery procedures after eliminating save-outage time” on page 134
If you perform save-while-active operations to eliminate save outage time and you specified

*NOCMTBDY for the SAVACTWAIT pending record changes value, you can be left with objects that

are saved with partial transactions.
 Related reference

 “Eliminating your save-outage time” on page 132
Use the save-while-active function to eliminate your save-outage time.

Parameters for the save-while-active function

Use these options to specify how you will use the save-while-active function.

 Related tasks

 “Recommended procedure for reducing your save-outage time” on page 129
Use this general procedure to reduce your outage for particular save operations.

Synchronization-level values for Save Active (SAVACT) parameter:

This table shows which synchronization levels are available for each command and the value to specify

for each level.

 Table 43. SAVACT parameter values

Command Full Synchronization Library Synchronization

System-Defined

Synchronization

 SAVLIB

SAVOBJ

SAVCHGOBJ

*SYNCLIB *LIB *SYSDFN

SAVRSTLIB,

SAVRSTOBJ

 SAVRSTCHG

not available *LIB *SYSDFN

 SAVDLO

SAVRSTDLO

not available not available *YES

SAV

SAVRST

*SYNC not available *YES

Full synchronization:

All objects you are saving reach a checkpoint at the same time. The system then saves them to the media.

IBM strongly recommends that you use full synchronization, even when you are saving objects in only

one library.

126 System i: Backing up your system

It will usually complete checkpoint processing in the least amount of time, and it has the least impact to

your recovery procedures. Because it allocates all objects you are saving before obtaining a checkpoint

image of them, it will usually keep objects locked longer than other options. This option will also use the

most additional storage.

Library synchronization:

All objects in a library reach a checkpoint at the same time. But different libraries reach checkpoints at

different times. This option may be useful if all of the following are true.

v You are saving more than one library.

v Each of your applications is dependent on only one library.

v Full synchronization uses more storage than you have available or it would keep objects locked longer

than your business needs will allow.

 Related concepts

 “Using the precheck option” on page 3
Use the precheck option explains how to have the system check certain criteria on each object that you

save on a library-by-library basis. This option is not required.

System-defined synchronization:

Using this option could cause lengthy recovery procedures. You should only use this option for objects

that you are protecting with journaling or commitment control to avoid extremely complex recovery

procedures.

 Objects you are saving may reach checkpoints at different times. This option will usually keep objects

locked for the shortest period of time and use the least amount of additional storage. But it will usually

take the longest to complete checkpoint processing. It will also result in the most complex recovery

procedures if you do not end your applications during the checkpoint processing. Beginning with V5R3,

when you save objects in libraries, *SYSDFN operates the same as *LIB.

The wait time (SAVACTWAIT) parameter:

The SAVACTWAIT parameter specifies the amount of time to wait for an object that is in use, or for

transactions with pending changes to reach a commit boundary, before continuing the save operation.

 You can specify three wait time elements in the SAVACTWAIT parameter.

 Related tasks

 “Monitoring your save-while-active operation” on page 132
Do the following procedures as they apply if you are using the save-while-active function to eliminate

your save-outage time.

Object locks: The default value is 120 seconds. You can specify the amount of time to wait for the object

to become available. You can specify any number of seconds from 0 to 99999 for object locks, or

*NOMAX to have the save-while-active operation wait indefinitely. If you end your applications before

starting the save operation, specify 0 seconds. If you do not end your applications, specify a value large

enough for your applications to make the objects available.

If an object is not available during checkpoint processing, the save-while-active operation will wait up to

the specified number of seconds for the object to become available. While waiting for an object, the save

operation does nothing else. The save operation may have to wait for several objects. The total time that

the save-while-active operation waits may be much longer than the value specified. If an object does not

become available within the specified time, the object is not saved, but the save operation continues.

Pending record changes: The default value is *LOCKWAIT. You can specify any number of seconds from 0

to 99999 for transactions with pending record changes. You use *NOCMTBDY to save objects without

Backing up and recovering your system 127

waiting for commit boundaries. If you use *NOMAX, the save-while-active operation will wait

indefinitely. If 0 is specified, all objects being saved must be at commit boundaries.

After the save-while-active operation allocates a group of objects that it is synchronizing, it might wait a

specified number of seconds for all jobs that are using the same journals as these objects to reach

commitment boundaries. If these jobs do not reach commitment boundaries within the specified time, the

save operation ends. If you specify a value greater than 30, the system, after waiting 30 seconds, sends a

CPI8365 message to the QSYSOPR message queue for each job for which the save-while-active operation

is waiting.

Other pending changes: The default value is *LOCKWAIT. You can specify the amount of time to wait for

transactions with Data Definition Language (DDL) object changes or any API commitment resource that

is added without the option to allow normal save processing. If you use *NOMAX there is no maximum

wait time. You can specify any number of seconds from 0 to 99999. If 0 is specified, and only one name is

specified for the Objects (OBJ) parameter, and *FILE is the only value specified for the Object types

(OBJTYPE) parameter, the system will save the object without requiring the types of transactions that are

listed above to reach a commit boundary.

The checkpoint notification (SAVACTMSGQ) parameter:

This information contains a table that shows the messages that are sent for each ommand when the check

point processing is complete.

 You can specify the checkpoint notification on the SAVACTMSGQ parameter. The specified message

queue receives a message after checkpoint processing is complete. An operator or a job can monitor this

message queue and restart applications when checkpoint processing is complete.

 Table 44. SAVACTMSGQ checkpoint completion messages

Command Full Synchronization

Library

Synchronization

System-Defined

Synchronization

Save Operation

Abnormal

Termination

 SAVLIB

SAVOBJ

SAVCHGOBJ

CPI37121 CPI3710 for each

library

CPI3710 for each

library

CPI3711

SAVRSTLIB

SAVRSTOBJ

SAVRSTCHG

not available CPI3710 for each

library

CPI3710 for each

library

CPI3711

 SAV objects in

 libraries

CPI37121 not available CPI3710 for each

library

CPI3711

 SAVDLO

SAVRSTDLO

SAV objects in

 folders

not available not available not available not available

 SAV objects in

 directories

SAVRST

CPI3712 not available CPI3712 CPI3722

Note:

1 Prior to the CPI3712 checkpoint completion message, messages CPI3724 and CPI3725 are sent to the

message queue and to the workstation to indicate the progress of the checkpoint processing. CPI3724 is sent for

each library as the operation begins to allocate the objects in that library. CPI3725 is sent when all objects have been

allocated as the operation begins to obtain the checkpoint images of the objects.

128 System i: Backing up your system

|
|

|
|

Related tasks

 “Recommended procedure for reducing your save-outage time”
Use this general procedure to reduce your outage for particular save operations.

Additional save-while-active option (SAVACTOPT) parameter:

The SAV command provides additional save-while-active options which you specify on the SAVACTOPT

parameter. The default is *NONE, which means that no additional options are used during a

save-while-active operation.

 Applications should only use the allow checkpoint write (*ALWCKPWRT) option to save objects which

are associated with the application. Also, the applications should have additional backup and recovery

considerations such as Lotus Domino databases.

Objects with the QP0L_ATTR_ALWCKPWRT server attribute set will be locked with O_SHARE_RDWR

by the save operation. You can update data before the save-while-active operation reaches a checkpoint.

You will need to verify these objects after you restore them. You may also need to perform additional

recovery procedures before they are usable.

 Related reference

 “Field descriptions” on page 155
This information describes possible values for the save (SAV) and restore (RST) output fields.

Reducing your save-outage time

Use the save-while-active function to reduce your save-outage time. This is the easiest way to use the

save-while-active function.

Use the following general procedures to reduce your save-outage time for particular save operations. You

need to end the applications for the objects you are saving before you perform these procedures.

However, these procedures require no additional recovery procedures.

 Related concepts

 “Reducing save-outage time: Overview” on page 124
This information tells you what happens when you use the save-while-active function to reduce your

save-outage time.

Recommended procedure for reducing your save-outage time:

Use this general procedure to reduce your outage for particular save operations.

 This procedure is the recommended way to use the save-while-active function on a daily basis. This

save-while-active operations saves the objects as if they were saved in a dedicated fashion. This

procedure does not require any special recovery procedures.

1. End all application jobs that are making updates to the application-dependent objects.

2. Start the save-while-active operation for the objects that reside in the application libraries. Specify a

message queue on which to receive the checkpoint completion message.

3. Wait for the checkpoint completion or termination message identified in SAVACTMSGQ checkpoint

completion messages at the message queue you specified on the SAVACTMSGQ parameter.

4. Start the application jobs again.

5. For journaled objects in the save request, if you did not save their receivers in the request, save those

receivers after the save request finishes.

 Related reference

 “Parameters for the save-while-active function” on page 126
Use these options to specify how you will use the save-while-active function.

Backing up and recovering your system 129

“The checkpoint notification (SAVACTMSGQ) parameter” on page 128
This information contains a table that shows the messages that are sent for each ommand when the

check point processing is complete.

Example: Reducing save-outage time for two libraries:

This example makes use of two libraries, LIB1 and LIB2. Both libraries contain objects that you will save

on a daily basis.

 Your current save strategy ends jobs that make changes to the objects in the two libraries for the entire

time that the you are saving the libraries.

For this example, objects of any type can exist in the two libraries. The objects that exist in the two

libraries may or may not be journaled.

The several hour save-outage time can be greatly reduced by the following steps:

1. End all application jobs that are making updates to the objects in libraries LIB1 and LIB2.

2. Submit the following command as an individual batch job:

SAVLIB LIB(LIB1 LIB2) DEV(TAP01) SAVACT(*SYNCLIB) +

 SAVACTMSGQ(QSYSOPR) +

 ACCPTH(*YES)

Note: You could also use the SAVOBJ or SAVCHGOBJ commands depending on your specific needs.

The objects in library LIB1 and LIB2 reach a checkpoint together, as specified by SAVACT(*SYNCLIB),

and the system saves the libraries to TAP01. The system sends the message indicating that checkpoint

processing is complete to QSYSOPR.

You are also saving access paths for the logical files, as specified by ACCPTH(*YES). If you specify

this, the access paths, in most cases, will not need to be built after restoring the files from this save

media.

A single save command saves the libraries to provide a consistent checkpoint. This is also faster than

saving both libraries to the same storage device with separate commands. Using two save commands

to two separate media devices allows the system to perform the checkpoint processing for the

libraries concurrently. It may also allow the system to perform checkpoint processing faster than

saving both libraries with a single save command.

3. After checkpoint processing is complete, the message queue QSYSOPR receives the message CPI3712.

If checkpoint processing does not complete for the objects, message queue receives the message

CPI3711 and the save operation ends.

4. After receiving CPI3712 message, start the application jobs that make updates to the objects in the two

libraries.

The objects exist on the media as they were at the time the application jobs were ended, prior to the save

command being run. However, the save-while-active function greatly reduces the amount of time that the

applications are not available.

Example: Reducing save-outage time for a directory:

This example uses a directory, MyDirectory. The directory contains objects that you will save on a daily

basis. Your current save strategy ends jobs that make changes to the objects in the directory for the entire

time that the you are saving the directory.

 The objects that exist in the directory may or may not be journaled.

The several hour save-outage time can be greatly reduced by the following steps:

1. End all application jobs that are making updates to the objects in MyDirectory.

130 System i: Backing up your system

2. Submit the following command as an individual batch job:

SAV DEV(’/QSYS.LIB/TAP01.DEVD’) +

 OBJ(’/MyDirectory’) SAVACT(*SYNC) +

 SAVACTMSGQ(QSYS.LIB/LIB1.LIB/MSGQ1.MSGQ)

The objects in directory MyDirectory reach a checkpoint together, as specified by SAVACT(*SYNC).

The system saves the objects TAP01. The system sends the message indicating that checkpoint

processing is complete to MSGQ1

3. After checkpoint processing is complete, the message queue receives the message CPI3712. If

checkpoint processing does not complete for the objects, message queue receives the message CPI3722

and the save operation ends.

4. After receiving CPI3712 message, start the application jobs that make updates to the objects in the

directory.

The objects exist on the media as they were at the time the application jobs were ended, prior to the save

command being run. The save-while-active function greatly reduces the amount of time that the

applications are not available.

Example: Restoring libraries after reducing save-outage time:

This example shows a typical restore procedure after you reduce save-outage time in a library. Your exact

use of the function may differ, based on your specific application requirements.

 You can restore the objects from the media just as if you did not use the save-while-active function. The

restore requires no additional recovery procedures. You can restore the two libraries with the following

commands:

RSTLIB SAVLIB(LIB1) DEV(TAP01)

RSTLIB SAVLIB(LIB2) DEV(TAP01)

 Related concepts

 “Eliminating save-outage time: Overview” on page 125
This information tells you what happens when you use the save-while-active function to eliminate

your save-outage time.

