
IBM Systems - iSeries

UNIX-Type -- Environment Variable APIs

Version 5 Release 4

���

IBM Systems - iSeries

UNIX-Type -- Environment Variable APIs

Version 5 Release 4

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 37.

Sixth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/OS (product number 5722-SS1) and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Environment Variable APIs 1

APIs 2

getenv()—Get Value of Environment Variable . . . 2

Authorities and Locks 2

Parameters 2

Return Value 2

Error Conditions 2

Usage Notes 3

Related Information 3

Example 3

putenv()—Change or Add Environment Variable . . 4

Authorities and Locks 4

Parameters 4

Return Value 4

Error Conditions 5

Usage Notes 5

Related Information 5

Example 6

Qp0zDltEnv()—Delete an Environment Variable . . 7

Parameters 7

Authorities 7

Return Value 7

Error Conditions 7

Usage Notes 7

Related Information 7

Example 8

Qp0zDltSysEnv()—Delete a System-Level

Environment Variable 9

Parameters 9

Authorities 9

Return Value 9

Error Conditions 10

Related Information 10

Example 11

Qp0zGetAllSysEnv()—Get All System-Level

Environment Variables 11

Authorities 11

Parameters 11

Return Value 12

Error Conditions 12

Usage Notes 13

Related Information 13

Example 13

Qp0zGetEnv()—Get Value of Environment Variable

(Extended) 13

Authorities and Locks 14

Parameters 14

Return Value 14

Error Conditions 14

Usage Notes 14

Related Information 15

Example 15

Qp0zGetSysEnv()—Get Value of System-Level

Environment Variable 15

Authorities 15

Parameters 15

Return Value 16

Error Conditions 16

Usage Notes 17

Related Information 17

Example 17

Qp0zInitEnv()—Initialize Environment for Variables 17

Authorities and Locks 18

Parameters 18

Return Value 18

Error Conditions 18

Related Information 18

Qp0zPutEnv()—Change or Add Environment

Variable (Extended) 18

Authorities and Locks 19

Parameters 19

Return Value 19

Error Conditions 19

Usage Notes 20

Related Information 20

Example 20

Qp0zPutSysEnv()—Change or Add a System-Level

Environment Variable 21

Parameters 21

Authorities 21

Return Value 21

Error Conditions 21

Usage Notes 22

Related Information 22

Example 23

Concepts 24

Header Files for UNIX-Type Functions 24

Errno Values for UNIX-Type Functions 27

Appendix. Notices 37

Programming Interface Information 38

Trademarks 39

Terms and Conditions 40

© Copyright IBM Corp. 1998, 2006 iii

iv IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

Environment Variable APIs

Environment variables are character strings of the form ″name=value″. There are two types of

environment variables:

v Job-level environment variables. The job-level environment variables are stored in an environment

space outside of the program associated with the job. They can be manipulated by using the getenv(),

putenv(), Qp0zDltEnv(), Qp0zGetEnv(), Qp0zInitEnv(), and Qp0zPutEnv() APIs, as well as the CL

commands ADDENVVAR, CHGENVVAR, RMVENVVAR, and WRKENVVAR. These variables exist for

the duration of the job or until they are deleted. There is a limit of 4095 job-level environment

variables.

v System-level environment variables. The system-level environment variables are stored in a global

environment space that is persistent across IPLs and is not associated to a particular job. They can be

manipulated by using the Qp0zDltSysEnv(), Qp0zGetAllSysEnv(), Qp0zGetSysEnv(), and

Qp0zPutSysEnv() APIs, as well as the CL commands ADDENVVAR, CHGENVVAR, RMVENVVAR,

and WRKENVVAR. These variables exist until they are deleted. There is a limit of 4095 system-level

environment variables.

When a job calls one of the job-level environment variable APIs or CL commands for the first time, it

inherits the system-level environment variables onto its job-level environment space. Any changes to

job-level and system-level environment variables are then independent of one another.

The temporary space where the job-level environment variables are stored allows read and write access.

Therefore, it is possible for the space to be corrupted. This could occur if a programmer accesses the

space directly using the environ array rather than using the environment variable APIs. If the space is

corrupted, subsequent calls using the APIs will have unpredictable results.

The environment variable APIs are:

v “getenv()—Get Value of Environment Variable” on page 2 (Get value of environment variable) searches

the job-level environment list for a string of the form name=value, where name is the environment

variable and value is the value of the variable.

v “putenv()—Change or Add Environment Variable” on page 4 (Change or add environment variable)

sets the value of a job-level environment variable by changing an existing variable or creating a new

one.

v “Qp0zDltEnv()—Delete an Environment Variable” on page 7 (Delete an environment variable) deletes a

single job-level environment variable or deletes all environment variables from the current job.

v “Qp0zDltSysEnv()—Delete a System-Level Environment Variable” on page 9 (Delete a system-level

environment variable) deletes a single system-level environment variable or deletes all system-level

environment variables.

v “Qp0zGetAllSysEnv()—Get All System-Level Environment Variables” on page 11 (Get all system-level

environment variables) fills in the list_buf with a list of all the system-level environment variables.

v “Qp0zGetEnv()—Get Value of Environment Variable (Extended)” on page 13 (Get value of environment

variable (extended)) is an i5/OS extension to the standard getenv() function.

v “Qp0zGetSysEnv()—Get Value of System-Level Environment Variable” on page 15 (Get value of

system-level environment variable) gets the value of a system-level environment variable name by

searching the system-level environment variable list for a string of the form name=value.

v “Qp0zInitEnv()—Initialize Environment for Variables” on page 17 (Initialize environment for variables)

sets the external variable environ to a pointer to the current environment list.

v “Qp0zPutEnv()—Change or Add Environment Variable (Extended)” on page 18 (Change or add

environment variable (extended)) is an i5/OS extension to the standard putenv() function.

© Copyright IBM Corp. 1998, 2006 1

v “Qp0zPutSysEnv()—Change or Add a System-Level Environment Variable” on page 21 (Change or add

a system-level environment variable) sets the value of a system-level environment variable by altering

an existing variable or creating a new variable.

Note: These functions use header (include) files from the library QSYSINC, which is optionally

installable. Make sure QSYSINC is installed on your system before using any of the functions. See

“Header Files for UNIX-Type Functions” on page 24 for the file and member name of each header file.

 Top | UNIX-Type APIs | APIs by category

APIs

These are the APIs for this category.

getenv()—Get Value of Environment Variable

 Syntax

 #include <stdlib.h>

 char *getenv(const char *name);

 Service Program Name: QP0ZCPA
 Default Public Authority: *USE
 Threadsafe: Yes. See Usage Notes for more information.

The getenv() function searches the job-level environment list for a string of the form name=value, where

name is the environment variable and value is the value of the variable.

The name parameter does not include the equal (=) symbol or the value of the environment variable

name=value pair.

Authorities and Locks

None.

Parameters

name (Input) The name of an environment variable.

Return Value

 value getenv() successfully found the environment string. The value returned is a pointer to the string

containing the value for the specified name in the current environment.

NULL getenv() could not find the environment string. The errno variable is set to indicate the error.

Error Conditions

If getenv() is not successful, errno indicates one of the following errors.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[[EFAULT]]

2 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

 No entry found for name specified.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Usage Notes

1. Although getenv() is threadsafe, if a thread calls an environment variable function while another

thread is accessing an environment variable from the environ array the thread may see undefined

results. The environ array can be accessed directly or by using a pointer returned from the getenv() or

Qp0zGetEnv() functions. The environment contents are only protected during calls to the

environment variable functions.

2. All environment variables are stored with an associated CCSID (coded character set identifier). Unless

a different CCSID is specified, such as by using Qp0zPutEnv(), the default CCSID for the job is used

as the CCSID associated with each environment variable string.

3. No translation is done based on the CCSID. The CCSID is just stored and retrieved as an integer

value associated with each environment variable.