 “Considerations for recovery procedures after eliminating save-outage time” on page 133
This topic discusses some of the considerations for save-while-active recovery procedures. In general,

the system cannot preserve application boundaries because they are defined by the application. It is

left up to you to provide for any of the appropriate recovery procedures when you use the

save-while-active function to eliminate your save-outage time.
 Related tasks

 “Recommended recovery procedures after eliminating save-outage time” on page 134
If you perform save-while-active operations to eliminate save outage time and you specified

*NOCMTBDY for the SAVACTWAIT pending record changes value, you can be left with objects that

are saved with partial transactions.

Example: Restoring a directory after reducing save-outage time:

This example shows a typical restore procedure after you reduce save-outage time in a directory. Your

exact use of the function may differ, based on your specific application requirements.

 You can restore the objects from the media just as if you did not use the save-while-active function. The

restore requires no additional recovery procedures. You can restore the directory with the following

command:

RST DEV(’/QSYS.LIB/TAP01.DEVD’) +

 OBJ(’/MyDirectory’)

Backing up and recovering your system 131

Eliminating your save-outage time

Use the save-while-active function to eliminate your save-outage time.

Use the following general procedures to eliminate your save-outage time for particular save operations.

These save-while-active procedures do not require any applications to be ended to perform the save

operation. However, these save-while-active methods do require additional recovery procedures.

IBM highly recommends that you use these procedures only for objects you are protecting with

journaling or commitment control.

 Related concepts

 “Eliminating save-outage time: Overview” on page 125
This information tells you what happens when you use the save-while-active function to eliminate

your save-outage time.

Recommended procedure for eliminating save-outage time:

This procedure outlines how you can use the save-while-active function to eliminate save-outage time.

You will not end the application jobs.

1. Start the save-while-active operation for the objects. You can do this specifying (SAVACT(*SYNCLIB))

for libraries or (SAVACT(*SYNC)) for directories on the save command.

2. When you receive the message CPI3712 (for SAVACT(*SYNCLIB)) or CPI3710 (for SAVACT (*SYNC)),

no additional lock conflicts for objects or jobs with uncommitted transactions occur.

3. If checkpoint processing does not complete for the objects you are saving, the message queue

specified for the SAVACTMSGQ parameter receives the message CPI3712 or message CPI3712 and the

save operation ends.

4. Objects with a lock conflict still allow checkpoint processing to complete, and the save operation

continues. However, the system does not save objects with a lock conflict.

5. The save-while-active operation ends.

6. For every journaled object in the save-while-active request, save each attached journal receiver that

the save-while-active operation did not save.

Monitoring your save-while-active operation:

Do the following procedures as they apply if you are using the save-while-active function to eliminate

your save-outage time.

 Related concepts

 “The wait time (SAVACTWAIT) parameter” on page 127
The SAVACTWAIT parameter specifies the amount of time to wait for an object that is in use, or for

transactions with pending changes to reach a commit boundary, before continuing the save operation.

Checking for lock conflicts:

1. During checkpoint processing, look for possible lock conflicts by monitoring the save-while-active

job.

A status of LCKW on the Work Active Jobs (WRKACTJOB) display identifies a lock conflict.

2. If a lock conflict exists for a particular object, identify the job that holds the conflicting lock with the

Work with Object Locks (WRKOBJLCK) command.

3. Take appropriate steps to have the job release the lock so that the save-while-active job can continue

and perform the save for that particular object.

4. If a save-while-active request does not save a particular objects due to lock conflicts, resolve all lock

conflicts.

132 System i: Backing up your system

5. Issue the entire save-while-active request again. You should not just re-save the objects that had a lock

conflict. Otherwise objects you saved in the two save-while-active requests will not be in a consistent

state each other. This situation can lead to a complex recovery procedure.

Monitoring save-while-active operations for objects under commitment control:

1. During checkpoint processing, if changes to the objects you are saving are made under commitment

control and *NOCMTBDY is not used for the SAVACTWAIT pending record changes value, monitor

the QSYSOPR message queue for CPI8365 messages.

CPI8365 messages indicate that the jobs have commitment definitions that are preventing the

save-while-active job from proceeding. The QSYSOPR message queue only receives CPI8365

informational messages if you specify the SAVACTWAIT time to be at least 30 seconds.

Note: See or information on controlling the amount of time that elapses while waiting for

commitment definitions to reach a commitment boundary.

2. Take the appropriate steps, as outlined in the recovery portion of the CPI8365 message, to bring all

commitment definitions for a job to a commitment boundary.

3. The save-while-active request ends if you cannot reach a commitment boundary for a particular

commitment definition.

4. Depending upon the type of uncommitted changes one of the following happens:

v The job log receives CPF836C messages.

v The QSYSOPR message queue receives CPI8367 messages.

In either case, the messages contain the job names that had commitment definitions that prevented the

save-while-active request for the library.

Considerations for recovery procedures after eliminating save-outage time:

This topic discusses some of the considerations for save-while-active recovery procedures. In general, the

system cannot preserve application boundaries because they are defined by the application. It is left up to

you to provide for any of the appropriate recovery procedures when you use the save-while-active

function to eliminate your save-outage time.

 Additional recovery procedures are needed to bring the objects to a consistent state in relationship to

each other after the restore operation is completed. You must determine the exact steps that are required

for these recovery procedures at the time the objects are being saved. The recovery procedures must be

performed after the objects from the save-while-active media are restored, but before the objects are used

by any application.

You need to consider these recovery procedures if you are using the save-while-active function to

eliminate your save-outage time:

 Related concepts

 “Eliminating save-outage time: Overview” on page 125
This information tells you what happens when you use the save-while-active function to eliminate

your save-outage time.

 “Example: Restoring libraries after reducing save-outage time” on page 131
This example shows a typical restore procedure after you reduce save-outage time in a library. Your

exact use of the function may differ, based on your specific application requirements.
 Related tasks

 “Recommended recovery procedures after eliminating save-outage time” on page 134
If you perform save-while-active operations to eliminate save outage time and you specified

*NOCMTBDY for the SAVACTWAIT pending record changes value, you can be left with objects that

are saved with partial transactions.

Backing up and recovering your system 133

If you use commitment control within your application, force one checkpoint during the save operation, and wait for

transaction boundaries: If you specify SAVACT(*SYNCLIB) for the save operation, then all the data is

saved with one common checkpoint. If you use commitment control to define all of the application

boundaries and wait for transaction boundaries during the save operation, the recovery procedure is a

basic restore of your objects.

If you use commitment control within your application, allow multiple checkpoints during the save operation, and

wait for transaction boundaries: If you specify SAVACT(*SYSDFN) or SAVACT(*LIB) for the save operation,

then the data is saved with multiple checkpoints. If you use commitment control to define all of the

application boundaries and wait for transaction boundaries during the save operation, the recovery

procedure requires you to apply or remove journaled changes to reach a common application boundary.

If you use commitment control within your application, force one checkpoint during the save operation, and do not

wait for transaction boundaries: If you specify SAVACT(*SYNCLIB) for the save operation, then the data is

saved with one common checkpoint. If you use commitment control and specify *NOCMTBDY on the

SAVACTWAIT parameter for the save operation, the recovery procedure requires you to apply or remove

journaled changes to complete or rollback your partial transactions and reach commit boundaries.

If you use commitment control within your application, allow multiple checkpoints: If you specify

SAVACT(*SYSDFN) or SAVACT(*LIB) for the save operation, then the data is saved with multiple

checkpoints. If you use commitment control and specify *NOCMTBDY on the SAVACTWAIT parameter

for the save operation, the recovery procedure requires you to apply or remove journaled changes to

complete partial transactions and bring them to a common application boundary.

If you do not use commitment control but all objects are journaled: If all application-dependent objects are

journaled but commitment control is not used, then you can apply or remove journaled changes. These

commands can bring all of the objects to an application boundary after restoring them from the

save-while-active media. However, application boundaries are not recorded in the journal so you will

need to determine where the boundaries are on an object by object basis. When the journaled object

reaches a checkpoint, the journal receiver gets an additional journal entry in conjunction with the object

saved journal entry. The journal entry notes that you used the save-while-active function to save the

object and is used by the APYJRNCHG and RMVJRNCHG commands as the location to start the

operation when the FROMENT(*LASTSAVE) parameter is used. It is critical that the currently attached

journal receiver be saved along with the objects being journaled. If more than one journal is being used to

journal the objects, then all attached receivers must be saved. Include the request to save the receiver in

the same save request as that for the journaled objects. Or save the receiver in a separate save request

after the save of the journaled objects. This save is necessary because the attached journal receiver will

contain the entries that may be required by any apply or remove journaled changes operation that is part

of the recovery when using the save-while-active media.

If commitment control is not used and objects are not journaled: If you do not define your application

boundaries you will have to do a restore and do a recovery from an abnormal end. If you do not know

what procedures are required for recovering an abnormal end, then use the method to Example: Restore

libraries after reducing save-outage time.

Recommended recovery procedures after eliminating save-outage time:

If you perform save-while-active operations to eliminate save outage time and you specified

*NOCMTBDY for the SAVACTWAIT pending record changes value, you can be left with objects that are

saved with partial transactions.

 It is recommended that you use Backup, Recovery, and Media Services (BRMS) to automate your backup

and recovery operations. BRMS automatically applies changes to objects with partial transactions and

restores them to a usable state.

134 System i: Backing up your system

The following provides some recommended recovery procedures after restoring from the

save-while-active media. The following procedure is a recommendation only. Your recovery procedures

may need to be somewhat different depending upon your applications and your particular application

dependencies.

The recovery for journaled objects may include Apply Journaled Changes (APYJRNCHG) and Remove

Journaled Changes (RMVJRNCHG) operations. The following recommendation uses the APYJRNCHG

command exclusively. The APYJRNCHG command is the most common recovery operation that brings

journaled objects to application boundaries. However, you can use the RMVJRNCHG command instead

of the APYJRNCHG to bring the journaled objects to an application boundary. Use the RMVJRNCHG

command if you are removing changes from the journaled object. You can use the RMVJRNCHG

command if you are journaling before images for the journaled object.

If you need to use the APYJRNCHG command for the recovery, you must specify a known application

boundary for either the ending sequence number (TOENT) parameter or the ending large sequence

number (TOENTLRG) parameter but not both. Specify the FROMENTLRG parameter regardless of

whether all objects reached a checkpoint together. You must run multiple APYJRNCHG commands if the

objects are journaled to different journals.

The following steps give a general recommendation to follow for recovery procedures:

 1. If some of the objects you are restoring are journaled objects, make sure that the necessary journals

are on the system.

 2. If all necessary journals are not on the system, restore the journals first. The system automatically

restores the journals first if both items below are true:

v The journals are in the same library as the objects you are restoring.

v You used the same save request to save the journals and the objects.
 3. Restore objects from the save-while-active media.

 4. If some of the objects restored are journaled objects, restore any required journal receivers that do

not already exist on the system.

a. Start by restoring receivers that contain the start of save journal entries for the journaled objects.

b. Continue restoring receivers until you restore the receiver that contains the journal entry that is

the desired application boundary. These receivers need to be online for each of the journals used

to journal the restored objects.
 5. If all of the application-dependent objects are journaled, skip to step 9. If only some or none of the

application-dependent objects are journaled, go to step 6.

 6. If some application-dependent objects are not journaled objects, and one of the following scenarios is

true, go to step 7. Otherwise, go to step, 8.

a. All of the objects are in the same library and are saved using SAVACT(*LIB).

b. All objects in all of the libraries are saved using SAVACT(*SYNCLIB).
 7. You can perform the recovery procedures in Example: Restore libraries after reducing save-outage

time. All of the objects reached a checkpoint together and the restored objects are in a consistent

state in relationship to each other. However, if you need to bring the objects forward to some

defined application boundary, you can only use the APYJRNCHG command for the journaled

objects. For objects that are not journaled, you must perform user-defined recovery procedures.

 8. If neither of the scenarios in 6 are true, then the objects are not saved in a consistent state in

relationship to each other. Use the APYJRNCHG command to bring the journaled objects forward to

some common application boundary. For objects that are not journaled, you must perform

user-defined recovery procedures.

 9. If all of the application-dependent objects are journaled, and all of the application-dependent objects

are under commitment control, skip to step 11. Otherwise, go to step 10.

Backing up and recovering your system 135

10. If all application-dependent objects are journaled objects but all of the changes made to the objects

are not made under commitment control, then you must use APYJRNCHG command to bring all of

the objects to an application boundary.

11. If all of the application-dependent objects are under commitment control and the objects exist in

different libraries go to step 12. Otherwise, go to step 13.

12. If the objects exist in different libraries, then the objects restored are at commitment boundaries.

However, not all of the objects will be at the same common commitment boundary. Bring the objects

to the same common commitment boundary with the APYJRNCHG command. Specify the

CMTBDY(*YES) parameter to bring the objects forward to some common application boundary.

By specifying CMTBDY(*YES), you ensure that the apply operation starts on a commitment

boundary. You also ensure that the system applies complete transactions up through the sequence

number that you specified to correspond with your application boundary.

13. If all application-dependent objects are journaled objects that exist in the same library, and the files

are only updated under commitment control, the system restores the files as they existed at some

common commitment boundary when you saved the data.

Use the APYJRNCHG command specifying the CMTBDY(*YES) parameter to bring the files forward

to some defined application boundary if one of the following is true:

v The common commitment transaction boundary is not an application boundary.

v Additional transactions exist in the journal that you want to apply to the objects.
By specifying CMTBDY(*YES), you can ensure that the apply operation starts on a commitment

boundary. You also ensure that the system applies complete transactions up through the specified

sequence number that corresponds to your application boundary.

If the commitment boundary is an application boundary, then no additional recovery procedures are

necessary.

 Related concepts

 “Example: Restoring libraries after reducing save-outage time” on page 131
This example shows a typical restore procedure after you reduce save-outage time in a library. Your

exact use of the function may differ, based on your specific application requirements.

 “Backing up a logical partition” on page 99
Each logical partition functions like an independent system, and needs to be backed up individually.

 “Eliminating save-outage time: Overview” on page 125
This information tells you what happens when you use the save-while-active function to eliminate

your save-outage time.

 “Considerations for recovery procedures after eliminating save-outage time” on page 133
This topic discusses some of the considerations for save-while-active recovery procedures. In general,

the system cannot preserve application boundaries because they are defined by the application. It is

left up to you to provide for any of the appropriate recovery procedures when you use the

save-while-active function to eliminate your save-outage time.

 “Timestamp processing with save-while-active” on page 111
The save-active-time for an object can be useful when you determine which recovery procedures to

use after you restore objects from the media.
 Related information

 BRMS

 Example: Restoring objects with partial transactions

 Journal management

Example: Eliminating save-outage time for libraries:

This example shows a typical use of the save-while-active function to eliminate a save-outage time. Your

exact use of the function may differ, based on your specific application requirements.

136 System i: Backing up your system

This example uses two libraries, LIB1, and LIB2. Both libraries contain only journaled objects and the

journals for those objects. The changes made to the journaled objects may or may not be made under

commitment control.

This example demonstrates a save-while-active operation that does not end the applications that are

making changes to the objects in these libraries. Not ending the applications introduces additional restore

considerations for the recovery operation after you restore the objects from the save-while-active media.

Eliminate the save-outage time with the following steps:

1. Submit the following command as an individual batch job:

SAVLIB LIB(LIB1 LIB2) DEV(TAP01) SAVACT(*SYNCLIB) +

 SAVACTWAIT(600) +

 SAVACTMSGQ(QSYSOPR) +

 ACCPTH(*YES)

Note: You can also use the SAVOBJ or SAVCHGOBJ commands, depending on your specific needs.

The system waits 10 minutes, as specified by the SAVACTWAIT parameter, to resolve each lock

conflict and for any active commitment definitions to reach a commitment boundary during

checkpoint processing.

By specifying ACCPTH(*YES), you are also saving access paths for the logical files. Access paths, in

most cases, will not be built after restoring the files from this save media.

The recovery procedures needed when restoring objects from this media are dependent upon each of

the database members in LIB1 and LIB2 being updated with the timestamp of this save operation.

2. When checkpoint processing is complete, QSYSOPR receives message CPI3712 as specified by the

SAVACTMSGQ parameter. Until the QSYSOPR message queue receives the CPI3712 message, monitor

lock conflicts that the save-while-active job may encounter.

3. Wait for the save-while-active job to complete.

4. After the batch job has completed, verify that all of the required objects were saved. If lock conflicts

prevented some of the objects from being saved, you should issue the original save command again

after resolving any and all lock conflicts.

5. Save the receiver containing the earliest start of save entry from each journal being used to journal

the objects in libraries LIB1 and LIB2. You can get the earliest receiver from the OUTFILE on the save

command. If the attached journal receivers do not reside in library LIB1 or LIB2, then you must issue

separate save requests to save each of the attached receivers.

Save all of the attached receivers with the following command. Multiple save commands may be

necessary for this step. It is not necessary to use the save-while-active function when saving journal

receivers. The following command defaults to SAVACT(*NO).

SAVOBJ OBJ(attached-receiver) +

 LIB(attached-receiver-library) +

 OBJTYPE(*JRNRCV) +

 DEV(TAP01)

Example: Saving objects with partial transactions:

This example shows a typical use of the save-while-active function to eliminate save-outage time by not

waiting for commitment boundaries. Your exact use of the function may differ, based on your specific

application requirements.

 This example uses a checking and savings account. Both libraries contain journaled objects and the

journals for those objects. The changes may or may not be made under commitment control.

This example demonstrates a save without waiting for commitment boundaries and does not end the

applications that are making changes to the objects that are in these libraries. Not ending the applications

introduces additional restore considerations for the recovery operation after you restore the objects from

the media.

Backing up and recovering your system 137

Use the following steps to eliminate save-outage time without waiting for commitment boundaries:

1. Submit the following command before the transaction is ended:

SAVLIB LIB(CHK SAV) DEV(TAP01) SAVACT(*SYNCLIB) +

 SAVACTWAIT(30 *NOCMTBDY 30) +

 SAVACTMSGQ(QSYSOPR) +

 ACCPTH(*YES)

Note: You can also use the SAVOBJ or SAVCHGOBJ commands, depending on your specific needs.

The system waits 30 seconds, as specified by the SAVACTWAIT parameter to resolve each lock

conflict during checkpoint processing. The objects will not be saved if lock conflicts are not resolved

within the specified time.

By specifying ACCPTH(*YES), you are also saving access paths for the logical files. Access paths, in

most cases, will not be built after restoring the files from this save media.

The recovery procedures needed when restoring objects from this media are dependent upon each of

the database members in the CHK and SAV being updated with the time stamp of this save

operation.

2. When checkpoint processing is complete, QSYSOPR receives message CPI3712 as specified by

SAVACTMSGQ parameter. Until the QSYSOPR message queue receives the CPI3712 message, monitor

lock conflicts that the save-while-active job may encounter.

3. Wait for the save job to complete.

4. After the batch job has completed, verify that all of the required objects were saved. If any objects

were saved in a partial state, the files must be either rolled forward or backward to a consistent state

before they can be used.

5. Save the appropriate receivers of each journal being used to journal the objects in libraries CHK and

SAV. You must include the receivers to be saved starting with the receiver containing the start of

commit entry for any transactions which were open when the save checkpoint processing took place

through the attached receiver. The save OUTFILE will indicate the name of the earliest receiver for

each object which will need to be available to use the APYJRNCHG command during the recovery

process. You must issue a separate save request to save these receivers if these receivers do not exist

in library CHK or SAV

Note: It is highly recommended that you save all of the attached receivers with the following

command.

Multiple save commands may be necessary for this step. Note that it is not necessary to use the

save-while-active function when saving journal receivers. The following command defaults to

SAVACT(*NO).

SAVOBJ OBJ (attached-receiver)+

LIB (attached-receiver-library)+

OBJTYPE(*JRNRCV)+

DEV(TAP01)

Example: Eliminate save-outage time for a directory:

This example shows a typical use of the save-while-active function to eliminate save-outage time in a

directory. Your exact use of the function may differ, based on your specific application requirements.

 This example uses the directory, MyDirectory. MyDirectory contains only journaled objects.

This example demonstrates a save-while-active operation that does not end the applications that are

making changes to the objects in this directory. Not ending the applications introduces additional restore

considerations for the recovery operation after you restore the objects from the save-while-active media.

Eliminate the save-outage time with the following steps:

1. Submit the following command as an individual batch job:

138 System i: Backing up your system

SAV DEV(’/QSYS.LIB/TAP01.DEVD’) +

 OBJ(’/MyDirectory’) UPDHST (*YES) SAVACT(*SYNC) +

 SAVACTMSGQ(QSYS.LIB/LIB1.LIB/MSGQ1.MSGQ) +

2. When checkpoint processing is complete for the directory, the message queue receives the message

CPI3712, as specified by the SAVACTMSGQ parameter. Until the message queue, MSQ1, receives the

CPI3712 message, monitor lock conflicts that the save-while-active job may encounter.

3. Wait for the save-while-active job to complete.

4. After the batch job has completed, verify that all of the required objects were saved. If lock conflicts

prevented some of the objects from being saved, you should issue the original save command again

after resolving any and all lock conflicts.

5. Save the attached receiver of each journal being used to journal the objects in directory MyDirectory.

Save all of the attached receivers with a command such as the one below. Multiple save commands

may be necessary for this step. It is not necessary to use the save-while-active function when saving

journal receivers. The following command defaults to SAVACT(*NO).

SAV DEV(’/QSYS.LIB/TAP01.DEVD’) +

 OBJ(’/QSYS.LIB/MYLIB.LIB/JRNR*.JRNRCV’)

Example: Restoring libraries after eliminating save-outage time:

This example shows a typical restore procedure after you eliminate save-outage time in a library. Your

exact use of the function may differ, based on your specific application requirements.

 Perform the following steps when restoring libraries LIB1 and LIB2:

1. Restore the two libraries with the following commands:

RSTLIB SAVLIB(LIB1) DEV(TAP01)

RSTLIB SAVLIB(LIB2) DEV(TAP01)

If the journals still exist on the system, they are not restored. That is not a problem.

If they did not exist, the system will restore the journal objects before the other objects.

At the completion of these restore commands, the objects exist on the system, but they will not be in a

consistent state in relationship to each other.

2. Restore the necessary journal receivers that were attached at the time the libraries were saved. If the

journal receivers are in libraries other than LIB1 or LIB2 at the time of the save and they do not

currently exist on the system, use the following restore command to restore the receivers:

RSTOBJ OBJ(attached-receiver-at-save-time) +

 SAVLIB(receiver-library) +

 DEV(TAP01)

If the attached receivers were in LIB1 or LIB2 when you saved the data and they did not exist prior to

the RSTLIB operation, they were restored as part of that RSTLIB operation.

3. Determine a point in time, or application boundary, in which to bring the objects in LIB1 and LIB2.

This way all of the objects are in a consistent state in relationship to each other. After determining the

desired application boundary, you might need to restore additional journal receivers. If you need to

restore additional journal receivers, but the receivers are not online, restore them with the following

restore command. Multiple restore commands may be necessary for this step:

RSTOBJ OBJ(other-needed-receivers) +

 SAVLIB(receiver-library) +

 DEV(TAP01)

The Work with Journal Attributes (WRKJRNA) and Display Journal (DSPJRN) commands can be

helpful in finding the application boundary.

You can use the WRKJRNA command to determine the appropriate range of receivers you need for

the ensuing Apply Journaled Changes (APYJRNCHG) operations. You can use the DSPJRN command

to locate the exact sequence number that identifies the desired application boundary. If multiple

Backing up and recovering your system 139

journals are involved, you must locate the same application boundary (most likely identified by the

timestamp) in each journal. You must also note the appropriate journal sequence number.

4. Bring the objects forward to a specific application boundary with one of the following Apply

Journaled Changes (APYJRNCHG) commands. Different variations of the APYJRNCHG command

may be appropriate based on the given criteria.

If any objects received changes during the save operation, and they were under commitment control,

the commitment boundaries will be preserved on the following APYJRNCHG commands. If you do

not want the commitment control boundaries preserved, then you specify CMTBDY(*NO) on the

following APYJRNCHG commands:

a. Use the commands below to apply the journaled changes to the objects if the following is true:

v The journaled objects for which changes are to be applied were saved in V5R3.

v You did not restore the journal (which is not a problem) because the objects were being restored

to the system from where they were saved.

v The media used represent the most recent save of the objects.

v You saved the objects specifying UPDHST(*YES) on the save command.
APYJRNCHG JRN(jrnlib/jrnname) +

 OBJ((LIB1/*ALL)) +

 TOENT(seq#-for-application-boundary)

APYJRNCHG JRN(jrnlib/jrnname) +

 OBJ((LIB2/*ALL)) +

 TOENT(seq#-for-application-boundary)

If multiple journals are involved, then repeat these commands for each journal specifying the

correct sequence number (TOENT parameter) that identifies the desired application boundary.

Note that the TOENT sequence number is very likely different for each journal in LIB1 and LIB2,

but they all identify a common application boundary.

b. Use the commands below to apply the journaled changes to the objects if the following is true:

v The objects were saved prior to V5R3.

v You restored the journal.

v The media used represent the most recent save of the objects.

v You saved the objects specifying UPDHST(*YES) on the save command.
APYJRNCHG JRN(jrnlib/jrnname) +

 OBJ((LIB1/*ALL)) +

 RCVRNG(rcv-attached-at-save-time +

 ending-rcv) +

 TOENT(seq#-for-application-boundary)

APYJRNCHG JRN(jrnlib/jrnname) +

 OBJ((LIB2/*ALL)) +

 RCVRNG(rcv-attached-at-save-time +

 ending-rcv) +

 TOENT(seq#-for-application-boundary)

In the situation where the journal is restored, and the journaled objects for which changes are

going to be applied were saved prior to V5R3, the system cannot determine the correct receiver

range. Therefore, the correct range of receivers must be specified on the RCVRNG parameter. Note

that the attached receiver at the time that the libraries were saved is the specified starting journal

receiver.

If multiple journals are involved, then repeat these commands for each journal specifying the

correct sequence number (TOENT parameter) that identifies the desired application boundary.