Related Information

v “putenv()—Change or Add Environment Variable” on page 4—Change or Add Environment Variable

v “Qp0zDltEnv()—Delete an Environment Variable” on page 7—Delete an Environment Variable

v “Qp0zDltSysEnv()—Delete a System-Level Environment Variable” on page 9—Delete a System-Level

Environment Variable

v “Qp0zGetAllSysEnv()—Get All System-Level Environment Variables” on page 11—Get All

System-Level Environment Variables

v “Qp0zGetEnv()—Get Value of Environment Variable (Extended)” on page 13—Get Value of

Environment Variable (Extended)

v “Qp0zGetSysEnv()—Get Value of System-Level Environment Variable” on page 15—Get Value of

System-Level Environment Variable

v “Qp0zInitEnv()—Initialize Environment for Variables” on page 17—Initialize Environment for Variables

v “Qp0zPutEnv()—Change or Add Environment Variable (Extended)” on page 18—Change or Add

Environment Variable (Extended)

v “Qp0zPutSysEnv()—Change or Add a System-Level Environment Variable” on page 21—Change or

Add a System-Level Environment

Example

See Code disclaimer information for information pertaining to code examples.

Environment Variable APIs 3

See the example of using getenv() in “putenv()—Change or Add Environment Variable”—Change or Add

Environment Variable.

For other examples, see the following:

v Using Environment Variables

v Using the Spawn Process and Wait for Child Process APIs

v Using the Spawn Process (using NLS-enabled path name)

 API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

putenv()—Change or Add Environment Variable

 Syntax

 #include <stdlib.h>

 int putenv(const char *string);;

 Service Program Name: QP0ZCPA
 Default Public Authority: *USE
 Threadsafe: Yes. See Usage Notes for more information.

The putenv() function sets the value of a job-level environment variable by changing an existing variable

or creating a new one. The string parameter points to a string of the form name=value, where name is the

environment variable and value is the new value for it.

The name cannot contain a blank. For example,

 PATH NAME=/my_lib/joe_user

is not valid because of the blank between PATH and NAME. The name can contain an equal (=) symbol, but

the system interprets all characters following the first equal symbol as being the value of the environment

variable. For example,

 PATH=NAME=/my_lib/joe_user

will result in a value of ’NAME=/my_lib/joe_user’ for the variable PATH.

Authorities and Locks

None.

Parameters

string (Input) A pointer to the name=value string.

Return Value

 0 putenv() was successful.

-1 putenv() was not successful. The errno variable is set to indicate the error.

4 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

spawnu.htm#SPAWNUEXMP
#TOP_OF_PAGE
unix.htm
aplist.htm

Error Conditions

If putenv() is not successful, errno indicates one of the following errors.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct. In attempting to use an argument in a call, the

system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct. A function was passed incorrect argument

values, or an operation was attempted on an object and the operation specified is not supported

for that type of object.

 An argument value is not valid, out of range, or NULL. For example, the string may not be in the

correct format.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function. (There is a limit of 4095

environment variables per job.)

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Usage Notes

1. Although putenv() is threadsafe, if a thread calls an environment variable function while another

thread is accessing an environment variable from the environ array the thread may see undefined

results. The environ array can be accessed directly or by using a pointer returned from the getenv() or

Qp0zGetEnv() functions. The environment contents are only protected during calls to the

environment variable functions.

2. All environment variables are stored with an associated CCSID (coded character set identifier).

Because putenv() does not specify a CCSID, the default CCSID for the job is used as the CCSID

associated with strings that are stored using putenv().

3. No translation is done based on the CCSID. The CCSID is just stored and retrieved as an integer

value associated with each environment variable.

Related Information

v “getenv()—Get Value of Environment Variable” on page 2—Get Value of Environment Variable

v “Qp0zDltEnv()—Delete an Environment Variable” on page 7—Delete an Environment Variable

v “Qp0zDltSysEnv()—Delete a System-Level Environment Variable” on page 9—Delete a System-Level

Environment Variable

v “Qp0zGetAllSysEnv()—Get All System-Level Environment Variables” on page 11—Get All

System-Level Environment Variables

Environment Variable APIs 5

v “Qp0zGetEnv()—Get Value of Environment Variable (Extended)” on page 13—Get Value of

Environment Variable (Extended)

v “Qp0zGetSysEnv()—Get Value of System-Level Environment Variable” on page 15—Get Value of

System-Level Environment Variable

v “Qp0zInitEnv()—Initialize Environment for Variables” on page 17—Initialize Environment for Variables

v “Qp0zPutEnv()—Change or Add Environment Variable (Extended)” on page 18—Change or Add

Environment Variable (Extended)

v “Qp0zPutSysEnv()—Change or Add a System-Level Environment Variable” on page 21—Change or

Add a System-Level Environment

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses putenv() and getenv().

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

int main(int argc, char **argv)

{

 char *var1 = "PATH=/:/home/userid";

 char *name1 = "PATH";

 char *val1 = NULL;

 int rc;

 rc = putenv(var1);

 if (rc < 0) {

 printf("Error inserting <%s> in environ, errno = %d\n",

 var1, errno);

 return 1;

 }

 printf("<%s> inserted in environ\n", var1);

 val1 = getenv(name1);

 if (val1 == NULL) {

 printf("Error retrieving <%s> from environ, errno = %d\n",

 name1, errno);

 return 1;

 }

 printf("<%s> retrieved from environ, value is <%s>\n",

 name1, val1);

 return 0;

}

Output:

 <PATH=/:/home/userid> inserted in environ

 <PATH> retrieved from environ, value is </:/home/userid>

For other examples, see the following:

v Using Environment Variables.

v Using the Spawn Process and Wait for Child Process APIs.

v Using the Spawn Process (using NLS-enabled path name)

 API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

6 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

spawnu.htm#SPAWNUEXMP
#TOP_OF_PAGE
unix.htm
aplist.htm

Qp0zDltEnv()—Delete an Environment Variable

 Syntax

 #include <qp0z1170.h>

 int Qp0zDltEnv(const char *name);

 Service Program Name: QP0ZCPA
 Default Public Authority: *USE
 Threadsafe: Yes. See Usage Notes for more information.

The Qp0zDltEnv() function deletes a single job-level environment variable or deletes all environment

variables from the current job. If the name parameter is NULL, all environment variables in the job are

deleted.

The name parameter does not include the equal (=) symbol or the value of the environment variable

name=value pair.

Parameters

name (Input) A pointer to the name part of the environment variable name=value string.

Authorities

None.

Return Value

 0 Qp0zDltEnv() was successful.

-1 Qp0zDltEnv() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0zDltEnv() is not successful, errno indicates one of the following errors.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

 The parameter name is not NULL and does not point to an environment variable name that

currently exists in the environment list.

Usage Notes

1. Although Qp0zDltEnv() is threadsafe, if a thread calls an environment variable function while

another thread is accessing an environment variable from the environ array the thread may see

undefined results. The environ array can be accessed directly or by using a pointer returned from the

getenv() or Qp0zGetEnv() functions. The environment contents are only protected during calls to the

environment variable functions.

Related Information

v “getenv()—Get Value of Environment Variable” on page 2—Get Value of Environment Variable

v “putenv()—Change or Add Environment Variable” on page 4—Change or Add Environment Variable

Environment Variable APIs 7

v “Qp0zDltSysEnv()—Delete a System-Level Environment Variable” on page 9—Delete a System-Level

Environment Variable

v “Qp0zGetAllSysEnv()—Get All System-Level Environment Variables” on page 11)—Get All

System-Level Environment Variables

v “Qp0zGetEnv()—Get Value of Environment Variable (Extended)” on page 13—Get Value of

Environment Variable (Extended)

v “Qp0zGetSysEnv()—Get Value of System-Level Environment Variable” on page 15—Get Value of

System-Level Environment Variable

v “Qp0zInitEnv()—Initialize Environment for Variables” on page 17—Initialize Environment for Variables

v “Qp0zPutEnv()—Change or Add Environment Variable (Extended)” on page 18—Change or Add

Environment Variable (Extended)

v “Qp0zPutSysEnv()—Change or Add a System-Level Environment Variable” on page 21—Change or

Add a System-Level Environment

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses Qp0zDltEnv(), putenv() and the environ array.

#include <stdio.h>

#include <errno.h>

#include <qp0z1170.h>

#include <stdlib.h>

extern char **environ;

#define ASSERT(x, y) \

{ if (!(x)) { \

 printf("Assertion Failed: " #x \

 ", Description: " y \

 ", errno=%d", errno); \

 exit(EXIT_FAILURE); \

 } \

}

int main(int argc, char **argv)

{

 int rc=0;

 int e=0;

 printf("Enter Testcase - %s\n", argv[0]);

 rc = putenv("PATH=/usr/bin:/home/me:%LIBL%");

 ASSERT((rc == 0), "putenv(PATH)");

 rc = putenv("TEST0=42");

 ASSERT((rc == 0), "putenv(TEST0)");

 rc = putenv("TEST1=42");

 ASSERT((rc == 0), "putenv(TEST1)");

 printf("Before delete, these environment variables are set: \n");

 while (environ[e] != NULL) {

 printf(" %s\n", environ[e]);

 ++e;

 }

 printf("Delete the environment variables\n");

 rc = Qp0zDltEnv("TEST0");

 ASSERT((rc==0), "Qp0zDltEnv(TEST0)");

 rc = Qp0zDltEnv("TEST1");

 ASSERT((rc==0), "Qp0zDltEnv(TEST1)");

 printf("After delete, these environment variables are set: \n");

8 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

e=0;

 while (environ[e] != NULL) {

 printf(" %s\n", environ[e]);

 ++e;

 }

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPZDLTE0

Before delete, these environment variables are set:

 PATH=/usr/bin:/home/me:%LIBL%

 TEST0=42

 TEST1=42

Delete the environment variables

After delete, these environment variables are set:

 PATH=/usr/bin:/home/me:%LIBL%

Main completed

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

Qp0zDltSysEnv()—Delete a System-Level Environment Variable

 Syntax

 #include <qp0z1170.h>

 int Qp0zDltSysEnv(const char *name, void *reserved);

 Service Program Name: QP0ZSYSE
 Default Public Authority: *USE
 Threadsafe: Yes

The Qp0zDltSysEnv() function deletes a single system-level environment variable or deletes all

system-level environment variables. If the name parameter is NULL, all system-level environment

variables are deleted.

The name parameter does not include the equal (=) symbol or the value part of the environment variable

name=value pair.

Parameters

name (Input) The name of the environment variable to delete.

reserved

(Input) Reserved for future use. Currently, the only value allowed is NULL.

Authorities

*JOBCTL special authority is required to delete a system-level environment variable.

Return Value

 0 Qp0zDltSysEnv() was successful.

errval Qp0zDltSysEnv() was not successful. errval is set to indicate the error.

Environment Variable APIs 9

#TOP_OF_PAGE
unix.htm
aplist.htm

Error Conditions

If Qp0zDltSysEnv() is not successful, errval indicates one of the following errors.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The value for the reserved parameter was not NULL.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

 The parameter name is not NULL and does not point to an environment variable name that

currently exists in the environment list.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

 You must have *JOBCTL special authority to delete a system-level environment variable.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Related Information

v The <qp0z1170.h> file (see “Header Files for UNIX-Type Functions” on page 24)

v “getenv()—Get Value of Environment Variable” on page 2—Get Value of Environment Variable

v “putenv()—Change or Add Environment Variable” on page 4—Change or Add Environment Variable

v “Qp0zDltEnv()—Delete an Environment Variable” on page 7—Delete an Environment Variable

v “Qp0zGetAllSysEnv()—Get All System-Level Environment Variables” on page 11—Get All

System-Level Environment Variables

v “Qp0zGetEnv()—Get Value of Environment Variable (Extended)” on page 13—Get Value of

Environment Variable (Extended)

v “Qp0zGetSysEnv()—Get Value of System-Level Environment Variable” on page 15—Get Value of

System-Level Environment Variable

v “Qp0zInitEnv()—Initialize Environment for Variables” on page 17—Initialize Environment for Variables

10 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

v “Qp0zPutEnv()—Change or Add Environment Variable (Extended)” on page 18—Change or Add

Environment Variable (Extended)

v “Qp0zPutSysEnv()—Change or Add a System-Level Environment Variable” on page 21—Change or

Add a System-Level Environment

Example

See Code disclaimer information for information pertaining to code examples.

See the example of using Qp0zDltSysEnv() in “Qp0zPutSysEnv()—Change or Add a System-Level

Environment Variable” on page 21—Change or Add a System-Level Environment.

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

Qp0zGetAllSysEnv()—Get All System-Level Environment Variables

 Syntax

 #include <qp0z1170.h>

 int Qp0zGetAllSysEnv(char *list_buf, int *list_buf_size,

 int *ccsid_buf, int *ccsid_buf_size,

 void *reserved);

 Service Program Name: QP0ZSYSE
 Default Public Authority: *USE
 Threadsafe: Yes

The Qp0zGetAllSysEnv() function fills in the list_buf with a list of all the system-level environment

variables. The list consists of multiple null-terminated name=value strings followed by an ending

null-terminator. The coded character set identifier (CCSID) associated with each name=value string is

returned in the ccsid_buf buffer.

Authorities

None

Parameters

list_buf

(Input/Output) The address of the buffer to receive the null-terminated name=value list.

list_buf_size

(Input/Output) A pointer to an integer that contains the information about the size (in bytes) of

the list_buf buffer. Before calling Qp0zGetAllSysEnv(), this parameter should be set to the size

of list_buf. If the size of this parameter is large enough to receive the list, then this field will be

set to the exact size of the list upon returning from Qp0zGetAllSysEnv(). If the size of this

parameter is not large enough to receive the list, then this field will contain the exact size

required and ENOSPC will be the return value. In this case, the list_buf is not modified.

ccsid_buf

(Input/Output) The address of the buffer to receive the CCSIDs of the environment variables. The

order of the CCSIDs returned corresponds to the order of the variables returned in the list_buf

ccsid_buf_size

(Input/Output) A pointer to an integer that contains the information about the size (in bytes) of

the ccsid_buf buffer. Before calling Qp0zGetAllSysEnv(), this should be set to the size of

Environment Variable APIs 11

#TOP_OF_PAGE
unix.htm
aplist.htm

ccsid_buf. If this size is enough to receive the CCSID list, then this field will contain the exact

size of the CCSIDs received upon returning from Qp0zGetAllSysEnv(). If this size is not enough

to receive the CCSID list, then this field will contain the exact size required and ENOSPC will be

the return value. In this case, the ccsid_buf is not modified.

reserved

(Input) Reserved for future use. Currently, the only allowed value is NULL.

Return Value

 0 Qp0zGetAllSysEnv() was successful. The list_buf contains the null-terminated system-level

environment variable strings, and the ccsid_buf contains the CCSID of each variable in the same

order. The list_buf_size contains the exact size of the environment variable list, and the

ccsid_buf_size contains the exact size of the CCSID list.

errval Qp0zGetAllSysEnv() was not succesful. errval indicates the error.

Error Conditions

If Qp0zGetAllSysEnv() is not successful, errval indicates one of the following errors.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The value for the reserved parameter was not NULL.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

 There were no system-level environment variables.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

 The size of the buffers to receive the list and the CCSIDs was not enough. The list_buf_size and

ccsid_buf_size parameters indicate the exact size needed for the list_buf ccsid_buf respectively.

[EUNKNOWN]

 Unknown system state.

12 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Usage Notes

1. No translation is done based on the CCSID. The CCSID is just stored and retrieved as an integer

value associated with each environment variable.