Note that the TOENT sequence number is very likely different for each journal in LIB1 and LIB2,

but they all identify a common application boundary. If the journaled objects for which changes

are going to be applied were saved in V5R3 or later, then the system can determine the correct

receiver range when the default of RCVRNG(*LASTSAVE) is used. In this situation, the apply

command from step a works.

140 System i: Backing up your system

c. If your objects were saved prior to V5R3 and the save-while-active media used does not represent

the most recent save of the objects specifying UPDHST(*YES), do the following commands.

1) Use the DSPJRN command to determine the sequence number of the start-of-save journal entry

for each object.

2) Issue an individual APYJRNCHG command for each of the objects.

The following example demonstrates such an APYJRNCHG command:

APYJRNCHG JRN(jrnlib/jrnname) +

 OBJ((filelib/filename filembr)) +

 RCVRNG(rcv-attached-at-save-time +

 ending-rcv) +

 FROMENT(seq#-for-start-of-save-entry) +

 TOENT(seq#-for-application-boundary)

If you are prior to V5R3 and the most recent save of the objects are not being used,

FROMENT(*LASTSAVE) cannot be specified on the APYJRNCHG commands. An individual

sequence number must be specified for each of the objects in libraries LIB1 and LIB2.

Some of the APYJRNCHG commands could specify multiple objects if there is a continuous series

of start-of-save entries in the journal. The members identified by the continuous series of

start-of-save journal entries could be applied to with a single APYJRNCHG command by

specifying the earliest sequence number of all the start-of-save entries in the continuous series for

the FROMENT parameter. If you are using V5R3, use the *LASTSAVE value in the FROMENT

parameter.

Example: Restoring objects with partial transactions:

If you perform save-while-active operations that can result in objects that are saved with partial

transactions, it is recommended that you use Backup, Recovery, and Media Services (BRMS).

 You can use BRMS to automate your backup and recovery operations. BRMS automatically applies

changes to objects with partial transactions and restores them to a usable state.

If an object is saved with partial transactions, FROMENT(*LASTSAVE) will be required when applying or

removing journaled changes on the restored version of the object.

When you use the character-based interface to restore objects with partial transactions, perform the

following steps to restore libraries CHK and SAV:

1. Restore the two libraries with the following commands:

RSTLIB SAVLIB(CHK) DEV(TAP01)

RSTLIB SAVLIB(SAV) DEV(TAP01)

If the journals still exist on the system, they are not restored. However, this is not a problem.

If they did not exist, the system will restore the journal objects before the other objects.

2. Restore the earliest receiver as specified by the outfile. If the journal receivers are in libraries other

than CHK or SAV at the time of the save and they do not currently exist on the system, use the

following restore command to restore the receivers:

RSTOBJ OBJ(attached-receiver-at-save-time) +

 SAVLIB(receiver-library) +

 DEV(TAP01) +

 OUTPUT(*OUTFILE)OUTFILE(lib/file)

If the attached receivers were in CHK or SAV when you saved the data and they did not exist prior to

the RSTLIB operation, they were restored as part of that RSTLIB operation

3. Determine a point in time, or application boundary, in which to bring the objects in CHK and SAV.

This way all of the objects are in a consistent state in relationship to each other. After determining the

desired application boundary, you might need to restore additional journal receivers. You can use the

WRKJRNA command to determine the appropriate range of receivers you need for the ensuing Apply

Backing up and recovering your system 141

Journaled Changes (APYJRNCHG) operations. You can use the DSPJRN command to locate the exact

sequence number that identifies the desired application boundary. If multiple journals are involved,

you must locate the same application boundary (most likely identified by the timestamp) in each

journal. You must also note the appropriate journal sequence number. If you need to restore

additional journal receivers, but the receivers are not online, restore them with the following restore

command. Multiple restore commands may be necessary for this step:

RSTOBJ OBJ(other-needed-receivers) +

 SAVLIB(receiver-library) +

 DEV(TAP01)

4. Bring the objects forward to a specific application boundary with one of the following Apply

Journaled Changes (APYJRNCHG) commands. Different variations of the APYJRNCHG command

may be appropriate based on the given criteria.

If any objects received changes during the save operation, and they were under commitment control,

the commit boundaries will be preserved on the following APYJRNCHG commands. If you do not

wish to have the commitment control boundaries preserved, then you would need to specify

CMTBDY(*NO) on the following APYJRNCHG commands.

a. Use the commands below to apply the journaled changes to the objects (completed or partial) if

the following is true:

v The objects were saved prior to V5R3.

v You did not restore the Journal because the objects were being restored to the system from

where they were saved.

v The media used represent the most recent save of the objects.

v You saved the objects specifying UPDHST(*YES) on the save command.
APYJRNCHG JRN(jrnlib/jrnname) +

 FROMENT(*LASTSAVE) +

 OBJ((CHK/*ALL)) +

 TOENTLRG(seq#-for-application-boundary)

APYJRNCHG JRN(jrnlib/jrnname) +

 FROMENT(*LASTSAVE) +

 OBJ((SAV/*ALL)) +

 TOENTLRG(seq#-for-application-boundary)

If multiple journals are involved, then repeat these commands for each journal specifying the

correct sequence number (TOENTLRG parameter) that identifies the desired application boundary.

Note that the TOENTLRG sequence number is very likely different for each journal in CHK and

SAV, but they all identify a common application boundary.

b. Use the commands below to apply the journaled changes to the objects (completed or partial) if

the following is true:

v The objects were saved prior to V5R3.

v You restored the journal.

v The media used represent the most recent save of the objects.

v You saved the objects specifying UPDHST(*YES) on the save command.
APYJRNCHG JRN(jrnlib/jrnname) +

 OBJ((CHK/*ALL)) +

 RCVRNG(rcv-attached-at-save-time +

 ending-rcv) +

 FROMENT(*LASTSAVE) +

 TOENTLRG(seq#-for-application-boundary)

APYJRNCHG JRN(jrnlib/jrnname) +

 OBJ((SAV/*ALL)) +

 RCVRNG(rcv-attached-at-save-time +

 ending-rcv) +

 FROMENT(*LASTSAVE) +

 TOENTLRG(seq#-for-application-boundary)

142 System i: Backing up your system

In the situation where the journal is restored, and the journaled objects for which changes are

going to be applied were saved prior to V5R3, the system cannot determine the correct receiver

range. Therefore, the correct range of receivers must be specified on the RCVRNG parameter. Note

that the attached receiver at the time that the libraries were saved is the specified starting journal

receiver. If the journaled objects for which changes are going to be applied were saved in V5R3 or

later, then the system can determine the correct receiver range when the default of

RCVRNG(*LASTSAVE) is used. In this situation, the apply command from step a is correct.

If multiple journals are involved, then repeat these commands for each journal specifying the

correct sequence number (TOENTLRG parameter) that identifies the desired application boundary.

Note that the TOENTLRG sequence number is very likely different for each journal in CHK and

SAV, but they all identify a common application boundary.

c. Do the following commands if your objects were saved prior to V5R3 and the save-while-active

media used does not represent the most recent save of the objects specifying UPDHST(*YES).

1) Use the DSPJRN command to determine the sequence number of the start-of-save journal entry

for each object.

2) Issue an individual APYJRNCHG command for each of the objects.

The following example demonstrates such an APYJRNCHG command:

APYJRNCHG JRN(jrnlib/jrnname) +

 OBJ((filelib/filename filembr)) +

 RCVRNG(rcv-attached-at-save-time +

 ending-rcv) +

 FROMENT(seq#-for-start-of-save-entry) +

 FROMENT(*LASTSAVE) +

 TOENT(seq#-for-application-boundary)

If you are not using V5R3 and the most recent save of the objects is not being used,

FROMENT(*LASTSAVE) cannot be specified on the APYJRNCHG commands. An individual

sequence number must be specified for each of the objects in libraries CHK and SAV

Some of the APYJRNCHG commands could specify multiple objects if there is a continuous series

of start-of-save entries in the journal. The members identified by the continuous series of

start-of-save journal entries could be applied to with a single APYJRNCHG command by

specifying the earliest sequence number of all the start-of-save entries in the continuous series for

the FROMENT parameter. If you are using V5R3, use the *LASTSAVE value in the FROMENT

parameter.

 Related information

 Backup, Recovery and Media Services

Example: Restoring a directory after eliminating save-outage time:

This example shows a typical restore procedure after you eliminate save-outage time in a directory. Your

exact use of the function may differ, based on your specific application requirements.

 Perform the following steps when restoring directory MyDirectory:

1. Restore the directory with the following command:

RST DEV(’/QSYS.LIB/TAP01.DEVD’) +

 OBJ(’/MyDirectory’)

At the completion of these restore commands, the objects exist on the system, but they will not be in a

consistent state in relationship to each other.

2. Restore the necessary journal receivers that were attached at the time the directory was. Use, a

command such as the following to restore the receivers:

RST DEV(’/QSYS.LIB/TAP01.DEVD’) +

 OBJ(’receiver-path’)

3. Determine a point in time, or application boundary, in which to bring the objects in MyDirectory. This

way all of the objects are in a consistent state in relationship to each other. After determining the

Backing up and recovering your system 143

desired application boundary, you might need to restore additional journal receivers. If you need to

restore additional journal receivers, but the receivers are not online, restore them with a restore

command such as the following. Multiple restore commands may be necessary for this step:

RST DEV(’/QSYS.LIB/TAP01.DEVD’) +

 OBJ(’receiver-path’)

The Work with Journal Attributes (WRKJRNA) and Display Journal (DSPJRN) commands can be

helpful in finding the application boundary.

You can use the WRKJRNA command to determine the appropriate range of receivers you need for

the ensuing Apply Journaled Changes (APYJRNCHG) operations. You can use the DSPJRN command

to locate the exact sequence number that identifies the desired application boundary. If multiple

journals are involved, you must locate the same application boundary (most likely identified by the

timestamp) in each journal. You must also note the appropriate journal sequence number.

4. Bring the objects forward to a specific application boundary with one of the following Apply

Journaled Changes (APYJRNCHG) commands. Different variations of the APYJRNCHG command

may be appropriate based on the given criteria.

a. Use the commands below to apply the journaled changes to the objects if the following is true:

v The objects were saved prior to V5R3.

v You did not restore the journal.

v The media used represent the most recent save of the objects

v You saved the objects specifying UPDHST(*YES) on the save command.

v If the above conditions are not met but you are using V5R3.
APYJRNCHG JRN(jrnlib/jrnname) +

 OBJPATH(/MyDirectory) +

 SUBTREE(*ALL)+

 TOENT(seq#-for-application-boundary)

If multiple journals are involved, then repeat these commands for each journal specifying the

correct sequence number (TOENT parameter) that identifies the desired application boundary.

b. Use the commands below to apply the journaled changes to the objects if the following is true

v The objects were saved prior to V5R3.

v You restored the journal.

v The media used represent the most recent save of the objects.

v You saved the objects specifying UPDHST(*YES) on the save command.
APYJRNCHG JRN(jrnlib/jrnname) +

 OBJPATH(/MyDirectory) +

 SUBTREE(*ALL)+

 RCVRNG(rcv-attached-at-save-time +

 ending-rcv) +

 TOENT(seq#-for-application-boundary)+

In the situation where the journal is restored, and the journaled objects for which changes are

going to be applied were saved prior to V5R3, the system cannot determine the correct receiver

range. Therefore, the correct range of receivers must be specified on the RCVRNG parameter. The

attached receiver at the time that the directory was saved is the specified starting journal receiver.

If the journaled objects for which changes are going to be applied were saved in V5R3 or later,

then the system can determine the correct receiver range when the default of

RCVRNG(*LASTSAVE) is used. In this situation, the apply command from step a works correctly.

If multiple journals are involved, then repeat these commands for each journal specifying the

correct sequence number (TOENT parameter) that identifies the desired application boundary.

c. If you are not using V5R3, do the following commands if the save-while-active media used does

not represent the most recent save of the objects specifying UPDHST(*YES).

1) Use the DSPJRN command to determine the sequence number of the start of save journal entry

for each object.

2) Issue an individual APYJRNCHG command for each of the objects.

144 System i: Backing up your system

The following example demonstrates such an APYJRNCHG command:

APYJRNCHG JRN(jrnlib/jrnname) +

 OBJPATH(/MyDirectory) +

 RCVRNG(rcv-attached-at-save-time +

 ending-rcv) +

 FROMENT(seq#-for-save or start-of-save-entry) +

 TOENT(seq#-for-application-boundary)

Because the most recent save of the objects is not being used, you cannot specify

FROMENT(*LASTSAVE) on the APYJRNCHG command. You must specify an individual sequence

number for directory MyDirectory

Some of the APYJRNCHG commands could specify multiple objects if there is a continuous series

of save or start-of-save entries in the journal. The objects identified by the continuous series of

save or start-of-save journal entries could be applied to with a single APYJRNCHG command by

specifying the earliest sequence number of all the save or start-of-save entries in the continuous

series for the FROMENT parameter. If you are using V5R3, use the *LASTSAVE value in the

FROMENT parameter.