Related Information

v The <qp0z1170.h> file (see “Header Files for UNIX-Type Functions” on page 24)

v “getenv()—Get Value of Environment Variable” on page 2—Get Value of Environment Variable

v “putenv()—Change or Add Environment Variable” on page 4—Change or Add Environment Variable

v “Qp0zDltEnv()—Delete an Environment Variable” on page 7—Delete an Environment Variable

v “Qp0zDltSysEnv()—Delete a System-Level Environment Variable” on page 9—Delete a System-Level

Environment Variable

v “Qp0zGetEnv()—Get Value of Environment Variable (Extended)”—Get Value of Environment Variable

(Extended)

v “Qp0zGetSysEnv()—Get Value of System-Level Environment Variable” on page 15—Get Value of

System-Level Environment Variable

v “Qp0zInitEnv()—Initialize Environment for Variables” on page 17—Initialize Environment for Variables

v “Qp0zPutEnv()—Change or Add Environment Variable (Extended)” on page 18—Change or Add

Environment Variable (Extended)

v “Qp0zPutSysEnv()—Change or Add a System-Level Environment Variable” on page 21—Change or

Add a System-Level Environment

Example

See Code disclaimer information for information pertaining to code examples.

1. See the example in “Qp0zPutSysEnv()—Change or Add a System-Level Environment Variable” on

page 21—Change or Add a System-Level Environment.

2. See the two-part example in Saving and Restoring System-Level Environment Variables in Examples:

APIS.

 API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

Qp0zGetEnv()—Get Value of Environment Variable (Extended)

 Syntax

 #include <qp0z1170.h>

 char *Qp0zGetEnv(const char *name, int *ccsid);

 Service Program Name: QP0ZCPA
 Default Public Authority: *USE
 Threadsafe: Yes. See Usage Notes for more information.

The Qp0zGetEnv() function is an i5/OS extension to the standard getenv() function. Qp0zGetEnv()

searches the job-level environment list for a string of the form name=value. The value and the CCSID

(coded character set identifier) associated with the environment variable name are returned.

Environment Variable APIs 13

#TOP_OF_PAGE
unix.htm
aplist.htm

Authorities and Locks

None.

Parameters

name (Input) The name of an environment variable.

ccsid (Output) The CCSID for the named environment variable.

Return Value

 value Qp0zGetEnv() successfully found the environment string. The value returned is a pointer to the

string containing the value for the specified name in the current environment.

NULL Qp0zGetEnv() could not find the environment string. The errno variable is set to indicate the error.

Error Conditions

If Qp0zGetEnv() is not successful, errno indicates one of the following errors.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

 No entry found for name specified.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Usage Notes

1. Although Qp0zGetEnv() is threadsafe, if a thread calls an environment variable function while

another thread is accessing an environment variable from the environ array the thread may see

undefined results. The environ array can be accessed directly or by using a pointer returned from the

getenv() or Qp0zGetEnv() functions. The environment contents are only protected during calls to the

environment variable functions.

2. No translation is done based on the CCSID. The CCSID is just stored and retrieved as an integer

value associated with each environment variable.

14 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

Related Information

v The <qp0z1170.h> file (see “Header Files for UNIX-Type Functions” on page 24)

v “getenv()—Get Value of Environment Variable” on page 2—Get Value of Environment Variable

v “putenv()—Change or Add Environment Variable” on page 4—Change or Add Environment Variable

v “Qp0zDltEnv()—Delete an Environment Variable” on page 7—Delete an Environment Variable

v “Qp0zDltSysEnv()—Delete a System-Level Environment Variable” on page 9—Delete a System-Level

Environment Variable

v “Qp0zGetAllSysEnv()—Get All System-Level Environment Variables” on page 11—Get All

System-Level Environment Variables

v “Qp0zGetSysEnv()—Get Value of System-Level Environment Variable”—Get Value of System-Level

Environment Variable

v “Qp0zInitEnv()—Initialize Environment for Variables” on page 17—Initialize Environment for Variables

v “Qp0zPutEnv()—Change or Add Environment Variable (Extended)” on page 18—Change or Add

Environment Variable (Extended)

v “Qp0zPutSysEnv()—Change or Add a System-Level Environment Variable” on page 21—Change or

Add a System-Level Environment

Example

See Code disclaimer information for information pertaining to code examples.

See the example of using getenv() in “putenv()—Change or Add Environment Variable” on page

4—Change or Add Environment Variable.

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Qp0zGetSysEnv()—Get Value of System-Level Environment Variable

 Syntax

 #include <qp0z1170.h>

 int Qp0zGetSysEnv(const char *name,

 char *value, int *value_size,

 int *ccsid, void *reserved);

 Service Program Name: QP0ZSYSE
 Default Public Authority: *USE
 Threadsafe: Yes

The Qp0zGetSysEnv() function gets the value of a system-level environment variable name by searching

the system-level environment variable list for a string of the form name=value. The value and the coded

character set identifier (CCSID) associated with the environment variable name are returned.

Authorities

None

Parameters

name (Input) The name of an environment variable.

value (Input/Output) The address of the buffer to receive the value.

Environment Variable APIs 15

#TOP_OF_PAGE
unix.htm
aplist.htm

value_size

(Input/Output) A pointer to an integer that contains the information about the size of the value

buffer. Before calling Qp0zGetSysEnv(), this parameter should contain the size of the value

buffer. If the size of this parameter is large enough to receive the value, then this field will

contain the exact size of value upon returning from Qp0zGetSysEnv(). If the size of this

parameter is not large enough to receive the value, then this field will contain the exact size

required and ENOSPC will be the return value. In this case, the value buffer is not modified.

ccsid (Input/Output) The address of the variable to receive the CCSID associated with this variable.

reserved

(Input) Reserved for future use. Currently, the only allowed value is NULL.

Return Value

 0 Qp0zGetSysEnv() successfully found the environment string. value and ccsid contain the value and

CCSID for the variable name in the system-level environment variable list.

errval Qp0zGetEnv() was not successful. errval indicates the error./td>

Error Conditions

If Qp0zGetSysEnv() is not successful, errval indicates one of the following errors.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The value for the reserved parameter was not NULL.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

 No entry found for name specified.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

 The size of the value buffer was not big enough to receive the value.

[EUNKNOWN]

16 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Usage Notes

1. No translation is done based on the CCSID. The CCSID is just stored and retrieved as an integer

value associated with each environment variable.

Related Information

v The <qp0z1170.h> file (see “Header Files for UNIX-Type Functions” on page 24)

v “getenv()—Get Value of Environment Variable” on page 2—Get Value of Environment Variable

v “putenv()—Change or Add Environment Variable” on page 4—Change or Add Environment Variable

v “Qp0zDltEnv()—Delete an Environment Variable” on page 7—Delete an Environment Variable

v “Qp0zDltSysEnv()—Delete a System-Level Environment Variable” on page 9—Delete a System-Level

Environment Variable

v “Qp0zGetAllSysEnv()—Get All System-Level Environment Variables” on page 11—Get All

System-Level Environment Variables

v “Qp0zGetEnv()—Get Value of Environment Variable (Extended)” on page 13—Get Value of

Environment Variable (Extended)

v “Qp0zInitEnv()—Initialize Environment for Variables”—Initialize Environment for Variables

v “Qp0zPutEnv()—Change or Add Environment Variable (Extended)” on page 18—Change or Add

Environment Variable (Extended)

v “Qp0zPutSysEnv()—Change or Add a System-Level Environment Variable” on page 21—Change or

Add a System-Level Environment

Example

See Code disclaimer information for information pertaining to code examples.

See the example of using Qp0zGetSysEnv() in “Qp0zPutSysEnv()—Change or Add a System-Level

Environment Variable” on page 21—Change or Add a System-Level Environment.

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

Qp0zInitEnv()—Initialize Environment for Variables

 Syntax

 #include <qp0z1170.h>

 int Qp0zInitEnv(void);;

 Service Program Name: QP0ZCPA
 Default Public Authority: *USE
 Threadsafe: Yes

The Qp0zInitEnv() function sets the external variable environ to a pointer to the current environment list.

(On the iSeries server, environ is initialized to NULL when an activation group is started.)

Note: Although it is possible for a user’s program to directly read the environ array, use of the getenv()

or Qp0zGetEnv() functions is recommended.

Environment Variable APIs 17

#TOP_OF_PAGE
unix.htm
aplist.htm

Authorities and Locks

None.

Parameters

None.

Return Value

 0 Qp0zInitEnv() successfully initialized the environment.

-1 Qp0zInitEnv() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0zInitEnv() is not successful, errno indicates the following error.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Related Information

v The <qp0z1170.h> file (see “Header Files for UNIX-Type Functions” on page 24)

v “getenv()—Get Value of Environment Variable” on page 2—Get Value of Environment Variable

v “putenv()—Change or Add Environment Variable” on page 4—Change or Add Environment Variable

v “Qp0zDltEnv()—Delete an Environment Variable” on page 7—Delete an Environment Variable

v “Qp0zDltSysEnv()—Delete a System-Level Environment Variable” on page 9—Delete a System-Level

Environment Variable

v “Qp0zGetAllSysEnv()—Get All System-Level Environment Variables” on page 11—Get All

System-Level Environment Variables

v “Qp0zGetEnv()—Get Value of Environment Variable (Extended)” on page 13—Get Value of

Environment Variable (Extended)

v “Qp0zGetSysEnv()—Get Value of System-Level Environment Variable” on page 15—Get Value of

System-Level Environment Variable

v “Qp0zPutEnv()—Change or Add Environment Variable (Extended)”—Change or Add Environment

Variable (Extended)

v “Qp0zPutSysEnv()—Change or Add a System-Level Environment Variable” on page 21—Change or

Add a System-Level Environment

 API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Qp0zPutEnv()—Change or Add Environment Variable (Extended)

 Syntax

 #include <qp0z1170.h>

 int Qp0zPutEnv(const char *string, int ccsid);;

18 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Service Program Name: QP0ZCPA
 Default Public Authority: *USE
 Threadsafe: Yes. See Usage Notes for more information.

The Qp0zPutEnv() function is an i5/OS extension to the standard putenv() function. Qp0zPutEnv() sets

the value of an environment variable by altering an existing variable or creating a new variable. In

addition, it specifies a CCSID (coded character set identifier) to be associated with the environment

variable.

The string parameter points to a string of the form name=value, where name is the environment variable

and value is the new value for it.

The name cannot contain a blank. For example,

 PATH NAME=/my_lib/joe_user

is not valid because of the blank between PATH and NAME. The name can contain an equal (=) symbol, but

the system interprets all characters following the first equal symbol as being the value of the environment

variable. For example,

 PATH=NAME=/my_lib/joe_user

will result in a value of ’NAME=/my_lib/joe_user’ for the variable PATH.

Authorities and Locks

None.

Parameters

string (Input) A pointer to the name=value string.

ccsid (Input) A CCSID to be associated with this environment variable. If 0 is specified, the default

CCSID for the job is used.

Return Value

 0 Qp0zInitEnv() successfully initialized the environment.

-1 Qp0zInitEnv() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0zPutEnv() is not successful, errno indicates one of the following errors.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

Environment Variable APIs 19

A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL. For example, the string may not be in the

correct format.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function. (There is a limit of 4095

environment variables per job.)

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Usage Notes

1. Although Qp0zPutEnv() is threadsafe, if a thread calls an environment variable function while

another thread is accessing an environment variable from the environ array the thread may see

undefined results. The environ array can be accessed directly or by using a pointer returned from the

getenv() or Qp0zGetEnv() functions. The environment contents are only protected during calls to the

environment variable functions.

2. No translation is done based on the CCSID. The CCSID is just stored and retrieved as an integer

value associated with each environment variable.

Related Information

v The <qp0z1170.h> file (see “Header Files for UNIX-Type Functions” on page 24)

v “getenv()—Get Value of Environment Variable” on page 2—Get Value of Environment Variable

v “putenv()—Change or Add Environment Variable” on page 4—Change or Add Environment Variable

v “Qp0zDltEnv()—Delete an Environment Variable” on page 7—Delete an Environment Variable

v “Qp0zDltSysEnv()—Delete a System-Level Environment Variable” on page 9—Delete a System-Level

Environment Variable

v “Qp0zGetAllSysEnv()—Get All System-Level Environment Variables” on page 11—Get All

System-Level Environment Variables

v “Qp0zGetSysEnv()—Get Value of System-Level Environment Variable” on page 15—Get Value of

System-Level Environment Variable

v “Qp0zInitEnv()—Initialize Environment for Variables” on page 17—Initialize Environment for Variables

v “Qp0zPutSysEnv()—Change or Add a System-Level Environment Variable” on page 21—Change or

Add a System-Level Environment Variable

Example

See Code disclaimer information for information pertaining to code examples.

See the example of using putenv() in “Qp0zPutEnv()—Change or Add Environment Variable (Extended)”

on page 18—Change or Add Environment Variable.

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

20 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Qp0zPutSysEnv()—Change or Add a System-Level Environment

Variable

 Syntax

 #include <qp0z1170.h>

 int Qp0zPutSysEnv(const char *string, int ccsid,

 void *reserved);

 Service Program Name: QP0ZSYSE
 Default Public Authority: *USE
 Threadsafe: Yes

Qp0zPutSysEnv() function sets the value of a system-level environment variable by altering an existing

variable or creating a new variable. In addition, it specifies a CCSID (coded character set identifier) to be

associated with the environment variable.

The string parameter points to a string of the form name=value, where name is the environment variable

and value is the new value for it.

The name cannot contain a blank. For example,

 PATH NAME=/my_lib/joe_user

is not valid because of the blank between PATH and NAME. The name can contain an equal (=) symbol, but

the system interprets all characters following the first equal symbol as being the value of the environment

variable. For example,

 PATH=NAME=/my_lib/joe_user

will result in a value of ’NAME=/my_lib/joe_user’ for the variable PATH.

Parameters

string (Input) A pointer to the name=value string.

ccsid (Input) A CCSID to be associated with this environment variable. If 0 is specified, the default

CCSID for the job is used.

reserved

(Input) Reserved for future use. Currently, the only allowed value is NULL.

Authorities

*JOBCTL special authority is required to add or change a system-level environment variable.

Return Value

 0 Qp0zPutSysEnv() was successful.

errval Qp0zPutSysEnv() was not successful. errval is set to indicate the error.

Error Conditions

If Qp0zPutSysEnv() is not successful, errval indicates one of the following errors.

[EFAULT]

 The address used for an argument is not correct.

Environment Variable APIs 21

In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 For example, the string parameter was not in the correct format or the value for the reserved

parameter was not NULL.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function. (There is a limit of 4095

system-level environment variables.)

[EOPNOTSUPP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

 This error is returned if the environment variable that is being added is

QIBM_CHILD_JOB_SNDINQMSG. See spawn() in or spawnp() in for details on

QIBM_CHILD_JOB_SNDINQMSG.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

 You must have *JOBCTL special authority to add or change system-level environment variables.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Usage Notes

1. No translation is done based on the CCSID. The CCSID is just stored and retrieved as an integer

value associated with each environment variable.

Related Information

v The <qp0z1170.h> file (see “Header Files for UNIX-Type Functions” on page 24)

v “getenv()—Get Value of Environment Variable” on page 2—Get Value of Environment Variable

v “putenv()—Change or Add Environment Variable” on page 4—Change or Add Environment Variable

v “Qp0zDltEnv()—Delete an Environment Variable” on page 7—Delete an Environment Variable

v “Qp0zDltSysEnv()—Delete a System-Level Environment Variable” on page 9—Delete a System-Level

Environment Variable

22 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

v “Qp0zGetAllSysEnv()—Get All System-Level Environment Variables” on page 11—Get All

System-Level Environment Variables

v “Qp0zGetEnv()—Get Value of Environment Variable (Extended)” on page 13—Get Value of

Environment Variable (Extended)

v “Qp0zGetSysEnv()—Get Value of System-Level Environment Variable” on page 15—Get Value of

System-Level Environment Variable

v “Qp0zInitEnv()—Initialize Environment for Variables” on page 17—Initialize Environment for Variables

v “Qp0zPutEnv()—Change or Add Environment Variable (Extended)” on page 18—Change or Add

Environment Variable (Extended)

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses Qp0zPutSysEnv(), Qp0zGetSysEnv(), and Qp0zDltSysEnv().