Backup programming techniques

The programming techniques include recovering jobs, displaying status messages, and redirecting output

from save and restore commands to an output file.

Considerations for job recovery

Job recovery and starting again should be a basic part of application design. Applications should be

designed to handle.

v Unexpected data problems, such as alphabetic data occurring where numeric data is expected

v Operator problems, such as operators taking the wrong option or canceling the job

v Equipment problems, such as workstation, disk unit, and communication line failures

Job recovery procedures should ensure the integrity of the user’s data and allow for easy starting of the

interrupted application. Journaling and commitment control can be used in application design to help in

job recovery. Recovery procedures should be transparent to the end users.

Interactive job recovery: If you are running a data entry job or one that updates a single file, it is

unlikely that you need to plan an extensive recovery strategy. The operators can inquire against the file to

determine which record was last updated and then continue from that point.

To recover from inquire-only jobs, the workstation operators simply start where they left off. When using

update transactions for many files, consider using a journal or commitment control. The system

automatically recovers journaled files during the initial program load (IPL) following an abnormal end of

the system, or during make available (vary on) processing of an independent ASP after an abnormal vary

off. In addition, the journal can be used for user-controlled forward or backward file recovery. There are

other object types in addition to database physical files that you can protect with journaling.

Commitment control, using the file changes recorded in the journal, provides automatic transaction and

file synchronization. During job end, the system automatically rolls back file updates to the beginning of

the transaction. In addition, the commitment control notify object can assist you in restarting the

transaction.

When designing an interactive application, consider the possibility that you can experience equipment

problems with your workstations and communications lines. For example, suppose your computer

system loses power. If you have an uninterruptible power supply installed to maintain power to the

processing unit and disk units, your system remains active. However, in this example, your workstations

lost power. When your programs attempt to read or write to the workstations, an error indication is

returned to the program. If the application is not designed to handle these errors, the system can spend

all its time in workstation error recovery.

Backing up and recovering your system 145

You should design your interactive applications to look at error feedback areas and handle any errors

indicated. If the application handles the errors and stops, the system resource is not used to do

nonproductive error recovery. Examples of using error feedback areas and error recovery routines can be

found in the programming languages reference manuals.

Batch job recovery: Print-only batch jobs normally do not need special recovery to start again. Running

the program again may be adequate.

Batch jobs that perform file updates (add, change, or delete actions) present additional considerations for

starting again and recovery. One approach to starting again is to use an update code within the record.

As a record is updated, the code for that record can also be updated to show that processing for that

record is complete. If the job is started again, the batch program positions itself (as a result of the update

code) to the first record that it had not processed. The program then continues processing from that point

in the file.

Another way to start batch processing again is to save or copy the file before starting the job. You can use

one of the following commands to save or copy the file:

v Save Object (SAVOBJ)

v Copy File (CPYF)

Then, if you have to start again, restore or copy the file to its original condition and run the job again.

With this approach, you need to ensure that no other job is changing the files. One way to ensure this is

to get an exclusive lock on the file while the job is running. A variation of this approach is to use the

journal. For example, if starting again is required, you could issue the Remove Journal Change

(RMVJRNCHG) command to remove changes to the files. Then, run the job again against the files.

If your batch job consists of a complex input stream, you probably want to design a strategy for starting

again into the input stream. Then, if the batch job needs to be started again, the job determines from

what point the stream continues.

Commitment control also can be used for batch job recovery. However, if you plan to use commitment

control for batch jobs, consider that the maximum number of record locks allowed in a commit cycle is 4

000 000. Therefore, you may need to divide the batch job into logical transactions. For example, if your

batch program updates a master file record followed by several detail records in another file, each of

those sets of updates can represent a logical transaction and can be committed separately. Locks are held

on all records changed within a commit cycle. Therefore, changed data is made available more quickly if

your batch job is divided into small, logical transactions.

Journaling can also be used to assist in batch job recovery just as it can be for interactive jobs.

Interpreting output from save (SAV) and restore (RST)

When you use the Save (SAV) command or the Restore (RST) command, you can direct output to a

stream file or to a user space.

If data already exists in the stream file or user space that you specify, the command writes over that data.

It does not append the new data to any existing data.

To specify a stream file, you must have *W authority to the stream file and *R authority to the directory

for the stream file.

To specify a user space, you must have *CHANGE authority to the user space and *USE authority to the

library. The server needs an *EXCLRD lock on the user space.

 Related concepts

 “Using the Save (SAV) command” on page 74
This information explains how to use the SAV command with the OBJ parameter.

146 System i: Backing up your system

Related reference

 “Determining objects that the system saved (save messages)” on page 6
This information describes how save messages work and what information is available from the out

files.

Entry header information:

When a Save (SAV) command or the Restore (RST) command is run, the output can be directed to a

stream file or user area.

 The content of the output is divided into entries. Each entry in the output has an associated header. This

header contains data that specifies the length of the entry and the type of the entry. Each type of entry

has its own format. This header information allows the content of the output to be divided into entries

that have specific formats. This enables the data in the output to be parsed.

No count of the entries is kept, instead, the end of an entry is determined by entry length. An entry may

contain variable length elements. This may result in the entry being padded.

The number of entries in the output is variable. Entries will appear one after the other until a trailer entry

is reached. The trailer entry is the last entry in the output.

For each field in the header, an offset is specified in bytes. This offset is relative to the base address of the

header, or the beginning of the first field in the header.

The table below shows the format for the header information as it is output by the SAV or RST

commands.

 Table 45. Entry header information output–SAV and RST commands

Offset (bytes)

Type (in bytes) Set by1 Field Decimal Hex

0 0 BINARY(4) S/R Entry type

4 4 BINARY(4) S/R Entry length

 Note:

1.

Set by column. The following column values indicate which operations write the content of the field into

the output:

Value Condition

S Save operation set this field.

R Restore operation set this field.

S/R Either operation set this field.

(blank) Not set by either operation. The associated field is set to zero for numeric

fields, blank for character fields, or empty for variable-length character

fields.

Command information entries:

This table describes the format of the command output for the SAV and RST commands.

 Command information entries are output in the format described in the table below. The entry type value

in the header determines if the entry associated with the header is a command information entry.

Backing up and recovering your system 147

The system associates a coded character set identifier (CCSID) with all data. This association is

maintained across all save and restore operations.

For each field, an offset is specified in bytes. This offset is relative to the base address of the entry, or the

beginning of the first field in the entry header.

 Table 46. Command information entry output–SAV and RST commands

Offset (bytes)

Type (in bytes) Set in1 Field Decimal Hex

0 0 BINARY(8) S/R See the table in Entry header information for more format

details.

8 8 BINARY(4) S/R Device name offset

2

12 C BINARY(4) S/R File label offset

3

16 10 BINARY(4) S/R Sequence number

20 14 BINARY(4) S/R Save active

24 18 BINARY(4) S/R CCSID of data

28 1C BINARY(4) S/R Number of records

32 20 CHAR(10) S/R Command

42 2A CHAR(10) S/R Expiration date

52 34 CHAR(8) S/R Save date/time

60 3C CHAR(10) S/R Start change date

70 46 CHAR(10) S/R Start change time

80 50 CHAR(10) S/R End change date

90 5A CHAR(10) S/R End change time

100 64 CHAR(6) S/R Save release level

106 6A CHAR(6) S/R Target release level

112 70 CHAR(1) S/R Information type

113 71 CHAR(1) S/R Data compressed

114 72 CHAR(1) S/R Data compacted

115 73 CHAR(8) S/R Save System serial number

123 7B CHAR(8) R Restore date/time

131 83 CHAR(6) R Restore release level

137 89 CHAR(8) R Restore system serial number

145 91 CHAR(10) S/R Save active option

 Note:

1.

Set by column. The following column values indicate which operations write the content of the field into

the output:

Value Condition

148 System i: Backing up your system

Note:

S Save operation set this field.

R Restore operation set this field.

S/R Either operation set this field.

(blank) Not set by either operation. The associated field is set to zero for numeric

fields, blank for character fields, or empty for variable-length character

fields.

2.

Format of device name. You can find the first entry using the Device name offset field to get to the Number

of device name field. The Number of device names field is not repeated.

BINARY(4) (blank) Number of device identifiers

Then, moving to the first device identifier. Each device identifier consists of a length followed by its

name. The device name fields are repeated for each device identifier.

BINARY(4) S/R Device name length

CHAR(*) S/R Device name

3.

Format of file label. You can find the start of the file label using the File label offset field. The file label

fields are not repeated.

BINARY(4) S/R File label length

CHAR(*) S/R File label

Directory information entries:

This table describes the format of the directory entry output for the SAV and RST commands.

 The Entry type value in the entry header determines if the entry associated with the header is a directory

information entry.

For each field, an offset is specified in bytes. This offset is relative to the base address of the entry, or the

beginning of the first field in the entry header.

 Table 47. Directory information entry output–SAV and RST Commands

Offset (bytes)

Type (in bytes) Set in1 Field Decimal Hex

0 0 BINARY(8) S/R See the table in Entry header information for more format

details.

8 8 BINARY(4) S/R Directory name offset

2

12 C BINARY(4) S/R Number of object links processed successfully in directory

16 10 BINARY(4) S/R Number of object links processed unsuccessful in

directory

20 14 BINARY(4) S/R Starting volume identifier offset

3

24 18 BINARY(8) S/R Total size (in K) of object links processed successfully in

directory

32 20 BINARY(4),

UNSIGNED

R Number of directory levels created by restore

Backing up and recovering your system 149

Note:

1.

Set by column. The following column values indicate which operations write the content of the field

into the output:

Value Condition

S Save operation set this field.

R Restore operation set this field.

S/R Either operation set this field.

(blank) Not set by either operation. The associated field is set to zero for numeric

fields, blank for character fields, or empty for variable-length character

fields.

2.

Format of directory identifier. You can find the start of the directory identifier using theDirectory

identifier offset field. The directory identifier consists of a length followed by the directory name. The

directory fields are not repeated.

BINARY(4) S/R Directory identifier length

CHAR(*) S/R Directory identifier

3.

Format of starting volume identifier. You can find the first entry using the Starting volume identifier

offset field. The volume identifier consists of a length followed by the volume name. The volume fields

are not repeated.

The system stores the directory name in UNICODE. For information on converting this name, see the

documentation for the iconv API in the System API Reference topic.

BINARY(4) S/R Starting volume identifier length

CHAR(*) S/R Starting volume identifier

Object link information entries:

Object link information entries are output in the format described in the table below. The Entry type value

in the entry header determines if the entry associated with the header is a object link information entry.

 The system associates a coded character set identifier (CCSID) with all data including object link names.

This association is maintained across all save and restore operations.

For each field, an offset is specified in bytes. This offset is relative to the base address of the entry, or the

beginning of the first field in the entry header.

 Table 48. Object link information entry–Output from SAV and RST Commands

Offset (bytes)

Type (in bytes) Set in1 Field Decimal Hex

0 0 BINARY(8) S/R See the table in Entry header information for more format

details.

8 8 BINARY(4) S/R Object link identifier offset2

12 C BINARY(4) R Object link identifier after restore operation offset3

16 10 BINARY(4) S/R Starting volume identifier offset4

20 14 BINARY(4) S/R Object link error message replacement identifier offset

5

24 18 BINARY(4) S/R Object link size

150 System i: Backing up your system

 ../apifinder/finder.htm

Table 48. Object link information entry–Output from SAV and RST Commands (continued)

Offset (bytes)

Type (in bytes) Set in1 Field Decimal Hex

28 1C BINARY(4) S/R Object link size multiplier

32 20 BINARY(4) S/R ASP at time of save operation

36 24 BINARY(4) R ASP after restore operation

40 28 CHAR(10) S/R Object link type

50 32 CHAR(8) S/R Save active date/time

58 3A CHAR(10) S/R Object link owner at time of save

68 44 CHAR(10) R Object link owner after restore

78 4E CHAR(50) S/R Object link text

128 80 CHAR(1) R Object link security message

129 81 CHAR(1) S/R Object link status

130 82 CHAR(7) S/R Object link error message ID

137 89 CHAR(1) S/R Object link data

138 8A BIN(8) (blank) Reserved

146 92 CHAR(1) S/R ALWCKPWRT

147 93 CHAR(10) S/R ASP device name at time of save operation

157 9D CHAR(10) R ASP device name after restore operation

167 A7 CHAR(1) S In mounted UDFS

168 A8 CHAR(4) (blank) Reserved

172 AC BINARY(4) S/R Journal information required for recovery offset6

176 B0 BINARY(4) S/R Journal receiver information required for recovery offset7

1.

Set by column. Each value in this column is set when

Bold Condition

S Save operation set this field.

R Restore operation set this field.

S/R Either operation set this field.

(blank) Not set by either operation. The associated field is set to zero for numeric

fields, blank for character fields, or empty for variable-length character

fields.

2.

Format of object link identifier. You can find the start of the object link identifier using the Object link

identifier offset field. An object link identifier will consist of a length followed by the object link name.

The object link fields are not repeated.