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

#include <qp0z1170.h>

int main(int argc, char **argv)

{

 char *var1 = "PATH=/:/home";

 char *name1 = "PATH";

 char *val1 = NULL;

 int rc, ccsid, size;

 /* Add the system-level variable PATH */

 /* using default ccsid */

 ccsid = 0;

 rc = Qp0zPutSysEnv(var1, ccsid, NULL);

 if(rc != 0)

 {

 printf("Error from Qp0zPutSysEnv while adding <%s>\n",var1);

 printf("errno = %d\n",rc);

 return rc;

 }

 printf("<%s> added to system-level env var list\n",var1);

 /* Get the value of the variable PATH */

 size = 100;

 val1 = (char *)malloc(size);

 rc = Qp0zGetSysEnv(name1, val1, &size, &ccsid, NULL);

 if(rc == ENOSPC)

 {

 /* The buffer size was not enough to get the value */

 /* Increase the buffer to size */

 val1 = (char *)realloc(val1, size);

 rc = Qp0zGetSysEnv(name1, val1, &size, &ccsid, NULL);

 }

 if(rc != 0)

 {

 printf("Error from Qp0zGetSysEnv while retrieving");

 printf("<%s>, errno = %d\n", name1, rc);

 return rc;

 }

 printf("<%s> retrieved, value is <%s>\n",name1,val1);

 /* Delete the PATH variable */

Environment Variable APIs 23

rc = Qp0zDltSysEnv(name1, NULL);

 if(rc != 0)

 {

 printf("Error from Qp0zDltSysEnv while deleting");

 printf("<%s>, errno = %d\n", name1, rc);

 return rc;

 }

 printf("<%s> deleted from system-level env var list\n",name1);

 return 0;

}

Output:

 <PATH=/:/home> added to system-level variable list

 <PATH> retrieved, value is </:/home>

 <PATH> deleted from system-level variable list

For other examples, see the two-part example in API Examples for saving and restoring system-level

environment variables.

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

Concepts

These are the concepts for this category.

Header Files for UNIX-Type Functions

Programs using the UNIX(R)-type functions must include one or more header files that contain

information needed by the functions, such as:

v Macro definitions

v Data type definitions

v Structure definitions

v Function prototypes

The header files are provided in the QSYSINC library, which is optionally installable. Make sure

QSYSINC is on your system before compiling programs that use these header files. For information on

installing the QSYSINC library, see Include files and the QSYSINC Library.

The table below shows the file and member name in the QSYSINC library for each header file used by

the UNIX-type APIs in this publication.

 Name of Header File Name of File in QSYSINC Name of Member

arpa/inet.h ARPA INET

arpa/nameser.h ARPA NAMESER

bse.h H BSE

bsedos.h H BSEDOS

bseerr.h H BSEERR

dirent.h H DIRENT

errno.h H ERRNO

24 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Name of Header File Name of File in QSYSINC Name of Member

fcntl.h H FCNTL

grp.h H GRP

inttypes.h H INTTYPES

limits.h H LIMITS

mman.h H MMAN

netdbh.h H NETDB

netinet/icmp6.h NETINET ICMP6

net/if.h NET IF

netinet/in.h NETINET IN

netinet/ip_icmp.h NETINET IP_ICMP

netinet/ip.h NETINET IP

netinet/ip6.h NETINET IP6

netinet/tcp.h NETINET TCP

netinet/udp.h NETINET UDP

netns/idp.h NETNS IDP

netns/ipx.h NETNS IPX

netns/ns.h NETNS NS

netns/sp.h NETNS SP

net/route.h NET ROUTE

nettel/tel.h NETTEL TEL

os2.h H OS2

os2def.h H OS2DEF

pwd.h H PWD

Qlg.h H QLG

qp0lchsg.h H QP0LCHSG

qp0lflop.h H QP0LFLOP

qp0ljrnl.h H QP0LJRNL

qp0lror.h H QP0LROR

qp0lrro.h H QP0LRRO

qp0lrtsg.h H QP0LRTSG

qp0lscan.h H QP0LSCAN

Qp0lstdi.h H QP0LSTDI

qp0wpid.h H QP0WPID

qp0zdipc.h H QP0ZDIPC

qp0zipc.h H QP0ZIPC

qp0zolip.h H QP0ZOLIP

qp0zolsm.h H QP0ZOLSM

qp0zripc.h H QP0ZRIPC

qp0ztrc.h H QP0ZTRC

qp0ztrml.h H QP0ZTRML

qp0z1170.h H QP0Z1170

Environment Variable APIs 25

Name of Header File Name of File in QSYSINC Name of Member

qsoasync.h H QSOASYNC

qtnxaapi.h H QTNXAAPI

qtnxadtp.h H QTNXADTP

qtomeapi.h H QTOMEAPI

qtossapi.h H QTOSSAPI

resolv.h H RESOLVE

semaphore.h H SEMAPHORE

signal.h H SIGNAL

spawn.h H SPAWN

ssl.h H SSL

sys/errno.h H ERRNO

sys/ioctl.h SYS IOCTL

sys/ipc.h SYS IPC

sys/layout.h H LAYOUT

sys/limits.h H LIMITS

sys/msg.h SYS MSG

sys/param.h SYS PARAM

sys/resource.h SYS RESOURCE

sys/sem.h SYS SEM

sys/setjmp.h SYS SETJMP

sys/shm.h SYS SHM

sys/signal.h SYS SIGNAL

sys/socket.h SYS SOCKET

sys/stat.h SYS STAT

sys/statvfs.h SYS STATVFS

sys/time.h SYS TIME

sys/types.h SYS TYPES

sys/uio.h SYS UIO

sys/un.h SYS UN

sys/wait.h SYS WAIT

ulimit.h H ULIMIT

unistd.h H UNISTD

utime.h H UTIME

You can display a header file in QSYSINC by using one of the following methods:

v Using your editor. For example, to display the unistd.h header file using the Source Entry Utility

editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(5)

v Using the Display Physical File Member command. For example, to display the sys/stat.h header file,

enter the following command:

26 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

DSPPFM FILE(QSYSINC/SYS) MBR(STAT)

You can print a header file in QSYSINC by using one of the following methods:

v Using your editor. For example, to print the unistd.h header file using the Source Entry Utility editor,

enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(6)

v Using the Copy File command. For example, to print the sys/stat.h header file, enter the following

command:

CPYF FROMFILE(QSYSINC/SYS) TOFILE(*PRINT) FROMMBR(STAT)

Symbolic links to these header files are also provided in directory /QIBM/include.

 Top | UNIX-Type APIs | APIs by category

Errno Values for UNIX-Type Functions

Programs using the UNIX(R)-type functions may receive error information as errno values. The possible

values returned are listed here in ascending errno value sequence.

 Name Value Text Details

EDOM 3001 A domain error occurred in a math

function.

ERANGE 3002 A range error occurred.

ETRUNC 3003 Data was truncated on an input,

output, or update operation.

ENOTOPEN 3004 File is not open. You attempted to do an operation that

required the file to be open.

ENOTREAD 3005 File is not opened for read operations. You tried to read a file that is not open

for read operations.

EIO 3006 Input/output error.

A physical I/O error occurred or a

referenced object was damaged.

ENODEV 3007 No such device.

ERECIO 3008 Cannot get single character for files

opened for record I/O.

The file that was specified is open for

record I/O and you attempted to read it

as a stream file.

ENOTWRITE 3009 File is not opened for write

operations.

You tried to update a file that has not

been opened for write operations.

ESTDIN 3010 The stdin stream cannot be opened.

ESTDOUT 3011 The stdout stream cannot be opened.

ESTDERR 3012 The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is

not correct.

EBADNAME 3014 The object name specified is not

correct.

EBADMODE 3015 The type variable specified on the

open function is not correct.

The mode that you attempted to open

the file in is not correct.

EBADPOS 3017 The position specifier is not correct.

ENOPOS 3018 There is no record at the specified

position.

You attempted to position to a record

that does not exist in the file.

Environment Variable APIs 27

#TOP_OF_PAGE
unix.htm
aplist.htm

Name Value Text Details

ENUMMBRS 3019 Attempted to use ftell on multiple

members.

Remove all but one member from the

file.

ENUMRECS 3020 The current record position is too

long for ftell.

EINVAL 3021 The value specified for the argument

is not correct.

A function was passed incorrect

argument values, or an operation was

attempted on an object and the operation

specified is not supported for that type

of object.

EBADFUNC 3022 Function parameter in the signal

function is not set.

ENOENT 3025 No such path or directory. The directory or a component of the path

name specified does not exist.

ENOREC 3026 Record is not found.

EPERM 3027 The operation is not permitted. You must have appropriate privileges or

be the owner of the object or other

resource to do the requested operation.

EBADDATA 3028 Message data is not valid. The message data that was specified for

the error text is not correct.

EBUSY 3029 Resource busy. An attempt was made to use a system

resource that is not available at this time.

EBADOPT 3040 Option specified is not valid.

ENOTUPD 3041 File is not opened for update

operations.

ENOTDLT 3042 File is not opened for delete

operations.

EPAD 3043 The number of characters written is

shorter than the expected record

length.

The length of the record is longer than

the buffer size that was specified. The

data written was padded to the length of

the record.

EBADKEYLN 3044 A length that was not valid was

specified for the key.

You attempted a record I/O against a

keyed file. The key length that was

specified is not correct.

EPUTANDGET 3080 A read operation should not

immediately follow a write operation.

EGETANDPUT 3081 A write operation should not

immediately follow a read operation.

EIOERROR 3101 A nonrecoverable I/O error occurred.

EIORECERR 3102 A recoverable I/O error occurred.

EACCES 3401 Permission denied. An attempt was made to access an object

in a way forbidden by its object access

permissions.

ENOTDIR 3403 Not a directory. A component of the specified path name

existed, but it was not a directory when

a directory was expected.

28 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

Name Value Text Details

ENOSPC 3404 No space is available. The requested operations required

additional space on the device and there

is no space left. This could also be

caused by exceeding the user profile

storage limit when creating or

transferring ownership of an object.

EXDEV 3405 Improper link. A link to a file on another file system

was attempted.

EAGAIN 3406 Operation would have caused the

process to be suspended.

EWOULDBLOCK 3406 Operation would have caused the

process to be suspended.

EINTR 3407 Interrupted function call.

EFAULT 3408 The address used for an argument

was not correct.

In attempting to use an argument in a

call, the system detected an address that

is not valid.

ETIME 3409 Operation timed out.

ENXIO 3415 No such device or address.

EAPAR 3418 Possible APAR condition or hardware

failure.

ERECURSE 3419 Recursive attempt rejected.

EADDRINUSE 3420 Address already in use.

EADDRNOTAVAIL 3421 Address is not available.

EAFNOSUPPORT 3422 The type of socket is not supported in

this protocol family.

EALREADY 3423 Operation is already in progress.

ECONNABORTED 3424 Connection ended abnormally.

ECONNREFUSED 3425 A remote host refused an attempted

connect operation.

ECONNRESET 3426 A connection with a remote socket

was reset by that socket.

EDESTADDRREQ 3427 Operation requires destination

address.

EHOSTDOWN 3428 A remote host is not available.

EHOSTUNREACH 3429 A route to the remote host is not

available.

EINPROGRESS 3430 Operation in progress.

EISCONN 3431 A connection has already been

established.

EMSGSIZE 3432 Message size is out of range.

ENETDOWN 3433 The network currently is not

available.

ENETRESET 3434 A socket is connected to a host that is

no longer available.

ENETUNREACH 3435 Cannot reach the destination

network.

Environment Variable APIs 29

Name Value Text Details

ENOBUFS 3436 There is not enough buffer space for

the requested operation.

ENOPROTOOPT 3437 The protocol does not support the

specified option.

ENOTCONN 3438 Requested operation requires a

connection.

ENOTSOCK 3439 The specified descriptor does not

reference a socket.

ENOTSUP 3440 Operation is not supported. The operation, though supported in

general, is not supported for the

requested object or the requested

arguments.

EOPNOTSUPP 3440 Operation is not supported. The operation, though supported in

general, is not supported for the

requested object or the requested

arguments.

EPFNOSUPPORT 3441 The socket protocol family is not

supported.

EPROTONOSUPPORT 3442 No protocol of the specified type and

domain exists.

EPROTOTYPE 3443 The socket type or protocols are not

compatible.

ERCVDERR 3444 An error indication was sent by the

peer program.

ESHUTDOWN 3445 Cannot send data after a shutdown.

ESOCKTNOSUPPORT 3446 The specified socket type is not

supported.

ETIMEDOUT 3447 A remote host did not respond within

the timeout period.

EUNATCH 3448 The protocol required to support the

specified address family is not

available at this time.

EBADF 3450 Descriptor is not valid. A file descriptor argument was out of

range, referred to a file that was not

open, or a read or write request was

made to a file that is not open for that

operation.

EMFILE 3452 Too many open files for this process. An attempt was made to open more files

than allowed by the value of

OPEN_MAX. The value of OPEN_MAX

can be retrieved using the sysconf()

function.

ENFILE 3453 Too many open files in the system. A system limit has been reached for the

number of files that are allowed to be

concurrently open in the system.

EPIPE 3455 Broken pipe.

ECANCEL 3456 Operation cancelled.

EEXIST 3457 Object exists. The object specified already exists and

the specified operation requires that it

not exist.

30 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

Name Value Text Details

EDEADLK 3459 Resource deadlock avoided. An attempt was made to lock a system

resource that would have resulted in a

deadlock situation. The lock was not

obtained.

ENOMEM 3460 Storage allocation request failed. A function needed to allocate storage,

but no storage is available.

EOWNERTERM 3462 The synchronization object no longer

exists because the owner is no longer

running.

The process that had locked the mutex is

no longer running, so the mutex was

deleted.

EDESTROYED 3463 The synchronization object was

destroyed, or the object no longer

exists.

ETERM 3464 Operation was terminated.

ENOENT1 3465 No such file or directory. A component of a specified path name

did not exist, or the path name was an

empty string.

ENOEQFLOG 3466 Object is already linked to a dead

directory.

The link as a dead option was specified,

but the object is already marked as dead.

Only one dead link is allowed for an

object.

EEMPTYDIR 3467 Directory is empty. A directory with entries of only dot and

dot-dot was supplied when a nonempty

directory was expected.

EMLINK 3468 Maximum link count for a file was

exceeded.

An attempt was made to have the link

count of a single file exceed LINK_MAX.

The value of LINK_MAX can be

determined using the pathconf() or the

fpathconf() function.

ESPIPE 3469 Seek request is not supported for

object.

A seek request was specified for an

object that does not support seeking.

ENOSYS 3470 Function not implemented. An attempt was made to use a function

that is not available in this

implementation for any object or any

arguments.

EISDIR 3471 Specified target is a directory. The path specified named a directory

where a file or object name was

expected.

EROFS 3472 Read-only file system. You have attempted an update operation

in a file system that only supports read

operations.

EUNKNOWN 3474 Unknown system state. The operation failed because of an

unknown system state. See any messages

in the job log and correct any errors that

are indicated, then retry the operation.

EITERBAD 3475 Iterator is not valid.

EITERSTE 3476 Iterator is in wrong state for

operation.

EHRICLSBAD 3477 HRI class is not valid.

EHRICLBAD 3478 HRI subclass is not valid.

EHRITYPBAD 3479 HRI type is not valid.

Environment Variable APIs 31

Name Value Text Details

ENOTAPPL 3480 Data requested is not applicable.

EHRIREQTYP 3481 HRI request type is not valid.

EHRINAMEBAD 3482 HRI resource name is not valid.

EDAMAGE 3484 A damaged object was encountered.