The CCSID of the object link name can be found by using CCSID of data field from the Command

information format.

Backing up and recovering your system 151

Table 48. Object link information entry–Output from SAV and RST Commands (continued)

Offset (bytes)

Type (in bytes) Set in1 Field Decimal Hex

BINARY(4) S/R Object link identifier length

CHAR(*) S/R Object link identifier

3.

Format of object link identifier after restore operation. You can find the start of the object link

identifier after the restore operation by using the Object link identifier after restore operation offset field. An

object link identifier will consist of a length followed by the object link name. The object link identifier

fields are not repeated.

The CCSID of the object link name can be found by using CCSID of data field from the Command

information entry.

The system stores the object link name in UNICODE. For information on converting this name, see the

documentation for the iconv API in the System API Reference topic.

BINARY(4) S/R Object link identifier after restore operation length

CHAR(*) R Object link identifier after restore operation

4.

Format of starting volume identifier. You can find the first entry by using the Starting volume identifier

offset field. The volume identifier consists of a length followed by the volume name. The volume

identifier fields are not repeated.

BINARY(4) S/R Starting volume identifier length

CHAR(*) S/R Starting volume identifier

5. Format of object link error message replacement identifier. You can find the start of the object link

error message replacement identifier using the Object link error message replacement identifier offset field.

An object link error message will consist of a length followed by a name. The error message

replacement identifier fields are not repeated.

BINARY(4) S/R Object link error message replacement identifier length

CHAR(*) S/R Object link error message replacement identifier

6.

Format of journal information required for recovery. You can find the start of the entry by using the

Journal information required for recovery offset field. Journal information required for recovery will consist

of a length followed by the journal path name. The journal fields are not repeated.

The CCSID of the journal path name can be found by using the CCSID of data field from the Command

information format. For information on converting this name, see the documentation for the iconv API

in the System API Reference topic.

BINARY(4) S/R Journal information required for recovery — path name

length

CHAR(*) S/R Journal information required for recovery — path name

7.

Format of journal receiver information required for recovery. You can find the start of the entry using

the Journal receiver information required for recovery offset field. Journal receiver information required for

recovery will consist of an ASP device name, a length, and the journal receiver path name. The journal

receiver fields are not repeated.

The CCSID of the journal receiver path name can be found by using CCSID of data field from the

Command information format. For information on converting this name, see the documentation for the

iconv API in the System API Reference topic.

152 System i: Backing up your system

Table 48. Object link information entry–Output from SAV and RST Commands (continued)

Offset (bytes)

Type (in bytes) Set in1 Field Decimal Hex

CHAR(10) S/R Journal receiver information required for recovery — ASP

device name

CHAR(2) (blank) Reserved

BINARY(4) S/R Journal receiver information required for recovery — path

name length

CHAR(*) S/R Journal receiver information required for recovery — path

name

Trailer information entry:

The trailer information entry is output in the format described in this topic. The Entry type value in the

entry header determines if the entry associated with the header is a trailer information entry. The trailer

information entry is the last entry in the output created by save (SAV) or restore (RST) commands.

 For each field, an offset is specified. This offset is relative to the base address of the entry, or the

beginning of the first field in the entry header.

 Table 49. Trailer Information entry–Output from SAV and RST Commands

Offset (bytes)

Type (in

bytes) Set in1 Field Decimal Hex

0 0 BINARY(8) S/R See the table in Entry header information for more format details.

8 8 BINARY(4) S/R Volume identifier offset2

12 C BINARY(4) S/R Complete data

16 10 BINARY(4) S/R Number of object links processed successfully

20 14 BINARY(4) S/R Number of object links processed unsuccessfully

24 18 BINARY(8) S/R Total size (in K) of object links processed successfully

32 20 BINARY(4)

UNSIGNED

S/R Number of media files

36 24 BINARY(4)

UNSIGNED

S/R Media file offset2

1.

Set by column. The following column values indicate which operations write the content of the field into

the output:

Bold Condition

S Save operations write this field.

R Restore operations write this field.

S/R Either operations write this field.

(blank) Not written by either operation. The associated field is set to zero for numeric fields,

blank for character fields, or empty for variable-length character fields.

Backing up and recovering your system 153

Table 49. Trailer Information entry–Output from SAV and RST Commands (continued)

Offset (bytes)

Type (in

bytes) Set in1 Field Decimal Hex

2.

Format of volume identifier. You can find the first entry by using the Volume name offset field to get to the

Number of volume identifiers field. The Number of volume identifiers field is not repeated.

BINARY(4) S/R Number of volume identifiers

Then, moving to the first volume identifier. A volume identifier consists of a length followed by the

volume name. The Volume identifier length and the Volume identifier fields are repeated for each volume

identifier.

BINARY(4) S/ Volume identifier length

CHAR(*) S/R Volume identifier

3. Format of media file. The media file fields are repeated for each media file.

BINARY(4),

UNSIGNED

S/R Media file length

BINARY(4),

UNSIGNED

S/R Media file sequence number

BINARY(4),

UNSIGNED

S/R Number of media file device names

BINARY(4),

UNSIGNED

S/R Media file device name offset

BINARY(4),

UNSIGNED

S/R Number of media file volume identifiers

BINARY(4),

UNSIGNED

S/R Media file volume identifier offset

4. Format of media device name. The media file device name fields are repeated for each media file device

name.

BINARY(4),

UNSIGNED

S/R Media file device name length

CHAR(*) S/R Media file device name

5. Format of media file volume identifier. The media volume identifier fields are repeated for each media

file volume identifier.

BINARY(4),

UNSIGNED

S/R Media file volume identifier length

CHAR(*) S/R Media file volume identifier

Output sequence:

This table shows the sequence of entries in the output when you specify INFTYPE(*ALL) or

INFTYPE(*ERR)

 Table 50. Output Sequence 1–SAV and RST Commands

Command information

154 System i: Backing up your system

Table 50. Output Sequence 1–SAV and RST Commands (continued)

 Directory information for directory 1

Object link information for object line 1

. . .

Object link information for object link N

 Directory information for directory 2

Object link information for object line 1

. . .

Object link information for object link N

 Directory information for directory N

Object link information for object line 1

. . .

Object link information for object link N

Trailer information

When you specify INFTYPE(*ALL), the output contains an object link entry for all object links (both

successful and unsuccessful). When you specify INFTYPE(*ERR), the output contains an object link entry

only for unsuccessful links.

The table below shows the sequence of entries in the output when you specify INFTYPE(*SUMMARY):

 Table 51. Output Sequence2–SAV and RST Commands

Command information

Directory information for directory 1

Directory information for directory 2

Directory information for directory

Trailer information

When you retrieve information from the output format for object links, you must use the entry length

that the system returns in the header information format of each entry. The size of each entry may

include padding at the end of the entry. If you do not use the entry length, the result may not be valid.

The entry length can be used to find the next entry. The trailer entry is always the last entry.

Field descriptions:

This information describes possible values for the save (SAV) and restore (RST) output fields.

 ALWCKPWRT

Indicates whether an object was saved while updates to the object may have occurred. The

possible values are:

0 No updates occurred to the object while the object was being saved.

1 The object was saved with the SAVACTOPT(*ALWCKPWRT) parameter and the

corresponding system attribute for the object was set. Updates to the object may have

occurred while the object was being saved. See Using additional save-while-active options

(SAVACTOPT) for more information.

ASP after restore operation

The auxiliary storage pool (ASP) of the object link when it was restored. The possible values are:

1 System ASP

Backing up and recovering your system 155

2–32 Basic user ASPs

33–255 Independent ASPs

ASP device name after restore operation

The auxiliary storage pool (ASP) device name of the object link when it was restored. Possible

values are:

*SYSBAS

System and basic auxiliary storage pools

device name

Name of the independent auxiliary storage pool

ASP at time of save operation

The auxiliary storage pool (ASP) of the object link when it was saved. Possible values are:

1 System ASP

2–32 Basic user ASPs

33–255 Independent ASPs

ASP device name at time of save operation

The auxiliary storage pool (ASP) device name of the object link when it was saved. The possible

values are:

*SYSBAS

System and basic auxiliary storage pools

device name

Name of the independent auxiliary storage pool

Command

The command that was used when the operation was performed.

 The possible values are:

SAV Save operation

RST Restore operation

Complete data

Indicates whether all of the data for the save or restore operation was in fact saved or restored.

This trailer data element can inform you as the completeness of the system description contained

in the rest of the output generated by the operation.

 The possible values are:

0 The data is not complete. One or more directory information or object link information

entries were not written to the user space or byte stream file. This can occur when a user

space object link is used and more than 16MB of information about the save or restore

operation is generated. This situation occurs only when the save or restore operation

processes a very large number of object links. If this situation occurs, you should consider

using a stream file to store your output information.

1 The data is complete. All of the information about the save or restore operation is

contained in the output.

CCSID of data

The CCSID of the data that is stored in this output.

Data compacted

Indicates whether the data was stored in compacted format.

 The possible values are:

156 System i: Backing up your system

’0’ The data is not compacted.

’1’ The data is compacted.

Data compressed

Indicates whether the data was stored in compressed format.

 The possible values are:

’0’ The data is not compressed.

’1’ The data is compressed.

Device name

The name of a device used to perform the save or restore operation. The filed contains either the

name of a device, the name of a media definition or the name of a save file that was used to

perform the operation. The length of the name is defined by Device name length and the CCSID

is defined by the CCSID of data field.

Device name length

The length of the Device name field.

Device name offset

The offset to the field.

Directory identifier

The name of the directory that the object was saved from or where the object was restored.

Directory identifier length

The length of the Directory identifier field.

Directory identifier offset

The offset to the Directory identifier length field.

End change date

The value that was specified for the end change date when the save operation was performed.

 The possible values are:

*ALL No end change date was specified.

end date

The end change date that was specified on the save operation. The date is in YYMMDD

format, is left justified, and is padded with blanks.

End change time

The value that was specified for the end change time when the save operation was performed.

 The possible values are:

*ALL No end change time was specified

end time

The end change time that was specified on the save operation. The time is in HHMMSS

format, is left justified, and is padded with blanks.

Entry length

The length of this list entry.

Entry type

Indicates the type of data that is contained in this list entry.

 The possible values are:

1 This list entry contains command level information. Use the command information format

to map out the data for this list entry.

Backing up and recovering your system 157

|
|
|
|
|

|
|

|
|

2 This list entry contains directory-level information. Use the directory information format

to map out the data for this list entry.

3 This list entry contains link level information. Use the object link information format to

map out the data for this list entry.

4 This list entry contains trailer information. Use the trailer information format to map out

the data for this list entry.

Expiration date

The expiration date of the media.

 The possible values are:

*PERM

The data is permanent.

expiration date

The expiration date that was specified on the save operation. The date is in YYMMDD

format, is left justified, and is padded with blanks.

File label

The file label of the media file the save or restore operation is using. For a save or restore that

uses a save file, this field is blank.

File label length

The length of the File label field.

File label offset

The offset to the File label length field.

Information type

Shows you the type of information that was saved with this operation. (INFTYPE parameter on

SAV command).

 The possible values are:

’1’ Summary information and information about each object link that was processed was

saved (*ALL).

’2’ Summary information and information about object links that were not successfully saved

or restored was saved (*ERR).

’3’ Only summary information was saved (*SUMMARY).

In mounted UDFS

Shows whether the object was in a mounted user-defined file system (UDFS) during the save

operation.

 The possible values are:

’0’ The object was not in a mounted UDFS during the save operation.

’1’ The object was in a mounted UDFS during the save operation.

Journal information required for recovery offset

The offset to the Journal information required for recovery — path name length field. This field will be

0 for objects that were not journaled at the time of the save.

Journal information required for recovery - path name

The path name of the journal required to recover the object. The object must be journaled by this

journal before an Apply Journaled Changes (APYJRNCHG) can successfully restore the object.

Journal information required for recovery - path name length

The length of the Journal information required for recovery — path name field.

158 System i: Backing up your system

Journal receiver information required for recovery offset

The offset to the Journal receiver information required for recovery — ASP device name field. This field

will be 0 for objects that were not journaled at the time of the save.

Journal receiver information required for recovery - ASP device name

The name of the disk pool device that contains the library containing the journal receiver

required to recover the object.

Journal receiver information required for recovery - path name

The path name of the first journal receiver in the journal receiver chain needed to recover the

object. The object must be journaled to this journal receiver before an Apply Journaled Changes

(APYJRNCHG) can successfully restore the object.

Journal receiver information required for recovery - path name length

The length of the Journal receiver information required for recovery — path name field.

Media file device name

The name of a device used to perform the save or restore operation. The field contains either the

name of a device or the name of a save file that was used to perform the operation. The length of

the name is defined by Media file device name length and the CCSID is defined by the CCSID of

data field.

Media file device name length

The length of the Media file device name field.

Media file device name offset

The offset to the first Media file device name field for this media file.

Media file length

The length of the Media file field.

Media file offset

The offset to the first Media file field.

Media file sequence number

The sequence number of the media file. The value will be 0 if the Media file device name is not a

tape device.

Media file volume identifier

The name of a volume used during the save or restore operation. The length of the name is

defined by Media file volume identifier length and the CCSID is defined by the CCSID of data

field.

Media file volume identifier length

The length of the Volume identifier field.

Media file volume identifier offset

The offset to the first Media file volume identifier field for this media file.

Number of device names

The number of Device name fields.

Number of directory levels created by restore

When the parent directory of an object being restored does not exist and CRTPRNDIR(*YES) is

specified, the restore will create the parent directory. This field will indicate the number of levels

of the parent directory that the restore created. For example, if ‘/a/b/c/stmf’ is restored and

‘/a/b’ does not exist, the restore will create ‘/a/b’ and ‘/a/b/c’ and the Number of directory

levels created by restore field will be 2.

Number of media files device names

The number of Media file device names contained in this media file.

Number of media volume identifiers

The number of Media file volume identifiers contained in this media file.

Backing up and recovering your system 159

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|

|
|

|
|

Number of media files

The number of Media files processed during the save or restore operation.

Number of object links processed successfully in directory

The number of object links that were successfully saved or restored for this directory.

Number of object links processed unsuccessfully in directory

The number of object links that were not saved nor restored for this directory.

Number of object links processed successfully

The total number of object links successfully saved or restored for the entire save or restore

operation.

Number of object links processed unsuccessfully

The total number of object links saved nor restored for the entire save or restore operation.

Number of records

A number interpreted for a given value as follows:

n The number of records saved or restored because a *SAVF device or save file was

included among the devices or files saved or restored.

0 The number of records saved or restored because a *SAVF device or save file was not

included among the devices or files saved or restored.

Number of volume identifiers

The number of volumes used during the save or restore operation.

Object link data

The number of Volume identifiers contained in this media file. If a media definition was specified

for the DEV parameter, this field will be set to 0.

Object link error message ID

The message ID of an error message that was issued for this link.

Object link error message replacement identifier

The error message replacement identifier from the link error message.

Object link error message replacement identifier length

The length of the Object link error message replacement identifier.

Object link error message replacement identifier offset

The offset to the Object link error message replacement identifier length field.

Object link identifier after restore operation

The name of the object link after it was restored.

Object link identifier after restore operation length

The length of the Object link identifier after restore operation field.

Object link identifier after restore operation offset

The offset to the Object link identifier after restore operation length field.

Object link identifier

For a save operation, the name of the object link that was saved. For a restore operation, the

qualified object link name that was saved (including the directory and object link identifier).

Object link identifier length

The length of the Object link identifier field.

Object link identifier offset

The offset of the Object link identifier length field.

Object link owner after restore

The name of the object link owner’s user profile when the object link was restored.

160 System i: Backing up your system

|
|

Object link owner at time of save

The name of the object link owner’s user profile when the object link was saved.

Object link security message

Indicates whether a security message was issued for this object link during a restore operation.

 The possible values are:

’0’ No security messages were issued.

’1’ One or more security messages were issued.

Object link size

The size of the object link in units of the size multiplier. The true object link size is equal to or

smaller than the object link size multiplied by the object link size multiplier.

Object link size multiplier

The value to multiply the object link size by to get the true size. The value is 1 if the object link is

smaller than 1 000 000 000 bytes, 1024 if it is between 1 000 000 000 and 4 294 967 295 bytes

(inclusive). The value is 4096 if the object link is larger than 4 294 967 295 bytes.

Object link status

Indicates whether the object link was successfully processed.

 The possible values are:

’0’ The object link was not successfully saved or restored.

’1’ The object link was successfully saved or restored.

Object link text

The text description of the object link.

Object link type

The type of the object link.

Restore date/time

The time at which the object links were restored in system timestamp format. See the Convert

Date and Time Format (QWCCVTDT) API for information on converting this timestamp.

Restore system serial number

The serial number of the system on which the restore operation was performed.

Restore release level

The release level of the operating system on which the object links were restored. This field has a

VvRrMm format, containing the following:

Vv The character V followed by a 1-character version number

Rr The character R followed by a 1-character release number

Mm The character M followed by a 1-character modification number

Save active

Indicates whether object links were allowed to be updated while they were being saved.

 The possible values are:

0 SAVACT(*NO)—Object links were not allowed to be saved while they were in use by

another job.

1 SAVACT(*YES)—Object links were allowed to be saved while they were in use by another

job. Object links in the save may have reached a checkpoint at different times and may

not be in a consistent state in relationship to each other.

-1 SAVACT(*SYNC)—Object links were allowed to be saved while they were in use by

Backing up and recovering your system 161

another job. All of the object links and all of the directories in the save operation reached

a checkpoint together and were saved in a consistent state in relationship to each other.

Save active date/time

The time at which the object link was saved while active in system timestamp format. See the

Convert Date and Time Format (QWCCVTDT) API for information on converting this timestamp.

Save active option

Indicates which options were used with save-while-active. The possible values are:

*NONE

SAVACTOPT(*NONE) was specified. No special save-while-active options were used.

*ALWCKPWRT

SAVACTOPT(*ALWCKPWRT) was specified. This enabled objects to be saved while they

were being updated if the corresponding system attribute was set. Refer to Using

additional save-while-active options (SAVACTOPT) for more information.

Save date/time

The time at which the object links were saved in system timestamp format. See the Convert Date

and Time Format (QWCCVTDT) API for information on converting this timestamp.

Save release level

The release level of the operating system on which the object links were saved. This field has a

VvRrMm format, containing the following:

Vv The character V is followed by a 1-character version number.

Rr The character R is followed by a 1-character release number.

Mm The character M is followed by a 1-character modification number.

Save server serial number

The serial number of the system on which the save operation was performed.

Sequence number

The sequence number of the file on media. The value will be 0 if the save media is not tape. If

tape device was not specified for the DEV parameter, this field will be set to 0.

Start change date

The value that was specified for the start change date when the save operation was performed.

 The possible values are:

*LASTSAVE

The save includes object links that have changed since the last time they were saved with

UPDHST(*YES) specified on the save operation.

*ALL No start change date was specified.

Start date

The start change date that was specified on the save operation. The date is in YYMMDD

format, is left justified, and is padded with blanks.

Start change time

The value that was specified for the start change time when the save operation was performed.

 The possible values are:

*ALL No start change time was specified.

Start time

The start change time that was specified on the save operation. The time is in HHMMSS

format, is left justified, and is padded with blanks.

162 System i: Backing up your system

Starting volume identifier

For an object link, the name of the first volume, on which this object link was saved.

 For a directory, the name of the first volume, on which this directory was saved. Saved content

can be saved across several volumes.

Starting volume identifier length

For either the starting volume of a directory or an object link, the length of the Starting volume

identifier.

Starting volume identifier offset

The offset to the Starting volume identifier length.

Target Release level

The earliest release level of the operating system on which the object links can be restored. This

field has a VvRrMm format, containing the following:

Vv The character V is followed by a one-character version number.

Rr The character R is followed by a 1-character release number.

Mm The character M is followed by a 1-character modification number.

Volume identifier

The name of a volume used during the save or restore operation. The length of the name is

defined by Volume identifier length and the CCSID is defined by the CCSID of data field. If a tape

drive was not specified for the DEV parameter, this field will be set to 0.

Volume identifier length

The length of the Volume identifier field.

Volume identifier offset

The offset to the start of the Volume identifier length field.
 Related concepts

 “Additional save-while-active option (SAVACTOPT) parameter” on page 129
The SAV command provides additional save-while-active options which you specify on the

SAVACTOPT parameter. The default is *NONE, which means that no additional options are used

during a save-while-active operation.
 Related information

 Convert Date and Time Format (QWCCVTDT) API

Interpreting output from save commands

This topic contains a list of links to save commands or APIs that you can use to direct output to an

output file.

v QSRSAVO - Save object API

v SAVCFG - Save configuration

v SAVCHGOBJ - Save changed objects

v SAVLIB - Save library

v SAVOBJ - Save object

v SAVSAVFDTA - Save save file data

v SAVSECDTA - Save security data

v SAVSYS - Save system

v SAVSYSINF- Save system information

The following topics describe the output information that these commands create. To specify an output

file, you must have *CHANGE authority to the database file and *USE authority to the library. The

system needs an *EXCLRD lock on the database file. Click the command above that applies to the

information that you would like to save. The control language (CL) provides descriptions for the three

Backing up and recovering your system 163

parameters that allow you to direct save output to an output file: File to receive output (OUTFILE),

Output member options (OUTMBR), and Type of output information (INFTYPE).

 Related reference

 “Determining objects that the system saved (save messages)” on page 6
This information describes how save messages work and what information is available from the out

files.

Output file information:

This table shows the format for the information for output. Unused fields, fields that are not set, contain

a value of zero for numeric fields and blanks for character fields.

 Table 52. Output file information

Identifier Type Field

SROCMD CHAR(10) Save command

SROINF CHAR(10) Information type

SROSYS CHAR(8) System

SROSRL CHAR(6) Save Release Level

SROLIB CHAR(10) Library Name

SROASP ZONED(2) Library ASP number

SROSAV ZONED(6) Objects saved

SROERR ZONED(6) Objects not saved

SROSEQ ZONED(4) Sequence number

SROLBL CHAR(17) File label

SROVOL CHAR(60) Volume identifiers

SROSVT CHAR(13) Save date/time

SRONAM CHAR(10) Object name

SROMNM CHAR(10) Member name

SROTYP CHAR(8) Object type

SROATT CHAR(10) Object attribute

SROSIZ ZONED(15) Size

SOOWN CHAR(10) Owner

SROSTA CHAR(1) Status

SROMSG CHAR(7) Error message

SROSWA CHAR(13) Save while active date/time

SROTXT CHAR(50) Text

SRODEV CHAR(40) Device names

SROSVF CHAR(10) Save file name

SROSFL CHAR(10) Save file library name

SROTRL CHAR(6) Target release

SROSTF CHAR(1) Storage

SROACP CHAR(1) Save access paths

SROSFD CHAR(1) Save file data

SROCMP CHAR(1) Data compressed

SROCOM CHAR(1) Data compacted

164 System i: Backing up your system

Table 52. Output file information (continued)

Identifier Type Field

SRORFD CHAR(7) Reference date

SRORFT CHAR(6) Reference time

SROEXP CHAR(7) Expiration date

SROXVM CHAR(390) Extra volume identifiers

SROPGP CHAR(10) Primary group

SROSQ2 ZONED(10) Large sequence number

SROMIT CHAR(1) Object omitted

SROFMT CHAR(1) Save format

SROMFN ZONED(3) Media file number

SROTMF ZONED(3) Total media files

SROMDN CHAR(10) Media definition name

SROMDL CHAR(10) Media definition library name

SROVLC ZONED(3) Volume count

SROVLL ZONED(3) Volume length

SROVLD CHAR(2400) Volume identifiers (complete)

SROOPT CHAR(256) Optical file

SROAS1 CHAR(10) ASP name

SROAS2 ZONED(5) ASP number

SROTSZ PACKED(21) Total size saved

SROPRT CHAR(1) Partial transaction exists

SROJN CHAR(10) Journal name

SROJL CHAR(10) Journal library name

SROJRN CHAR(10) Journal receiver name

SROJRL CHAR(10) Journal receiver library name

SROJRA CHAR(10) Journal receiver ASP

SROPFL CHAR(10) Spooled file name

SROPFN ZONED(6) Spooled file number

SROPJB CHAR(10) Spooled file job name

SROPUN CHAR(10) Spooled file user name

SROPJN CHAR(6) Spooled file job number

SROPJS CHAR(8) Spooled file job system name

SROPCD CHAR(7) Spooled file creation date

SROPCT CHAR(6) Spooled file creation time

SROPQN CHAR(10) Spooled file output queue name

SROPQL CHAR(10) Spooled file output queue library

Field descriptions:

This topic describes the possible values for various save commands.

Backing up and recovering your system 165

|

|

|

|

|

|

|

|

|

|

ASP name

The auxiliary storage pool (ASP) device name of the object when it was saved. Possible values

are:

*SYSBAS

System and basic auxiliary storage pools

device name

Name of the independent auxiliary storage pool

ASP number

The auxiliary storage pool (ASP) of the object when it was saved. The possible values are:

1 System ASP

2–32 Basic user ASPs

33-255

Independent ASPs

Data compacted

Indicates whether the data was stored in compacted format. The possible values are:

’0’ The data is not compacted.

’1’ The data is compacted.

Data compressed

Indicates whether the data was stored in compressed format. The possible values are:

’0’ The data is not compressed.

’1’ The data is compressed.

Device names

The name of the devices used to perform the save or restore operation. The field contains a list of

device names. Each device name is CHAR(10) and there can be 1-4 devices listed.

Error message ID

The message ID of an error message that was issued for this object or library.

Expiration date

The expiration date of the media file. The possible values are:

*PERM

The data is permanent.

expiration date

The expiration date that was specified on the save operation. The date is in YYMMDD

format, is left justified, and is padded with blanks.

Extra Volume identifiers

This field contains a list of extra volume IDs beyond the first 10 volumes. It contains volume

names for volumes 11-75. Each entry is CHAR(6).

File label

The file label of the media file used by the save operation. For a save that uses a save file, this

field is blank.

Information type

Shows you the type of information that was saved with this operation. (INFTYPE parameter). The

possible values are:

*ERR The list contains information about the command, an entry for each library, and an entry

for each object that was not successfully saved

*LIB The list contains a library entry for each library requested to be saved.

166 System i: Backing up your system

*MBR

The list contains an entry for each object or, for database files, each member requested to

be saved.

*OBJ The list contains an entry for each object requested to be saved.

Note:

1. The SAVSYS command does not support the INFTYPE parameter. The output contains

one record for each media file that is written.

2. The SAVSAVFDTA and SAVSYINF commands do not support the INFTYPE parameter.

The output contains one record for the SAVF that is saved.

3. The SAVCFG and SAVSECDTA commands do not support the INFTYPE parameter. The

output is type *OBJ.

Journal library name

The name of the library that contains the journal to which the object is journaled.

Journal name

The name of the journal to which the object is journaled.

Journal receiver ASP

The name of the auxiliary storage pool (ASP) that contains the earliest journal receiver needed for

applying journal changes when recovering the object.

Journal receiver library name

The name of the library that contains the earliest journal receiver needed for applying journal

changes when recovering the object.

Journal receiver name

The name of the earliest journal receiver needed for applying journal changes when recovering

the object.

Large sequence number

The sequence number of the file on media. The value will be 0 if the save media is not tape.

Library ASP name

The auxiliary storage pool (ASP) device name of the object when it was saved. Possible values

are:

*SYSBAS

System and basic auxiliary storage pools

device name

Name of the independent auxiliary storage pool

Library ASP number

The auxiliary storage pool (ASP) of the object when it was saved. The possible values are:

1 System ASP

2–32 Basic user ASPs

-1 Independent ASPs. See ASP number field for independent ASP number.

Library name

The name of the library that contains the objects that were saved.

Media definition library name

The name of the library that contains the media definition used in the save operation.

Media definition name

The name of the media definition used in the save operation.

Backing up and recovering your system 167

Media file number

A number to identify this media file when a library is saved in parallel format. This field is only

valid if the Save format field is ’1’ (save format is parallel). The value will be 0 if the save media

is not tape.

Member name

The name of the database file member that was saved. This field will be blank if the object is not

a database file, or if INFTYPE(*MBR) was not specified, or if the record is the summary record

for the database file.

Object attribute

The attribute of the object that was saved.

Object name

The name of the object that was saved.

Objects not saved

The total number of objects that were not saved for the library.

Objects omitted

Indicates whether any objects were omitted from the save operation. The possible values are:

’0’ No objects were omitted from the save operation.

’1’ Objects were omitted from the save operation.

Object type

The type of the object.

Objects saved

The total number of objects saved successfully for the library.

Optical file

The name of the optical file used by the save operation. For a save that does not use optical, this

field is blank.

Owner

The name of the object owner’s user profile when the object was saved.

Partial transaction exists

Indicates whether this object was saved with one or more partial transactions. If you restore an

object that was saved with partial transactions, you cannot use the object until you apply or

remove journal changes. To apply or remove journal changes you will need the journal identified

by the Journal name field and the journal receivers starting with the one identified by the Journal

receiver name field. The possible values are: :

0 The object was saved with no partial transactions.

1 The object was saved with one or more partial transactions.

Primary group

The name of the primary group for the object that was saved.

Reference date

The value that was specified for the reference date when the save operation was performed. The

possible values are:

*SAVLIB

All changes since the last SAVLIB was specified.

reference date

The reference date that was specified on the save operation. Objects changed since this

date are saved. The date is in YYMMDD format, is left justified, and is padded with

blanks.

168 System i: Backing up your system

Reference time

The value that was specified for the reference time when the save operation was performed. The

possible values are:

*NONE

No reference time was specified

reference time

The reference time that was specified on the save operation. The time is in HHMMSS

format, is left justified, and is padded with blanks.

Save access paths

Indicates whether access paths were requested to be saved during the save operation. The

possible values are:

’0’ Access paths were not requested to be saved during the save operation.

’1’ Access paths were requested to be saved during the save operations.

Save command

The command that was used when the operation was performed. The possible values are:

SAVCFG

Save configuration operation

SAVCHGOBJ

Save changed objects operation

SAVLIB

Save library operation

SAVOBJ

Save object operation

SAVSAVFDTA

Save save file data operation

SAVSECDTA

Save security data operation

SAVSYS

Save system operation

Save date/time

The time at which the object was saved in system timestamp format. See the Convert Date and

Time Format (QWCCVTDT) API for information on converting this timestamp.

Save file name

The name of the save file used in the save operation.

Save file data

Indicates whether save file data was requested to be saved during the save operation. The

possible values are:

’0’ Save file data was not requested to be saved during the save operation.

’1’ Save file data was requested to be saved during the save operations.

Save file library name

The name of the library that contains the save file used in the save operation.

Save format

Indicates whether the data was saved in serial or parallel format. The possible values are:

’0’ The save format is serial.

’1’ The save format is parallel.

Backing up and recovering your system 169

Save release level

The release level of the operating system on which the objects were saved. This field has a

VvRrMm format, containing the following:

Vv The character V is followed by a 1-character version number.

Rr The character R is followed by a 1-character release number.

Mm The character M is followed by a 1-character modification number.

Save while active date/time

The time at which the object was saved while active in system timestamp format. See the Convert

Date and Time Format (QWCCVTDT) API for information on converting this timestamp.

Sequence number

The sequence number of the file on media. This field only contains values between 0 - 9999. If the

sequence number is larger than 9999, this field will contain a value of -5 and the sequence

number value in the Large sequence number field should be used. The value will be 0 if the save

media is not tape.

Size The size of the object.

Spooled file creation date

The date when the spooled file was created.

Spooled file creation time

The time when the spooled file was created.

Spooled file job name

The name of the job that owns the spooled file.

Spooled file job number

The number of the job that owns the spooled file.

Spooled file job system name

The name of the system where the job that owns the spooled file ran.

Spooled file name

The name of the spooled file.

Spooled file number

The number of the spooled file in the job that owns it.

Spooled file output queue library

The name of the output queue library that contained the spooled file.

Spooled file output queue name

The name of the output queue that contained the spooled file

Spooled file user name

The name of the user who owns the spooled file.

Status Indicates whether the object saved successfully. The possible values are:

0 The object did not save successfully.

1 The object saved successfully.

Storage

Indicates whether storage was requested to be freed after the save operation. The possible values

are:

’0’ STG(*KEEP) was specified on the save operation to keep storage for the objects saved.

’1’ STG(*FREE) was specified on the save operation to free storage for the objects saved.

170 System i: Backing up your system

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

System name

The name of the system on which the save operation was performed.

Target Release

The earliest release level of the operating system on which the objects can be restored. This field

has a VvRrMm format, containing the following:

Vv The character V is followed by a 1-character version number.

Rr The character R is followed by a 1-character release number.

Mm The character M is followed by a 1-character modification number.

Text The text description of the object.

Total media files

The total number of media files created for a library saved in parallel format. This field is only

valid if the Save format field is ’1’ (save format is parallel). The value will be 0 if the save media

is not tape.

Total size saved

The total size of all of the objects saved for this library.

Volume count

The number of volume identifiers in the Volume identifiers (complete) fields

Volume identifiers

The list of volume identifiers that are used during this save operation. The list can contain from

one to 10 volumes. If more than 10 volume were used, see the ″Extra volume identifiers″ list.

Volume identifiers (complete)

The list of volume identifiers that are used during this save operation. The list can contain from

one to 75 volumes. See the Volume count field to tell how many volume identifiers are in the list.

This field is a variable-length field.

Volume length

The length of each volume identifier in the Volume identifiers (complete) field.

Retrieving the device name from save completion messages

The CL program retrieves the device name from the CPC3701 message (found in positions 126 through

135 of the message data) and uses the information to determine which device is used by the next save

command.

SEQNBR *... ... 1 2 3 4 5 6 7

 1.00 PGM

 2.00 DCL &MSGDATA *CHAR LEN(250)

 3.00 DCL &MSGID *CHAR LEN(7)

 4.00 DCL &DEV *CHAR LEN(10)

 5.00 DCL &DEV1 *CHAR LEN(10) VALUE(TAP01)

 6.00 DCL &DEV2 *CHAR LEN(10) VALUE(TAP02)

 7.00 SAVLIB LIB(LIB1) DEV(&DEV1 &DEV2) ENDOPT(*LEAVE)

 8.00 L00P: RCVMSG RMV(*NO) MSGDTA(&MSGDATA) MSGID(&MSGID)

 9.00 IF (&MSGID *NE CPC3701) GOTO L00P /* Compltn */

10.00 CHGVAR &DEV %SST(&MSGDATA 126 10) /* Device name */

11.00 IF (&DEV *EQ ’TAP01’) DO /* Last was TAP01 */

12.00 CHGVAR &DEV1 ’TAP01’ /* Set for first device */

13.00 CHGVAR &DEV2 ’TAP02’ /* Set for second device */

14.00 ENDDO /* Last was TAP01 */

15.00 ELSE DO /* Last was not TAP01 */

16.00 CHGVAR &DEV1 ’TAP02’ /* Set for first device */

17.00 CHGVAR &DEV2 ’TAP01’ /* Set for second device */

18.00 ENDDO /* Last was not TAP01 */

19.00 SAVLIB LIB(LIB2) DEV(&DEV1 &DEV2) /* Save Lib 2 */

20.00 ENDPGM

Backing up and recovering your system 171

If any objects cannot be saved, the operation attempts to save remaining objects and sends an escape

message (CPF3771 for single libraries, CPF3751/CPF3778 for more than one library, and CPF3701 for save

operations to save files) stating how many objects were saved and how many were not. To continue with

the next library, the Monitor Message (MONMSG) command must be used to handle the escape

condition. The format of the message data for the CPF3771 message is similar to the CPC3701 message

and also identifies the last device used.

The SAVCHGOBJ command operates in a similar manner, but uses CPC3704 as a completion message,

CPF3774 as an escape message for single libraries, and CPC3721 or CPF3751 for multiple libraries. For

save operations to save files, these messages are CPC3723 as a completion message and CPF3702 as an

escape message. These messages also contain the last device or save file used in the message data.

Displaying status messages when saving

This program sends a message to the external (*EXT) program message queue if any objects cannot be

saved.

PGM /* SAVE SOURCE */

SAVLIB LIB(SRCLIB) DEV(TAPE01) PRECHK(*YES)

MONMSG MSGID(CPF0000) EXEC(DO)

SNDPGMMSG MSG(’Objects were not saved - Look at the job +

 log for messages’) TOPGMQ(*EXT)

SNDPGMMSG MSG(’SRCLIB library was not backed up’) +

 TOPGMQ(xxxx)

RETURN

ENDDO

ENDPGM

Recovering your system

This list of Information Center topics provides more information about recovering your system.

v Backup and recovery for clusters

v Recovery operations for journal management

v Rules and considerations for save and restore operations with remote journals

v Back up and recover a logical partition
 Related information

Backup and Recovery book

172 System i: Backing up your system

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1996, 2007 173

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without

notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the

products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

174 System i: Backing up your system

|
|
|

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 BladeCenter

 Domino

 eServer

 i5/OS

 IBM

 Integrated Language Environment

 iSeries

 Lotus

 MQSeries

 OS/400

 System i

 System i5

 System x

 System/36

 WebSphere

 xSeries

 z/OS

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these publications, or reproduce, distribute or display these publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations.

Appendix. Notices 175

|

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE

PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

176 System i: Backing up your system

����

Printed in USA

	Contents
	Backing up and recovering your system
	Backing up your system
	What's new for V5R4
	Printable PDF
	Before you save anything...
	Using the precheck option
	Choosing compression type
	Freeing storage when saving
	How object locking affects save operations
	Size limitations when saving objects
	Verifying what the system saved
	How the system handles damaged objects during a save operation

	Preparing your media to save your system
	Choosing your save media
	Rotating tapes and other media
	Preparing media and tape drives
	Naming and labeling media
	Verifying your media
	Storing your media
	Handling tape media errors

	Overview of the GO SAVE command
	GO SAVE command menu options

	Manually saving parts of your system
	Commands for saving parts of your system
	Commands for saving specific object types
	Saving system data
	Saving system data and related user data
	Saving user data in your system
	Saving logical partitions and system applications
	Saving storage (Licensed Internal Code data and disk unit data)

	Saving your system while it is active
	Save-while-active and your backup and recovery strategy
	Reducing save-outage time: Overview
	Eliminating save-outage time: Overview
	Parameters for the save-while-active function
	Reducing your save-outage time
	Eliminating your save-outage time

	Backup programming techniques
	Considerations for job recovery
	Interpreting output from save (SAV) and restore (RST)
	Interpreting output from save commands
	Retrieving the device name from save completion messages
	Displaying status messages when saving

	Recovering your system

	Appendix. Notices
	Trademarks
	Terms and conditions