ELOOP 3485 A loop exists in the symbolic links. This error is issued if the number of

symbolic links encountered is more than

POSIX_SYMLOOP (defined in the

limits.h header file). Symbolic links are

encountered during resolution of the

directory or path name.

ENAMETOOLONG 3486 A path name is too long. A path name is longer than PATH_MAX

characters or some component of the

name is longer than NAME_MAX

characters while _POSIX_NO_TRUNC is

in effect. For symbolic links, the length of

the name string substituted for a

symbolic link exceeds PATH_MAX. The

PATH_MAX and NAME_MAX values

can be determined using the pathconf()

function.

ENOLCK 3487 No locks are available. A system-imposed limit on the number

of simultaneous file and record locks was

reached, and no more were available at

that time.

ENOTEMPTY 3488 Directory is not empty. You tried to remove a directory that is

not empty. A directory cannot contain

objects when it is being removed.

ENOSYSRSC 3489 System resources are not available.

ECONVERT 3490 Conversion error. One or more characters could not be

converted from the source CCSID to the

target CCSID.

E2BIG 3491 Argument list is too long.

EILSEQ 3492 Conversion stopped due to input

character that does not belong to the

input codeset.

ETYPE 3493 Object type mismatch. The type of the object referenced by a

descriptor does not match the type

specified on the interface.

EBADDIR 3494 Attempted to reference a directory

that was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that

was not found, was destroyed, or was

damaged.

EIDXINVAL 3496 Data space index used as a directory

is not valid.

ESOFTDAMAGE 3497 Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system

distribution directory.

You attempted to use a function that

requires you to be enrolled in the system

distribution directory and you are not.

32 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

Name Value Text Details

EOFFLINE 3499 Object is suspended. You have attempted to use an object that

has had its data saved and the storage

associated with it freed. An attempt to

retrieve the object’s data failed. The

object’s data cannot be used until it is

successfully restored. The object’s data

was saved and freed either by saving the

object with the STG(*FREE) parameter, or

by calling an API.

EROOBJ 3500 Object is read-only. You have attempted to update an object

that can be read only.

EEAHDDSI 3501 Hard damage on extended attribute

data space index.

EEASDDSI 3502 Soft damage on extended attribute

data space index.

EEAHDDS 3503 Hard damage on extended attribute

data space.

EEASDDS 3504 Soft damage on extended attribute

data space.

EEADUPRC 3505 Duplicate extended attribute record.

ELOCKED 3506 Area being read from or written to is

locked.

The read or write of an area conflicts

with a lock held by another process.

EFBIG 3507 Object too large. The size of the object would exceed the

system allowed maximum size.

EIDRM 3509 The semaphore, shared memory, or

message queue identifier is removed

from the system.

ENOMSG 3510 The queue does not contain a

message of the desired type and

(msgflg logically ANDed with

IPC_NOWAIT).

EFILECVT 3511 File ID conversion of a directory

failed.

To recover from this error, run the

Reclaim Storage (RCLSTG) command as

soon as possible.

EBADFID 3512 A file ID could not be assigned when

linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the

Reclaim Storage (RCLSTG) command as

soon as possible.

ESTALE 3513 File or object handle rejected by

server.

ESRCH 3515 No such process.

ENOTSIGINIT 3516 Process is not enabled for signals. An attempt was made to call a signal

function under one of the following

conditions:

v The signal function is being called for

a process that is not enabled for

asynchronous signals.

v The signal function is being called

when the system signal controls have

not been initialized.

ECHILD 3517 No child process.

Environment Variable APIs 33

Name Value Text Details

EBADH 3520 Handle is not valid.

ETOOMANYREFS 3523 The operation would have exceeded

the maximum number of references

allowed for a descriptor.

ENOTSAFE 3524 Function is not allowed. Function is not allowed in a job that is

running with multiple threads.

EOVERFLOW 3525 Object is too large to process. The object’s data size exceeds the limit

allowed by this function.

EJRNDAMAGE 3526 Journal is damaged. A journal or all of the journal’s attached

journal receivers are damaged, or the

journal sequence number has exceeded

the maximum value allowed. This error

occurs during operations that were

attempting to send an entry to the

journal.

EJRNINACTIVE 3527 Journal is inactive. The journaling state for the journal is

*INACTIVE. This error occurs during

operations that were attempting to send

an entry to the journal.

EJRNRCVSPC 3528 Journal space or system storage error. The attached journal receiver does not

have space for the entry because the

storage limit has been exceeded for the

system, the object, the user profile, or the

group profile. This error occurs during

operations that were attempting to send

an entry to the journal.

EJRNRMT 3529 Journal is remote. The journal is a remote journal. Journal

entries cannot be sent to a remote

journal. This error occurs during

operations that were attempting to send

an entry to the journal.

ENEWJRNRCV 3530 New journal receiver is needed. A new journal receiver must be attached

to the journal before entries can be

journaled. This error occurs during

operations that were attempting to send

an entry to the journal.

ENEWJRN 3531 New journal is needed. The journal was not completely created,

or an attempt to delete it did not

complete successfully. This error occurs

during operations that were attempting

to start or end journaling, or were

attempting to send an entry to the

journal.

EJOURNALED 3532 Object already journaled. A start journaling operation was

attempted on an object that is already

being journaled.

EJRNENTTOOLONG 3533 Entry is too large to send. The journal entry generated by this

operation is too large to send to the

journal.

EDATALINK 3534 Object is a datalink object.

34 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

Name Value Text Details

ENOTAVAIL 3535 Independent Auxiliary Storage Pool

(ASP) is not available.

The independent ASP is in Vary

Configuration (VRYCFG) or Reclaim

Storage (RCLSTG) processing. To recover

from this error, wait until processing has

completed for the independent ASP.

ENOTTY 3536 I/O control operation is not

appropriate.

EFBIG2 3540 Attempt to write or truncate file past

its sort file size limit.

ETXTBSY 3543 Text file busy.

An attempt was made to execute an

i5/OS PASE program that is currently

open for writing, or an attempt has been

made to open for writing an i5/OS PASE

program that is being executed.

EASPGRPNOTSET 3544 ASP group not set for thread.

ERESTART 3545 A system call was interrupted and

may be restarted.

ESCANFAILURE 3546 Object had scan failure. An object has been marked as a scan

failure due to processing by an exit

program associated with the scan-related

integrated file system exit points.

 Top | UNIX-Type APIs | APIs by category

Environment Variable APIs 35

#TOP_OF_PAGE
unix.htm
aplist.htm

36 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2006 37

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

(C) IBM 2006. Portions of this code are derived from IBM Corp. Sample Programs. (C) Copyright IBM

Corp. 1998, 2006. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This Application Programming Interfaces (API) publication documents intended Programming Interfaces

that allow the customer to write programs to obtain the services of IBM i5/OS.

38 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI
DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
i5/OS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Appendix. Notices 39

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and Conditions

Permissions for the use of these Publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

Publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these Publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these Publications, or reproduce, distribute or display these Publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the Publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE

40 IBM Systems - iSeries: UNIX-Type -- Environment Variable APIs

����

Printed in USA

	Contents
	Environment Variable APIs
	APIs
	getenv()—Get Value of Environment Variable
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	putenv()—Change or Add Environment Variable
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	Qp0zDltEnv()—Delete an Environment Variable
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	Qp0zDltSysEnv()—Delete a System-Level Environment Variable
	Parameters
	Authorities
	Return Value
	Error Conditions
	Related Information
	Example

	Qp0zGetAllSysEnv()—Get All System-Level Environment Variables
	Authorities
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	Qp0zGetEnv()—Get Value of Environment Variable (Extended)
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	Qp0zGetSysEnv()—Get Value of System-Level Environment Variable
	Authorities
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	Qp0zInitEnv()—Initialize Environment for Variables
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information

	Qp0zPutEnv()—Change or Add Environment Variable (Extended)
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	Qp0zPutSysEnv()—Change or Add a System-Level Environment Variable
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	Concepts
	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions

